Sample records for infill drilling program

  1. Incorporating reservoir heterogeneity with geostatistics to investigate waterflood recoveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolcott, D.S.; Chopra, A.K.

    1993-03-01

    This paper presents an investigation of infill drilling performance and reservoir continuity with geostatistics and a reservoir simulator. The geostatistical technique provides many possible realizations and realistic descriptions of reservoir heterogeneity. Correlation between recovery efficiency and thickness of individual sand subunits is shown. Additional recovery from infill drilling results from thin, discontinuous subunits. The technique may be applied to variations in continuity for other sandstone reservoirs.

  2. Socioeconomic Impact of Infill Drilling Recovery from Carbonate Reservoirs in the Permian Basin, West Texas

    DTIC Science & Technology

    1994-05-01

    called corporate income tax . The aforementioned taxes are computed from the infill drilling recovery revenue calculated using an oil price ranging...production is not used in these computations. However, oil and gas production is used to compute the federal corporate income tax . 6.2 Advalorem Tax Revenue...billion of the corporate income tax collected in 1992. This is a humbling fact because one can see how much effort it takes to generate 0.17% of the

  3. Targeting new wells in a mature field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javed, M.S.

    It has been estimated through a simulation study that about 20 million STB of oil can be recovered through infill drilling in the flank areas of one of the prolific, but depleting reservoirs (Arab C) in a Qatar offshore field. The area where this appreciable amount of oil (known as ``Cellar Oil``) exists, has been left unswept by the non-ideal location of the ``Dumpflooders`` -- injection wells, for pressure maintenance, which gravitate water from a source formation directly into the producing reservoir. This paper highlights the results of the simulation study of this mature reservoir, studied together with the underlyingmore » Arab D, where high oil concentrations are shown i the flank areas, between the OWC and the dumpflooders. Although, the existing flank production wells have been performing satisfactorily, it was found, from the study, that even prolonged production through these would not drain this trapped Cellar Oil; new wells must be drilled to recover it. The infill wells, proposed for this purpose, happen to be located in areas such that they can be completed dually in a horizontal mode with another underlying reservoir (Uwainat) having an oil rim, thus, further increasing the attractiveness of the project. The study also indicates the necessity of infill drilling in other parts of the Arab C and Arab D.« less

  4. Horizontal spacing, depletion, and infill potential in the Austin Chalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyte, D.G.; Meehan, D.N.

    1996-12-31

    There have been more than 4500 laterals drilled in the Austin Chalk. This paper looks at estimated ultimate recoveries (EUR) on a barrels/acre basis for these Austin Chalk wells. Baffels/acre recoveries were computed by estimating ultimate per-well recoveries, drilled density and the impact of vertical production. The data were then analyzed for depletion and infill potential. Certain areas were selected for further study using an artificial neural network. The network was built and used to study the effects of parameters such as lateral length, first production date, structure of the Austin Chalk, etc. on these recoverable barrel/acre numbers. The methodologymore » and regional results of the study are reviewed with detailed analyses shown in selected areas.« less

  5. Application of facies analysis to improve gas reserve growth in Fluvial Frio Reservoirs, La Gloria Field, South Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Jackson, M.L.W.; Finley, R.J.

    1988-01-01

    Geologically based infill-drilling strategies hold great potential for extension of domestic gas resources. Traditional gas-well drilling and development have often assumed homogeneous and continuous reservoirs; uniform gas-well spacing has resulted in numerous untapped reservoirs isolated from other productive sand bodies. Strategically located infill wells drilled into these undrained reservoirs may ultimately contact an additional 20% of original gas in place in Texas gas fields. Tertiary formations in the Texas Gulf Coast commonly exhibit multiple fluvial and fluvial-deltaic reservoirs that contain vertical and horizontal permeability barriers. For example, the Frio La Gloria field (Jim Wells and Brooks Counties, Texas) contains isolatedmore » and compartmentalized reservoirs that can be related to the irregular distribution of heterogeneous facies. Net-sand and log-facies maps in areas of dense well spacing delineate relatively continuous pay defined by lenticular point-bar and channel-fill deposits 1,500-2,500 ft wide. These point-bar deposits are flanked laterally by sand-poor levee and splay facies that isolate the reservoirs into narrow, dip-elongate bands.« less

  6. Improved recovery demonstration for Williston Basin carbonates. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technologymore » and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.« less

  7. Microscopic character of marine sediment containing disseminated gas hydrate. Examples from the Blake Ridge and the Middle America Trench

    USGS Publications Warehouse

    Lorenson, T.D.

    2000-01-01

    The presence of disseminated gas hydrate was inferred based on pore fluid geochemistry and downhole logging data, but was rarely observed at Ocean Drilling Program (ODP) Leg 164 (Blake Ridge), and Leg 170 (Middle America Trench, offshore from Costa Rica) drilling sites. Gas hydrate nucleation is likely to occur first in larger voids rather than in constricted pore space, where capillary forces depress the temperature-pressure stability field for gas hydrate formation. Traditional macroscopic descriptions of sediment fail to detect the microscopic character of primary and secondary porosity in sediment hosting disseminated gas hydrate. Light transmission and scanning electron microscopy of sediments within and below the depth of gas hydrate occurrences reveal at least four general types of primary and secondary porosity: (1) microfossils (diatoms, foraminifera, and spicules) void of infilling sediment, but commonly containing small masses of pyrite framboids; (2) infauna burrows filled with unconsolidated sand and or microfossil debris; (3) irregularly shaped pods of nonconsolidated framboidial pyrite; and (4) nonlithified volcanic ash.

  8. History of gas production from Devonian shale in eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemper, J.R.; Frankie, W.T.; Smath, R.A.

    More than 10,500 wells that penetrate the Devonian shale have been compiled into a data base covering a 25-county area of eastern Kentucky. This area includes the Big Sandy gas field, the largest in the Appalachian basin, and marginal areas to the southwest, west, and northwest. The development of the Big Sandy gas field began in the 1920s in western Floyd County, Kentucky, and moved concentrically outward through 1970. Since 1971, the trend has been for infill and marginal drilling, and fewer companies have been involved. The resulting outline of the Big Sandy gas field covers most of Letcher, Knott,more » Floyd, Martin, and Pike Counties in Kentucky; it also extends into West Virginia. Outside the Big Sandy gas field, exploration for gas has been inconsistent, with a much higher ratio of dry holes. The results of this study, which was partially supported by the Gas Research Institute (GRI), indicate that certain geologic factors, such as fracture size and spacing, probably determine the distribution of commercial gas reserves as well as the outline of the Big Sandy gas field. Future Big Sandy infill and extension drilling will need to be based on an understanding of these factors.« less

  9. Advanced secondary recovery demonstration for the Sooner Unit. Progress report, July 1--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sippel, M.A.; Cammon, T.J.

    1995-09-30

    The objective of this project is to increase production from the Cretaceous ``D`` Sand in the Denver-Julesburg (D-J) Basin through geologically targeted infill drilling and improved reservoir management of waterflood operations. This project involves multi-disciplinary reservoir characterization using high-density 3-D seismic, detailed stratigraphy and reservoir simulation studies. Infill drilling, water-injection conversion and recompleting some wells to add short-radius laterals will be based on the results of the reservoir characterization studies. Production response will be evaluated using reservoir simulation and production tests. Technology transfer will utilize workshops, presentations and technical papers which will emphasize the economic advantages of implementing the demonstratedmore » technologies. The success of this project and effective technology transfer should prompt-re-appraisal of older waterflood projects and implementation of new projects in oil provinces such as the D-J Basin. Three wells have been drilled by the project based on 3-D seismic and integrated reservoir characterization study. Oil production has increased in September to 54.0 m{sup 3}/D (340 bopd) after the completion of the SU 21-16-9. Combination-attribute maps from 3-D seismic data closely predicted the net-pay thickness of the new well. Inter-well tracer tests with sodium bromide indicate a high-permeability channel between two wells. An oral presentation was made at the Rocky Mountain AAPG meeting in Reno, NV.« less

  10. Idaho still attractive to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-01-01

    Idaho continues to attract operators willing to gamble millions in the hope of establishing the first commercial production in the state. Low well density compounds the complexity of Idaho's geology. Projections are that at least three wildcats will be drilled in the Bear Lake County this year. Plans are to continue infill seismic work on the Overthrust acreage, where significant amount of reconnaissance lines has been shot.

  11. Documentation of Computer Program INFIL3.0 - A Distributed-Parameter Watershed Model to Estimate Net Infiltration Below the Root Zone

    USGS Publications Warehouse

    ,

    2008-01-01

    This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that illustrates application of the code to a field setting. Brief descriptions of the main program routine and of each of the modules and subroutines of the INFIL3.0 code, as well as definitions of the variables used in each subroutine, are provided in an appendix.

  12. The Unicorn Cave, Southern Harz Mountains, Germany: From known passages to unknown extensions with the help of geophysical surveys

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Nielbock, Ralf; Romanov, Douchko

    2015-12-01

    In soluble rocks (limestone, dolomite, anhydrite, gypsum, …), fissures and bedding partings can be enlarged with time by both physical and chemical dissolution of the host rock. With time, larger cavities evolve, and a network of cave passages can evolve. If the enlarged cave voids are not too deep under the surface, geophysical measurements can be used to detect, identify and trace these karst structures, e.g.: (i) gravity revealing air- and sediment-filled cave voids through negative Bouguer anomalies, (ii) electrical resistivity imaging (ERI) mapping different infillings of cavities either as high resistivities from air-filled voids or dry soft sediments, or low resistivities from saturated sediments, and (iii) groundwater flow through electrical potential differences (SP) arising from dislocated ionic charges from the walls of the underground flow paths. We have used gravity, ERI, and SP methods both in and above the Unicorn Cave located in the southern Harz Mountains in Germany. The Unicorn Cave is a show cave developed in the Werra dolomite formation of the Permian Zechstein sequence, characterised by large trunk passages interrupted by larger rooms. The overburden of the cave is only around 15 m, and passages are filled with sediments reaching infill thicknesses up to 40 m. We present results from our geophysical surveys above the known cave and its northern and southern extension, and from the cave interior. We identify the cave geometry and its infill from gravity and ERI measurements, predict previously unknown parts of the cave, and subsequently confirm the existence of these new passages through drilling. From the wealth of geophysical data acquired we derive a three-dimensional structural model of the Unicorn Cave and its surrounding, especially the cave infill.

  13. Modelling of masonry infill walls participation in the seismic behaviour of RC buildings using OpenSees

    NASA Astrophysics Data System (ADS)

    Furtado, André; Rodrigues, Hugo; Arêde, António

    2015-06-01

    Recent earthquakes show that masonry infill walls should be taken into account during the design and assessment process of structures, since this type of non-structural elements increase the in-plane stiffness of the structure and consequently the natural period. An overview of the past researches conducted on the modelling of masonry infilled frame issues has been done, with discussion of past analytical investigations and different modelling approaches that many authors have proposed, including micro- and macro-modelling strategies. After this, the present work presents an improved numerical model, based on the Rodrigues et al. (J Earthq Eng 14:390-416, 2010) approach, for simulating the masonry infill walls behaviour in the computer program OpenSees. The main results of the in-plane calibration analyses obtained with one experimental test are presented and discussed. For last, two reinforced concrete regular buildings were studied and subjected to several ground motions, with and without infills' walls.

  14. Improved reservoir characterization of the Rose Run sandstone on the East Randolph Field, Portage County, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safley, I.E.; Thomas, J.B.

    1996-09-01

    The East Randolph Field, located in Randolph Township, Portage County, Ohio, produces oil and gas from the Cambrian Rose Run sandstone unit, a member of the Knox Supergroup. Field development and infill drilling opportunities illustrate the need for improved reservoir characterization of the hydrocarbon productive intervals. This reservoir study is conducted under the Department of Energy`s Reservoir Management Program with professionals from BDM-Oklahoma and Belden & Blake Corporation. Well log and core analyses were conducted to determine the reservoir distribution, the heterogeneity of the hydrocarbon producing intervals, and the effects of faulting and fracturing on well productivity. The Rose Runmore » sandstones and interbedded dolomites were subdivided into three productive intervals. Cross sections were constructed for correlation of individual layers and identification of localized faulting. The geologic data was input into GeoGraphix software for construction of structure, net pay, production, and gas- and water-oil ratio maps.« less

  15. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  16. Integrated geostatistics for modeling fluid contacts and shales in Prudhoe Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, G.; Chopra, A.K.; Severson, C.D.

    1997-12-01

    Geostatistics techniques are being used increasingly to model reservoir heterogeneity at a wide range of scales. A variety of techniques is now available with differing underlying assumptions, complexity, and applications. This paper introduces a novel method of geostatistics to model dynamic gas-oil contacts and shales in the Prudhoe Bay reservoir. The method integrates reservoir description and surveillance data within the same geostatistical framework. Surveillance logs and shale data are transformed to indicator variables. These variables are used to evaluate vertical and horizontal spatial correlation and cross-correlation of gas and shale at different times and to develop variogram models. Conditional simulationmore » techniques are used to generate multiple three-dimensional (3D) descriptions of gas and shales that provide a measure of uncertainty. These techniques capture the complex 3D distribution of gas-oil contacts through time. The authors compare results of the geostatistical method with conventional techniques as well as with infill wells drilled after the study. Predicted gas-oil contacts and shale distributions are in close agreement with gas-oil contacts observed at infill wells.« less

  17. Rospo Mare (Adriatic Sea) - An oil-bearing paleokarst in the Mediterranean region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soudet, H.; Sorriaux, P.; Michaud, F.

    1990-05-01

    The oil-bearing paleokarst at Rospo Mare is located in the Adriatic Sea, 20 km off the Italian coast. The reservoir lies at a depth of 1,300 m and consists of a paleokarst of Oligocene to Miocene age that developed within Cretaceous limestones, now covered by 1,200 m of Miocene-Pliocene clastics. The oil column is about 140 m. The karstic nature of the reservoir was identified through vertical cored drill holes, which allowed us to analyze the various solution features and the sedimentary infill (speleothems, terra rossa, marine clays), as well as their vertical distribution. Observations concerning the upper part ofmore » the reservoir were compared to a paleokarst of the same age, outcropping widely onshore, in quarries located nearby. Erosion morphology at the top of the karst is highly irregular, including especially paleovalleys as well as many pit-shaped sink holes. Detailed knowledge of that morphology through geophysics helped optimizing the development of the field through horizontal drilling.« less

  18. HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Radtke; David Glowka; Man Mohan Rai

    2008-03-31

    Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hardmore » and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.« less

  19. Schaben field, Kansas: Improving performance in a Mississippian shallow-shelf carbonate

    USGS Publications Warehouse

    Montgomery, S.L.; Franseen, E.K.; Bhattacharya, S.; Gerlach, P.; Byrnes, A.; Guy, W.; Carr, T.R.

    2000-01-01

    Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: Spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.Schaben field (Kansas), located along the northeastern shelf of the Hugoton embayment, produces from Mississippian carbonates in erosional highs immediately beneath a regional unconformity. Production comes from depths of around 4400 ft (1342 m) in partially dolomitized shelf deposits. A detailed reservoir characterization/simulation study, recently performed as part of a Department of Energy Reservoir Class Oil Field Demonstration Project, has led to important revision in explanations for observed patterns of production. Cores recovered from three new data wells identify three main facies: spicule-rich wackestone-packstone, echinoderm wackestone/packstone/grainstone, and dolomitic mudstone-wackestone. Reservoir quality is highest in spicule-rich wackestone/packstones but is subject to a very high degree of vertical heterogeneity due to facies interbedding, silification, and variable natural fracturing. The oil reservoir is underlain by an active aquifer, which helps maintain reservoir pressure but supports significant water production. Reservoir simulation, using public-domain, PC-based software, suggests that infill drilling is an efficient approach to enhanced recovery. Recent drilling directed by simulation results has shown considerable success in improving field production rates. Results from the Schaben field demonstration project are likely to have wide application for independent oil and exploration companies in western Kansas.

  20. Facies heterogeneity, pay continuity, and infill potential in barrier-island, fluvial, and submarine fan reservoirs: examples from the Texas Gulf Coast and Midland basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose, W.A.; Tyler, N.

    1989-03-01

    Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less

  1. Infill and mire evolution of a typical kettle hole: young ages at great depths (Jackenmoos, Austria)

    NASA Astrophysics Data System (ADS)

    Götz, Joachim; Salcher, Bernhard

    2015-04-01

    Kettle holes are very common features in proglacial environments. Myriads of small, often circular shaped lakes are indicative of dead ice slowly melting out after the collapse of glaciers and subsequent burial of glaciofluvial sediments. Many of these lakes transformed into mires during the Postglacial and the Holocene. Still, little is known about the mechanisms leading to mire formation in such environments. We aim to analyse the shape and the postglacial history of infilling and peat accumulation of a typical dead ice kettle using 2D resistivity surveying, core-drilling, 14C dating and palynologic analyses. The kettle hole mire is located within a small kame delta deposit just south of the LGM extend of the Salzach Piedmont glacier (Austria/Germany). Today, the mire is a spot of exceptional high biodiversity and under protection. Sediment core samples extracted in the deepest (c. 10-14 m) and central part of the kettle directly overly lacustrine fine sediments and yielded young ages covering the subatlantic period only. Young ages are in agreement with palynologic results comprising e.g. pollen of secale (rye) and juglans (walnut). However, these deposits are situated beneath a massive water body (10 m), only covered by a thin floating mat. A second, more distally situated drill core indicates the thinning of this water body at the expense of peat deposits covering the Late Glacial to Middle Holocene. Multiple 2D resistivity data support drilling information and enabled us to reconstruct the shape of the basin. The transition from lacustrine sediments to the water body above is characterised by a sharp increase in resistivity. Furthermore, the resistivity pattern within the entire kettle indicates an increase towards the centre, most probably as a result of the changing nutrient content. The postglacial evolution of the mire is in agreement with the concept of "floating mat terrestrialisation", representing a horizontal growth of the floating mat from the edges toward the lake centre. This concept further includes the deposition of strongly hydrated and loose debris peat formations under the floating mat. The process leads to decreasing basal ages from the edge towards the centre and therefore well explains the age distribution in the studied kettle hole.

  2. Sequential simulation approach to modeling of multi-seam coal deposits with an application to the assessment of a Louisiana lignite

    USGS Publications Warehouse

    Olea, Ricardo A.; Luppens, James A.

    2012-01-01

    There are multiple ways to characterize uncertainty in the assessment of coal resources, but not all of them are equally satisfactory. Increasingly, the tendency is toward borrowing from the statistical tools developed in the last 50 years for the quantitative assessment of other mineral commodities. Here, we briefly review the most recent of such methods and formulate a procedure for the systematic assessment of multi-seam coal deposits taking into account several geological factors, such as fluctuations in thickness, erosion, oxidation, and bed boundaries. A lignite deposit explored in three stages is used for validating models based on comparing a first set of drill holes against data from infill and development drilling. Results were fully consistent with reality, providing a variety of maps, histograms, and scatterplots characterizing the deposit and associated uncertainty in the assessments. The geostatistical approach was particularly informative in providing a probability distribution modeling deposit wide uncertainty about total resources and a cumulative distribution of coal tonnage as a function of local uncertainty.

  3. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-06-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  4. INTELLIGENT COMPUTING SYSTEM FOR RESERVOIR ANALYSIS AND RISK ASSESSMENT OF THE RED RIVER FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenneth D. Luff

    2002-09-30

    Integrated software has been written that comprises the tool kit for the Intelligent Computing System (ICS). Luff Exploration Company is applying these tools for analysis of carbonate reservoirs in the southern Williston Basin. The integrated software programs are designed to be used by small team consisting of an engineer, geologist and geophysicist. The software tools are flexible and robust, allowing application in many environments for hydrocarbon reservoirs. Keystone elements of the software tools include clustering and neural-network techniques. The tools are used to transform seismic attribute data to reservoir characteristics such as storage (phi-h), probable oil-water contacts, structural depths andmore » structural growth history. When these reservoir characteristics are combined with neural network or fuzzy logic solvers, they can provide a more complete description of the reservoir. This leads to better estimates of hydrocarbons in place, areal limits and potential for infill or step-out drilling. These tools were developed and tested using seismic, geologic and well data from the Red River Play in Bowman County, North Dakota and Harding County, South Dakota. The geologic setting for the Red River Formation is shallow-shelf carbonate at a depth from 8000 to 10,000 ft.« less

  5. Ocean Drilling Program: Public Information: News

    Science.gov Websites

    site ODP's main web site ODP/TAMU Science Operator Home Ocean Drilling Program News The Ocean Drilling Program was succeeded in 2003 by the Integrated Ocean Drilling Program (IODP). The IODP U.S. Implementing

  6. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    NASA Astrophysics Data System (ADS)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of the infill and prevented collapse and debris fallout even at severe loading stages. A finite element macromodel was proposed for the analysis of the GFRP-retrofitted masonry infilled frames. The infill panel was replaced with a nonlinear, compression-only, diagonal strut. This model was verified using the experimental results of the infilled frame testing and is characterized by its ease of application and accuracy.

  7. Crack propagation from a filled flaw in rocks considering the infill influences

    NASA Astrophysics Data System (ADS)

    Chang, Xu; Deng, Yan; Li, Zhenhua; Wang, Shuren; Tang, C. A.

    2018-05-01

    This study presents a numerical and experimental study of the cracking behaviour of rock specimen containing a single filled flaw under compression. The primary aim is to investigate the influences of infill on crack patterns, load-displacement response and specimen strength. The numerical code RFPA2D (Rock Failure Process Analysis) featured by the capability of modeling heterogeneous materials is employed to develop the numerical model, which is further calibrated by physical tests. The results indicate that there exists a critical infill strength which controls crack patterns for a given flaw inclination angle. For case of infill strength lower than the critical value, the secondary or anti-cracks are disappeared by increasing the infill strength. If the infill strength is greater than the critical value, the filled flaw has little influence on the cracking path and the specimen fails by an inclined crack, as if there is no flaw. The load-displacement responses show specimen stiffness increases by increasing infill strength until the infill strength reaches its critical value. The specimen strength increases by increasing the infill strength and almost keeps constant as the infill strength exceeds its critical value.

  8. Determination of variables in the prediction of strontium distribution coefficients for selected sediments

    USGS Publications Warehouse

    Pace, M.N.; Rosentreter, J.J.; Bartholomay, R.C.

    2001-01-01

    Idaho State University and the US Geological Survey, in cooperation with the US Department of Energy, conducted a study to determine and evaluate strontium distribution coefficients (Kds) of subsurface materials at the Idaho National Engineering and Environmental Laboratory (INEEL). The Kds were determined to aid in assessing the variability of strontium Kds and their effects on chemical transport of strontium-90 in the Snake River Plain aquifer system. Data from batch experiments done to determine strontium Kds of five sediment-infill samples and six standard reference material samples were analyzed by using multiple linear regression analysis and the stepwise variable-selection method in the statistical program, Statistical Product and Service Solutions, to derive an equation of variables that can be used to predict strontium Kds of sediment-infill samples. The sediment-infill samples were from basalt vesicles and fractures from a selected core at the INEEL; strontium Kds ranged from ???201 to 356 ml g-1. The standard material samples consisted of clay minerals and calcite. The statistical analyses of the batch-experiment results showed that the amount of strontium in the initial solution, the amount of manganese oxide in the sample material, and the amount of potassium in the initial solution are the most important variables in predicting strontium Kds of sediment-infill samples.

  9. An Experimental Investigation on the Ultimate Strength of Partially Infilled: Braced Steel Frames

    NASA Astrophysics Data System (ADS)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil Y.

    2017-12-01

    Infilled walls are usually, considered as non-structural elements. However, these walls are effective in carrying lateral loads. In this regard, an experimental investigation was planned and conducted to study the effect of braced and partially infilled steel frames with cement mortar and concrete in comparison to the bare frames. All these frames were tested up to collapse and subjected only to horizontal loads to obtain an effective and possible solution for soft storey which are generally not infilled. In comparison to bare steel frames, partially infilled frames have an increase of lateral load capacity by 45-60%. Central bracing is more effective than that of the corner bracing. For the same load partially infilled frames have significantly less deflection than that of the bare frames. A reduced load factor is suggested for the design of soft storey columns with the partial infills. A mathematical model has been proposed to calculate the theoretical ultimate load for the braced, cement mortar and concrete partial infilled frames.

  10. Experimental study on the influence of the opening in brick-masonry wall to seismic performance of reinforced concrete frame structures

    NASA Astrophysics Data System (ADS)

    Maidiawati, Tanjung, Jafril; Medriosa, Hamdeni

    2017-10-01

    Reinforced concrete (RC) frame structures with brick-masonry infills are commonly used in developing countries and high-risk seismic area, such as Indonesia. Significant researches have been carried out for studying the seismic performance of RC frame structures with brick-masonry infills. Only few of them focused on effects of the opening in the brick-masonry infill to the seismic performance of the RC frame structures. The presence of opening in brick-masonry infill is often used for placing doors and windows as well, however, it may reduce the seismic performance of the RC frame structure. In the current study, they influence of the opening in brick-masonry infills to the seismic performance RC frame structure will experimentally evaluated. Five of 1/4-scaled single story and single bay RC frame specimens were prepared, i.e. an RC bare frame, a clay brick-masonry infilled RC frame and three of clay brick-masonry infilled RC frame with openings in the brick-masonry infills. The last three specimens were clay brick infilled RC frame with a center opening, clay brick infilled RC frame with two openings used for placing the windows and clay brick infilled RC frame with opening for placing the door. The specimens pushed over by applying the static monotonic lateral load to the upper beam of the RC frame structures. The incremental of the lateral load and the lateral displacement of RC frame's column was recorded during test. The crack propagation and the major cracks were also observed to identify the mechanism failure of specimens. As the results, the opening in the brick-masonry wall controls the failure mechanism, the lateral strength and the stiffness of the overall of infilled RC frame structure. The diagonal shear crack pattern was found on brick-masonry wall without opening, on other hand the different crack patterns were observed on brick-masonry wall with openings. Although the opening in the brick masonry infill reduced the lateral strength and stiffness of the infilled RC frame, it was still stronger and stiffer than the bare frame.

  11. Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame

    NASA Astrophysics Data System (ADS)

    Zhang, Cuiqiang; Zhou, Ying; Zhou, Deyuan; Lu, Xilin

    2011-12-01

    Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenchuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame.

  12. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.

    1998-12-01

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated inmore » hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.« less

  13. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Can my operations plan, drilling permit... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can my operations plan, drilling permit, and drilling program apply to more than one well? (a) Your...

  14. Effect of URM infills on seismic vulnerability of Indian code designed RC frame buildings

    NASA Astrophysics Data System (ADS)

    Haldar, Putul; Singh, Yogendra; Paul, D. K.

    2012-03-01

    Unreinforced Masonry (URM) is the most common partitioning material in framed buildings in India and many other countries. Although it is well-known that under lateral loading the behavior and modes of failure of the frame buildings change significantly due to infill-frame interaction, the general design practice is to treat infills as nonstructural elements and their stiffness, strength and interaction with the frame is often ignored, primarily because of difficulties in simulation and lack of modeling guidelines in design codes. The Indian Standard, like many other national codes, does not provide explicit insight into the anticipated performance and associated vulnerability of infilled frames. This paper presents an analytical study on the seismic performance and fragility analysis of Indian code-designed RC frame buildings with and without URM infills. Infills are modeled as diagonal struts as per ASCE 41 guidelines and various modes of failure are considered. HAZUS methodology along with nonlinear static analysis is used to compare the seismic vulnerability of bare and infilled frames. The comparative study suggests that URM infills result in a significant increase in the seismic vulnerability of RC frames and their effect needs to be properly incorporated in design codes.

  15. Neogene Seismic Stratigraphic Framework and Fill History of the Northeastern Albemarle Embayment, North Carolina

    NASA Astrophysics Data System (ADS)

    Mallinson, D. J.; Riggs, S. R.; Thieler, R.; Culver, S. J.; Corbett, D. R.; Hoffman, C. W.; Wehmiller, J.; Foster, D. S.

    2002-12-01

    Seismic and chirp sonar surveys were conducted in the eastern Albemarle Sound and adjacent tributaries and the inner continental shelf to define the geologic framework and evolution of the North Carolina coastal system. Surveys were utilized to target paleofluvial channels for drilling and core recovery for the assessment of sea level and climate change during the Quaternary. Lithostratigraphic and chronostratigraphic data are derived from eight drill sites on the Outer Banks, and the Mobil #1 well in the eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 100 to >180 mbsl, and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined southward-prograding beds. The Quaternary section unconformably overlies the Pliocene unit, and consists of at least five depositional sequences exhibiting numerous incised channel-fill facies. The Quaternary section is 55 to 60 meters thick. Shallow stratigraphy (0-50 mbsl) is dominated by complex fill-stratigraphy within the incised paleo-Roanoke River valley. Radiocarbon and amino acid racemization (AAR) dates indicate that the valley-fill is late Pleistocene to Holocene in age. At least 6 distinct valley-fill units are identified in the seismic data based upon reflection geometry. Cores reveal a 3 to 6 meter thick basal fluvial channel lag that is overlain by a 15-meter thick unit of interbedded freshwater muds and sands. Organic materials within the freshwater deposits have ages of 13-11 cal. ka, and are overlain by several units comprised of shallow marine sediments. Shallow marine sediments within the valley are silty, fine- to medium-grained sands containing abundant neritic forams, suggesting that this area was an open embayment during much of the Holocene. Seismic data reveal that initial infilling occurred from the north and west during the late Pleistocene and early Holocene. Later infilling occurred from the east and is characterized by a large shoal body (Colington Island and Shoals; radiocarbon dated to 8.6 cal. ka) and adjacent inlet fill. Establishment of a continuous barrier island system resulted in the deposition of a final phase of fill characterized by estuarine organic-rich muds.

  16. Multidisciplinary exploration of the Tendaho Graben geothermal fields

    NASA Astrophysics Data System (ADS)

    Armadillo, Egidio; Rizzello, Daniele; Verdoya, Massimo; Pasqua, Claudio; Marini, Luigi; Meqbel, Naser; Stimac, Jim; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesch; Abera, Fitsum; Mengesha, Kebede

    2017-04-01

    The NW-SE trending Tendaho Graben is the major extensional feature of the Afar, Ethiopia. Rifting and volcanic activity within the graben occurred mostly between 1.8 and 0.6 Ma, but extended to at least 0.2 Ma. Very recent (0.22- 0.03 Ma) activity is focused along the southern part of the younger and active Manda Hararo Rift, which is included in the north-western part of the graben. Extension gave rise to about 1600 m of vertical displacement (verified by drilling) of the basaltic Afar Stratoid sequence, over a crust with a mean thickness of about 23 km. The infill of graben, overlying the Stratoids, consists of volcanic and sedimentary deposits that have been drilled by six exploratory wells. Within the graben, two main geothermal fields have been explored by intensive geological, geochemical and geophysical surveys over an area that approximately covers a square sector of 40x40 km. Both new and existing data sets have been integrated. The Dubti-Ayrobera system is located along the central axis of the graben. Available data, acquired in the last three decades, comprise more than two thousands gravity and magnetic stations, 229 magnetotelluric stations and structural-geological and geochemical observations. The Alalobeda system is located along the SW flank of the graben, at about 25 km from the Dubti-Ayrobera system and has been very recently studied by means of gravimetric (300 stations), magnetotelluric and TDEM (140 stations) geological and geochemical surveys. The new residual magnetic anomaly map has been used to map the younger normal polarity basalt distribution and infer the location of the unknown main rift axis. The bedrock surface resulting by the 3D inversion of the new residual Bouguer anomaly enlightens the main normal faults hindered by sediments and the secondary structures represented by horsts and grabens. The three-dimensional resistivity models allow mapping the sedimentary infill of the graben, fracture zones in the Afar Stradoids bedrock and the dome-shape structure of the clay cap layer. The 2D and 3D gravimetric, magnetic and resistivity models have been integrated with the structural, geological and geochemical outcomings in order to get an updated conceptual model of the geothermal systems.

  17. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie; Kurszlaukis, Stephan

    2008-06-01

    The Cretaceous Fort à la Corne (FALC) kimberlite field was active over a time span of ~ 20 Ma with contemporaneous terrestrial (Mannville Group) to marine (Lower Colorado Group) background sedimentation. Steep-sided pipes, craters and positive landform volcanoes such as scoria or tuff cones are thought to have formed during that period. The 147 Kimberlite is located in the SE section of the field's main cluster and is part of the large (~ 377.5 ha) Orion North volcanic complex. Based on logging of 25 drill cores, the morphology of the country rock/kimberlite interface suggests excavation of a complex crater field down to the upper portion of the Mannville Group sedimentary deposits. At least two types of volcaniclastic deposits are identified: a main kimberlite unit that is typically characterized by crustal xenolith-poor (1-2%), normal graded beds possibly deposited as turbidites in a subaqueous environment, originating from the nearby 148 tephra cone and infilling the adjacent 147 crater, and a second unit, located on the NE margin of the 147 Kimberlite, that represents a thick (~ 60 m) sequence of large (up to 22 m) sedimentary country rock blocks located at least 60 m above their original stratigraphic position. We suggest the following time sequence of events: Crater excavation as a consequence of a shallow magma fragmentation level within the uppermost country rock sequences, together with several closely spaced eruptive centres initially formed the complex, intercalated crater field. Subsequently, ongoing eruptions with a fragmentation level above the country rock produced the lithic fragment poor main infill of the 148 Kimberlite. Resedimentation from the outer flanks of the 148 tephra cone resulted in the deposition of turbidites in the 147 area. A consolidation phase solidified the lowermost portion of the main infill in 147. A subsequent explosion(s) occurred within the Mannville Group in the 147 area, ejecting large blocks of sedimentary country rocks and fracturing the overlying volcaniclastic main infill. Finally, blocks of the main infill tilted and possibly slumped into the subsidence structure developed above the emptied explosion chamber of 147. The different volcanic deposits reflect a change in eruption style and fragmentation level from highly explosive to spatter activity with little fragmentation potential. Cap rocks to build up the volatile overpressure necessary to blast the craters were not present at the time of emplacement. No diatremes were observed in the study area. Assuming that the magma properties remained constant over time, the change in eruption style has to be attributed to external factors, such as water access to the rising magma. The volcanic behaviour of the kimberlite magma appears to be comparable to that of other magmatic systems, both in eruptive style and production rate. No evidence was found for a high, possibly Plinian production rate or dispersion.

  18. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.456 What safe practices must the drilling fluid program follow... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What safe practices must the drilling fluid...

  19. CHRONOLOGICAL CONSTRAINTS ON FLUID CIRCULATION IN MESOZOIC FORMATIONS OF THE EASTERN PART OF THE PARIS BASIN INFERRED FROM U-Pb DATING OF SECONDARY INFILLING CARBONATES

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.

    2009-12-01

    The French agency for nuclear waste management (ANDRA) developed an Underground Research Laboratory in the Mesozoic formations of Eastern part of the Paris Basin (France) to assess the feasibility of a high-level radioactive wastes repository in sedimentary formations. The target host formation is a low-porosity detrital argillite (Callovo-Oxfordian) embedded between two shelf limestones formations (of Bajocian-Bathonian and Oxfordian-Kimmeridgian ages). These formations are affected by fracture networks, likely inherited mainly from the Eocene-Oligocene extension tectonics, also responsible of the Rhine graben formation in the same region. The limestones have very low permeability, the primary and secondary porosity being infilled by secondary carbonated minerals. The inter-particle porosity is filled with euhedral calcite spar cements. Similarly, macro-cavities and connected micro-fractures are almost sealed by euhedral calcite. Geochemical evidences (δ18O) suggest that the secondary carbonates likely derived from a common parent fluid (Buschaert et al., 2004, Appl. Geochem. (19) 1201-1215p). This late carbonated precipitation phase is responsible for the intense cementation of the limestone formations and bears witness of a major phase of fluids circulation that marked the late diagenetic evolution of the system. Knowledge of the chronology of the different precipitation phases of secondary minerals is thus of critical importance in order to determine the past hydrological conditions of the geological site. The aim of this study is to provide chronological constraints on the secondary carbonate mineral precipitation using U/Th and U/Pb methods. Analyses are performed on millimeter to centimeter scale secondary calcites collected within fractures outcropping in the regional fault zone of Gondrecourt and in cores from the ANDRA exploration-drilling program. Preliminary U-Th analyses obtained on secondary carbonates from surface fractures infillings yield secular equilibrium composition, indicating that the precipitation phase was older than 650 ky. U-Pb measurements were performed on a VG sector Thermal Ionization Mass Spectrometer (TIMS) using a 205Pb-236U-233U-229Th spike. Pb contents are generally very low, between 3 and 20 ppb, while U contents are more variable, leading to μ = 238U/204Pb up to ~600. Sub-samples with high μ show radiogenic 206Pb/204Pb ratio, but at this stage isochrons generally show high scatter. These U-Pb data however are consistent with an Eocene-Oligocene period for the late carbonates precipitation phase. We will discuss the different processes that may be responsible for these errorchrons (i.e. heterogeneities in the initial isotopic composition; multi-stage growth) as well as the chronological constraints that can be drawn from these data.

  20. An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek

    2007-06-30

    A deep drilling research program titled 'An Industry/DOE Program to Develop and Benchmark Advanced Diamond Product Drill Bits and HP/HT Drilling Fluids to Significantly Improve Rates of Penetration' was conducted at TerraTek's Drilling and Completions Laboratory. Drilling tests were run to simulate deep drilling by using high bore pressures and high confining and overburden stresses. The purpose of this testing was to gain insight into practices that would improve rates of penetration and mechanical specific energy while drilling under high pressure conditions. Thirty-seven test series were run utilizing a variety of drilling parameters which allowed analysis of the performance ofmore » drill bits and drilling fluids. Five different drill bit types or styles were tested: four-bladed polycrystalline diamond compact (PDC), 7-bladed PDC in regular and long profile, roller-cone, and impregnated. There were three different rock types used to simulate deep formations: Mancos shale, Carthage marble, and Crab Orchard sandstone. The testing also analyzed various drilling fluids and the extent to which they improved drilling. The PDC drill bits provided the best performance overall. The impregnated and tungsten carbide insert roller-cone drill bits performed poorly under the conditions chosen. The cesium formate drilling fluid outperformed all other drilling muds when drilling in the Carthage marble and Mancos shale with PDC drill bits. The oil base drilling fluid with manganese tetroxide weighting material provided the best performance when drilling the Crab Orchard sandstone.« less

  1. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  2. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  3. 43 CFR 3261.16 - Can my operations plan, drilling permit, and drilling program apply to more than one well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Can my operations plan, drilling permit, and drilling program apply to more than one well? 3261.16 Section 3261.16 Public Lands: Interior... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Drilling Operations: Getting a Permit § 3261.16 Can...

  4. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrell, L.A.; Sippel, M.A.

    1996-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing andmore » better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.« less

  5. Use of colliery spoil for infilling mine workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghataora, G.S.; Jarvis, S.T.

    1996-12-31

    Colliery spoil has been used as a major constituent of rock paste, a controlled low-strength bulk infill material, to infill abandoned limestone mines in the West Midlands of England since the early 1980s. During this time the design of colliery spoil rock paste has been modified and improved to ensure that strengths are achieved and consolidation is minimized. This paper describes the methods used for measuring and monitoring the development of the strength of rock paste used to infill the Littleton Street Mine in Walsall, England. The mine had a volume of about 500,000 m{sup 3} and is possibly themore » largest underground void to be infilled with rock paste.« less

  6. Physical Modeling of Shear Behavior of Infilled Rock Joints Under CNL and CNS Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Shrivastava, Amit Kumar; Rao, K. Seshagiri

    2018-01-01

    Despite their frequent natural occurrence, filled discontinuities under constant normal stiffness (CNS) boundary conditions have been studied much less systematically, perhaps because of the difficulties arising from the increased number of variable parameters. Because of the lack of reliable and realistic theoretical or empirical relations and the difficulties in obtaining and testing representative samples, engineers rely on judgment and often consider the shear strength of the infilled material itself as shear strength of rock joints. This assumption leads to uneconomical and also sometimes the unsafe design of underground structures, slopes, rock-socketed piles and foundations. To study the effect of infill on the shear behavior of rock joints, tests were performed on the modeled infilled rock joint having different joint roughness under constant normal load (CNL) and CNS boundary conditions at various initial normal stress and varying thickness of the infilled material. The test results indicate that shear strength decreases with an increase in t/ a ratio for both CNL and CNS conditions, but the reduction in shear strength is more for CNL than for CNS condition for a given initial normal stress. The detailed account of the effect of thickness of infilled material on shear and deformation behavior of infilled rock joint is discussed in this paper, and a model is proposed to predict shear strength of infilled rock joint.

  7. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    NASA Astrophysics Data System (ADS)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  8. Experimental investigation of the seismic performance of the R/C frames with reinforced masonry infills

    NASA Astrophysics Data System (ADS)

    Tanjung, Jafril; Maidiawati, Nugroho, Fajar

    2017-10-01

    Intensive studies regarding the investigation of seismic performance of reinforced concrete (R/C) frames which are infilled with brick masonry walls have been carried out by several researchers within the last three-decades. According to authors' field and experimentally experiences conclude that the unreinforced brick masonry infills significantly contributes to increase the seismic performance of the R/C frame structure. Unfortunately, the presence of brick masonry infill walls causes several undesirable effects such as short column, soft-storey, torsion and out of plane collapse. In this study, a strengthening technique for the brick masonry infills were experimentally investigated to improve the seismic performance of the R/C frame structures. For this purpose, four experimental specimens have been prepared, i.e. one of bare R/C frame (BF), one of R/C frame infilled with unreinforced brick-masonry wall (IFUM) and two of R/C frames were infilled with reinforced brick-masonry wall (IFRM-1 and IFRM-2). The bare frame and R/C frame infilled with unreinforced brick-masonry wall represents the typical R/C buildings' construction in Indonesia assuming the brick-masonry wall as the non-structural elements. The brick-masonry wall infills in specimens IFRM-1 and IFRM-2 were strengthened by using embedded ϕ4 plain steel bar on their diagonal and center of brick-masonry wall, respectively. All specimens were laterally pushed-over. The lateral loading and its lateral displacement, failure mechanism and their crack pattern were recorded during experimental works. Comparison of the experimental results of these four specimens conclude that the strengthening of the brick-masonry infills wall gave the significantly increasing of the seismic performance of the R/C frame. The seismic performance was evaluated based on the lateral strength of the R/C specimen. The embedded plain steel bar on brick-masonry also reduces the diagonal crack on the brick-masonry wall. It seems that the presence of the embedded plain bar may help reduce the vulnerability of the brick-masonry infill.

  9. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  10. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  11. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general...

  12. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are the general requirements for a...

  13. 30 CFR 250.455 - What are the general requirements for a drilling fluid program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... drilling fluid program? 250.455 Section 250.455 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Drilling Fluid Requirements § 250.455 What are...

  14. Ocean Drilling Program: Cruise Information

    Science.gov Websites

    Morgan. Cruise Information The Ocean Drilling Program ended on 30 September 2003 and has been succeeded by the Integrated Ocean Drilling Program (IODP). The U.S. Implementing Organization (IODP-USIO ) (Consortium for Ocean Leadership, Lamont-Doherty Earth Observatory, and Texas A&M University) continues to

  15. Wood Programs. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Kaylor, Robert; And Others

    This courseware evaluation rates the Wood Programs software developed by the Iowa Department of Public Instruction. (These programs--not contained in this document--include understanding board feet, wood characteristics, wood safety drill, wood dimensions, wood moisture, operating the table saw, radial arm, measurement drill, fraction drill, and…

  16. Geothermal well drilling manual at Cerro Prieto

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez P., A.; Flores S., M.

    The objective of the drilling manual is to solve all problems directly related to drilling during the construction of a well. In this case, the topics dealt which are drilling fluids and hydraulics to be applied in the field to improve drilling progress, eliminate risks and achieve good well-completion. There are other topics that are applicable such as drill bits and the drilling string, which are closely linked to drilling progress. On this occasion drilling fluid and hydraulics programs are presented, in addition to a computing program for a Casio FX-502P calculator to be applied in the field to optimizemore » hydraulics and in the analysis of hydraulics for development and exploration wells at their different intervals.« less

  17. Ocean Drilling Science Plan to be released soon

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-04-01

    The upcoming International Ocean Discovery Program, which is slated to operate from 2013 to 2023 and calls for an internationally funded program focused around four science themes, will pick up right where its predecessor, the Integrated Ocean Drilling Program, ends, explained Kiyoshi Suyehiro, president and chief executive officer of IODP, a convenient acronym that covers both programs. At a 5 April briefing at the 2011 European Geosciences Union General Assembly in Vienna, Austria, he outlined four general themes the new program will address. IODP involves 24 nations and utilizes different ocean drilling platforms that complement each other in drilling in different environments in the oceans.

  18. Ocean Drilling Program: Science Operator

    Science.gov Websites

    : www.odplegacy.org Integrated Ocean Drilling Program (IODP): www.iodp.org IODP U.S. Implementing Organization (IODP -USIO): www.iodp-usio.org The Ocean Drilling Program (ODP) was funded by the U.S. National Science Foundation and 22 international partners (JOIDES) to conduct basic research into the history of the ocean

  19. 77 FR 11492 - Notice of Availability of a Draft Environmental Assessment for the Issuance of Incidental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Shell for the take of marine mammals incidental to offshore oil and gas exploratory drilling programs in... Mammals by Harassment Incidental to Conducting Exploratory Drilling Programs in the U.S. Beaufort and... take of marine mammals incidental to conducting offshore exploratory drilling programs in the U.S...

  20. Determining gas hydrate distribution in sands using integrated analysis of well log and seismic data in the Terrebonne Basin, Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillman, Jess; Cook, Ann; Daigle, Hugh

    The Terrebonne Basin is a salt bounded mini-basin in the northeast section of the Walker Ridge protraction area in the Gulf of Mexico, and the main site for an upcoming gas-hydrate focused International Ocean Discovery Program (IODP) cruise. The basin is infilled by an increasingly mud rich sedimentary sequence with several 5-15 meter gas-hydrate filled sand units of Miocene to Pliocene age overlying the up-domed salt. These gas-hydrate filled sand units can be identified in logging while drilling data from two existing wells in the Terrebonne Basin, drilled in 2009 by the Gas Hydrate Joint Industry Project (JIP) Leg 2.more » The sand units are cross cut by a distinct bottom-simulating reflector (BSR), and are clearly characterized by a polarity reversal in the sand units. The polarity reversal is caused by a positive gas-hydrate filled sand within the stability zone changing to negative gas-bearing sand. Using well data and calculated synthetic seismogram well ties we are able to identify several additional 1-4 meter gas-hydrate and water-saturated sand units associated with thick (100-200 m-thick), fine grained, hydrate bearing fractured units in the upper sedimentary sequence on the seismic data. Following on previous work, we propose that microbial generation of methane occurring within the fine-grained, fractured units acts as a source for gas hydrate formation in the thin sands. In contrast, it has been proposed that the gas hydrate in the 5-15 m-thick sands first discovered by the JIP was originates from a deeper thermogenic source. Through correlating hydrate occurrence in sands from well data, to amplitudes derived from the seismic data, we can estimate possible distribution of hydrate across the basin. Overall, we find the Terrebonne basin to be a complex gas hydrate system with multiple mechanisms of methane generation and migration.« less

  1. Results from Testing of Two Rotary Percussive Drilling Systems

    NASA Technical Reports Server (NTRS)

    Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi

    2010-01-01

    The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.

  2. Strength and stiffness reduction factors for infilled frames with openings

    NASA Astrophysics Data System (ADS)

    Decanini, Luis D.; Liberatore, Laura; Mollaioli, Fabrizio

    2014-09-01

    Framed structures are usually infilled with masonry walls. They may cause a significant increase in both stiffness and strength, reducing the deformation demand and increasing the energy dissipation capacity of the system. On the other hand, irregular arrangements of the masonry panels may lead to the concentration of damage in some regions, with negative effects; for example soft story mechanisms and shear failures in short columns. Therefore, the presence of infill walls should not be neglected, especially in regions of moderate and high seismicity. To this aim, simple models are available for solid infills walls, such as the diagonal no-tension strut model, while infilled frames with openings have not been adequately investigated. In this study, the effect of openings on the strength and stiffness of infilled frames is investigated by means of about 150 experimental and numerical tests. The main parameters involved are identified and a simple model to take into account the openings in the infills is developed and compared with other models proposed by different researchers. The model, which is based on the use of strength and stiffness reduction factors, takes into account the opening dimensions and presence of reinforcing elements around the opening. An example of an application of the proposed reduction factors is also presented.

  3. Syn- and post-eruptive volcanic processes in the Yubileinaya kimberlite pipe, Yakutia, Russia, and implications for the emplacement of South African-style kimberlite pipes

    NASA Astrophysics Data System (ADS)

    Kurszlaukis, S.; Mahotkin, I.; Rotman, A. Y.; Kolesnikov, G. V.; Makovchuk, I. V.

    2009-11-01

    The Yubileinaya kimberlite pipe, with a surface area of 59 ha, is one of the largest pipes in the Yakutian kimberlite province. The Devonian pipe was emplaced under structural control into Lower Paleozoic karstic limestone. The pipe complex consists of several smaller precursor pipes which are cut by the large, round Main pipe. While the precursor pipes show many features typical for root zones, Main pipe is younger, cuts into the precursor pipes and exposes well-bedded volcaniclastic sediments. The maximum estimated erosion since emplacement is 250 m. Open pit mapping of a 180 m thick kimberlite sequence documents the waning phases of the volcanic activity in the kimberlite pipe and the onset of its crater infill by resedimentation. Three volcanic lithofacies types can be differentiated. The deepest and oldest facies type is a massive volcaniclastic rock ("AKB") only accessible in drill core. It is equivalent to Tuffisitic Kimberlite in South African pipes and thought to be related to the main volcanic phase which was characterized by violent explosions. The overlying lithofacies type comprises primary and resedimented volcaniclastic sediments as well as rock avalanche deposits sourced from the exposed maar crater collar. It represents the onset of sedimentation onto the crater floor during the waning phase of volcanic eruptions, where primary pyroclastic deposition was contemporaneous with resedimentation from the tephra wall and the widening maar crater. Ongoing volcanic activity is also testified by the presence of a vertical feeder conduit marking the area of the last volcanic eruption clouds piercing through the diatreme. This feeder conduit is overlain by the third and youngest lithofacies type which consists mainly of resedimented volcaniclastic material and lake beds. During the sedimentation of this facies, primary volcanic activity was only minor and finally absent and resedimentation processes dominated the crater infill. The Yubileinaya pipe complex exposes root zones, contact breccias as well as diatreme and crater infill sediments. It has all features typical of large South African-style pipes and much can be learned from Yubileinaya about the emplacement sequence and behaviour of these pipes. Emplacement of the pipe occurred over an extended time span with intermittent phases of volcanic quiescence and consolidation. The AKB reveals little direct evidence of what sort of emplacement process was dominant during the main period of volcanic activity. There is neither textural evidence that violent degassing of a juvenile gas phase has caused pipe excavation, nor that external water was present during the main phase of volcanic eruptions. However, there is clear evidence in rock textures that meteoric surface water was present during crater infill. Base surge deposits forming part of the bedded crater infill sequence indicate that water was present in the eruption clouds and, hence, the root zone of the pipe. There is no reason to assume that groundwater did not also have access to the ascending magma during the main phase of volcanic activity that excavated the pipe and formed the AKB.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Rawlins Test 2, UCG/SDB Master Well Drilling and Well Completion Plan consists of two separate reports. Part 1 consists of the Process Well Drilling and Completion Plan (Version D). This program was accomplished during the Fall 1980 drilling campaign. Four of the HFEM wells described in Part 2 were also drilled during that campaign due to early completion of the process well drilling. General program objectives are stated in this report. Part 2 consists of the Instrument Well Drilling and Completion Plan (Version B). This program is presently being accomplished in the Spring 1981 drilling campaign. Due to manymore » changes in the types, numbers and locations of the instrument wells it was written in a more general fashion to retain flexibility in the plan. The only significant changes to date from the plan are that the four HFEM wells completed during Fall 1980 were completed with 92' of Fiberglass at the bottom instead of the 210' now specified.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoak, T.E.; Klawitter, A.L.

    Fractured production trends in Piceance Basin Cretaceous-age Mesaverde Group gas reservoirs are controlled by subsurface structures. Because many of the subsurface structures are controlled by basement fault trends, a new interpretation of basement structure was performed using an integrated interpretation of Landsat Thematic Mapper (TM), side-looking airborne radar (SLAR), high altitude, false color aerial photography, gas and water production data, high-resolution aeromagnetic data, subsurface geologic information, and surficial fracture maps. This new interpretation demonstrates the importance of basement structures on the nucleation and development of overlying structures and associated natural fractures in the hydrocarbon-bearing section. Grand Valley, Parachute, Rulison, Plateau,more » Shire Gulch, White River Dome, Divide Creek and Wolf Creek fields all produce gas from fractured tight gas sand and coal reservoirs within the Mesaverde Group. Tectonic fracturing involving basement structures is responsible for development of permeability allowing economic production from the reservoirs. In this context, the significance of detecting natural fractures using the intergrated fracture detection technique is critical to developing tight gas resources. Integration of data from widely-available, relatively inexpensive sources such as high-resolution aeromagnetics, remote sensing imagery analysis and regional geologic syntheses provide diagnostic data sets to incorporate into an overall methodology for targeting fractured reservoirs. The ultimate application of this methodology is the development and calibration of a potent exploration tool to predict subsurface fractured reservoirs, and target areas for exploration drilling, and infill and step-out development programs.« less

  6. Reinforcement and Drill by Microcomputer.

    ERIC Educational Resources Information Center

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  7. Biomineral repair of abalone shell apertures.

    PubMed

    Cusack, Maggie; Guo, Dujiao; Chung, Peter; Kamenos, Nicholas A

    2013-08-01

    The shell of the gastropod mollusc, abalone, is comprised of nacre with an outer prismatic layer that is composed of either calcite or aragonite or both, depending on the species. A striking characteristic of the abalone shell is the row of apertures along the dorsal margin. As the organism and shell grow, new apertures are formed and the preceding ones are filled in. Detailed investigations, using electron backscatter diffraction, of the infill in three species of abalone: Haliotis asinina, Haliotis gigantea and Haliotis rufescens reveals that, like the shell, the infill is composed mainly of nacre with an outer prismatic layer. The infill prismatic layer has identical mineralogy as the original shell prismatic layer. In H. asinina and H. gigantea, the prismatic layer of the shell and infill are made of aragonite while in H. rufescens both are composed of calcite. Abalone builds the infill material with the same high level of biological control, replicating the structure, mineralogy and crystallographic orientation as for the shell. The infill of abalone apertures presents us with insight into what is, effectively, shell repair. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Geodynamic evolution and sedimentary infill of the northern Levant Basin: A source to sink-perspective

    NASA Astrophysics Data System (ADS)

    Hawie, N.

    2013-12-01

    Nicolas Hawie a,b,c (nicolas.hawie@upmc.fr) Didier Granjeon c (didier.granjeon@ifpen.fr) Christian Gorini a,b (christian.gorini@upmc.fr) Remy Deschamps c (remy.deschamps@ifpen.fr) Fadi H. Nader c (fadi-henri.nader@ifpen.fr) Carla Müller Delphine Desmares f (delphine.desmares@upmc.fr) Lucien Montadert e (lucien.montadert@beicip.com) François Baudin a (francois.baudin@upmc.fr) a UMR 7193 Institut des Sciences de la Terre de Paris, Université Pierre et Marie Curie/ Univ. Paris 06, case 117. 4, place Jussieu 75252 Paris Cedex 05, France b iSTEP, UMR 7193, CNRS, F-75005, Paris, France c IFP Energies nouvelles, 1-4 avenue du Bois Préau 92852 Rueil Malmaison Cedex, France d UMR 7207, Centre de Recherche sur la Paleobiodiversité et les Paleoenvironnements. Université Pierre et Marie Curie, Tour 46-56 5ème. 4, place Jussieu 75252 Paris Cedex 05, France e Beicip Franlab, 232 Av. Napoléon Bonaparte, 95502 Rueil-Malmaison, France Sedimentological and biostratigraphic investigations onshore Lebanon coupled with 2D offshore reflection seismic data allowed proposing a new Mesozoic-Present tectono-stratigraphic framework for the northern Levant Margin and Basin. The seismic interpretation supported by in-depth facies analysis permitted to depict the potential depositional environments offshore Lebanon as no well has yet been drilled. The Levant region has been affected by successive geodynamic events that modified the architecture of its margin and basin from a Late Triassic to Middle Jurassic rift into a Late Cretaceous subduction followed by collision and Miocene-Present strike slip motion. The interplay between major geodynamic events as well as sea level fluctuations impacted on the sedimentary infill of the basin. During Jurassic and Cretaceous, the Levant Margin is dominated by the aggradation of a carbonate platform while deepwater mixed-systems prevailed in the basin. During the Oligo-Miocene, three major sedimentary pathways are expected to drive important quantities of clastic material into the Levant Basin: (1) the marginal canyons along the Levant Margin, (2) the Latakia region and the Palmyrides Basin (Syria) and (3) the Red Sea area and Nile Delta. Regional drainage system analysis was performed to estimate the contribution to the infill of the basin of the different sediment sources, and in particular, to estimate erosion of Nubian siliciclastic material, granitic Red Sea rift shoulders and Arabian Shield. A numerical stratigraphic forward model, Dionisos, was used to test these source-to-sink assumptions; a sensitivity analysis was then performed to understand better the impact of the different geodynamic and stratigraphic scenarios on the architecture and sedimentary infill of the Levant Basin, and thus on the expected petroleum systems of this frontier basin

  9. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  10. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  11. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  12. 43 CFR 3261.13 - What is a drilling program and how do I apply for drilling program approval?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the well; (3) If you plan to directionally drill your well, also send us: (i) The proposed bottom hole... reservoir temperature and pressure; (11) Anticipated temperature gradient in the area; (12) A plat certified...

  13. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2001-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2001 through March 2001. Accomplishments to date include the following: (1) On January 9th of 2001, details of the Mud Hammer Drilling Performance Testing Project were presented at a ''kick-off'' meeting held in Morgantown. (2) A preliminary test program was formulated and prepared for presentation at a meeting of the advisory board in Houston on the 8th of February. (3) The meeting was held with the advisorymore » board reviewing the test program in detail. (4) Consensus was achieved and the approved test program was initiated after thorough discussion. (5) This new program outlined the details of the drilling tests as well as scheduling the test program for the weeks of 14th and 21st of May 2001. (6) All the tasks were initiated for a completion to coincide with the test schedule. (7) By the end of March the hardware had been designed and the majority was either being fabricated or completed. (8) The rock was received and cored into cylinders.« less

  14. Spatial and temporal variability in sedimentation rates associated with cutoff channel infill deposits: Ain River, France

    USGS Publications Warehouse

    Piégay, H.; Hupp, C.R.; Citterio, A.; Dufour, S.; Moulin, B.; Walling, D.E.

    2008-01-01

    Floodplain development is associated with lateral accretion along stable channel geometry. Along shifting rivers, the floodplain sedimentation is more complex because of changes in channel position but also cutoff channel presence, which exhibit specific overflow patterns. In this contribution, the spatial and temporal variability of sedimentation rates in cutoff channel infill deposits is related to channel changes of a shifting gravel bed river (Ain River, France). The sedimentation rates estimated from dendrogeomorphic analysis are compared between and within 14 cutoff channel infills. Detailed analyses along a single channel infill are performed to assess changes in the sedimentation rates through time by analyzing activity profiles of the fallout radionuclides 137Cs and unsupported 210Pb. Sedimentation rates are also compared within the channel infills with rates in other plots located in the adjacent floodplain. Sedimentation rates range between 0.65 and 2.4 cm a−1 over a period of 10 to 40 years. The data provide additional information on the role of distance from the bank, overbank flow frequency, and channel geometry in controlling the sedimentation rate. Channel infills, lower than adjacent floodplains, exhibit higher sedimentation rates and convey overbank sediment farther away within the floodplain. Additionally, channel degradation, aggradation, and bank erosion, which reduce or increase the distance between the main channel and the cutoff channel aquatic zone, affect local overbank flow magnitude and frequency and therefore sedimentation rates, thereby creating a complex mosaic of sedimentation zones within the floodplain and along the cutoff channel infills. Last, the dendrogeomorphic and 137Cs approaches are cross validated for estimating the sedimentation rate within a channel infill.

  15. Studies on effects of infills in seismic resistant R/C construction

    NASA Astrophysics Data System (ADS)

    Brokken, S. T.; Bertero, V. V.

    1981-10-01

    Experimental and analytical studies of the quantitative effects of infills in the seismic performance of buildings (particularly in buildings whose structural systems are based on the use of moment resisting frames alone are summarized); and the implications of these effects regarding the design of new buildings and retrofitting of existing R/C frame structures were evaluated. The first part is concerned with the infill problem and the experimental investigation conducted to study the effects of infill panels on seismic response of reinforced concrete frames. This investigation consisted of a series of quasi-static cyclic and monotonic load tests on 1/3-scale models of the lower 3-1/2 stories of an 11 story-three bay reinforced concrete frame infilled in the outer two bays. The reinforced concrete moment frame was designed for high rotational ductility and resistance to degradation under reversed cyclic shear loads.

  16. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah

    USGS Publications Warehouse

    Feltis, R.D.; Robinson, G.B. Jr.

    1963-01-01

    A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.

  17. Modeling the Sedimentary Infill of Lakes in the East African Rift: A Case Study of Multiple versus Single Rift Basin Segments

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Scholz, C. A.

    2016-12-01

    The sedimentary basins in the East African Rift are considered excellent modern examples for investigating sedimentary infilling and evolution of extensional systems. Some lakes in the western branch of the rift have formed within single-segment systems, and include Lake Albert and Lake Edward. The largest and oldest lakes developed within multi-segment systems, and these include Lake Tanganyika and Lake Malawi. This research aims to explore processes of erosion and sedimentary infilling of the catchment area in single-segment rift (SSR) and multi-segment rift (MSR) systems. We consider different conditions of regional precipitation and evaporation, and assess the resulting facies architecture through forward modeling, using state-of-the-art commercial basin modeling software. Dionisos is a three-dimensional numerical stratigraphic forward modeling software program, which simulates basin-scale sediment transport based on empirical water- and gravity-driven diffusion equations. It was classically used to quantify the sedimentary architecture and basin infilling of both marine siliciclastic and carbonate environments. However, we apply this approach to continental rift basin environments. In this research, two scenarios are developed, one for a MSR and the other for a SSR. The modeled systems simulate the ratio of drainage area and lake surface area observed in modern Lake Tanganyika and Lake Albert, which are examples of MSRs and SSRs, respectively. The main parameters, such as maximum subsidence rate, water- and gravity-driven diffusion coefficients, rainfall, and evaporation, are approximated using these real-world examples. The results of 5 million year model runs with 50,000 year time steps show that MSRs are characterized by a deep water lake with relatively modest sediment accumulation, while the SSRs are characterized by a nearly overfilled lake with shallow water depths and thick sediment accumulation. The preliminary modeling results conform to the features of sedimentary infills revealed by seismic reflection data acquired in Lake Tanganyika and Lake Albert. Future models will refine the parameters of rainfall and evaporation in these two scenarios to better evaluate detailed basin facies architecture.

  18. OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS & HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less

  19. Drill user's manual. [drilling machine automation

    NASA Technical Reports Server (NTRS)

    Pitts, E. A.

    1976-01-01

    Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.

  20. 40 CFR 147.950 - State-administered program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., 1985 and January 20, 1986; (3)(i) Statewide Order Governing the Drilling for and Producing of Oil and... of Drilling Mud and Salt Water Generated from Drilling and Production of Oil and Gas Wells... 40 Protection of Environment 23 2014-07-01 2014-07-01 false State-administered program. 147.950...

  1. 40 CFR 147.950 - State-administered program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 1985 and January 20, 1986; (3)(i) Statewide Order Governing the Drilling for and Producing of Oil and... of Drilling Mud and Salt Water Generated from Drilling and Production of Oil and Gas Wells... 40 Protection of Environment 22 2010-07-01 2010-07-01 false State-administered program. 147.950...

  2. 40 CFR 147.950 - State-administered program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., 1985 and January 20, 1986; (3)(i) Statewide Order Governing the Drilling for and Producing of Oil and... of Drilling Mud and Salt Water Generated from Drilling and Production of Oil and Gas Wells... 40 Protection of Environment 24 2013-07-01 2013-07-01 false State-administered program. 147.950...

  3. 40 CFR 147.950 - State-administered program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., 1985 and January 20, 1986; (3)(i) Statewide Order Governing the Drilling for and Producing of Oil and... of Drilling Mud and Salt Water Generated from Drilling and Production of Oil and Gas Wells... 40 Protection of Environment 23 2011-07-01 2011-07-01 false State-administered program. 147.950...

  4. 40 CFR 147.950 - State-administered program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., 1985 and January 20, 1986; (3)(i) Statewide Order Governing the Drilling for and Producing of Oil and... of Drilling Mud and Salt Water Generated from Drilling and Production of Oil and Gas Wells... 40 Protection of Environment 24 2012-07-01 2012-07-01 false State-administered program. 147.950...

  5. Seismic performance evaluation of an infilled rocking wall frame structure through quasi-static cyclic testing

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin

    2018-04-01

    Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.

  6. An interactive drilling simulator for teaching and research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, G.A.; Cooper, A.G.; Bihn, G.

    1995-12-31

    An interactive program has been constructed that allows a student or engineer to simulate the drilling of an oil well, and to optimize the drilling process by comparing different drilling plans. The program operates in a very user-friendly way, with emphasis on menu and button-driven commands. The simulator may be run either as a training program, with exercises that illustrate various features of the drilling process, as a game, in which a student is set a challenge to drill a well with minimum cost or time under constraints set by an instructor, or as a simulator of a real situationmore » to investigate the merit of different drilling strategies. It has three main parts, a Lithology Editor, a Settings Editor and the simulation program itself. The Lithology Editor allows the student, instructor or engineer to build a real or imaginary sequence of rock layers, each characterized by its mineralogy, drilling and log responses. The Settings Editor allows the definition of all the operational parameters, ranging from the drilling and wear rates of particular bits in specified rocks to the costs of different procedures. The simulator itself contains an algorithm that determines rate of penetration and rate of wear of the bit as drilling continues. It also determines whether the well kicks or fractures, and assigns various other {open_quotes}accident{close_quotes} conditions. During operation, a depth vs. time curve is displayed, together with a {open_quotes}mud log{close_quotes} showing the rock layers penetrated. If desired, the well may be {open_quotes}logged{close_quotes} casings may be set and pore and fracture pressure gradients may be displayed. During drilling, the total time and cost are shown, together with cost per foot in total and for the current bit run.« less

  7. A Blind Hydrothermal System in an Ocean Island Environment: Humu'ula Saddle, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Wallin, E.; Lautze, N. C.; Lienert, B. R.; Pierce, H. A.

    2014-12-01

    A recently drilled groundwater investigation borehole, drilled to a depth of 1760 m in the Humu'ula Saddle of Hawaii Island, encountered an unexpectedly high temperature gradient of more than 160 ̊C/km. Although prior MT surveys across the region identified conductive formations of modest extent in the region, there were few surface manifestations of geologic structures likely to host a geothermal system and no evidence of an active, extensive hydrothermal system. Cores recovered from the borehole showed the presence of intrusive formations and moderate hydrothermal alteration at depth with progressive infilling of fractures and vesicles with depth and temperature. Independent modeling of gravity data (Flinders et al., 2013) suggests the presence of a broad intrusive complex within the region that is consistent with the borehole's confirmation of a high-elevation (~1400 m amsl) regional water table. A subsequent MT survey covering much of the western Saddle region has confirmed the presence of highly conductive conditions, consistent with thermal activity, to depths of 4 km and greater. Light stable isotope data for the borehole fluids indicate that the regional water table is derived from recharge from the upper elevations of Mauna Kea; major element chemistry indicates that formation temperatures exceed 200 ̊C. A conceptual model of the hydrothermal system, along with isotopic and fluid chemistry of the thermal fluids will be presented.

  8. Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.

  9. Strategies of Computer-Based Instructional Design: A Review of Guidelines and Empirical Research

    DTIC Science & Technology

    1990-05-01

    tutorial or information-oriented lesson, a flashcard -type drill, or a simulation or game. 6 Guidelines. Instructional designers must decide whether...amount of inter- activity and feedback. An information-only program presented textual material without any questions. A flashcard -type drill program...educational game program was identical to the flashcard -type drill, except feedback was provided for responses. Results showed no differences in posttest

  10. From vein precipitates to deformation and fluid rock interaction within a SSZ: Insights from the Izu-Bonin-Mariana fore arc

    NASA Astrophysics Data System (ADS)

    Micheuz, Peter; Quandt, Dennis; Kurz, Walter

    2017-04-01

    International Ocean Discovery Program (IODP) expeditions 352 and 351 drilled through oceanic crust of the Philippine Sea plate. The two study areas are located near the outer Izu-Bonin-Mariana (IBM) fore arc and in the Amami Sankaku Basin. The primary objective was to improve our understanding of supra-subduction zones (SSZ) and the process of subduction initiation. The recovered drill cores during IODP expedition 352 represent approximately 50 Ma old fore arc basalts (FAB) and boninites revealing an entire volcanic sequence of a SSZ. Expedition 351 drilled FAB like oceanic crust similar in age to the FABs of expedition 352. In this study we present data on vein microstructures, geochemical data and isotopic signatures of vein precipitates to give new insights into fluid flow and precipitation processes and deformation within the Izu-Bonin fore arc. Veins formed predominantly as a consequence of hydrofracturing resulting in the occurrence of branched vein systems and brecciated samples. Along these hydrofractures the amount of altered host rock fragments varies and locally alters the host rock completely to zeolites and carbonates. Subordinately extensional veins released after the formation of the host rocks. Cross-cutting relationships of different vein types point to multiple fracturing events subsequently filled with minerals originating from a fluid with isotopic seawater signature. Based on vein precipitates, their morphology and their growth patterns four vein types have been defined. Major vein components are (Mg-) calcite and various zeolites determined by Raman spectra and electron microprobe analyses. Zeolites result from alteration of volcanic glass during interaction with a seawaterlike fluid. Type I veins which are characterized by micritic infill represent neptunian dykes. They predominantly occur in the upper levels of drill cores being the result of an initial volume change subsequently to crystallization of the host rocks. Type II veins are characterized by blocky carbonates and idiomorphic to blocky zeolites. Blocky carbonates locally exhibit zonation patterns. Type III and type IV veins are both assumed to be extensional veins. Type III is characterized by syntaxial growth and elongate blocky carbonate minerals. They predominantly occur as asymmetric syntaxial veins, locally exhibiting more than one crack-seal event. Type IV veins are defined as antitaxial fibrous carbonates. Type II veins commonly show deformation microstructures like twinning (type I/II twins), slightly curved twins, and subgrain boundaries indicative of incipient plastic deformation. Based on these observations differential stresses around 50 MPa were needed to deform vein minerals, presumably related to IBM fore arc extension due to the retreat of the subducted Pacific plate. We acknowledge financial support by the Austrian Research Fund (P27982-N29) to W. Kurz

  11. Continental Scientific Drilling Program Data Base

    NASA Astrophysics Data System (ADS)

    Pawloski, Gayle

    The Continental Scientific Drilling Program (CSDP) data base at Lawrence Livermore National Laboratory is a central repository, cataloguing information from United States drill holes. Most holes have been drilled or proposed by various federal agencies. Some holes have been commercially funded. This data base is funded by the Office of Basic Energy Sciences of t he Department of Energy (OBES/DOE) to serve the entire scientific community. Through the unrestricted use of the database, it is possible to reduce drilling costs and maximize the scientific value of current and planned efforts of federal agencies and industry by offering the opportunity for add-on experiments and supplementing knowledge with additional information from existing drill holes.

  12. 76 FR 4093 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... Drilling Programs in the Chukchi and Beaufort Seas, AK AGENCY: National Marine Fisheries Service (NMFS... harassment, by Shell Offshore Inc. (Shell) incidental to offshore exploration drilling on Outer Continental... drilling programs in 2010. ADDRESSES: The applications related to this action are available by writing to...

  13. Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks.

    PubMed

    Asteris, Panagiotis G; Tsaris, Athanasios K; Cavaleri, Liborio; Repapis, Constantinos C; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F

    2016-01-01

    The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.

  14. Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks

    PubMed Central

    Asteris, Panagiotis G.; Tsaris, Athanasios K.; Cavaleri, Liborio; Repapis, Constantinos C.; Papalou, Angeliki; Di Trapani, Fabio; Karypidis, Dimitrios F.

    2016-01-01

    The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs) are used to predict the fundamental period of infilled reinforced concrete (RC) structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value. PMID:27066069

  15. Infill Walls Contribution on the Progressive Collapse Resistance of a Typical Mid-rise RC Framed Building

    NASA Astrophysics Data System (ADS)

    Besoiu, Teodora; Popa, Anca

    2017-10-01

    This study investigates the effect of the autoclaved aerated concrete infill walls on the progressive collapse resistance of a typical RC framed structure. The 13-storey building located in Brăila (a zone with high seismic risk in Romania) was designed according to the former Romanian seismic code P13-70 (1970). Two models of the structure are generated in the Extreme Loading® for Structures computer software: a model with infill walls and a model without infill walls. Following GSA (2003) Guidelines, a nonlinear dynamic procedure is used to determine the progressive collapse risk of the building when a first-storey corner column is suddenly removed. It was found that, the structure is not expected to fail under the standard GSA loading: DL+0.25LL. Moreover, if the infill walls are introduced in the model, the maximum vertical displacement of the node above the removed column is reduced by about 48%.

  16. Understanding the effects of decompaction maintenance on the infill state and play performance of third-generation artificial grass pitches

    PubMed Central

    Forrester, Stephanie E; McLaren, Nicholas J

    2015-01-01

    Third generation artificial grass pitches have been observed to get harder over time. The maintenance technique of rubber infill decompaction is intended to help slow, or reverse, this process. At present, little is understood about either the science of the infill compaction process or the efficacy of decompaction maintenance. The objective of this study was to measure the changes in rubber infill net bulk density, force reduction (impact absorption) and vertical ball rebound under various levels of compactive effort in controlled laboratory-based testing. The assessments were repeated after the systems had been raked to simulate the decompaction maintenance techniques. These tests defined the limits of compaction (loose to maximally compacted) in terms of the change in rubber infill net bulk density, force reduction and vertical ball rebound. Site testing was also undertaken at four third generation pitches immediately pre and post decompaction, to determine the measurable effects in the less well controlled field environment. Rubber infill net bulk density was found to increase as compactive effort increased, resulting in increased hardness. Decompacting the surface was found to approximately fully reverse these effects. In comparison, the site measurements demonstrated similar but notably smaller magnitudes of change following the decompaction process suggesting that the field state pre and post decompaction did not reach the extremes obtained in the laboratory. The findings suggest that rubber infill net bulk density is an important parameter influencing the hardness of artificial grass and that decompactions can be an effective method to reverse compaction related hardness changes. PMID:29708108

  17. An effective simplified model of composite compression struts for partially-restrained steel frame with reinforced concrete infill walls

    NASA Astrophysics Data System (ADS)

    Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald

    2018-04-01

    To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.

  18. Ocean Drilling Program: Privacy Policy

    Science.gov Websites

    and products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP's main web site ODP/TAMU Science Operator Home Ocean Drilling Program Privacy Policy The following is the privacy policy for the www-odp.tamu.edu web site. 1. Cookies are used in the Database portion of the web

  19. SU-F-T-181: Proton Therapy Tissue-Equivalence of 3D Printed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, P; Craft, D; Followill, D

    Purpose: This work investigated the proton tissue-equivalence of various 3D printed materials. Methods: Three 3D printers were used to create 5 cm cubic phantoms made of different plastics with varying percentages of infill. White resin, polylactic acid (PLA), and NinjaFlex plastics were used. The infills ranged from 15% to 100%. Each phantom was scanned with a CT scanner to obtain the HU value. The relative linear stopping power (RLSP) was then determined using a multi-layer ion chamber in a 200 MeV proton beam. The RLSP was measured both parallel and perpendicular to the print direction for each material. Results: Themore » HU values of the materials ranged from lung-equivalent (−820 HU σ160) when using a low infill, to soft-tissue-equivalent 159 (σ12). The RLSP of the materials depended on the orientation of the beam relative to the print direction. When the proton beam was parallel to the print direction, the RLSP was generally higher than the RLSP in the perpendicular orientation, by up to 45%. This difference was smaller (less than 6%) for the materials with 100% infill. For low infill cubes irradiated parallel to the print direction, the SOBP curve showed extreme degradation of the beam in the distal region. The materials with 15–25% infill had wide-ranging agreement with a clinical HU-RLSP conversion curve, with some measurements falling within 1% of the curve and others deviating up to 45%. The materials with 100% infill all fell within 7% of the curve. Conclusion: While some materials tested fall within 1% of a clinical HU-RLSP curve, caution should be taken when using 3D printed materials with proton therapy, as the orientation of the beam relative to the print direction can result in a large change in RLSP. Further investigation is needed to measure how the infill pattern affects the material RLSP. This work was supported by PHS grant CA180803.« less

  20. Modeling the influence of the BRDF characteristics of vegetation on the retrieval of solar-induced chlorophyll fluorescence under different illumination conditions

    NASA Astrophysics Data System (ADS)

    Liu, Xinjie; Liu, Liangyun

    2017-04-01

    The Fraunhofer Line Discrimination (FLD) principle is the main approach used for the retrieval of solar-induced chlorophyll fluorescence (SIF). The basic assumption of the FLD principle is that the apparent reflectance spectra without SIF in-filling are smooth in the region of the absorption bands. However, in fact, this assumption is not valid due to the so-called "direct radiation in-filling" effect caused by the non-linear contribution of direct and diffuse radiation at the oxygen absorption bands, which are widely used for ground-based SIF retrieval. In this study, we first analyzed the physical mechanism of the direct radiation in-filling effect on the oxygen absorption bands and found that the bias in the SIF retrieval caused by the direct radiation in-filling effect at the O2-A band was less than 20% based on the use of a simulated dataset. Secondly, we established a simple correction model of the direct radiation in-filling effect. We found that the direct radiation in-filling effect at the O2-A band was directly proportional to the difference between the reflectance of the direct and diffuse radiation, and that the coefficient of proportionality was well correlated with the diffuse-to-global radiation ratio in the form of a quadratic function. The coefficient of determination (R-squared) for this correlation was 0.97. Finally, the model was validated using both simulated and field datasets. The validation results show that the bias in the SIF retrieval caused by the direct radiation in-filling effect can be efficiently corrected using the model proposed in this paper. This study thus provides a possible approach to estimating and correcting for the direct radiation-infilling effect using prior knowledge of the BRDF characteristics of direct and diffuse radiation for specific targets.

  1. Integrated core-log petrofacies analysis in the construction of a reservoir geomodel: A case study of a mature Mississippian carbonate reservoir using limited data

    USGS Publications Warehouse

    Bhattacharya, S.; Doveton, J.H.; Carr, T.R.; Guy, W.R.; Gerlach, P.M.

    2005-01-01

    Small independent operators produce most of the Mississippian carbonate fields in the United States mid-continent, where a lack of integrated characterization studies precludes maximization of hydrocarbon recovery. This study uses integrative techniques to leverage extant data in an Osagian and Meramecian (Mississippian) cherty carbonate reservoir in Kansas. Available data include petrophysical logs of varying vintages, limited number of cores, and production histories from each well. A consistent set of assumptions were used to extract well-level porosity and initial saturations, from logs of different types and vintages, to build a geomodel. Lacking regularly recorded well shut-in pressures, an iterative technique, based on material balance formulations, was used to estimate average reservoir-pressure decline that matched available drillstem test data and validated log-analysis assumptions. Core plugs representing the principal reservoir petrofacies provide critical inputs for characterization and simulation studies. However, assigning plugs among multiple reservoir petrofacies is difficult in complex (carbonate) reservoirs. In a bottom-up approach, raw capillary pressure (Pc) data were plotted on the Super-Pickett plot, and log- and core-derived saturation-height distributions were reconciled to group plugs by facies, to identify core plugs representative of the principal reservoir facies, and to discriminate facies in the logged interval. Pc data from representative core plugs were used for effective pay evaluation to estimate water cut from completions, in infill and producing wells, and guide-selective perforations for economic exploitation of mature fields. The results from this study were used to drill 22 infill wells. Techniques demonstrated here can be applied in other fields and reservoirs. Copyright ?? 2005. The American Association of Petroleum Geologists. All rights reserved.

  2. The Zhamanshin impact feature: A new class of complex crater?

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Schnetzler, C. C.

    1992-01-01

    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert.

  3. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  4. --No Title--

    Science.gov Websites

    Search Search Home SH Reference Manual E19 Documentation Program Management Training/Drills Other River and Lake Summary (RVD) SH Reference Manual, E-19 Docs, Program Management, Training/Drills, Other

  5. Updating the Framework Geology of Padre Island National Seashore: Validation of Geophysical Surveys through Sediment Cores

    NASA Astrophysics Data System (ADS)

    Tuttle, L. F., II; Wernette, P. A.; Houser, C.

    2016-12-01

    Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.

  6. Experimental and Seismological Constraints on the Rheology, Evolution, and Alteration of the Lithosphere at Oceanic Spreading Centers

    DTIC Science & Technology

    2007-02-01

    MPa and is constrained by calibrating the two electronic pressure gauges against a Heise gauge . Axial displacement during melt extraction is measured...105 (B 12), 28,411- 28,425, 2000. Cannat, M., et al., Proceedings of the Ocean Drilling Program, Initial Reports, Ocean Drilling Program, College...Kane transform zone (MARK), Proc. Ocean Drill . Program, Sci. Results, 153, 5-21, 1997. Karson, J.A., G. Thompson, S.E. Humphris, S.E. Edmond, J.M

  7. Well-planning programs give students field-like experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sifferman, T.R.; Chapman, L.

    1983-01-01

    The University of Tulsa recently was given a package of computer well planning and drilling programs that will enable petroleum engineering students to gain valuable experience in designing well programs while still in school. Comprehensive homework assignments are now given in areas of drilling fluids programing, hydraulics, directional wells and surveying. Additional programs are scheduled for next semester.

  8. The Effects of Temperature and CO2-induced Acidification on Skeletal Morphology of the Tropical Reef-building Coral Siderastrea siderea

    NASA Astrophysics Data System (ADS)

    Cobleigh, K.

    2016-02-01

    Coral reefs are threatened by increasing sea surface temperatures and decreasing surface seawater pH. Although numerous experimental studies have examined the effects of these global scale stressors on corals, few have quantified the effects of temperature and acidification on coral skeletal morphology. We conducted controlled laboratory experiments to investigate the effects of temperature (25, 28, 32°C) and CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) on skeletal morphology of the highly resilient Caribbean reef-building coral Siderastrea siderea over a 95-day interval. Post-treatment S. siderea corallites from nearshore, backreef, and forereef colonies were imaged via stereo microscopy to evaluate impact of warming and acidification on corallite height and infilling. Both an increase and decrease in temperature relative to the control (i.e., near-present-day temperatures) resulted in increased corallite height but decreased skeletal infilling. In contrast, corals reared under the lowest (i.e., pre-industrial) and highest pCO2 treatments (i.e., extreme pCO2) exhibited both decreased corallite height and skeletal infilling relative to the control. We observed no difference in corallite height or infilling across reef zones, either within or across treatments. Interestingly, the warming projected for the end of the 21st century (32°C) resulted in increased corallite height and reduced corallite infilling. Acidification projected for the same interval (pCO2 = 604 µatm) also resulted in increased corallite height and decreased infilling. Collectively, our results suggest that these two global stressors will result in S. siderea corallites that are taller yet less infilled by the end of the 21st century. Changes in S. siderea arising from warming and acificiation may exacerbate observed declines in coral health across Caribbean reef systems.

  9. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2001-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2001 through September 2001. Accomplishments to date include the following: TerraTek highlighted DOE's National Energy Technology Laboratory effort on Mud Hammer Optimization at the recent Annual Conference and Exhibition for the Society of Petroleum Engineers. The original exhibit scheduled by NETL was canceled due to events surrounding the September tragedies in the US. TerraTek has completed analysis of drilling performance (rates of penetration, hydraulics, etc.) for themore » Phase One testing which was completed at the beginning of July. TerraTek jointly with the Industry Advisory Board for this project and DOE/NETL conducted a lessons learned meeting to transfer technology vital for the next series of performance tests. Both hammer suppliers benefited from the testing program and are committed to pursue equipment improvements and ''optimization'' in accordance with the scope of work. An abstract for a proposed publication by the society of Petroleum Engineers/International Association of Drilling Contractors jointly sponsored Drilling Conference was accepted as an alternate paper. Technology transfer is encouraged by the DOE in this program, thus plans are underway to prepare the paper for this prestigious venue.« less

  10. TWO-LAYER MODEL FOR PULL-OUT BEHAVIOR OF POST-INSTALLED ANCHOR

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Tsubaki, Tatsuya

    A new two-layer anchor-infill assembly structure for the post-installed anchor is introduced with the analytical model to simulate its pull-out deformational response. The post-installed anchor is such that used in strengthening techniques for reinforced concrete structures. The properties of the infill material used for post-installed anchor are characterized by nonlinear interfaces. Because of the mechanical properties of the infill layer the existing pull-out model of deformed bars is not applicable in this case. Interfacial de-bonding is examined using energy criterion and strength criterion. The effect of the interface properties such as stiffness and strength on the pull-out behavior of a post-installed anchor is investigated. Using sensitivity analysis, the effect of these parameters on load-displacement curve, shear stress distribution, de-bonded length and damage to the surrounding concrete is clarified. Then, the optimum combination of these parameters is presented. It is confirmed that the elastic modulus of infill should be large to reduce the pull-out displacement and the increase of the shear strength of infill makes the pull-out load larger.

  11. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC codedmore » daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less

  12. The Siná river delta on the northwestern Caribbean coast of Colombia: Bay infilling associated with delta development

    NASA Astrophysics Data System (ADS)

    Suarez, Beatriz Elena Serrano

    2004-04-01

    Between 1938 and 1945, the Sinú River changed its course and started a new delta at a site known as Tinajones. The change took place after the infilling of Cispata Bay, the site of the previous delta. The infilling is studied with two isopach maps made from bathymetric charts from 1762, 1849, and 1938. The isopachs help show the distribution of the sediments inside the bay and provide estimations of sedimentation rates. The results are compared with the sediment distribution and estimated sedimentation rate found for the delta at Tinajones. The results suggest that the infilling of the Cispata Bay produced the river avulsion and the change to Tinajones and probably was accelerated by sediments that came from outside the bay.

  13. Ocean Drilling Program: Mirror Sites

    Science.gov Websites

    Publication services and products Drilling services and tools Online Janus database Search the ODP/TAMU web information, see www.iodp-usio.org. ODP | Search | Database | Drilling | Publications | Science | Cruise Info

  14. Ocean Drilling Program: TAMU Staff Directory

    Science.gov Websites

    products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP's main web site Employment Opportunities ODP | Search | Database | Drilling | Publications | Science | Cruise Info | Public

  15. 30 CFR 250.1614 - Mud program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Mud program. 250.1614 Section 250.1614 Mineral... OPERATIONS IN THE OUTER CONTINENTAL SHELF Sulphur Operations § 250.1614 Mud program. (a) The quantities, characteristics, use, and testing of drilling mud and the related drilling procedures shall be designed and...

  16. Industrial Education, General Programs. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Turner, Gordon; And Others

    This courseware evaluation rates a set of 25 industrial education general software programs developed by the Iowa Department of Public Instruction. (These programs--not contained in this document--include measurement drill, fraction drill, loan and interest cost analysis, assault vehicle speeds, sun's rays, Ohm's law, concrete calculations, roof…

  17. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  18. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.

  19. 43 CFR 3162.3-1 - Drilling applications and plans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Drilling applications and plans. 3162.3-1... for Operating Rights Owners and Operators § 3162.3-1 Drilling applications and plans. (a) Each well shall be drilled in conformity with an acceptable well-spacing program at a surveyed well location...

  20. 43 CFR 3162.3-1 - Drilling applications and plans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Drilling applications and plans. 3162.3-1... for Operating Rights Owners and Operators § 3162.3-1 Drilling applications and plans. (a) Each well shall be drilled in conformity with an acceptable well-spacing program at a surveyed well location...

  1. 43 CFR 3162.3-1 - Drilling applications and plans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Drilling applications and plans. 3162.3-1... for Operating Rights Owners and Operators § 3162.3-1 Drilling applications and plans. (a) Each well shall be drilled in conformity with an acceptable well-spacing program at a surveyed well location...

  2. 43 CFR 3162.3-1 - Drilling applications and plans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Drilling applications and plans. 3162.3-1... for Operating Rights Owners and Operators § 3162.3-1 Drilling applications and plans. (a) Each well shall be drilled in conformity with an acceptable well-spacing program at a surveyed well location...

  3. Rock melting technology and geothermal drilling

    NASA Technical Reports Server (NTRS)

    Rowley, J. C.

    1974-01-01

    National awareness of the potential future shortages in energy resources has heightened interest in exploration and utilization of a variety of geothermal energy (GTE) reservoirs. The status of conventional drilling of GTE wells is reviewed briefly and problem areas which lead to higher drilling costs are identified and R and D directions toward solution are suggested. In the immediate future, an expanded program of drilling in GTE formations can benefit from improvements in drilling equipment and technology normally associated with oil or gas wells. Over a longer time period, the new rock-melting drill bits being developed as a part of the Los Alamos Scientific Laboratory's Subterrene Program offer new solutions to a number of problems which frequently hamper GTE drilling, including the most basic problem - high temperature. Two of the most favorable characteristics of rock-melting penetrators are their ability to operate effectively in hot rock and produce glass linings around the hole as an integral part of the drilling process. The technical advantages to be gained by use of rock-melting penetrators are discussed in relation to the basic needs for GTE wells.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khin, J.A.

    Since reopening to foreign operators in 1989, companies have secured concessions and begun active exploration programs. This paper reports on: Yukong Oil (Block C) spudded well Indaw YK-1 last December and continued drilling below 8,500 ft. Well encountered frequent gas cut mud as well as lost circulation. BHP (Block H) spudded the Kawliya-1 in March this year and drilled to 6,500 ft. The well was dry and abandoned BHP plans to drill another well this year. Unocal (Block F) spudded its first well, the Kandaw-1, in May and plans to drill to 14,500 ft. Shell (Block G) began its firstmore » well in June. Shell's drilling program will consist of drilling four to six wells. Idemitsu (Block D) also spudded its first well in June. PetroCanada (Block E) plans to spud a well by December. Target depth is 12,000 ft.« less

  5. Masonry Infilling Effect On Seismic Vulnerability and Performance Level of High Ductility RC Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghalehnovi, M.; Shahraki, H.

    2008-07-08

    In last years researchers preferred behavior-based design of structure to force-based one for designing and construction of the earthquake-resistance structures, this method is named performance based designing. The main goal of this method is designing of structure members for a certain performance or behavior. On the other hand in most of buildings, load bearing frames are infilled with masonry materials which leads to considerable changes in mechanical properties of frames. But usually infilling wall's effect has been ignored in nonlinear analysis of structures because of complication of the problem and lack of simple logical solution. As a result lateral stiffness,more » strength, ductility and performance of the structure will be computed with less accuracy. In this paper by use of Smooth hysteretic model for masonry infillings, some high ductile RC frames (4, 8 stories including 1, 2 and 3 spans) designed according to Iranian code are considered. They have been analyzed by nonlinear dynamic method in two states, with and without infilling. Then their performance has been determined with criteria of ATC 40 and compared with recommended performance in Iranian seismic code (standard No. 2800)« less

  6. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  7. Description and results of test-drilling program at Picatinny Arsenal, New Jersey, 1982-84

    USGS Publications Warehouse

    Harte, P.T.; Sargent, B.P.; Vowinkel, E.F.

    1986-01-01

    Picatinny Arsenal, located in north-central New Jersey, has a long history of explosives manufacturing. Past industrial activities and past waste-disposal practices have caused some groundwater contamination problems. In 1982, the U.S. Geological Survey, in cooperation with the U.S. Army, began a water resources investigation of the Arsenal. The test drilling program is designed to define the hydrogeology and install observation wells. Twenty-two boreholes were drilled and 21 observation wells installed in these holes. All drilling was done in a glaciated valley. The report includes lithologic and gamma-ray logs, results of grain-size analyses, well-construction data, and some groundwater levels. The generalized stratigraphic sequence of geologic units penetrated from the test-drilling program are from lower to upper: (1) pre-dominantly dolomitic Leithsville Formation, (2) in the upper part of bedrock, a weathered dolomite zone, (3) a thin discontinuous mantle of till, and (4) stratified drift deposit up to 208 ft thick. (USGS)

  8. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    NASA Astrophysics Data System (ADS)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  9. Gas Hydrate Research Site Selection and Operational Research Plans

    NASA Astrophysics Data System (ADS)

    Collett, T. S.; Boswell, R. M.

    2009-12-01

    In recent years it has become generally accepted that gas hydrates represent a potential important future energy resource, a significant drilling and production hazard, a potential contributor to global climate change, and a controlling factor in seafloor stability and landslides. Research drilling and coring programs carried out by the Ocean Drilling Program (ODP), the Integrated Ocean Drilling Program (IODP), government agencies, and several consortia have contributed greatly to our understanding of the geologic controls on the occurrence of gas hydrates in marine and permafrost environments. For the most part, each of these field projects were built on the lessons learned from the projects that have gone before them. One of the most important factors contributing to the success of some of the more notable gas hydrate field projects has been the close alignment of project goals with the processes used to select the drill sites and to develop the project’s operational research plans. For example, IODP Expedition 311 used a transect approach to successfully constrain the overall occurrence of gas hydrate within the range of geologic environments within a marine accretionary complex. Earlier gas hydrate research drilling, including IODP Leg 164, were designed primarily to assess the occurrence and nature of marine gas hydrate systems, and relied largely on the presence of anomalous seismic features, including bottom-simulating reflectors and “blanking zones”. While these projects were extremely successful, expeditions today are being increasingly mounted with the primary goal of prospecting for potential gas hydrate production targets, and site selection processes designed to specifically seek out anomalously high-concentrations of gas hydrate are needed. This approach was best demonstrated in a recently completed energy resource focused project, the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II), which featured the collection of a comprehensive set of logging-while-drilling (LWD) data through expected gas-hydrate-bearing sand reservoirs in seven wells at three sites in the Gulf of Mexico. The discovery of thick hydrate-bearing sands at two of the sites drilled in the Gulf Mexico validated the integrated geological and geophysical approach used in the pre-drill site selection process to identify gas hydrate reservoirs that may be conducive to energy production. The results of the GOM JIP Leg II LWD expedition are also being used to support the selection of sites for a future drilling, logging, and coring program. Operationally, recent drilling programs, such as ODP Leg 204, IODP Expedition 311, the Japanese Toaki-oki to Kumano-nada drilling leg, the Indian NGHP Expedition 01, and the South Korean Gas Hydrate Research and Development Organization Expedition 01 have demonstrated the great benefit of a multi-leg drilling approach, including the initial acquisition of LWD data that was used to then select sites for the drilling of complex core and wireline logging test holes. It is obvious that a fully integrated site selection approach and a “goal based” operational plan, possibly including numerous drill sites and drilling legs, are required considerations for any future gas hydrate research project.

  10. The Role of Well Control Training in Developing Safe Onshore and Offshore Oil Drilling Operations

    ERIC Educational Resources Information Center

    Abulhassn, Aber

    2016-01-01

    This research investigates the role of the International Well Control Forum (IWCF) Rotary Drilling Well Control Training Program in developing safe oil drilling operations from the perspective of onshore and offshore drilling crews. The research methodology is a qualitative case study. A total of 40 IWCF candidates were interviewed, with 10 from…

  11. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand

    NASA Astrophysics Data System (ADS)

    Clement, Alastair J. H.; Fuller, Ian C.

    2018-02-01

    The Manawatu incised-valley estuary was rapidly infilled between 12,000-4700 cal. yr BP. A combination of empirical measurements of sedimentation rates, a reconstruction of relative sea-level (RSL) change, and digital elevation models of key surfaces within the Holocene sedimentary fill of the valley were integrated to produce a numerical model to investigate the influence of the system controls of sea-level change, sediment flux, and accommodation space on the rapid infilling history of the palaeo-estuary. The numerical model indicates that sediment flux into the palaeo-estuary was greatest during the Holocene marine transgression between 12,000-8000 years BP. The average rate of sediment deposition in the estuary during this period was 1.0 M m3 yr- 1. This rapid rate of sedimentation was controlled by the rate of accommodation space creation, as regulated by the rate of sea-level rise and the antecedent configuration of the valley. By the time sea levels stabilised c. 7500 cal. yr BP, the palaeo-estuary had been substantively infilled. Limited accommodation space resulted in rapid infilling of the central basin, though sediment flux into the estuary between 7100 and 4500 cal. yr BP was at a lower rate of 234,000 m3 yr- 1. The limited accommodation space also influenced hydrodynamic conditions in the estuarine central basin, driving export of fine-grained sediment from the estuary. Once the accommodation space of the estuarine basin was infilled sediment bypassed the system, with a consequent reduction in the sedimentation rate in the valley. More accurate partitioning of the sources of sediment driving the infilling is necessary to quantify sediment bypassing. Post-depositional lowering of RSL index points from the valley is driven by neotectonics and sediment compaction.

  12. Sedimentary infilling of bedrock-controlled palaeo-embayments off Cape Trafalgar, Strait of Gibraltar (Gulf of Cadiz)

    NASA Astrophysics Data System (ADS)

    de Castro, Sandra; Lobo, Francisco J.

    2018-02-01

    This study investigates two bedrock-controlled palaeo-coastal embayments on the Barbate Platform off Cape Trafalgar near the Strait of Gibraltar (Gulf of Cadiz shelf, SW Iberian Peninsula), aiming to reveal their infilling dynamics and the influence of rocky outcrops on shallow-water hydrodynamics and sediment transport. The approach relies on detailed multibeam bathymetric data, high-resolution seismic profiles and tidal current simulations. Elongated rocky outcrops formed a palaeo-coast when sea level was approximately 35 to 20 m below that of the present day, and bound a relatively flat area. However, the seismic profiles enabled to distinguish two main troughs (A and B) that were infilled following a distinctive evolution during the last transgression. Five seismic units were identified (I to V, from base to top). Deposit A is composed of seismic units II to V and is interpreted as a marine embayment infill, here termed the Barbate palaeo-embayment (BPE). Deposit B is composed of seismic units I to IV and is interpreted as a palaeo-valley infill, here termed the Barbate palaeo-valley (BPV). The complex internal stratigraphic architecture depicts an overall evolution from tidal/fluvial deposits to shallow-water marine deposits. Most significant is the occurrence of coupled tidal flats/estuarine sand bars constituting the infilling of the BPE; this suggests the persistence of a high-energy current in a shallow, confined embayment, which was amplified by the rocky outcrop constrictions and possibly facilitated by the episodic movement of a normal fault. In contrast to this active setting, the nearby straight and narrow BPV was subjected to lower-energy infilling dynamics during its initial flooding phases. There, tidal activity was possibly reduced by the straight morphology of the valley and the occurrence of a topographic constriction (i.e. the Barbate Passage) at the mouth of the valley.

  13. Stormwater Infrastructure at Risk: Predicting the Impacts of Increased Imperviousness due to Infill Development in a Semi-arid Urban Neighborhood

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Panos, C.; McCray, J. E.; Gilliom, R.

    2017-12-01

    This research investigates the impacts of infill development (or "redevelopment") on urban stormwater runoff and explores avenues for re-inventing stormwater management strategies for the City of Denver, Colorado. As a rapidly developing city, Denver is facing a cycle of increasing population and redevelopment in the form of infill (where under-utilized parcels within the City are redeveloped into high-density residential land uses). Infill development increases stormwater runoff by introducing more impervious surfaces, including roofs and driveways, which produce more runoff (additional stormwater). However, there is debate on the impact of infill patterns on runoff behavior, peak flows, and flood frequency events. We used a calibrated, high-resolution PCSWMM model to simulate three redevelopment scenarios within the 1000-acre Berkeley neighborhood of northwest Denver. The scenarios utilized future predictions of redevelopment to simulate increases in imperviousness by 1.1, 4.5, and 8.7 percent by 2024, 2034, and 2044, respectively, for a range of design storms. Results predict that, on average, for each 1% increase in impervious area due to infill development, surface runoff volume will increase by 1.28% in the Berkeley neighborhood. Results demonstrate the limitations of the existing storm sewer network as pipes throughout the catchment reach capacity for events larger than the 2-yr storm for all three scenarios. Spatial maps of the catchment pinpoint subcatchments and sewer nodes of concern, namely surrounding a rapidly growing business corridor and the local Interstate. Overall, results indicate the infrastructure of the Berkeley neighborhood may be at risk, and that current stormwater capture policies may need to be revisited to accommodate both future infill development and climate change. This research provides a quantitative basis for implementing potential changes as well as examining the possibility of using the additional stormwater from redevelopment for beneficial use within Denver.

  14. Prospecting for Natural Gas Gydrate in the Orca & Choctaw Basins in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cook, A.; Hillman, J. I. T.; Sawyer, D.; Frye, M.; Palmes, S.; Shedd, W. W.

    2016-12-01

    The Orca and Choctaw salt bounded mini-basins, which occur in 1.5 to 2.5 km water depth on the northern Gulf of Mexico slope, are currently under consideration as an IODP scientific drilling location for coarse-grained natural gas hydrate systems. We use a 3D seismic dataset for gas hydrate prospecting that covers parts of eleven lease blocks ( 200 km2) in the Walker Ridge protraction area. The study area includes the southern section of the Orca Basin and a smaller section of the northern Choctaw Basin. We have mapped a discontinuous bottom-simulating reflection (BSR) over nearly 30% of our seismic dataset, which varies significantly in both amplitude and depth throughout the area. The southeastern section of our dataset contains three positive impedance amplitude horizons with possible phase reversals at the BSR. Detailed mapping in the area also reveals at the base of gas hydrate stability, a complicated intercalation of an east-west trending fault system and an amalgamated deepwater depositional system comprising channel levee deposits and turbidite sheet sands. Three industry wells drilled in the southwestern section of our study area indicate that the sedimentary sequence infilling the basins consists of predominantly mud rich units with interbedded turbidite sands, forming a 2 km thick supra-salt sequence of late Miocene to Pleistocene sediments. Two of the industry wells have strong evidence for natural gas hydrate in clay-rich sediment, with moderate resistivity (between 2-10 Ωm) increases above background resistivity in zones that exceed 60 m thick. Additionally, the electromagnetic resistivity curves in these wells separate suggesting that the gas hydrate occurs in high-angle fractures. We will present our seismic dataset, our continuing analysis and selected drill sites in the Orca and Choctaw basins. Furthermore, our analysis in the southeastern section of the study area underscores the importance of interpreting faults when considering phase reversals in hydrate systems.

  15. Trip-generation rates for urban infill land uses in California.

    DOT National Transportation Integrated Search

    2009-06-01

    This report presents the results of the second phase of a two phase research project undertaken by the California Department of Transportation (Caltrans) to study travel characteristics of infill development in Californias metropolitan areas. This...

  16. Trip-generation rates for urban infill land uses in California.

    DOT National Transportation Integrated Search

    2008-04-01

    This report presents the results of the first phase of a two phase research : project undertaken by the California Department of Transportation (Caltrans) : to study travel characteristics of infill development in Californias metropolitan : areas....

  17. City Green: Innovative Green Infrastructure Solutions for Downtowns and Infill Locations

    EPA Pesticide Factsheets

    City Green uses case studies to illustrate how green infrastructure techniques can be used in downtowns and infill locations, where space is limited, to protect water quality and bring other environmental and community benefits.

  18. Mechanical characterization and force-displacement hysteretic curves from in-plane cyclic tests on strong masonry infills.

    PubMed

    Morandi, Paolo; Hak, Sanja; Magenes, Guido

    2018-02-01

    This article contains information related to a recent study "Performance-based interpretation of in-plane cyclic tests on RC frames with strong masonry infills" (Morandi et al., 2017 [1]). Motivated by the necessity to improve the knowledge of the in-plane seismic response of rigid strong masonry infills, a wide experimental campaign based on in-plane cyclic tests on full-scale RC infilled frame specimens, supplemented with a complete characterization of the materials, has been conducted at the laboratory of the Department of Civil Engineering and Architecture of the University of Pavia. The masonry is constituted by vertically perforated 35 cm thick clay units with tongue and groove and dry head-joints and general-purpose mortar bed-joints. The paper reports the results of the mechanical characterization and of the force-displacement hysteretic curves from the in-plane cyclic tests.

  19. Astrobiology Drilling Program of the NASA Astrobiology Institute

    NASA Astrophysics Data System (ADS)

    Runnegar, B.

    2004-12-01

    Access to unweathered and uncontaminated samples of the least altered, oldest, sedimentary rocks is essential for understanding the early history of life on Earth and the environments in which it may have existed. For this reason, the NASA Astrobiology Institute (NAI) has embarked on two international programs, a series of Field Workshops aimed at making the most important surface samples available to investigators, and the Astrobiology Drilling Program (ADP), which serves to provide access to fresh subsurface samples when the scientific objectives require them. The Astrobiology Drilling Program commenced in Western Australia in 2003 with the initiation of its first project, the Archean Biosphere Drilling Project (ABDP). Funding for the ABDP came mainly from the Japanese Government through Kagoshima University and from NASA through the NAI Team at Pennsylvania State University, but significant technical and logistic support was provided by the Geological of Western Australia and, to a lesser extent, by the University of Western Australia. Six diamond drill cores totalling 1.4 km were obtained from astrobiologically important successions in the 3.3-3.5 Ga-old Pilbara Craton of northern Western Australia. Drilling in 2004 also occurred in Western Australia. The Deep Time Drilling Project (DTDP), a spin-off from the NAI's Mission to Early Earth Focus Group, completed one long hole, aimed mainly at fossil biomolecules (biomarkers) and other geochemical indicators of early life. The DTDP and the ABDP also jointly drilled two other important holes 2004, one through the oldest known erosion surface (and possible soil profile). The other intersected well-preserved middle Archean sediments. These efforts parallel other drilling initiatives within the wider astrobiological community that are taking place in Western Australia, South Africa, Spain, and arctic Canada. The ADP is managed by the NAI through a Steering Committee appointed by the NAI Director. Samples of cores obtained through ADP projects are available to the whole community, following a one year embargo, upon application to project PIs and the ADP Steering Committee.

  20. Beyond 2013 - The Future of European Scientific Drilling Research - An introduction.

    NASA Astrophysics Data System (ADS)

    Camoin, G.; Stein, R.

    2009-04-01

    The Integrated Ocean Drilling Program (IODP) is funded for the period 2003-2013, and is now starting to plan the future of ocean drilling beyond 2013, including the development of new technologies, new emerging research fields as and the societal relevance of this programme. In this context an interdisciplinary and multinational (USA, Europe, Japan, Asian and Oceanian countries), key conference - INVEST IODP New Ventures in Exploring Scientific Targets - addressing all international IODP partners is therefore planned for September 23rd-25th 2009 in Bremen, Germany (more information at http://www.iodp.org and http://marum.de/iodp-invest.html) to discuss future directions of ocean drilling research and related aspects such as ventures with related programmes or with industry. The first critical step of INVEST is to define the scientific research goals of the second phase of the Integrated Ocean Drilling Program (IODP), which is expected to begin in late 2013. INVEST will be open to all interested scientists and students and will be the principal opportunity for the international science community to help shape the future of scientific ocean drilling. The outcome of the conference will be the base to draft a science plan in 2010 and to define new goals and strategies to effectively meet the challenges of society and future ocean drilling. The current EGU Session and the related two days workshop which will be held at the University of Vienna will specifically address the future of European scientific drilling research. The major objectives of those two events are to sharpen the European interests in the future IODP and to prepare the INVEST Conference and are therefore of prime importance to give weight to the European propositions in the program renewal processes, both on science, technology and management, and to provide the participants with information about the status/process of ongoing discussions and negotiations regarding program structure, and provide them with the expected framework (available drilling platforms and anticipated funding levels). The key items that should be addressed during the EGU Session and the workshop will especially include : (1) The future of ECORD (science, technology, management). (2) New research initiatives and emerging fields in scientific drilling (3) Relationships between IODP and other programs (e.g. ICDP, IMAGES etc). (4) Collaboration between academia and industry. (5) New technologies and the Mission Specific Platform approach.

  1. Using DSDP/ODP/IODP core photographs and digital images in the classroom

    NASA Astrophysics Data System (ADS)

    Pereira, Hélder; Berenguer, Jean-Luc

    2017-04-01

    Since the late 1960's, several scientific ocean drilling programmes have been uncovering the history of the Earth hidden beneath the seafloor. The adventure began in 1968 with the Deep Sea Drilling Project (DSDP) and its special drill ship, the Glomar Challenger. The next stage was the Ocean Drilling Program (ODP) launched in 1985 with a new drill ship, the JOIDES Resolution. The exploration of the ocean seafloor continued, between 2003 and 2013, through the Integrated Ocean Drilling Program (IODP). During that time, in addition to the JOIDES Resolution, operated by the US, the scientists had at their service the Chikyu, operated by Japan, and Mission-Specific-Platforms, funded and implemented by the European Consortium for Ocean Research Drilling. Currently, scientific ocean drilling continues through the collaboration of scientists from 25 nations within the International Ocean Discovery Program (IODP). Over the last 50 years, the scientific ocean drilling expeditions conducted by these programmes have drilled and cored more than 3500 holes. The numerous sediment and rock samples recovered from the ocean floor have provided important insight on the active biological, chemical, and geological processes that have shaped the Earth over millions of years. During an expedition, once the 9.5-meter long cores arrive from the seafloor, the technicians label and cut them into 1.5-meter sections. Next, the shipboard scientists perform several analysis using non-destructive methods. Afterward, the technicians split the cores into two halves, the "working half", which scientists sample and use aboard the drilling platform, and the "archive half", which is kept in untouched condition after being visually described and photographed with a digital imaging system. The shipboard photographer also takes several close-up pictures of the archive-half core sections. This work presents some examples of how teachers can use DSDP/ODP/IODP core photographs and digital images, available through the Janus and LIMS online databases, to develop inquiry-based learning activities for secondary level students.

  2. Summary of moderate depth lunar drill development program from its conception to 1 July 1972

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results are summarized of a program aimed at the development of a lunar drill capable of taking lunar surface cores to depths of at least 100 feet. The technologies employed in the program are described along with the accomplishments and problems encountered. Recommendations are included for future concept improvements and developments.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greener, J.M.; Trimble, G.E.; Singer, G.M.

    This paper describes the Opon Gas Field development drilling case history in the Middle Magdalena Basin of north-central Colombia, South America. World class levels of drilling fluid and cementing densities in excess of 22.0 ppg were required to control the extreme pressures encountered. A continuous improvement process is detailed in regard to casing, drilling fluid, cement and related drilling mechanics programs in a severely pressured and environmentally sensitive operation.

  4. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  5. SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2004-10-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less

  6. Sub-Ocean Drilling

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.

  7. Role of Geomechanics in Assessing the Feasibility of CO2 Sequestration in Depleted Hydrocarbon Sandstone Reservoirs

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Khaksar, Abbas

    2013-05-01

    Carbon dioxide (CO2) sequestration in depleted sandstone hydrocarbon reservoirs could be complicated by a number of geomechanical problems associated with well drilling, completions, and CO2 injection. The initial production of hydrocarbons (gas or oil) and the resulting pressure depletion as well as associated reduction in horizontal stresses (e.g., fracture gradient) narrow the operational drilling mud weight window, which could exacerbate wellbore instabilities while infill drilling. Well completions (casing, liners, etc.) may experience solids flowback to the injector wells when injection is interrupted due to CO2 supply or during required system maintenance. CO2 injection alters the pressure and temperature in the near wellbore region, which could cause fault reactivation or thermal fracturing. In addition, the injection pressure may exceed the maximum sustainable storage pressure, and cause fracturing and fault reactivation within the reservoirs or bounding formations. A systematic approach has been developed for geomechanical assessments for CO2 storage in depleted reservoirs. The approach requires a robust field geomechanical model with its components derived from drilling and production data as well as from wireline logs of historical wells. This approach is described in detail in this paper together with a recent study on a depleted gas field in the North Sea considered for CO2 sequestration. The particular case study shows that there is a limitation on maximum allowable well inclinations, 45° if aligning with the maximum horizontal stress direction and 65° if aligning with the minimum horizontal stress direction, beyond which wellbore failure would become critical while drilling. Evaluation of sanding risks indicates no sand control installations would be needed for injector wells. Fracturing and faulting assessments confirm that the fracturing pressure of caprock is significantly higher than the planned CO2 injection and storage pressures for an ideal case, in which the total field horizontal stresses increase with the reservoir re-pressurization in a manner opposite to their reduction with the reservoir depletion. However, as the most pessimistic case of assuming the total horizontal stresses staying the same over the CO2 injection, faulting could be reactivated on a fault with the least favorable geometry once the reservoir pressure reaches approximately 7.7 MPa. In addition, the initial CO2 injection could lead to a high risk that a fault with a cohesion of less than 5.1 MPa could be activated due to the significant effect of reduced temperature on the field stresses around the injection site.

  8. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  9. Lack of training threatening drilling talent supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Flatern, R.

    When oil prices crashed in the mid-1980s, the industry tightened budgets. Among the austerity measures taken to survive the consequences of low product prices was an end to expensive, long-term investment training of drilling engineers. In the absence of traditional sources of trained drilling talent, forward-looking contractors are creating their own training programs. The paper describes the activities of some companies who are setting up their own training programs, and an alliance being set up by Chevron and Amoco for training. The paper also discusses training drilling managers, third-party trainers, and the consequences for the industry that does not renewmore » its inventory of people.« less

  10. Towards a distributed infrastructure for research drilling in Europe

    NASA Astrophysics Data System (ADS)

    Mevel, C.; Gatliff, R.; Ludden, J.; Camoin, G.; Horsfield, B.; Kopf, A.

    2012-04-01

    The EC-funded project "Deep Sea and Sub-Seafloor Frontier" (DS3F) aims at developing seafloor and sub seafloor sampling strategies for enhanced understanding of deep-sea and sub seafloor processes by connecting marine research in life and geosciences, climate and environmental change, with socio-economic issues and policy building. DS3F has identified access to sub seafloor sampling and instrumentation as a key element of this approach. There is a strong expertise in Europe concerning direct access to the sub seafloor. Within the international program IODP (Integrated Ocean Drilling Program), ECORD (European Consortium for Ocean Research Drilling) has successfully developed the concept of mission specific platforms (MSPs), contracted on a project basis to drill in ice covered and shallow water areas. The ECORD Science Operator, lead by the British Geological Survey (BGS) has build a internationally recognized expertise in scientific ocean drilling, from coring in challenging environment, through down hole measurements and laboratory analysis to core curation and data management. MARUM, at the Bremen University in Germany, is one of the three IODP core repositories. Europe is also at the forefront of scientific seabed drills, with the MeBo developed by MARUM as well as the BGS seabed rocks drills. Europe also plays a important role in continental scientific drilling and the European component of ICDP (International Continental Scientific Drilling Program) is strengthening, with the recent addition of France and foreseen addition of UK. Oceanic and continental drilling have very similar scientific objectives. Moreover, they share not only common technologies, but also common data handling systems. To develop an integrated approach to technology development and usage, a move towards a a distributed infrastructure for research drilling in Europe has been initiated by these different groups. Built on existing research & operational groups across Europe, it will facilitate the sharing of technological and scientific expertise for the benefit of the science community. It will link with other relevant infrastructure initiatives such as EMSO (European Marine Seafloor Observatories). It will raise the profile of scientific drilling in Europe and hopefully lead to better funding opportunities.

  11. Etude du comportement sous charges laterales des ossatures de beton arme avec murs de remplissage de maconnerie, construites avant les annees 1960

    NASA Astrophysics Data System (ADS)

    Lefebvre, Karine

    Reinforced concrete structures with unreinforced masonry infills (BMR) are considered vulnerable to earthquakes. Under seismic actions, infills could fail (causing injuries or death) and cause damages to columns. In Quebec and Canada, most of BMR structures have been constructed prior to the introduction of modern seismic design codes raising question on the contribution of the infill to the structure lateral resistance. The aim of this thesis is to improve modelling technique of BMR structures built in Quebec between 1915 and 1960. This type of structures is found in hospitals or schools buildings, which must comply with some post-earthquake functionality requirements. They could also be residential or office buildings. Actually, practicing engineers usually calculate seismic capacity of BMR structures without considering the infill's structural contribution to the lateral resistance. Yet, this contribution should not be omitted. The first part of the thesis investigates the construction techniques and material properties of the old BMR structures in the Province. The results are the material properties (concrete, reinforcing steel, brick, terra cotta tile, and mortar) and the characteristics of the assemblies (wall section, reinforcement details…). The second part of the thesis presents the results of series of parametric analyses to identify among modelling and geometric parameters, which ones are the most influent on the lateral load response (rigidity, fundamental period, normal modes). Linear and modal analyses were performed. The most influent parameters identified are: number of storeys, number of bays, bay's width, soft storey, openings, upper storeys modelized (instead of being replaced by punctual loads) and the modelization technique of infills panels (strut or shell). Nonlinear static analyses have been performed to identify the most influent parameters to be considered for evaluating the lateral resistance, the capacity (load / displacement) and the yielding sequence (beam versus columns versus infills). The identified parameters are the presence of the infills, the openings and the geometric characteristics of the models (number of storeys and number of bays). One important contribution of this work is the development of an equivalent strut model to represent the action of the infill. The model could be easily implemented in standard analysis software. A central axial hinge reproducing the nonlinear behaviour of the masonry is added to the strut element. This model is a hybridization of existing proposals (FEMA and others) with added innovations by the author. It has been validated with experimental and numerical analyses results from literature. An important conclusion of this thesis is that the contribution of infills to lateral load resisting capacities of BMR structures should be considered for structure of more than one storey. Infills can add up to 51 % to bare frame capacity. The National building code requires that the lateral resistance of existing buildings must be at least 60 % of the equivalent static seismic force (V2005). It is concluded that one storey BMR buildings have a sufficient resistance, while three-storeys structures exhibit plastic deformations for loads under 0,6* V2005.

  12. 40 CFR 146.70 - Information to be evaluated by the Director.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... zone. Such data shall include a description of each well's type, construction, date drilled, location... program, well materials specifications and their life expectancy, logging procedures, deviation checks, and a drilling, testing and coring program; and (17) A demonstration pursuant to part 144, subpart F...

  13. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2003-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2003 through June 2003. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). Accomplishments included the following: (1) Hughes Christensen has recently expressed interest in the possibility of a program to examine cutter impact testing, which would be useful in a better understanding of the physics of rock impact. Their interest however is notmore » necessarily fluid hammers, but to use the information for drilling bit development. (2) Novatek (cost sharing supplier of tools) has informed the DOE project manager that their tool may not be ready for ''optimization'' testing late summer 2003 (August-September timeframe) as originally anticipated. During 3Q Novatek plans to meet with TerraTek to discuss progress with their tool for 4Q 2003 testing. (3) A task for an addendum to the hammer project related to cutter impact studies was written during 2Q 2003. (4) Smith International internally is upgrading their hammer for the optimization testing phase. One currently known area of improvement is their development program to significantly increase the hammer blow energy.« less

  14. Physical Conditioning through Water Exercises.

    ERIC Educational Resources Information Center

    Conrad, C. Carson

    This document describes activities in an aquatic program designed for an individual in sound health. Instructions for performing each activity are given in step-by-step outline form. The activities are arranged under the following categories: standing water drills; pool-side standing drills; gutter holding drills; bobbing (various forms);…

  15. 40 CFR 112.21 - Facility response training and drills/exercises.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Facility response training and drills/exercises. 112.21 Section 112.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Response Requirements § 112.21 Facility response training and drills...

  16. 40 CFR 112.21 - Facility response training and drills/exercises.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Facility response training and drills/exercises. 112.21 Section 112.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Response Requirements § 112.21 Facility response training and drills...

  17. 40 CFR 112.21 - Facility response training and drills/exercises.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Facility response training and drills/exercises. 112.21 Section 112.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Response Requirements § 112.21 Facility response training and drills...

  18. 40 CFR 300.212 - Area response drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 29 2013-07-01 2013-07-01 false Area response drills. 300.212 Section... PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.212 Area response drills. The OSC periodically shall conduct...

  19. 40 CFR 300.212 - Area response drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 29 2012-07-01 2012-07-01 false Area response drills. 300.212 Section... PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY PLAN Planning and Preparedness § 300.212 Area response drills. The OSC periodically shall conduct...

  20. 40 CFR 112.21 - Facility response training and drills/exercises.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Facility response training and drills/exercises. 112.21 Section 112.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Response Requirements § 112.21 Facility response training and drills...

  1. 40 CFR 112.21 - Facility response training and drills/exercises.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Facility response training and drills/exercises. 112.21 Section 112.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION Response Requirements § 112.21 Facility response training and drills...

  2. Robust, functional nanocrystal solids by infilling with atomic layer deposition.

    PubMed

    Liu, Yao; Gibbs, Markelle; Perkins, Craig L; Tolentino, Jason; Zarghami, Mohammad H; Bustamante, Jorge; Law, Matt

    2011-12-14

    Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. (1) The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphous alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm2 V(-1) s(-1). Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.

  3. Using self-organizing maps to infill missing data in hydro-meteorological time series from the Logone catchment, Lake Chad basin.

    PubMed

    Nkiaka, E; Nawaz, N R; Lovett, J C

    2016-07-01

    Hydro-meteorological data is an important asset that can enhance management of water resources. But existing data often contains gaps, leading to uncertainties and so compromising their use. Although many methods exist for infilling data gaps in hydro-meteorological time series, many of these methods require inputs from neighbouring stations, which are often not available, while other methods are computationally demanding. Computing techniques such as artificial intelligence can be used to address this challenge. Self-organizing maps (SOMs), which are a type of artificial neural network, were used for infilling gaps in a hydro-meteorological time series in a Sudano-Sahel catchment. The coefficients of determination obtained were all above 0.75 and 0.65 while the average topographic error was 0.008 and 0.02 for rainfall and river discharge time series, respectively. These results further indicate that SOMs are a robust and efficient method for infilling missing gaps in hydro-meteorological time series.

  4. Report on drilling activities in the Thar Desert, Sindh Province, Pakistan

    USGS Publications Warehouse

    Thomas, Roger E.; Fassett, James E.; Warwick, Peter D.; Wardlaw, Bruce R.; Shah, Abas A.; Khan, Shafique Ahmed; Tagar, Mohammad A.; Memon, Abdul R.; Lashari, Ghulam S.; Khan, Zameer M.; Khan, Muhammad D.; Chandio, Altaf H.; Anwar, Mohammad; Nizamani, Mohammad A.; Ahmad, Mujeeb; Ur-Raman, Mehtab-

    1994-01-01

    Coal test drilling in the Thar Desert of southeast Pakistan was conducted as part of the Coal Exploration and Assessment Program (COALREAP) involving the United States Agency for International Development (USAID), the Geological Survey of Pakistan (GSP), and the U.S. Geological Survey. Drilling was performed in the Thar Desert, or Great Indian Desert, approximately 175 km northeast of Karachi. Twenty five exploration holes were drilled between January 1992 and May 1994. Drill core was described by geologists of the Pakistan Geological Survey and coal samples were analyzed in both the United States and Pakistan. U.S. Geological Survey geologists offered technical assistance, trained GSP personnel, and managed the drilling program according to an agreement with USAID under the Energy Planning and Development Project.Drilling was performed by the Geological Survey of Pakistan. During drilling, the first 50 m was rotary drilled and cuttings collected every 2 m for examination. Average depth for all coal beds is 214 m with a total average thickness of 10 m of coal per drill hole. Core was described, boxed, and stored at the Geological Survey of Pakistan core library at Sonda, near Hyderabad. Approximately 6,412 m of Paleocene to Eocene rock was drilled of which 3,990 m was cored and 1,113 m was rotary drilled.There was 1,309 m of core loss. Geophysical logging of each drill hole permitted detailed thicknesses of coal to be determined. Analysis of the coal indicated a rank of lignite B with an as-received heating value over 5,000 Btu.This report presents data collected at the drill sites and should be used inconjunction with the published interpretive report (Fassett and Durrani, 1994) and the USGS Open-File Report 94-167, which contains analysis of the coal samples. Tables provide quick reference to numeric data and results. Detailed index maps and specific data, for each drill hole are included. This report covers drill holes TP-5 to TP-31. Drill holes TP-16, 17, 21, 26, 27, and 29 were planned but not drilled due to time restraints and (or) a determination that those drill sites were not needed to effectively delineate the coal deposit. The basic data for drill holes TP-1 through TP-4 are included in SanFilipo and others, 1994 however, some data for these drill holes are included for consistency.

  5. Installation Restoration Program. Phase II. Confirmation/Quantification Stage I.

    DTIC Science & Technology

    1986-02-24

    Drilling and sampling three...borings at Site 8; o Drilling and sampling three borings at Site 11; and o Drilling and sampling three borings at Site 12. The ground water samples...8217-"~~~~~~.."." . " -’ - . .. . ;’ "..-. ’,"",,.- - -".-" - ’ -- -... ... ~ -. . ... ... " " 1 *. Sites Recommended Action Rationale U 8 Drill and sample one background To estimate

  6. Rowan Gorilla I rigged up, heads for eastern Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    Designed to operate in very hostile offshore environments, the first of the Rowan Gorilla class of self-elevating drilling rigs has been towed to its drilling assignment offshore Nova Scotia. About 40% larger than other jackups, these rigs can operate in 300 ft of water, drilling holes as deep as 30,000 ft. They also feature unique high-pressure and solids control systems that are expected to improve drilling procedures and efficiencies. A quantitative formation pressure evaluation program for the Hewlett-Packard HP-41 handheld calculator computes formation pressures by three independent methods - the corrected d exponent, Bourgoyne and Young, and normalized penetration ratemore » techniques for abnormal pressure detection and computation. Based on empirically derived drilling rate equations, each of the methods can be calculated separately, without being dependent on or influenced by the results or stored data from the other two subprograms. The quantitative interpretation procedure involves establishing a normal drilling rate trend and calculating the pore pressure from the magnitude of the drilling rate trend or plotting parameter increases above the trend line. Mobil's quick, accurate program could aid drilling operators in selecting the casing point, minimizing differential sticking, maintaining the proper mud weights to avoid kicks and lost circulation, and maximizing penetration rates.« less

  7. Stanford Program in Computer-Assisted Instruction for the Period October 1, 1968 to December 31, 1968. Progress Report.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. Inst. for Mathematical Studies in Social Science.

    Described in this report is the strand program as used in the teaching of drill-and-practice mathematics in California, Kentucky, and Mississippi schools, at the Tennessee A. and I. University, and in Washington, D.C.; as used in the drill-and-practice reading courses; in logic and algebra; in a second-year Russian program, and in…

  8. 40 CFR 146.14 - Information to be considered by the Director.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., logging procedures, deviation checks, and a drilling, testing, and coring program; and (16) A certificate... information listed below which are current and accurate in the file. For a newly drilled Class I well, the..., construction, date drilled, location, depth, record of plugging and/or completion, and any additional...

  9. The transportation and environmental impacts of infill versus greenfield development: a comparative case study analysis.

    DOT National Transportation Integrated Search

    1999-10-01

    This paper tries to answer the question of which site provides more efficient or better transportation services to a new residential or commercial development - an urban infill site or a suburban edge/greenfield? In order to answer this question, the...

  10. Scientific Ocean Drilling: A Legacy of ODP Education and Community Engagement by JOI/USSSP

    NASA Astrophysics Data System (ADS)

    Johnson, A.; Cortes, M.; Farrell, J. W.

    2003-12-01

    The U.S. Science Support Program (USSSP) was established in 1986 to support the participation of U.S. scientists in the international Ocean Drilling Program (ODP). Since inception, USSSP has been managed by Joint Oceanographic Institutions (JOI), through a cooperative agreement with NSF, and guided by the U.S. Science Advisory Committee (USSAC). One of USSSP's primary goals has been to enhance the scientific contribution of ocean drilling and to maintain its vitality through a broad range of education and outreach activities. USSSP's first educational program, the Schlanger Ocean Drilling Fellowship, was established to encourage doctoral candidates to conduct research aboard the ODP drill ship, JOIDES Resolution. Since 1987, 74 fellowships have been awarded and the program has been expanded to include shorebased ODP-related research and Masters degree candidates. USSSP's second major educational activity is the Distinguished Lecturer Series. To date, 70 scientists have spoken about their ODP research at 334 institutions, effectively reaching new and diverse educational communities. In addition, USSSP has developed and distributed two interactive educational CD-ROMs (ODP: Mountains to Monsoons and Gateways to Glaciation) and an educational poster (Blast from the Past). All three items are popular supplements in classrooms from middle school to college because they present accessible scientific content, demonstrate the scientific method, and illustrate the collaborative and international nature of scientific research. USSSP's outreach efforts have included publishing the JOI/USSAC Newsletter since 1988 and ODP's Greatest Hits (abstracts written by U.S. scientists). The latter is broadly used because it communicates exciting scientific results in lay terms. USSSP has sponsored other educational efforts including a workshop to seek recommendations for educational activities to be associated with future scientific ocean drilling. NSF is currently considering the response to their solicitation of proposals to manage a successor program to USSSP, which will support the involvement of U.S. scientists in the new Integrated Ocean Drilling Program. The educational and outreach component of the new USSSP will target students at all levels, building upon improving on the USSSP-ODP achievements.

  11. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denninger, Kate; Eustes, Alfred; Visser, Charles

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drillingmore » reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.« less

  12. Morphological Expressions of Crater Infill Collapse: Model Simulations of Chaotic Terrains on Mars

    NASA Astrophysics Data System (ADS)

    Roda, Manuel; Marketos, George; Westerweel, Jan; Govers, Rob

    2017-10-01

    Martian chaotic terrains are characterized by deeply depressed intensively fractured areas that contain a large number of low-strain tilted blocks. Stronger deformation (e.g., higher number of fractures) is generally observed in the rims when compared to the middle regions of the terrains. The distribution and number of fractures and tilted blocks are correlated with the size of the chaotic terrains. Smaller chaotic terrains are characterized by few fractures between undeformed blocks. Larger terrains show an elevated number of fractures uniformly distributed with single blocks. We investigate whether this surface morphology may be a consequence of the collapse of the infill of a crater. We perform numerical simulations with the Discrete Element Method and we evaluate the distribution of fractures within the crater and the influence of the crater size, infill thickness, and collapsing depth on the final morphology. The comparison between model predictions and the morphology of the Martian chaotic terrains shows strong statistical similarities in terms of both number of fractures and correlation between fractures and crater diameters. No or very weak correlation is observed between fractures and the infill thickness or collapsing depth. The strong correspondence between model results and observations suggests that the collapse of an infill layer within a crater is a viable mechanism for the peculiar morphology of the Martian chaotic terrains.

  13. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes themore » geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.« less

  14. The Middle Pleistocene evolution of the Molise intermontane basins: revision of the chrono-stratigraphic framework and new results inferred from a deep core of the Isernia - Le Piane basin

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Patrizio Ciro Aucelli, Pietro; Cesarano, Massimo; Rosskopf, Carmen Maria

    2014-05-01

    The Molise sector of the Apennine chain includes several Quaternary intermontane basins of tectonic origin (Venafro, Isernia-Le Piane, Carpino, Sessano, Boiano and Sepino basins). Since the Middle Pleistocene, the palaeoenvironmental evolution of these basins has been strongly conditioned by extensional tectonics, dominated by fault systems with a general NW-SE trend. This tectonics has produced important vertical displacements which are testified by the elevated thickness of basin fillings and the presence of several generations of palaeosurfaces, gentle erosion glacis and hanging valleys, the latter being generally located along the borders of the basins. Our research has focused, in the last years, on clarifying the infilling nature and the Quaternary evolution of the Boiano and Sessano basins and, more recently, of the Venafro and Isernia basins, the latter being investigated also by a new deep drilling. The present paper aims at presenting the results of the detailed, integrated analysis of the palaeoenvironmental and geomorphological evolution of these basins, that allowed for constraining the chronology of the basin infillings and for clarifying the significance and age of the ancient gentle surfaces, now hanging up to hundreds of meters above the basins floors. Furthermore, the main palaeoenvironmental changes and the tectonic phases are highlighted. The dating of several tephra layers interbedded within the investigated fluvial-marshy and lacustrine-palustrine successions, allowed to correlate different basin successions, and to refer the main sedimentary facies and some of the palaeosurface generations to the Middle Pleistocene. The obtained results confirm that the Middle Pleistocene evolution of the Molise Apennine was controlled by a polyphasic extensional tectonics, with periods of relative landscape stability alternating with periods of major landscape fragmentation, due to the variable interplay of tectonic and climate. They allow, furthermore, to better decipher the Middle Pleistocene tectonic evolution providing new data on the number of phases and their differences in length, intensity and related accommodation rates.

  15. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  16. The long sediment record of lake Challa: a unique equatorial archive, potentially crucial for understanding early human dispersal

    NASA Astrophysics Data System (ADS)

    Van Daele, Maarten; Moernaut, Jasper; De Batist, Marc; Verschuren, Dirk

    2013-04-01

    Lake Challa (Mt. Kilimanjaro, Kenya/Tanzania) is located in a key site for reconstructing the climate and landscape history of equatorial East Africa and hence, climatic influences on the living environment of early modern humans, Homo sapiens. Seismic-reflection data from this crater lake reveal a ~210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence shows that the signatures of these lake-level fluctuations represent a detailed record of climatic moisture-balance variation in equatorial East Africa, continuous over at least the last 140 kyr and encompassing in total ~250 kyr. The most severe aridity occurred during peak Penultimate glaciation immediately before 130 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ~115 and ~98 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. The LGM was preceded by ~75,000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Also in the lower part of the sedimentary infill the seismic stratigraphy provides evidence for short-lived dry spells, but artefacts and changes in basin geometry complicate their detailed interpretation and dating, respectively. The ICDP deep-drilling project DeepCHALLA aims to core the entire sedimentary sequence, which will allow reconstructing regional climate and ecological dynamics for the past ~250 kyr, i.e., the entire documented existence of anatomically modern humans in East Africa. Knowledge of climate history in this equatorial region, where the northeasterly and southeasterly monsoons strongly interact, is crucial for documenting the severity and geographical distribution of prolonged drought episodes across tropical Africa, and thus for understanding the early dispersal of modern humans from Africa into Eurasia between ~100,000 and ~50,000 years ago.

  17. Nociones de la programacion de lenguas extranjeras: ensayo metodologico (Notions on the Programming of Foreign Languages: Methodological Experiment)

    ERIC Educational Resources Information Center

    Feldman, David

    1975-01-01

    Presents a computerized program for foreign language learning giving drills for all the major language skills. The drills are followed by an extensive bibliography of documents in some way dealing with computer based instruction, particularly foreign language instruction. (Text is in Spanish.) (TL)

  18. Characterizing Tire Crumb Rubber for Exposure Assessment

    EPA Science Inventory

    Tire crumb rubber derived from recycled tires is widely used as infill material in synthetic turf fields in the United States. An estimated 95% of the over 12,000 installed fields in the U.S. use tire crumb rubber infill alone or mixed with sand or alternative materials. Concerns...

  19. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2002-10-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting July 2002 through September 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Smith International agreed to participate in the DOE Mud Hammer program. (2) Smith International chromed collars for upcoming benchmark tests at TerraTek, now scheduled for 4Q 2002. (3) ConocoPhillips had a field trial of the Smith fluid hammer offshore Vietnam. The hammer functioned properly, though themore » well encountered hole conditions and reaming problems. ConocoPhillips plan another field trial as a result. (4) DOE/NETL extended the contract for the fluid hammer program to allow Novatek to ''optimize'' their much delayed tool to 2003 and to allow Smith International to add ''benchmarking'' tests in light of SDS Digger Tools' current financial inability to participate. (5) ConocoPhillips joined the Industry Advisors for the mud hammer program. (6) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to complete the optimizations.« less

  20. Hundreds of Cruises, Thousands of People, Endless Discoveries - Education and Outreach in the Integrated Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Peart, L.; Niemitz, M.; Boa, S.; Corsiglia, J.; Klaus, A.; Petronotis, K.; Iturrino, G.

    2005-12-01

    For 37 years, scientific ocean drilling programs have sponsored hundreds of expeditions, drilled at over 1,800 sites and recovered over 200 miles of core. The discoveries of these programs have led to important realizations of how our earth works. Past expeditions have validated the theory of plate tectonics, provided unparalleled ancient climate records and recovered evidence of the asteroid impact that wiped out the dinosaurs 65 million years ago - and new discoveries occur with every expedition. By producing education materials and programs and encouraging mass media journalists' interest in our news, we strive to fulfill our commitment to communicate our programs' scientific discoveries to the public, in a way that people - not just other scientists - understand. With the advent of the Integrated Ocean Drilling Program (IODP), education and outreach efforts have expanded to pursue new opportunities and engage wider audiences. Through our strategy of Teaching for Science, Learning for LifeTM, our education efforts seek to utilize the interdisciplinary nature of scientific ocean drilling to teach career awareness, scientific methods, teamwork, and problem solving techniques for a lifetime of learning, decision making and good citizenship. In pursuit of this goal, we have implemented professional and resource development programs and expanded our outreach at education-focused conferences to help teachers use IODP science to satiate the student's need to learn the methods of science that apply to everyday life. We believe that this message also applies to life-long learners and thus we have focused our efforts on news media outreach and education opportunities surrounding ports of call of the JOIDES Resolution, permanent and traveling museum exhibits. In addition, our outreach to undergraduate and graduate audiences, through a lecture series, research fellowships and internships, helps to create future generations of science leaders.

  1. 78 FR 18965 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Drilling Program in the Chukchi Sea, Alaska AGENCY: National Marine Fisheries Service (NMFS), National... numbers of marine mammals, by harassment, incidental to conducting offshore exploration drilling on Outer... offshore exploration drilling on OCS leases in the Chukchi Sea, Alaska, during the 2014 open-water season...

  2. 78 FR 24731 - Taking Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to an...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Drilling Program in the Chukchi Sea, Alaska AGENCY: National Marine Fisheries Service (NMFS), National... conducting offshore exploration drilling on Outer Continental Shelf (OCS) leases in the Chukchi Sea, Alaska... incidental to COP's offshore exploration drilling in the Chukchi Sea during the 2014 open- [[Page 24732...

  3. Design of a Performance-Responsive Drill and Practice Algorithm for Computer-Based Training.

    ERIC Educational Resources Information Center

    Vazquez-Abad, Jesus; LaFleur, Marc

    1990-01-01

    Reviews criticisms of the use of drill and practice programs in educational computing and describes potentials for its use in instruction. Topics discussed include guidelines for developing computer-based drill and practice; scripted training courseware; item format design; item bank design; and a performance-responsive algorithm for item…

  4. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  5. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  6. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circulate a volume of drilling fluid equal to the annular volume with the drill pipe just off-bottom. You... volume needed to fill the hole. Both sets of numbers must be posted near the driller's station. You must... industry-accepted practices and include density, viscosity, and gel strength; hydrogenion concentration...

  7. Experimental, numerical, and analytical studies on the seismic response of steel-plate concrete (SC) composite shear walls

    NASA Astrophysics Data System (ADS)

    Epackachi, Siamak

    The seismic performance of rectangular steel-plate concrete (SC) composite shear walls is assessed for application to buildings and mission-critical infrastructure. The SC walls considered in this study were composed of two steel faceplates and infill concrete. The steel faceplates were connected together and to the infill concrete using tie rods and headed studs, respectively. The research focused on the in-plane behavior of flexure- and flexure-shear-critical SC walls. An experimental program was executed in the NEES laboratory at the University at Buffalo and was followed by numerical and analytical studies. In the experimental program, four large-size specimens were tested under displacement-controlled cyclic loading. The design variables considered in the testing program included wall thickness, reinforcement ratio, and slenderness ratio. The aspect ratio (height-to-length) of the four walls was 1.0. Each SC wall was installed on top of a re-usable foundation block. A bolted baseplate to RC foundation connection was used for all four walls. The walls were identified to be flexure- and flexure-shear critical. The progression of damage in the four walls was identical, namely, cracking and crushing of the infill concrete at the toes of the walls, outward buckling and yielding of the steel faceplates near the base of the wall, and tearing of the faceplates at their junctions with the baseplate. A robust finite element model was developed in LS-DYNA for nonlinear cyclic analysis of the flexure- and flexure-shear-critical SC walls. The DYNA model was validated using the results of the cyclic tests of the four SC walls. The validated and benchmarked models were then used to conduct a parametric study, which investigated the effects of wall aspect ratio, reinforcement ratio, wall thickness, and uniaxial concrete compressive strength on the in-plane response of SC walls. Simplified analytical models, suitable for preliminary analysis and design of SC walls, were developed, validated, and implemented in MATLAB. Analytical models were proposed for monotonic and cyclic simulations of the in-plane response of flexure- and flexure-shear-critical SC wall piers. The model for cyclic analysis was developed by modifying the Ibarra-Krawinler Pinching (IKP) model. The analytical models were verified using the results of the parametric study and validated using the test data.

  8. Field Testing of Environmentally Friendly Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less

  9. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  10. Environmental effects monitoring at the Terra Nova offshore oil development (Newfoundland, Canada): Program design and overview

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Tracy, Ellen; Janes, G. Gregory; Crowley, Roger D.; Wells, Trudy A.; Williams, Urban P.; Paine, Michael D.; Mathieu, Anne; Kilgour, Bruce W.

    2014-12-01

    An environmental effects monitoring (EEM) program was developed by Suncor (formerly Petro-Canada) in 1997/98 to assess effects of the Terra Nova offshore oil and gas development on the receiving environment. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland (Canada), at approximately 100 m water depth. The EEM program was developed with guidance from experts in government, academia and elsewhere, and with input from the public. The EEM program proposed by Suncor was accepted by Canadian regulatory agencies and the program was implemented in 2000, 2001, 2002, 2004, 2006, 2008 and 2010, with pre-development sampling in 1997. The program continues to be implemented every two years. EEM includes an assessment of alterations in sediment quality through examination of changes in sediment chemistry, particle size, toxicity and benthic invertebrate community structure. A second component of the program examines potential effects on two species of commercial fishing interest: Iceland scallop (Chlamys islandica) and American plaice (Hippoglossoides platessoides). Chemical body burden for these two species is examined and taste tests are performed to assess the presence of taint in edible tissues. Effects on American plaice bioindicators are also examined. A final component of the program assesses potential effects of the Terra Nova development on water quality and examines water column chemistry, chlorophyll concentration and physical properties. The papers presented in this collection focus on effects of drill cuttings and drilling muds on the seafloor environment and, as such, report results on sediment quality and bioaccumulation of drilling mud components in Iceland scallop and American plaice. This paper provides information on drilling discharges, an overview of the physical oceanography at the Terra Nova Field, and an overview of the field program designed to assess environmental effects of drilling at Terra Nova.

  11. High Resolution Seismic Study of the Holocene Infill of the Elkhorn Slough, Central California

    EPA Science Inventory

    The seismic analysis of the sedimentary infill of the Elkhorn Slough, central California, reveals a succession of three main seismic units: U1, U2, U3, with their correspondent discontinuities d2, d3. These units are deposited over a paleorelief representing the channel location ...

  12. Characterization of Exposure Potential during Activities on Synthetic Turf Fields with Recycled Tire Crumb Rubber Infill

    EPA Science Inventory

    The Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields and Playgrounds (FRAP), released in February 2016, is a multi-agency research plan in response to concerns over the use of tire crumb rubber as infill on synthetic turf fields. The FRAP outlines specif...

  13. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows

    Treesearch

    T.C. Hales; K.M. Scharer; R.M. Wooten

    2012-01-01

    Understanding the dynamics of sediment generation and transport on hillslopes provides important constraints on the rate of sediment output from orogenic systems. Hillslope sediment fluxes are recorded by organic material found in the deposits infilling unchanneled convergent topographic features called hollows. This study describes the first hollow infilling rates...

  14. Robust, functional nanocrystal solids by infilling with atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yao; Gibbs, Markelle; Perkins, Craig L.

    2011-12-14

    Thin films of colloidal semiconductor nanocrystals (NCs) are inherently metatstable materials prone to oxidative and photothermal degradation driven by their large surface-to-volume ratios and high surface energies. The fabrication of practical electronic devices based on NC solids hinges on preventing oxidation, surface diffusion, ripening, sintering, and other unwanted physicochemical changes that can plague these materials. Here we use low-temperature atomic layer deposition (ALD) to infill conductive PbSe NC solids with metal oxides to produce inorganic nanocomposites in which the NCs are locked in place and protected against oxidative and photothermal damage. Infilling NC field-effect transistors and solar cells with amorphousmore » alumina yields devices that operate with enhanced and stable performance for at least months in air. Furthermore, ALD infilling with ZnO lowers the height of the inter-NC tunnel barrier for electron transport, yielding PbSe NC films with electron mobilities of 1 cm² V -1 s -1. Our ALD technique is a versatile means to fabricate robust NC solids for optoelectronic devices.« less

  15. HOLEGAGE 1.0 - Strain-Gauge Drilling Analysis Program

    NASA Technical Reports Server (NTRS)

    Hampton, Roy V.

    1992-01-01

    Interior stresses inferred from changes in surface strains as hole is drilled. Computes stresses using strain data from each drilled-hole depth layer. Planar stresses computed in three ways: least-squares fit for linear variation with depth, integral method to give incremental stress data for each layer, and/or linear fit to integral data. Written in FORTRAN 77.

  16. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and... in Deep Water Wells (incorporated by reference as specified in § 250.198), if you drill a well in...

  17. 30 CFR 250.411 - What information must I submit with my application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.411 What information must I... proposed well § 250.413 (c) Drilling prognosis § 250.414 (d) Casing and cementing programs § 250.415 (e...

  18. 30 CFR 250.456 - What safe practices must the drilling fluid program follow?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fluid. You must circulate a volume of drilling fluid equal to the annular volume with the drill pipe... fluid volume needed to fill the hole. Both sets of numbers must be posted near the driller's station... warrant. Your tests must conform to industry-accepted practices and include density, viscosity, and gel...

  19. Ocean Drilling Program: Drilling Services

    Science.gov Websites

    Drilling operations team Material services team Development engineering team ODP/TAMU Science Operator Home Services department consists of three team-oriented project groups, which also work to improve the existing team. A member of this team sails with each cruise to provide expertise for the shipboard scientific

  20. Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring

    NASA Astrophysics Data System (ADS)

    Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.

    2005-12-01

    Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).

  1. Correlation between Resistivity and Ground Penetrating Radar (GPR) Methods in Understanding the Signatures in Detecting Cavities

    NASA Astrophysics Data System (ADS)

    Afiq Saharudin, Muhamad; Maslinda, Umi; Hisham, Hazrul; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Nawawi, Nordiana Ahmad; Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.

    2017-04-01

    The research was conducted using Resistivity and Ground Penetrating Radar (GPR) methods in detecting in-filled cavities and air-filled cavities. The importance of this study is to see the difference in conductivity value of the in-filled and air-filled cavity. The first study location in which the known target is air-cavity located at School of Language, Literacies, and Translation (SoLLAT). The next study location is at Desasiswa Bakti Permai, which the known target is a bunker with both were located at Universiti Sains Malaysia, Penang and the last location is at Gua Musang, Kelantan with suspected in-filled cavity. The result from Gua Musang is compared with both of the results that have been done at Universiti Sains Malaysia. The resistivity value of the first location that indicates the possible tunnel is about 500 Ωm to 800 Ωm and the conductivity value is about 0.0017 S/m. The resistivity value for the second location located at Desasiswa Bakti Permai that indicates the bunker is about 50 Ωm to 250 Ωm and the conductivity value is about 0.1104 S/m. The resistivity value from Gua Musang is about 50 Ωm to 100 Ωm and the conductivity value is about 0.0101 S/m. The velocity of the in-filled cavities is much lower compared with the velocity of the air-filled cavities. Based on the characteristics, Gua Musang area was dominated with in-filled cavities.

  2. Mathematical and field analysis of longitudinal reservoir infill

    NASA Astrophysics Data System (ADS)

    Ke, W. T.; Capart, H.

    2016-12-01

    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  3. Design and development of a 3D printed UAV

    NASA Astrophysics Data System (ADS)

    Banfield, Christopher P.

    The purpose of this project was to investigate the viability and practicality of using a desktop 3D printer to fabricate small UAV airframes. To that end, ASTM based bending and tensile tests were conducted to assess the effects of print orientation, infill density, infill pattern, and infill orientation on the structural properties of 3D printed components. A Vernier Structures & Materials Tester was used to record force and displacement data from which stress-strain diagrams, yielding strength, maximum strength, and the moduli of elasticity were found. Results indicated that print orientation and infill density had the greatest impact on strength. In bending, vertically printed test pieces showed the greatest strength, with yield strengths 1.6 - 10.4% higher than conventionally extruded ABS's 64.0MPa average flexural strength. In contrast, the horizontally printed specimens showed yield strengths reduced anywhere from 17.0 - 34.9%. The tensile test specimens also exhibited reduced strength relative to ABS's average tensile yield strength of 40.7MPa. Test pieces with 20% infill density saw strength reductions anywhere from 47.8 - 55.6%, and those with 50% saw strength reductions from 33.6 - 47.8%. Only a single test piece with 100%, 45° crisscross infill achieved tensile performance on par with that of conventionally fabricated ABS. Its yield strength was 43MPa, a positive strength difference of 5.5%. As a supplement to the tensile and bending tests, a prototype printable airplane, the Phoebe, was designed. Its development process in turn provided the opportunity to develop techniques for printing various aircraft components such as fuselage sections, airfoils, and live-in hinges. Initial results seem promising, with the prototype's first production run requiring 19 hours of print time and an additional 4 - 5 hours of assembly time. The maiden flight test demonstrated that the design was stable and controllable in sustained flight.

  4. A critical review of existing innovative science and drilling proposals within IODP

    NASA Astrophysics Data System (ADS)

    Behrmann, J. H.

    2009-04-01

    In the present phase of the Integrated Ocean Drilling Program (IODP) activities are guided by the Initial Science Plan that identified three major themes: The Deep Biosphere and the Subseafloor Ocean; Environmental Change, Processes and Effects; and Solid Earth Cycles and Geodynamics. New initiatives and complex drilling proposals were developed that required major advances in drilling platforms and technologies, and expansion of the drilling community into new areas of specialization. The guiding themes in the Initial Science Plan are instrumental for the proposal development and evaluation, and will continue to represent the goals of IODP until 2013. A number of innovative and highly ranked individual proposals and coordinated sets of proposals ready to be drilled has been forwarded by the Science Planning Committee (SPC) to the IODP Operations Task Force (OTF) for scoping, planning and scheduling. For the Deep Biosphere theme these include proposals to drill targets in the Central Atlantic, the Okinawa Trough, and the Southern Pacific. The Environmental Change, Processes and Effects theme is proposed to - among others - be studied by a coordinated approach regarding the Southeast Asian Monsoon, but also by proposals addressing sdimentation, facies evolution and the paleoclimate record in the Atlantic and Indian Oceans. The Solid Earth Cycles and Geodynamics theme is represented by several proposals addressing subduction processes, seismogenesis, and oceanic crust formation mainly in the Pacific. Some of these have shaped drilling programs that are already in the process of being carried out, such as drilling in the Nankai Trough off Japan (the NantroSEIZE project), or drilling in oceanic crust created in a superfast spreading environment in the Eastern Pacific. There are many remaining issues to be addressed, and drilling programs to be completed before the end of the present phase of IODP in 2013. Planning of expeditions needs to be done in such a way that a balance between risk, cost, and scientific impact is achieved. At least part of the dilling also is required to be a necessary precursor for future investigations in coming phases of Ocean Drilling. Presently IODP faces the challenges of tight budgetary constraints, increasing operating costs of their platforms, and the need to develop drilling schedules that allow off-contract work of the R/V Chikyu and R/V Joides Resolution drilling vessels. Chikyu will operate within IODP for an average of 7 months per year over a 5-year period with the goals of achieving major milestones in NantroSEIZE, maximizing the use of the vessel for riser drilling, and start a new IODP project that requires riser drilling. Joides Resolution will also operate an average of 7 months per year with the goal of optimizing operating days within the restrictions imposed by the prioritized science. Mission Specific Platform expeditions will be carried out once every two years on average, with the goal of pioneering drilling in new, challenging environments. For the first time in IODP history, operations of Chikyu, Joides Resolution and Mission Specific Platform expeditions will be conducted simultaneously in 2009. This new phase of operations provides an unprecedented chance of progress in scientific ocean drilling.

  5. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2003-01-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting October 2002 through December 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments included the following: (1) Smith International participated in the DOE Mud Hammer program through full scale benchmarking testing during the week of 4 November 2003. (2) TerraTek acknowledges Smith International, BP America, PDVSA, and ConocoPhillips for cost-sharing the Smith benchmarking tests allowing extension of the contract to add to themore » benchmarking testing program. (3) Following the benchmark testing of the Smith International hammer, representatives from DOE/NETL, TerraTek, Smith International and PDVSA met at TerraTek in Salt Lake City to review observations, performance and views on the optimization step for 2003. (4) The December 2002 issue of Journal of Petroleum Technology (Society of Petroleum Engineers) highlighted the DOE fluid hammer testing program and reviewed last years paper on the benchmark performance of the SDS Digger and Novatek hammers. (5) TerraTek's Sid Green presented a technical review for DOE/NETL personnel in Morgantown on ''Impact Rock Breakage'' and its importance on improving fluid hammer performance. Much discussion has taken place on the issues surrounding mud hammer performance at depth conditions.« less

  6. The Georges Bank monitoring program 1985; analysis of trace metals in bottom sediments during the third year of monitoring

    USGS Publications Warehouse

    Bothner, Michael H.; Rendigs, R. R.; Campbell, Esma; Doughten, M.W.; Parmenter, C.M.; O'Dell, C. H.; DiLisio, G.P.; Johnson, R.G.; Gillison, J.R.; Rait, Norma

    1986-01-01

    Of the 12 elements analyzed in bulk (undifferentiated) sediments collected adjacent to drilling rigs on Georges Bank, only barium was found to increase in concentration during the period when eight exploratory wells were drilled (July 1981 until September 1982). The maximum postdrilling concentration of barium (a major element in drilling mud) reached 172 ppm in bulk sediments near the drill site in block 410. This concentration is higher than the predrilling concentration at this location by a factor of 5.9. This maximum barium concentration is within the range of predrilling concentrations (28-300 ppm) measured in various sediment types from the regional stations of this program. No drilling-related changes in the concentrations of the 11 other metals have been observed in bulk sediments at any of the locations sampled in this program. We estimate that about 25 percent of the barite discharged at block 312 was present in the sediments within 6 km of the rig, 4 weeks after drilling was completed at this location (drilling period was December 8, 1981-June 27, 1982). For almost a year following completion of this well, the inventory of barite decreased rapidly, with a half-life of 0.34 year. During the next year, the inventory decreased at a slower rate (half-life of 3.4 years). The faster rate probably reflects resuspension and sediment transport of bariterich material residing at the sediment surface. Elevated barium concentrations in post-drilling sediment-trap samples from block 312 indicate that such resuspension can occur up to at least 25 m above the sea floor. As the remaining barite particles are reworked deeper into the sediments by currents and bioturbation, removal by sediment-transport processes is slower. The barite discharged during the exploratory phase of drilling is associated with the fine fraction of sediment and is widely distributed around the bank. We found evidence for barium transport to Great South Channel, 115 km west of the drilling, and to stations 2 and 3, 35 km east of the easternmost drilling site. Small increases in barium concentrations, present in the fine fraction of sediment only, were measured also at the heads of both Lydonia and Oceanographer Canyons, located 8 and 39 km, respectively, seaward of the nearest exploratory well.

  7. An Automated, Low Mass, Low Power Drill for Acquiring Subsurface Samples of Ground Ice for Astrobiology Studies on Earth and on Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G. A.; McKay, C.; George, J.; Derkowski, G.; Cooper, G.; Zacny, K.; Baker, R. Fincher; Pollard, W.; Clifford, S.

    2003-01-01

    As a project that is part of NASA s Astrobiology Technology & Instrument Development Program (ASTID), we are developing a low mass (approx.20kg) drill that will be operated without drilling fluids and at very low power levels (approx.60 watts electrical) to access and retrieve samples from permafrost regions of Earth and Mars. The drill, designed and built as a joint effort by NASA JSC and Baker-Hughes International, takes the form of a down-hole unit attached to a cable so that it can, in principle, be scaled easily to reach significant depths. A parallel laboratory effort is being carried out at UC Berkeley to characterize the physics of dry drilling under martian conditions of pressure, temperature and atmospheric composition. Data from the UCB and JSC laboratory experiments are being used as input to a drill simulation program which is under development to provide autonomous control of the drill. The first Arctic field test of the unit is planned for May 2004. A field expedition to Eureka on Ellesmere Island in Spring 2003 provided an introduction for several team members to the practical aspects of drilling under Arctic conditions. The field effort was organized by Wayne Pollard of McGill University and Christopher McKay of NASA ARC. A conventional science drill provided by New Zealand colleagues was used to recover ground ice cores for analysis of their microbial content and also to develop techniques using tracers to track the depth of penetration of contamination from the core surface into the interior of the samples.

  8. Infill of tunnel valleys associated with landward-flowing ice sheets: The missing Middle Pleistocene record of the NW European rivers?

    NASA Astrophysics Data System (ADS)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain a hitherto enigmatic succession of northward prograding clinoforms, comprising 1000s km3 of sediment. This study analyses 3D seismic data, covering the entire sNS, and demonstrates for the first time that the formation of these tunnel valleys was separate from their infill. The infill constitutes the postglacial record of the NW European river deltas, which had so far been considered missing.

  9. Long-term efficacy of artificial cavities for red-cockaded woodpeckers: Lessons learned from hurricane Hugo

    Treesearch

    Robert G. Hooper; William E. Taylor; Susan C. Loeb

    2004-01-01

    Between 1990 and 1992 an extensive artificial cavity installation program was conducted on the Francis Marion National Forest (FMNF) in coastal South Carolina where Hurricane Hugo had caused vast devastation. Four artificial cavity types were installed: drilled starts, drilled cavities, modified drilled cavities, and inserts. In 1998, we examined 443 of the artificial...

  10. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  11. 30 CFR 250.411 - What information must I submit with my application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.411 What information must I submit with... proposed well § 250.413 (c) Drilling prognosis § 250.414 (d) Casing and cementing programs § 250.415 (e...

  12. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  13. 30 CFR 250.411 - What information must I submit with my application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.411 What information must I submit with... proposed well § 250.413 (c) Drilling prognosis § 250.414 (d) Casing and cementing programs § 250.415 (e...

  14. 30 CFR 250.411 - What information must I submit with my application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.411 What information must I submit with... proposed well § 250.413 (c) Drilling prognosis § 250.414 (d) Casing and cementing programs § 250.415 (e...

  15. 30 CFR 250.415 - What must my casing and cementing programs include?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Applying for A Permit to Drill § 250.415 What must my casing and cementing... in Deep Water Wells (as incorporated by reference in § 250.198), if you drill a well in water depths...

  16. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2002-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2002 through March 2002. Accomplishments include the following: In accordance to Task 7.0 (D. No.2 Technical Publications) TerraTek, NETL, and the Industry Contributors successfully presented a paper detailing Phase 1 testing results at the February 2002 IADC/SPE Drilling Conference, a prestigious venue for presenting DOE and private sector drilling technology advances. The full reference is as follows: (1) IADC/SPE 74540 ''World's First Benchmarking of Drilling Mud Hammer Performance atmore » Depth Conditions'' authored by Gordon A. Tibbitts, TerraTek; Roy C. Long, US Department of Energy, Brian E. Miller, BP America, Inc.; Arnis Judzis, TerraTek; and Alan D. Black, TerraTek. Gordon Tibbitts, TerraTek, will presented the well-attended paper in February of 2002. The full text of the Mud Hammer paper was included in the last quarterly report. (2) The Phase 2 project planning meeting (Task 6) was held at ExxonMobil's Houston Greenspoint offices on February 22, 2002. In attendance were representatives from TerraTek, DOE, BP, ExxonMobil, PDVSA, Novatek, and SDS Digger Tools. (3) PDVSA has joined the advisory board to this DOE mud hammer project. PDVSA's commitment of cash and in-kind contributions were reported during the last quarter. (4) Strong Industry support remains for the DOE project. Both Andergauge and Smith Tools have expressed an interest in participating in the ''optimization'' phase of the program. The potential for increased testing with additional Industry cash support was discussed at the planning meeting in February 2002.« less

  17. Coastal Inlets Research Program

    DTIC Science & Technology

    2014-04-01

    PCs to evaluate inlets, channels, structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and...Coastal  Modeling  or o o  Management System   (CMS) Alex Sanchez Ned MitchellCIRP Honghai Li Waves at  Research & Development Geomorphic  Evolution T B k...channel infilling Aug 2005 Baltimore, MD Inlet Modeling  System  technology transfer workshop #7 – FSBPA, Jan/Feb 2006 Sarasota, FL Modeling of waves

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This paper reports that Phillips Petroleum Co. has an active drilling program in northern Cook inlet 35 miles west of Anchorage, including delineation of an oil field of undetermined size. Phillips is drilling the well from its Tannic platform, built in 1968 to develop North Cook Inlet gas field. Phillips said it might drill another well in March 1993. A plan Phillips field with the state said the company has the capability of drilling 12 oil wells from the Tyonek platform. Depending on results of the 2 Sunfish well, the 12 wells could be drilled from 1992 through March 1995more » at a rate of one well about every 75 days, the company said.« less

  19. The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB

    NASA Astrophysics Data System (ADS)

    Wang, Jiangping; Hu, Yingcai

    This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.

  20. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Alan Black; Homer Robertson

    2006-03-01

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less

  1. Comparative Analysis of Cutting Efficiency and Surface Maintenance Between Different Types of Implant Drills: An In Vitro Study.

    PubMed

    Hochscheidt, Celso João; Shimizu, Roberto Hideo; Andrighetto, Augusto Ricardo; Pierezan, Rodrigo; Thomé, Geninho; Salatti, Rafael

    2017-10-01

    This study evaluated cutting efficiency (CE) and linear wear of dental implant drills after 450 standardized osteotomies on bovine ribs. Diamond-like carbon-coated steel drills (SG), acid-treated steel drills (EG), and ceramic drills (ZG) were divided into 6 subgroups according to the number of uses. A robot-controlled program performed systematic instrumentation, timing, axial loading, and managed feed rate. CE was recorded in a polyurethane resin blank and end wear (VBBmax) was analyzed under stereo microscopy. After osteotomies in beef ribs, CE for the Ø2.0-mm drill decreased 10.2% in SG and 10.9% in ZG; for the Ø3.0-mm drill, CE decreased 30.6% in SG, 8.5% in ZG, and improved in EG. The greatest wear occurred in Ø2.0-mm drills; ZG drills (Ø3.0 mm) exhibited only edge frittering, as confirmed on scanning electron microscopy. After 50 exposures to mechanical loads, steel and ceramic drills lost CE. Whereas cutting and thermal performance improved in experimental drills, the Ø2.0-mm drill exhibited the most signs of wear proportional to use. These findings suggest that, with the methodology employed, the life of these drills exceeds 50 osteotomies.

  2. Ocean Drilling Program: Science Operator Site Index

    Science.gov Websites

    time estimator Long-Term Observatories and Legacy Holes (University of Miami site) Drilling Services systems Internet systems Help Desk Database services How to obtain ODP data Data types and examples Core

  3. Ocean Drilling Program: Science Operator Search Engine

    Science.gov Websites

    and products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP's main -USIO site, plus IODP, ODP, and DSDP Publications, together or separately. ODP | Search | Database

  4. Beowawe Geothermal Area evaluation program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovenitti, J. L

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  5. Generation of sedimentary fabrics and facies by repetitive excavation and storm infilling of burrow networks Holocene of south Florida and Caicos Platform, B. W. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Wanless, H.R.

    Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less

  6. Neogene basin infilling from cosmogenic nuclides (10Be and 21Ne) in Atacama, Chile

    NASA Astrophysics Data System (ADS)

    Sanchez, Caroline; Regard, Vincent; Carretier, Sébastien; Riquelme, Rodrigo; Blard, Pierre-Henri; Campos, Eduardo; Brichau, Stéphanie; Lupker, Marteen; Hérail, Gérard

    2017-04-01

    In the hyperarid Atacama Desert, northern Chile, Neogene sediments host copper rich layers (exotic supergene mineralization). Current mines are excavated into relatively thin (<200-300 m) Neogene basins whose infilling chronology is poorly constrained. We took advantage of one of these mining pits, and sampled for 10Be and 21Ne cosmogenic nuclide dosing. These cosmogenic nuclides help constraining the infilling chronology. Indeed, basin sediments were deposited with a cosmogenic nuclide content acquired on hillslopes. Then within the basin, cosmogenic nuclide concentrations evolved through the competing production (quickly decreasing with depth) and disintegration (not for 21Ne). Sampling depths are at ˜100 m and at ˜50 m below the desert surface. First, 21Ne gives lower boundaries for upstream erosion rates or local sedimentation rate. These bounds are between 2 and 10 m/Ma, which is quite important for the area. The ratio between the two cosmogenic nuclides indicate a maximum burial age of 12 Ma (minimal erosion rate of 15 m/Ma) and is surprisingly similar from bottom to top, indicating a probable rapid infilling. We finally processed a Monte-Carlo inversion. This inversion helps taking into account the post-deposition muonic production of cosmogenic nuclides. Inversion results is dependent on the muonic production scheme. Interestingly, the similarity in concentrations from bottom to top pleads for quite low production at depth. Our data finally indicates a quick infilling between 12.5 and 10 Ma BP accounting for ˜100 m of deposition (minimum sedimentation rate of 40 m/Ma).

  7. Reinterpretation of the Quaternary sedimentary infill of the Ría de Vigo, NW Iberian Peninsula, as a compound incised valley

    NASA Astrophysics Data System (ADS)

    Martínez-Carreño, N.; García-Gil, S.

    2017-10-01

    Seismic data have been used to investigate the stratigraphy of the Galician rias for more than two decades. Here, we present a new interpretation of the sedimentary infill of an incised valley (Ría de Vigo, NW Iberian Peninsula), based on high-resolution seismic profiles, core sediment analysis, and radiocarbon 14C data. The new data indicate that the stratigraphic architecture of the Galician rias result from multiple incision/infill phases and, therefore, they are reclassified as compound rather than simple incised valleys. Seven seismic units were identified: one of Tertiary age (U1), four of Pleistocene age (U2-U5) which are interpreted as 4th-order sequences deposited between MIS 11 and MIS 2, and Late Pleistocene (U6) and Holocene (U7) units corresponding with post-glacial sedimentation. The sedimentary infill overlies a highly faulted irregular granitic and metamorphic basement; the inherited morphology is shown to be important for controlling the pathway and evolution of the fluvial network as well as preservation of the sedimentary deposits during several glacial/interglacial cycles. The presence of a rocky barrier at the mouth of the ria is a distinctive feature that conditions sedimentation and exchange of sediment between the ria and the adjacent shelf. For the first time, faults and tilted blocks affecting Late Pleistocene (MIS 3) deposits have been identified. The new data presented here provide the opportunity to reconstruct the evolution of the sedimentary infill of a ria, with especially high-resolution during the last post-glacial transgression.

  8. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.

  9. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.

  10. PDC cutters improve drilling in harsh environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.

    2000-02-01

    Improvements in polycrystalline diamond compact (PDC) cutter technology have contributed immensely to the industry's acceptance of PDC bits as effective drilling tools. These cutters are being engineered to address the needs and requirements of different drilling programs. Extensive research and developments efforts have been dedicated to the analysis of the diamond table/tungsten carbide interface. The paper describes PDC cutter development, operational challenges, offset performance, and field experiences.

  11. Exterior building details of Building B, west façade: two paintedwood ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior building details of Building B, west façade: two painted-wood single-light casements over two-light casements with concrete sill and arch brick lintel, over infilled brick patch with arch brick lintel, brick lintel above windows and brick infilled oval; easterly view - San Quentin State Prison, Building 22, Point San Quentin, San Quentin, Marin County, CA

  12. PIXE Analysis of Artificial Turf

    NASA Astrophysics Data System (ADS)

    Conlan, Skye; Chalise, Sajju; Porat, Zachary; Labrake, Scott; Vineyard, Michael

    2017-09-01

    In recent years, there has been debate regarding the use of the crumb rubber infill in artificial turf on high school and college campuses due to the potential presence of heavy metals and carcinogenic chemicals. We performed Proton-Induced X-Ray Emission (PIXE) analysis of artificial turf infill and blade samples collected from high school and college campuses around the Capital District of NYS to search for potentially toxic substances. Crumb rubber pellets were made by mixing 1g of rubber infill and 1g of epoxy. The pellets and the turf blades were bombarded with 2.2 MeV proton beams from a 1.1-MV tandem Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory and x-ray energy spectra were collected with an Amptek silicon drift detector. We analyzed the spectra using GUPIX software to determine the elemental concentrations of the samples. The turf infill showed significant levels of Ti, Fe, Co, Ni, Cu, Zn, Br, and Pb. The highest concentration of Br in the crumb rubber was 1500 +/-100 ppm while the highest detectable amount of Pb concentration was 110 +/-20 ppm. The artificial turf blades showed significant levels of Ti, Fe, and Zn with only the yellow blade showing concentrations of V and Bi.

  13. Effect of Printing Parameters on Tensile, Dynamic Mechanical, and Thermoelectric Properties of FDM 3D Printed CABS/ZnO Composites.

    PubMed

    Aw, Yah Yun; Yeoh, Cheow Keat; Idris, Muhammad Asri; Teh, Pei Leng; Hamzah, Khairul Amali; Sazali, Shulizawati Aqzna

    2018-03-22

    Fused deposition modelling (FDM) has been widely used in medical appliances, automobile, aircraft and aerospace, household appliances, toys, and many other fields. The ease of processing, low cost and high flexibility of FDM technique are strong advantages compared to other techniques for thermoelectric polymer composite fabrication. This research work focuses on the effect of two crucial printing parameters (infill density and printing pattern) on the tensile, dynamic mechanical, and thermoelectric properties of conductive acrylonitrile butadiene styrene/zinc oxide (CABS/ZnO composites fabricated by FDM technique. Results revealed significant improvement in tensile strength and Young's modulus, with a decrease in elongation at break with infill density. Improvement in dynamic storage modulus was observed when infill density changed from 50% to 100%. However, the loss modulus and damping factor reduced gradually. The increase of thermal conductivity was relatively smaller compared to the improvement of electrical conductivity and Seebeck coefficient, therefore, the calculated figure of merit (ZT) value increased with infill density. Line pattern performed better than rectilinear, especially in tensile properties and electrical conductivity. From the results obtained, FDM-fabricated CABS/ZnO showed much potential as a promising candidate for thermoelectric application .

  14. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  15. Comparison of early exploration at Platanares (Honduras) and Wairakei (New Zealand)

    USGS Publications Warehouse

    Truesdell, A.H.; Glover, R.B.; Janik, C.J.; Brown, K.L.; Goff, F.

    1989-01-01

    Early exploration at Wairakei, New Zealand, is compared with the present state of exploration of Platanares, Honduras. In retrospect, geothermometer temperatures favor Platanares (e.g., 220 vs. 190??C for Na-K-Ca), but two 600-m drill holes encountered lower temperatures (160??C). Wairakei, explored before the advent of chemical geothermometry, also had disappointing early drilling results (but better than Platanares; one of the first six holes hit T > 180??C). The Wairakei drilling program was nevertheless continued at full speed and by well 20 a successful drilling strategy was discovered.

  16. ICDP drilling in the Scandinavian Caledonides: the SDDP-COSC project

    NASA Astrophysics Data System (ADS)

    Lorenz, Henning; Juhlin, Christopher; Gee, David; Pascal, Christophe; Tsang, Chin-Fu; Pedersen, Karsten; Rosberg, Jan-Erik

    2013-04-01

    The Swedish Deep Drilling Program (SDDP) Collisional Orogeny in the Scandinavian Caledonides (COSC) project is a multidisciplinary investigation of the Scandian mountain belt. Cenozoic uplift of the Scandes has exposed a lower- to middle-crustal level section through this Himalaya-type orogen, providing unique opportunities to better understand not only the Caledonides, but also on-going orogeny and the earthquake-prone environments of modern mountains belts. COSC will also contribute to our knowledge of mountain belt hydrology, provide the first information about deep thermal gradients for paleoclimate modeling and potential geothermal energy resources, contribute new information about the deep biosphere, and improve our understanding of the Cenozoic uplift history of the Scandes. The drilling program targets the far-traveled (> 400 km) allochthons of the Scandinavian Caledonides and their emplacement across the Baltoscandian foreland basin onto the platform of continent Baltica. Two 2.5 km deep holes are planned. COSC-1, to be drilled in the summer of 2013, will target the high-grade metamorphic complex of the Seve Nappes (SNC) and its contact to underlying allochthons. COSC-2 will start in the lower thrust sheets, pass through the basal décollement and investigate the character of the deformation in the underlying basement. An international science team, including expertise on Himalaya-Tibet and other young orogens, is running the science program. New high-resolution reflection seismic data provide excellent images of the upper crust. Alternative interpretations of the reflectors' origin, particularly those in the basement, will be tested. The site of COSC-1 is based on a 3D geological model, constructed from surface geology, recent and vintage regional reflection seismic profiles, regional and local gravity data, and high-resolution aeromagnetics, acquired recently by the Geological Survey of Sweden. The drilling will be carried out utilising the new Swedish scientific drilling infrastructure, located at Lund University, an Atlas Copco CT20 diamond core-drilling rig, with versatile drilling equipment (see EGU2012-7379), providing the ideal platform for core-drilling to 2.5 km depths. Existing drilling, sampling and testing techniques (e.g. triple-tube core drilling for best core quality) will need to be adapted to highly variable lithologies and new techniques will be developed, as necessary. COSC-1 drilling operations and the directly related on-site investigations are financed by ICDP and the Swedish Research Council. All drill cores will be transferred to the core repository of the Geological Survey of Sweden, and a sampling party will be announced later this year. Researchers who want to participate in COSC and contribute their expertise are encouraged to inform us of their interests.

  17. The Future of Deep-Ocean Drilling

    ERIC Educational Resources Information Center

    Heirtzler, J. R.; Maxwell, A. E.

    1978-01-01

    Describes the scientific accomplishments of the International Program of Ocean Drilling (IPOD) during its first decade. Notable are the scientific contributions to understanding the sea floor. Critical decisions for the second decade include economic and social implications. (MA)

  18. 30 CFR 250.1617 - Application for permit to drill.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... BOP equipment, (ii) A schematic drawing of the diverter system to be used (plan and elevation views... survey program for directionally drilled wells; (9) An H2S Contingency Plan, if applicable, and if not...

  19. Elf cites 5 advantages of horizontal drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-06-01

    ELF Aquitaine used horizontal drilling during a pilot test program to bring commercial production from its Rospo Mare oil discovery in the Adriatic, which would have been a costly disappointment if drilled by a conventional vertical well bore. Rospo Mare is a large reservoir containing a top column of highly viscous crude underlain by a water column. The company felt that a well bore that penetrated the reservoir vertically would bring early flooding of the oil column and yield only water. By penetrating the reservoir with a horizontal well drilled high in the oil column, the well successfully produced onmore » numerous tests from Oct. 1982 until the end of the test program in 1983. Production was termed excellent, with productivity during tests reportedly reaching ca 15 times the rate produced from nearby vertical wells. However, ELF said the results usually average ca 5 times the usual rate of vertical wells.« less

  20. The FP4026 Research Database on the fundamental period of RC infilled frame structures.

    PubMed

    Asteris, Panagiotis G

    2016-12-01

    The fundamental period of vibration appears to be one of the most critical parameters for the seismic design of buildings because it strongly affects the destructive impact of the seismic forces. In this article, important research data (entitled FP4026 Research Database (Fundamental Period-4026 cases of infilled frames) based on a detailed and in-depth analytical research on the fundamental period of reinforced concrete structures is presented. In particular, the values of the fundamental period which have been analytically determined are presented, taking into account the majority of the involved parameters. This database can be extremely valuable for the development of new code proposals for the estimation of the fundamental period of reinforced concrete structures fully or partially infilled with masonry walls.

  1. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  2. PRELIMINARY DRILLING IN THE POWDER RIVER BASIN, CONVERSE, CAMPBELL, AND JOHNSON COUNTRIES, WYOMING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geslin, H.E.; Bromley, C.P.

    1957-06-01

    On July 16, 1953, a diamond core-drilling program was begun in the pumpkin Buttes area to secure geologic information. Drilling was terminated March 11, 1964, after 12 holes had been completed for a total of 5,813 feet. An investigational rotary noncore-drilling project was conducted from June l4, to September 17, 1954, in the southern part of the Powder River Basin, Campbell, Johnson, and Converse Counties, Wyoming. Drilling was done in the Pumpkin Buttes area and the Converse County area. A total of 52,267 feet was drilled and the average depth of hole was 75.3 feet. Forty-one anomalous areas in themore » Powder River Basin were drilled; of these, three in Converse County were found to contain possible commercial ore bodies. All of the drilling was done in the Wasatch formation of Eocene age except one locality, which was in the Fort Union formation of Paleocene age. (auth)« less

  3. Application of Rosenbrock search technique to reduce the drilling cost of a well in Bai-Hassan oil field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aswad, Z.A.R.; Al-Hadad, S.M.S.

    1983-03-01

    The powerful Rosenbrock search technique, which optimizes both the search directions using the Gram-Schmidt procedure and the step size using the Fibonacci line search method, has been used to optimize the drilling program of an oil well drilled in Bai-Hassan oil field in Kirkuk, Iran, using the twodimensional drilling model of Galle and Woods. This model shows the effect of the two major controllable variables, weight on bit and rotary speed, on the drilling rate, while considering other controllable variables such as the mud properties, hydrostatic pressure, hydraulic design, and bit selection. The effect of tooth dullness on the drillingmore » rate is also considered. Increasing the weight on the drill bit with a small increase or decrease in ratary speed resulted in a significant decrease in the drilling cost for most bit runs. It was found that a 48% reduction in this cost and a 97-hour savings in the total drilling time was possible under certain conditions.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom

    Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site;more » (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.« less

  5. HOLEGAGE 1.0 - STRAIN GAGE HOLE DRILLING ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Hampton, R. W.

    1994-01-01

    There is no simple and perfect way to measure residual stresses in metal parts that have been welded or deformed to make complex structures such as pressure vessels and aircraft, yet these locked-in stresses can contribute to structural failure by fatigue and fracture. However, one proven and tested technique for determining the internal stress of a metal part is to drill a test hole while measuring the relieved strains around the hole, such as the hole-drilling strain gage method described in ASTM E 837. The program HOLEGAGE processes strain gage data and provides additional calculations of internal stress variations that are not obtained with standard E 837 analysis methods. The typical application of the technique uses a three gage rosette with a special hole-drilling fixture for drilling a hole through the center of the rosette to produce a hole with very small gage pattern eccentricity error. Another device is used to control the drilling and halt the drill at controlled depth steps. At each step, strains from all three strain gages are recorded. The influence coefficients used by HOLEGAGE to compute stresses from relieved hole strains were developed by published finite element method studies of thick plates for specific hole sizes and depths. The program uses a parabolic fit and an interpolating scheme to project the coefficients to other hole sizes and depths. Additionally, published experimental data are used to extend the coefficients to relatively thin plates. These influence coefficients are used to compute the stresses in the original part from the strain data. HOLEGAGE will compute interior planar stresses using strain data from each drilled hole depth layer. Planar stresses may be computed in three ways including: a least squares fit for a linear variation with depth, an integral method to give incremental stress data for each layer, or by a linear fit to the integral data (with some surface data points omitted) to predict surface stresses before strain gage sanding preparations introduced additional residual stresses. Options are included for estimating the effect of hole eccentricity on calculations, smoothing noise from the strain data, and inputting the program data either interactively or from a data file. HOLEGAGE was written in FORTRAN 77 for DEC VAX computers under VMS, and is transportable except for system-unique TIME and DATE system calls. The program requires 54K of main memory and was developed in 1990. The program is available on a 9-track 1600 BPI VAX BACKUP format magnetic tape (standard media) or a TK50 tape cartridge. The documentation is included on the tape. DEC VAX and VMS are trademarks of Digital Equipment Corporation.

  6. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2004-04-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting January 2004 through March 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 3Q 2004. Smith International's hammer will be tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek presented a paper for publication inmore » conjunction with a peer review at the GTI Natural Gas Technologies Conference February 10, 2004. Manuscripts and associated presentation material were delivered on schedule. The paper was entitled ''Mud Hammer Performance Optimization''. (2) Shell Exploration and Production continued to express high interest in the ''cutter impact'' testing program Task 8. Hughes Christensen supplied inserts for this testing program. (3) TerraTek hosted an Industry/DOE planning meeting to finalize a testing program for ''Cutter Impact Testing--Understanding Rock Breakage with Bits'' on February 13, 2004. (4) Formal dialogue with Terralog was initiated. Terralog has recently been awarded a DOE contract to model hammer mechanics with TerraTek as a sub-contractor. (5) Novatek provided the DOE with a schedule to complete their new fluid hammer and test it at TerraTek.« less

  7. Development of a novel ice-resistant semisubmersible drilling unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corona, E.N.; Schloerb, D.W.; Yashima, N.

    1983-05-01

    A multiyear program was initiated by ARCO Alaska, Inc. to assess the operational feasibility of drilling operations year-round in the ice-covered waters of the Bering, Chukchi, and Beaufort Seas. ARCO Alaska, Inc. is considering several alternative concepts for year-round drilling in the Bering Sea. One such concept, the Ice-Resistant Semisubmersible Drilling Unit, is a design concept of Mitsui Engineering and Shipbuilding Company. The design is intended to operate in broken, continuous, and ridged sea ice, and withstand severe open water sea conditions. The requirement to operate in two dissimilar environments results in a unit that is somewhat unusual when comparedmore » to typical semisubmersible drilling units.« less

  8. Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357

    NASA Astrophysics Data System (ADS)

    Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.

    2016-12-01

    IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  9. Contamination tracer testing with seabed drills: IODP Expedition 357

    NASA Astrophysics Data System (ADS)

    Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.

    2017-11-01

    IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLellan, G.W.

    This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy,more » Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).« less

  11. Design criteria for post and beam bents with drilled shafts.

    DOT National Transportation Integrated Search

    2007-12-01

    The research work presented in the report addresses the potential areas of conservatism in the current practice related to bridge : bents supported by drilled shafts and piles. The research encompasses modeling efforts and an experimental program. Mo...

  12. Review and Recommendations for the Interagency Ship Structure Committee’s Fiscal 1984 Research Program,

    DTIC Science & Technology

    1983-01-01

    Daily. Proposal Evaluation Procedure Organizations interested in doing the work adverstised submit proposals and cost estimates. The USCG contracting...types of offshore structures. These structures have largely been fixed platforms for petroleum drilling and production, and mobile offshore drilling...structures and of those mobile drilling units that are bottom supported, such as jack-ups and submersibles. Structures which are held in place by anchors

  13. Habitat, dispersal and propagule pressure control exotic plant infilling within an invaded range

    Treesearch

    Robert J. Warren; T. Ursell; A.D. Keiser; M.A. Bradford

    2013-01-01

    Deep in the heart of a longstanding invasion, an exotic grass is still invading. Range infilling potentially has the greatest impact on native communities and ecosystem processes, but receives much less attention than range expansion. ‘Snapshot’ studies of invasive plant dispersal, habitat and propagule limitations cannot determine whether a landscape is saturated or...

  14. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying between 1% and 8%. These changes are mainly driven by surface type and seasonal observational geometry. However, accounting for RRS, differences in DOLP do not exceed ± 0.2% within the full instrumental field-of-view.

  15. Understanding uncertainty in seagrass injury recovery: an information-theoretic approach.

    PubMed

    Uhrin, Amy V; Kenworthy, W Judson; Fonseca, Mark S

    2011-06-01

    Vessel groundings cause severe, persistent gaps in seagrass beds. Varying degrees of natural recovery have been observed for grounding injuries, limiting recovery prediction capabilities, and therefore, management's ability to focus restoration efforts where natural recovery is unlikely. To improve our capacity for predicting seagrass injury recovery, we used an information-theoretic approach to evaluate the relative contribution of specific injury attributes to the natural recovery of 30 seagrass groundings in Florida Keys National Marine Sanctuary, Florida, USA. Injury recovery was defined by three response variables examined independently: (1) initiation of seagrass colonization, (2) areal contraction, and (3) sediment in-filling. We used a global model and all possible subsets for four predictor variables: (1) injury age, (2) original injury volume, (3) original injury perimeter-to-area ratio, and (4) wave energy. Successional processes were underway for many injuries with fast-growing, opportunistic seagrass species contributing most to colonization. The majority of groundings that exhibited natural seagrass colonization also exhibited areal contraction and sediment in-filling. Injuries demonstrating colonization, contraction, and in-filling were on average older and smaller, and they had larger initial perimeter-to-area ratios. Wave energy was highest for colonizing injuries. The information-theoretic approach was unable to select a single "best" model for any response variable. For colonization and contraction, injury age had the highest relative importance as a predictor variable; wave energy appeared to be associated with second-order effects, such as sediment in-filling, which in turn, facilitated seagrass colonization. For sediment in-filling, volume and perimeter-to-area ratio had similar relative importance as predictor variables with age playing a lesser role than seen for colonization and contraction. Our findings confirm that these injuries naturally initiate seagrass colonization with the potential to recover to pre-injury conditions, but likely on a decadal scale given the slow growth of the climax species (Thalassia testudinum), which is often the most severely injured. Our analysis supports current perceptions that sediment in-filling is critical to the recovery process and indicates that in order to stabilize injuries and facilitate seagrass recovery, managers should consider immediate restorative filling procedures for injuries having an original volume >14-16 m3.

  16. Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrave, J.A.; Goff, F.; Shevenell, L.

    1989-02-01

    This report presents geochemical and isotopic data on rocks and water and wellbore geophysical data from the Continental Scientific Drilling Program core holes VC-1 and VC-2a, Valles Caldera, New Mexico. These core holes were drilled as a portion of a broader program that seeks to answer fundamental questions about magma, water/rock interactions, ore deposits, and volcanology. The data in this report will assist the interpretation of the hydrothermal system in the Jemez Mountains and will stimulate further research in magmatic processes, hydrothermal alteration, ore deposits, hydrology, structural geology, and hydrothermal solution chemistry. 37 refs., 36 figs., 28 tabs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohn, M.E.; Patchen, D.G.; Heald, M.

    Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less

  18. Improving the result of forcasting using reservoir and surface network simulation

    NASA Astrophysics Data System (ADS)

    Hendri, R. S.; Winarta, J.

    2018-01-01

    This study was aimed to get more representative results in production forcasting using integrated simulation in pipeline gathering system of X field. There are 5 main scenarios which consist of the production forecast of the existing condition, work over, and infill drilling. Then, it’s determined the best development scenario. The methods of this study is Integrated Reservoir Simulator and Pipeline Simulator so-calle as Integrated Reservoir and Surface Network Simulation. After well data result from reservoir simulator was then integrated with pipeline networking simulator’s to construct a new schedule, which was input for all simulation procedure. The well design result was done by well modeling simulator then exported into pipeline simulator. Reservoir prediction depends on the minimum value of Tubing Head Pressure (THP) for each well, where the pressure drop on the Gathering Network is not necessary calculated. The same scenario was done also for the single-reservoir simulation. Integration Simulation produces results approaching the actual condition of the reservoir and was confirmed by the THP profile, which difference between those two methods. The difference between integrated simulation compared to single-modeling simulation is 6-9%. The aimed of solving back-pressure problem in pipeline gathering system of X field is achieved.

  19. Stratigraphy, artefact industries and hominid associations for Sterkfontein, member 5.

    PubMed

    Kuman, K; Clarke, R J

    2000-06-01

    A revised stratigraphy for the early hominid site of Sterkfontein (Gauteng Province, South Africa) reveals a complex distribution of infills in the main excavation area between 2.8 and 1.4 m.y.a, as well as deposits dating to the mid to late Pleistocene. New research now shows that the Member 4 australopithecine breccia (2.8-2.6 Ma) extends further west than was previously thought, while a late phase of Member 4 is recognized in a southern area. The artefact-bearing breccias were defined sedimentologically as Member 5, but one supposed part of these younger breccias, the StW 53 infill, lacks in situ stone tools, although it does appear to post-date 2.6 Ma when artefacts first appear in the archaeological record. The StW 53 hominid, previously referred to Homo habilis, is here argued to be Australopithecus. The first artefact-bearing breccia of Member 5 is the Oldowan Infill, estimated at 2-1.7 Ma. It occupies a restricted distribution in Member 5 east and contains an expedient, flake-based tool industry associated with a few fossils of Paranthropos robustus. An enlarged cave opening subsequently admitted one or more Early Acheulean infills associated in Member 5 west with Homo ergaster. The artefacts attest to a larger site accumulation between ca. 1.7 and 1.4 Ma, with more intensive use of quartzite over quartz and a subtle but important shift to large flakes and heavier-duty tools. The available information on palaeoenvironments is summarized, showing an overall change from tropical to sub-tropical gallery forest, forest fringe and woodland conditions in Member 4 to more open woodland and grassland habitats in the later units, but with suggestions of a wet localized topography in the Paranthropus -bearing Oldowan Infill. Copyright 2000 Academic Press.

  20. Engineering report on drilling in the San Rafael Swell area, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.I.

    1980-05-01

    The San Rafael Swell drilling project was conducted by Bendix Field Engineering Corporation in support of the US Department of Energy National Uranium Resource Evaluation (NURE) program. This project consisted of 27 drill holes ranging in depth from 120.0 ft (36.5 m) to 3,700.0 ft (1,127.7 m). A total of 41,716 ft (12,715 m) was drilled, of which 3,099.8 ft (944.8 m) were cored. Geophysical logging was supplied by Century Geophysical Corporation and Bendix Field Engineering Corporation. The objective of the project was to test the uranium potential of the Triassic and Jurassic sandstone units and to investigate areas wheremore » industry was unlikely to drill in the near future. Drilling commenced September 24, 1978, and was finished on December 17, 1979.« less

  1. New scientific ocean drilling depth record extends study of subseafloor life

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The Japanese deep-sea drilling vessel Chikyu set a new depth record for scientific ocean drilling and core retrieval by reaching a depth of 2119.5 meters below the seafloor (mbsf) on 6 September. This is 8.5 meters deeper than the prior record, set 19 years ago. Three days later, on 9 September, Chikyu set another record by reaching a drilling depth of 2466 mbsf, the maximum depth that will be attempted during the current expedition. The 6 September record was set on day 44 of the Deep Coalbed Biosphere off Shimokita expedition, which is expedition 337 of the Integrated Ocean Drilling Program (IODP). It occurred at drilling site C0020 in the northwestern Pacific Ocean, approximately 80 kilometers northeast from Hachinohe, Japan. The expedition is scheduled to conclude on 30 September.

  2. The AMIGA enhancement of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Maldera, S.

    2014-06-01

    The AMIGA (Auger Muons and Infill for the Ground Array) enhancement of the Auger Surface Detector consists of a 23.5 km2 infill area instrumented with water-Cherenkov detector stations accompanied by 30 m2 of scintillator counters, buried 2.3 m underground. The spacing of 750 m between the surface detectors extends the energy range as low as 3 × 1017 eV, thus allowing the study of the energy region where the transition between galactic and extra-galactic cosmic rays is expected to take place. We describe the reconstruction of the events observed with the infill water-Cherenkov detector array and the derived energy spectrum. We also discuss the basic properties of the muon detector modules obtained from measurements and tests during the construction phase and from the first data in the field.

  3. Hawaii Scientific Drilling Project: Objectives, Successes, Surprises and Frustrations

    NASA Astrophysics Data System (ADS)

    Depaolo, D. J.; Stolper, E.; Thomas, D. M.

    2008-12-01

    The Hawaii Scientific Drilling Project (HSDP) is a long-running project undertaken with the objective of studying a mantle plume by drilling an extended sequence of lavas from a single Hawaiian volcano. The project originated with a proposal to NSF in late 1986 with the idea of drilling to the Moho under Hilo; the target depth was estimated at 12km, commensurate with the depth reached by the drilling program then being pursued by the USSR and that proposed in the U.S. for the southern Appalachians, and in line with the aspirations of the nascent DOSECC program. Subsequently, due to limitations in funding and reorganization of the drilling program into what later became the NSF Continental Dynamics Program, HSDP was re-scoped with the objective of drilling deeply enough (ca. 4.5km) to recover most of the eruptive history of a single volcano. The project first went to a pilot stage, which resulted in coring to a depth of 1.1km in late 1993. The pilot stage was relatively inexpensive (1M including science) and productive. Funding was then obtained from NSF and ICDP in 1995 (ca. 12M) with the objective of drilling to 4.5km. Drilling was originally planned for a five-year period, in two campaigns. The first campaign, in 1999, resulted in efficient coring to a depth of 3.1km over a period of 6 months; it used about 40 percent of the funds and was also highly productive. Deepening the hole below 3.1km turned out to be both difficult and expensive, although for interesting reasons. To facilitate deeper drilling the hole needed to be reamed to a larger diameter; but when this was done the well unexpectedly started to flow. We now know that there are several deep pressurized aquifers, with varying salt content, but these hydrological phenomena were totally unanticipated. A key finding, also unanticipated, is that cold seawater circulates through the volcanic pile in volumes sufficient to refrigerate the entire section below 700m depth to temperatures about 25 degrees below a normal geothermal gradient. In early 1999 when the first drilling campaign was organized, the price of oil was 10 USD (rigs and drilling crews were available and reasonably priced); in early 2003 when hole opening was being arranged, the price of oil was 30 USD, and for the coring campaigns in 2005 and 2007 it was 50 to 70 USD. For these reasons, and because trip times were longer and deeply buried pillow basalts more difficult to drill, the remainder of the project funds (and then some) were needed to deepen the hole from 3.1 to 3.5km. Nevertheless, the project obtained a nearly continuous, and virtually unweathered, core consisting of lava flows, hyaloclastite, minor intrusives and sediment from a 3260m section of the Mauna Kea volcano, covering an age range from 200 to over 600 ka. It also recovered a 250m and a 280m section of the Mauna Loa volcano. A wealth of geological, volcanological, petrological, geochemical, geomagnetic, geodynamic, hydrological, and geobiological data have come from the core and the well, and more are coming in. The unprecedented geochemical-petrological data sets are a major success, as is the fact that geochemists can work together, but the hoped-for detailed geochronology for the core has proven difficult to obtain.

  4. Validation and Design of Sheet Retrofits

    DTIC Science & Technology

    2010-10-31

    enough to allow for rotation of the top of the wall without development of an axial force. Obviously, these walls are not load bearing . This type...structures are commonly constructed using CMU blocks to infill non- load bearing walls (Hammons, 1999). Many of these structures were built in a... axial loads within the sheet. 3 Figure 1. Infill Masonry Wall Retrofit Concept 2.1. Objective The objective of the research documented in

  5. Review-Esso Resources Canada Ltd. , Norman Wells expansion project drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, D.G.

    Esso Resources Canada Limited has embarked on a project to increase production from its Norman Wells Oil field located 145 km south of the Arctic Circle, from 475 m/sup 3//D to 4000 m/sup 3//D of crude oil. This paper provides details on the development drilling portion of the project which is comprised of 150 wells to be drilled in 3 years utilizing 2 drilling rigs from July 1982 through September 1985. The majority of the wells will be directionally drilled from multiwell land pads and artificial islands to shallow reservoir targets underlying the Mackenzie River, a major river intersecting themore » field boundaries. Experience from the initial 27 wells completed is provided.« less

  6. An automated design and fabrication pipeline for improving the strength of 3D printed artifacts under tensile loading

    NASA Astrophysics Data System (ADS)

    Al, Can Mert; Yaman, Ulas

    2018-05-01

    In the scope of this study, an alternative automated method to the conventional design and fabrication pipeline of 3D printers is developed by using an integrated CAD/CAE/CAM approach. It increases the load carrying capacity of the parts by constructing heterogeneous infill structures. Traditional CAM software of Additive Manufacturing machinery starts with a design model in STL file format which only includes data about the outer boundary in the triangular mesh form. Depending on the given infill percentage, the algorithm running behind constructs the interior of the artifact by using homogeneous infill structures. As opposed to the current CAM software, the proposed method provides a way to construct heterogeneous infill structures with respect to the Von Misses stress field results obtained from a finite element analysis. Throughout the work, Rhinoceros3D is used for the design of the parts along with Grasshopper3D, an algorithmic design tool for Rhinoceros3D. In addition, finite element analyses are performed using Karamba3D, a plug-in for Grasshopper3D. According to the results of the tensile tests, the method offers an improvement of load carrying capacity about 50% compared to traditional slicing algorithms of 3D printing.

  7. Assessing metal contamination from construction and demolition (C&D) waste used to infill wetlands: using Deroceras reticulatum (Mollusca: Gastropoda).

    PubMed

    Staunton, John A; Mc Donnell, Rory J; Gormally, Michael J; Williams, Chris D; Henry, Tiernan; Morrison, Liam

    2014-11-01

    Large quantities of construction and demolition waste (C&D) are produced globally every year, with little known about potential environmental impacts. In the present study, the slug, Deroceras reticulatum (Mollusca: Gastropoda) was used as the first biomonitor of metals (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Ti, Tl, V and Zn) on wetlands post infilling with construction and demolition (C&D) waste. The bioaccumulation of As, Ba, Cd, Co, Sb, Se and Tl were found to be significantly elevated in slugs collected on C&D waste when compared to unimproved pastures (control sites), while Mo, Se and Sr had significantly higher concentrations in slugs collected on C&D waste when compared to known contaminated sites (mining locations), indicating the potential hazardous nature of C&D waste to biota. Identifying exact sources for these metals within the waste can be problematic, due to its heterogenic nature. Biomonitors are a useful tool for future monitoring and impact studies, facilitating policy makers and regulations in other countries regarding C&D waste infill. In addition, improving separation of C&D waste to allow increased reuse and recycling is likely to be effective in reducing the volume of waste being used as infill, subsequently decreasing potential metal contamination.

  8. Proposed Drill Sites

    DOE Data Explorer

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  9. 40 CFR 300.212 - Area response drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 27 2010-07-01 2010-07-01 false Area response drills. 300.212 Section 300.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY...

  10. 40 CFR 300.212 - Area response drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 28 2014-07-01 2014-07-01 false Area response drills. 300.212 Section 300.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY...

  11. 40 CFR 300.212 - Area response drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 28 2011-07-01 2011-07-01 false Area response drills. 300.212 Section 300.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS NATIONAL OIL AND HAZARDOUS SUBSTANCES POLLUTION CONTINGENCY...

  12. Optimization of Mud Hammer Drilling Performance--A Program to Benchmark the Viability of Advanced Mud Hammer Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2006-03-01

    Operators continue to look for ways to improve hard rock drilling performance through emerging technologies. A consortium of Department of Energy, operator and industry participants put together an effort to test and optimize mud driven fluid hammers as one emerging technology that has shown promise to increase penetration rates in hard rock. The thrust of this program has been to test and record the performance of fluid hammers in full scale test conditions including, hard formations at simulated depth, high density/high solids drilling muds, and realistic fluid power levels. This paper details the testing and results of testing two 7more » 3/4 inch diameter mud hammers with 8 1/2 inch hammer bits. A Novatek MHN5 and an SDS Digger FH185 mud hammer were tested with several bit types, with performance being compared to a conventional (IADC Code 537) tricone bit. These tools functionally operated in all of the simulated downhole environments. The performance was in the range of the baseline ticone or better at lower borehole pressures, but at higher borehole pressures the performance was in the lower range or below that of the baseline tricone bit. A new drilling mode was observed, while operating the MHN5 mud hammer. This mode was noticed as the weight on bit (WOB) was in transition from low to high applied load. During this new ''transition drilling mode'', performance was substantially improved and in some cases outperformed the tricone bit. Improvements were noted for the SDS tool while drilling with a more aggressive bit design. Future work includes the optimization of these or the next generation tools for operating in higher density and higher borehole pressure conditions and improving bit design and technology based on the knowledge gained from this test program.« less

  13. Estimates of Tibial Shock Magnitude in Men and Women at the Start and End of a Military Drill Training Program.

    PubMed

    Rice, Hannah M; Saunders, Samantha C; McGuire, Stephen J; O'Leary, Thomas J; Izard, Rachel M

    2018-03-26

    Foot drill is a key component of military training and is characterized by frequent heel stamping, likely resulting in high tibial shock magnitudes. Higher tibial shock during running has previously been associated with risk of lower limb stress fractures, which are prevalent among military populations. Quantification of tibial shock during drill training is, therefore, warranted. This study aimed to provide estimates of tibial shock during military drill in British Army Basic training. The study also aimed to compare values between men and women, and to identify any differences between the first and final sessions of training. Tibial accelerometers were secured on the right medial, distal shank of 10 British Army recruits (n = 5 men; n = 5 women) throughout a scheduled drill training session in week 1 and week 12 of basic military training. Peak positive accelerations, the average magnitude above given thresholds, and the rate at which each threshold was exceeded were quantified. Mean (SD) peak positive acceleration was 20.8 (2.2) g across all sessions, which is considerably higher than values typically observed during high impact physical activity. Magnitudes of tibial shock were higher in men than women, and higher in week 12 compared with week 1 of training. This study provides the first estimates of tibial shock magnitude during military drill training in the field. The high values suggest that military drill is a demanding activity and this should be considered when developing and evaluating military training programs. Further exploration is required to understand the response of the lower limb to military drill training and the etiology of these responses in the development of lower limb stress fractures.

  14. The use of drilling by the U.S. Antarctic program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP),more » which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.« less

  15. Drilling the first horizontal well in the Gulf of Mexico; A case history of East Cameron Block 278 Well B-12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, E.K.; French, M.R.

    East Cameron Block 278 Well B-12 was the first horizontal well drilled in the Gulf of Mexico. This gas well, located in the Texaco Inc. operated Eat Cameron 265 field, was drilled and completed in May 1990. The objective formation was a high-permeability, shallow, unconsolidated gas sand located about 1,450 ft below the mudline (BML). The success of this well proved that horizontal wells are viable alternatives to extended-reach development wells from offshore platforms in the Gulf of Mexico. The cost to drill and complete this horizontal well was less than comparable extended-reach development wells drilled in the same field.more » A minimal increase in drilling costs accompanied by considerable savings in completion costs resulted in favorable economics for the project. Drilling a shallow horizontal well in the Gulf of Mexico presented several challenges. This paper discusses prewell planning, formulation of contingency plans, and implementation of a drilling/completion program designed to meet these challenges.« less

  16. Optimization of Deep Drilling Performance - Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2005-09-30

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less

  17. Independent focuses Philippines exploration on Visayan basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this articlemore » briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.« less

  18. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less

  19. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    NASA Astrophysics Data System (ADS)

    Stein, R.; Coakley, B.

    2009-04-01

    Although major progress in Arctic Ocean research has been made during the last decades, the knowledge of its short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution is much behind that from the other world's oceans. That means - despite the importance of the Arctic in the climate system - the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. This lack of knowledge is mainly caused by the major technological/ logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the successful completion of IODP Expedition 302 ("Arctic Coring Expedition" - ACEX), the first Mission Specific Platform (MSP) expedition within the Integrated Ocean Drilling Program - IODP, a new era in Arctic research has begun. For the first time, a scientific drilling in the permanently ice-covered Arctic Ocean was carried out, penetrating about 430 meters of Quaternary, Neogene, Paleogene and Campanian sediment on the crest of Lomonosov Ridge close to the North Pole. The success of ACEX has certainly opened the door for further scientific drilling in the Arctic Ocean, and will frame the next round of questions to be answered from new drill holes to be taken during the next decades. In order to discuss and plan the future of scientific drilling in the Arctic Ocean, an international workshop was held at the Alfred Wegener Institute (AWI) in Bremerhaven/Germany, (Nov 03-05, 2008; convenors: Bernard Coakley/University of Alaska Fairbanks and Ruediger Stein/AWI Bremerhaven). About 95 scientists from Europe, US, Canada, Russia, Japan, and Korea, and observers from oil companies participated in the workshop. Funding of the workshop was provided by the Consortium for Ocean Leadership (US), the European Science Foundation, the Arctic Ocean Sciences Board, and the Nansen Arctic Drilling Program as well as by sponsorships from British Petroleum, ConocoPhillips, ExxonMobil, Norwegian Petroleum Directorate, StatoilHydro, and Shell International. The major targets of the workshop were: (1) to bring together an international group of Arctic scientists, young scientists and ocean drilling scientists to learn and exchange ideas, experience and enthusiasm about the Arctic Ocean; (2) to develop a scientific drilling strategy to investigate the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system; (3) to summarize the technical needs, opportunities, and limitations of drilling in the Arctic; (4) to define scientific and drilling targets for specific IODP-type campaigns in Arctic Ocean key areas to be finalized in the development of drilling proposals. Following overview presentations about the history of the Arctic Ocean, legacy of high-latitude ocean drilling, existing site-survey database, technical needs for high-latitude drilling, possibilities of collaboration with industry, and the process of developing ocean-drilling legs through IODP, the main part of the workshop was spent in thematic and regional break-out groups discussing the particular questions to be addressed by drilling and the particular targets for Arctic scientific drilling. Within the working groups, key scientific questions (related to the overall themes paleoceanography, tectonic evolution, petrology/geochemistry of basement, and gas hydrates) and strategies for reaching the overall goals were discussed and - as one of the main results - core groups for further developing drilling proposals were formed. Based on discussions at this workshop, approximately ten new pre-proposals are planned to be submitted to IODP for the April 01- 2009 deadline. We hope that the development of new scientific objectives through the pre-proposal process will help reshape plans for scientific ocean drilling beyond 2013 and direct the program north towards these critical priorities and advance exploration of the Arctic.

  20. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    NASA Astrophysics Data System (ADS)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  1. 77 FR 57572 - Notice of Arrival on the Outer Continental Shelf

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... program currently requires NOA information for those vessels, facilities, and Mobile Offshore Drilling... Lendvay, Commercial Vessel Compliance, Foreign and Offshore Vessel Compliance Division (CG-CVC-2), U.S... 2254), which required NOA information for those vessels, facilities and Mobile Drilling Units (MODUs...

  2. Persian Basic Course: Supplement to Volume III. Structural Drills for Lessons 29-38.

    ERIC Educational Resources Information Center

    Defense Language Inst., Monterey, CA.

    A supplement to volume three of a basic course in Persian is presented that is designed for use in the Defense Language Institute's intensive programs for native English speakers. This volume contains structural drills for lessons 29-38. (SW)

  3. OFFICE OCCUPATIONS, INDIVIDUAL INSTRUCTION MATERIALS.

    ERIC Educational Resources Information Center

    Iowa State Dept. of Public Instruction, Des Moines.

    THE 79 ITEMS LISTED IN THIS BIBLIOGRAPHY WERE SELECTED FOR THE BENEFIT OF TEACHER-COORDINATORS OF OFFICE OCCUPATIONS PROGRAMS. EXAMPLES OF MATERIAL INCLUDED ARE A COMBINATION TEXTBOOK-WORKBOOK WHICH PROVIDES TRAINING IN ALPHABETIC INDEXING, A COMBINATION TEXTBOOK-WORKBOOK WHICH CONTAINS PENMANSHIP DRILLS AND DIAGNOSTIC DRILLS, A PAPERBOUND BOOK…

  4. Geothermal Exploration of Newberry Volcano, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three yearsmore » have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.« less

  5. Performance test of different 3.5 mm drill bits and consequences for orthopaedic surgery.

    PubMed

    Clement, Hans; Zopf, Christoph; Brandner, Markus; Tesch, Norbert P; Vallant, Rudolf; Puchwein, Paul

    2015-12-01

    Drilling of bones in orthopaedic and trauma surgery is a common procedure. There are yet no recommendations about which drill bits/coating should be preferred and when to change a used drill bit. In preliminary studies typical "drilling patterns" of surgeons concerning used spindle speed and feeding force were recorded. Different feeding forces were tested and abrasion was analysed using magnification and a scanning electron microscope (SEM). Acquired data were used for programming a friction stir welding machine (FSWM). Four drill bits (a default AISI 440A, a HSS, an AISI 440B and a Zirconium-oxide drill bit) were analysed for abrasive wear after 20/40/60 machine-guided and hand-driven drilled holes. Additionally different drill coatings [diamond-like carbon/grafitic (DLC), titanium nitride/carbide (Ti-N)] were tested. The mean applied feeding force by surgeons was 45 ± 15.6 Newton (N). HSS bits were still usable after 51 drill holes. Both coated AISI 440A bits showed considerable breakouts of the main cutting edge after 20 hand-driven drilled holes. The coated HSS bit showed very low abrasive wear. The non-coated AISI 440B bit had a similar durability to the HSS bits. The ZrO2 dental drill bit excelled its competitors (no considerable abrasive wear at >100 holes). If the default AISI 440A drill bit cannot be checked by 20-30× magnification after surgery, it should be replaced after 20 hand-driven drilled holes. Low price coated HSS bits could be a powerful alternative.

  6. High Temperature 300°C Directional Drilling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less

  7. Initial Results of Gulf of Mexico Gas Hydrate Joint Industry Program Leg II Logging-While-Drilling Operations

    NASA Astrophysics Data System (ADS)

    Boswell, R. M.; Collett, T. S.; Frye, M.; McConnell, D.; Shedd, W.; Shelander, D.; Dai, J.; Mrozewski, S.; Guerin, G.; Cook, A.; Dufrene, R.; Godfriaux, P. D.; Roy, R.; Jones, E.

    2009-12-01

    The Gulf of Mexico gas hydrates Joint Industry Project (the JIP), a cooperative research program between the US Department of Energy and an international industrial consortium under the leadership of Chevron, conducted its “Leg II” logging-while-drilling operations in April and May of 2009. JIP Leg II was intended to expand the existing JIP work from previous emphasis on fine-grained sedimentary systems to the direct evaluation of gas hydrate in sand-dominated reservoirs. The selection of the locations for the JIP Leg II drilling were the result of a geological and geophysical prospecting approach that integrated direct geophysical evidence of gas hydrate-bearing strata with evidence of gas sourcing and migration and occurrence of sand reservoirs within the gas hydrate stability zone. Logging-while-drilling operations included the drilling of seven wells at three sites. The expedition experienced minimal operational problems with the advanced LWD tool string, and successfully managed a number of shallow drilling challenges, including borehole breakouts, and shallow gas and water flows. Two wells drilled in Walker Ridge block 313 (WR-313) confirmed the pre-drill predictions by discovering gas hydrates at high saturations in multiple sand horizons with reservoir thicknesses up to 50 ft. In addition, drilling in WR-313 discovered a thick, strata-bound interval of grain-displacing gas hydrate in shallow fine-grained sediments. Two of three wells drilled in Green Canyon block 955 (GC-955) confirmed the pre-drill prediction of extensive sand occurrence with gas hydrate fill along the crest of a structure with positive indications of gas source and migration. In particular, well GC955-H discovered ~100 ft of gas hydrate in sand at high saturations. Two wells drilled in Alaminos Canyon block 21 (AC-21) confirmed the pre-drill prediction of potential extensive occurrence of gas hydrates in shallow sand reservoirs at low to moderate saturations; however, further data collection and analyses at AC-21 will be needed to better understand the nature of the pore filling material. JIP Leg II fully met its scientific objectives with the collection of abundant high-quality data from gas hydrate bearing sands in the Gulf of Mexico. Ongoing work within the JIP will enable further validation of the geophysical and geological methods used to predict the occurrence of gas hydrate. Expedition results will also support the selection of locations for future JIP drilling, logging and coring operations.

  8. View from intersection. Ninestory reinforced concrete building infilled with brick. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from intersection. Nine-story reinforced concrete building infilled with brick. The street facades on beaubien and east grand are faced with stone accents and elaborate brick work. Brick pilasters run the entire height of the building. Steel tiebacks are apparent running up the height of the building on the east side. The large tower appears at the northeast and southeast corners - Detroit Storage Company, 2937 East Grand Boulevard, Detroit, MI

  9. An experimental investigation on the ultimate strength of epoxy repaired braced partial infilled RC frames

    NASA Astrophysics Data System (ADS)

    Dubey, Shailendra Kumar Damodar; Kute, Sunil

    2014-09-01

    Due to earthquake, buildings are damaged partially or completely. Particularly structures with soft storey are mostly affected. In general, such damaged structures are repaired and reused. In this regard, an experimental investigation was planned and conducted on models of single-bay, single-storey of partial concrete infilled reinforced concrete (RC) frames up to collapse with corner, central and diagonal steel bracings. Such collapsed frames were repaired with epoxy resin and retested. The initiative was to identify the behaviour, extent of restored ultimate strength and deflection of epoxy-retrofitted frames in comparison to the braced RC frames. The performance of such frames has been considered only for lateral loads. In comparison to bare RC frames, epoxy repaired partial infilled frames have significant increase in the lateral load capacity. Central bracing is more effective than corner and diagonal bracing. For the same load, epoxy repaired frames have comparable deflection than similar braced frames.

  10. Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context

    NASA Astrophysics Data System (ADS)

    Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul

    2010-05-01

    Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non-European partners), a multidisciplinary platform for studies ranging from the sub-seafloor into the atmosphere. AURORA BOREALIS was planned for her role in deep-sea drilling in consultation with engineers and technical experts familiar with the program and the operation of these vessels. All techniques currently deployed on IODP expeditions can be implemented onboard the vessel under polar weather and ice conditions, including the full range of re-entry, casing and cementing, and instrumentation options and the entire suite of downhole logging tools. Due to sufficient laboratory space, a full analytical workflow can be easily established comparable to existing permanent platforms, including clean rooms, diverse scanning and logging or incubation facilities. While the vessel is equipped with a dedicated deep-sea drilling rig, other coring and drilling techniques can be employed if needed (e.g. Rockdrill, MEBO, large diameter Kasten cores). AURORA BOREALIS is fitted to operate a CALYPSO Piston Coring System in polar waters. Future mud-return systems under consideration and testing for IODP to provide controlled borehole conditions in difficult facies are compatible with the layout of AURORA BOREALIS. The berthing capacity of 120 personnel total (scientists, technical support and crew) allows to accommodate a sufficient number of science party members offshore. The present scientific implementation documents plan for about one polar scientific drilling expedition per year in a to-be-determined configuration. As the vessel is a multi-dsiciplinary platform, operations for the entire year are not dependant on drilling operations alone. While principal access to the vessel will be based on a competitive proposal review and evaluation system, the allocation of timeslots specifically for drilling would preferably be given over to IODP handling and planning systems in a cooperative mode using the strengths and capacitites of the future program. Depending on interests and needs of the scientific communities a preferential focus in non-drilling expedition planning could be established e.g. for dedicated geophysical pre-site survey works in areas inaccessible by other vessels to secure critical data needed for later drilling expeditions. Based on ongoing expert consultations, it is safe to assume that the average costs for an Arctic or polar drilling expedition will be considerably lower than with an otherwise necessary multi-ship setup based on modelled expedition scenarios and annual operational cost calculations. Still, AURORA BOREALIS shall provide substantially enhanced scientific, operational, personnel and technical capacities offshore.

  11. Temperature and volume estimation of under-seafloor fluid from the logging-while-drilling data beneath an active hydrothermal field

    NASA Astrophysics Data System (ADS)

    Hamada, Y.; Saito, S.; Sanada, Y.; Masaki, Y.; Moe, K.; Kido, Y. N.; Kumagai, H.; Takai, K.; Suzuki, K.

    2015-12-01

    In July of 2014, offshore drillings on Iheya-North Knoll, Okinawa Trough, was executed as part of Next-generation technology for ocean resources survey, which is a research program in Cross-ministerial Strategic Innovation Promotion Program (SIP). In this expedition, logging-while- drilling (LWD) and measuring-while-drilling (MWD) were inserted into 6 holes (C9011 - C9016) to investigate spatial distribution of hydrothermal deposit and geothermal fluid reservoir. Both of these tools included annular pressure-while-drilling (APWD). Annular pressure and temperature were monitored by the APWD to detect possible exceedingly-high-temperature geofluid. In addition, drilling fluid was continuously circulated at sufficient flow rate to protect LWD tools against high temperature (non-stop driller system). At C9012 and C9016, the LWD tool clearly detected pressure and temperature anomaly at 234 meter below the seafloor (mbsf) and 80 mbsf, respectively. Annular pressure and temperature quickly increases at that depth and it would reflect the injection of high-temperature fluid. During the drilling, however, drilling water was continuously circulated at high flow-rate (2600L/min) and the measured temperature is not exactly in-situ temperature. To investigate the detail of the heat source, such as in-situ temperature and quantity of heat, we performed numerical analyses of thermal fluid and energy-balance assuming injection of high-temperature fluid. We combined pressure loss theory of double cylinders and temperature equation to replicate the fluid flow and its temperature between borehole wall and drilling pipe during the thermofluid injection. As the result, we estimated the temperature and the volume of injected fluid to be 115oC~ and 17.3 m3, respectively (at C9012) from the calculation. This temperature is lower than that of a hydrothermall vent which had been found near the hole (300oC).

  12. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis; Homer Robertson; Alan Black

    2006-06-22

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less

  13. Commercial geophysical well logs from the USW G-1 drill hole, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Muller, D.C.; Kibler, J.E.

    1983-01-01

    Drill hole USW G-1 was drilled at Yucca Mountain, Nevada Test Site, Nevada, as part of the ongoing exploration program for the Nevada Nuclear Waste Storage Investigations. Contract geophysical well logs run at USW G-1 show only limited stratigraphic correlations, but correlate reasonably well with the welding of the ash-flow and ash-fall tuffs. Rocks in the upper part of the section have highly variable physical properties, but are more uniform and predictably lower in the section.

  14. Quantifying Sediment Characteristics and Infilling Rate within a Ship Shoal Dredge Borrow Area, Offshore Louisiana

    NASA Astrophysics Data System (ADS)

    Xue, Z.; Wilson, C.; Bentley, S. J.; Xu, K.; Liu, H.; Li, C.; Miner, M. D.

    2017-12-01

    Barrier islands provide protection to interior wetlands and maintain estuarine gradients. Mississippi River delta plain barrier islands are undergoing rapid disintegration due to high rates of subsidence and a deficit in the coastal sand supply. To mitigate for barrier island land loss, Louisiana has implemented a restoration program that intends to supplement coastal sand deficits by introducing sand from outside of the active coastal system. Inner-shelf shoals offshore Louisiana are one of the only sand resource options containing large volumes of restoration quality sand. Ship Shoal is one of these inner-shelf shoals that was produced by marine reworking of former Mississippi River Delta barrier island sediments during late Holocene time. Though indirect effects to protected areas or infrastructure adjacent to excavations have been considered, there is a paucity of observational data on their evolution. Caminada borrow area, dredged in 2013-2016 for the Caminada Headland Restoration Project, provides a valuable opportunity to validate and improve predictive models for how borrow areas evolve. In July 2017, a subbottom and bathymetric geophysical survey was conducted and sediment cores were collected to test the hypothesis that sedimentation within the excavation is affected by lateral bedload transport after initial rapid infill as slopes equilibrate. Preliminary results show the sediment within the excavation is predominantly very fine sand with isolated mud drapes. These sediments overlay older delta complex muddy strata. This contrasts strongly with other dredge pits outside of shoal areas and closer to shore, which have been infilled largely by advection of fine suspended sediments of fluvial origin. Laboratory work on cores will include laser grain size, x-ray analyses of sedimentary structures, and radiochemistry analyses for rates and age of deposition. With the knowledge of stratigraphy and sediment dynamics surrounding the dredge pit, we can quantify and better understand the timeline of these depositional processes to provide vital knowledge to coastal managers for future borrow area design and management.

  15. Ocean Drilling Program investigates hydrate ridge

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    There are several ways to get onboard the JOIDES Resolution, a 143-meter long converted oil tanker that is a floating laboratory, and the pride of the Ocean Drilling Program (ODP). You can meet up with it at a port of call, or set down on its helicopter pad. Or you can hitch a ride by overnight supply boat, and then get lifted by crane to the Resolution by clinging to the outside of a rope transfer basket as this reporter did.

  16. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    PubMed

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  17. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  18. International Ocean Discovery Program U.S. Implementing Organization

    Science.gov Websites

    coordinates seagoing expeditions to study the history of the Earth recorded in sediments and rocks beneath the Internship :: Minorities in Scientific Ocean Drilling Fellowship Education Deep Earth Academy logo :: joidesresolution.org :: For students :: For teachers :: For scientists :: View drill sites in Google Earth Export

  19. Pre-Gas Drilling Drinking Water Testing--An Educational Opportunity for Extension

    ERIC Educational Resources Information Center

    Swistock, Brian; Clark, James

    2015-01-01

    The increase in shale gas drilling in Pennsylvania has resulted in thousands of landowners receiving predrilling testing of their drinking water. Landowners often have difficulty understanding test reports resulting in low awareness of pre-existing problems. Extension and several partners developed a program to improve understanding of…

  20. Pile/shaft designs using artificial neural networks (i.e., genetic programming) with spatial variability considerations.

    DOT National Transportation Integrated Search

    2014-03-01

    The work focused on the improvement of FB-DEEPs prediction of skin and tip resistance of concrete : piles and drilled shafts in Florida. For the work, data from 19 concrete pile sites and 18 drilled shaft sites were : collected. This included 458 ...

  1. 40 CFR 112.11 - Spill Prevention, Control, and Countermeasure Plan requirements for offshore oil drilling...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Greases, and Fish and Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and... Countermeasure Plan requirements for offshore oil drilling, production, or workover facilities. 112.11 Section 112.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL...

  2. Drill Press Work Sample.

    ERIC Educational Resources Information Center

    Shawsheen Valley Regional Vocational-Technical High School, Billerica, MA.

    This manual contains a work sample intended to assess a handicapped student's interest in and to screen interested students into a training program in basic machine shop I. (The course is based on the entry level of the drill press operator.) Section 1 describes the assessment, correlates the work performed and worker traits required for…

  3. Answers from deep inside the Earth; Continental Scientific Drilling at Cajon Pass, California

    USGS Publications Warehouse

    Russ, D.P.

    1989-01-01

    Drilling of a 12,000-foot-deep scientific well has been completed at Cajon Pass in southern California to measure crustal properties, to determine crustal structure, and to better understanding the generation of earthquakes along the San Andreas fault. A joint effort of the National Science Foundation (NFS) and the U.S Geological Survey (USGS), the well was begun in November 1986, and is one of the first projects to be undertaken in the new national Continental Scientific Drilling Program. This program aims to enchance our knowledge of the compostiion, sturcture, dynamics, and evolution of the continental crust and of how these factors affect the origin and distribution of mineral and energy resources and natural phenomena such as volcanic eruptions and earthquakes. 

  4. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations.

    PubMed

    He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.

  5. Theoretical analysis and design of hydro-hammer with a jet actuator: An engineering application to improve the penetration rate of directional well drilling in hard rock formations

    PubMed Central

    He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang

    2018-01-01

    Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421

  6. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE - A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon Tibbitts; Arnis Judzis

    2002-07-01

    This document details the progress to date on the OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE -- A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING contract for the quarter starting April 2002 through June 2002. Even though we are awaiting the optimization portion of the testing program, accomplishments include the following: (1) Presentation material was provided to the DOE/NETL project manager (Dr. John Rogers) for the DOE exhibit at the 2002 Offshore Technology Conference. (2) Two meeting at Smith International and one at Andergauge in Houston were held to investigate their interest in joining the Mud Hammer Performancemore » study. (3) SDS Digger Tools (Task 3 Benchmarking participant) apparently has not negotiated a commercial deal with Halliburton on the supply of fluid hammers to the oil and gas business. (4) TerraTek is awaiting progress by Novatek (a DOE contractor) on the redesign and development of their next hammer tool. Their delay will require an extension to TerraTek's contracted program. (5) Smith International has sufficient interest in the program to start engineering and chroming of collars for testing at TerraTek. (6) Shell's Brian Tarr has agreed to join the Industry Advisory Group for the DOE project. The addition of Brian Tarr is welcomed as he has numerous years of experience with the Novatek tool and was involved in the early tests in Europe while with Mobil Oil. (7) Conoco's field trial of the Smith fluid hammer for an application in Vietnam was organized and has contributed to the increased interest in their tool.« less

  7. Building an open-source robotic stereotaxic instrument.

    PubMed

    Coffey, Kevin R; Barker, David J; Ma, Sisi; West, Mark O

    2013-10-29

    This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 μm/step. The maximum recommended cutting speed is 500 μm/sec. The maximum recommended jogging speed is 3,500 μm/sec. The maximum recommended drill bit size is HP 2.

  8. Confined compressive strength analysis can improve PDC bit selection. [Polycrystalline Diamond Compact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabain, R.T.

    1994-05-16

    A rock strength analysis program, through intensive log analysis, can quantify rock hardness in terms of confined compressive strength to identify intervals suited for drilling with polycrystalline diamond compact (PDC) bits. Additionally, knowing the confined compressive strength helps determine the optimum PDC bit for the intervals. Computing rock strength as confined compressive strength can more accurately characterize a rock's actual hardness downhole than other methods. the information can be used to improve bit selections and to help adjust drilling parameters to reduce drilling costs. Empirical data compiled from numerous field strength analyses have provided a guide to selecting PDC drillmore » bits. A computer analysis program has been developed to aid in PDC bit selection. The program more accurately defines rock hardness in terms of confined strength, which approximates the in situ rock hardness downhole. Unconfined compressive strength is rock hardness at atmospheric pressure. The program uses sonic and gamma ray logs as well as numerous input data from mud logs. Within the range of lithologies for which the program is valid, rock hardness can be determine with improved accuracy. The program's output is typically graphed in a log format displaying raw data traces from well logs, computer-interpreted lithology, the calculated values of confined compressive strength, and various optional rock mechanic outputs.« less

  9. Results of the second phase of the drought-disaster test-drilling program near Morristown, N.J.

    USGS Publications Warehouse

    Vecchioli, John; Nichols, William D.; Nemickas, Bronius

    1967-01-01

    The continued drought in northeastern New Jersey through the summer of 1966 with its attendant water-supply problems resulted in an extension of the drought-disaster test-drilling program originally requested by the Office of Emergency Planning on August 30, 1965. Authorization to continue test drilling was fiven by the Office of Emergency Planning on September 26, 1966, with the stipulation that all field work be complete by January 31, 1977. Contractural costs were paid by the Office of Emergency Planning, whereas personnel costs were shared by the U.S. Geological Survey and the New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply.The work undertaken in 1965 by the Geological Survey was "...to preform the necessary drilling and testing of wells to identify the extent and nature of a reserve ground-water source in the vicinity of the Passaic River near the northern New Jersey metropolitan area." Results of this first phase were made available in the fall of 1966 in Water Resources Circular 16 of the New Jersey Department of Conservation and Economic Development. Three of the five areas tested (figure 1)--two in Parsippany-Troy Hills Township (areas 2 and 4) and one in East Hanover Township (area 1), Morris County--proved capable of providing an aggregate sustained yield of 7.5 million gallons daily (mgd) from wells constructed in sand and gravel deposits. Because significant supplies of ground water for emergency use were located in the first phase of the exploratory test-drilling program, it was though desirable to extend the originally planned studies so as to obtain maximum practicable information on emergency supplies.During this second phase of the investigation, drilling was conducted in 16 sites in Chatham, Madison, and Florham Park Boroughs and in Hanover and East Hanover Townships, Morris County. (See figure 2.) The drilling in Hanover and East Hanover Townships, and part of the drilling done in Florham Park was to explore the availability of large undeveloped ground-water supplies. Drilling in Chatham, Madison, and Florham Park Boroughs was done primarily to determine the extent and continuity of buried valley-fill aquifers, so that a full evaluation of the effects of pumpage from other areas on these already heavily pumped areas could be made. In addition, it was anticipated that the drilling could help in defining the feasibility of artificial recharge of the heavily pumped areas and in the determination of the prospective method of recharge and points of emplacement.Arrangements for easements with landowners, preparation of specifications for well drilling and seismic work, and supervision of well drilling and seismic contracts were all performed by the New Jersey District, Water Resources Division of the Geological Survey.Prior to the test drilling, seismic exploration under contract with Alpine Geophysical Associates of Norwood, N. J. was conducted at five locations in the Chatham-Madison-Florham Park area and at one place in Parsippany-Troy Hills Township. The seismic work was done to determine the most favorable location for a test well at several potential test-well sites and to help in the interpretation of subsurface geology between test sites.Contracts for the drilling of the test holes were awarded during November and drilling commences on November 30. Kaye Well drilling, Inc. of Jackson, N. J. was the recipient of a contract for eight of the test holes, and a second contract was awarded to Rinbrand Well Drilling Co., Inc. of Glen Rock, N. J.--also for eight test holes.Acknowledgment is due to the many public officials of Chatham, Madison, Florham Park, Morristown, and East Hanover Township as well as officials of the Braidburn Corporation and Esso Research and Engineering Co., who cooperated by making their lands available for exploration.

  10. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    USGS Publications Warehouse

    Stamm, Robert G.

    2018-06-08

    BackgroundIn the fall of 2011, the U.S. Geological Survey (USGS) was afforded an opportunity to participate in an environmental monitoring study of the potential impacts of a deep, unconventional Marcellus Shale hydraulic fracturing site. The drill site of the prospective case study is the “Range Resources MCC Partners L.P. Units 1-5H” location (also referred to as the “RR–MCC” drill site), located in Washington County, southwestern Pennsylvania. Specifically, the USGS was approached to provide a geologic framework that would (1) provide geologic parameters for the proposed area of a localized groundwater circulation model, and (2) provide potential information for the siting of both shallow and deep groundwater monitoring wells located near the drill pad and the deviated drill legs.The lead organization of the prospective case study of the RR–MCC drill site was the Groundwater and Ecosystems Restoration Division (GWERD) of the U.S. Environmental Protection Agency. Aside from the USGS, additional partners/participants were to include the Department of Energy, the Pennsylvania Geological Survey, the Pennsylvania Department of Environmental Protection, and the developer Range Resources LLC. During the initial cooperative phase, GWERD, with input from the participating agencies, drafted a Quality Assurance Project Plan (QAPP) that proposed much of the objectives, tasks, sampling and analytical procedures, and documentation of results.Later in 2012, the proposed cooperative agreement between the aforementioned partners and the associated land owners for a monitoring program at the drill site was not executed. Therefore, the prospective case study of the RR–MCC site was terminated and no installation of groundwater monitoring wells nor the collection of nearby soil, stream sediment, and surface-water samples were made.Prior to the completion of the QAPP and termination of the perspective case study the geologic framework was rapidly conducted and nearly completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.

  11. Infilling and quality checking of discharge, precipitation and temperature data using a copula based approach

    NASA Astrophysics Data System (ADS)

    Anwar, Faizan; Bárdossy, András; Seidel, Jochen

    2017-04-01

    Estimating missing values in a time series of a hydrological variable is an everyday task for a hydrologist. Existing methods such as inverse distance weighting, multivariate regression, and kriging, though simple to apply, provide no indication of the quality of the estimated value and depend mainly on the values of neighboring stations at a given step in the time series. Copulas have the advantage of representing the pure dependence structure between two or more variables (given the relationship between them is monotonic). They rid us of questions such as transforming the data before use or calculating functions that model the relationship between the considered variables. A copula-based approach is suggested to infill discharge, precipitation, and temperature data. As a first step the normal copula is used, subsequently, the necessity to use non-normal / non-symmetrical dependence is investigated. Discharge and temperature are treated as regular continuous variables and can be used without processing for infilling and quality checking. Due to the mixed distribution of precipitation values, it has to be treated differently. This is done by assigning a discrete probability to the zeros and treating the rest as a continuous distribution. Building on the work of others, along with infilling, the normal copula is also utilized to identify values in a time series that might be erroneous. This is done by treating the available value as missing, infilling it using the normal copula and checking if it lies within a confidence band (5 to 95% in our case) of the obtained conditional distribution. Hydrological data from two catchments Upper Neckar River (Germany) and Santa River (Peru) are used to demonstrate the application for datasets with different data quality. The Python code used here is also made available on GitHub. The required input is the time series of a given variable at different stations.

  12. Solvent sensitivity of smart 3D-printed nanocomposite liquid sensor

    NASA Astrophysics Data System (ADS)

    Aliheidari, Nahal; Ameli, Amir; Pötschke, Petra

    2018-03-01

    Fused deposition modeling (FDM) is one of the 3D printing methods that has attracted significant attention. In this method, small and complex samples with nearly no limitation in geometry can be fabricated layer by layer to form end-use parts. This work investigates the liquid sensing behavior of FDM printed flexible thermoplastic polyurethane, TPU filled with multiwalled carbon nanotubes, MWCNTs. The sensing capability of printed TPU-MWCNT was studied as a function of MWCNT content and infill density in response to different solvents, i.e., ethanol, acetone and toluene. The solvents were selected based on their widespread use and importance in medical and industrial applications. U-shaped liquid sensors with 2, 3 and 4wt.% MWCNT content were printed at three different infill densities of 50, 75 and 100%. Solvent sensitivity was then characterized by immersing the sensors in the solvents and measuring the resistance evolution over 25s. The results indicated a sensitivity order of acetone > toluene > ethanol, which was in agreement with the predictions of FloryHiggins solubility equation. For all the solvents, the sensitivity was enhanced as the infill density of the printed samples was decreased. This was attributed to the increased surface area to volume ratio and shortened diffusion paths. The MWCNT content was also observed to have a profound effect on the sensitivity; in samples with partial infill, the sensitivity was found to be inversely proportional to the MWCNT content, such that the highest resistance change was obtained for nanocomposites with the lowest MWCNT content of 2wt.%. For instance, a resistance increase of more than 10 times was obtained in 25 s once TPU-2wt.%MWCNT with 50% infill was tested against acetone. The results of this work reveals that highly sensitive liquid sensors can be fabricated with the aid of 3D printing without the need for complex processing methods.

  13. Interpenetrated Networks between Graphitic Carbon Infilling and Ultrafine TiO2 Nanocrystals with Patterned Macroporous Structure for High-Performance Lithium Ion Batteries.

    PubMed

    Zheng, Wenji; Yan, Zhijun; Dai, Yan; Du, Naixu; Jiang, Xiaobin; Dai, Hailing; Li, Xiangcun; He, Gaohong

    2017-06-21

    Interpenetrated networks between graphitic carbon infilling and ultrafine TiO 2 nanocrystals with patterned macropores (100-200 nm) were successfully synthesized. Polypyrrole layer was conformably coated on the primary TiO 2 nanoparticles (∼8 nm) by a photosensitive reaction and was then transformed into carbon infilling in the interparticle mesopores of the TiO 2 nanoparticles. Compared to the carbon/graphene supported TiO 2 nanoparticles or carbon coated TiO 2 nanostructures, the carbon infilling would provide a conductive medium and buffer layer for volume expansion of the encapsulated TiO 2 nanoparticles, thus enhancing conductivity and cycle stability of the C-TiO 2 anode materials for lithium ion batteries (LIBs). In addition, the macropores with diameters of 100-200 nm in the C-TiO 2 anode and the mesopores in carbon infilling could improve electrolyte transportation in the electrodes and shorten the lithium ion diffusion length. The C-TiO 2 electrode can provide a large capacity of 192.8 mA h g -1 after 100 cycles at 200 mA g -1 , which is higher than those of the pure macroporous TiO 2 electrode (144.8 mA h g -1 ), C-TiO 2 composite electrode without macroporous structure (128 mA h g -1 ), and most of the TiO 2 based electrodes in the literature. Importantly, the C-TiO 2 electrode exhibits a high rate performance and still delivers a high capacity of ∼140 mA h g -1 after 1000 cycles at 1000 mA g -1 (∼5.88 C), suggesting good lithium storage properties of the macroporous C-TiO 2 composites with high capacity, cycle stability, and rate capability. This work would be instructive for designing hierarchical porous TiO 2 based anodes for high-performance LIBs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudleson, B.; Arnold, M.; McCann, D.

    Rapid detection of unexpected drilling events requires continuous monitoring of drilling parameters. A major R and D program by a drilling contractor has led to the introduction of a computerized monitoring system on its offshore rigs. System includes advanced color graphics displays and new smart alarms to help both contractor and operator personnel detect and observe drilling events before they would normally be apparent with conventional rig instrumentation. This article describes a module of this monitoring system, which uses expert system technology to detect the earliest stages of drillstring washouts. Field results demonstrate the effectiveness of the smart alarm incorporatedmore » in the system. Early detection allows the driller to react before a twist-off results in expensive fishing operations.« less

  15. Semantic Approaches Applied to Scientific Ocean Drilling Data

    NASA Astrophysics Data System (ADS)

    Fils, D.; Jenkins, C. J.; Arko, R. A.

    2012-12-01

    The application of Linked Open Data methods to 40 years of data from scientific ocean drilling is providing users with several new methods for rich-content data search and discovery. Data from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) have been translated and placed in RDF triple stores to provide access via SPARQL, linked open data patterns, and by embedded structured data through schema.org / RDFa. Existing search services have been re-encoded in this environment which allows the new and established architectures to be contrasted. Vocabularies including computed semantic relations between concepts, allow separate but related data sets to be connected on their concepts and resources even when they are expressed somewhat differently. Scientific ocean drilling produces a wide range of data types and data sets: borehole logging file-based data, images, measurements, visual observations and the physical sample data. The steps involved in connecting these data to concepts using vocabularies will be presented, including the connection of data sets through Vocabulary of Interlinked Datasets (VoID) and open entity collections such as Freebase and dbPedia. Demonstrated examples will include: (i) using RDF Schema for inferencing and in federated searches across NGDC and IODP data, (ii) using structured data in the data.oceandrilling.org web site, (iii) association through semantic methods of age models and depth recorded data to facilitate age based searches for data recorded by depth only.

  16. Effect of bit wear on hammer drill handle vibration and productivity.

    PubMed

    Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David

    2017-08-01

    The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.

  17. Ocean Drilling Program: Publication Services: Online Manuscript Submission

    Science.gov Websites

    products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP/TAMU Science Operator Home ODP's main web site Publications Policy Author Instructions Scientific Results Manuscript use the submission and review forms available on the IODP-USIO publications web site. ODP | Search

  18. Ocean Drilling Program: TAMRF Administrative Services: Meeting, Travel, and

    Science.gov Websites

    Port-Call Information ODP/TAMU Science Operator Home Mirror sites ODP/TAMU staff Cruise information Science and curation services Publication services and products Drilling services and tools Online ODP Meeting, Travel, and Port-Call Information All ODP meeting and port-call activities are complete

  19. Ocean Drilling Program: Web Site Access Statistics

    Science.gov Websites

    and products Drilling services and tools Online Janus database Search the ODP/TAMU web site ODP's main See statistics for JOIDES members. See statistics for Janus database. 1997 October November December accessible only on www-odp.tamu.edu. ** End of ODP, start of IODP. Privacy Policy ODP | Search | Database

  20. 40 CFR 112.10 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10... Countermeasure Plan requirements for onshore oil drilling and workover facilities. 112.10 Section 112.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION...

  1. 40 CFR 112.10 - Spill Prevention, Control, and Countermeasure Plan requirements for onshore oil drilling and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Marine Mammal Oils; and Vegetable Oils (Including Oils from Seeds, Nuts, Fruits, and Kernels) § 112.10... Countermeasure Plan requirements for onshore oil drilling and workover facilities. 112.10 Section 112.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS OIL POLLUTION PREVENTION...

  2. Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.

    2018-03-01

    Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.

  3. The ICDP Hotspot Scientific Drilling Program: Overview of geophysical logging and seismic imaging through basaltic and rhyolitic volcanic deposits

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.

    2012-12-01

    The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must relate to the style of alteration.

  4. Scientific Drilling in the Snake River Plain: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.

    2006-12-01

    The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation in a mid-crustal sill complex that has been imaged seismically. Further, the chemical and isotopic systematics of these basalts require assimilation of consanguineous mafic material inferred to represent previously intruded sills. Major and trace element modeling suggest formation of the primary melts by melting of a source similar to E- MORB source. Trace element systematics document mixing between a plume-like source and a more depleted source that is not DMM. A similar more depleted source is inferred for Hawaii, suggesting that it is not continental lithosphere. Future scientific drilling in the SRP is the focus of Project HOTSPOT, a multi-disciplinary initiative that seeks to document time-space variations in the SRP-Yellowstone volcanic system. A workshop sponsored by the International Continental Drilling Program was held in May 2006 to develop a targeted program of scientific drilling that examines the entire plume-lithosphere system across a major lithospheric boundary, with holes targeting basalt, rhyolite, and sediments. These drill holes will complement geophysical studies of continental dynamics (e.g., Earthscope), as well as current studies centered on Yellowstone. Additional components of a targeted drilling program include studies of lacustrine sediments that document paleoclimate change in North America during the Pliocene—Pleistocene and fluid flow at deeper crustal levels.

  5. Program for the improvement of downhole drilling motor bearings and seals. Phase V. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLafosse, P.H.; Tibbitts, G.A.; Black, A.D.

    1983-08-01

    The work done during the fifth and final phase of a program to improve downhole drilling motor bearing and seals is described. The principal activities in this phase were: (a) testing seals with abrasive-laden mud on the low-pressure side; (b) test second and third generation designs of both elastomeric chevron seals and Teflon U-seals; and (c) testing a full-scale bearing/seal package. Several operating parameters which have a radical effect on seal life were identified, and some promising designs and materials were tested.

  6. STANSBURY ROADLESS AREAS, UTAH.

    USGS Publications Warehouse

    Sorensen, Martin L.; Kness, Richard F.

    1984-01-01

    A mineral-resource survey of the Stansbury Roadless Areas, Utah was conducted and showed that there is little likelihood for the occurrence of metallic mineral resources in the areas. Limestone and dolomite underlie approximately 50 acres in the roadless areas and constitute a nonmetallic mineral resource of undetermined value. The oil and gas potential is not known and cannot be assessed without exploratory geophysical and drilling programs. There are no known geothermal resources. An extensive program of geophysical exploration and exploratory drilling would be necessary to determine the potential for oil and gas in the Stansbury Roadless Areas.

  7. Ocean drilling ship chosen

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    The Sedco/BP 471, owned jointly by Sedco, Inc., of Dallas, Tex., and British Petroleum, has been selected as the drill ship for the Ocean Drilling Program (ODP). The contract, with a specified initial term of 4 years with 10 1-year options after that, is expected to be signed by mid March by Texas A&M University, the ODP science operator, and Sedco, Inc. Texas A&M will develop the design for scientific and laboratory spaces aboard the Sedco/BP 471 and will oversee the ship conversion. Testing and shakedown of the ship is scheduled for the coming autumn; the first scientific cruise is scheduled for next January.One year ago, the commercial drilling market sagged, opening up the option for leasing a commercial drill ship (Eos, February 22, 1983, p. 73). Previously, the ship of choice had been the Glomar Explorer; rehabilitating the former CIA salvage ship would have been extremely expensive, however.

  8. Test wells T23, T29, and T30, White Sands Missile Range and Fort Bliss Military Reservation, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Myers, R.G.; Pinckley, K.M.

    1984-01-01

    Three test wells, T23, T29, and T30, were drilled in south-central New Mexico as part of a joint military training program sponsored by the U.S. Army in November 1982. Test well T23 was drilled as an exploratory and monitoring well in the proposed Soledad well field at the Fort Bliss Military Reservation. Test wells T29 and T30 were drilled at White Sands Missile Range. Test well T29 was drilled as an observation well in the vicinity of the outfall channel from the sewage treatment plant. Test well T30 was drilled as an observation well for a landfill south of the well site. Information obtained from these wells includes lithologic logs for all wells and borehole-geophysical logs from the cased wells for test wells T29 and T30. (USGS)

  9. Design and Implementation of Multifunctional Automatic Drilling End Effector

    NASA Astrophysics Data System (ADS)

    Wang, Zhanxi; Qin, Xiansheng; Bai, Jing; Tan, Xiaoqun; Li, Jing

    2017-03-01

    In order to realize the automatic drilling in aircraft assembly, a drilling end effector is designed by integrating the pressure unit, drilling unit, measurement unit, control system and frame structure. In order to reduce the hole deviation, this paper proposes a vertical normal adjustment program based on 4 laser distance sensors. The actual normal direction of workpiece surface can be calculated through the sensors measurements, and then robot posture is adjusted to realize the hole deviation correction. A base detection method is proposed to detect and locate the hole automatically by using the camera and the reference hole. The experiment results show that the position accuracy of the system is less than 0.3mm, and the normal precision is less than 0.5°. The drilling end effector and robot can greatly improve the efficiency of the aircraft parts and assembly quality, and reduce the product development cycle.

  10. Interaction of 3H+ (as HTO) and 36Cl- (as Na36Cl) with crushed granite and corresponding fracture infill material investigated in column experiments.

    PubMed

    Štamberg, K; Palágyi, Š; Videnská, K; Havlová, V

    The transport of 3 H + (as HTO) and 36 Cl - (as Na 36 Cl) was investigated in the dynamic system, i.e., in the columns filled with crushed pure granite and fracture infill of various grain sizes. The aim of column experiments was to determine important transport parameter, such as the retardation, respectively distribution coefficients, Peclet numbers and hydrodynamic dispersion coefficients. Furthermore, the research was focused to quantification of the effect of grain size on migration of studied radionuclides. The experimental breakthrough curves were fitted by a model based on the erfc-function, assuming a linear reversible equilibrium sorption/desorption isotherm, and the above mentioned transport parameters were determined. The results showed that influence of grain size on sorption of 3 H + and 36 Cl - was negligible. Retardation and distribution coefficients of both tracers converged to one and zero, respectively, in case of all fractions of crushed granite and infill material. Generally, the presumed ion exclusion of 36 Cl in anionic form was proved under given conditions, only very weak one seems to exist in a case of infill material. In principal, both radionuclides behaved as non-sorbing, conservative tracers. On the other hand, the influence of grain size on Peclet numbers value and on dispersion coefficient was observed for both crystalline materials, namely in agreement with theoretical suppositions that the values of Peclet numbers decrease with increasing grain size and values of dispersion coefficient increase.

  11. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel

    PubMed Central

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-01-01

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality. PMID:28787906

  12. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  13. In-Plane Behaviour of a Reinforcement Concrete Frame with a Dry Stack Masonry Panel.

    PubMed

    Lin, Kun; Totoev, Yuri Zarevich; Liu, Hongjun; Guo, Tianyou

    2016-02-11

    In order to improve the energy dissipation of the masonry infilled frame structure while decreasing the stiffening and strengthening effects of the infill panels, a new dry stacked panel (DSP) semi-interlocking masonry (SIM) infill panel has been developed. In this paper, the material properties of DSP and a traditional unreinforced masonry (URM) panel have been evaluated experimentally. A series of cyclic tests were performed to investigate the cyclic behaviour of the reinforcement concrete (RC) frame with different infill panels. The failure modes, damage evolution, hysteretic behaviour, stiffness degradation and energy dissipation were compared and analysed. We concluded that DSP is capable of significantly improving the seismic energy dissipation due to its hysteretic behaviour when the frame is in elastic stage without increasing the stiffness of the frame. Therefore, DSP or SIM panels can be considered as frictional dampers. Based on the experimental results, the influence of DSP was examined. Using the parallel model, the hysteretic loops of DSP subjected to different load cases were achieved. The typical full hysteretic loop for DSP could be divided into three distinct stages of behaviour: packing stage, constant friction stage and equivalent strut stage. The connection between the panel and the frame had a great effect on the transferring of different mechanical stages. The constant friction stage was verified to provide substantial energy dissipation and benefits to the ductility of the structure, which, therefore, is suggested to be prolonged in reality.

  14. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    NASA Astrophysics Data System (ADS)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  15. Investigation of the inner structure of La Crosa de Sant Dalmai maar (Catalan Volcanic Zone, Spain)

    NASA Astrophysics Data System (ADS)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Himi, Mahjoub; Lovera, Raúl

    2012-12-01

    La Crosa de Sant Dalmai volcano is the largest volcanic edifice of the Catalan Volcanic Zone (NE Spain). It is a very well preserved maar-type structure, 1.5 km in diameter, excavated at the contact between a hard substrate and a soft substrate formed by Palaeozoic granites and Pliocene and Quaternary gravels, respectively. In order to infer the uppermost inner structure of La Crosa de Sant Dalmai maar and to characterise its main geological and tectonic constraints, we have performed a multiparametric geophysical study including gravimetry, magnetometry, self-potential, and electrical resistivity tomography. The results obtained together with a field geology revision and additional geological data from two drill cores, provide a detailed picture of the post-eruptive maar infill sequence as well as of the uppermost part of the maar-diatreme structure. This information helps in understanding the origin and subsequent evolution of the volcano, which included an alternation of phreatomagmatic and Strombolian phases. Geophysical data show that the last Strombolian phase, which culminated with the formation of a scoria cone inside the maar, was associated with a NW-SE trending regional fault. The little erosion and degradation of the original tephra ring suggest a much younger age of La Crosa de Sant Dalmai maar than was previously stated.

  16. Optimization of Deep Drilling Performance--Development and Benchmark Testing of Advanced Diamond Product Drill Bits & HP/HT Fluids to Significantly Improve Rates of Penetration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alan Black; Arnis Judzis

    2003-10-01

    This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less

  17. Method for laser drilling subterranean earth formations

    DOEpatents

    Shuck, Lowell Z.

    1976-08-31

    Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.

  18. --No Title--

    Science.gov Websites

    Search Search Home SH Reference Manual E19 Documentation Program Management Training/Drills Other Dataweb National Water Information System Database SH Reference Manual, E-19 Docs, Program Management

  19. Software Reviews.

    ERIC Educational Resources Information Center

    Davis, Shelly J., Ed.; Knaupp, Jon, Ed.

    1984-01-01

    Reviewed is computer software on: (1) classification of living things, a tutorial program for grades 5-10; and (2) polynomial practice using tiles, a drill-and-practice program for algebra students. (MNS)

  20. Erosion and filling of glacially-overdeepened troughs in the Northern Alpine Foreland as recorded in a deep drill core from Northern Switzerland

    NASA Astrophysics Data System (ADS)

    Dehnert, Andreas; Axel Kemna, Hans; Anselmetti, Flavio; Drescher-Schneider, Ruth; Graf, Hans Rudolf; Lowick, Sally; Preusser, Frank; Züger, Andreas; Furrer, Heinz

    2010-05-01

    As the major weather divide in Europe, the Alps represent one of the most interesting areas for understanding past climate change and its impact on continental environments. However, our knowledge of the Quaternary environmental history of the region is still rather limited, especially for the time preceding the last glaciation of the Alps. Geological and geophysical studies in the Wehntal, 20 km northwest of Zurich, Switzerland, in 2007 and 2008 have revealed the existence of a glacially overdeepened trough cut into Miocene molasse bedrock, which is today filled with ~90 to 180 m of Pleistocene sediments. In March 2009, a 93.6 m long sediment core (NW09/1) has been drilled east of the famous mammoth-site Niederweningen. This record is one of the very few sites in the northern Alpine Foreland that provides crucial insights into the timing of the erosion and infilling history of pre-Eemian glacially overdeepened troughs and also helps to understand the climate and environmental history. Based on chronological data deduced from the nearby, but shorter, 2007 core and on new multi-proxy data, the NW09/1 record is interpreted as: 4.1 m of in-situ molasse bedrock, overlain by 3.4 m of diamictic till. These glacial deposits were deposited by a Linth glacier lobe during Marine Isotope Stage (MIS) 6 (Rissian), although, the possibility that an even older glaciation was responsible cannot currently be excluded (e.g. MIS 8, luminescence dating, pollen interpretations, and palaeomagnetic studies in progress). It is suggested that this extensive ice advance, which once covered the entire Wehntal valley, caused the final erosion of the bedrock. The till is overlain by a 29.5 m thick sequence of laminated, carbonate-rich, fine-grained siliciclastic sediments that are interpreted as proglacial lake sediments. It is supposed that this unit was deposited in a proximal setting to a calving glacier-front confirmed by the presence of numerous dropstones. The damming of this Wehntal palaeolake was most likely caused by a terminal moraine located ~3 km to the northwest of the drill site. The overlying 37.9 m of fine-grained lake sediments are comparable to the former unit, but the absence of dropstones and the occurrence of multiple interstratified sand layers (up to 40 cm in thickness) indicate a more distal proglacial lake facies and thus, a melting of the feeding glacier lobe. The subsequent 9.5 m of fine-grained material are characterised by a striking drop in carbonate content (from ~50 to 20 wt%), which is interpreted as a decoupling of the Wehntal catchment from the Linth glacier system that originates in a carbonate-rich hinterland. Furthermore, the top of this unit documents the gradual infilling of the palaeolake and the onset of biological productivity due to climate warming. This is also documented by occurrence of pyrite and siderite concretions. The prominent environmental change culminates in the abrupt accumulation of peat (1.8 m) during the interglacial MIS 5e (late Eemian). Afterwards, the Wehntal was recaptured by a younger palaeolake after which the peat became flooded. The resulting 4.9 m of silty sediments have carbonate contents of ~25 wt% and also show post-sedimentary pyrite and siderite concretions. The source of sediment is interpreted as derived from the molassic Zurich Highlands and the Jurassic limestone of the Lägern mountain, which borders the Wehntal valley to the south. The cause of the rise in water level subsequent to deposition of the MIS 5e peat, however, has not yet been identified. Eventually, the younger palaeolake was filled, resulting in the accumulation of 0.7 m of fossil rich Middle Würmian peat (‘Mammoth peat'). This peat was finally covered with 2.0 m of post-Würmian-to-recent silts and sands.

  1. OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnis Judzis

    2004-07-01

    This document details the progress to date on the ''OPTIMIZATION OF MUD HAMMER DRILLING PERFORMANCE--A PROGRAM TO BENCHMARK THE VIABILITY OF ADVANCED MUD HAMMER DRILLING'' contract for the quarter starting April 2004 through June 2004. The DOE and TerraTek continue to wait for Novatek on the optimization portion of the testing program (they are completely rebuilding their fluid hammer). The latest indication is that the Novatek tool would be ready for retesting only 4Q 2004 or later. Smith International's hammer was tested in April of 2004 (2Q 2004 report). Accomplishments included the following: (1) TerraTek re-tested the ''optimized'' fluid hammermore » provided by Smith International during April 2004. Many improvements in mud hammer rates of penetration were noted over Phase 1 benchmark testing from November 2002. (2) Shell Exploration and Production in The Hague was briefed on various drilling performance projects including Task 8 ''Cutter Impact Testing''. Shell interest and willingness to assist in the test matrix as an Industry Advisor is appreciated. (3) TerraTek participated in a DOE/NETL Review meeting at Morgantown on April 15, 2004. The discussions were very helpful and a program related to the Mud Hammer optimization project was noted--Terralog modeling work on percussion tools. (4) Terralog's Dr. Gang Han witnessed some of the full-scale optimization testing of the Smith International hammer in order to familiarize him with downhole tools. TerraTek recommends that modeling first start with single cutters/inserts and progress in complexity. (5) The final equipment problem on the impact testing task was resolved through the acquisition of a high data rate laser based displacement instrument. (6) TerraTek provided Novatek much engineering support for the future re-testing of their optimized tool. Work was conducted on slip ring [electrical] specifications and tool collar sealing in the testing vessel with a reconfigured flow system on Novatek's collar.« less

  2. Applying probabilistic well-performance parameters to assessments of shale-gas resources

    USGS Publications Warehouse

    Charpentier, Ronald R.; Cook, Troy

    2010-01-01

    In assessing continuous oil and gas resources, such as shale gas, it is important to describe not only the ultimately producible volumes, but also the expected well performance. This description is critical to any cost analysis or production scheduling. A probabilistic approach facilitates (1) the inclusion of variability in well performance within a continuous accumulation, and (2) the use of data from developed accumulations as analogs for the assessment of undeveloped accumulations. In assessing continuous oil and gas resources of the United States, the U.S. Geological Survey analyzed production data from many shale-gas accumulations. Analyses of four of these accumulations (the Barnett, Woodford, Fayetteville, and Haynesville shales) are presented here as examples of the variability of well performance. For example, the distribution of initial monthly production rates for Barnett vertical wells shows a noticeable change with time, first increasing because of improved completion practices, then decreasing from a combination of decreased reservoir pressure (in infill wells) and drilling in less productive areas. Within a partially developed accumulation, historical production data from that accumulation can be used to estimate production characteristics of undrilled areas. An understanding of the probabilistic relations between variables, such as between initial production and decline rates, can improve estimates of ultimate production. Time trends or spatial trends in production data can be clarified by plots and maps. The data can also be divided into subsets depending on well-drilling or well-completion techniques, such as vertical in relation to horizontal wells. For hypothetical or lightly developed accumulations, one can either make comparisons to a specific well-developed accumulation or to the entire range of available developed accumulations. Comparison of the distributions of initial monthly production rates of the four shale-gas accumulations that were studied shows substantial overlap. However, because of differences in decline rates among them, the resulting estimated ultimate recovery (EUR) distributions are considerably different.

  3. Challenges in Leadership: A Text for U.S. Marine Corps Junior ROTC.

    ERIC Educational Resources Information Center

    Marine Corps Development and Education Command, Quantico, VA.

    The textbook is addressed to seniors in high school Marine Corps Junior Reserve Officer Training Corps (JROTC) programs and deals with leaders and the various situations in which they may function. The first part explains the history of military drill and aspects of modern drill as practiced by military units today. The section on leadership…

  4. Interface between a printed circuit board computer aided design tool (Tektronix 4051 based) and a numerical paper tape controlled drill press (Slo-Syn 530: 100 w/ Dumore Automatic Head Number 8391)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, B.K.; Chinn, V.K.

    1981-01-01

    The development and use of computer programs written to produce the paper tape needed for the automation, or numeric control, of drill presses employed to fabricate computed-designed printed circuit boards are described. (LCL)

  5. Horizontal technology helps spark Louisiana`s Austin chalk trend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koen, A.D.

    1996-04-29

    A handful of companies paced by some of the most active operators in the US are pressing the limits of horizontal technology to ramp up Cretaceous Austin chalk exploration and development (E and D) across Louisiana. Companies find applications in Louisiana for lessons learned drilling horizontal wells to produce chalk intervals in Texas in Giddings, Pearsall, and Brookeland fields. Continuing advances in horizontal well technology are helping operators deal with deeper, hotter reservoirs in more complex geological settings that typify the chalk in Louisiana. Better horizontal drilling, completion, formation evaluation, and stimulation techniques have enabled operators to produce oil andmore » gas from formations previously thought to be uneconomical. Most of the improved capabilities stem from better horizontal tools. Horizontal drilling breakthroughs include dual powered mud motors and retrievable whipstocks, key links in the ability to drill wells with more than one horizontal lateral. Better geosteering tools have enabled operators to maintain horizontal wellbores in desired intervals by signaling bit positions downhole while drilling. This paper reviews the technology and provides a historical perspective on the various drilling programs which have been completed in this trend. It also makes predictions on future drilling successes.« less

  6. Recent Multidisciplinary Research Initiatives and IODP Drilling in the South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, J.; Li, C. F.; Wang, P.; Kulhanek, D. K.

    2016-12-01

    The South China Sea (SCS) is the largest low-latitude marginal sea in the world. Its formation and evolution are linked to the complex continental-oceanic tectonic interaction of the Eurasian, Pacific, and Indo-Australian plates. Despite its relatively small size and short history, the SCS has undergone nearly a complete Wilson cycle from continental break-up to seafloor spreading to subduction, serving as a natural laboratory for studying the linkages between tectonic, volcanic, and oceanic processes. The last several years have witnessed significant progress in investigation of the SCS through comprehensive research programs using multidisciplinary approaches and enhanced international collaboration. The International Ocean Discovery Program (IODP) Expedition 349 drilled and cored five sites in the SCS in 2014. The expedition successfully obtained the first basaltic rock samples of the SCS relict spreading center, discovered large and frequent deep-sea turbidity events, and sampled multiple seamount volcaniclastic layers. In addition, high-resolution near-seafloor magnetic surveys were conducted in the SCS with survey lines passing near some of the IODP drilling sites. Together the IODP drilling and deep-tow magnetic survey results confirmed, for the first time, that the entire SCS basin might have stopped seafloor spreading at similar ages in early Miocene, providing important constraints on marginal sea geodynamic models. In 2007, IODP Expeditions 367 and 368 will drill the northern margin of the SCS to investigate the mechanisms of rifting to spreading processes. Meanwhile, major progress in studying the SCS processes has also been made through comprehensive multidisciplinary programs, for example, the eight-year-long "South China Sea Deep" initiative, which also supports and encourages strong international collaboration. This presentation will highlight the recent multidisciplinary research initiatives in investigation of the SCS and the important role of international collaboration.

  7. Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR

    NASA Astrophysics Data System (ADS)

    Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.

    2012-12-01

    The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.

  8. International Collaboration in Data Management for Scientific Ocean Drilling: Preserving Legacy Data While Implementing New Requirements.

    NASA Astrophysics Data System (ADS)

    Rack, F. R.

    2005-12-01

    The Integrated Ocean Drilling Program (IODP: 2003-2013 initial phase) is the successor to the Deep Sea Drilling Project (DSDP: 1968-1983) and the Ocean Drilling Program (ODP: 1985-2003). These earlier scientific drilling programs amassed collections of sediment and rock cores (over 300 kilometers stored in four repositories) and data organized in distributed databases and in print or electronic publications. International members of the IODP have established, through memoranda, the right to have access to: (1) all data, samples, scientific and technical results, all engineering plans, data or other information produced under contract to the program; and, (2) all data from geophysical and other site surveys performed in support of the program which are used for drilling planning. The challenge that faces the individual platform operators and management of IODP is to find the right balance and appropriate synergies among the needs, expectations and requirements of stakeholders. The evolving model for IODP database services consists of the management and integration of data collected onboard the various IODP platforms (including downhole logging and syn-cruise site survey information), legacy data from DSDP and ODP, data derived from post-cruise research and publications, and other IODP-relevant information types, to form a common, program-wide IODP information system (e.g., IODP Portal) which will be accessible to both researchers and the public. The JANUS relational database of ODP was introduced in 1997 and the bulk of ODP shipboard data has been migrated into this system, which is comprised of a relational data model consisting of over 450 tables. The JANUS database includes paleontological, lithostratigraphic, chemical, physical, sedimentological, and geophysical data from a global distribution of sites. For ODP Legs 100 through 210, and including IODP Expeditions 301 through 308, JANUS has been used to store data from 233,835 meters of core recovered, which are comprised of 38,039 cores, with 202,281 core sections stored in repositories, which have resulted in the taking of 2,299,180 samples for scientists and other users (http://iodp.tamu.edu/janusweb/general/dbtable.cgi). JANUS and other IODP databases are viewed as components of an evolving distributed network of databases, supported by metadata catalogs and middleware with XML workflows, that are intended to provide access to DSDP/ODP/IODP cores and sample-based data as well as other distributed geoscience data collections (e.g., CHRONOS, PetDB, SedDB). These data resources can be explored through the use of emerging data visualization environments, such as GeoWall, CoreWall (http://(www.evl.uic.edu/cavern/corewall), a multi-screen display for viewing cores and related data, GeoWall-2 and LambdaVision, a very-high resolution, networked environment for data exploration and visualization, and others. The U.S Implementing Organization (USIO) for the IODP, also known as the JOI Alliance, is a partnership between Joint Oceanographic Institutions (JOI), Texas A&M University, and Lamont-Doherty Earth Observatory of Columbia University. JOI is a consortium of 20 premier oceanographic research institutions that serves the U.S. scientific community by leading large-scale, global research programs in scientific ocean drilling and ocean observing. For more than 25 years, JOI has helped facilitate discovery and advance global understanding of the Earth and its oceans through excellence in program management.

  9. Development of improved high temperature seals and lubricants for downhole motors in geothermal applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De La Fosse, P.H.; Black, A.D.; DiBona, B.G.

    1983-01-01

    A major limitation of downhole mud motors for geothermal drilling, as well as straight-hole oil and gas drilling, is the bearing section. Reduced bearing life results from the inability to seal a lubricant in the bearing pack. A reliable rotary seal will extend the bearing life and will allow high pressure drops across the bit for improved bottomhole cleaning and increased drilling rate. This paper summarizes the results of a six-year program funded by the U.S. Department of Energy/Division of Geothermal Energy to develop a sealed bearing pack for use with downhole motors in geothermal applications. Descriptions of the Sealmore » Test Machine, Lubricant Test Machine and Bearing Pack Test Facility are presented. Summaries of all seal tests, lubricant tests and bearing pack tests are provided; and a comprehensive program bibliography is presented.« less

  10. Israel: World Oil Report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-08-01

    This paper reports that Major activity in 1990 was Israel National Oil Co.'s startup in November of a $30 million exploratory drilling program near the Dead Sea. Isramco's deep Yam 2 offshore wildcat was apparently suspended after gas shows and mechanical problems. In 1990, the Negev venture 2, led by Isramco, acquired an additional one million-acre offshore exploration license between Ashdod (offshore from which Yam 2 was sited) and Haifa. The group plans a $40-million three-well program. Drilling last year totaled four wells and 31,114 ft of hole. Included were one oil well extension and three dry holes. This year,more » eight onshore wildcats and two development wells, plus one offshore wildcat are expected to be drilled. Production averaged only 248 bopd and 3.2 MMcfgd in 1990. Reserves are estimated at 1.3 million bbl of oil and 6.8 bcfg.« less

  11. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Self-Trail, Jean M.; Edwards, Lucy E.; Litwin, Ronald J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)–U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of water- saturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dino-flagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common.

  12. Paleontological interpretations of crater processes and infilling of synimpact sediments from the Chesapeake Bay impact structure

    USGS Publications Warehouse

    ,; Edwards, L.E.; Litwin, R.J.

    2009-01-01

    Biostratigraphic analysis of sedimentary breccias and diamictons in the Chesapeake Bay impact structure provides information regarding the timing and processes of late-stage gravitational crater collapse and ocean resurge. Studies of calcareous nannofossil and palynomorph assemblages in the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville A and B cores show the mixed-age, mixed-preservation microfossil assemblages that are typical of deposits from the upper part of the Chesapeake Bay impact structure. Sparse, poorly preserved, possibly thermally altered pollen is present within a gravelly sand interval below the granite slab at 1392 m in Eyreville core B, an interval that is otherwise barren of calcareous nannofossils and dinocysts. Gravitational collapse of watersaturated sediments from the transient crater wall resulted in the deposition of sediment clasts primarily derived from the nonmarine Cretaceous Potomac Formation. Collapse occurred before the arrival of resurge. Low pollen Thermal Alteration Index (TAI) values suggest that these sediments were not thermally altered by contact with the melt sheet. The arrival of resurge sedimentation is identified based on the presence of diamicton zones and stringers rich in glauconite and marine microfossils at 866.7 m. This horizon can be traced across the crater and can be used to identify gravitational collapse versus ocean-resurge sedimentation. Glauconitic quartz sand diamicton dominates the sediments above 618.2 m. Calcareous nannofossil and dinoflagellate data from this interval suggest that the earliest arriving resurge from the west contained little or no Cretaceous marine input, but later resurge pulses mined Cretaceous sediments east of the Watkins core in the annular trough. Additionally, the increased distance traveled by resurge to the central crater in turbulent flow conditions resulted in the disaggregation of Paleogene unconsolidated sediments. As a result, intact Paleogene clasts in Eyreville cores are rare, but clasts of semilithified Potomac Formation silts and clays are common. ?? 2009 The Geological Society of America.

  13. Test wells T21, T22, and T25, White Sands Missile Range, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Myers, R.G.

    1983-01-01

    Three test wells, T21, T22, and T25, were drilled at White Sands Missile Range in south-central New Mexico as part of a joint military program sponsored by the U.S. Army in September 1982. T21 and T22 were drilled as observation wells for two old landfills. T25 was drilled as an exploratory hole to obtain lithologic and borehole-geophysical data in the vicinity of the proposed replacement well for Supply Well 15. Information obtained from these wells includes borehole-geophysical and driller's logs.

  14. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  15. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  16. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.

    2005-01-01

    The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.

  17. Q: How Do Oil and Gas Companies Know Where to Drill?

    ERIC Educational Resources Information Center

    Robertson, William C.

    2010-01-01

    Contrary to popular opinion, most oil is not discovered by a backwoods hunter shooting at some food when up through the ground comes bubbling crude (you younger people ask your parents what silly TV program the author is referring to). Neither is it discovered simply by drilling holes randomly to see what you can find. There are several methods,…

  18. A HyperCard Program for Business German.

    ERIC Educational Resources Information Center

    Paulsell, Patricia R.

    Although the use of computer-assisted language instruction software has been mainly limited to grammatical/syntactical drills, the increasing number of language professionals with programming skills is leading to the development of more sophisticated language education programs. This report describes the generation of such a program using the…

  19. Evaluating Math Drill and Practice Programs.

    ERIC Educational Resources Information Center

    Schnorr, Janice M.; Semmel, Dorothy S.

    1986-01-01

    General guidelines for a process evaluation of software for a specific subject and grade include: (1) Specify instructional objectives and list desired software program characteristics; (2) Access and review descriptions of programs (information sources for math programs are listed); (3) Preview software; and (4) Compare and make purchase…

  20. Migration behavior of naturally occurring radionuclides at the Nopal I uranium deposit, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Prikryl, James D.; Pickett, David A.; Murphy, William M.; Pearcy, English C.

    1997-04-01

    Oxidation of pyrite at the Nopal I uranium deposit, Peña Blanca district, Chihuahua, Mexico has resulted in the formation of Fe-oxides/hydroxides. Anomalous U concentrations (i.e. several hundred to several thousand ppm) measured in goethite, hematite, and amorphous Fe-oxyhydroxides in a major fracture that crosscuts the deposit and the absence of U minerals in the fracture suggest that U was retained during secondary mineral growth or sorbed on mineral surfaces. Mobilization and transport of U away from the deposit is suggested by decreasing U concentrations in fracture-infilling materials and in goethite and hematite with distance from the deposit. Greater than unity {234U}/{238U} activity ratios measured in fracture-infilling materials indicate relatively recent ( < 1 Ma) U uptake from fluids that carried excess 234U. Systematic decreases in {234U}/{238U} activity ratios of fracture materials with distance from the deposit suggest a multistage mobilization process, such as remobilization of U from 234U-enriched infill minerals or differential or diminished transport of U-bearing solutions containing excess 234U.

  1. Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland

    NASA Astrophysics Data System (ADS)

    Rogóż, Anna; Sawłowicz, Zbigniew; Socha, Paweł; Stefaniak, Krzysztof

    2009-01-01

    The studied bones and teeth of the cave bear (Ursus spelaeus) come from the Biśnik Cave, located in the Częstochowa Upland (Southern Poland). The specimens originate from different geological layers formed since the Odra Glaciation (250-270 thousand years BP). The fossilized bones and teeth were studied using optical microscopy, scanning electron microscopy, X-ray diffraction, FTIR spectroscopy, and INAA. They are built of recrystallized carbonate-rich apatite-(CaOH) and/or apatite-(CaOH). The teeth additionally contain some apatite-(CaF). The lack of collagen and minor REE contents suggest rapid burial and collagen decay in the early stage of diagenesis. The bones and teeth have only limited mineral infillings. In some teeth, Mn-Fe (hydroxy)oxides were found in the dentine canaliculi and in bones, some osteocyte lacunae contain Fe (hydroxy)oxides with admixture of Mn. In one bone specimen, calcite infillings are present in Haversian canals. The infillings formed during later stages of diagenesis and were succeeded by non-filled cracks.

  2. Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, D.S.; Harrison, Roger

    1978-10-01

    Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less

  3. 30 CFR 816.14 - Casing and sealing of drilled holes: Temporary.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS... approved permit application for use to return coal processing waste or water to underground workings, or to...

  4. 30 CFR 816.15 - Casing and sealing of drilled holes: Permanent.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS... to the mine workings by people, livestock, fish and wildlife, and machinery, and to keep acid or...

  5. Drilling to investigate processes in active tectonics and magmatism

    NASA Astrophysics Data System (ADS)

    Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.

    2014-12-01

    Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.

  6. Results of medical countermeasure drills among 72 cities readiness initiative metropolitan statistical areas, 2008-2009.

    PubMed

    Jones, Jaime R; Neff, Linda J; Ely, Elizabeth K; Parker, Andrew M

    2012-12-01

    The Cities Readiness Initiative is a federally funded program designed to assist 72 metropolitan statistical areas (MSAs) in preparing to dispense life-saving medical countermeasures within 48 hours of a public health emergency. Beginning in 2008, the 72 MSAs were required to conduct 3 drills related to the distribution and dispensing of emergency medical countermeasures. The report describes the results of the first year of pilot data for medical countermeasure drills conducted by the MSAs. The MSAs were provided templates with key metrics for 5 functional elements critical for a successful dispensing campaign: personnel call down, site activation, facility setup, pick-list generation, and dispensing throughput. Drill submissions were compiled into single data sets for each of the 5 drills. Analyses were conducted to determine whether the measures were comparable across business and non-business hours. Descriptive statistics were computed for each of the key metrics identified in the 5 drills. Most drills were conducted on Mondays and Wednesdays during business hours (8:00 am-5:00 pm). The median completion time for the personnel call-down drill was 1 hour during business hours (n = 287) and 55 minutes during non-business hours (n = 136). Site-activation drills were completed in a median of 30 minutes during business hours and 5 minutes during non-business hours. Facility setup drills were completed more rapidly during business hours (75 minutes) compared with non-business hours (96 minutes). During business hours, pick lists were generated in a median of 3 minutes compared with 5 minutes during non-business hours. Aggregate results from the dispensing throughput drills demonstrated that the median observed throughput during business hours (60 people/h) was higher than that during non-business hours (43 people/h). The results of the analyses from this pilot sample of drill submissions provide a baseline for the determination of a national standard in operational capabilities for local jurisdictions to achieve in their planning efforts for a mass dispensing campaign during an emergency.

  7. Late Neogene and Quaternary evolution of the northern Albemarle Embayment (mid-Atlantic continental margin, USA)

    USGS Publications Warehouse

    Mallinson, D.; Riggs, S.; Thieler, E.R.; Culver, S.; Farrell, K.; Foster, D.S.; Corbett, D.R.; Horton, B.; Wehmiller, J.F.

    2005-01-01

    Seismic surveys in the eastern Albemarle Sound, adjacent tributaries and the inner continental shelf define the regional geologic framework and provide insight into the sedimentary evolution of the northern North Carolina coastal system. Litho- and chronostratigraphic data are derived from eight drill sites on the Outer Banks barrier islands, and the Mobil #1 well in eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 95 to > 160 m below sea level (m bsl), and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined, southward-prograding beds. The lower Pliocene unit consists of three seismic sequences. The 55–60 m thick Quaternary section unconformably overlies the Pliocene unit, and consists of 18 seismic sequences exhibiting numerous incised channel-fill facies. Shallow stratigraphy (< 40 m bsl) is dominated by complex fill patterns within the incised paleo-Roanoke River valley. Radiocarbon and amino-acid racemization (AAR) ages indicate that the valley-fill is latest Pleistocene to Holocene in age. At least six distinct valley-fill units are identified in the seismic data. Cores in the valley-fill contain a 3–6 m thick basal fluvial channel deposit that is overlain by a 15 m thick unit of interlaminated muds and sands of brackish water origin that exhibit increasing marine influence upwards. Organic materials within the interlaminated deposits have ages of 13–11 cal. ka. The interlaminated deposits within the valley are overlain by several units that comprise shallow marine sediments (bay-mouth and shoreface environments) that consist of silty, fine- to medium-grained sands containing open neritic foraminifera, suggesting that this area lacked a fronting barrier island system and was an open embayment from ∼10 ka to ∼4.5 ka. Seismic data show that initial infilling of the paleo-Roanoke River valley occurred from the north and west during the late Pleistocene and early Holocene. Later infilling occurred from the south and east and is characterized by a large shoal body (Colington Island and Shoals) and adjacent inlet fill. Establishment of a continuous barrier island system across the bay-mouth resulted in deposition of the latest phase of valley-fill, characterized by estuarine organic-rich muds.

  8. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  9. Installation Restoration Program Phase 1 - Records Search, O’Hare Air Reserve Forces Facility, Illinois

    DTIC Science & Technology

    1983-12-01

    clarifiers, activated sludge units, trickling filters, aerobic and anaerobic digesters, and various dowatering devices and recommendations for...for locations of water- bearing fractures. Additional responsibilities included drilling with mud and air rotary drilling rigs as well as bucket auger...interpretation. Also conducted earth resistivity surveys in Georgia and Alabama Piedmont Provinces for locations of water- bearing fractures. Additional

  10. Historical methane hydrate project review

    USGS Publications Warehouse

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated effort, the U.S. Congress enacted Public Law 106-­‐193, the Methane Hydrate Research and Development Act of 2000. This Act called for the Secretary of Energy to begin a methane hydrate research and development program in consultation with other U.S. federal agencies. At the same time a new methane hydrate research program had been launched in Japan by the Ministry of International Trade and Industry to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. Since this early start we have seen other countries including India, China, Canada, and the Republic of Korea establish large gas hydrate research and development programs. These national led efforts have also included the investment in a long list of important scientific research drilling expeditions and production test studies that have provided a wealth of information on the occurrence of methane hydrate in nature. The most notable expeditions and projects have including the following:-­‐Ocean Drilling Program Leg 164 (1995)-­‐Japan Nankai Trough Project (1999-­‐2000)-­‐Ocean Drilling Program Leg 204 (2004)-­‐Japan Tokai-­‐oki to Kumano-­‐nada Project (2004)-­‐Gulf of Mexico JIP Leg I (2005)-­‐Integrated Ocean Drilling Program Expedition 311 (2005)-­‐Malaysia Gumusut-­‐Kakap Project (2006)-­‐India NGHP Expedition 01 (2006)-­‐China GMGS Expedition 01 (2007)-­‐Republic of Korea UBGH Expedition 01 (2007)-­‐Gulf of Mexico JIP Leg II (2009)-­‐Republic of Korea UBGH Expedition 02 (2010)-­‐MH-­‐21 Nankai Trough Pre-­‐Production Expedition (2012-­‐2013)-­‐Mallik Gas Hydrate Testing Projects (1998/2002/2007-­‐2008)-­‐Alaska Mount Elbert Stratigraphic Test Well (2007)-­‐Alaska Iġnik Sikumi Methane Hydrate Production Test Well (2011-­‐2012)Research coring and seismic programs carried out by the Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), starting with the ODP Leg 164 drilling of the Blake Ridge in the Atlantic Ocean in 1995, have also contributed greatly to our understanding of the geologic controls on the formation, occurrence, and stability of gas hydrates in marine environments. For the most part methane hydrate research expeditions carried out by the ODP and IODP provided the foundation for our scientific understanding of gas hydrates. The methane hydrate research efforts under ODP-­‐IODP have mostly dealt with the assessment of the geologic controls on the occurrence of gas hydrate, with a specific goal to study the role methane hydrates may play in the global carbon cycle.Over the last 10 years, national led methane hydrate research programs, along with industry interest have led to the development and execution of major methane hydrate production field test programs. Two of the most important production field testing programs have been conducted at the Mallik site in the Mackenzie River Delta of Canada and in the Eileen methane hydrate accumulation on the North Slope of Alaska. Most recently we have also seen the completion of the world’s first marine methane hydrate production test in the Nankai Trough in the offshore of Japan. Industry interest in gas hydrates has also included important projects that have dealt with the assessment of geologic hazards associated with the presence of hydrates.The scientific drilling and associated coring, logging, and borehole monitoring technologies developed in the long list of methane hydrate related field studies are one of the most important developments and contributions associated with methane hydrate research and development activities. Methane hydrate drilling has been conducted from advanced scientific drilling platforms like the JOIDES Resolution and the D/V Chikyu, which feature highly advanced integrated core laboratories and borehole logging capabilities. Hydrate research drilling has also included the use of a wide array of industry, geotechnical and multi-­‐service ships. All of which have been effectively used to collect invaluable geologic and engineering data on the occurrence of methane hydrates throughout the world. Technologies designed specifically for the collection and analysis of undisturbed methane hydrate samples have included the development of a host of pressure core systems and associated specialty laboratory apparatus. The study and use of both wireline conveyed and logging-­‐while-­‐drilling technologies have also contributed greatly to our understanding of the in-­‐situ nature of hydrate-­‐bearing sediments. Recent developments in borehole instrumentation specifically designed to monitor changes associated with hydrates in nature through time or to evaluate the response of hydrate accumulations to production have also contributed greatly to our understanding of the complex nature and evolution of methane hydrate systems.Our understanding of how methane hydrates occur and behave in nature is still growing and evolving – we do not yet know if methane hydrates can be economically produced, nor do we know fully the role of hydrates as an agent of climate change or as a geologic hazard. But it is known for certain that scientific drilling has contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information to advance our understanding of methane hydrates.

  11. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    PubMed

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  12. Probing reservoir-triggered earthquakes in Koyna, India, through scientific deep drilling

    USGS Publications Warehouse

    Gupta, H.; Nayak, Shailesh; Ellsworth, William L.; Rao, Y. J. B.; Rajan, S.; Bansal, B.K.; Purnachandra Rao, N.; Roy, S.; Arora, K.; Mohan, R.; Tiwari, V. M.; Satyanarayana, H. V. S.; Patro, P. K.; Shashidhar, D.; Mallika, K.

    2014-01-01

    We report here the salient features of the recently concluded International Continental Scientific Drilling Program (ICDP) workshop in Koyna, India. This workshop was a sequel to the earlier held ICDP workshop in Hyderabad and Koyna in 2011. A total of 49 experts (37 from India and 12 from 8 other countries) spent 3 days reviewing the work carried out during the last 3 years based on the recommendations of the 2011 workshop and suggesting the future course of action, including detailed planning for a full deep drilling proposal in Koyna, India. It was unanimously concluded that Koyna is one of the best sites anywhere in the world to investigate genesis of triggered earthquakes from near-field observations. A broad framework of the activities for the next phase leading to deep drilling has been worked out.

  13. Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W10-33 and 299-W11-48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newcomer, Darrell R.

    2007-09-30

    Slug-test results obtained from single and multiple, stress-level slug tests conducted during drilling and borehole advancement provide detailed hydraulic conductivity information at two Hanford Site Operable Unit (OU) ZP-1 test well locations. The individual test/depth intervals were generally sited to provide hydraulic-property information within the upper ~10 m of the unconfined aquifer (i.e., Ringold Formation, Unit 5). These characterization results complement previous and ongoing drill-and-test characterization programs at surrounding 200-West and -East Area locations (see Figure S.1).

  14. Geohydrologic and drill-hole data for test well USW H-3, Yucca Mountain, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thordarson, W.; Rush, F.E.; Spengler, R.W.

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-3. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted in cooperation with the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, pumping, swabbing, and injection tests for the well are contained in this report.

  15. Application program of CRUST-1 10km continental scientific drilling rig in SK-2 scientific drilling well

    NASA Astrophysics Data System (ADS)

    Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang

    2014-05-01

    SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.

  16. Laboratory Equipment for Investigation of Coring Under Mars-like Conditions

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Cooper, G.

    2004-12-01

    To develop a suitable drill bit and set of operating conditions for Mars sample coring applications, it is essential to make tests under conditions that match those of the mission. The goal of the laboratory test program was to determine the drilling performance of diamond-impregnated bits under simulated Martian conditions, particularly those of low pressure and low temperature in a carbon dioxide atmosphere. For this purpose, drilling tests were performed in a vacuum chamber kept at a pressure of 5 torr. Prior to drilling, a rock, soil or a clay sample was cooled down to minus 80 degrees Celsius (Zacny et al, 2004). Thus, all Martian conditions, except the low gravity were simulated in the controlled environment. Input drilling parameters of interest included the weight on bit and rotational speed. These two independent variables were controlled from a PC station. The dependent variables included the bit reaction torque, the depth of the bit inside the drilled hole and the temperatures at various positions inside the drilled sample, in the center of the core as it was being cut and at the bit itself. These were acquired every second by a data acquisition system. Additional information such as the rate of penetration and the drill power were calculated after the test was completed. The weight of the rock and the bit prior to and after the test were measured to aid in evaluating the bit performance. In addition, the water saturation of the rock was measured prior to the test. Finally, the bit was viewed under the Scanning Electron Microscope and the Stereo Optical Microscope. The extent of the bit wear and its salient features were captured photographically. The results revealed that drilling or coring under Martian conditions in a water saturated rock is different in many respects from drilling on Earth. This is mainly because the Martian atmospheric pressure is in the vicinity of the pressure at the triple point of water. Thus ice, heated by contact with the rotating bit, sublimed and released water vapor. The volumetric expansion of ice turning into a vapor was over 150 000 times. This continuously generated volume of gas effectively cleared the freeze-dried rock cuttings from the bottom of the hole. In addition, the subliming ice provided a powerful cooling effect that kept the bit cold and preserved the core in its original state. Keeping the rock core below freezing also reduced drastically the chances of cross contamination. To keep the bit cool in near vacuum conditions where convective cooling is poor, some intermittent stops would have to be made. Under virtually the same drilling conditions, coring under Martian low temperature and pressure conditions consumed only half the power while doubling the rate of penetration as compared to drilling under Earth atmospheric conditions. However, the rate of bit wear was much higher under Martian conditions (Zacny and Cooper, 2004) References Zacny, K. A., M. C. Quayle, and G. A. Cooper (2004), Laboratory drilling under Martian conditions yields unexpected results, J. Geophys. Res., 109, E07S16, doi:10.1029/2003JE002203. Zacny, K. A., and G. A. Cooper (2004), Investigation of diamond-impregnated drill bit wear while drilling under Earth and Mars conditions, J. Geophys. Res., 109, E07S10, doi:10.1029/2003JE002204. Acknowledgments The research supported by the NASA Astrobiology, Science and Technology Instrument Development (ASTID) program.

  17. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331)

    PubMed Central

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M.; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H.; Moyer, Craig L.; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J.; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu. PMID:24265628

  18. The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331).

    PubMed

    Yanagawa, Katsunori; Nunoura, Takuro; McAllister, Sean M; Hirai, Miho; Breuker, Anja; Brandt, Leah; House, Christopher H; Moyer, Craig L; Birrien, Jean-Louis; Aoike, Kan; Sunamura, Michinari; Urabe, Tetsuro; Mottl, Michael J; Takai, Ken

    2013-01-01

    During the Integrated Ocean Drilling Program (IODP) Expedition 331 at the Iheya North hydrothermal system in the Mid-Okinawa Trough by the D/V Chikyu, we conducted microbiological contamination tests of the drilling and coring operations. The contamination from the drilling mud fluids was assessed using both perfluorocarbon tracers (PFT) and fluorescent microsphere beads. PFT infiltration was detected from the periphery of almost all whole round cores (WRCs). By contrast, fluorescent microspheres were not detected in hydrothermally active core samples, possibly due to thermal decomposition of the microspheres under high-temperature conditions. Microbial contamination from drilling mud fluids to the core interior subsamples was further characterized by molecular-based evaluation. The microbial 16S rRNA gene phylotype compositions in the drilling mud fluids were mainly composed of sequences of Beta- and Gammaproteobacteria, and Bacteroidetes and not archaeal sequences. The phylotypes that displayed more than 97% similarity to the sequences obtained from the drilling mud fluids were defined as possible contaminants in this study and were detected as minor components of the bacterial phylotype compositions in 13 of 37 core samples. The degree of microbiological contamination was consistent with that determined by the PFT and/or microsphere assessments. This study suggests a constructive approach for evaluation and eliminating microbial contamination during riser-less drilling and coring operations by the D/V Chikyu.

  19. Development of a high-temperature diagnostics-while-drilling tool.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavira, David J.; Huey, David; Hetmaniak, Chris

    2009-01-01

    The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picturemore » of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Gulf Research and Development Company is implementing a DOE-sponsored Underground Coal Gasification project in Steeply Dipping Coal Beds (UCG/SDB) in order to assess the economic and technical viability of UCG in SDB. In the Fall 1980 drilling program, 2 vertical and 2 slant process wells; 3 hydrologic and 1 exploratory well and 4 HFEM wells were completed. The Spring, 1981 program will consist of drilling the remaining instrumentation wells necessary to track the progress of the underground reactor in real time. These will consist of: 6 additional High Frequency Electromagnetic wells (HFEM) and 3 extensometer wells (X). These wells willmore » be installed vertically with an expected deviation of two degrees or less.« less

  1. A Comprehensive Well Testing Implementation during Exploration Phase in Rantau Dedap, Indonesia

    NASA Astrophysics Data System (ADS)

    Humaedi, M. T.; Alfiady; Putra, A. P.; Martikno, R.; Situmorang, J.

    2016-09-01

    This paper describes the implementation of comprehensive well testing programs during the 2014-2015 exploration drilling in Rantau Dedap Geothermal Field. The well testing programs were designed to provide reliable data as foundation for resource assessment as well as useful information for decision making during drilling. A series of well testing survey consisting of SFTT, completion test, heating-up downhole logging, discharge test, chemistry sampling was conducted to understand individual wells characteristics such as thermodynamic state of the reservoir fluid, permeability distribution, well output and fluid chemistry. Furthermore, interference test was carried out to investigate the response of reservoir to exploitation.

  2. Improvement of core drill methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatz, J.L.

    1975-07-01

    This report documents results of a program to evaluate effectiveness of more or less conventional subsurface samplers in obtaining representative and undisturbed samples of noncohesive alluvial materials containing large quantities of gravels and cobbles. This is the first phase of a research program to improve core drill methods. Samplers evaluated consisted of the Lawrence Livermore Laboratory membrane sampler, 4-in. Denison sampler, 6-in. Dension sampler, 5-in. Modified Denison sampler, and 3-in. thinwall drive tube. Small representative samples were obtained with the Dension samplers; no undisturbed samples were obtained. The field work was accomplished in the Rhodes Canyon area, White Sands Misslemore » Range, New Mexico.« less

  3. Data file: the 1976 Atlantic Margin Coring (AMCOR) Project of the U.S. Geological Survey

    USGS Publications Warehouse

    Poppe, Lawrence J.; Poppe, Lawrence J.

    1981-01-01

    In 1976, the U.S. Geological Survey conducted the Atlantic Margin Coring Project (AMCOR) to obtain information on stratigraphy, hydrology and water chemistry, mineral resources other than petroleum hydrocarbons, and geotechnical engineering properties at sites widely distributed along the Continental Shelf and Slope of the Eastern United States (Hathaway and others, 1976, 1979). This program's primary purpose was to investigate a broad variety of sediment properties, many of which had not been previously studied in this region. Previous studies of sediments recovered by core drilling in this region were usually limited to one or two aspects of the sediment properties (Hathaway and others, 1979, table 2). The AMCOR program was limited by two factors: water depth and penetration depth. Because the ship selected for the program, the Glomar Conception, lacked dynamic positioning capability, its anchoring capacity determined the maximum water depth in which drilling could take place. Although it was equipped to anchor in water 450 m deep and did so successfully at one site, we attmepted no drilling in water depths greater than 300 m. Strong Gulf Stream currents at the one attempted deep (443 m) site frustrated attempts to "spud in" to begin the hole.

  4. {sup 210}Pb chronology of sequences affected by burrow excavation and infilling: Examples from shallow marine carbonate sediment sequences, Holocene South Florida and Caicos Platform, British West Indies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tedesco, L.P.; Aller, R.C.

    A variety of sedimentological criteria and direct field observations indicate that deposits of shallow carbonate platforms and mud banks are extensively transformed during megafaunal bioturbation by deep-burrowing crustaceans. {sup 210}Pb dating of surficial sediment and burrow fills dissected from the upper 1--3 m of sediments at four sites on the Caicos Platform and in South Florida corroborates sedimentologic descriptions of rapid biogenic alteration of entire facies. {sup 210}Pb distributions from the study sites show that at least some infill is predominantly surficial sediment. Assuming that all identifiable deep burrow fills containing excess {sup 210}Pb derive from the uppermost 0--5 cmmore » interval, an estimate of facies replacement by nonlocal transport can be made based on measured excess {sup 210}Pb values of fill and the corresponding total discernible fill volume in cores. Calculations indicate that at the sites studied, burrow excavation and infilling can completely transform the upper 1--2 m, and possibly 3.5 m, of deposits in 100--600 yr. More rapid transformation of deposits is required if fill is derived from below 5 cm. Biogenic transformation rates are sufficiently fast compared to net sedimentation that burrow infills, not primarily physical deposition, determine the composition, porosity, fabric, and texture of the preserved facies. The {sup 210}Pb profiles in the deepest regions of deposits in the present cases are further complicated by basal enrichments of {sup 226}Ra, which apparently diffuses upwards from Pleistocene calcrete surfaces into overlying Holocene sediment. This diffusion requires careful documentation of supported {sup 210}Pb near this contact, but also offers the potential for an additional transport tracer internal to the deposits.« less

  5. Customized three-dimensional printed optical phantoms with user defined absorption and scattering

    NASA Astrophysics Data System (ADS)

    Pannem, Sanjana; Sweer, Jordan; Diep, Phuong; Lo, Justine; Snyder, Michael; Stueber, Gabriella; Zhao, Yanyu; Tabassum, Syeda; Istfan, Raeef; Wu, Junjie; Erramilli, Shyamsunder; Roblyer, Darren M.

    2016-03-01

    The use of reliable tissue-simulating phantoms spans multiple applications in spectroscopic imaging including device calibration and testing of new imaging procedures. Three-dimensional (3D) printing allows for the possibility of optical phantoms with arbitrary geometries and spatially varying optical properties. We recently demonstrated the ability to 3D print tissue-simulating phantoms with customized absorption (μa) and reduced scattering (μs`) by incorporating nigrosin, an absorbing dye, and titanium dioxide (TiO2), a scattering agent, to acrylonitrile butadiene styrene (ABS) during filament extrusion. A physiologically relevant range of μa and μs` was demonstrated with high repeatability. We expand our prior work here by evaluating the effect of two important 3D-printing parameters, percent infill and layer height, on both μa and μs`. 2 cm3 cubes were printed with percent infill ranging from 10% to 100% and layer height ranging from 0.15 to 0.40 mm. The range in μa and μs` was 27.3% and 19.5% respectively for different percent infills at 471 nm. For varying layer height, the range in μa and μs` was 27.8% and 15.4% respectively at 471 nm. These results indicate that percent infill and layer height substantially alter optical properties and should be carefully controlled during phantom fabrication. Through the use of inexpensive hobby-level printers, the fabrication of optical phantoms may advance the complexity and availability of fully customizable phantoms over multiple spatial scales. This technique exhibits a wider range of adaptability than other common methods of fabricating optical phantoms and may lead to improved instrument characterization and calibration.

  6. A new scientific drilling infrastructure in Sweden

    NASA Astrophysics Data System (ADS)

    Rosberg, J.-E.; Lorenz, H.

    2012-04-01

    A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.

  7. Computer Series, 60: Bits and Pieces, 23.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (1) an interactive computer simulation for a science fair display of chromatography inks; (2) analytical chemistry programs; (3) microcomputer-assisted drills in organic synthesis; (4) programs for conformation analysis of ethane and butane; (5) MOLPIX--a program for generating and displaying molecular structures; and (6) chemical…

  8. JPRS Report, Science & Technology, USSR: Science & Technology Policy.

    DTIC Science & Technology

    1987-07-10

    gas exploration are being increased by 1.7-fold, while the amount of deep drilling is being increased by 1.5-fold. Such imposing tasks require new...territory based on geotraverses, ultradeep drilling , and space geological research has been introduced, a number of geodynamic models, including...cooperation of the ministry with the academy. The gauge of success of our cooperation is the implementation of these programs with the attainment of specific

  9. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.

  10. The Effects of Bit Wear on Respirable Silica Dust, Noise and Productivity: A Hammer Drill Bench Study.

    PubMed

    Carty, Paul; Cooper, Michael R; Barr, Alan; Neitzel, Richard L; Balmes, John; Rempel, David

    2017-07-01

    Hammer drills are used extensively in commercial construction for drilling into concrete for tasks including rebar installation for structural upgrades and anchor bolt installation. This drilling task can expose workers to respirable silica dust and noise. The aim of this pilot study was to evaluate the effects of bit wear on respirable silica dust, noise, and drilling productivity. Test bits were worn to three states by drilling consecutive holes to different cumulative drilling depths: 0, 780, and 1560 cm. Each state of bit wear was evaluated by three trials (nine trials total). For each trial, an automated laboratory test bench system drilled 41 holes 1.3 cm diameter, and 10 cm deep into concrete block at a rate of one hole per minute using a commercially available hammer drill and masonry bits. During each trial, dust was continuously captured by two respirable and one inhalable sampling trains and noise was sampled with a noise dosimeter. The room was thoroughly cleaned between trials. When comparing results for the sharp (0 cm) versus dull bit (1560 cm), the mean respirable silica increased from 0.41 to 0.74 mg m-3 in sampler 1 (P = 0.012) and from 0.41 to 0.89 mg m-3 in sampler 2 (P = 0.024); levels above the NIOSH recommended exposure limit of 0.05 mg m-3. Likewise, mean noise levels increased from 112.8 to 114.4 dBA (P < 0.00001). Drilling productivity declined with increasing wear from 10.16 to 7.76 mm s-1 (P < 0.00001). Increasing bit wear was associated with increasing respirable silica dust and noise and reduced drilling productivity. The levels of dust and noise produced by these experimental conditions would require dust capture, hearing protection, and possibly respiratory protection. The findings support the adoption of a bit replacement program by construction contractors. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  11. Recent scientific and operational achievements of D/V Chikyu

    NASA Astrophysics Data System (ADS)

    Taira, Asahiko; Toczko, Sean; Eguchi, Nobu; Kuramoto, Shin'ichi; Kubo, Yusuke; Azuma, Wataru

    2014-12-01

    The D/V Chikyu, a scientific drilling vessel, is equipped with industry-standard riser capabilities. Riser drilling technology enables remarkable drilling and downhole logging capabilities and provides unprecedented hole-stability, enabling the shipboard team to retrieve high-quality wire-line logging data as well as well-preserved core samples. The 11 March 2011 Tohoku Oki mega-earthquake and tsunami cost over 18,000 casualties in NE Japan. Chikyu, docked in the Port of Hachinohe, was damaged by the tsunami. By April 2012, the ship was back in operation; drilling the toe of the Japan Trench fault zone where topographic surveys suggested there was up to 50 m eastward motion, the largest earthquake rupture ever recorded. During Integrated Ocean Drilling Program (IODP) Expeditions 343 and 343 T, Chikyu drilled 850 m below sea floor (mbsf) in 6,900+ m water depth and recovered core samples of a highly brecciated shear zone composed of pelagic claystone. A subseafloor observatory looking for temperature signatures caused by the fault friction during the earthquake, was installed and later successfully recovered. The recovered temperature loggers recorded data from which the level of friction during the mega-earthquake slip could be determined. Following Exp. 343, Chikyu began IODP Exp. 337, a riser drilling expedition into the Shimokita coal beds off Hachinohe, to study the deep subsurface biosphere in sedimentary units including Paleogene-Neogene coal beds. New records in scientific ocean drilling were achieved in deepest penetration (drilling reached 2,466 mbsf) and sample recovery. Currently Chikyu is conducting deep riser drilling at the Nankai Trough in the final stage of the NanTroSEIZE campaign. During the years 2011 to 2013, including drilling in the Okinawa Hydrothermal System, Chikyu's operational and scientific achievements have demonstrated that the ship's capabilities are vital for opening new frontiers in earth and biological sciences.

  12. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  13. Geologic framework of the 2005 Keathley Canyon gas hydrate research well, northern Gulf of Mexico

    USGS Publications Warehouse

    Hutchinson, D.R.; Hart, P.E.; Collett, T.S.; Edwards, K.M.; Twichell, D.C.; Snyder, F.

    2008-01-01

    The Keathley Canyon sites drilled in 2005 by the Chevron Joint Industry Project are located along the southeastern edge of an intraslope minibasin (Casey basin) in the northern Gulf of Mexico at 1335 m water depth. Around the drill sites, a grid of 2D high-resolution multichannel seismic data designed to image depths down to at least 1000 m sub-bottom reveals 7 unconformities and disconformities that, with the seafloor, bound 7 identifiable seismic stratigraphic units. A major disconformity in the middle of the units stands out for its angular baselapping geometry. From these data, three episodes of sedimentary deposition and deformation are inferred. The oldest episode consists of fine-grained muds deposited during a period of relative stability in the basin (units e, f, and g). Both the BSR and inferred gas hydrate occur within these older units. The gas hydrate occurs in near-vertical fractures. A second episode (units c and d) involved large vertical displacements associated with infilling and ponding of sediment. This second interval corresponds to deposition of intercalated fine and coarse-grained material that was recovered in the drill hole that penetrated the thin edges of the regionally much thicker units. The final episode of deposition (units a and b) occurred during more subdued vertical motions. Hemipelagic drape (unit a) characterizes the modern seafloor. The present-day Casey basin is mostly filled. Its sill is part of a subsiding graben structure that is only 10-20 m shallower than the deepest point in the basin, indicating that gravity-driven transport would mostly bypass the basin. Contemporary faulting along the basin margins has selectively reactivated an older group of faults. The intercalated sand and mud deposits of units c and d are tentatively correlated with Late Pleistocene deposition derived from the western shelf-edge delta/depocenter of the Mississippi River, which was probably most active from 320 ka to 70 ka [Winker, C.D., Booth, J., 2000. Sedimentary dynamics of the salt-dominated continental slope, Gulf of Mexico: integration of observations from the seafloor, near-surface, and deep subsurface. In: Proceedings of the GCSSEPM Foundation 20th Annual Research Conference, Deep-water Reservoirs of the World, pp. 1059-1086]. The presence of sand within the gas hydrate stability zone (in units c and d) is not sufficient to concentrate gas hydrate even though dispersed gas hydrate occurs deeper in the fractured mud/clay-rich sections of units e and f.

  14. Phase 1 drilling operations at the Magma Energy Exploratory Well (LVF 51-20)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finger, J.T.; Jacobson, R.D.

    1990-12-01

    This report describes the Phase 1 drilling operations for the Magma Energy Exploratory Well near Mammoth Lakes, California. An important part of the Department of Energy's Magma Energy Program, this well is designed to reach an ultimate depth of 20,000 feet or a bottomhole temperature of 500{degree}C, whichever comes first. There will be four drilling phases, at least a year apart, with scientific investigations in the borehole between the drilling intervals. Phase 1 of this project resulted in a 20 inch cased hole to 2558 feet, with 185 feet of coring beyond that. This document comprises a narrative of themore » daily activities, copies of the daily mud and lithologic reports, time breakdowns of rig activities, inventories of lost circulation materials, temperature logs of the cored hole, and a strip chart mud log. 2 figs.« less

  15. Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah

    USGS Publications Warehouse

    Stugard, Frederick

    1953-01-01

    During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the u.S. Atomic Energy Commission.  A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey.  The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium depostis.  Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore shootsmined on the Point in fine-grained sandstones of the Chinle formation.  Three additional holes were located around teh Tecumseh Hill to prbe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef.

  16. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    NASA Astrophysics Data System (ADS)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The International Ocean Discovery Program continues to offer annual School of Rock professional development workshops to which educators can apply for participation. During these all-expense paid experiences, they learn about IODP science and develop new activities for their audiences. Cicconi and Passow will describe their experiences during some of these programs. European teachers have also participated in "teacher-at-sea" programs sponsored by ECORD aboard the JOIDES Resolution. Burgio participated in Expedition 360 from December 2015 to the end of January 2016 (http://joidesresolution.org/node/4253). This cruise focused on the global effort to drill to the Moho through the Southwest Indian Ridge. As they drilled down to the Moho, scientists obtained new discoveries about life in the crust, interactions between water and rocks, and magmatic processes that build the oceanic crust at very slow spreading ridges. The Education Officers team used a panel of strategies to communicate during the efforts during their two months onboard. She used social media and live-streaming to share the last discoveries about the oceanic crust with students all over the world. Additional materials have been created by teachers and other non-science participants from many countries across the globe. Educational outreach programs associated with scientific ocean drilling provide effective opportunities to enhance Ocean Science Literacy.

  17. Integrated reservoir characterization and flow simulation for well targeting and reservoir management, Iagifu-Hedinia field, Southern Highlands Province, Papua New Guinea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, S.P.; Livingston, J.E.; Fitzmorris, R.E.

    Infill drilling based on integrated reservoir characterization and flow simulation is increasing recoverable reserves by 20 MMBO, in lagifu-Hedinia Field (IHF). Stratigraphically-zoned models are input to window and full-field flow simulations, and results of the flow simulations target deviated and horizontal wells. Logging and pressure surveys facilitate detailed reservoir management. Flooding surfaces are the dominant control on differential depletion within and between reservoirs. The primary reservoir is the basal Cretaceous Toro Sandstone. Within the IHF, Toro is a 100 m quartz sandstone composed of stacked, coarsening-upward parasequences within a wave-dominated deltaic complex. Flooding surfaces are used to form a hydraulicmore » zonation. The zonation is refined using discontinuities in RIFT pressure gradients and logs from development wells. For flow simulation, models use 3D geostatistical techniques. First, variograms defining spatial correlation are developed. The variograms are used to construct 3D porosity and permeability models which reflect the stratigraphic facies models. Structure models are built using dipmeter, biostratigraphic, and surface data. Deviated wells often cross axial surfaces and geometry is predicted from dip domain and SCAT. Faults are identified using pressure transient data and dipmeter. The Toro reservoir is subnormally pressured and fluid contacts are hydrodynamically tilted. The hydrodynamic flow and tilted contacts are modeled by flow simulation and constrained by maps of the potentiometric surface.« less

  18. 40 CFR 147.550 - State-administered program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (1) Oil and Gas and Deep Drilling Act of 1975, Official Code of Georgia Annotated (O.C.G.A.) §§ 12-4... 40 Protection of Environment 24 2012-07-01 2012-07-01 false State-administered program. 147.550 Section 147.550 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...

  19. 40 CFR 147.550 - State-administered program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) Oil and Gas and Deep Drilling Act of 1975, Official Code of Georgia Annotated (O.C.G.A.) §§ 12-4... 40 Protection of Environment 23 2014-07-01 2014-07-01 false State-administered program. 147.550 Section 147.550 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...

  20. 40 CFR 147.550 - State-administered program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (1) Oil and Gas and Deep Drilling Act of 1975, Official Code of Georgia Annotated (O.C.G.A.) §§ 12-4... 40 Protection of Environment 23 2011-07-01 2011-07-01 false State-administered program. 147.550 Section 147.550 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS...

  1. CATS--Computer Assisted Teaching in Science.

    ERIC Educational Resources Information Center

    Barron, Marcelline A.

    This document contains the listings for 46 computer programs which are designed to teach various concepts in chemistry and physics. Significant time was spent in writing programs in which students would input chemical and physical data from their laboratory experiments. No significant time was spent writing drill and practice programs other than…

  2. SUNY Oneonta Earth Sciences Outreach Program (ESOP) - Generating New Drilling Prospects for Geoscience Programs

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Ebert, J. R.

    2010-12-01

    The SUNY Oneonta ESOP is a National Science Foundation-funded program that, since 2005, has striven to address the dearth of students graduating with baccalaureate degrees in geoscience disciplines. In large part, its goal has been to provide talented STEM-oriented students with dual-enrollment college-level geoscience programs run by their local teachers for college credit. These high-school upperclassman experiences have been shown to be effective in recruiting talented students to geoscience fields, and we believe that this program is a model by which more baccalaureate programs can locate "new drilling prospects" to keep the pipeline of talented and trained geoscientists flowing into the workforce. In this presentation, we will highlight the current efforts to expand ESOP to other high schools around the country and in recruiting other colleges and universities to create their own dual-enrollment programs. We will also highlight how a senior-level geoscience course is ideal for providing students with meaningful geoscience inquiry experiences, and how we plan to support such efforts through the online teaching and learning cohorts designed to foster collaborative inquiry activities.

  3. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  4. Comparison of the evolution of the sediment dynamics of a bay and an estuary in the East coast of the English Channel: the case of the Bay of Somme and the Seine estuary (France)

    NASA Astrophysics Data System (ADS)

    Cuvilliez, A.; Le Bot, S.; Michel, C.; Cuvilliez, C.

    2017-12-01

    The economical roles and the ecological importance of the intertidal zones of mouth the Seine estuary (25 Km²) and of the Bay of Somme (70 Km²), both located on the East coast of the English Channel (Fig. 1A and Fig. 1B), have led to numerous studies on sediment dynamics since the beginning of the 19th century. Since 1995, the high resolution remote sensing (8 cm per side of pixel) allowed an exhaustive study of these intertidal surfaces. Altimetric surveys using radials, notably with ALTUS altimeters, then with LiDAR, were carried out in order to estimate more accurately the volumes and the nature of the sediments that infill these areas. The study of sedimentary facies further improved our understanding of the roles of the environmental forcing which controls sedimentation dynamics. Indeed, it allows foreseeing hydraulic circulation issues which damage these coastal ecosystems, and which can thus be prevented. Subsequently, for more than a decade, these two macrotidal zones, which have a tidal range equal to or greater than 8.5 m, show a decrease in their settling surface size which fosters mud deposition, and an acceleration of their sand infilling. Since 2005, year that marks the completion of the work of the so-called "Port 2000" harbour, the Seine estuary has increased its intertidal areas by almost 45% (<+7.5 m) (Fig.1C), of which 69% are occupied by sandy or silty sediments brought by the flood tides. In the Bay of Somme, only the low-lying intertidal areas (<+ 3.5m) are infilled with sandy sediments, representing 88% of the total deposits (Fig. 1D). In this case, the study of the sedimentary facies reveals that the littoral drift and the action of the waves linked to the tide are mainly responsible of the infill. If sedimentary infilling is a widespread characteristic of estuaries and bays which started with the Holocene transgression, this phenomenon is accentuated with the sea level rise and is greatly amplified with port developments that tend to limit the action of the river flow.

  5. Use of a ground-penetrating radar system to detect pre-and post-flood scour at selected bridge sites in New Hampshire, 1996-98

    USGS Publications Warehouse

    Olimpio, Joseph R.

    2000-01-01

    Ground-penetrating radar was used to measure the depth and extent of existing and infilled scour holes and previous scour surfaces at seven bridges in New Hampshire from April 1996 to November 1998. Ground-penetrating-radar survey techniques initially were used by the U.S. Geological Survey to study streambed scour at 30 bridges. Sixteen of the 30 bridges were re-surveyed where floods exceeded a 2-year recurrence interval. A 300-megahertz signal was used in the ground-penetrating radar system that penetrated through depths as great as 20 feet of water and as great as 32 feet of streambed materials. Existing scour-hole dimensions, infilled thickness, previous scour surfaces, and streambed materials were detected using ground-penetrating radar. Depths to riprap materials and pier footings were identified and verified with bridge plans. Post data-collection-processing techniques were applied to assist in the interpretation of the data, and the processed data were displayed and printed as line plots. Processing included distance normalization, migration, and filtering but processing was kept to a minimum and some interference from multiple reflections was left in the record. Of the 16 post-flood bridges, 22 ground-penetrating-radar cross sections at 7 bridges were compared and presented in this report. Existing scour holes were detected during 1996 (pre-flood) data collection in nine cross sections where scour depths ranged from 1 to 3 feet. New scour holes were detected during 1998 (post-flood) data collection in four cross sections where scour depths were as great as 4 feet deep. Infilled scour holes were detected in seven cross sections, where depths of infilling ranged from less than 1 to 4 feet. Depth of infilling by means of steel rod and hammer was difficult to verify in the field because of cobble and boulder streambeds or deep water. Previous scour surfaces in streambed materials were identified in 15 cross sections and the depths to these surfaces ranged from 1 to 10 feet below the streambed. Riprap materials or pier footings were identified in all cross sections. Calculated record depths generally agree with bridge plans. Pier footings were exposed at two bridges and steel pile was exposed at one bridge. Exposures were verified by field observations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevallier, J.; Turner, L.

    There's a great deal of data recorded during drilling operations on rigs these days, but it is seldom well utilized. The operator's company person relies upon mud loggers for collecting and recording most information. The methods used to process and display this information are often inadequate for those who need it the most the driller and toolpusher. Drilling contractor personnel usually have only rudimentary displays of drilling parameters, and practically no serious method of analysis except for daily paper reports. These are cumbersome to use and provide only incomplete data, after the fact. The MDS system, presented in this article,more » is a new information and alarm network, which rectifies this situation by bringing to the rig, for the first time, the latest in sensor and computer technologies. This system acquires key drilling data on the rig floor, pump room, and return line, and displays it in a clear graphical format to both the driller and the toolpusher in real time. It also provides the toolpusher with a workstation for easy access to the same information for evaluation and planning of the drilling program.« less

  7. Hole 504B reclaimed for future drilling

    NASA Astrophysics Data System (ADS)

    Leg 137 Scientific Drilling Party

    Hole 504B, perhaps the most important in situ reference section for the structure and composition of the oceanic crust, has been reopened for future drilling and downhole measurements after remedial operations during Leg 137 of the Ocean Drilling Program. By far the deepest penetration into oceanic crust, Hole 504B had been feared lost when a large diamond bit and assorted hardware (“junk”) broke off in the bottom of the hole at the end of ODP Leg 111 in 1986. Since then ODP's drill ship, JOIDES Resolution, has circumnavigated the globe, with no opportunity to redress this situation. But the objective of deep penetration into the oceanic crust and the hole itself are considered so important by marine Earth scientists that remedial measures in Hole 504B were undertaken as soon as the drill ship returned to the eastern Pacific. These measures succeeded better than had been hoped. Hole 504B was reopened after less than a week of cleaning operations, which included grappling for the lost junk with tools to pull it from the hole (called “fishing”) and grinding or milling the junk away.

  8. Geothermal state and fluid flow within ODP Hole 843B: results from wireline logging

    NASA Astrophysics Data System (ADS)

    Wiggins, Sean M.; Hildebrand, John A.; Gieskes, Joris M.

    2002-02-01

    Borehole fluid temperatures were measured with a wireline re-entry system in Ocean Drilling Program Hole 843B, the site of the Ocean Seismic Network Pilot Experiment. These temperature data, recorded more than 7 years after drilling, are compared to temperature data logged during Leg 136, approximately 1 day after drilling had ceased. Qualitative interpretations of the temperature data suggest that fluid flowed slowly downward in the borehole immediately following drilling, and flowed slowly upward 7 years after drilling. Quantitative analysis suggests that the upward fluid flow rate in the borehole is approximately 1 m/h. Slow fluid flow interpreted from temperature data only, however, requires estimates of other unmeasured physical properties. If fluid flows upward in Hole 843B, it may have led to undesirable noise for the borehole seismometer emplaced in this hole as part of the Ocean Seismic Network Pilot Experiment. Estimates of conductive heat flow from ODP Hole 843B are 51 mW/m 2 for the sediment and the basalt. These values are lower than the most recent Hawaiian Arch seafloor heat flow studies.

  9. Evaluation of a diamond drilling program at the Samrah Mine near Ad Dawadimi, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Kiilsgaard, Thor H.

    1970-01-01

    The Samrah mine, near Ad Dawadimi, Kingdom of Saudi Arabia, has been explored by 18 diamond drill holes, aggregating 3,624.3 meters in length. The holes demonstrate that the Samrah vein zone follows premineral andesitic dikes. Smaller veins split away from the main Samrmh vein zone, The Samrah vein zone is known to be mineralized at the surface for at least 400 meters and to a depth of a of the least 220 meters below the surface. Within this mineralized part of the vein zone diamond drilling has indicated ore reserves of approximately 204,000 metric tons, the average value of which is estimated at $57 per ton.

  10. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Rush, F. Eugene; Thordarson, William; Bruckheimer, Laura

    1983-01-01

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the U.S. Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are contained in this report.

  11. Influence of drilling operations on drilling mud gas monitoring during IODP Exp. 338 and 348

    NASA Astrophysics Data System (ADS)

    Hammerschmidt, Sebastian; Toczko, Sean; Kubo, Yusuke; Wiersberg, Thomas; Fuchida, Shigeshi; Kopf, Achim; Hirose, Takehiro; Saffer, Demian; Tobin, Harold; Expedition 348 Scientists, the

    2014-05-01

    The history of scientific ocean drilling has developed some new techniques and technologies for drilling science, dynamic positioning being one of the most famous. However, while industry has developed newer tools and techniques, only some of these have been used in scientific ocean drilling. The introduction of riser-drilling, which recirculates the drilling mud and returns to the platform solids and gases from the formation, to the International Ocean Drilling Program (IODP) through the launch of the Japan Agency of Marine Earth-Science and Technology (JAMSTEC) riser-drilling vessel D/V Chikyu, has made some of these techniques available to science. IODP Expedition 319 (NanTroSEIZE Stage 2: riser/riserless observatory) was the first such attempt, and among the tools and techniques used was drilling mud gas analysis. While industry regularly conducts drilling mud gas logging for safety concerns and reservoir evaluation, science is more interested in other components (e.g He, 222Rn) that are beyond the scope of typical mud logging services. Drilling mud gas logging simply examines the gases released into the drilling mud as part of the drilling process; the bit breaks and grinds the formation, releasing any trapped gases. These then circulate within the "closed circuit" mud-flow back to the drilling rig, where a degasser extracts these gases and passes them on to a dedicated mud gas logging unit. The unit contains gas chromatographs, mass spectrometers, spectral analyzers, radon gas analyzers, and a methane carbon isotope analyzer. Data are collected and stored in a database, together with several drilling parameters (rate of penetration, mud density, etc.). This initial attempt was further refined during IODP Expeditions 337 (Deep Coalbed Biosphere off Shimokita), 338 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 2) and finally 348 (NanTroSEIZE Stage 3: NanTroSEIZE Plate Boundary Deep Riser 3). Although still in its development stage for scientific application, this technique can provide a valuable suite of measurements to complement more traditional IODP shipboard measurements. Here we present unpublished data from IODP Expeditions 338 and 348, penetrating the Nankai Accretionary wedge to 3058.5 meters below seafloor. Increasing mud density decreased degasser efficiency, especially for higher hydrocarbons. Blurring of the relative variations in total gas by depth was observed, and confirmed with comparison to headspace gas concentrations from the cored interval. Theoretically, overpressured zones in the formation can be identified through C2/C3 ratios, but these ratios are highly affected by changing drilling parameters. Proper mud gas evaluations will need to carefully consider the effects of variable drilling parameters when designing experiments and interpreting the data.

  12. The Isotope Geochemistry of Abyssal Peridotites and Related Rocks

    DTIC Science & Technology

    1993-06-01

    object of several cruises, including a combined geophysics and petrology cruise (R/V Robert Conrad 27-09: Dick, et al., 1991) and an ocean drilling ...al. (1991) Proceed- ings of the Ocean Drilling Program, Scientific Results Vol. 118. Snow, J., Hart, S.R. and Dick, H.J.B. (1991) "Os isotopic...the geology, petrology , and geochemistry of mantle rocks, as well as their physical and acoustic properties. The first indications that the oceanic

  13. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Air Force Plant 4, Fort Worth, Texas. Volume 9. Appendices F-K.

    DTIC Science & Technology

    1987-12-01

    mineralogy and igneous petrology . Consultant to Shield Energy. Inc.; performed mudlogging and well site geology duties on 4,670’ wildcat weil in...Taylor County, Texas. Evaluated prospects for hydrocarbon potential. Prepared geologic reports for drilling prospectus. Geologist, Wold Minerals...Exploration Company; conducted geologic and geophysi- cal mapping in Precambrian metamorphic terrain of West Texas for talc depos- its. Supervised the drilling

  14. Scanning the Horizon: Coast Guard Strategy in a Hot, Flat, Crowded World

    DTIC Science & Technology

    2010-03-12

    Mexico. From 1992 to 2007, deepwater offshore rigs drilling in deep water in the Gulf of Mexico increased from three to 30, and deepwater oil production...discusses the Coast Guard’s Integrated Deepwater System program, which includes recapitalization of its deep-water vessels and aircraft.89 At the...water and ultra deep water drilling. Discussion of increased outer continental shelf activity in higher level strategic planning indicates that

  15. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in populated calderas (e.g., Campi Flegrei, Italy). Experiments with the live system will aid in hazard assessment and eruption forecasting for this most difficult of volcano hazard problems. We will report on an International Continental Scientific Drilling Program (ICDP) workshop held to assess feasibility and to develop a plan for KMDP.

  16. Advancing Understanding of Earthquakes by Drilling an Eroding Convergent Margin

    NASA Astrophysics Data System (ADS)

    von Huene, R.; Vannucchi, P.; Ranero, C. R.

    2010-12-01

    A program of IODP with great societal relevance is sampling and instrumenting the seismogenic zone. The zone generates great earthquakes that trigger tsunamis, and submarine slides thereby endangering coastal communities containing over sixty percent of the earth’s population. To asses and mitigate this endangerment it is urgent to advance understanding of fault dynamics that allows more timely anticipation of hazardous seismicity. Seismogenesis on accreting and eroding convergent plate boundaries apparently differ because of dissimilar materials along the interplate fault. As the history of instrumentally recorded earthquakes expands the difference becomes clearer. The more homogeneous clay, silt and sand subducted at accreting margins is associated with great earthquakes (M 9) whereas the fragmented upper plate rock that can dominate subducted material along an eroding margin plate interface is associated with many tsunamigenic earthquakes (Bilek, 2010). Few areas have been identified where the seismogenic zone can be reached with scientific drilling. In IODP accreting margins are studied on the NanTroSeize drill transect off Japan where the ultimate drilling of the seismogenic interface may occur by the end of IODP. The eroding Costa Rica margin will be studied in CRISP where a drill program will begin in 2011. The Costa Rican geophysical site survey will be complete with acquisition and processing of 3D seismic data in 2011 but the entire drilling will not be accomplished in IODP. It is appropriate that the accreting margin study be accomplished soon considering the indications of a pending great earthquake that will affect a country that has devoted enormous resources to IODP. However, understanding the erosional end-member is scientifically as important to an understanding of fault mechanics. Transoceanic tsunamis affect the entire Pacific rim where most subduction zones are eroding margins. The Costa Rican subduction zone is less complex operationally and perhaps geologically than the Nankai margin. The developing Central American countries do not have the resources to contribute to IODP but this should not deter acquiring the scientific insights proposed in CRISP considering the broader scientific benefits. Such benefits include the first sampling and instrumentation of an actively eroding plate interface and drilling near or into an earthquake asperity. Drilling an eroding margin should significantly advance understanding of subduction zone fault mechanisms and help improve assessment of future hazardous earthquakes and tsunamis.

  17. Outokumpu Deep Drill Hole: Window to the Precambrian bedrock

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Kietäväinen, Riikka; Ahonen, Lasse; Kukkonen, Ilmo

    2017-04-01

    Outokumpu Deep Drill Hole is located in eastern Finland, at latitude 62°43'4'' N and longitude 29°3'43'' E. This 2516 m long and fully cored deep hole has been utilized as a geolaboratory open for researchers worldwide since it was drilled in 2004-2005. The 220 mm diameter drill hole is open without a casing (excluding the uppermost 40 m) and thus provides a direct access to in situ conditions to 2.5 km depth. There is a wide range of wire-line logs carried out by the drilling contractor and later by ICDP (International Continental Scientific Drilling Program) in several logging sessions for geothermal, hydrogeological and deep biosphere studies. Lithology, metamorphism, fluid inclusions, density, magnetic properties, seismic velocities and thermal properties of the drill core have been studied by several international groups. The hole has kept open since the end of drilling enabling future studies to be conducted in it. The drill hole is situated in the southwestern part of the Outokumpu historical mining district famous for its Cu-Co-Zn sulfide deposits. These sulfide deposits are hosted by 1.96 Ga old ophiolitic rock types, known as the Outokumpu assemblage, also penetrated by the deep drill hole at 1314-1515 m depth. Laboratory and in situ petrophysical measurements have provided valuable information about physical properties of the typical rocks of the area that can be utilized in the mineral exploration efforts. The drill site of Outokumpu was chosen based on strong reflectivity observed in the high resolution seismic profiles acquired earlier in the area. Outokumpu Deep Drill Hole revealed that these reflections originate from the acoustic impedance variations caused by the ore hosting Outokumpu assemblage. In 2006, surface seismic reflection and vertical seismic profiling (VSP) data were measured in the drill site, and these data show that not only is Outokumpu assemblage rocks reflective but also water bearing fracture at 965 m depth is observed as a strong reflector. This fracture, as well as other fractures penetrated by the drill hole, contains saline water and gases, mainly methane, nitrogen, hydrogen and helium. Salinity of water in the deeper part (>1000 m) of the drill hole has continuously increased since the drilling. Gas-rich water slowly seeps upward and bubble out at the water table. In total, five different water types have been discerned along the drill hole by geochemical and isotopic methods and residence times up to 58 Ma indicated by the accumulation of noble gases. Microbiological studies in the Outokumpu Deep Drill Hole show that not only do different fracture zones act as places for shift in groundwater chemistry but also in the microbial communities. After a decade of research, Outokumpu drill hole site is geologically well known and thus provides a good environment to test new tools developed for exploration, microbiological or hydrogeological purposes, for example. Geological Survey of Finland is open for new research collaboration projects related to the drill site.

  18. Preliminary physical stratigraphy, biostratigraphy, and geophysical data of the USGS South Dover Bridge Core, Talbot County, Maryland

    USGS Publications Warehouse

    Alemán González, Wilma B.; Powars, David S.; Seefelt, Ellen L.; Edwards, Lucy E.; Self-Trail, Jean M.; Durand, Colleen T.; Schultz, Arthur P.; McLaughlin, Peter P.

    2012-01-01

    The South Dover Bridge (SDB) corehole was drilled in October 2007 in Talbot County, Maryland. The main purpose for drilling this corehole was to characterize the Upper Cretaceous and Paleogene lithostratigraphy and biostratigraphy of the aquifers and confining units of this region. The data obtained from this core also will be used as a guide to geologic mapping and to help interpret well data from the eastern part of the Washington East 1:100,000-scale map near the town of Easton, Md. Core drilling was conducted to a depth of 700 feet (ft). The Cretaceous section was not penetrated due to technical problems during drilling. This project was funded by the U.S. Geological Survey’s (USGS) Eastern Geology and Paleoclimate Science Center (EGPSC) as part of the Geology of the Atlantic Watersheds Project; this project was carried out in cooperation with the Maryland Geological Survey (MGS) through partnerships with the Aquifer Characterization Program of the USGS’s Maryland-Delaware-District of Columbia Water Science Center and the National Cooperative Geologic Mapping Program. The SDB corehole was drilled by the USGS drilling crew in the northeastern corner of the Trappe 7.5-minute quadrangle, near the type locality of the Boston Cliffs member of the Choptank Formation. Geophysical logs (gamma ray, single point resistance, and 16-inch and 64-inch normal resistivity) were run to a depth of 527.5 ft; the total depth of 700.0 ft could not be reached because of the collapse of the lower part of the hole. Of the 700.0 ft drilled, 531.8 ft of core were recovered, representing a 76 percent core recovery. The elevation of the top of the corehole is approximately 12 ft above mean sea level; its coordinates are lat 38°44′49.34″N. and long 76°00′25.09″W. (38.74704N., 76.00697W. in decimal degrees). A groundwater monitoring well was not installed at this site. The South Dover Bridge corehole was the first corehole that will be used to better understand the geology and hydrology of the Maryland Eastern Shore.

  19. CHART: An Online Workshop About the Future of Scientific Ocean Drilling

    NASA Astrophysics Data System (ADS)

    Meth, C. E.; Ravelo, A. C.

    2009-12-01

    The CHART (Charting the Future Course of Scientific Ocean Drilling) workshop was a six-week on-line meeting that gathered input from the U.S. science community regarding future research directions for scientific ocean drilling. The CHART workshop was hosted and implemented by the Consortium for Ocean Leadership, under the U.S. Science Support Program associated with IODP. The online format allowed researchers who would normally not have the time or resources to travel to a physical meeting to participate in this discussion and allowed Ocean Leadership to archive, in written form, input from every participant, instead of just preserving popular or consensus views. The meeting had six discussion boards, each with initial questions intended to stimulate discussion on current emerging fields, unanswered research questions, implementation strategies, and potential future directions for scientific ocean drilling. The moderators read the posts on a daily basis, interjected comments or questions to stimulate more discussion, and wrote short weekly summaries. Interest in the CHART discussions increased over the course of the workshop and prompted the steering committee to extend the meeting to the final sixth week, allowing time for the participants to complete reading and responding to the new activity. In all, the CHART discussion boards were visited 2,242 times by 695 visitors and resulted in 535 posts. The visitors came to the site from 37 states, the District of Columbia, and 17 countries. The CHART workshop represented the first step in garnering input from U.S. scientists to plan for scientific ocean drilling beyond 2013. The resulting white paper became part of the planning process for the international meeting, INVEST, and will be used to write the science plan for the next scientific drilling program. The white paper also allowed U.S. participants at INVEST to better represent and express the collective vision of the their community.

  20. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Overview of scientific and technical program

    USGS Publications Warehouse

    Hunter, R.B.; Collett, T.S.; Boswell, R.; Anderson, B.J.; Digert, S.A.; Pospisil, G.; Baker, R.; Weeks, M.

    2011-01-01

    The Mount Elbert Gas Hydrate Stratigraphic Test Well was drilled within the Alaska North Slope (ANS) Milne Point Unit (MPU) from February 3 to 19, 2007. The well was conducted as part of a Cooperative Research Agreement (CRA) project co-sponsored since 2001 by BP Exploration (Alaska), Inc. (BPXA) and the U.S. Department of Energy (DOE) in collaboration with the U.S. Geological Survey (USGS) to help determine whether ANS gas hydrate can become a technically and commercially viable gas resource. Early in the effort, regional reservoir characterization and reservoir simulation modeling studies indicated that up to 0.34 trillion cubic meters (tcm; 12 trillion cubic feet, tcf) gas may be technically recoverable from 0.92 tcm (33 tcf) gas-in-place within the Eileen gas hydrate accumulation near industry infrastructure within ANS MPU, Prudhoe Bay Unit (PBU), and Kuparuk River Unit (KRU) areas. To further constrain these estimates and to enable the selection of a test site for further data acquisition, the USGS reprocessed and interpreted MPU 3D seismic data provided by BPXA to delineate 14 prospects containing significant highly-saturated gas hydrate-bearing sand reservoirs. The "Mount Elbert" site was selected to drill a stratigraphic test well to acquire a full suite of wireline log, core, and formation pressure test data. Drilling results and data interpretation confirmed pre-drill predictions and thus increased confidence in both the prospect interpretation methods and in the wider ANS gas hydrate resource estimates. The interpreted data from the Mount Elbert well provide insight into and reduce uncertainty of key gas hydrate-bearing reservoir properties, enable further refinement and validation of the numerical simulation of the production potential of both MPU and broader ANS gas hydrate resources, and help determine viability of potential field sites for future extended term production testing. Drilling and data acquisition operations demonstrated that gas hydrate scientific research programs can be safely, effectively, and efficiently conducted within ANS infrastructure. The program success resulted in a technical team recommendation to project management to drill and complete a long-term production test within the area of existing ANS infrastructure. If approved by stakeholders, this long-term test would build on prior arctic research efforts to better constrain the potential gas rates and volumes that could be produced from gas hydrate-bearing sand reservoirs. ?? 2010 Elsevier Ltd.

  1. Computer-Assisted Instruction: Stanford's 1965-66 Arithmetic Program.

    ERIC Educational Resources Information Center

    Suppes, Patrick; And Others

    A review of the possibilities and challenges of computer-assisted instruction (CAI), and a brief history of CAI projects at Stanford serve to give the reader the context of the particular program described and analyzed in this book. The 1965-66 arithmetic drill-and-practice program is described, summarizing the curriculum and project operation. An…

  2. A Mentoring Program Drills down on the Common Core

    ERIC Educational Resources Information Center

    Davis, Emily; Sinclair, Steve; Gschwend, Laura

    2015-01-01

    The Santa Cruz/Silicon Valley New Teacher Project--under the aegis of the New Teacher Center--devised a program to train teacher mentors to help new teachers incorporate the Common Core standards into their teaching. The three-year program yielded five critical lessons: Mentors need ongoing support to develop their readiness and willingness to…

  3. Contamination assessment in microbiological sampling of the Eyreville core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gronstal, A.L.; Voytek, M.A.; Kirshtein, J.D.; Von der, Heyde; Lowit, M.D.; Cockell, C.S.

    2009-01-01

    Knowledge of the deep subsurface biosphere is limited due to difficulties in recovering materials. Deep drilling projects provide access to the subsurface; however, contamination introduced during drilling poses a major obstacle in obtaining clean samples. To monitor contamination during the 2005 International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) deep drilling of the Chesapeake Bay impact structure, four methods were utilized. Fluorescent microspheres were used to mimic the ability of contaminant cells to enter samples through fractures in the core material during retrieval. Drilling mud was infused with a chemical tracer (Halon 1211) in order to monitor penetration of mud into cores. Pore water from samples was examined using excitation-emission matrix (EEM) fl uorescence spectroscopy to characterize dissolved organic carbon (DOC) present at various depths. DOC signatures at depth were compared to signatures from drilling mud in order to identify potential contamination. Finally, microbial contaminants present in drilling mud were identified through 16S ribosomal deoxyribonucleic acid (rDNA) clone libraries and compared to species cultured from core samples. Together, these methods allowed us to categorize the recovered core samples according to the likelihood of contamination. Twenty-two of the 47 subcores that were retrieved were free of contamination by all the methods used and were subsequently used for microbiological culture and culture-independent analysis. Our approach provides a comprehensive assessment of both particulate and dissolved contaminants that could be applied to any environment with low biomass. ?? 2009 The Geological Society of America.

  4. Dead Sea deep cores: A window into past climate and seismicity

    NASA Astrophysics Data System (ADS)

    Stein, Mordechai; Ben-Avraham, Zvi; Goldstein, Steven L.

    2011-12-01

    The area surrounding the Dead Sea was the locus of humankind's migration out of Africa and thus has been the home of peoples since the Stone Age. For this reason, understanding the climate and tectonic history of the region provides valuable insight into archaeology and studies of human history and helps to gain a better picture of future climate and tectonic scenarios. The deposits at the bottom of the Dead Sea are a geological archive of the environmental conditions (e.g., rains, floods, dust storms, droughts) during ice ages and warm ages, as well as of seismic activity in this key region. An International Continental Scientific Drilling Program (ICDP) deep drilling project was performed in the Dead Sea between November 2010 and March 2011. The project was funded by the ICDP and agencies in Israel, Germany, Japan, Norway, Switzerland, and the United States. Drilling was conducted using the new Large Lake Drilling Facility (Figure 1), a barge with a drilling rig run by DOSECC, Inc. (Drilling, Observation and Sampling of the Earth's Continental Crust), a nonprofit corporation dedicated to advancing scientific drilling worldwide. The main purpose of the project was to recover a long, continuous core to provide a high resolution record of the paleoclimate, paleoenvironment, paleoseismicity, and paleomagnetism of the Dead Sea Basin. With this, scientists are beginning to piece together a record of the climate and seismic history of the Middle East during the past several hundred thousand years in millennial to decadal to annual time resolution.

  5. School Consolidation: Is Bigger Better? Part I. Options in Education, Program #89.

    ERIC Educational Resources Information Center

    George Washington Univ., Washington, DC. Inst. for Educational Leadership.

    This publication is the complete transcript of a weekly radio program devoted to contemporary issues in American education. This particular program is the first of two that focus on the topic of school consolidation. In separate segments of the program, a teacher and students drill in a one-room school in Indiana; a long-time rural school teacher…

  6. Preventing Fire Death and Injury, Conducting a Fire Drill in a Group Home [and] When You Need a Fire Safety Expert. National Fire Safety Certification System. Continuing Education Program. Volume 1, Numbers 1-3.

    ERIC Educational Resources Information Center

    Walker, Bonnie

    Three booklets provide fire safety information for staff of residential facilities serving people with developmental disabilities. Booklets focus on: (1) preventing fire death and injury, (2) conducting a fire drill in a group home, and (3) the role of fire safety experts. The first booklet stresses the elimination of the following dangers:…

  7. Sedimentology of the Argo and Gascoyne abyssal plains, NW Australia: Report on Ocean Drilling Program Leg 123 (Sept. 1–Nov. 1, 1988)

    USGS Publications Warehouse

    Thurow, Jürgen

    1988-01-01

    Ocean Drilling Program Leg 123 drilled two sites in the Indian Ocean in order to study the rifting and early spreading of one of the world’s oldest ocean basins.Site 765 was drilled in 5714 meters of water on the Argo Abyssal Plain northwest of Australia. The sedimentary succession records the opening of an ocean basin, from the first sediments deposited atop young oceanic crust, to the present day. The oldest sediments are microlaminated brown silty claystones, locally rich in calcareous bioclasts. Most of the sequence is dominated by turbidites (primarily calcareous) which probably originated within canyons cut into the margin of the drowned platform of the North West Shelf of Australia.Site 766 is located in 3998 meters of water, at the base of the steep western margin of the Exmouth Plateau. The oldest sediments penetrated are glauconitic, volcaniclastic, and bioclastic sandstones and siltstones, which are interbedded with inclined basaltic sills. These sediments were deposited by a prograding submarine fan system which shed shallow marine sediments westward or northwestward off of the western rim of the Exmouth Plateau. Sandstones are succeeded by silty claystones, recording gradual abandonment or redirection of the fan system. An overlying sequence of pelagic and hemipelagic clayey and zeolitic calcareous oozes and chalks is succeeded by featureless and homogeneous pelagic nannofossil oozes.

  8. Interest focuses on exploratory areas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stremel, K.

    1984-10-01

    Speculative geophysical programs are underway in sparsely drilled areas throughout the southern Rocky Mountain region. Responding to significant operator interest generated by new production in Nevada, a few contractors are designing programs to establish optimum recording parameters. Geophysical exploration activities in Colorado and Utah are discussed.

  9. Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited

    NASA Astrophysics Data System (ADS)

    Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP programs.

  10. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  11. Geohydrologic and drill-hole data for test well USW H-1, adjacent to Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rush, F.E.; Thordarson, W.; Bruckheimer, L.

    This report presents data collected to determine the hydraulic characteristics of rocks penetrated in test well USW H-1. The well is one of a series of test wells drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada, in a program conducted on behalf of the US Department of Energy. These investigations are part of the Nevada Nuclear Waste Storage Investigations to identify suitable sites for storage of high-level radioactive wastes. Data on drilling operations, lithology, borehole geophysics, hydrologic monitoring, core analysis, ground-water chemistry and pumping and injection tests for well USW H-1 are inmore » this report.« less

  12. Performance of High School Students in a Laparoscopic Training Program.

    PubMed

    Furer, Scott; Alam, Sarah; Rosser, James

    2017-01-01

    We hypothesized that high school students can be subjected to the same laparoscopic surgical training curriculum used by surgeons and successfully complete it. The goal of this study was to evaluate the appropriateness of early training in minimally invasive surgical techniques. Thirteen high school students, ages 15-18, participated in the validated Top Gun Surgeon Laparoscopic Skills and Suturing program. The students performed 3 preparatory drills 10 times each. The students' scores were then compared to a database of 393 surgeons. Performance graphs were prepared to allow comparison of skills acquisition between the 2 training groups. All 13 students successfully completed the tasks. The Students' performance (expressed as time/percentile range/average percentile) for each task were as follows: rope pass 101.8 seconds/3.8-47.1/11.8; bean drop 149.5 seconds/18.7-96.0/59.4; triangle transfer 303.2 seconds/1.3-16.0/5.8. The students started each drill with slower times, but their average improvement (decreased time to complete tasks) was more rapid than that of the surgeons between the first and second trials for each drill (-83 seconds vs -25 seconds, -120 seconds vs -53 seconds, -100 seconds vs -60 seconds). Average student times compared to average surgeon times during the last trials measured were not significantly different in the triangle transfer and rope pass drills ( P = .40 and .18, respectively). Students' times were significantly faster than surgeons' in the last measured trial of the bean drop ( P = .039). Despite the small sample size, this investigation suggests that high school students can successfully complete skill-building programs in minimally invasive surgery. Further study is needed to evaluate the appropriateness of starting surgical training of future residents at an earlier stage of their careers.

  13. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    USGS Publications Warehouse

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  14. Oil exploration and development in Marib/Al Jawf basin, Yemen Arab Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maycock, I.D.

    1986-07-01

    In 1981, Yemen Hunt Oil Company (YHOC) negotiated a production-sharing agreement covering 12,600 km/sup 2/ in the northeast part of the Yemen Arab Republic. A reconnaissance seismic program of 1864 km acquired in 1982 revealed the presence of a major half graben, designated the Marib/Al Jawf basin by YHOC. A sedimentary section up to 18,000 ft thick has been recognized. Geologic field mapping identified Jurassic carbonates covered by Cretaceous sands overlying Permian glaciolacustrine sediments, Paleozoic sandstones, or Precambrian basement. The first well drilled in 1984, aimed at a possible Jurassic carbonate objective, encountered hydrocarbon-bearing sands in the Jurassic-Cretaceous transition betweenmore » 5000 and 6000 ft. A successful appraisal drilling program has demonstrated satisfactory lateral reservoir continuity. Further wildcat drilling demonstrates macro-unit correlation within the eastern part of the basin. Rapid basin development apparently commenced in the late Kimmeridgian, culminating with the deposition of Tithonian evaporites. Available geochemical analysis indicates sourcing from restricted-basin sediments. Excellent traps, reservoirs, and source beds underlying the Tithonian evaporites indicate that a significant new petroliferous province is present.« less

  15. Ocean Drilling Program Contributions to the Understanding of the Deep Subsurface Biosphere

    NASA Astrophysics Data System (ADS)

    Fisk, M. R.

    2003-12-01

    Tantalizing evidence for microbes in oceanic basalts has been reported for a few decades, but it was from rocks cored on Ocean Drilling Program (ODP) Leg 148 in 1993 that the first clear-cut evidence of microbial invasion of ocean basalts was obtained. (Work on ODP legs, starting with Leg 112 in 1986, had already revealed the presence of significant microbial biomass in sediments.) In 1997 ODP created the Deep Biosphere Program Planning Group to promote the investigation of the microbiology of the ocean crust. In 1999 ODP built a microbiology lab on the JOIDES Resolution, and used the lab that year (Legs 185 and 187) to test the amount of microbial contamination introduced into rocks during drilling and to establish cultures from cored basalts. These experiments have been repeated on several legs since then. The development of CORKs has permitted long-term sampling of subseafloor fluids, and microorganisms have been recovered from CORKed holes. Thus, ODP made it possible for the scientific community to address major questions about the biology of the igneous crust, such as, (1) What microbes are present? (2) How abundant are they? (3) How are they distributed? DNA from basalts and subseafloor fluids reveal what types of organisms are present. Cell abundance and biomass have been estimated based on cell counts and on organic content of basalts. Surveys of basalts in DSDP/ODP repositories indicate that microorganisms are ubiquitous in the igneous crust. Microorganisms are found in rocks that are close to 100° C. They are found as deep as 1500 m below the sea floor, and in rocks as young as a few years and as old as 170 million years. Because of the vast size of the habitat, microorganism, even if present in small numbers, could be a significant fraction of the Earth's biomass. In a short time ODP contributed to advances in our understanding of the oceanic subsurface biosphere. Answers to other significant questions such as: (1) How do the microorganisms live?, (2) What impact do subsurface microorganisms have on the surface biosphere? (3) And, what roles do the subsurface biosphere play in element cycling? will be answered by future drilling. The International Ocean Drilling Program (IODP) is in the enviable position of providing support to address these key questions about the Earth's subsurface biosphere.

  16. The Effects of Sport-Specific Drills Training or High-Intensity Interval Training in Young Tennis Players.

    PubMed

    Fernandez-Fernandez, Jaime; Sanz, David; Sarabia, Jose Manuel; Moya, Manuel

    2017-01-01

    To compare the effects of combining high-intensity training (HIT) and sport-specific drill training (MT) versus sportspecific drill training alone (DT) on fitness performance characteristics in young tennis players. Twenty young tennis players (14.8 ± 0.1 y) were assigned to either DT (n = 10) or MT (n = 10) for 8 wk. Tennis drills consisted of two 16- to 22-min on-court exercise sessions separated by 3 min of passive rest, while MT consisted of 1 sport-specific DT session and 1 HIT session, using 16-22 min of runs at intensities (90-95%) related to the velocity obtained in the 30-15 Intermittent Fitness Test (V IFT ) separated by 3 min of passive rest. Pre- and posttests included peak oxygen uptake (VO 2 peak), V IFT , speed (20 m, with 5- and 10-m splits), 505 Agility Test, and countermovement jump (CMJ). There were significant improvements after the training period in VO 2 peak (DT 2.4%, ES = moderate; MT 4.2%, ES = large) and V IFT (DT 2.2%, ES = small; MT 6.3%, ES = large) for both DT and MT, with no differences between training protocols. Results also showed a large increase in the 505 Agility Test after MT, while no changes were reported in the other tests (sprint and CMJ), either for MT or DT. Even though both training programs resulted in significant improvements in aerobic performance, a mixed program combining tennis drills and runs based on the V IFT led to greater gains and should be considered the preferred training method for improving aerobic power in young athletes.

  17. Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel

    NASA Astrophysics Data System (ADS)

    Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.

    2008-12-01

    The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and visualization of context data collected with the shipboard core loggers and other instruments.

  18. IODP Expedition 335: Deep Sampling in ODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Teagle, D. A. H.; Ildefonse, B.; Blum, P.; IODP Expedition 335 Scientists, the

    2012-04-01

    Observations of the gabbroic layers of untectonized ocean crust are essential to test theoretical models of the accretion of new crust at mid-ocean ridges. Integrated Ocean Drilling Program (IODP) Expedition 335 ("Superfast Spreading Rate Crust 4") returned to Ocean Drilling Program (ODP) Hole 1256D with the intention of deepening this reference penetration of intact ocean crust a significant distance (~350 m) into cumulate gabbros. Three earlier cruises to Hole 1256D (ODP 206, IODP 309/312) have drilled through the sediments, lavas, and dikes and 100 m into a complex dike-gabbro transition zone. Operations on IODP Expedition 335 proved challenging throughout, with almost three weeks spent re-opening and securing unstable sections of the hole. When coring commenced, the comprehensive destruction of the coring bit required further remedial operations to remove junk and huge volumes of accumulated drill cuttings. Hole-cleaning operations using junk baskets were successful, and they recovered large irregular samples that document a hitherto unseen sequence of evolving geological conditions and the intimate coupling between temporally and spatially intercalated intrusive, hydrothermal, contact-metamorphic, partial melting, and retrogressive processes. Hole 1256D is now clean of junk, and it has been thoroughly cleared of the drill cuttings that hampered operations during this and previous expeditions. At the end of Expedition 335, we briefly resumed coring before undertaking cementing operations to secure problematic intervals. To ensure the greatest scientific return from the huge efforts to stabilize this primary ocean lithosphere reference site, it would be prudent to resume the deepening of Hole 1256D in the nearest possible future while it is open to full depth. doi:10.2204/iodp.sd.13.04.2011

  19. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  20. Alterations in bottom sediment physical and chemical characteristics at the Terra Nova offshore oil development over ten years of drilling on the grand banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory

    2014-12-01

    This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.

  1. No Dull Lexicon.

    ERIC Educational Resources Information Center

    Small, Robert C.

    Despite claims to the contrary, the English language program has improved dramatically over the past 20 years. The traditional program's drill/memorization approach was ineffectual, incomplete, shallow, and uninteresting. Today, however, the study of language involves looking at all of its aspects, sounds, words, and symbols. Instead of throwing…

  2. Mud Gas Logging In A Deep Borehole: IODP Site C0002, Nankai Trough Accretionary Prism

    NASA Astrophysics Data System (ADS)

    Toczko, S.; Hammerschmidt, S.; Maeda, L.

    2014-12-01

    Mud logging, a tool in riser drilling, makes use of the essentially "closed-circuit" drilling mud flow between the drilling platform downhole to the bit and then back to the platform for analyses of gas from the formation in the drilling mud, cuttings from downhole, and a range of safety and operational parameters to monitor downhole drilling conditions. Scientific riser drilling, with coincident control over drilling mud, downhole pressure, and returning drilling mud analyses, has now been in use aboard the scientific riser drilling vessel Chikyu since 2009. International Ocean Discovery Program (IODP) Expedition 348, as part of the goal of reaching the plate boundary fault system near ~5000 mbsf, has now extended the deep riser hole (Hole C0002 N & P) to 3058.5 mbsf. The mud gas data discussed here are from two approximately parallel boreholes, one a kick-off from the other; 860-2329 mbsf (Hole C0002N) and 2163-3058 mbsf (Hole C0002P). An approximate overlap of 166 m between the holes allows for some slight depth comparison between the two holes. An additional 55 m overlap at the top of Hole C0002P exists where a 10-5/8-inch hole was cored, and then opened to 12-1/4-inch with logging while drilling (LWD) tools (Fig. 1). There are several fault zones revealed by LWD data, confirmed in one instance by coring. One of the defining formation characteristics of Holes C0002 N/P are the strongly dipping bedding planes, typically exceeding 60º. These fault zones and bedding planes can influence the methane/ethane concentrations found in the returning drilling mud. A focused comparison of free gas in drilling mud between one interval in Hole C0002 P, drilled first with a 10 5/8-inch coring bit and again with an 12 ¼-inch logging while drilling (LWD) bit is shown. Hole C0002N above this was cased all the way from the sea floor to the kick-off section. A fault interval (in pink) was identified from the recovered core section and from LWD resistivity and gamma. The plot of methane and ethane free gas (C1 and C2; ppmv) shows that the yield of free gas (primarily methane) was greater when the LWD bit returned to open the cored hole to a greater diameter. One possible explanation for this is the time delay between coring and LWD operations; approximately 3 days passed between the end of coring and the beginning of LWD (25-28 December 2013).

  3. Uncertainty analysis of depth predictions from seismic reflection data using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Michelioudakis, Dimitrios G.; Hobbs, Richard W.; Caiado, Camila C. S.

    2018-06-01

    Estimating the depths of target horizons from seismic reflection data is an important task in exploration geophysics. To constrain these depths we need a reliable and accurate velocity model. Here, we build an optimum 2-D seismic reflection data processing flow focused on pre-stack deghosting filters and velocity model building and apply Bayesian methods, including Gaussian process emulation and Bayesian History Matching, to estimate the uncertainties of the depths of key horizons near the Deep Sea Drilling Project (DSDP) borehole 258 (DSDP-258) located in the Mentelle Basin, southwest of Australia, and compare the results with the drilled core from that well. Following this strategy, the tie between the modelled and observed depths from DSDP-258 core was in accordance with the ±2σ posterior credibility intervals and predictions for depths to key horizons were made for the two new drill sites, adjacent to the existing borehole of the area. The probabilistic analysis allowed us to generate multiple realizations of pre-stack depth migrated images, these can be directly used to better constrain interpretation and identify potential risk at drill sites. The method will be applied to constrain the drilling targets for the upcoming International Ocean Discovery Program, leg 369.

  4. Real time observation system for monitoring environmental impact on marine ecosystems from oil drilling operations.

    PubMed

    Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz

    2014-07-15

    Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A comparison of petrophysical data inputs for establishing time-depth relationships: a guide for future drilling expeditions

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Sauermilch, I.; Mateo, Z. R. P.

    2017-12-01

    Time-depth relationships (TDR) are crucial in correlating drillhole and core information to seismic reflection profiles, for accurate resource estimation, scientific interpretation and to guide drilling operations. Conventional seismic time-depth domain conversion utilizes downhole sonic logs (DSI), calibrated using available checkshot data, which are local travel times from the surface to a particular depth. Scientific drilling programs (ODP and IODP) also measure P-wave velocity (PWL or C) on recovered core samples. Only three percent of all ODP and IODP sites record all three velocity measurements, however this information can be instructive as sometimes these data input show dissimilar TDR. These representative sites provide us with an opportunity to perform a comparative analysis highlighting the differences and similarities of TDRs derived from checkshot, downhole, and laboratory measurements. We then discuss the impact of lithology, stratigraphy, water column and other petrophysical properties in the predictive accuracy of TDR calculations, in an effort to provide guidance for future drilling and coring expeditions.

  6. Improving the Welfare of a Zoo-Housed Male Drill (Mandrillus leucophaeus poensis) Aggressive Toward Visitors.

    PubMed

    Martín, Olga; Vinyoles, Dolors; García-Galea, Eduardo; Maté, Carmen

    2016-01-01

    Improving the welfare of nonhuman animals in captivity and maintaining behavioral competence for future conservation purposes is of the highest priority for zoos. The behavior of an aggressive male drill (Mandrillus leucophaeus poensis) was assessed in Barcelona Zoo. The 2-year study presented in this article examined the effects of introducing changes in the exhibit of the drill to improve his welfare by analyzing scan behaviors. First, a partial visual barrier was applied and proved to be insufficient to decrease the long-term stress indicators assessed. Next, a feeding enrichment program was implemented. The results supported the hypothesis that feeding and explorative activities would increase, whereas apathetic and stereotypic behaviors would decrease. However, visitor-directed aggression did not vary, indicating that more profound structural modifications were needed to reduce the negative impact of the agonistic interactions between the drill and the public. The study emphasized the usefulness of environmental enrichment evaluations in assessing captive animal welfare.

  7. Southern Appalachian hillslope erosion rates measured by soil and detrital radiocarbon in hollows

    USGS Publications Warehouse

    Hales, T.C.; Scharer, K.M.; Wooten, R.M.

    2012-01-01

    Understanding the dynamics of sediment generation and transport on hillslopes provides important constraints on the rate of sediment output from orogenic systems. Hillslope sediment fluxes are recorded by organic material found in the deposits infilling unchanneled convergent topographic features called hollows. This study describes the first hollow infilling rates measured in the southern Appalachian Mountains. Infilling rates (and bedrock erosion rates) were calculated from the vertical distribution of radiocarbon ages at two sites in the Coweeta drainage basin, western North Carolina. At each site we dated paired charcoal and silt soil organic matter samples from five different horizons. Paired radiocarbon samples were used to bracket the age of the soil material in order to capture the range of complex soil forming processes and deposition within the hollows. These dates constrain hillslope erosion rates of between 0.051 and 0.111mmyr-1. These rates are up to 4 times higher than spatially-averaged rates for the Southern Appalachian Mountains making creep processes one of the most efficient erosional mechanisms in this mountain range. Our hillslope erosion rates are consistent with those of forested mountain ranges in the western United States, suggesting that the mechanisms (dominantly tree throw) driving creep erosion in both the western United States and the Southern Appalachian Mountains are equally effective. ?? 2011 Elsevier B.V.

  8. The Phuket Terrane: A Late Palaeozoic rift at the margin of Sibumasu

    NASA Astrophysics Data System (ADS)

    Ridd, Michael F.

    2009-09-01

    It is widely accepted that Sibumasu rifted from Gondwana in the Late Palaeozoic. But the rifts themselves have not previously been documented in Southeast Asia. This paper identifies the pre-Middle Permian Kaeng Krachan Group of Upper Peninsular Thailand as the infill of one such rift, which is given the name Phuket Terrane. Indirect evidence suggests the rift-infill is several kilometres thick and glacially-influenced diamictites are conspicuous in the succession. There are significant similarities with the >3 km thick pre-Middle Permian rift-infill of the Carnarvon Basin of Western Australia. East of the Khlong Marui Fault belt the succession is thinner and diamictites are a minor component. A tectono-stratigraphic model is proposed involving Gondwana glaciers dropping their load at the (present) western margin of the Phuket Terrane from where it was re-sedimented in the rapidly subsiding marine rift basin. It is suggested that the Khlong Marui Fault formed part of the eastern boundary of the rift system. The Three Pagodas Fault belt similarly juxtaposes different pre-Middle Permian successions. Rifting ceased in the Early Permian and a passive margin formed as the Mesotethys ocean widened, the upper part of the Kaeng Krachan Group and the overlying Ratburi Limestone representing the post-rift sequence.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chace, D.A.; Roberts, R.M.; Palmer, J.B.

    WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbedmore » and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.« less

  10. Testimony of C. D. Zerby at hearing to show cause re testing operations for radioactive waste disposal, Baton Rouge, Louisiana, February 23, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-03-03

    On February 23, 1978, a hearing was held in Baton Rouge, Louisiana, to show cause why the suspended drilling permits for drilling at Vacherie and Rayburn's Domes should not be permanently revoked. Presentations on behalf of the Department of Energy were made by Dr. J. D. Martinez, Dr. C. D. Zerby, and Dr. C. A. Heath. The text of this report presents the prepared testimony of C. D. Zerby. Not included are the many questions and answers. The testimony as presented may be incomplete since it was prepared from notes used by C. D. Zerby during the presentation. The presentationsmore » are concerned with responsibilities, National Waste Terminal Storage/Office of Waste Isolation programs, Louisiana exploration programs, Avery Island, environmental studies, facility description, other study areas, and previous communications regarding the program. (JRD)« less

  11. Reward and uncertainty in exploration programs

    NASA Technical Reports Server (NTRS)

    Kaufman, G. M.; Bradley, P. G.

    1971-01-01

    A set of variables which are crucial to the economic outcome of petroleum exploration are discussed. These are treated as random variables; the values they assume indicate the number of successes that occur in a drilling program and determine, for a particular discovery, the unit production cost and net economic return if that reservoir is developed. In specifying the joint probability law for those variables, extreme and probably unrealistic assumptions are made. In particular, the different random variables are assumed to be independently distributed. Using postulated probability functions and specified parameters, values are generated for selected random variables, such as reservoir size. From this set of values the economic magnitudes of interest, net return and unit production cost are computed. This constitutes a single trial, and the procedure is repeated many times. The resulting histograms approximate the probability density functions of the variables which describe the economic outcomes of an exploratory drilling program.

  12. School of Ice: US Ice Drilling Program Made Accessible to Faculty at Minority-Serving Institutions

    NASA Astrophysics Data System (ADS)

    Davis, H. B.; Hoffman, L. T.

    2017-12-01

    The School of Ice program is designed for college faculty who teach at minority-serving institutions or historically black colleges and universities to help build their background knowledge about ice core science and climate change and gain activities and labs for transferring information to their students. In this session, you will learn about the information and activities shared with faculty and the effect of the Institute on faculty. This session will provide an overview of activities that faculty can use to engage students in ice drilling processes and results. Faculty who have attended this institute in the last four years have reported increases in their understanding of the content and how to teach it.

  13. Advanced Metallic Air Vehicle Structure Program

    DTIC Science & Technology

    1974-06-01

    soapstone line around the periphery of the lower plate from XFO.00 to the outboard edge using edge of MSLO X7224175 as guide. Remove MSLO X7224175. D...hole in the lug reinforcement plates). Make soapstone line to edge of MSLO to denote periphery of cutouts. E. Relocate MSLO X7224175 on opposite end of...of plate). G. Drill .50 diameter holes (10) using the Bux- Magnetic drill unit. See MAP-I-3 for approximate locations of these start and stop holes. A 1

  14. Use of geostatistics in planning optimum drilling program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose S.

    1989-08-01

    Application of geostatistics in the natural resources industry is well established. In a typical process of estimation, the statistically dependent geological data are used to predict the characteristics of a deposit. The estimator used is the best linear unbiased estimator (or BLUE), and a numerical factor of confidence is also provided. The natural inhomogeneity and anisotropy of a deposit are also quantified with preciseness. Drilling is the most reliable way of obtaining data for mining and related industries. However, it is often difficult to decide what is the optimum number of drill holes necessary for evaluation. In this paper, sequentialmore » measures of percent variation at 95% confidence level of a geological variable have been used to decipher economically optimum drilling density. A coal reserve model has been used to illustrate the method and findings. Fictitious drilling data were added (within the domain of population characteristics) in stages, to obtain a point of stability, beyond which the gain was significant (diminishing marginal benefit). The final relations are established by graphically projecting and comparing two variables - cost and precision. By mapping the percent variation at each stage, the localized areas of discrepancies can be identified. These are the locations where additional drilling is needed. The system can be controlled if performed at progressive stages and the preciseness toward stability is monitored.« less

  15. Why Drill Here? Teaching to Build Student Understanding of the Role Sediment Cores from Polar Regions play in Interpreting Climate Change

    NASA Astrophysics Data System (ADS)

    Pound, K. S.; St. John, K.; Krissek, L. A.; Jones, M. H.; Leckie, R. M.; Pyle, E. J.

    2008-12-01

    That the ocean basins provide a record of past global climate changes through their sediment cores is often a surprise or novel idea for students. Equally surprising to many students is the fact that current research is being undertaken in remote polar regions, even though sedimentary records already exist from the low and mid latitude regions. Students are often also perplexed about how decisions are made regarding the selection of drill sites in the polar regions. Using an inquiry-based approach we are developing a series of simple exercises that are scaffolded to build student understanding around the question "Why Drill Here?" The exercises are based on IODP Expedition 302 (ACEX) in the Arctic, and on the Antarctic Geological Drilling (ANDRILL) program, which are used as case studies. The "Why Drill Here?" question is addressed at multiple levels so students can formulate a scientific rationale behind selection of sites for seafloor drilling in the Arctic and Antarctic regions. Technological challenges and solutions to doing field-based science in polar regions are explored. Finally, a subset of research results are investigated and compared with the current scientific paradigm on Cenozoic climate evolution to demonstrate that science is an evolving process. These exercises can be adapted for use in a variety of Introductory Earth Science classes.

  16. Education and Outreach Plans for the U.S. Drillship in IODP

    NASA Astrophysics Data System (ADS)

    White, K. S.; Reagan, M.; Klaus, A. D.

    2003-12-01

    The Integrated Ocean Drilling Program (IODP) began on October 1, 2003, following the end of operations of the 20-year Ocean Drilling Program (ODP). Education and outreach is a key component of IODP both nationally and internationally. The JOI Alliance (Joint Oceanographic Institutions, Inc., Texas A&M University, and Lamont Doherty Earth Observatory of Columbia University) will lead activities related to the U.S. drillship, coordinating these education and outreach efforts with those undertaken by the Central Management Organization, other IODP platform operators, and a U.S. Science Support Program successor. The Alliance will serve the national and assist the international scientific drilling communities by providing the results from the U.S. vessel to the public, government representatives, and scientists. The Alliance will expand upon media outreach strategies that were successful in ODP, such as issuing press releases at the conclusion of each leg and for major scientific breakthroughs; conducting tours, press conferences, and events during port calls; working with the press at major scientific meetings, and encouraging journalists to sail on expeditions. The Alliance will increase its education role by developing, coordinating, and disseminating educational materials and programs for teachers and students on the scientific themes and discoveries of IODP science. An important component of the outreach plan is using the vessel and associated laboratories and repositories as classrooms. IODP plans include multiple ship berths each year for teachers, based on the success of a pilot program conducted by ODP in 2001. This program, featuring a teacher onboard for a cruise, was accompanied by a distance-learning program and on-line curriculum models. Teachers can tour, both virtually and directly, laboratories and core repositories and participate in scheduled activities and courses. Using science conducted onboard the ship, the Alliance will develop online curriculum materials, as well as publications and fact sheets geared toward nonscientists. The Alliance will partner with existing scientific and education organizations, including programs at their universities, to widely disseminate IODP results and materials.

  17. New insight on the recent tectonic evolution and uplift of the southern Ecuadorian Andes from gravity and structural analysis of the Neogene-Quaternary intramontane basins

    NASA Astrophysics Data System (ADS)

    Tamay, J.; Galindo-Zaldívar, J.; Ruano, P.; Soto, J.; Lamas, F.; Azañón, J. M.

    2016-10-01

    The sedimentary basins of Loja, Malacatos-Vilcabamba and Catamayo belong to the Neogene-Quaternary synorogenic intramontane basins of South Ecuador. They were formed during uplift of the Andes since Middle-Late Miocene as a result of the Nazca plate subduction beneath the South American continental margin. This E-W compressional tectonic event allowed for the development of NNE-SSW oriented folds and faults, determining the pattern and thickness of sedimentary infill. New gravity measurements in the sedimentary basins indicate negative Bouguer anomalies reaching up to -292 mGal related to thick continental crust and sedimentary infill. 2D gravity models along profiles orthogonal to N-S elongated basins determine their deep structure. Loja Basin is asymmetrical, with a thickness of sedimentary infill reaching more than 1200 m in the eastern part, which coincides with a zone of most intense compressive deformation. The tectonic structures include N-S, NW-SE and NE-SW oriented folds and associated east-facing reverse faults. The presence of liquefaction structures strongly suggests the occurrence of large earthquakes just after the sedimentation. The basin of Malacatos-Vilcabamba has some folds with N-S orientation. However, both Catamayo and Malacatos-Vilcabamba basins are essentially dominated by N-S to NW-SE normal faults, producing a strong asymmetry in the Catamayo Basin area. The initial stages of compression developed folds, reverse faults and the relief uplift determining the high altitude of the Loja Basin. As a consequence of the crustal thickening and in association with the dismantling of the top of the Andes Cordillera, extensional events favored the development of normal faults that mainly affect the basins of Catamayo and Malacatos-Vilcabamba. Gravity research helps to constrain the geometry of the Neogene-Quaternary sedimentary infill, shedding some light on its relationship with tectonic events and geodynamic processes during intramontane basin development.

  18. Paleodrainage insights into the fluvial and glacial history of the western Chukchi margin, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Stockmaster, B. A.; Hill, J. C.; Klotsko, S.; Driscoll, N. W.

    2016-12-01

    CHIRP subbottom data collected from the Chukchi shelf offshore of northwest Alaska reveal extensive paleodrainage networks that incised the margin during sea level lowstands. These features are cut into folded Cretaceous bedrock strata and likely represent multiple sea level cycles. Several large incised valleys, 10s of km wide and up to 50m deep, as well as numerous smaller, individual channels have been identified. Possible sources of fluvial input include drainage from the Hope Valley to the south, as well as several smaller rivers on the northwest Alaskan coast such as the Utukok, Kokolik, Kukpowruk, and Kuk Rivers. Correlation of sediment infill patterns provides insight to paleochannels and paleovalleys as well as outlining potential drainage networks. This new data will be used to examine sediment infill and erosion patterns to assess whether some of the valleys were formed by non-fluvial (i.e. glacial) processes. Preliminary results indicate the presence of six paleodrainage networks across the eastern Chukchi shelf, based on shape, size and infill of the paleovalleys: Incised Valley, Middle Valley, Northern Valley, Borderlands Valley, the Hanna Bank Valley and the Barrow Valley. All of the paleodrainage valleys are oriented perpendicular to the coast except for Barrow Valley, which follows the northwest coastline, and the Hanna Bank Valley, which is oriented parallel. The Barrow Valley also displays several interesting features in the subsurface. In all of the profiles across this paleovalley, the fluvial infill is overlain by high amplitude, acoustically laminated reflectors that appear to represent hemipelagic marine sediment, indicating rapid sea level rise flooded the shelf. There also appears to be 1 m erosional relief on the transgressive surface, which suggests there may have been an additional source of erosion within the Barrow Valley during sea level rise, possibly from an ice shelf or other glacial features. The presence of ice could also possibly explain the occupation of Barrow Canyon that would have diverted the Barrow Valley drainage.

  19. Initial report on drilling into seismogenic zones of M2.0 - M5.5 earthquakes from deep South African gold mines (DSeis)

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hiroshi; Durrheim, Raymond; Yabe, Yasuo; Ito, Takatoshi; van Aswegen, Gerrie; Grobbelaar, Michelle; Funato, Akio; Ishida, Akimasa; Ogasawara, Hiroyuki; Mngadi, Siyanda; Manzi, Musa; Ziegler, Martin; Ward, Tony; Moyer, Pamela; Boettcher, Margaret; Ellsworth, Bill; Liebenberg, Bennie; Wechsler, Neta; Onstott, Tullis; Berset, Nicolas

    2017-04-01

    The International Continental Scientific Drilling Program (ICDP) approved our proposal (Ogasawara et al., EGU 2016) to drill into and around seismogenic zones where critically stressed faults initiated ruptures at depth. The drilling targets include four ruptures equivalent to M2.0, 2.8, 3.5, and 5.5 that dynamically and quasi-statically evolved in 2.9 Ga hard rock in the Witwatersrand basin, South Africa. Major advantages of our drilling locations are the large quantity and high-quality of existing data from dense seismic arrays both on surface and near-field underground in three deep South African gold mines. Additionally, the great depths (1.0 to 3.3 km from surface) to collar holes reduce drilling costs significantly and enable a larger number of holes to be drilled. Flexibility in drilling direction will also allow us to minimize damage in borehole or drilled cores. With the ICDP funds, we will conduct full-core drilling of 16 holes with drilling ranges from 50 to 750 m to recover both materials and fractures in and around the seismogenic zones, followed by core and borehole logging. Additional in-hole monitoring at close proximity will be supported by co-mingled funds and will follow the ICDP drilling. Expected magnitudes of maximum shear stress are several tens of MPa. We have established an overcoring procedure to measure 3D-stress state for adverse underground working conditions so as not to interfere with mining operations. This procedure was optimized based on the Compact Conic-ended Borehole Overcoring (CCBO) technique (ISRM suggested; Sugawara and Obara, 1999). Funato and Ito (2016 IJRMMS) developed a diametrical core deformation analysis (DCDA) method to measure differential stress using only drilled core by assuming diametrical change with roll angles caused by elastic in-axisymmetrical expansion during drilling. A gold mine has already drilled a hole to intersect the hypocenter of a 2016 M3.5 earthquake and carried out the CCBO stress measurement in other holes at the M3.5 seismogenic zone. As we successfully conducted DCDA with the above-mentioned drilled core, we look forward to shedding light on spatial variations of stress in the seismogenic zones following our ICDP DSeis drilling. A M5.5 earthquake which took place near Orkney, South Africa on 5 August 2014, offers a special opportunity to compare seismically inverted spatio-temporal evolution of both the main rupture and the aftershock activity with the information directly probed by the ICDP DSeis project. Moyer et al. (2016 Seismol. Res. Lett. submitted) calls for comparing seismic source models as part of a workshop proposed to the Southern California Earthquake Center for Fall 2017. In addition, the upper edge of the M5.5 rupture is located hundreds of meters below the mining horizon, sufficiently away from anthropogenic activity. This allows geomicrobiologists to investigate deep microbiological activity fueled by H2 from seismic rupture to address questions about Earth's early life. Drilling machines are being rigged underground soon to kick off our ICDP DSeis drilling in early 2017.

  20. Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid

    NASA Astrophysics Data System (ADS)

    yang, P.

    2013-12-01

    Experimental study of the effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid Ping Yang 1,2, Min-hui Wu2, Xue-wen Zhu2, Tao Deng2, Xue-qing Sun2 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092,China 2. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China Abstract The process of filtrate loss of low-solids drilling fluid was tested by changing the polyanionic cellulose content in low-solids drilling fluid. The effect of polyanionic cellulose on process of filtrate loss of low-solids drilling fluid was analyzed. The test results showed that when time of filtration is same, the volume of filtrate loss decreases linearly with increasing polyanionic cellulose content. When polyanionic cellulose content is same, the rate of filtrate loss decreases nonlinearly with increasing time and the rate of filtrate loss will reach a stable value.The volume of filtrate loss in 7 to 8 minutes can reaches half of the total volume of filtrate loss. At the same time, the rate of filtrate loss of drilling fluid decreases nonlinearly with increasing viscosity.When the apparent viscosity is between 3.5~4.15 MPa.s, decrease speed of rate of filtrate loss of drilling fluid is quick. The results are helpful for characteristics evaluation of filtrate loss of drilling fluid and control of filtrate loss. Keyword Polyanionic Cellulose,Drilling Fluid,Process of Filtrate Loss Acknowledgments This investigation was supported by the National Natural Science Foundation of China (projects No. 41002093 and 41072205); the Fundamental Research Funds for the Central Universities; the Shanghai Leading Academic Discipline Project (project No. B308), Tongji University; and the Program for Young Excellent Talents, Tongji University. The authors are extremely grateful for the financial support from these five organizations.

  1. Holocene evolution of the Tonle Sap Lake: valley network infill and rates of sedimentation in Cambodia's Great Lake

    NASA Astrophysics Data System (ADS)

    Best, J.; Darby, S. E.; Langdon, P. G.; Hackney, C. R.; Leyland, J.; Parsons, D. R.; Aalto, R. E.; Marti, M.

    2017-12-01

    Tonle Sap Lake, the largest freshwater lake in SE Asia (c. 120km long and 35 km wide), is a vital ecosystem that provides 40-60% of the protein for the population of Cambodia. The lake is fed by flow from the Mekong River that causes the lake rise in level by c. 8m during monsoonal and cyclone-related floods, with drainage of the lake following the monsoon. Hydropower dam construction on the Mekong River has raised concerns as to the fragility of the Tonle Sap habitat due to any changing water levels and sedimentation rates within the lake. This paper details results of sub-bottom profiling surveys of Tonle Sap Lake in October 2014 that detailed the stratigraphy of the lake and assessed rates of infill. An Innomar Parametric Echo Sounder (PES) was used to obtain c. 250 km of sub-bottom profiles, with penetration up to 15m below the lake bed at a vertical resolution of c. 0.20m. These PES profiles were linked to cores from the north of the lake and previous literature. The PES profiles reveal a network of valleys, likely LGM, with relief up to c. 15-20m, that have been infilled by a suite of Holocene sediments. The valley surface is picked out as a strong reflector throughout the lake, and displays a series of valleys that are up to c. 15m deep and commonly 50-200m wide, although some of the largest valleys are 1.2km in width. Modelling of channel network incision during LGM conditions generates landscapes consistent with our field observations. The Tonle Sap valley network is infilled by sediments that show firstly fluvial and/or subaerial slope sedimentation, and then by extensive, parallel-bedded, lacustrine sedimentation. Lastly, the top c. 1m of sedimentation is marked by a distinct basal erosional surface that can be traced over much of the Tonle Sap Lake, and that is overlain by a series of parallel PES reflections. This upper sediment layer is interpreted to represent sedimentation in the Tonle Sap lake due to sediment suspension settling but after a period of widespread erosion that generated the extensive erosion surface. This paper will detail the characteristics and interpretation of the PES facies, their correlation to cores and estimates of sedimentation rates. Dating and PES profiles indicate that infill of the lake was complete by c. 6ka and that minimal sedimentation has occurred since then, likely due to reworking by wave resuspension.

  2. Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc

    NASA Astrophysics Data System (ADS)

    Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi

    2018-01-01

    To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.

  3. Chemical Safety Programs.

    ERIC Educational Resources Information Center

    Shaw, Richard

    2000-01-01

    Discusses the need to enhance understanding of chemical safety in educational facilities that includes adequate staff training and drilling requirements. The question of what is considered proper training is addressed. (GR)

  4. Results of the exploratory drill hole Ue5n,Frenchman Flat, Nevada Test Site. [Geologic and geophysical parameters of selected locations with anomalous seismic signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramspott, L.D.; McArthur, R.D.

    1977-02-18

    Exploratory hole Ue5n was drilled to a depth of 514 m in central Frenchmam Flat, Nevada Test Site, as part of a program sponsored by the Nuclear Monitoring Office (NMO) of the Advanced Research Projects Agency (ARPA) to determine the geologic and geophysical parameters of selected locations with anomalous seismic signals. The specific goal of drilling Ue5n was to provide the site characteristics for emplacement sites U5b and U5e. We present here data on samples, geophysical logs, lithology and stratigraphy, and depth to the water table. From an analysis of the measurements of the physical properties, a set of recommendedmore » values is given.« less

  5. Spinoff from a Moon Tool

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Portable self-contained drill capable of extracting core samples as much as 10 feet below the surface was needed for the astronauts. Black & Decker used a specially developed computer program to optimize the design of the drill's motor and insure minimal power consumption. Refinement of the original technology led to the development of a cordless miniature vacuum cleaner called the Dustbuster. It has no hose, no cord, is 14 inches long, and also comes with a storage bracket that also serves as a recharger; plugs into a home outlet that charges the nickel cadmium batteries when not in use. Other home use cordless instruments include drills, shrub trimmers and grass shears. Company also manufactures a number of cordless tools used in the sheet metal automobile and construction industries, and a line of cordless orthopedic instruments.

  6. Groundwater Exploration for Rural Communities in Ghana, West Africa

    NASA Astrophysics Data System (ADS)

    McKay, W. A.

    2001-05-01

    Exploration for potable water in developing countries continues to be a major activity, as there are more than one billion people without access to safe drinking water. Exploration for groundwater becomes more critical in regions where groundwater movement and occurrence is controlled by secondary features such as fractures and faults. Drilling success rates in such geological settings are generally very low, but can be improved by integrating geological, hydrogeological, aerial photo interpretation with land-based geophysical technology in the selection of drilling sites. To help alleviate water supply problems in West Africa, the Conrad N. Hilton Foundation and other donors, since 1990, have funded the World Vision Ghana Rural Water Project (GRWP) to drill wells for potable water supplies in the Greater Afram Plains (GAP) of Ghana. During the first two years of the program, drilling success rates using traditional methods ranged from 35 to 80 percent, depending on the area. The average drilling success rate for the program was approximately 50 percent. In an effort to increase the efficiency of drilling operations, the Desert Research Institute evaluated and developed techniques for application to well-siting strategies in the GAP area of Ghana. A critical project element was developing technical capabilities of in-country staff to independently implement the new strategies. Simple cost-benefit relationships were then used to evaluate the economic advantages of developing water resources using advanced siting methods. The application of advanced methods in the GAP area reveal an increase of 10 to 15 percent in the success rate over traditional methods. Aerial photography has been found to be the most useful of the imagery products covering the GAP area. An effective approach to geophysical exploration for groundwater has been the combined use of EM and resistivity methods. Economic analyses showed that the use of advanced methods is cost-effective when success rates with traditional methods are less than 70 to 90 percent. Finally, with the focus of GRWP activities shifting to Ghana's northern regions, new challenges in drilling success rates are being encountered. In certain districts, success rates as low as 35 percent are observed, raising questions about the efficacy of existing well-siting strategies in the current physical setting, and the validity of traditional cost-benefit analyses for assessing the economic aspects of water exploration in drought-stricken areas.

  7. Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments

    NASA Astrophysics Data System (ADS)

    Hahn, Simon; Duda, Mandy; Stoeckhert, Ferdinand; Wittig, Volker; Bracke, Rolf

    2017-04-01

    Extended Horizontal Jet Drilling for EGS applications in Petrothermal Environments S. Hahn, M. Duda, F. Stoeckhert, V. Wittig, R. Bracke International Geothermal Centre Bochum High pressure water jet drilling technologies are widely used in the drilling industry. Especially in geothermal and hard rock applications, horizontal (radial) jet drilling is, however, confronted with several limitations like lateral length, hole size and steerability. In order to serve as a serious alternative to conventional stimulation techniques these high pressure jetting techniques are experimentally investigated to gain fundamental knowledge about the fluid-structure interaction, to enhance the rock failing process and to identify the governing drilling parameters. The experimental program is divided into three levels. In a first step jetting experiments are performed under free surface conditions while logging fluid pressures, flow speeds and extracted rock volume. All process parameters are quantified with a self-developed jet-ability index and compared to the rock properties (density, porosity, permeability, etc.). In a second step experiments will be performed under pressure-controlled conditions. A test bench is currently under construction offering the possibility to assign an in-situ stress field to the specimen while penetrating the rock sample with a high pressure water jet or a radial jet drilling device. The experimental results from levels 1 and 2 allow to identify the governing rock failure mechanisms and to correlate them with physical rock properties and limited reservoir conditions. Results of the initial tests do show a clear dependency of achievable penetration depth on the interaction of jetting and rock parameters and an individual threshold of the nozzle outlet velocity can be noticed in order to successfully penetrate different formation types. At level 3 jetting experiments will be performed at simulated reservoir conditions corresponding to 5.000 m depth (e.g. up to 1.250 bar and 180 °C) on large samples with a diameter of 25 cm and a length of up to 3m using GZB's in-situ borehole and geofluid simulator 'iBOGS'. Experiments will be documented by active and passive ultrasound measurements and high speed imaging. Acknowledgement Jetting research and work at GZB has received funding in part from the European Union's Horizon 2020 research and innovation program under grant agreement No 654662 and also from federal government GER and state of NRW.

  8. Floodplain lakes and alluviation cycles of the lower Colorado River

    NASA Astrophysics Data System (ADS)

    Malmon, D.; Felger, T. J.; Howard, K. A.

    2007-05-01

    The broad valleys along the lower Colorado River contain numerous bodies of still water that provide critical habitat for bird, fish, and other species. This chain of floodplain lakes is an important part of the Pacific Flyway - the major north-south route of travel for migratory birds in the western Hemisphere - and is also used by many resident bird species. In addition, isolated floodplain lakes may provide the only viable habitat for endangered native fish such as the razorback sucker, vulnerable to predation by introduced species in the main stem of the Colorado River. Floodplain lakes typically occupy former channel courses of the river and formed as a result of river meandering or avulsion. Persistent fluvial sediment deposition (aggradation) creates conditions that favor rapid formation and destruction of floodplain lakes, while long term river downcutting (degradation) inhibits their formation and evolution. New radiocarbon dates from wood recovered from drill cores near Topock, AZ indicate that the river aggraded an average of 3 mm/yr in the middle and late Holocene. Aggradational conditions before Hoover Dam was built were associated with rapid channel shifting and frequent lake formation. Lakes had short life spans due to rapid infilling with fine-grained sediment during turbid floods on the unregulated Colorado River. The building of dams and of armored banks had a major impact on floodplain lakes, not only by drowning large portions of the valley beneath reservoirs, but by preventing new lake formation in some areas and accelerating it in others. GIS analyses of three sets of historical maps show that both the number and total area of isolated (i.e., not linked to the main channel by a surface water connection) lakes in the lower Colorado River valley increased between 1902 and the 1950s, and then decreased though the 1970s. River bed degradation below dams inhibits channel shifting and floodplain lake formation, and the capture of fines behind the dams has prevented sediment infilling of the lakes. Bed lowering below dams and in artificially confined reaches could potentially dewater floodplain lakes, a process occurring at Beal Lake, a natural lake used for native fish restoration in the Havasu National Wildlife Refuge. Sedimentation near the upstream ends of reservoirs has created large areas of still water. One of the largest, Topock Marsh, is connected to the main channel, restricting its usefulness as a native fish nursery; other backwater areas are confined by bars that isolate standing water at tributaries.

  9. Fluvial landscapes evolution in the Gangkou River basin of southern Taiwan: Evidence from the sediment cores

    NASA Astrophysics Data System (ADS)

    Chen, Jia-Hong; Chyi, Shyh-Jeng; Yen, Jiun-Yee; Lin, Li-Hung; Yen, I.-Chin; Yu, Neng-Ti; Ho, Lih-Der; Jen, Chia-Hung

    2017-04-01

    The Gangkou River basin is the largest basin in the eastern Hengchun Peninsula of Taiwan. Its main river length is 31km and the basin area is 102sq. km. The width of the active channel is relatively narrow, but the valley from the middle to downstream is remarkably wide, indicating a feature of underfit stream. We drilled two sediment cores in the downstream area, including a 30m core (core-A) from a higher terrace, which is 14m above mean sea level, and a 20m core (core-B) from a lower terrace, which is 4m above mean sea level. Most of the sediments in the core-A are mud, which represents the flood plain facies, and 14C dates in the core-A range from 11ka to 7ka BP. Furthermore, the sediment layers reveal signals of marine events at the core depths of 5m to 11m by X-ray fluorescence. In the core-B, there is an erosional surface at the core depth of 5m. The age of the fluvial gravel layer above the erosional surface is about 0.4ka BP, and the mud layer top the surface is about 8.5ka BP. The preliminary results show that (1) as the tectonic uplift rate induced by the marine terraces around the basin is 1.0 to 2.5 mm/yr, and the accumulation rate of the mud layer in the basin is 6.7 to 8.7 mm/yr, the sediments infilling (more than 30-meters-thick) in the downstream area of the basin should be the results of the lower tectonic uplifting and the higher post-glacial sea level rise and; (2) the marine sediment layer with 14C dates of 7.5ka to 8.5ka BP is very likely the remain of the maximum flooding surface (MFS) in the early Holocene. These results indicate that the fluvial landscapes evolution of the basin was controlled by the sea-level; (3) the erosional surface in the core-B indicates the Gangkou River continuously erode the infilling sediments from 7ka to 0.4ka BP. Previous studies show that the sea-level around Taiwan gradually declined from its high stand since 6ka, we proposed that the continuous erosion was probably the results of tectonic uplifting and eustatic sea-level fall.

  10. An Inexpensive Way of Teaching Uncertainty and Mineral Exploration Drilling in the Classroom

    NASA Astrophysics Data System (ADS)

    Aquino, J. S.

    2014-12-01

    This presentation is all about inexpensive ways of teaching uncertainty and mineral exploration drilling in the classroom. These labs were developed as an off-shoot of my years of mineral industry experience before I transitioned to geoscience education. I have developed several classroom lab exercises that relate to the role of modeling, uncertainty and prediction in mineral exploration. These lessons are mostly less expensive ($<5/group) hands-on activities that can be differentiated across grade levels. Early in the semester, modeling is explored through the cube and toilet paper roll puzzle lab. This is then immediately followed by the penny experiment that gives a physical meaning to the concept of uncertainty. However, it is the end-of-semester shoebox drilling lab that serves as the culminating activity for modeling, uncertainty and prediction. An object (orebody) is hidden inside a shoebox and the students are challenged to design a drilling program to predict the location and topology of a "mineral deposit". The students' decision on the location of the first few drill holes will be based on how they analyze, synthesize and evaluate simple surface topographic, geologic and geochemical +/- geophysical data overlain on top of the box. Before drilling, students are required to construct several geologic sections that will "model" the shape of the hidden orebody. Using bamboo skewers as their drilling equipment, students then commence their drilling and along the way learn the importance of drill spacing in decreasing uncertainty or increasing confidence. Lastly, the mineral separation lab gives them an opportunity to design another experiment that mimics mineral processing and learns a valuable lesson on the difficulties in recovery and how it relates to entropy (no such thing as 100% recoverability). The last two labs can be further enhanced with economic analysis through incorporation of drilling and processing costs. Students further appreciate the world of of mineral exploration with several YouTube videos on the use of 3D and 4D GIS mine modeling softwares. However at the same time, I forewarn them about the dangers on the dependence to these visually attractive computer-generated products without field verification or the fidelity to the ground-based and drillcore-based observations.

  11. The flexibility controlling study for 3D printed splint

    NASA Astrophysics Data System (ADS)

    Li, Jianyou; Tanaka, Hiroya

    2017-04-01

    The 3D printed splint's light weight, ventilation and water proof are considered as significant improvement for patients' comfortableness. Somehow, the flexible material is required in the splint to avoid skin friction may cased by its rigid edge, but this would increase the complexity and timeconsuming. In this study, two main techniques to control the infilling densities and printing temperature are applied on printing splint prototype. The gradual increasing of infilling density from splint outside to inside would turn the partial strength from hard to flexible. Besides, higher printing temperature can also achieve stronger hardness after cooling. Such structural can provide high strength in outside surface to keep the immovable function, and give flexible touch of inside surface to decrease friction on the patient's skin.

  12. Apraxia of Speech: The Effectiveness of a Treatment Regimen.

    ERIC Educational Resources Information Center

    Dworkin, James Paul; And Others

    1988-01-01

    A treatment program is described which successfully improved the speech of a 57-year-old apraxic patient. The program was composed of physiologic (nonspeech) and phonetic (articulatory) tasks that began with oroneuromotor control activities and progressed to consonant-vowel syllable, word, and sentence drills, with all activities paced by a…

  13. A Microcomputer Exercise on Genetic Transcription and Translation.

    ERIC Educational Resources Information Center

    Meisenheimer, John L.

    1985-01-01

    Describes a microcomputer program (written for the Apple II+) which can serve as a lecture demonstration aid in explaining genetic transcription and translation. The program provides unemotional information on student errors, thus serving as a review drill to supplement the classroom. Student participation and instructor options are discussed. (DH)

  14. Recommendations for Implementing an Aquatic Plyometric Program.

    ERIC Educational Resources Information Center

    Miller, Michael G.; Berry, David C.; Gilders, Roger; Bullard, Sue

    2001-01-01

    Describes the advantages of using plyometric programs in the water, explaining that they may provide athletes with several benefits (e.g., added resistance, which increases muscle strength, and getting a break from more monotonous drills on land). The paper discusses: the physical properties of water, aquatic rehabilitation that incorporates…

  15. Computer Series, 65. Bits and Pieces, 26.

    ERIC Educational Resources Information Center

    Moore, John W., Ed.

    1985-01-01

    Describes: (l) a microcomputer-based system for filing test questions and assembling examinations; (2) microcomputer use in practical and simulated experiments of gamma rays scattering by outer shell electrons; (3) an interactive, screen-oriented, general linear regression program; and (4) graphics drill and game programs for benzene synthesis.…

  16. SPATIALLY-BALANCED SURVEY DESIGN FOR GROUNDWATER USING EXISTING WELLS

    EPA Science Inventory

    Many states have a monitoring program to evaluate the water quality of groundwater across the state. These programs rely on existing wells for access to the groundwater, due to the high cost of drilling new wells. Typically, a state maintains a database of all well locations, in...

  17. Using Interdisciplinary research to enrich teachers and classrooms

    NASA Astrophysics Data System (ADS)

    Warburton, J.; Timm, K.; Huffman, L. T.; Peart, L. W.; Hammond, J.; McMahon, E.

    2011-12-01

    Imagine being on the stern of a ship in the Atlantic Ocean off the coast of New England as the crew dumps thousands of scallops on the deck, searching the Greenland ice sheet for a remote weather station, or uncovering secrets to past climates as you join an ocean sediment drilling team in Antarctica. So you ask yourself, what would you be doing in all of these places? What you would be doing is what hundreds of educators from around the world have done for over 20 years, participating in field-based Teacher Research Experience (TRE) programs. Teacher Research Experiences involve educators from varying grade levels and backgrounds in hands-on research as a member of a scientific research team. The teacher works side by side with actual research scientists, often on tasks similar to a field assistant or graduate student. As an important member of the research team teachers learn more about science content and the process of science. Subsequently, the educators play a key role in digesting and communicating the science to their students and the general public. TRE programs vary in many ways. Programs take place in a variety of settings-from laboratories to field camps, and from university campuses to aircraft or ships. The primary commonality of the TRE programs in this presentation-PolarTREC (Teachers and Researchers Exploring and Collaborating), ANDRILL (ANtarctic geological DRILLing) Research Immersion for Science Educators (ARISE); Integrated Ocean Drilling Program (IODP) School of Rock (SOR); and the National Oceanic and Atmospheric Administration Teacher at Sea (TAS) program-is that these programs provide an authentic field-based research experience for teachers outside of a laboratory setting, frequently in harsh, remote, or unusual settings. In addition, each of these programs is federally funded, possess dedicated program management staff, leverage existing scientific and programmatic resources, and are usually national, and sometimes international, in scope. Sharing their unique lessons learned and program results, authors will describe how TRE's improve and enrich interdisciplinary science education by connecting teachers, researchers, students, and the public around the globe for involvement in scientific research and global issues.

  18. New well pattern optimization methodology in mature low-permeability anisotropic reservoirs

    NASA Astrophysics Data System (ADS)

    Qin, Jiazheng; Liu, Yuetian; Feng, Yueli; Ding, Yao; Liu, Liu; He, Youwei

    2018-02-01

    In China, lots of well patterns were designed before people knew the principal permeability direction in low-permeability anisotropic reservoirs. After several years’ production, it turns out that well line direction is unparallel with principal permeability direction. However, traditional well location optimization methods (in terms of the objective function such as net present value and/or ultimate recovery) are inapplicable, since wells are not free to move around in a mature oilfield. Thus, the well pattern optimization (WPO) of mature low-permeability anisotropic reservoirs is a significant but challenging task, since the original well pattern (WP) will be distorted and reconstructed due to permeability anisotropy. In this paper, we investigate the destruction and reconstruction of WP when the principal permeability direction and well line direction are unparallel. A new methodology was developed to quantitatively optimize the well locations of mature large-scale WP through a WPO algorithm on the basis of coordinate transformation (i.e. rotating and stretching). For a mature oilfield, large-scale WP has settled, so it is not economically viable to carry out further infill drilling. This paper circumvents this difficulty by combining the WPO algorithm with the well status (open or shut-in) and schedule adjustment. Finally, this methodology is applied to an example. Cumulative oil production rates of the optimized WP are higher, and water-cut is lower, which highlights the potential of the WPO methodology application in mature large-scale field development projects.

  19. Characteristics and geological significance of Re-Os isotopic system of evaporites in Mboukoumassi deposit, the Republic of Congo

    NASA Astrophysics Data System (ADS)

    Zhao, Xianfu; Wang, Zongqi; Liu, Chenglin; Li, Chao; Jiao, Pengcheng; Zhao, Yanjun; Zhang, Fan

    2018-02-01

    Evaporite dating has been an open problem. The study investigates the Re-Os isotopic system in the organic-rich sedimentary rocks to constrain the infilling of sedimentary basin and related geological events. In the Mboukoumassi potash deposit in the Republic of Congo (Congo-Brazzaville) in West Africa, several layers of organic-rich dark shale were found in the evaporite series. Through drilling core, the dark shale in the evaporite is found to satisfy the requirements of Re-Os isotope test. The result shows that the Re-Os isochron age of the dark shale in the study area ranges from 78.7 ± 1.1 to 96 ± 7 Ma, which is the first precise age of the Mboukoumassi potash deposit in the Republic of Congo (Congo-Brazzaville), West Africa. Therefore, the age of deposition of this set of evaporite may be Cenomanian-Turonian, which is younger than the age previously thought (around 113-125Ma, Aptian). The Re-Os isotopic dating technique used for the pioneering study on the precise dating of the Mboukoumassi potash deposit provides a new approach to the study of the sedimentary age of ancient evaporite deposits. The initial 187Os/188Os value decreasing from 2.02 ± 0.21 to 0.982 ± 0.03 for the core sample reflects the source rock chang along the core, and this is consistent with the geological evolution of the basin.

  20. Results of pre-drilling potential field measurements at the Bosumtwi crater

    NASA Astrophysics Data System (ADS)

    Danuor, S. K.; Menyeh, A.

    Gravity and magnetic measurements were carried out at the Bosumtwi crater to determine the geophysical signature of the crater. Land gravity data was acquired at 163 locations around the structure and on the shore of the lake. The separation between the gravity stations was 500 m for radial profiles, but 700-1000 m along roads and footpaths that ran parallel to the lake's shore. Additionally, a marine gravity survey was carried out along 14 north-south and 15 east-west profiles on the lake. Magnetic data was also acquired along 14 north-south profiles on the lake. In all marine surveys, the line spacing was 800 m, and navigation was provided by a Garmin 235 Echo Sounder/GPS. The gravity signature of the crater is characterized by a negative Bouguer anomaly with an amplitude of about -18 mgal. Using the seismic results as constraints, the gravity model obtained indicates the central uplift at a depth of 250 m. The negative anomaly is the contribution of the gravity deficiencies due to fractured and brecciated rocks in the rim area and below the crater floor, the impact breccias within the crater, and the sedimentary and water infilling of the lake. Magnetic modeling yielded a model for the causative body, which is located north of the central uplift: the model has a magnetic susceptibility of 0.03 S.I. and extends from a depth of 250 to 610 m. The causative bodies have been interpreted as impactites.

  1. Microbiology of the lower ocean crust - Preliminary results from IODP Expedition 360, Atlantis Bank

    NASA Astrophysics Data System (ADS)

    Sylvan, J. B.; Edgcomb, V. P.; Burgaud, G.; Klein, F.; Schubotz, F.; Expedition 360 Scientists, I.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 360 represents the first leg of a multi-phase drilling program, SloMo, aimed at investigating the nature of the lower crust and Moho at slow spreading ridges. The goal of Expedition 360 was to recover a representative transect of the lower oceanic crust formed at Atlantis Bank, an oceanic core complex on the SW Indian Ridge. We present here preliminary analysis of microbial communities sampled from Hole U1473A, drilled to 789.7 m below seafloor during Expedition 360. Sub-sampling of core sections was conducted in a newly designed plexiglass enclosure with positive air pressure and HEPA filtered air, providing a clean environment for microbiology sampling aboard the JOIDES Resolution. Adenosine triphosphoate, an indicator of microbial biomass, was quantified above detection in 23 of 66 samples analyzed. We measured exoenzyme activity for alkaline phosphatase (AP), leucine aminopeptidase and arginine aminopeptidase in 16 samples and found AP to be very low but above background for 14 of the samples, with highest activities measured between 10 and 70 m below seafloor (mbsf) and peaks again at 158 and 307 mbsf, while both peptidase enzymes were above detection for only one sample at 715 mbsf. Isolates of fungi obtained from core samples as well as analyses of lipid and DNA biomarkers, and Raman spectra for a few of our rock core samples provide initial insights into microbial communities in the lower oceanic crust. Finally, a new tracer of seawater and drilling mud contamination, perfluoromethyl decaline (PFMD), was tested for the first time and its performance compared with the commonly used tracer perfluoromethylcyclohexane (PMCH). PFMD was run during coring operations for ten samples and was routinely detected in the drilling fluids, usually detected on the outside of uncleaned cores, and rarely above detection on the cleaned outside of cores. It was below detection on the inside of cores, indicating penetration of drill fluids to the interior of whole round drill cores, where we collected our samples, is unlikely.

  2. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program

    USGS Publications Warehouse

    Behrmann, J.H.; Lewis, S.D.; Cande, S.C.

    1994-01-01

    An active oceanic spreading ridge is being subducted beneath the South American continent at the Chile Triple Junction. This process has played a major part in the evolution of most of the continental margins that border the Pacific Ocean basin. A combination of high resolution swath bathymetric maps, seismic reflection profiles and drillhole and core data from five sites drilled during Ocean Drilling Program (ODP) Leg 141 provide important data that define the tectonic, structural and stratigraphic effects of this modern example of spreading ridge subduction. A change from subduction accretion to subduction erosion occurs along-strike of the South American forearc. This change is prominently expressed by normal faulting, forearc subsidence, oversteepening of topographic slopes and intensive sedimentary mass wasting, overprinted on older signatures of sediment accretion, overthrusting and uplift processes in the forearc. Data from drill sites north of the triple junction (Sites 859-861) show that after an important phase of forearc building in the early to late Pliocene, subduction accretion had ceased in the late Pliocene. Since that time sediment on the downgoing oceanic Nazca plate has been subducted. Site 863 was drilled into the forearc in the immediate vicinity of the triple junction above the subducted spreading ridge axis. Here, thick and intensely folded and faulted trench slope sediments of Pleistocene age are currently involved in the frontal deformation of the forearc. Early faults with thrust and reverse kinematics are overprinted by later normal faults. The Chile Triple Junction is also the site of apparent ophiolite emplacement into the South American forearc. Drilling at Site 862 on the Taitao Ridge revealed an offshore volcanic sequence of Plio-Pleistocene age associated with the Taitao Fracture Zone, adjacent to exposures of the Pliocene-aged Taitao ophiolite onshore. Despite the large-scale loss of material from the forearc at the triple junction, ophiolite emplacement produces a large topographic promontory in the forearc immediately after ridge subduction, and represents the first stage of forearc rebuilding. ?? 1994 Springer-Verlag.

  3. Exploring frontiers of the deep biosphere through scientific ocean drilling

    NASA Astrophysics Data System (ADS)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly differs from those in shallower marine sediments and instead resembles organotrophic communities in forest soils. These findings suggest that the terrigenous microbial ecosystem has been partly retained from the original depositional setting over 20 million years and contributed to deep carbon cycling ever since.

  4. 40 CFR 35.6550 - Procurement system standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... contractors under a Core Program Cooperative Agreement must provide comparable information for all sites... following provisions or their equivalents into all contracts, except those for well-drilling, fence erecting...

  5. 40 CFR 35.6550 - Procurement system standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... contractors under a Core Program Cooperative Agreement must provide comparable information for all sites... following provisions or their equivalents into all contracts, except those for well-drilling, fence erecting...

  6. 40 CFR 35.6550 - Procurement system standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... contractors under a Core Program Cooperative Agreement must provide comparable information for all sites... following provisions or their equivalents into all contracts, except those for well-drilling, fence erecting...

  7. 40 CFR 35.6550 - Procurement system standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... contractors under a Core Program Cooperative Agreement must provide comparable information for all sites... following provisions or their equivalents into all contracts, except those for well-drilling, fence erecting...

  8. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  9. Gas-hydrate-bearing sand reservoir systems in the offshore of India: Results of the India National Gas Hydrate Program Expedition 02

    USGS Publications Warehouse

    Kumar, P.; Collett, Timothy S.; Vishwanath, K.; Shukla, K.M.; Nagalingam, J.; Lall, M.V.; Yamada, Y; Schultheiss, P.; Holland, M.

    2016-01-01

    The India National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India using the deepwater drilling vessel Chikyu. The primary goal of this expedition was to explore for highly saturated gas hydrate occurrences in sand reservoirs that would become targets for future production tests. The first two months of the expedition were dedicated to logging-whiledrilling (LWD) operations, with a total of 25 holes drilled and logged. The next three months were dedicated to coring operations at 10 of the most promising sites. With a total of five months of continuous field operations, the expedition was the most comprehensive dedicated gas hydrate investigation ever undertaken.

  10. Multiproxy record of the last interglacial (MIS 5e) off central and northern California, U.S.A., from Ocean Drilling Program sites 1018 and 1020

    USGS Publications Warehouse

    Poore, Richard Z.; Dowsett, H.J.; Barron, J.A.; Heusser, L.; Ravelo, A.C.; Mix, A.

    2000-01-01

    Environmental and climatic conditions during the last interglacial (about 125,000 years ago) along the Central and Northern California coastal region are interpreted from study of marine cores recovered by the Ocean Drilling Program at sites 1018 and 1020. Marine microfossil and pollen assemblages, oxygen isotopes in benthic foraminifers, physical properties, and calcium carbonate contents of cored sediments are proxies indicating strong links between the marine and terrestrial environments during marine isotope stage 5 (MIS 5). At the beginning of the last interglacial (MIS 5e), reduction in global ice volume, increase in surface temperature, and warming of air temperature along the Central and Northern California coast were synchronous within the resolution of our sampling record.

  11. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  12. Design Dilemma.

    ERIC Educational Resources Information Center

    Miller, Nory

    1980-01-01

    Two projects, the Milford (Pennsylvania) Reservation Solar Conservation Center and Prototype Passive Solar Townhouses, are designed for solar energy--one as a learning center, the other as urban infill housing. (Author/MLF)

  13. Seismic-reflection data on the eastern U.S. continental shelf acquired by M. V. L'OLONNOIS as part of the Atlantic Margin Coring Project (AMCOR) of the U.S. Geological Survey, July-September 1976

    USGS Publications Warehouse

    Robb, James M.

    1980-01-01

    In 1976 the U.S. Geological Survey undertook a program to sample the eastern United States Shelf for stratigraphic information by drilling a set of core holes. Results of this Atlantic Margin Coring Program (AMCOR) have been reported by Hathaway and others. Sites were chosen from seismic-reflection data and were reviewed by a safety panel to minimize the risk of penetrating any hydrocarbon accumulation which might lead to environmental contamination.The M-V-L'OLONNOIS, the service ship for the drilling operation, was fitted with seismic-reflection profiling equipment (listed below), to run seismic-reflection profiles before drilling began on each hole. This provided additional assurance that no closed structures would be penetrated and allowed minor adjustment with the site selection. A total of 491 km of high-resolution seismic profiles was collected on 22 sites.Equipment used (specifics for each site noted on records): Bolt Air Guns 1-40 cubic inch chambers EPC Recorder Teledyne Minisparker (last two sites) Navigation used two Internav 101 Loran-C receivers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rush, Jason; Holubnyak, Yevhen; Watney, Willard

    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirmmore » their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate petrophysical models to separate-vug rock fabrics along solution-enlarged fault and fracture systems. Simulation-based studies demonstrate a potential alternative field development model for developing CO 2 storage sites that target carbonate reservoirs overprinted by paleokarst. Simulation results for this complex reservoir indicate that individual fault blocks could function as discrete containers for CO 2 storage thereby reducing the risk of plume migration outside the legally defined extent of the permitted storage site. Vertically extensive, anastomosing, solution-enlarged fault/fracture systems — infilled by clay-rich sediments — would operate as non-to-low permeability vertical "curtains" that restrict CO 2 movement beyond the confines of the CO 2 storage site. Such a location could be developed in a checker-board fashion with CO 2 injection operations occurring in one block and surveillance operations occurring in the adjacent block. Such naturally partitioned reservoirs may be ideal candidates for reducing risks associated with CO 2 plume breakthrough.« less

  15. Ocean Drilling Program: Publication Services

    Science.gov Websites

    before each cruise. Preliminary Report: A summary of the shipboard scientific results and technical detailed summary the scientific and engineering results from each leg including visual core descriptions

  16. Tanana River Monitoring and Research Program: Relationships Among Bank Recession, Vegetation, Soils, Sediments and Permafrost on the Tanana River Near Fairbanks, Alaska.

    DTIC Science & Technology

    1984-07-01

    field book for scale). Figure 2 (cont’d). Figure 3. Upstream portion of reach 2, 9 May 1980; USGS gauging station (A) and the approximate location...eral information was taken from maps, and site-specific data were obtained from the logs of wells drilled by the Corps of Engineers. The well log data...were drilled along or near this route, which runs approximately parallel to the bank, but not near the riverbank aL most locations (Fig. 1). The

  17. Continental Scientific Drilling and Exploration Act. Introduced in the Senate, Ninety-Ninth Congress, Second Session, September 19, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The Senate Committee on Energy and Natural Resources report on S. 1026 recommends without amendment the bill which directs the Secretaries of the Interior and the National Science Foundation to cooperate in implementing the Continental Scientific Drilling Program (CSDP). The purpose of the CSDP is to enhance the knowledge and understanding of the composition, structure, dynamics, and evolution of the continental crust, including how such processes affect natural phenomena. The report includes background and the need for the legislation and summarizes the four sections.

  18. Hamdah ancient gold mines, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Bosch, Paul S.; Jannadi, Eyad; Helaby, A.M.; Johnson, P.R.; Bookstrom, A.A.; Bazzari, M.A.

    1990-01-01

    It is recommended that the thickness of the dumps be more accurately determined, and that the gold leachability of bulk dump material be tested. Shallow reverse-circulation drilling is recommended on 25-m centers in the northeast quadrant, and diamond drilling is recommended elsewhere at the prospect. Geophysical surveys are required to help establish depths to the serpentinite/schist contact on the northeastern, southern, and western margins of the prospect. Detailed mapping should be undertaken at the prospect, and a mineral-belt type of mapping program should be completed over the larger Hamdah region.

  19. Test wells T27 and T28, White Sands Missile Range, Dona Ana County, New Mexico

    USGS Publications Warehouse

    Myers, R.G.; Pinckley, K.M.

    1985-01-01

    Two test wells, T27 and T28, were drilled at White Sands Missile Range in south-central New Mexico as part of a joint military training program sponsored by the U.S. Army in February and March 1983. Test wells T27 and T28 were drilled as observation wells in the vicinity of the Liquid Propellant Storage Area. Information obtained from these wells includes lithologic logs, driller 's logs, and borehole-geophysical logs from the cased wells. (USGS)

  20. Workshop to develop deep-life continental scientific drilling projects

    DOE PAGES

    Kieft, T. L.; Onstott, T. C.; Ahonen, L.; ...

    2015-05-29

    The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following: "(1) What is the extent and diversity of deep microbial life and what are the factors limiting it? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity? (3) How is deep microbial life adapted to subsurface conditions? (4) How do subsurface microbial communities affect energy resources? And (5) how does the deep biosphere interact with the geosphere and atmosphere?" (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have includedmore » a deep-life component; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for deep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two participants from nine countries proposed projects and sites that included compressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.« less

Top