Sample records for infinite randomness fixed

  1. Entanglement entropy at infinite-randomness fixed points in higher dimensions.

    PubMed

    Lin, Yu-Cheng; Iglói, Ferenc; Rieger, Heiko

    2007-10-05

    The entanglement entropy of the two-dimensional random transverse Ising model is studied with a numerical implementation of the strong-disorder renormalization group. The asymptotic behavior of the entropy per surface area diverges at, and only at, the quantum phase transition that is governed by an infinite-randomness fixed point. Here we identify a double-logarithmic multiplicative correction to the area law for the entanglement entropy. This contrasts with the pure area law valid at the infinite-randomness fixed point in the diluted transverse Ising model in higher dimensions.

  2. Random walks on combs

    NASA Astrophysics Data System (ADS)

    Durhuus, Bergfinnur; Jonsson, Thordur; Wheater, John F.

    2006-02-01

    We develop techniques to obtain rigorous bounds on the behaviour of random walks on combs. Using these bounds, we calculate exactly the spectral dimension of random combs with infinite teeth at random positions or teeth with random but finite length. We also calculate exactly the spectral dimension of some fixed non-translationally invariant combs. We relate the spectral dimension to the critical exponent of the mass of the two-point function for random walks on random combs, and compute mean displacements as a function of walk duration. We prove that the mean first passage time is generally infinite for combs with anomalous spectral dimension.

  3. Probability distribution of the entanglement across a cut at an infinite-randomness fixed point

    NASA Astrophysics Data System (ADS)

    Devakul, Trithep; Majumdar, Satya N.; Huse, David A.

    2017-03-01

    We calculate the probability distribution of entanglement entropy S across a cut of a finite one-dimensional spin chain of length L at an infinite-randomness fixed point using Fisher's strong randomness renormalization group (RG). Using the random transverse-field Ising model as an example, the distribution is shown to take the form p (S |L ) ˜L-ψ (k ) , where k ≡S /ln[L /L0] , the large deviation function ψ (k ) is found explicitly, and L0 is a nonuniversal microscopic length. We discuss the implications of such a distribution on numerical techniques that rely on entanglement, such as matrix-product-state-based techniques. Our results are verified with numerical RG simulations, as well as the actual entanglement entropy distribution for the random transverse-field Ising model which we calculate for large L via a mapping to Majorana fermions.

  4. Infinite-disorder critical points of models with stretched exponential interactions

    NASA Astrophysics Data System (ADS)

    Juhász, Róbert

    2014-09-01

    We show that an interaction decaying as a stretched exponential function of distance, J(l)˜ e-cl^a , is able to alter the universality class of short-range systems having an infinite-disorder critical point. To do so, we study the low-energy properties of the random transverse-field Ising chain with the above form of interaction by a strong-disorder renormalization group (SDRG) approach. We find that the critical behavior of the model is controlled by infinite-disorder fixed points different from those of the short-range model if 0 < a < 1/2. In this range, the critical exponents calculated analytically by a simplified SDRG scheme are found to vary with a, while, for a > 1/2, the model belongs to the same universality class as its short-range variant. The entanglement entropy of a block of size L increases logarithmically with L at the critical point but, unlike the short-range model, the prefactor is dependent on disorder in the range 0 < a < 1/2. Numerical results obtained by an improved SDRG scheme are found to be in agreement with the analytical predictions. The same fixed points are expected to describe the critical behavior of, among others, the random contact process with stretched exponentially decaying activation rates.

  5. Jet meandering by a foil pitching in quiescent fluid

    NASA Astrophysics Data System (ADS)

    Shinde, Sachin Y.; Arakeri, Jaywant H.

    2013-04-01

    The flow produced by a rigid symmetric NACA0015 airfoil purely pitching at a fixed location in quiescent fluid (the limiting case of infinite Strouhal number) is studied using visualizations and particle image velocimetry. A weak jet is generated whose inclination changes continually with time. This meandering is observed to be random and independent of the initial conditions, over a wide range of pitching parameters.

  6. Distribution functions of probabilistic automata

    NASA Technical Reports Server (NTRS)

    Vatan, F.

    2001-01-01

    Each probabilistic automaton M over an alphabet A defines a probability measure Prob sub(M) on the set of all finite and infinite words over A. We can identify a k letter alphabet A with the set {0, 1,..., k-1}, and, hence, we can consider every finite or infinite word w over A as a radix k expansion of a real number X(w) in the interval [0, 1]. This makes X(w) a random variable and the distribution function of M is defined as usual: F(x) := Prob sub(M) { w: X(w) < x }. Utilizing the fixed-point semantics (denotational semantics), extended to probabilistic computations, we investigate the distribution functions of probabilistic automata in detail. Automata with continuous distribution functions are characterized. By a new, and much more easier method, it is shown that the distribution function F(x) is an analytic function if it is a polynomial. Finally, answering a question posed by D. Knuth and A. Yao, we show that a polynomial distribution function F(x) on [0, 1] can be generated by a prob abilistic automaton iff all the roots of F'(x) = 0 in this interval, if any, are rational numbers. For this, we define two dynamical systems on the set of polynomial distributions and study attracting fixed points of random composition of these two systems.

  7. Phylogenetic mixtures and linear invariants for equal input models.

    PubMed

    Casanellas, Marta; Steel, Mike

    2017-04-01

    The reconstruction of phylogenetic trees from molecular sequence data relies on modelling site substitutions by a Markov process, or a mixture of such processes. In general, allowing mixed processes can result in different tree topologies becoming indistinguishable from the data, even for infinitely long sequences. However, when the underlying Markov process supports linear phylogenetic invariants, then provided these are sufficiently informative, the identifiability of the tree topology can be restored. In this paper, we investigate a class of processes that support linear invariants once the stationary distribution is fixed, the 'equal input model'. This model generalizes the 'Felsenstein 1981' model (and thereby the Jukes-Cantor model) from four states to an arbitrary number of states (finite or infinite), and it can also be described by a 'random cluster' process. We describe the structure and dimension of the vector spaces of phylogenetic mixtures and of linear invariants for any fixed phylogenetic tree (and for all trees-the so called 'model invariants'), on any number n of leaves. We also provide a precise description of the space of mixtures and linear invariants for the special case of [Formula: see text] leaves. By combining techniques from discrete random processes and (multi-) linear algebra, our results build on a classic result that was first established by James Lake (Mol Biol Evol 4:167-191, 1987).

  8. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  9. Transverse spin correlations of the random transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  10. Time-dependent real space RG on the spin-1/2 XXZ chain

    NASA Astrophysics Data System (ADS)

    Mason, Peter; Zagoskin, Alexandre; Betouras, Joseph

    In order to measure the spread of information in a system of interacting fermions with nearest-neighbour couplings and strong bond disorder, one could utilise a dynamical real space renormalisation group (RG) approach on the spin-1/2 XXZ chain. Under such a procedure, a many-body localised state is established as an infinite randomness fixed point and the entropy scales with time as log(log(t)). One interesting further question that results from such a study is the case when the Hamiltonian explicitly depends on time. Here we answer this question by considering a dynamical renormalisation group treatment on the strongly disordered random spin-1/2 XXZ chain where the couplings are time-dependent and chosen to reflect a (slow) evolution of the governing Hamiltonian. Under the condition that the renormalisation process occurs at fixed time, a set of coupled second order, nonlinear PDE's can be written down in terms of the random distributions of the bonds and fields. Solution of these flow equations at the relevant critical fixed points leads us to establish the dynamics of the flow as we sweep through the quantum critical point of the Hamiltonian. We will present these critical flows as well as discussing the issues of duality, entropy and many-body localisation.

  11. The renormalization group method in statistical hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.

    1994-09-01

    This paper gives a first principles formulation of a renormalization group (RG) method appropriate to study of turbulence in incompressible fluids governed by Navier-Stokes equations. The present method is a momentum-shell RG of Kadanoff-Wilson type based upon the Martin-Siggia-Rose (MSR) field-theory formulation of stochastic dynamics. A simple set of diagrammatic rules are developed which are exact within perturbation theory (unlike the well-known Ma-Mazenko prescriptions). It is also shown that the claim of Yakhot and Orszag (1986) is false that higher-order terms are irrelevant in the ɛ expansion RG for randomly forced Navier-Stokes (RFNS) with power-law force spectrum F̂(k)=D0k-d+(4-ɛ). In fact, as a consequence of Galilei covariance, there are an infinite number of higher-order nonlinear terms marginal by power counting in the RG analysis of the power-law RFNS, even when ɛ≪4. The difficulty does not occur in the Forster-Nelson-Stephen (FNS) RG analysis of thermal fluctuations in an equilibrium NS fluid, which justifies a linear regression law for d≳2. On the other hand, the problem occurs also at the nontrivial fixed point in the FNS Model A, or its Burgers analog, when d<2. The marginal terms can still be present at the strong-coupling fixed point in true NS turbulence. If so, infinitely many fixed points may exist in turbulence and be associated to a somewhat surprising phenomenon: nonuniversality of the inertial-range scaling laws depending upon the dissipation-range dynamics.

  12. Genomes: At the edge of chaos with maximum information capacity

    NASA Astrophysics Data System (ADS)

    Kong, Sing-Guan; Chen, Hong-Da; Torda, Andrew; Lee, H. C.

    2016-12-01

    We propose an order index, ϕ, which quantifies the notion of “life at the edge of chaos” when applied to genome sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length and base composition. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, 0.037 ± 0.027. We show this implies that genomes are halfway towards being completely random, namely, at the edge of chaos. We argue that this narrow range represents the neighborhood of a fixed-point in the space of sequences, and genomes are driven there by the dynamics of a robust, predominantly neutral evolution process.

  13. Superslow relaxation in identical phase oscillators with random and frustrated interactions

    NASA Astrophysics Data System (ADS)

    Daido, H.

    2018-04-01

    This paper is concerned with the relaxation dynamics of a large population of identical phase oscillators, each of which interacts with all the others through random couplings whose parameters obey the same Gaussian distribution with the average equal to zero and are mutually independent. The results obtained by numerical simulation suggest that for the infinite-size system, the absolute value of Kuramoto's order parameter exhibits superslow relaxation, i.e., 1/ln t as time t increases. Moreover, the statistics on both the transient time T for the system to reach a fixed point and the absolute value of Kuramoto's order parameter at t = T are also presented together with their distribution densities over many realizations of the coupling parameters.

  14. The one-dimensional asymmetric persistent random walk

    NASA Astrophysics Data System (ADS)

    Rossetto, Vincent

    2018-04-01

    Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.

  15. Electronic Griffiths Phases and Quantum Criticality at Disordered Mott Transitions

    NASA Astrophysics Data System (ADS)

    Dobrosavljevic, Vladimir

    2012-02-01

    The effects of disorder are investigated in strongly correlated electronic systems near the Mott metal-insulator transition. Correlation effects are foundootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 102, 206403 (2009). to lead to strong disorder screening, a mechanism restricted to low-lying electronic states, very similar to what is observed in underdoped cuprates. These results suggest, however, that this effect is not specific to disordered d-wave superconductors, but is a generic feature of all disordered Mott systems. In addition, the resulting spatial inhomogeneity rapidly increasesootnotetextE. C. Andrade, E. Miranda, and V. Dobrosavljevic, Phys. Rev. Lett., 104 (23), 236401 (2010). as the Mott insulator is approached at fixed disorder strength. This behavior, which can be described as an Electronic Griffiths Phase, displays all the features expected for disorder-dominated Infinite-Randomness Fixed Point scenario of quantum criticality.

  16. Wavefronts for a global reaction-diffusion population model with infinite distributed delay

    NASA Astrophysics Data System (ADS)

    Weng, Peixuan; Xu, Zhiting

    2008-09-01

    We consider a global reaction-diffusion population model with infinite distributed delay which includes models of Nicholson's blowflies and hematopoiesis derived by Gurney, Mackey and Glass, respectively. The existence of monotone wavefronts is derived by using the abstract settings of functional differential equations and Schauder fixed point theory.

  17. New symmetries and ghost structure of covariant string theories

    NASA Astrophysics Data System (ADS)

    Neveu, A.; Nicolai, H.; West, P.

    1986-02-01

    It is shown that there exists an infinite set of new symmetries of the previously given covariant string formulations. These symmetries have themselves an infinite set of hidden local symmetries and so on. A new physically equivalent further extended string action is given in which the infinite set of symmetries is most easily displayed. A quantization involving gauge fixing and ghosts of the various covariant string actions is given. permanent address: Kings College, Mathematics Department, London WC2R 2LS, UK.

  18. Rumor Processes in Random Environment on and on Galton-Watson Trees

    NASA Astrophysics Data System (ADS)

    Bertacchi, Daniela; Zucca, Fabio

    2013-11-01

    The aim of this paper is to study rumor processes in random environment. In a rumor process a signal starts from the stations of a fixed vertex (the root) and travels on a graph from vertex to vertex. We consider two rumor processes. In the firework process each station, when reached by the signal, transmits it up to a random distance. In the reverse firework process, on the other hand, stations do not send any signal but they “listen” for it up to a random distance. The first random environment that we consider is the deterministic 1-dimensional tree with a random number of stations on each vertex; in this case the root is the origin of . We give conditions for the survival/extinction on almost every realization of the sequence of stations. Later on, we study the processes on Galton-Watson trees with random number of stations on each vertex. We show that if the probability of survival is positive, then there is survival on almost every realization of the infinite tree such that there is at least one station at the root. We characterize the survival of the process in some cases and we give sufficient conditions for survival/extinction.

  19. Mixing rates and limit theorems for random intermittent maps

    NASA Astrophysics Data System (ADS)

    Bahsoun, Wael; Bose, Christopher

    2016-04-01

    We study random transformations built from intermittent maps on the unit interval that share a common neutral fixed point. We focus mainly on random selections of Pomeu-Manneville-type maps {{T}α} using the full parameter range 0<α <∞ , in general. We derive a number of results around a common theme that illustrates in detail how the constituent map that is fastest mixing (i.e. smallest α) combined with details of the randomizing process, determines the asymptotic properties of the random transformation. Our key result (theorem 1.1) establishes sharp estimates on the position of return time intervals for the quenched dynamics. The main applications of this estimate are to limit laws (in particular, CLT and stable laws, depending on the parameters chosen in the range 0<α <1 ) for the associated skew product; these are detailed in theorem 3.2. Since our estimates in theorem 1.1 also hold for 1≤slant α <∞ we study a second class of random transformations derived from piecewise affine Gaspard-Wang maps, prove existence of an infinite (σ-finite) invariant measure and study the corresponding correlation asymptotics. To the best of our knowledge, this latter kind of result is completely new in the setting of random transformations.

  20. Finding Limit Cycles in self-excited oscillators with infinite-series damping functions

    NASA Astrophysics Data System (ADS)

    Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.

    2015-03-01

    In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.

  1. Symmetry breaking in tensor models

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario; Gurau, Razvan

    2015-11-01

    In this paper we analyze a quartic tensor model with one interaction for a tensor of arbitrary rank. This model has a critical point where a continuous limit of infinitely refined random geometries is reached. We show that the critical point corresponds to a phase transition in the tensor model associated to a breaking of the unitary symmetry. We analyze the model in the two phases and prove that, in a double scaling limit, the symmetric phase corresponds to a theory of infinitely refined random surfaces, while the broken phase corresponds to a theory of infinitely refined random nodal surfaces. At leading order in the double scaling limit planar surfaces dominate in the symmetric phase, and planar nodal surfaces dominate in the broken phase.

  2. Two-particle problem in comblike structures

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Cassi, Davide; Cattivelli, Luca; Sartori, Fabio

    2016-05-01

    Encounters between walkers performing a random motion on an appropriate structure can describe a wide variety of natural phenomena ranging from pharmacokinetics to foraging. On homogeneous structures the asymptotic encounter probability between two walkers is (qualitatively) independent of whether both walkers are moving or one is kept fixed. On infinite comblike structures this is no longer the case and here we deepen the mechanisms underlying the emergence of a finite probability that two random walkers will never meet, while one single random walker is certain to visit any site. In particular, we introduce an analytical approach to address this problem and even more general problems such as the case of two walkers with different diffusivity, particles walking on a finite comb and on arbitrary bundled structures, possibly in the presence of loops. Our investigations are both analytical and numerical and highlight that, in general, the outcome of a reaction involving two reactants on a comblike architecture can strongly differ according to whether both reactants are moving (no matter their relative diffusivities) or only one is moving and according to the density of shortcuts among the branches.

  3. Fluctuations around equilibrium laws in ergodic continuous-time random walks.

    PubMed

    Schulz, Johannes H P; Barkai, Eli

    2015-06-01

    We study occupation time statistics in ergodic continuous-time random walks. Under thermal detailed balance conditions, the average occupation time is given by the Boltzmann-Gibbs canonical law. But close to the nonergodic phase, the finite-time fluctuations around this mean are large and nontrivial. They exhibit dual time scaling and distribution laws: the infinite density of large fluctuations complements the Lévy-stable density of bulk fluctuations. Neither of the two should be interpreted as a stand-alone limiting law, as each has its own deficiency: the infinite density has an infinite norm (despite particle conservation), while the stable distribution has an infinite variance (although occupation times are bounded). These unphysical divergences are remedied by consistent use and interpretation of both formulas. Interestingly, while the system's canonical equilibrium laws naturally determine the mean occupation time of the ergodic motion, they also control the infinite and Lévy-stable densities of fluctuations. The duality of stable and infinite densities is in fact ubiquitous for these dynamics, as it concerns the time averages of general physical observables.

  4. Randomly Sampled-Data Control Systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Han, Kuoruey

    1990-01-01

    The purpose is to solve the Linear Quadratic Regulator (LQR) problem with random time sampling. Such a sampling scheme may arise from imperfect instrumentation as in the case of sampling jitter. It can also model the stochastic information exchange among decentralized controllers to name just a few. A practical suboptimal controller is proposed with the nice property of mean square stability. The proposed controller is suboptimal in the sense that the control structure is limited to be linear. Because of i. i. d. assumption, this does not seem unreasonable. Once the control structure is fixed, the stochastic discrete optimal control problem is transformed into an equivalent deterministic optimal control problem with dynamics described by the matrix difference equation. The N-horizon control problem is solved using the Lagrange's multiplier method. The infinite horizon control problem is formulated as a classical minimization problem. Assuming existence of solution to the minimization problem, the total system is shown to be mean square stable under certain observability conditions. Computer simulations are performed to illustrate these conditions.

  5. Symplectic analysis of vertical random vibration for coupled vehicle track systems

    NASA Astrophysics Data System (ADS)

    Lu, F.; Kennedy, D.; Williams, F. W.; Lin, J. H.

    2008-10-01

    A computational model for random vibration analysis of vehicle-track systems is proposed and solutions use the pseudo excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with 10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli-Euler beam connected to sleepers and hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled vehicle-track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic solution methodology. Numerical results for an example include verification of the proposed method by comparing with finite element method (FEM) results; comparison between the present model and the traditional rigid track model and; discussion of the influences of track damping and vehicle velocity.

  6. On chemical distances and shape theorems in percolation models with long-range correlations

    NASA Astrophysics Data System (ADS)

    Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm

    2014-08-01

    In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.

  7. Single Polygon Counting on Cayley Tree of Order 3

    NASA Astrophysics Data System (ADS)

    Pah, Chin Hee

    2010-07-01

    We showed that one form of generalized Catalan numbers is the solution to the problem of finding different connected component with finite vertices containing a fixed root for the semi-infinite Cayley tree of order 3. We give the formula for the full graph, Cayley tree of order 3 which is derived from the generalized Catalan numbers. Using ratios of Gamma functions, two upper bounds are given for problem defined on semi-infinite Cayley tree of order 3 as well as the full graph.

  8. Functions Character

    NASA Astrophysics Data System (ADS)

    Dugave, Maxime; Göhmann, Frank; Kozlowski, Karol Kajetan

    2014-04-01

    We establish several properties of the solutions to the linear integral equations describing the infinite volume properties of the XXZ spin-1/2 chain in the disordered regime. In particular, we obtain lower and upper bounds for the dressed energy, dressed charge and density of Bethe roots. Furthermore, we establish that given a fixed external magnetic field (or a fixed magnetization) there exists a unique value of the boundary of the Fermi zone.

  9. On the Invariant Cantor Sets of Period Doubling Type of Infinitely Renormalizable Area-Preserving Maps

    NASA Astrophysics Data System (ADS)

    Lilja, Dan

    2018-03-01

    Since its inception in the 1970s at the hands of Feigenbaum and, independently, Coullet and Tresser the study of renormalization operators in dynamics has been very successful at explaining universality phenomena observed in certain families of dynamical systems. The first proof of existence of a hyperbolic fixed point for renormalization of area-preserving maps was given by Eckmann et al. (Mem Am Math Soc 47(289):vi+122, 1984). However, there are still many things that are unknown in this setting, in particular regarding the invariant Cantor sets of infinitely renormalizable maps. In this paper we show that the invariant Cantor set of period doubling type of any infinitely renormalizable area-preserving map in the universality class of the Eckmann-Koch-Wittwer renormalization fixed point is always contained in a Lipschitz curve but never contained in a smooth curve. This extends previous results by de Carvalho, Lyubich and Martens about strongly dissipative maps of the plane close to unimodal maps to the area-preserving setting. The method used for constructing the Lipschitz curve is very similar to the method used in the dissipative case but proving the nonexistence of smooth curves requires new techniques.

  10. Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering

    NASA Astrophysics Data System (ADS)

    Atalay, Bora; Berker, A. Nihat

    2018-05-01

    Discrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric, ferromagnetic or antiferromagnetic, including off-diagonal disorder, are studied, for the number of states q =3 ,4 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d >1 and all noninfinite temperatures, the system eventually renormalizes to a random single state, thus signaling q ×q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions, the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus, a temperature range of short-range disorder in the presence of long-range order is identified, as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures, behaves similarly for ferromagnetic and antiferromagnetic interactions, and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 +ɛ , the system is as expected disordered at all temperatures for d =1 .

  11. Structural arrest in an ideal gas.

    PubMed

    van Ketel, Willem; Das, Chinmay; Frenkel, Daan

    2005-04-08

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.

  12. Games with fuzzy parameters

    NASA Astrophysics Data System (ADS)

    Messaoud, Deghdak

    2010-11-01

    In this paper, we study the existence of equilibrium in non-cooperative game with fuzzy parameters. We generalize te results of Larbani and Kacher(2008, 2009) in infinite dimentional spaces. The proof is based on the Browder-Fan fixed point theorem.

  13. Lyapunov exponents for infinite dimensional dynamical systems

    NASA Technical Reports Server (NTRS)

    Mhuiris, Nessan Mac Giolla

    1987-01-01

    Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.

  14. Solving Lauricella string scattering amplitudes through recurrence relations

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2017-09-01

    We show that there exist infinite number of recurrence relations valid for all energies among the open bosonic string scattering amplitudes (SSA) of three tachyons and one arbitrary string state, or the Lauricella SSA. Moreover, these infinite number of recurrence relations can be used to solve all the Lauricella SSA and express them in terms of one single four tachyon amplitude. These results extend the solvability of SSA at the high energy, fixed angle scattering limit and those at the Regge scattering limit discovered previously to all kinematic regimes.

  15. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  16. Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices

    NASA Astrophysics Data System (ADS)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-12-01

    We analyze a Markovian random walk strategy on undirected regular networks involving power matrix functions of the type L\\frac{α{2}} where L indicates a ‘simple’ Laplacian matrix. We refer to such walks as ‘fractional random walks’ with admissible interval 0<α ≤slant 2 . We deduce probability-generating functions (network Green’s functions) for the fractional random walk. From these analytical results we establish a generalization of Polya’s recurrence theorem for fractional random walks on d-dimensional infinite lattices: The fractional random walk is transient for dimensions d > α (recurrent for d≤slantα ) of the lattice. As a consequence, for 0<α< 1 the fractional random walk is transient for all lattice dimensions d=1, 2, .. and in the range 1≤slantα < 2 for dimensions d≥slant 2 . Finally, for α=2 , Polya’s classical recurrence theorem is recovered, namely the walk is transient only for lattice dimensions d≥slant 3 . The generalization of Polya’s recurrence theorem remains valid for the class of random walks with Lévy flight asymptotics for long-range steps. We also analyze the mean first passage probabilities, mean residence times, mean first passage times and global mean first passage times (Kemeny constant) for the fractional random walk. For an infinite 1D lattice (infinite ring) we obtain for the transient regime 0<α<1 closed form expressions for the fractional lattice Green’s function matrix containing the escape and ever passage probabilities. The ever passage probabilities (fractional lattice Green’s functions) in the transient regime fulfil Riesz potential power law decay asymptotic behavior for nodes far from the departure node. The non-locality of the fractional random walk is generated by the non-diagonality of the fractional Laplacian matrix with Lévy-type heavy tailed inverse power law decay for the probability of long-range moves. This non-local and asymptotic behavior of the fractional random walk introduces small-world properties with the emergence of Lévy flights on large (infinite) lattices.

  17. Role of exponential type random invexities for asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming.

    PubMed

    Verma, Ram U; Seol, Youngsoo

    2016-01-01

    First a new notion of the random exponential Hanson-Antczak type [Formula: see text]-V-invexity is introduced, which generalizes most of the existing notions in the literature, second a random function [Formula: see text] of the second order is defined, and finally a class of asymptotically sufficient efficiency conditions in semi-infinite multi-objective fractional programming is established. Furthermore, several sets of asymptotic sufficiency results in which various generalized exponential type [Formula: see text]-V-invexity assumptions are imposed on certain vector functions whose components are the individual as well as some combinations of the problem functions are examined and proved. To the best of our knowledge, all the established results on the semi-infinite aspects of the multi-objective fractional programming are new, which is a significantly new emerging field of the interdisciplinary research in nature. We also observed that the investigated results can be modified and applied to several special classes of nonlinear programming problems.

  18. Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.

    PubMed

    Bevzenko, Dmytro; Lubchenko, Vassiliy

    2014-11-07

    We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.

  19. General Series Solutions for Stresses and Displacements in an Inner-fixed Ring

    NASA Astrophysics Data System (ADS)

    Jiao, Yongshu; Liu, Shuo; Qi, Dexuan

    2018-03-01

    The general series solution approach is provided to get the stress and displacement fields in the inner-fixed ring. After choosing an Airy stress function in series form, stresses are expressed by infinite coefficients. Displacements are obtained by integrating the geometric equations. For an inner-fixed ring, the arbitrary loads acting on outer edge are extended into two sets of Fourier series. The zero displacement boundary conditions on inner surface are utilized. Then the stress (and displacement) coefficients are expressed by loading coefficients. A numerical example shows the validity of this approach.

  20. Work distributions for random sudden quantum quenches

    NASA Astrophysics Data System (ADS)

    Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter

    2017-05-01

    The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.

  1. Stability Augmentation of Wind Farm using Variable Speed Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Rosyadi, Marwan; Muyeen, S. M.; Takahashi, Rion; Tamura, Junji

    This paper presents a new control strategy of variable speed permanent magnet wind generator for stability augmentation of wind farm including fixed speed wind turbine with Induction Generator (IG). A new control scheme is developed for two levels back-to-back converters of Permanent Magnet Synchronous Generator (PMSG), by which both active and reactive powers delivered to the grid can be controlled easily. To avoid the converter damage, the DC link protection controller is also proposed in order to protect the dc link circuit during fault condition. To evaluate the control capability of the proposed controllers, simulations are performed on two model systems composed of wind farms connected to an infinite bus. From transient and steady state analyses by using PSCAD/EMTDC, it is concluded that the proposed control scheme is very effective to improve the stability of wind farm for severe network disturbance and randomly fluctuating wind speed.

  2. Multiresolution Analysis by Infinitely Differentiable Compactly Supported Functions

    DTIC Science & Technology

    1992-09-01

    Math. Surveys 45:1 (1990), 87-120. [I] (;. Strang and G. Fix, A Fourier analysis of the finite element variational method. C.I.M.F. I 1 Ciclo 1971, in Constructi’c Aspects of Functional Analyszs ed. G. Geymonat 1973, 793-840. 10

  3. Emergence of Multiscaling in a Random-Force Stirred Fluid

    NASA Astrophysics Data System (ADS)

    Yakhot, Victor; Donzis, Diego

    2017-07-01

    We consider the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that, due to multiscaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different "Reynolds numbers" reflecting a multitude of anomalous scaling exponents. The theoretically predicted transition disappears at Rλ≤3 . The developed theory is in quantitative agreement with the outcome of large-scale numerical simulations.

  4. Agravity up to infinite energy

    NASA Astrophysics Data System (ADS)

    Salvio, Alberto; Strumia, Alessandro

    2018-02-01

    The self-interactions of the conformal mode of the graviton are controlled, in dimensionless gravity theories (agravity), by a coupling f_0 that is not asymptotically free. We show that, nevertheless, agravity can be a complete theory valid up to infinite energy. When f_0 grows to large values, the conformal mode of the graviton decouples from the rest of the theory and does not hit any Landau pole provided that scalars are asymptotically conformally coupled and all other couplings approach fixed points. Then agravity can flow to conformal gravity at infinite energy. We identify scenarios where the Higgs mass does not receive unnaturally large physical corrections. We also show a useful equivalence between agravity and conformal gravity plus two extra conformally coupled scalars, and we give a simpler form for the renormalization group equations of dimensionless couplings as well as of massive parameters in the presence of the most general matter sector.

  5. "We Who Desire Peace"

    ERIC Educational Resources Information Center

    Shute, Mary Chaplin

    2017-01-01

    The first six years of the child's life are infinitely the most important, as they are the years in which attitudes are being established, habits formed, and character trends largely fixed. This article examines topics such as race relations and prejudice in kindergarten, the role of kindergarten teachers, soldier play in kindergarten and its…

  6. Periodic orbit spectrum in terms of Ruelle-Pollicott resonances

    NASA Astrophysics Data System (ADS)

    Leboeuf, P.

    2004-02-01

    Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.

  7. Using multivariate generalizability theory to assess the effect of content stratification on the reliability of a performance assessment.

    PubMed

    Keller, Lisa A; Clauser, Brian E; Swanson, David B

    2010-12-01

    In recent years, demand for performance assessments has continued to grow. However, performance assessments are notorious for lower reliability, and in particular, low reliability resulting from task specificity. Since reliability analyses typically treat the performance tasks as randomly sampled from an infinite universe of tasks, these estimates of reliability may not be accurate. For tests built according to a table of specifications, tasks are randomly sampled from different strata (content domains, skill areas, etc.). If these strata remain fixed in the test construction process, ignoring this stratification in the reliability analysis results in an underestimate of "parallel forms" reliability, and an overestimate of the person-by-task component. This research explores the effect of representing and misrepresenting the stratification appropriately in estimation of reliability and the standard error of measurement. Both multivariate and univariate generalizability studies are reported. Results indicate that the proper specification of the analytic design is essential in yielding the proper information both about the generalizability of the assessment and the standard error of measurement. Further, illustrative D studies present the effect under a variety of situations and test designs. Additional benefits of multivariate generalizability theory in test design and evaluation are also discussed.

  8. Infinite non-causality in active cancellation of random noise

    NASA Astrophysics Data System (ADS)

    Friot, Emmanuel

    2006-03-01

    Active cancellation of broadband random noise requires the detection of the incoming noise with some time advance. In an duct for example this advance must be larger than the delays in the secondary path from the control source to the error sensor. In this paper it is shown that, in some cases, the advance required for perfect noise cancellation is theoretically infinite because the inverse of the secondary path, which is required for control, can include an infinite non-causal response. This is shown to be the result of two mechanisms: in the single-channel case (one control source and one error sensor), this can arise because of strong echoes in the control path. In the multi-channel case this can arise even in free field simply because of an unfortunate placing of sensors and actuators. In the present paper optimal feedforward control is derived through analytical and numerical computations, in the time and frequency domains. It is shown that, in practice, the advance required for significant noise attenuation can be much larger than the secondary path delays. Practical rules are also suggested in order to prevent infinite non-causality from appearing.

  9. Melnikov processes and chaos in randomly perturbed dynamical systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki

    2018-07-01

    We consider a wide class of randomly perturbed systems subjected to stationary Gaussian processes and show that chaotic orbits exist almost surely under some nondegenerate condition, no matter how small the random forcing terms are. This result is very contrasting to the deterministic forcing case, in which chaotic orbits exist only if the influence of the forcing terms overcomes that of the other terms in the perturbations. To obtain the result, we extend Melnikov’s method and prove that the corresponding Melnikov functions, which we call the Melnikov processes, have infinitely many zeros, so that infinitely many transverse homoclinic orbits exist. In addition, a theorem on the existence and smoothness of stable and unstable manifolds is given and the Smale–Birkhoff homoclinic theorem is extended in an appropriate form for randomly perturbed systems. We illustrate our theory for the Duffing oscillator subjected to the Ornstein–Uhlenbeck process parametrically.

  10. Inverse medium scattering from periodic structures with fixed-direction incoming waves

    NASA Astrophysics Data System (ADS)

    Gibson, Peter; Hu, Guanghui; Zhao, Yue

    2018-07-01

    This paper is concerned with inverse time-harmonic acoustic and electromagnetic scattering from an infinite biperiodic medium (diffraction grating) in three dimensions. In the acoustic case, we prove that the near-field data of fixed-direction plane waves incited at multiple frequencies uniquely determine a refractive index function which depends on two variables. An analogous uniqueness result holds for time-harmonic Maxwell’s system if the inhomogeneity is periodic in one direction and remains invariant along the other two directions. Uniqueness for recovering (non-periodic) compactly supported contrast functions are also presented.

  11. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  12. Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings

    NASA Astrophysics Data System (ADS)

    Hussein Maibed, Zena

    2018-05-01

    The aim of this paper, we introduce a concept of general extended mapping which is independent of nonexpansive mapping and give an iteration process of families of quasi nonexpansive and of general extended mappings. Also, the existence of common fixed point are studied for these process in the Hilbert spaces.

  13. Continuous spin representations from group contraction

    NASA Astrophysics Data System (ADS)

    Khan, Abu M.; Ramond, Pierre

    2005-05-01

    We consider how the continuous spin representation (CSR) of the Poincaré group in four dimensions can be generated by dimensional reduction. The analysis uses the front-form little group in five dimensions, which must yield the Euclidean group E(2), the little group of the CSR. We consider two cases, one is the single spin massless representation of the Poincaré group in five dimensions, the other is the infinite component Majorana equation, which describes an infinite tower of massive states in five dimensions. In the first case, the double singular limit j, R →∞, with j /R fixed, where R is the Kaluza-Klein radius of the fifth dimension, and j is the spin of the particle in five dimensions, yields the CSR in four dimensions. It amounts to the Inönü-Wigner contraction, with the inverse Kaluza-Klein radius as contraction parameter. In the second case, the CSR appears only by taking a triple singular limit, where an internal coordinate of the Majorana theory goes to infinity, while leaving its ratio to the Kaluza-Klein radius fixed.

  14. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.

    PubMed

    Smith, B J; Yamaguchi, E; Gaver, D P

    2010-01-01

    We have designed, fabricated and evaluated a novel translating stage system (TSS) that augments a conventional micro particle image velocimetry (µ-PIV) system. The TSS has been used to enhance the ability to measure flow fields surrounding the tip of a migrating semi-infinite bubble in a glass capillary tube under both steady and pulsatile reopening conditions. With conventional µ-PIV systems, observations near the bubble tip are challenging because the forward progress of the bubble rapidly sweeps the air-liquid interface across the microscopic field of view. The translating stage mechanically cancels the mean bubble tip velocity, keeping the interface within the microscope field of view and providing a tenfold increase in data collection efficiency compared to fixed-stage techniques. This dramatic improvement allows nearly continuous observation of the flow field over long propagation distances. A large (136-frame) ensemble-averaged velocity field recorded with the TSS near the tip of a steadily migrating bubble is shown to compare well with fixed-stage results under identical flow conditions. Use of the TSS allows the ensemble-averaged measurement of pulsatile bubble propagation flow fields, which would be practically impossible using conventional fixed-stage techniques. We demonstrate our ability to analyze these time-dependent two-phase flows using the ensemble-averaged flow field at four points in the oscillatory cycle.

  15. Occupation times and ergodicity breaking in biased continuous time random walks

    NASA Astrophysics Data System (ADS)

    Bel, Golan; Barkai, Eli

    2005-12-01

    Continuous time random walk (CTRW) models are widely used to model diffusion in condensed matter. There are two classes of such models, distinguished by the convergence or divergence of the mean waiting time. Systems with finite average sojourn time are ergodic and thus Boltzmann-Gibbs statistics can be applied. We investigate the statistical properties of CTRW models with infinite average sojourn time; in particular, the occupation time probability density function is obtained. It is shown that in the non-ergodic phase the distribution of the occupation time of the particle on a given lattice point exhibits bimodal U or trimodal W shape, related to the arcsine law. The key points are as follows. (a) In a CTRW with finite or infinite mean waiting time, the distribution of the number of visits on a lattice point is determined by the probability that a member of an ensemble of particles in equilibrium occupies the lattice point. (b) The asymmetry parameter of the probability distribution function of occupation times is related to the Boltzmann probability and to the partition function. (c) The ensemble average is given by Boltzmann-Gibbs statistics for either finite or infinite mean sojourn time, when detailed balance conditions hold. (d) A non-ergodic generalization of the Boltzmann-Gibbs statistical mechanics for systems with infinite mean sojourn time is found.

  16. Stochastic many-body perturbation theory for anharmonic molecular vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, Matthew R.; Hirata, So, E-mail: sohirata@illinois.edu; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012

    2014-08-28

    A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value ofmore » a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.« less

  17. The Long-Run Effect of a Tax-Rebate Program

    ERIC Educational Resources Information Center

    Wang, Yuntong; Kasper, Hirschel

    2007-01-01

    In each period of a dynamic tax-rebate program, a (fixed) quantity tax is imposed on each unit of a given good, and the tax revenue is rebated back to the consumer in the next period. The program lasts for infinite number of periods. The author considers a representative consumer's dynamic consumption behavior, the long-run steady-state…

  18. A Rational Model of the Effects of Distributional Information on Feature Learning

    ERIC Educational Resources Information Center

    Austerweil, Joseph L.; Griffiths, Thomas L.

    2011-01-01

    Most psychological theories treat the features of objects as being fixed and immediately available to observers. However, novel objects have an infinite array of properties that could potentially be encoded as features, raising the question of how people learn which features to use in representing those objects. We focus on the effects of…

  19. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for statisically modeling distributions of galaxies over cosmic time, in a manner particularly indpendent of the thorny uncertainties in sub-grid astrophysics of modern cosmological simulations.

  20. Local quantum transformations requiring infinite rounds of classical communication.

    PubMed

    Chitambar, Eric

    2011-11-04

    In this Letter, we investigate the number of measurement and communication rounds needed to implement certain tasks by local quantum operations and classical communication (LOCC), a relatively unexplored topic. To demonstrate the possible strong dependence on the round number, we consider the problem of converting three-qubit entanglement into two-qubit form, specifically in the random distillation setting of [Phys. Rev. Lett. 98, 260501 (2007)]. We find that the number of LOCC rounds needed for a transformation can depend on the amount of entanglement distilled. In fact, for a wide range of transformations, the required number of rounds is infinite (unbounded). This represents the first concrete example of a task needing an infinite number of rounds to implement.

  1. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages

    PubMed Central

    2013-01-01

    Background Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. Methods In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 – 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. Results In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant’s body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C blood sodium concentrations were lower than the INW group post-training (p = 0.031) with a trend towards significance in the G group (p = 0.069). Conclusion Ad libitum fluid consumption in cold conditions was insufficient in preventing a decrease in body mass and blood electrolyte concentration post-training. However, when a fixed volume of 11.5 mL.kg.-1.h-1 was consumed during warm condition training, hydration status was maintained by preventing changes in body mass and urine specific gravity. PMID:23432855

  2. Changes in hydration status of elite Olympic class sailors in different climates and the effects of different fluid replacement beverages.

    PubMed

    Lewis, Evan Jh; Fraser, Sarah J; Thomas, Scott G; Wells, Greg D

    2013-02-21

    Olympic class sailing poses physiological challenges similar to other endurance sports such as cycling or running, with sport specific challenges of limited access to nutrition and hydration during competition. As changes in hydration status can impair sports performance, examining fluid consumption patterns and fluid/electrolyte requirements of Olympic class sailors is necessary to develop specific recommendations for these elite athletes. The purpose of this study was to examine if Olympic class sailors could maintain hydration status with self-regulated fluid consumption in cold conditions and the effect of fixed fluid intake on hydration status in warm conditions. In our cold condition study (CCS), 11 elite Olympic class sailors were provided ad libitum access to three different drinks. Crystal Light (control, C); Gatorade (experimental control, G); and customized sailing-specific Infinit (experimental, IN) (1.0:0.22 CHO:PRO), were provided on three separate training days in cold 7.1°C [4.2 - 11.3]. Our warm condition study (WCS) examined the effect of fixed fluid intake (11.5 mL.kg.-1.h-1) of C, G and heat-specific experimental Infinit (INW)(1.0:0.074 CHO:PRO) on the hydration status of eight elite Olympic Laser class sailors in 19.5°C [17.0 - 23.3]. Both studies used a completely random design. In CCS, participants consumed 802 ± 91, 924 ± 137 and 707 ± 152 mL of fluid in each group respectively. This did not change urine specific gravity, but did lead to a main effect for time for body mass (p < 0.001), blood sodium, potassium and chloride with all groups lower post-training (p < 0.05). In WCS, fixed fluid intake increased participant's body mass post-training in all groups (p < 0.01) and decreased urine specific gravity post-training (p < 0.01). There was a main effect for time for blood sodium, potassium and chloride concentration, with lower values observed post-training (p < 0.05). C blood sodium concentrations were lower than the INW group post-training (p = 0.031) with a trend towards significance in the G group (p = 0.069). Ad libitum fluid consumption in cold conditions was insufficient in preventing a decrease in body mass and blood electrolyte concentration post-training. However, when a fixed volume of 11.5 mL.kg.-1.h-1 was consumed during warm condition training, hydration status was maintained by preventing changes in body mass and urine specific gravity.

  3. Leveraging Random Number Generation for Mastery of Learning in Teaching Quantitative Research Courses via an E-Learning Method

    ERIC Educational Resources Information Center

    Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.

    2014-01-01

    E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…

  4. Verification and Planning Based on Coinductive Logic Programming

    NASA Technical Reports Server (NTRS)

    Bansal, Ajay; Min, Richard; Simon, Luke; Mallya, Ajay; Gupta, Gopal

    2008-01-01

    Coinduction is a powerful technique for reasoning about unfounded sets, unbounded structures, infinite automata, and interactive computations [6]. Where induction corresponds to least fixed point's semantics, coinduction corresponds to greatest fixed point semantics. Recently coinduction has been incorporated into logic programming and an elegant operational semantics developed for it [11, 12]. This operational semantics is the greatest fix point counterpart of SLD resolution (SLD resolution imparts operational semantics to least fix point based computations) and is termed co- SLD resolution. In co-SLD resolution, a predicate goal p( t) succeeds if it unifies with one of its ancestor calls. In addition, rational infinite terms are allowed as arguments of predicates. Infinite terms are represented as solutions to unification equations and the occurs check is omitted during the unification process. Coinductive Logic Programming (Co-LP) and Co-SLD resolution can be used to elegantly perform model checking and planning. A combined SLD and Co-SLD resolution based LP system forms the common basis for planning, scheduling, verification, model checking, and constraint solving [9, 4]. This is achieved by amalgamating SLD resolution, co-SLD resolution, and constraint logic programming [13] in a single logic programming system. Given that parallelism in logic programs can be implicitly exploited [8], complex, compute-intensive applications (planning, scheduling, model checking, etc.) can be executed in parallel on multi-core machines. Parallel execution can result in speed-ups as well as in larger instances of the problems being solved. In the remainder we elaborate on (i) how planning can be elegantly and efficiently performed under real-time constraints, (ii) how real-time systems can be elegantly and efficiently model- checked, as well as (iii) how hybrid systems can be verified in a combined system with both co-SLD and SLD resolution. Implementations of co-SLD resolution as well as preliminary implementations of the planning and verification applications have been developed [4]. Co-LP and Model Checking: The vast majority of properties that are to be verified can be classified into safety properties and liveness properties. It is well known within model checking that safety properties can be verified by reachability analysis, i.e, if a counter-example to the property exists, it can be finitely determined by enumerating all the reachable states of the Kripke structure.

  5. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    NASA Astrophysics Data System (ADS)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  6. Diversity of Poissonian populations.

    PubMed

    Eliazar, Iddo I; Sokolov, Igor M

    2010-01-01

    Populations represented by collections of points scattered randomly on the real line are ubiquitous in science and engineering. The statistical modeling of such populations leads naturally to Poissonian populations-Poisson processes on the real line with a distinguished maximal point. Poissonian populations are infinite objects underlying key issues in statistical physics, probability theory, and random fractals. Due to their infiniteness, measuring the diversity of Poissonian populations depends on the lower-bound cut-off applied. This research characterizes the classes of Poissonian populations whose diversities are invariant with respect to the cut-off level applied and establishes an elemental connection between these classes and extreme-value theory. The measures of diversity considered are variance and dispersion, Simpson's index and inverse participation ratio, Shannon's entropy and Rényi's entropy, and Gini's index.

  7. Finite land, infinite futures? Sustainable options on a fixed land base.

    Treesearch

    Sally Duncan

    2001-01-01

    The United States is expected to add around 120 million, an additional 40 percent, to its population in the next 50 years and personal incomes are generally projected to rise. This will inevitably intensify land use pressures. Between 1992 and 1997, USDA's National Resource Inventory estimated that 2.2 million acres of rural land were developed each year, with...

  8. Growth dominates choice in network percolation

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.

    2013-09-01

    The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.

  9. Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects.

    PubMed

    Baird, Rachel; Maxwell, Scott E

    2016-06-01

    Time-varying predictors in multilevel models are a useful tool for longitudinal research, whether they are the research variable of interest or they are controlling for variance to allow greater power for other variables. However, standard recommendations to fix the effect of time-varying predictors may make an assumption that is unlikely to hold in reality and may influence results. A simulation study illustrates that treating the time-varying predictor as fixed may allow analyses to converge, but the analyses have poor coverage of the true fixed effect when the time-varying predictor has a random effect in reality. A second simulation study shows that treating the time-varying predictor as random may have poor convergence, except when allowing negative variance estimates. Although negative variance estimates are uninterpretable, results of the simulation show that estimates of the fixed effect of the time-varying predictor are as accurate for these cases as for cases with positive variance estimates, and that treating the time-varying predictor as random and allowing negative variance estimates performs well whether the time-varying predictor is fixed or random in reality. Because of the difficulty of interpreting negative variance estimates, 2 procedures are suggested for selection between fixed-effect and random-effect models: comparing between fixed-effect and constrained random-effect models with a likelihood ratio test or fitting a fixed-effect model when an unconstrained random-effect model produces negative variance estimates. The performance of these 2 procedures is compared. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Neither fixed nor random: weighted least squares meta-analysis.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2015-06-15

    This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  12. Electrical Resistance of the Low Dimensional Critical Branching Random Walk

    NASA Astrophysics Data System (ADS)

    Járai, Antal A.; Nachmias, Asaf

    2014-10-01

    We show that the electrical resistance between the origin and generation n of the incipient infinite oriented branching random walk in dimensions d < 6 is O( n 1- α ) for some universal constant α > 0. This answers a question of Barlow et al. (Commun Math Phys 278:385-431, 2008).

  13. Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations

    DOE PAGES

    Toth, Alex; Ellis, J. Austin; Evans, Tom; ...

    2017-10-26

    Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

  14. Local Improvement Results for Anderson Acceleration with Inaccurate Function Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Alex; Ellis, J. Austin; Evans, Tom

    Here, we analyze the convergence of Anderson acceleration when the fixed point map is corrupted with errors. We also consider uniformly bounded errors and stochastic errors with infinite tails. We prove local improvement results which describe the performance of the iteration up to the point where the accuracy of the function evaluation causes the iteration to stagnate. We illustrate the results with examples from neutronics.

  15. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts.

    PubMed

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  16. Simplification of Markov chains with infinite state space and the mathematical theory of random gene expression bursts

    NASA Astrophysics Data System (ADS)

    Jia, Chen

    2017-09-01

    Here we develop an effective approach to simplify two-time-scale Markov chains with infinite state spaces by removal of states with fast leaving rates, which improves the simplification method of finite Markov chains. We introduce the concept of fast transition paths and show that the effective transitions of the reduced chain can be represented as the superposition of the direct transitions and the indirect transitions via all the fast transition paths. Furthermore, we apply our simplification approach to the standard Markov model of single-cell stochastic gene expression and provide a mathematical theory of random gene expression bursts. We give the precise mathematical conditions for the bursting kinetics of both mRNAs and proteins. It turns out that random bursts exactly correspond to the fast transition paths of the Markov model. This helps us gain a better understanding of the physics behind the bursting kinetics as an emergent behavior from the fundamental multiscale biochemical reaction kinetics of stochastic gene expression.

  17. Interaction between moving tandem wheels and an infinite rail with periodic supports - Green's matrices of the track method in stationary reference frame

    NASA Astrophysics Data System (ADS)

    Mazilu, Traian

    2017-08-01

    This paper approaches the issue of the interaction between moving tandem wheels and an infinite periodically supported rail and points out at the basic characteristics in the steady-state interaction behaviour and in the interaction in the presence of the rail random irregularity. The rail is modelled as an infinite Timoshenko beam resting on supports which are discretely modelling the inertia of the sleepers and ballast and also the viscoelastic features of the rail pads, the ballast and the subgrade. Green‧s matrices of the track method in stationary reference frame were applied so as to conduct the time-domain analysis. This method allows to consider the nonlinearities of the wheel/rail contact and the Doppler effect. The study highlights certain aspects regarding the influence of the wheel base on the wheels/rail contact forces, particularly at the parametric resonance, due to the coincidence between the wheel/rail natural frequency and the passing frequency and also when the rail surface exhibits random irregularity. It has been shown that the wheel/rail dynamic behaviour is less intense when the wheel base equals integer multiple of the sleeper bay.

  18. The Effect of Interference on Temporal Order Memory for Random and Fixed Sequences in Nondemented Older Adults

    ERIC Educational Resources Information Center

    Tolentino, Jerlyn C.; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K.; Gilbert, Paul E.

    2012-01-01

    Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order…

  19. The cosmic microwave background radiation power spectrum as a random bit generator for symmetric- and asymmetric-key cryptography.

    PubMed

    Lee, Jeffrey S; Cleaver, Gerald B

    2017-10-01

    In this note, the Cosmic Microwave Background (CMB) Radiation is shown to be capable of functioning as a Random Bit Generator, and constitutes an effectively infinite supply of truly random one-time pad values of arbitrary length. It is further argued that the CMB power spectrum potentially conforms to the FIPS 140-2 standard. Additionally, its applicability to the generation of a (n × n) random key matrix for a Vernam cipher is established.

  20. Recourse-based facility-location problems in hybrid uncertain environment.

    PubMed

    Wang, Shuming; Watada, Junzo; Pedrycz, Witold

    2010-08-01

    The objective of this paper is to study facility-location problems in the presence of a hybrid uncertain environment involving both randomness and fuzziness. A two-stage fuzzy-random facility-location model with recourse (FR-FLMR) is developed in which both the demands and costs are assumed to be fuzzy-random variables. The bounds of the optimal objective value of the two-stage FR-FLMR are derived. As, in general, the fuzzy-random parameters of the FR-FLMR can be regarded as continuous fuzzy-random variables with an infinite number of realizations, the computation of the recourse requires solving infinite second-stage programming problems. Owing to this requirement, the recourse function cannot be determined analytically, and, hence, the model cannot benefit from the use of techniques of classical mathematical programming. In order to solve the location problems of this nature, we first develop a technique of fuzzy-random simulation to compute the recourse function. The convergence of such simulation scenarios is discussed. In the sequel, we propose a hybrid mutation-based binary ant-colony optimization (MBACO) approach to the two-stage FR-FLMR, which comprises the fuzzy-random simulation and the simplex algorithm. A numerical experiment illustrates the application of the hybrid MBACO algorithm. The comparison shows that the hybrid MBACO finds better solutions than the one using other discrete metaheuristic algorithms, such as binary particle-swarm optimization, genetic algorithm, and tabu search.

  1. Origins and applications of the Montroll-Weiss continuous time random walk

    NASA Astrophysics Data System (ADS)

    Shlesinger, Michael F.

    2017-05-01

    The Continuous Time Random Walk (CTRW) was introduced by Montroll and Weiss in 1965 in a purely mathematical paper. Its antecedents and later applications beginning in 1973 are discussed, especially for the case of fractal time where the mean waiting time between jumps is infinite. Contribution to the Topical Issue: "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  2. Image discrimination models predict detection in fixed but not random noise

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J. Jr; Beard, B. L.; Watson, A. B. (Principal Investigator)

    1997-01-01

    By means of a two-interval forced-choice procedure, contrast detection thresholds for an aircraft positioned on a simulated airport runway scene were measured with fixed and random white-noise masks. The term fixed noise refers to a constant, or unchanging, noise pattern for each stimulus presentation. The random noise was either the same or different in the two intervals. Contrary to simple image discrimination model predictions, the same random noise condition produced greater masking than the fixed noise. This suggests that observers seem unable to hold a new noisy image for comparison. Also, performance appeared limited by internal process variability rather than by external noise variability, since similar masking was obtained for both random noise types.

  3. Latent Computational Complexity of Symmetry-Protected Topological Order with Fractional Symmetry.

    PubMed

    Miller, Jacob; Miyake, Akimasa

    2018-04-27

    An emerging insight is that ground states of symmetry-protected topological orders (SPTOs) possess latent computational complexity in terms of their many-body entanglement. By introducing a fractional symmetry of SPTO, which requires the invariance under 3-colorable symmetries of a lattice, we prove that every renormalization fixed-point state of 2D (Z_{2})^{m} SPTO with fractional symmetry can be utilized for universal quantum computation using only Pauli measurements, as long as it belongs to a nontrivial 2D SPTO phase. Our infinite family of fixed-point states may serve as a base model to demonstrate the idea of a "quantum computational phase" of matter, whose states share universal computational complexity ubiquitously.

  4. Collisional excitation of interstellar methyl cyanide

    NASA Technical Reports Server (NTRS)

    Green, Sheldon

    1986-01-01

    Theoretical calculations are used to determine the collisional excitation rates of methyl cyanide under interstellar molecular cloud conditions. The required Q(L,M) as a function of kinetic temperature were determined by averaging fixed energy IOS (infinite order sudden) results over appropriate Boltzmann distributions of collision energies. At a kinetic temperature of 40 K, rates within a K ladder were found to be accurate to generally better than about 30 percent.

  5. Increase net worth: repair business and rental properties; improve your home.

    PubMed

    1998-01-01

    When it comes to repairs and improvements, it pays to know the rules. On rental and business property, the repair produces more than double the value of an improvement. On your personal home, the improvement is infinitely better than the repair (the repair is useless). Thus, before you make the repair or improvement, read this article. Then, plan your fix-up for maximum tax benefit.

  6. Critical behavior of two-dimensional vesicles in the deflated regime

    NASA Technical Reports Server (NTRS)

    Banavar, Jayanth R.; Maritan, Amos; Stella, Attilio

    1991-01-01

    The critical behavior of two-dimensional vesicles in the deflated regime is studied analytically using a mapping onto a gauge model, scaling arguments, and exact inequalities. In agreement with the results of earlier studies the critical behavior is governed by a branched-polymer fixed point. The shape of the critical line in the gauge model is deduced in the weak and in the infinitely deflated regime.

  7. On power series representing solutions of the one-dimensional time-independent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Trotsenko, N. P.

    2017-06-01

    For the equation χ″( x) = u( x)χ( x) with infinitely smooth u( x), the general solution χ( x) is found in the form of a power series. The coefficients of the series are expressed via all derivatives u ( m)( y) of the function u( x) at a fixed point y. Examples of solutions for particular functions u( x) are considered.

  8. Eigenstate Phase Transitions

    NASA Astrophysics Data System (ADS)

    Zhao, Bo

    Phase transitions are one of the most exciting physical phenomena ever discovered. The understanding of phase transitions has long been of interest. Recently eigenstate phase transitions have been discovered and studied; they are drastically different from traditional thermal phase transitions. In eigenstate phase transitions, a sharp change is exhibited in properties of the many-body eigenstates of the Hamiltonian of a quantum system, but not the thermal equilibrium properties of the same system. In this thesis, we study two different types of eigenstate phase transitions. The first is the eigenstate phase transition within the ferromagnetic phase of an infinite-range spin model. By studying the interplay of the eigenstate thermalization hypothesis and Ising symmetry breaking, we find two eigenstate phase transitions within the ferromagnetic phase: In the lowest-temperature phase the magnetization can macroscopically oscillate by quantum tunneling between up and down. The relaxation of the magnetization is always overdamped in the remainder of the ferromagnetic phase, which is further divided into phases where the system thermally activates itself over the barrier between the up and down states, and where it quantum tunnels. The second is the many-body localization phase transition. The eigenstates on one side of the transition obey the eigenstate thermalization hypothesis; the eigenstates on the other side are many-body localized, and thus thermal equilibrium need not be achieved for an initial state even after evolving for an arbitrary long time. We study this many-body localization phase transition in the strong disorder renormalization group framework. After setting up a set of coarse-graining rules for a general one dimensional chain, we get a simple "toy model'' and obtain an almost purely analytical solution to the infinite-randomness critical fixed point renormalization group equation. We also get an estimate of the correlation length critical exponent nu ≈ 2.5.

  9. Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain

    2015-03-01

    We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).

  10. Mirror Numbers and Wigner's ``Unreasonable Effectiveness''

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander

    2006-04-01

    Wigner's ``unreasonable effectiveness of mathematics in physics'' can be augmented by concept of mirror number (MN). It is defined as digital string infinite in both directions. Example is ()5141327182() where first 5 digits is Pi ``spelled'' backward (``mirrored'') and last 5 digits is the beginning of decimal exp1 string. Let MN be constructed from two different transcendental (or algebraically irrational) numbers, set of such MNs is Cantor-uncountable. Most MNs have contain any finite digital sequence repeated infinitely many times. In spirit of ``Contact'' (C.Sagan) each normal MN contains ``Library of Babel'' of all possible texts and patterns (J.L.Borges). Infinite at both ends, MN do not have any numerical values and, contrary to numbers written in positional systems, all digits in MNs have equal weight -- sort of ``numerological democracy''. In Pythagorean-Platonic models (space-time and physical world originating from pure numbers) idea of MN resolves paradox of ``beginning'' (or ``end'') of time. Because in MNs all digits have equal status, (quantum) randomness leads to more uniform and fully ergodic phase trajectories (cf. F.Dyson, Infinite in All Directions) .

  11. Random Item IRT Models

    ERIC Educational Resources Information Center

    De Boeck, Paul

    2008-01-01

    It is common practice in IRT to consider items as fixed and persons as random. Both, continuous and categorical person parameters are most often random variables, whereas for items only continuous parameters are used and they are commonly of the fixed type, although exceptions occur. It is shown in the present article that random item parameters…

  12. Averaging of random walks and shift-invariant measures on a Hilbert space

    NASA Astrophysics Data System (ADS)

    Sakbaev, V. Zh.

    2017-06-01

    We study random walks in a Hilbert space H and representations using them of solutions of the Cauchy problem for differential equations whose initial conditions are numerical functions on H. We construct a finitely additive analogue of the Lebesgue measure: a nonnegative finitely additive measure λ that is defined on a minimal subset ring of an infinite-dimensional Hilbert space H containing all infinite-dimensional rectangles with absolutely converging products of the side lengths and is invariant under shifts and rotations in H. We define the Hilbert space H of equivalence classes of complex-valued functions on H that are square integrable with respect to a shift-invariant measure λ. Using averaging of the shift operator in H over random vectors in H with a distribution given by a one-parameter semigroup (with respect to convolution) of Gaussian measures on H, we define a one-parameter semigroup of contracting self-adjoint transformations on H, whose generator is called the diffusion operator. We obtain a representation of solutions of the Cauchy problem for the Schrödinger equation whose Hamiltonian is the diffusion operator.

  13. Dispersal of spores following a persistent random walk.

    PubMed

    Bicout, D J; Sache, I

    2003-03-01

    A model of a persistent random walk is used to describe the transport and deposition of the spore dispersal process. In this model, the spore particle flies along straight line trajectories, with constant speed v, which are interrupted by scattering, originating from interaction of spores with the field and wind variations, which randomly change its direction. To characterize the spore dispersal gradients, we have derived analytical expressions of the deposition probability epsilon (r|v) of airborne spores as a function of the distance r from the spore source in an infinite free space and in a disk of radius R with an absorbing edge that mimics an agricultural field surrounded with fields of nonhost plants and bare land. It is found in the free space that epsilon (r|v) approximately e(-alphar/l), with alpha a function of l(d)/l, where l and l(d) are the scattering and deposition mean free paths, respectively. In the disk, however, epsilon (r|v) is an infinite series of Bessel functions and, exhibits three regimes: absorbing (Rl(d)).

  14. The effect of interference on temporal order memory for random and fixed sequences in nondemented older adults.

    PubMed

    Tolentino, Jerlyn C; Pirogovsky, Eva; Luu, Trinh; Toner, Chelsea K; Gilbert, Paul E

    2012-05-21

    Two experiments tested the effect of temporal interference on order memory for fixed and random sequences in young adults and nondemented older adults. The results demonstrate that temporal order memory for fixed and random sequences is impaired in nondemented older adults, particularly when temporal interference is high. However, temporal order memory for fixed sequences is comparable between older adults and young adults when temporal interference is minimized. The results suggest that temporal order memory is less efficient and more susceptible to interference in older adults, possibly due to impaired temporal pattern separation.

  15. Influence of non-integer-order derivatives on unsteady unidirectional motions of an Oldroyd-B fluid with generalized boundary conditions

    NASA Astrophysics Data System (ADS)

    Zafar, A. A.; Riaz, M. B.; Shah, N. A.; Imran, M. A.

    2018-03-01

    The objective of this article is to study some unsteady Couette flows of an Oldroyd-B fluid with non-integer derivatives. The fluid fills an annular region of two infinite co-axial circular cylinders. Flows are due to the motion of the outer cylinder, that rotates about its axis with an arbitrary time-dependent velocity while the inner cylinder is held fixed. Closed form solutions of dimensionless velocity field and tangential tension are obtained by means of the finite Hankel transform and the theory of Laplace transform for fractional calculus. Several results in the literature including the rotational flows through an infinite cylinder can be obtained as limiting cases of our general solutions. Finally, the control of the fractional framework on the dynamics of fluid is analyzed by numerical simulations and graphical illustrations.

  16. Dynamics of a durable commodity market involving trade at disequilibrium

    NASA Astrophysics Data System (ADS)

    Panchuk, A.; Puu, T.

    2018-05-01

    The present work considers a simple model of a durable commodity market involving two agents who trade stocks of two different types. Stock commodities, in contrast to flow commodities, remain on the market from period to period and, consequently, there is neither unique demand function nor unique supply function exists. We also set up exact conditions for trade at disequilibrium, the issue being usually neglected, though a fact of reality. The induced iterative system has infinite number of fixed points and path dependent dynamics. We show that a typical orbit is either attracted to one of the fixed points or eventually sticks at a no-trade point. For the latter the stock distribution always remains the same while the price displays periodic or chaotic oscillations.

  17. Universality of modular symmetries in two-dimensional magnetotransport

    NASA Astrophysics Data System (ADS)

    Olsen, K. S.; Limseth, H. S.; Lütken, C. A.

    2018-01-01

    We analyze experimental quantum Hall data from a wide range of different materials, including semiconducting heterojunctions, thin films, surface layers, graphene, mercury telluride, bismuth antimonide, and black phosphorus. The fact that these materials have little in common, except that charge transport is effectively two-dimensional, shows how robust and universal the quantum Hall phenomenon is. The scaling and fixed point data we analyzed appear to show that magnetotransport in two dimensions is governed by a small number of universality classes that are classified by modular symmetries, which are infinite discrete symmetries not previously seen in nature. The Hall plateaux are (infrared) stable fixed points of the scaling-flow, and quantum critical points (where the wave function is delocalized) are unstable fixed points of scaling. Modular symmetries are so rigid that they in some cases fix the global geometry of the scaling flow, and therefore predict the exact location of quantum critical points, as well as the shape of flow lines anywhere in the phase diagram. We show that most available experimental quantum Hall scaling data are in good agreement with these predictions.

  18. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-03-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  19. Problems of interaction longitudinal shear waves with V-shape tunnels defect

    NASA Astrophysics Data System (ADS)

    Popov, V. G.

    2018-04-01

    The problem of determining the two-dimensional dynamic stress state near a tunnel defect of V-shaped cross-section is solved. The defect is located in an infinite elastic medium, where harmonic longitudinal shear waves are propagating. The initial problem is reduced to a system of two singular integral or integro-differential equations with fixed singularities. A numerical method for solving these systems with regard to the true asymptotics of the unknown functions is developed.

  20. Remarks on a New Possible Discretization Scheme for Gauge Theories

    NASA Astrophysics Data System (ADS)

    Magnot, Jean-Pierre

    2018-07-01

    We propose here a new discretization method for a class of continuum gauge theories which action functionals are polynomials of the curvature. Based on the notion of holonomy, this discretization procedure appears gauge-invariant for discretized analogs of Yang-Mills theories, and hence gauge-fixing is fully rigorous for these discretized action functionals. Heuristic parts are forwarded to the quantization procedure via Feynman integrals and the meaning of the heuristic infinite dimensional Lebesgue integral is questioned.

  1. Many-body localization in Ising models with random long-range interactions

    NASA Astrophysics Data System (ADS)

    Li, Haoyuan; Wang, Jia; Liu, Xia-Ji; Hu, Hui

    2016-12-01

    We theoretically investigate the many-body localization phase transition in a one-dimensional Ising spin chain with random long-range spin-spin interactions, Vi j∝|i-j |-α , where the exponent of the interaction range α can be tuned from zero to infinitely large. By using exact diagonalization, we calculate the half-chain entanglement entropy and the energy spectral statistics and use them to characterize the phase transition towards the many-body localization phase at infinite temperature and at sufficiently large disorder strength. We perform finite-size scaling to extract the critical disorder strength and the critical exponent of the divergent localization length. With increasing α , the critical exponent experiences a sharp increase at about αc≃1.2 and then gradually decreases to a value found earlier in a disordered short-ranged interacting spin chain. For α <αc , we find that the system is mostly localized and the increase in the disorder strength may drive a transition between two many-body localized phases. In contrast, for α >αc , the transition is from a thermalized phase to the many-body localization phase. Our predictions could be experimentally tested with an ion-trap quantum emulator with programmable random long-range interactions, or with randomly distributed Rydberg atoms or polar molecules in lattices.

  2. A framework for analyzing contagion in assortative banking networks

    PubMed Central

    Hurd, Thomas R.; Gleeson, James P.; Melnik, Sergey

    2017-01-01

    We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk. PMID:28231324

  3. A framework for analyzing contagion in assortative banking networks.

    PubMed

    Hurd, Thomas R; Gleeson, James P; Melnik, Sergey

    2017-01-01

    We introduce a probabilistic framework that represents stylized banking networks with the aim of predicting the size of contagion events. Most previous work on random financial networks assumes independent connections between banks, whereas our framework explicitly allows for (dis)assortative edge probabilities (i.e., a tendency for small banks to link to large banks). We analyze default cascades triggered by shocking the network and find that the cascade can be understood as an explicit iterated mapping on a set of edge probabilities that converges to a fixed point. We derive a cascade condition, analogous to the basic reproduction number R0 in epidemic modelling, that characterizes whether or not a single initially defaulted bank can trigger a cascade that extends to a finite fraction of the infinite network. This cascade condition is an easily computed measure of the systemic risk inherent in a given banking network topology. We use percolation theory for random networks to derive a formula for the frequency of global cascades. These analytical results are shown to provide limited quantitative agreement with Monte Carlo simulation studies of finite-sized networks. We show that edge-assortativity, the propensity of nodes to connect to similar nodes, can have a strong effect on the level of systemic risk as measured by the cascade condition. However, the effect of assortativity on systemic risk is subtle, and we propose a simple graph theoretic quantity, which we call the graph-assortativity coefficient, that can be used to assess systemic risk.

  4. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  5. Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming

    NASA Astrophysics Data System (ADS)

    Vercher, Enriqueta

    2008-08-01

    This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.

  6. Exact solution for a two-phase Stefan problem with variable latent heat and a convective boundary condition at the fixed face

    NASA Astrophysics Data System (ADS)

    Bollati, Julieta; Tarzia, Domingo A.

    2018-04-01

    Recently, in Tarzia (Thermal Sci 21A:1-11, 2017) for the classical two-phase Lamé-Clapeyron-Stefan problem an equivalence between the temperature and convective boundary conditions at the fixed face under a certain restriction was obtained. Motivated by this article we study the two-phase Stefan problem for a semi-infinite material with a latent heat defined as a power function of the position and a convective boundary condition at the fixed face. An exact solution is constructed using Kummer functions in case that an inequality for the convective transfer coefficient is satisfied generalizing recent works for the corresponding one-phase free boundary problem. We also consider the limit to our problem when that coefficient goes to infinity obtaining a new free boundary problem, which has been recently studied in Zhou et al. (J Eng Math 2017. https://doi.org/10.1007/s10665-017-9921-y).

  7. Minimax confidence intervals in geomagnetism

    NASA Technical Reports Server (NTRS)

    Stark, Philip B.

    1992-01-01

    The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.

  8. Renormalization group procedure for potential -g/r2

    NASA Astrophysics Data System (ADS)

    Dawid, S. M.; Gonsior, R.; Kwapisz, J.; Serafin, K.; Tobolski, M.; Głazek, S. D.

    2018-02-01

    Schrödinger equation with potential - g /r2 exhibits a limit cycle, described in the literature in a broad range of contexts using various regularizations of the singularity at r = 0. Instead, we use the renormalization group transformation based on Gaussian elimination, from the Hamiltonian eigenvalue problem, of high momentum modes above a finite, floating cutoff scale. The procedure identifies a richer structure than the one we found in the literature. Namely, it directly yields an equation that determines the renormalized Hamiltonians as functions of the floating cutoff: solutions to this equation exhibit, in addition to the limit-cycle, also the asymptotic-freedom, triviality, and fixed-point behaviors, the latter in vicinity of infinitely many separate pairs of fixed points in different partial waves for different values of g.

  9. Pigeons' Choices between Fixed-Interval and Random-Interval Schedules: Utility of Variability?

    ERIC Educational Resources Information Center

    Andrzejewski, Matthew E.; Cardinal, Claudia D.; Field, Douglas P.; Flannery, Barbara A.; Johnson, Michael; Bailey, Kathleen; Hineline, Philip N.

    2005-01-01

    Pigeons' choosing between fixed-interval and random-interval schedules of reinforcement was investigated in three experiments using a discrete-trial procedure. In all three experiments, the random-interval schedule was generated by sampling a probability distribution at an interval (and in multiples of the interval) equal to that of the…

  10. Geometric structures of super-(Diff(S/sup 1/)/S/sup 1/)*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidke, W.B.; Vokos, S.P.

    Superconformal invariance is of central importance to a perturbative and non-perturbative formulation of stringy theory. The group that describes the invariances of the superstring is the super-Virasoro group, Super-Diff(S/sup 1/). The super-reparameterizations of the circle that leave a point fixed compose the quotient space Super-(Diff(S/sup 1/)/S/sup 1/). We investigate the holomorphic geometry of this infinite-dimensional Kaehler supermanifold and calculate its curvature. copyright 1989 Academic Press, Inc.

  11. Entanglement renormalization and topological order.

    PubMed

    Aguado, Miguel; Vidal, Guifré

    2008-02-22

    The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.

  12. Investigation of stress concentration at corner points for orthotropic plate bending problem

    NASA Astrophysics Data System (ADS)

    Vasilyan, N. G.

    2018-04-01

    This article deals with the bending problem for an orthotropic semi-infinite plate strip when three edges of the plate are hinged and the fourth edge goes to infinity. The plate is loaded with distributed load of intensity q(y). A. Nadai’s approach is applied, which says that to obtain the solution at a far distance from the edge, it is necessary to solve the problem of cylindrical bending. The generalized shearing forces on the fixed edge are investigated.

  13. Evaluation of an Approximate Method for Incorporating Floating Docks in Harbor Wave Prediction Models

    DTIC Science & Technology

    2005-11-25

    fact, Koutandos et al. (2004) even now have had to limit their work only to the x–z plane while using a similar approach. In this paper, therefore, we...breakwater Koutandos et al. (2004) have presented data pertaining to transmission coefficients for waves passing a fixed, infinitely long, floating...4. Values of A and B for determining α. Fig. 5. Wave height comparison with data presented in Koutandos et al. (2004). Fig. 6. Wave transmission past

  14. Analytical and Experimental Random Vibration of Nonlinear Aeroelastic Structures.

    DTIC Science & Technology

    1987-01-28

    firstorder differential equations. In view of the system complexi- ty an attempt s made to close the infinite hierarchy by using a Gaussian scheme. This sc...year of this project-. When the first normal mode is externally excited by a band-limited random excitation, the system mean square response is found...governed mainly by the internal detuning parameter and the system damping ratios. The results are completely different when the second normal mode is

  15. Expected Fitness Gains of Randomized Search Heuristics for the Traveling Salesperson Problem.

    PubMed

    Nallaperuma, Samadhi; Neumann, Frank; Sudholt, Dirk

    2017-01-01

    Randomized search heuristics are frequently applied to NP-hard combinatorial optimization problems. The runtime analysis of randomized search heuristics has contributed tremendously to our theoretical understanding. Recently, randomized search heuristics have been examined regarding their achievable progress within a fixed-time budget. We follow this approach and present a fixed-budget analysis for an NP-hard combinatorial optimization problem. We consider the well-known Traveling Salesperson Problem (TSP) and analyze the fitness increase that randomized search heuristics are able to achieve within a given fixed-time budget. In particular, we analyze Manhattan and Euclidean TSP instances and Randomized Local Search (RLS), (1+1) EA and (1+[Formula: see text]) EA algorithms for the TSP in a smoothed complexity setting, and derive the lower bounds of the expected fitness gain for a specified number of generations.

  16. Weighted re-randomization tests for minimization with unbalanced allocation.

    PubMed

    Han, Baoguang; Yu, Menggang; McEntegart, Damian

    2013-01-01

    Re-randomization test has been considered as a robust alternative to the traditional population model-based methods for analyzing randomized clinical trials. This is especially so when the clinical trials are randomized according to minimization, which is a popular covariate-adaptive randomization method for ensuring balance among prognostic factors. Among various re-randomization tests, fixed-entry-order re-randomization is advocated as an effective strategy when a temporal trend is suspected. Yet when the minimization is applied to trials with unequal allocation, fixed-entry-order re-randomization test is biased and thus compromised in power. We find that the bias is due to non-uniform re-allocation probabilities incurred by the re-randomization in this case. We therefore propose a weighted fixed-entry-order re-randomization test to overcome the bias. The performance of the new test was investigated in simulation studies that mimic the settings of a real clinical trial. The weighted re-randomization test was found to work well in the scenarios investigated including the presence of a strong temporal trend. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Neither fixed nor random: weighted least squares meta-regression.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2017-03-01

    Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. The genealogy of samples in models with selection.

    PubMed

    Neuhauser, C; Krone, S M

    1997-02-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models. DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case.

  19. The Genealogy of Samples in Models with Selection

    PubMed Central

    Neuhauser, C.; Krone, S. M.

    1997-01-01

    We introduce the genealogy of a random sample of genes taken from a large haploid population that evolves according to random reproduction with selection and mutation. Without selection, the genealogy is described by Kingman's well-known coalescent process. In the selective case, the genealogy of the sample is embedded in a graph with a coalescing and branching structure. We describe this graph, called the ancestral selection graph, and point out differences and similarities with Kingman's coalescent. We present simulations for a two-allele model with symmetric mutation in which one of the alleles has a selective advantage over the other. We find that when the allele frequencies in the population are already in equilibrium, then the genealogy does not differ much from the neutral case. This is supported by rigorous results. Furthermore, we describe the ancestral selection graph for other selective models with finitely many selection classes, such as the K-allele models, infinitely-many-alleles models, DNA sequence models, and infinitely-many-sites models, and briefly discuss the diploid case. PMID:9071604

  20. Infinite hidden conditional random fields for human behavior analysis.

    PubMed

    Bousmalis, Konstantinos; Zafeiriou, Stefanos; Morency, Louis-Philippe; Pantic, Maja

    2013-01-01

    Hidden conditional random fields (HCRFs) are discriminative latent variable models that have been shown to successfully learn the hidden structure of a given classification problem (provided an appropriate validation of the number of hidden states). In this brief, we present the infinite HCRF (iHCRF), which is a nonparametric model based on hierarchical Dirichlet processes and is capable of automatically learning the optimal number of hidden states for a classification task. We show how we learn the model hyperparameters with an effective Markov-chain Monte Carlo sampling technique, and we explain the process that underlines our iHCRF model with the Restaurant Franchise Rating Agencies analogy. We show that the iHCRF is able to converge to a correct number of represented hidden states, and outperforms the best finite HCRFs--chosen via cross-validation--for the difficult tasks of recognizing instances of agreement, disagreement, and pain. Moreover, the iHCRF manages to achieve this performance in significantly less total training, validation, and testing time.

  1. Random Walks in a One-Dimensional Lévy Random Environment

    NASA Astrophysics Data System (ADS)

    Bianchi, Alessandra; Cristadoro, Giampaolo; Lenci, Marco; Ligabò, Marilena

    2016-04-01

    We consider a generalization of a one-dimensional stochastic process known in the physical literature as Lévy-Lorentz gas. The process describes the motion of a particle on the real line in the presence of a random array of marked points, whose nearest-neighbor distances are i.i.d. and long-tailed (with finite mean but possibly infinite variance). The motion is a continuous-time, constant-speed interpolation of a symmetric random walk on the marked points. We first study the quenched random walk on the point process, proving the CLT and the convergence of all the accordingly rescaled moments. Then we derive the quenched and annealed CLTs for the continuous-time process.

  2. Optimal search strategies of space-time coupled random walkers with finite lifetimes

    NASA Astrophysics Data System (ADS)

    Campos, D.; Abad, E.; Méndez, V.; Yuste, S. B.; Lindenberg, K.

    2015-05-01

    We present a simple paradigm for detection of an immobile target by a space-time coupled random walker with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and exponentially distributed duration, interrupted by random changes in the direction of motion and resumption of motion in the new direction with the same speed. We call these walkers "mortal creepers." A mortal creeper may die at any time during its motion according to an exponential decay law characterized by a finite mean death rate ωm. While still alive, the creeper has a finite mean frequency ω of change of the direction of motion. In particular, we consider the efficiency of the target search process, characterized by the probability that the creeper will eventually detect the target. Analytic results confirmed by numerical results show that there is an ωm-dependent optimal frequency ω =ωopt that maximizes the probability of eventual target detection. We work primarily in one-dimensional (d =1 ) domains and examine the role of initial conditions and of finite domain sizes. Numerical results in d =2 domains confirm the existence of an optimal frequency of change of direction, thereby suggesting that the observed effects are robust to changes in dimensionality. In the d =1 case, explicit expressions for the probability of target detection in the long time limit are given. In the case of an infinite domain, we compute the detection probability for arbitrary times and study its early- and late-time behavior. We further consider the survival probability of the target in the presence of many independent creepers beginning their motion at the same location and at the same time. We also consider a version of the standard "target problem" in which many creepers start at random locations at the same time.

  3. Stochastic oscillations in models of epidemics on a network of cities

    NASA Astrophysics Data System (ADS)

    Rozhnova, G.; Nunes, A.; McKane, A. J.

    2011-11-01

    We carry out an analytic investigation of stochastic oscillations in a susceptible-infected-recovered model of disease spread on a network of n cities. In the model a fraction fjk of individuals from city k commute to city j, where they may infect, or be infected by, others. Starting from a continuous-time Markov description of the model the deterministic equations, which are valid in the limit when the population of each city is infinite, are recovered. The stochastic fluctuations about the fixed point of these equations are derived by use of the van Kampen system-size expansion. The fixed point structure of the deterministic equations is remarkably simple: A unique nontrivial fixed point always exists and has the feature that the fraction of susceptible, infected, and recovered individuals is the same for each city irrespective of its size. We find that the stochastic fluctuations have an analogously simple dynamics: All oscillations have a single frequency, equal to that found in the one-city case. We interpret this phenomenon in terms of the properties of the spectrum of the matrix of the linear approximation of the deterministic equations at the fixed point.

  4. An infinite branching hierarchy of time-periodic solutions of the Benjamin-Ono equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkening, Jon

    2008-07-01

    We present a new representation of solutions of the Benjamin-Ono equation that are periodic in space and time. Up to an additive constant and a Galilean transformation, each of these solutions is a previously known, multi-periodic solution; however, the new representation unifies the subset of such solutions with a fixed spatial period and a continuously varying temporal period into a single network of smooth manifolds connected together by an infinite hierarchy of bifurcations. Our representation explicitly describes the evolution of the Fourier modes of the solution as well as the particle trajectories in a meromorphic representation of these solutions; therefore,more » we have also solved the problem of finding periodic solutions of the ordinary differential equation governing these particles, including a description of a bifurcation mechanism for adding or removing particles without destroying periodicity. We illustrate the types of bifurcation that occur with several examples, including degenerate bifurcations not predicted by linearization about traveling waves.« less

  5. Adaptive Framework for Classification and Novel Class Detection over Evolving Data Streams with Limited Labeled Data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Ahsanul; Khan, Latifur; Baron, Michael

    2015-09-01

    Most approaches to classifying evolving data streams either divide the stream of data into fixed-size chunks or use gradual forgetting to address the problems of infinite length and concept drift. Finding the fixed size of the chunks or choosing a forgetting rate without prior knowledge about time-scale of change is not a trivial task. As a result, these approaches suffer from a trade-off between performance and sensitivity. To address this problem, we present a framework which uses change detection techniques on the classifier performance to determine chunk boundaries dynamically. Though this framework exhibits good performance, it is heavily dependent onmore » the availability of true labels of data instances. However, labeled data instances are scarce in realistic settings and not readily available. Therefore, we present a second framework which is unsupervised in nature, and exploits change detection on classifier confidence values to determine chunk boundaries dynamically. In this way, it avoids the use of labeled data while still addressing the problems of infinite length and concept drift. Moreover, both of our proposed frameworks address the concept evolution problem by detecting outliers having similar values for the attributes. We provide theoretical proof that our change detection method works better than other state-of-the-art approaches in this particular scenario. Results from experiments on various benchmark and synthetic data sets also show the efficiency of our proposed frameworks.« less

  6. Electric and magnetic microfields inside and outside space-limited configurations of ions and ionic currents

    NASA Astrophysics Data System (ADS)

    Romanovsky, M. Yu; Ebeling, W.; Schimansky-Geier, L.

    2005-01-01

    The problem of electric and magnetic microfields inside finite spherical systems of stochastically moving ions and outside them is studied. The first possible field of applications is high temperature ion clusters created by laser fields [1]. Other possible applications are nearly spherical liquid systems at room-temperature containing electrolytes. Looking for biological applications we may also think about a cell which is a complicated electrolytic system or even a brain which is a still more complicated system of electrolytic currents. The essential model assumption is the random character of charges motion. We assume in our basic model that we have a finite nearly spherical system of randomly moving charges. Even taking into account that this is at best a caricature of any real system, it might be of interest as a limiting case, which admits a full theoretical treatment. For symmetry reasons, a random configuration of moving charges cannot generate a macroscopic magnetic field, but there will be microscopic fluctuating magnetic fields. Distributions for electric and magnetic microfields inside and outside such space- limited systems are calculated. Spherical systems of randomly distributed moving charges are investigated. Starting from earlier results for infinitely large systems, which lead to Holtsmark- type distributions, we show that the fluctuations in finite charge distributions are larger (in comparison to infinite systems of the same charge density).

  7. Full Bayes Poisson gamma, Poisson lognormal, and zero inflated random effects models: Comparing the precision of crash frequency estimates.

    PubMed

    Aguero-Valverde, Jonathan

    2013-01-01

    In recent years, complex statistical modeling approaches have being proposed to handle the unobserved heterogeneity and the excess of zeros frequently found in crash data, including random effects and zero inflated models. This research compares random effects, zero inflated, and zero inflated random effects models using a full Bayes hierarchical approach. The models are compared not just in terms of goodness-of-fit measures but also in terms of precision of posterior crash frequency estimates since the precision of these estimates is vital for ranking of sites for engineering improvement. Fixed-over-time random effects models are also compared to independent-over-time random effects models. For the crash dataset being analyzed, it was found that once the random effects are included in the zero inflated models, the probability of being in the zero state is drastically reduced, and the zero inflated models degenerate to their non zero inflated counterparts. Also by fixing the random effects over time the fit of the models and the precision of the crash frequency estimates are significantly increased. It was found that the rankings of the fixed-over-time random effects models are very consistent among them. In addition, the results show that by fixing the random effects over time, the standard errors of the crash frequency estimates are significantly reduced for the majority of the segments on the top of the ranking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. On the number of infinite geodesics and ground states in disordered systems

    NASA Astrophysics Data System (ADS)

    Wehr, Jan

    1997-04-01

    We study first-passage percolation models and their higher dimensional analogs—models of surfaces with random weights. We prove that under very general conditions the number of lines or, in the second case, hypersurfaces which locally minimize the sum of the random weights is with probability one equal to 0 or with probability one equal to +∞. As corollaries we show that in any dimension d≥2 the number of ground states of an Ising ferromagnet with random coupling constants equals (with probability one) 2 or +∞. Proofs employ simple large-deviation estimates and ergodic arguments.

  9. On the tensionless limit of gauged WZW models

    NASA Astrophysics Data System (ADS)

    Bakas, I.; Sourdis, C.

    2004-06-01

    The tensionless limit of gauged WZW models arises when the level of the underlying Kac-Moody algebra assumes its critical value, equal to the dual Coxeter number, in which case the central charge of the Virasoro algebra becomes infinite. We examine this limit from the world-sheet and target space viewpoint and show that gravity decouples naturally from the spectrum. Using the two-dimensional black-hole coset SL(2,Bbb R)k/U(1) as illustrative example, we find for k = 2 that the world-sheet symmetry is described by a truncated version of Winfty generated by chiral fields with integer spin s geq 3, whereas the Virasoro algebra becomes abelian and it can be consistently factored out. The geometry of target space looks like an infinitely curved hyperboloid, which invalidates the effective field theory description and conformal invariance can no longer be used to yield reliable space-time interpretation. We also compare our results with the null gauging of WZW models, which correspond to infinite boost in target space and they describe the Liouville mode that decouples in the tensionless limit. A formal BRST analysis of the world-sheet symmetry suggests that the central charge of all higher spin generators should be fixed to a critical value, which is not seen by the contracted Virasoro symmetry. Generalizations to higher dimensional coset models are also briefly discussed in the tensionless limit, where similar observations are made.

  10. On Hardness of Pricing Items for Single-Minded Bidders

    NASA Astrophysics Data System (ADS)

    Khandekar, Rohit; Kimbrel, Tracy; Makarychev, Konstantin; Sviridenko, Maxim

    We consider the following item pricing problem which has received much attention recently. A seller has an infinite numbers of copies of n items. There are m buyers, each with a budget and an intention to buy a fixed subset of items. Given prices on the items, each buyer buys his subset of items, at the given prices, provided the total price of the subset is at most his budget. The objective of the seller is to determine the prices such that her total profit is maximized.

  11. Three-dimensional dualities with bosons and fermions

    NASA Astrophysics Data System (ADS)

    Benini, Francesco

    2018-02-01

    We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators.

  12. Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.

    PubMed

    Arribas-Gil, Ana; De la Cruz, Rolando; Lebarbier, Emilie; Meza, Cristian

    2015-06-01

    We propose a classification method for longitudinal data. The Bayes classifier is classically used to determine a classification rule where the underlying density in each class needs to be well modeled and estimated. This work is motivated by a real dataset of hormone levels measured at the early stages of pregnancy that can be used to predict normal versus abnormal pregnancy outcomes. The proposed model, which is a semiparametric linear mixed-effects model (SLMM), is a particular case of the semiparametric nonlinear mixed-effects class of models (SNMM) in which finite dimensional (fixed effects and variance components) and infinite dimensional (an unknown function) parameters have to be estimated. In SNMM's maximum likelihood estimation is performed iteratively alternating parametric and nonparametric procedures. However, if one can make the assumption that the random effects and the unknown function interact in a linear way, more efficient estimation methods can be used. Our contribution is the proposal of a unified estimation procedure based on a penalized EM-type algorithm. The Expectation and Maximization steps are explicit. In this latter step, the unknown function is estimated in a nonparametric fashion using a lasso-type procedure. A simulation study and an application on real data are performed. © 2015, The International Biometric Society.

  13. On the Asymmetric Zero-Range in the Rarefaction Fan

    NASA Astrophysics Data System (ADS)

    Gonçalves, Patrícia

    2014-02-01

    We consider one-dimensional asymmetric zero-range processes starting from a step decreasing profile leading, in the hydrodynamic limit, to the rarefaction fan of the associated hydrodynamic equation. Under that initial condition, and for totally asymmetric jumps, we show that the weighted sum of joint probabilities for second class particles sharing the same site is convergent and we compute its limit. For partially asymmetric jumps, we derive the Law of Large Numbers for a second class particle, under the initial configuration in which all positive sites are empty, all negative sites are occupied with infinitely many first class particles and there is a single second class particle at the origin. Moreover, we prove that among the infinite characteristics emanating from the position of the second class particle it picks randomly one of them. The randomness is given in terms of the weak solution of the hydrodynamic equation, through some sort of renormalization function. By coupling the constant-rate totally asymmetric zero-range with the totally asymmetric simple exclusion, we derive limiting laws for more general initial conditions.

  14. Monte-Carlo simulations of the clean and disordered contact process in three space dimensions

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas

    2013-03-01

    The absorbing-state transition in the three-dimensional contact process with and without quenched randomness is investigated by means of Monte-Carlo simulations. In the clean case, a reweighting technique is combined with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder, our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical methods, and we relate them to a general classification of phase transitions in disordered systems based on the rare region dimensionality. This work has been supported in part by the NSF under grants no. DMR-0906566 and DMR-1205803.

  15. On predicting receptivity to surface roughness in a compressible infinite swept wing boundary layer

    NASA Astrophysics Data System (ADS)

    Thomas, Christian; Mughal, Shahid; Ashworth, Richard

    2017-03-01

    The receptivity of crossflow disturbances on an infinite swept wing is investigated using solutions of the adjoint linearised Navier-Stokes equations. The adjoint based method for predicting the magnitude of stationary disturbances generated by randomly distributed surface roughness is described, with the analysis extended to include both surface curvature and compressible flow effects. Receptivity is predicted for a broad spectrum of spanwise wavenumbers, variable freestream Reynolds numbers, and subsonic Mach numbers. Curvature is found to play a significant role in the receptivity calculations, while compressible flow effects are only found to marginally affect the initial size of the crossflow instability. A Monte Carlo type analysis is undertaken to establish the mean amplitude and variance of crossflow disturbances generated by the randomly distributed surface roughness. Mean amplitudes are determined for a range of flow parameters that are maximised for roughness distributions containing a broad spectrum of roughness wavelengths, including those that are most effective in generating stationary crossflow disturbances. A control mechanism is then developed where the short scale roughness wavelengths are damped, leading to significant reductions in the receptivity amplitude.

  16. Opinion dynamics on an adaptive random network

    NASA Astrophysics Data System (ADS)

    Benczik, I. J.; Benczik, S. Z.; Schmittmann, B.; Zia, R. K. P.

    2009-04-01

    We revisit the classical model for voter dynamics in a two-party system with two basic modifications. In contrast to the original voter model studied in regular lattices, we implement the opinion formation process in a random network of agents in which interactions are no longer restricted by geographical distance. In addition, we incorporate the rapidly changing nature of the interpersonal relations in the model. At each time step, agents can update their relationships. This update is determined by their own opinion, and by their preference to make connections with individuals sharing the same opinion, or rather with opponents. In this way, the network is built in an adaptive manner, in the sense that its structure is correlated and evolves with the dynamics of the agents. The simplicity of the model allows us to examine several issues analytically. We establish criteria to determine whether consensus or polarization will be the outcome of the dynamics and on what time scales these states will be reached. In finite systems consensus is typical, while in infinite systems a disordered metastable state can emerge and persist for infinitely long time before consensus is reached.

  17. Formation of a percolating cluster in films prepared by cathodic electrodeposition of a mixture of lower and higher molecular weight epoxy-amine adducts.

    PubMed

    Ranjbar, Zahra; Moradian, Siamak; Rastegar, Saeed

    2003-08-15

    The electrodeposition behavior of blends of primary dispersions of a lower and a higher molecular weight epoxy-amine adduct has been investigated. The throwing power of the above-mentioned blends showed a voltage-dependent critical composition at which the throwing power dropped to a much lower value. This was assigned to the formation of an infinite conducting cluster, the extension of which is dependent on the rate of the electrocoagulation process at the cathode boundary. The random resistor network approach of Stauffer (RRNS) and the random resistor network approach of Miller and Abrahams (RRNMA) were applied to the experimental data with high correlations (r2=0.9314 and 0.9699). The percolating cluster formed within the film, however, gave a critical exponent of conductivity equal to 1.1028, much less than expected from a classical three-dimensional lattice (i.e., 1.5-2.0). This discrepancy was explained in terms of the changed behavior of the film resulting from the bubbles formed near the cathode and its effect on the infinite conducting cluster.

  18. Operator mixing in the ɛ -expansion: Scheme and evanescent-operator independence

    NASA Astrophysics Data System (ADS)

    Di Pietro, Lorenzo; Stamou, Emmanuel

    2018-03-01

    We consider theories with fermionic degrees of freedom that have a fixed point of Wilson-Fisher type in noninteger dimension d =4 -2 ɛ . Due to the presence of evanescent operators, i.e., operators that vanish in integer dimensions, these theories contain families of infinitely many operators that can mix with each other under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on the choice of renormalization scheme beyond leading order in ɛ -expansion. In standard choices of scheme, we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions, and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the IR scaling dimension of four-fermion operators in QED in d =4 -2 ɛ at order O (ɛ2).

  19. Turtle Graphics of Morphic Sequences

    NASA Astrophysics Data System (ADS)

    Zantema, Hans

    2016-02-01

    The simplest infinite sequences that are not ultimately periodic are pure morphic sequences: fixed points of particular morphisms mapping single symbols to strings of symbols. A basic way to visualize a sequence is by a turtle curve: for every alphabet symbol fix an angle, and then consecutively for all sequence elements draw a unit segment and turn the drawing direction by the corresponding angle. This paper investigates turtle curves of pure morphic sequences. In particular, criteria are given for turtle curves being finite (consisting of finitely many segments), and for being fractal or self-similar: it contains an up-scaled copy of itself. Also space-filling turtle curves are considered, and a turtle curve that is dense in the plane. As a particular result we give an exact relationship between the Koch curve and a turtle curve for the Thue-Morse sequence, where until now for such a result only approximations were known.

  20. Finite-dimensional approximation for optimal fixed-order compensation of distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Bernstein, Dennis S.; Rosen, I. G.

    1988-01-01

    In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.

  1. Brittle Fracture In Disordered Media: A Unified Theory

    NASA Astrophysics Data System (ADS)

    Shekhawat, Ashivni; Zapperi, Stefano; Sethna, James

    2013-03-01

    We present a unified theory of fracture in disordered brittle media that reconciles apparently conflicting results reported in the literature, as well as several experiments on materials ranging from granite to bones. Our renormalization group based approach yields a phase diagram in which the percolation fixed point, expected for infinite disorder, is unstable for finite disorder and flows to a zero-disorder nucleation-type fixed point, thus showing that fracture has mixed first order and continuous character. In a region of intermediate disorder and finite system sizes, we predict a crossover with mean-field avalanche scaling. We discuss intriguing connections to other phenomena where critical scaling is only observed in finite size systems and disappears in the thermodynamic limit. We present a numerical validation of our theoretical results. We acknowledge support from DOE- BES DE-FG02-07ER46393, ERC-AdG-2011 SIZEFFECT, and the NSF through TeraGrid by LONI under grant TG-DMR100025.

  2. Ideas of Flat and Curved Space in History of Physics

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2006-04-01

    Since ``everything which is not prohibited is compulsory'' (assigned to Gell-Mann) we can postulate infinite flat Cartesian N-dimensional (N: any integer) space-time (ST) as embedding for any curved ST. Ergodicity raises quest of whether total number of inflationary and/or Everett bubbles (mini-verses) is finite, countably infinite (aleph-zero) or uncountably infinite (aleph-one). Are these bubbles form Gaussian distribution or form some non-random subsetting? Perhaps, communication between mini-verses (idea of D.Deutsch) can be facilitated by a kind of minimax non-local dynamics akin to Fermat principle? (Minimax Principle in Bubble Cosmology). Even such classical effects as magnetism and polarization have some non-local features. Can we go below the Planck length to perhaps Compton wavelength of our ``Hubble's bubble'' (h/Mc = 10 to minus 95 m, if M = 10 to 54 kg)? When talking about time loops and ergodicity (eternal return paradigm) is there some hysterisis in the way quantum states are accessed in ``forward'' or ``reverse'' direction? (reverse direction implies backward causality of J.Wheeler and/or Aristotelian final causation).

  3. Infinite densities for Lévy walks.

    PubMed

    Rebenshtok, A; Denisov, S; Hänggi, P; Barkai, E

    2014-12-01

    Motion of particles in many systems exhibits a mixture between periods of random diffusive-like events and ballistic-like motion. In many cases, such systems exhibit strong anomalous diffusion, where low-order moments 〈|x(t)|(q)〉 with q below a critical value q(c) exhibit diffusive scaling while for q>q(c) a ballistic scaling emerges. The mixed dynamics constitutes a theoretical challenge since it does not fall into a unique category of motion, e.g., the known diffusion equations and central limit theorems fail to describe both aspects. In this paper we resolve this problem by resorting to the concept of infinite density. Using the widely applicable Lévy walk model, we find a general expression for the corresponding non-normalized density which is fully determined by the particles velocity distribution, the anomalous diffusion exponent α, and the diffusion coefficient K(α). We explain how infinite densities play a central role in the description of dynamics of a large class of physical processes and discuss how they can be evaluated from experimental or numerical data.

  4. Critical phenomena on k -booklets

    NASA Astrophysics Data System (ADS)

    Grassberger, Peter

    2017-01-01

    We define a "k -booklet" to be a set of k semi-infinite planes with -∞

  5. Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution

    NASA Astrophysics Data System (ADS)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2018-05-01

    In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.

  6. fixedTimeEvents: An R package for the distribution of distances between discrete events in fixed time

    NASA Astrophysics Data System (ADS)

    Liland, Kristian Hovde; Snipen, Lars

    When a series of Bernoulli trials occur within a fixed time frame or limited space, it is often interesting to assess if the successful outcomes have occurred completely at random, or if they tend to group together. One example, in genetics, is detecting grouping of genes within a genome. Approximations of the distribution of successes are possible, but they become inaccurate for small sample sizes. In this article, we describe the exact distribution of time between random, non-overlapping successes in discrete time of fixed length. A complete description of the probability mass function, the cumulative distribution function, mean, variance and recurrence relation is included. We propose an associated test for the over-representation of short distances and illustrate the methodology through relevant examples. The theory is implemented in an R package including probability mass, cumulative distribution, quantile function, random number generator, simulation functions, and functions for testing.

  7. Absorbing phase transitions in deterministic fixed-energy sandpile models

    NASA Astrophysics Data System (ADS)

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010), 10.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  8. Absorbing phase transitions in deterministic fixed-energy sandpile models.

    PubMed

    Park, Su-Chan

    2018-03-01

    We investigate the origin of the difference, which was noticed by Fey et al. [Phys. Rev. Lett. 104, 145703 (2010)PRLTAO0031-900710.1103/PhysRevLett.104.145703], between the steady state density of an Abelian sandpile model (ASM) and the transition point of its corresponding deterministic fixed-energy sandpile model (DFES). Being deterministic, the configuration space of a DFES can be divided into two disjoint classes such that every configuration in one class should evolve into one of absorbing states, whereas no configurations in the other class can reach an absorbing state. Since the two classes are separated in terms of toppling dynamics, the system can be made to exhibit an absorbing phase transition (APT) at various points that depend on the initial probability distribution of the configurations. Furthermore, we show that in general the transition point also depends on whether an infinite-size limit is taken before or after the infinite-time limit. To demonstrate, we numerically study the two-dimensional DFES with Bak-Tang-Wiesenfeld toppling rule (BTW-FES). We confirm that there are indeed many thresholds. Nonetheless, the critical phenomena at various transition points are found to be universal. We furthermore discuss a microscopic absorbing phase transition, or a so-called spreading dynamics, of the BTW-FES, to find that the phase transition in this setting is related to the dynamical isotropic percolation process rather than self-organized criticality. In particular, we argue that choosing recurrent configurations of the corresponding ASM as an initial configuration does not allow for a nontrivial APT in the DFES.

  9. Model Selection with the Linear Mixed Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  10. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies

    USDA-ARS?s Scientific Manuscript database

    False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises t...

  11. Source-Device-Independent Ultrafast Quantum Random Number Generation.

    PubMed

    Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-10

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit/s.

  12. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors

    NASA Astrophysics Data System (ADS)

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α , the appropriate FRCG model has the effective range d =b2/N =α2/N , for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  13. Finite-range Coulomb gas models of banded random matrices and quantum kicked rotors.

    PubMed

    Pandey, Akhilesh; Kumar, Avanish; Puri, Sanjay

    2017-11-01

    Dyson demonstrated an equivalence between infinite-range Coulomb gas models and classical random matrix ensembles for the study of eigenvalue statistics. We introduce finite-range Coulomb gas (FRCG) models via a Brownian matrix process, and study them analytically and by Monte Carlo simulations. These models yield new universality classes, and provide a theoretical framework for the study of banded random matrices (BRMs) and quantum kicked rotors (QKRs). We demonstrate that, for a BRM of bandwidth b and a QKR of chaos parameter α, the appropriate FRCG model has the effective range d=b^{2}/N=α^{2}/N, for large N matrix dimensionality. As d increases, there is a transition from Poisson to classical random matrix statistics.

  14. Transition to hard turbulence in thermal convection at infinite Prandtl number

    NASA Technical Reports Server (NTRS)

    Hansen, Ulrich; Yuen, David A.; Kroening, Sherri E.

    1990-01-01

    Direct numerical simulations of two-dimensional high Rayleigh (Ra) number, base-heated thermal convection in large aspect-ratio boxes are presented for infinite Prandtl number fluids, as applied to the earth's mantle. A transition is characaterized in the flow structures in the neighborhood of Ra between 10 to the 7th and 10 to the 8th. These high Ra flows consist of large-scale cells with strong intermittent, boundary-layer instabilities. For Ra exceeding 10 to the 7th it is found that the heat-transfer mechanism changes from one characterized by mushroom-like plumes to one consisting of disconnected ascending instabilities, which do not carry with them all the thermal anomaly from the bottom boundary layer. Plume-plume collisions become much more prominent in high Ra situations and have a tendency of generating a pulse-like behavior in the fixed plume. This type of instability represents a distinct mode of heat transfer in the hard turbulent regime. Predictions of this model can be used to address certain issues concerning the mode of time-dependent convection in the earth's mantle.

  15. Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg-Kohn Functional

    NASA Astrophysics Data System (ADS)

    Cotar, Codina; Friesecke, Gero; Klüppelberg, Claudia

    2018-06-01

    We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 ( Cotar etal. in Commun Pure Appl Math 66:548-599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387-4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.

  16. Scalar spectral measures associated with an operator-fractal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgensen, Palle E. T., E-mail: jorgen@math.uiowa.edu; Kornelson, Keri A., E-mail: kkornelson@ou.edu; Shuman, Karen L.

    2014-02-15

    We study a spectral-theoretic model on a Hilbert space L{sup 2}(μ) where μ is a fixed Cantor measure. In addition to μ, we also consider an independent scaling operator U acting in L{sup 2}(μ). To make our model concrete, we focus on explicit formulas: We take μ to be the Bernoulli infinite-convolution measure corresponding to scale number 1/4 . We then define the unitary operator U in L{sup 2}(μ) from a scale-by-5 operation. The spectral-theoretic and geometric properties we have previously established for U are as follows: (i) U acts as an ergodic operator; (ii) the action of U ismore » not spatial; and finally, (iii) U is fractal in the sense that it is unitarily equivalent to a countable infinite direct sum of (twisted) copies of itself. In this paper, we prove new results about the projection-valued measures and scalar spectral measures associated to U and its constituent parts. Our techniques make use of the representations of the Cuntz algebra O{sub 2} on L{sup 2}(μ)« less

  17. Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties

    NASA Astrophysics Data System (ADS)

    Klaiman, S.; Streltsov, A. I.; Alon, O. E.

    2018-04-01

    A solvable model of a generic trapped bosonic mixture, N 1 bosons of mass m 1 and N 2 bosons of mass m 2 trapped in an harmonic potential of frequency ω and interacting by harmonic inter-particle interactions of strengths λ 1, λ 2, and λ 12, is discussed. It has recently been shown for the ground state [J. Phys. A 50, 295002 (2017)] that in the infinite-particle limit, when the interaction parameters λ 1(N 1 ‑ 1), λ 2(N 2 ‑ 1), λ 12 N 1, λ 12 N 2 are held fixed, each of the species is 100% condensed and its density per particle as well as the total energy per particle are given by the solution of the coupled Gross-Pitaevskii equations of the mixture. In the present work we investigate properties of the trapped generic mixture at the infinite-particle limit, and find differences between the many-body and mean-field descriptions of the mixture, despite each species being 100%. We compute analytically and analyze, both for the mixture and for each species, the center-of-mass position and momentum variances, their uncertainty product, the angular-momentum variance, as well as the overlap of the exact and Gross-Pitaevskii wavefunctions of the mixture. The results obtained in this work can be considered as a step forward in characterizing how important are many-body effects in a fully condensed trapped bosonic mixture at the infinite-particle limit.

  18. On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. I. Steady-state with homogeneous medium

    PubMed Central

    Piao, Daqing; Barbour, Randall L.; Graber, Harry L.; Lee, Daniel C.

    2015-01-01

    Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for estimating the DPFs. With the source-detector distance and medium optical properties held fixed across all three geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analytically estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa=0.01  mm−1 and μs′=1.0  mm−1 are on average less than 5% different. The approximation for sphere, generally valid for a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in near-infrared spectroscopy of an infant head and for short source–detector separation. PMID:26465613

  19. Maintenance service contract model for heavy equipment in mining industry using principal agent theory

    NASA Astrophysics Data System (ADS)

    Pakpahan, Eka K. A.; Iskandar, Bermawi P.

    2015-12-01

    Mining industry is characterized by a high operational revenue, and hence high availability of heavy equipment used in mining industry is a critical factor to ensure the revenue target. To maintain high avaliability of the heavy equipment, the equipment's owner hires an agent to perform maintenance action. Contract is then used to control the relationship between the two parties involved. The traditional contracts such as fixed price, cost plus or penalty based contract studied is unable to push agent's performance to exceed target, and this in turn would lead to a sub-optimal result (revenue). This research deals with designing maintenance contract compensation schemes. The scheme should induce agent to select the highest possible maintenance effort level, thereby pushing agent's performance and achieve maximum utility for both parties involved. Principal agent theory is used as a modeling approach due to its ability to simultaneously modeled owner and agent decision making process. Compensation schemes considered in this research includes fixed price, cost sharing and revenue sharing. The optimal decision is obtained using a numerical method. The results show that if both parties are risk neutral, then there are infinite combination of fixed price, cost sharing and revenue sharing produced the same optimal solution. The combination of fixed price and cost sharing contract results in the optimal solution when the agent is risk averse, while the optimal combination of fixed price and revenue sharing contract is obtained when agent is risk averse. When both parties are risk averse, the optimal compensation scheme is a combination of fixed price, cost sharing and revenue sharing.

  20. Inflation, quintessence, and the origin of mass

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-08-01

    In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.

  1. Using Multivariate Generalizability Theory to Assess the Effect of Content Stratification on the Reliability of a Performance Assessment

    ERIC Educational Resources Information Center

    Keller, Lisa A.; Clauser, Brian E.; Swanson, David B.

    2010-01-01

    In recent years, demand for performance assessments has continued to grow. However, performance assessments are notorious for lower reliability, and in particular, low reliability resulting from task specificity. Since reliability analyses typically treat the performance tasks as randomly sampled from an infinite universe of tasks, these estimates…

  2. Dynamic behavior of the bray-liebhafsky oscillatory reaction controlled by sulfuric acid and temperature

    NASA Astrophysics Data System (ADS)

    Pejić, N.; Vujković, M.; Maksimović, J.; Ivanović, A.; Anić, S.; Čupić, Ž.; Kolar-Anić, Lj.

    2011-12-01

    The non-periodic, periodic and chaotic regimes in the Bray-Liebhafsky (BL) oscillatory reaction observed in a continuously fed well stirred tank reactor (CSTR) under isothermal conditions at various inflow concentrations of the sulfuric acid were experimentally studied. In each series (at any fixed temperature), termination of oscillatory behavior via saddle loop infinite period bifurcation (SNIPER) as well as some kind of the Andronov-Hopf bifurcation is presented. In addition, it was found that an increase of temperature, in different series of experiments resulted in the shift of bifurcation point towards higher values of sulfuric acid concentration.

  3. Exact solution for the layered convection of a viscous incompressible fluid at specified temperature gradients and tangential forces on the free boundary

    NASA Astrophysics Data System (ADS)

    Burmasheva, N. V.; Prosviryakov, E. Yu.

    2017-12-01

    A new exact analytical solution of a system of thermal convection equations in the Boussinesq approximation describing layered flows in an incompressible viscous fluid is obtained. A fluid flow in an infinite layer is considered. Convection in the fluid is induced by tangential stresses specified on the upper non-deformable boundary. At the fixed lower boundary, the no-slip condition is satisfied. Temperature corrections are given on the both boundaries of the fluid layer. The possibility of physical field stratification is investigated.

  4. Using Multisite Experiments to Study Cross-Site Variation in Treatment Effects: A Hybrid Approach with Fixed Intercepts and A Random Treatment Coefficient

    ERIC Educational Resources Information Center

    Bloom, Howard S.; Raudenbush, Stephen W.; Weiss, Michael J.; Porter, Kristin

    2017-01-01

    The present article considers a fundamental question in evaluation research: "By how much do program effects vary across sites?" The article first presents a theoretical model of cross-site impact variation and a related estimation model with a random treatment coefficient and fixed site-specific intercepts. This approach eliminates…

  5. Revisiting Fixed- and Random-Effects Models: Some Considerations for Policy-Relevant Education Research

    ERIC Educational Resources Information Center

    Clarke, Paul; Crawford, Claire; Steele, Fiona; Vignoles, Anna

    2015-01-01

    The use of fixed (FE) and random effects (RE) in two-level hierarchical linear regression is discussed in the context of education research. We compare the robustness of FE models with the modelling flexibility and potential efficiency of those from RE models. We argue that the two should be seen as complementary approaches. We then compare both…

  6. The free versus fixed geodetic boundary value problem for different combinations of geodetic observables

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Heck, B.; Knickmeyer, E. H.

    1985-03-01

    Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.

  7. A randomized clinical trial comparing mandibular incisor proclination produced by fixed labial appliances and clear aligners.

    PubMed

    Hennessy, Joe; Garvey, Thérèse; Al-Awadhi, Ebrahim A

    2016-09-01

    To compare the mandibular incisor proclination produced by fixed labial appliances and third generation clear aligners. Patients underwent a course of orthodontic treatment using either fixed labial appliances or clear aligners (Invisalign). Mandibular incisor proclination was measured by comparing pretreatment and near-end treatment lateral cephalograms. Eligibility criteria included adult patients with mild mandibular incisor crowding (<4 mm) and Class I skeletal bases (ANB, 1-4°). The main outcome was the cephalometric change in mandibular incisor inclination to the mandibular plane at the end of treatment. Eligible patients picking a sealed opaque envelope, which indicated their group allocation, was used to achieve randomization. Data was analyzed using a Welch two-sample t-test. Forty-four patients (mean age, 26.4 ± 7.7 years) were randomized in a 1:1 ratio to either the fixed labial appliance or the clear aligner group. Baseline characteristics were similar for both groups: Fixed appliance mean crowding was 2.1 ± 1.3 mm vs clear aligner mean crowding, 2.5 ± 1.3 mm; pretreatment mean mandibular incisor inclination for the fixed appliance group was 90.8 ± 5.4° vs 91.6 ± 6.4° for the clear aligner group. Fixed appliances produced 5.3 ± 4.3° of mandibular incisor proclination. Clear aligners proclined the mandibular incisors by 3.4 ± 3.2°. The difference between the two groups was not statistically significant (P > .05). There was no difference in the amount of mandibular incisor proclination produced by clear aligners and fixed labial appliances in mild crowding cases.

  8. Energy dissipation in a friction-controlled slide of a body excited by random motions of the foundation

    NASA Astrophysics Data System (ADS)

    Berezin, Sergey; Zayats, Oleg

    2018-01-01

    We study a friction-controlled slide of a body excited by random motions of the foundation it is placed on. Specifically, we are interested in such quantities as displacement, traveled distance, and energy loss due to friction. We assume that the random excitation is switched off at some time (possibly infinite) and show that the problem can be treated in an analytic, explicit, manner. Particularly, we derive formulas for the moments of the displacement and distance, and also for the average energy loss. To accomplish that we use the Pugachev-Sveshnikov equation for the characteristic function of a continuous random process given by a system of SDEs. This equation is solved by reduction to a parametric Riemann boundary value problem of complex analysis.

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Wind profile recovery from intensity fluctuations of a laser beam reflected in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Banakh, V. A.; Marakasov, D. A.

    2008-04-01

    An algorithm for the wind profile recovery from spatiotemporal spectra of a laser beam reflected in a turbulent atmosphere is presented. The cases of a spherical wave incident on a diffuse reflector of finite size and a spatially limited beam reflected from an infinite random surface are considered.

  10. Emergent Complexity in Conway's Game of Life

    NASA Astrophysics Data System (ADS)

    Gotts, Nick

    It is shown that both small, finite patterns and random infinite very low density ("sparse") arrays of the Game of Life can produce emergent structures and processes of great complexity, through ramifying feedback networks and cross-scale interactions. The implications are discussed: it is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  11. Compelled to do the right thing

    NASA Astrophysics Data System (ADS)

    Fabiana Laguna, M.; Abramson, Guillermo; Iglesias, J. Roberto

    2013-05-01

    We use a model of opinion formation to study the consequences of some mechanisms attempting to enforce the right behaviour in a society. We start from a model where the possible choices are not equivalent (such is the case when the agents decide to comply or not with a law) and where an imitation mechanism allow the agents to change their behaviour based on the influence of a group of partners. In addition, we consider the existence of two social constraints: (a) an external authority, called monitor, that imposes the correct behaviour with infinite persuasion and (b) an educated group of agents that act upon their fellows but never change their own opinion, i.e., they exhibit infinite adamancy. We determine the minimum number of monitors to induce an effective change in the behaviour of the social group, and the size of the educated group that produces the same effect. Also, we compare the results for the cases of random social interactions and agents placed on a network. We have verified that a small number of monitors are enough to change the behaviour of the society. This also happens with a relatively small educated group in the case of random interactions.

  12. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    PubMed

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  13. Modelling of Rail Vehicles and Track for Calculation of Ground-Vibration Transmission Into Buildings

    NASA Astrophysics Data System (ADS)

    Hunt, H. E. M.

    1996-05-01

    A methodology for the calculation of vibration transmission from railways into buildings is presented. The method permits existing models of railway vehicles and track to be incorporated and it has application to any model of vibration transmission through the ground. Special attention is paid to the relative phasing between adjacent axle-force inputs to the rail, so that vibration transmission may be calculated as a random process. The vehicle-track model is used in conjunction with a building model of infinite length. The tracking and building are infinite and parallel to each other and forces applied are statistically stationary in space so that vibration levels at any two points along the building are the same. The methodology is two-dimensional for the purpose of application of random process theory, but fully three-dimensional for calculation of vibration transmission from the track and through the ground into the foundations of the building. The computational efficiency of the method will interest engineers faced with the task of reducing vibration levels in buildings. It is possible to assess the relative merits of using rail pads, under-sleeper pads, ballast mats, floating-slab track or base isolation for particular applications.

  14. Static and dynamic behaviour of nonlocal elastic bar using integral strain-based and peridynamic models

    NASA Astrophysics Data System (ADS)

    Challamel, Noël

    2018-04-01

    The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed-fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.

  15. Limit theorems for Lévy walks in d dimensions: rare and bulk fluctuations

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak; Denisov, Sergey; Zaburdaev, Vasily; Barkai, Eli

    2017-04-01

    We consider super-diffusive Lévy walks in d≥slant 2 dimensions when the duration of a single step, i.e. a ballistic motion performed by a walker, is governed by a power-law tailed distribution of infinite variance and finite mean. We demonstrate that the probability density function (PDF) of the coordinate of the random walker has two different scaling limits at large times. One limit describes the bulk of the PDF. It is the d-dimensional generalization of the one-dimensional Lévy distribution and is the counterpart of the central limit theorem (CLT) for random walks with finite dispersion. In contrast with the one-dimensional Lévy distribution and the CLT this distribution does not have a universal shape. The PDF reflects anisotropy of the single-step statistics however large the time is. The other scaling limit, the so-called ‘infinite density’, describes the tail of the PDF which determines second (dispersion) and higher moments of the PDF. This limit repeats the angular structure of the PDF of velocity in one step. A typical realization of the walk consists of anomalous diffusive motion (described by anisotropic d-dimensional Lévy distribution) interspersed with long ballistic flights (described by infinite density). The long flights are rare but due to them the coordinate increases so much that their contribution determines the dispersion. We illustrate the concept by considering two types of Lévy walks, with isotropic and anisotropic distributions of velocities. Furthermore, we show that for isotropic but otherwise arbitrary velocity distributions the d-dimensional process can be reduced to a one-dimensional Lévy walk. We briefly discuss the consequences of non-universality for the d  >  1 dimensional fractional diffusion equation, in particular the non-uniqueness of the fractional Laplacian.

  16. Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue.

    PubMed

    Doi, Suhail A R; Furuya-Kanamori, Luis; Thalib, Lukman; Barendregt, Jan J

    2017-12-01

    Each year up to 20 000 systematic reviews and meta-analyses are published whose results influence healthcare decisions, thus making the robustness and reliability of meta-analytic methods one of the world's top clinical and public health priorities. The evidence synthesis makes use of either fixed-effect or random-effects statistical methods. The fixed-effect method has largely been replaced by the random-effects method as heterogeneity of study effects led to poor error estimation. However, despite the widespread use and acceptance of the random-effects method to correct this, it too remains unsatisfactory and continues to suffer from defective error estimation, posing a serious threat to decision-making in evidence-based clinical and public health practice. We discuss here the problem with the random-effects approach and demonstrate that there exist better estimators under the fixed-effect model framework that can achieve optimal error estimation. We argue for an urgent return to the earlier framework with updates that address these problems and conclude that doing so can markedly improve the reliability of meta-analytical findings and thus decision-making in healthcare.

  17. Demonstration of Numerical Equivalence of Ensemble and Spectral Averaging in Electromagnetic Scattering by Random Particulate Media

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Zakharova, Nadezhda T.

    2016-01-01

    The numerically exact superposition T-matrix method is used to model far-field electromagnetic scattering by two types of particulate object. Object 1 is a fixed configuration which consists of N identical spherical particles (with N 200 or 400) quasi-randomly populating a spherical volume V having a median size parameter of 50. Object 2 is a true discrete random medium (DRM) comprising the same number N of particles randomly moving throughout V. The median particle size parameter is fixed at 4. We show that if Object 1 is illuminated by a quasi-monochromatic parallel beam then it generates a typical speckle pattern having no resemblance to the scattering pattern generated by Object 2. However, if Object 1 is illuminated by a parallel polychromatic beam with a 10 bandwidth then it generates a scattering pattern that is largely devoid of speckles and closely reproduces the quasi-monochromatic pattern generated by Object 2. This result serves to illustrate the capacity of the concept of electromagnetic scattering by a DRM to encompass fixed quasi-random particulate samples provided that they are illuminated by polychromatic light.

  18. No difference in terms of radiostereometric analysis between fixed- and mobile-bearing total knee arthroplasty: a randomized, single-blind, controlled trial.

    PubMed

    Schotanus, M G M; Pilot, P; Kaptein, B L; Draijer, W F; Tilman, P B J; Vos, R; Kort, N P

    2017-09-01

    A concern that arises with any new prosthesis is whether it will achieve satisfactory long-term implant stability. The gold standard of assessing the quality of fixation in a new or relatively new implant is to undertake a randomized controlled trial using radiostereometric analysis. It was hypothesized that both mobile-bearing total knee arthroplasty and fixed-bearing total knee arthroplasty have comparable migration patterns at 2-year follow-up. This study investigated two types of cemented total knee arthroplasty, the mobile- or fixed-bearing variant from the same family with use of radiostereometric analysis. This prospective, patient-blinded, randomized, controlled trial was designed to investigate early migration of the tibia component after two years of follow-up with use of radiostereometric analysis. A total of 50 patients were randomized to receive a mobile- or fixed-bearing TKA from the same family. Patients were evaluated during 2-year follow-up, including radiostereometric analysis, physical and clinical examination and patient reported outcome measures (PROMs). At two-year follow-up, the mean (±SD) maximum total point motion (MTPM) in the fixed-bearing group was 0.82 (±1.16) versus 0.92 mm (±0.64) in the mobile-bearing group (p = n.s) with the largest migration seen during the first 6 weeks (0.45 ± 0.32 vs. 0.54 ± 0.30). The clinical outcome and PROMs significantly improved within each group, not between both groups. Measuring early micromotion is useful for predicting clinical loosening that can lead to revision. The results of this study demonstrate that early migration of the mobile-bearing is similar to that of the fixed-bearing component at two years and was mainly seen in the first weeks after implantation. Randomized, single-blind, controlled trial, Level I.

  19. Evaluation of a Treatment Approach Combining Nicotine Gum with Self-Guided Behavioral Treatments for Smoking Relapse Prevention.

    ERIC Educational Resources Information Center

    Killen, Joel D.; And Others

    1990-01-01

    Randomly assigned 1,218 smokers to cells in 4 (nicotine gum delivered ad lib, fixed regimen nicotine gum, placebo gum, no gum) x 3 (self-selected relapse prevention modules, randomly administered modules, no modules) design. Subjects receiving nicotine gum were more likely to be abstinent at 2- and 6-month followups. Fixed regimen accounted for…

  20. Assessing the use of existing data to compare plains fish assemblages collected from random and fixed sites in Colorado

    USGS Publications Warehouse

    Zuellig, Robert E.; Crockett, Harry J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will be necessary before unbiased comparisons can be made between fish assemblages collected from random and fixed sites in the South Platte and Arkansas River Basins.

  1. No difference between fixed- and mobile-bearing total knee arthroplasty in activities of daily living and pain: a randomized clinical trial.

    PubMed

    Amaro, Joicemar Tarouco; Arliani, Gustavo Gonçalves; Astur, Diego Costa; Debieux, Pedro; Kaleka, Camila Cohen; Cohen, Moises

    2017-06-01

    Until now, there are no definitive conclusions regarding functional differences related to middle- and long-term everyday activities and patient pain following implantation of mobile- and fixed-platform tibial prostheses. The aim of this study was to determine whether there are middle-term differences in knee function and pain in patients undergoing fixed- and mobile-bearing total knee arthroplasty (TKA). Eligible patients were randomized into two groups: the first group received TKA implantation with a fixed tibial platform (group A); the second group received TKA with a mobile tibial platform (group B). Patients were followed up (2 years), and their symptoms and limitations in daily living activities were evaluated using the Knee Outcome Survey-Activities of Daily Living Scale (ADLS), in addition to pain evaluation assessed using the pain visual analogue scale (VAS). There were no significant differences in function and symptoms in the ADLS and VAS between the study groups. The type of platform used in TKA (fixed vs. mobile) does not change the symptoms, function or pain of patients 2 years post-surgery. Although mobile TKAs may have better short-term results, at medium- and long-term follow-up they do not present important clinical differences compared with fixed-platform TKAs. This information is important so that surgeons can choose the most suitable implant for each patient. Randomized clinical trial, Level I.

  2. Motion versus fixed distraction of the joint in the treatment of ankle osteoarthritis: a prospective randomized controlled trial.

    PubMed

    Saltzman, Charles L; Hillis, Stephen L; Stolley, Mary P; Anderson, Donald D; Amendola, Annunziato

    2012-06-06

    Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome.

  3. Are randomly grown graphs really random?

    PubMed

    Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H

    2001-10-01

    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.

  4. The application of computational mechanics to the analysis of natural data: An example in geomagnetism.

    NASA Astrophysics Data System (ADS)

    Watkins, Nicholas; Clarke, Richard; Freeman, Mervyn

    2002-11-01

    We discuss how the ideal formalism of Computational Mechanics can be adapted to apply to a non-infinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the new concept of effective soficity is introduced. The benefits of these new concepts are demonstrated on simulated time series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the earth-based station under an electrical current pattern that is fixed with respect to the sun-earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, a hypothesis is advanced about model construction in general (see also Clarke et al; arXiv::cond-mat/0110228).

  5. Effects of a Signaled Delay to Reinforcement in the Previous and Upcoming Ratios on Between-Ratio Pausing in Fixed-Ratio Schedules

    ERIC Educational Resources Information Center

    Harris, Aimee; Foster, T. Mary; Levine, Joshua; Temple, William

    2012-01-01

    Domestic hens responded under multiple fixed-ratio fixed-ratio schedules with equal fixed ratios. One component provided immediate reinforcement and the other provided reinforcement after a delay, signaled by the offset of the key light. The components were presented quasi-randomly so that all four possible transitions occurred in each session.…

  6. A comparison of two sampling designs for fish assemblage assessment in a large river

    USGS Publications Warehouse

    Kiraly, Ian A.; Coghlan, Stephen M.; Zydlewski, Joseph D.; Hayes, Daniel

    2014-01-01

    We compared the efficiency of stratified random and fixed-station sampling designs to characterize fish assemblages in anticipation of dam removal on the Penobscot River, the largest river in Maine. We used boat electrofishing methods in both sampling designs. Multiple 500-m transects were selected randomly and electrofished in each of nine strata within the stratified random sampling design. Within the fixed-station design, up to 11 transects (1,000 m) were electrofished, all of which had been sampled previously. In total, 88 km of shoreline were electrofished during summer and fall in 2010 and 2011, and 45,874 individuals of 34 fish species were captured. Species-accumulation and dissimilarity curve analyses indicated that all sampling effort, other than fall 2011 under the fixed-station design, provided repeatable estimates of total species richness and proportional abundances. Overall, our sampling designs were similar in precision and efficiency for sampling fish assemblages. The fixed-station design was negatively biased for estimating the abundance of species such as Common Shiner Luxilus cornutus and Fallfish Semotilus corporalis and was positively biased for estimating biomass for species such as White Sucker Catostomus commersonii and Atlantic Salmon Salmo salar. However, we found no significant differences between the designs for proportional catch and biomass per unit effort, except in fall 2011. The difference observed in fall 2011 was due to limitations on the number and location of fixed sites that could be sampled, rather than an inherent bias within the design. Given the results from sampling in the Penobscot River, application of the stratified random design is preferable to the fixed-station design due to less potential for bias caused by varying sampling effort, such as what occurred in the fall 2011 fixed-station sample or due to purposeful site selection.

  7. Mechanisms Underlying the Breast Cancer Susceptibility Locus Mcs5a

    DTIC Science & Technology

    2010-07-01

    fixed using formaldehyde . The extracted fixed chromatin is digested with a restriction enzyme and religated in a strongly dilute fashion. In this...procedure the ligation of genetic elements that were glued together by formaldehyde fixation is favored over ligation of random elements. Following... digested and randomly ligated control template containing all restriction fragments of interest in equal molarity. To investigate the Mcs5a1-Mcs5a2

  8. Inconsistent Responding in a Criminal Forensic Setting: An Evaluation of the VRIN-r and TRIN-r Scales of the MMPI-2-RF.

    PubMed

    Gu, Wen; Reddy, Hima B; Green, Debbie; Belfi, Brian; Einzig, Shanah

    2017-01-01

    Criminal forensic evaluations are complicated by the risk that examinees will respond in an unreliable manner. Unreliable responding could occur due to lack of personal investment in the evaluation, severe mental illness, and low cognitive abilities. In this study, 31% of Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2008/2011) profiles were invalid due to random or fixed-responding (T score ≥ 80 on the VRIN-r or TRIN-r scales) in a sample of pretrial criminal defendants evaluated in the context of treatment for competency restoration. Hierarchical regression models showed that symptom exaggeration variables, as measured by inconsistently reported psychiatric symptoms, contributed over and above education and intellectual functioning in their prediction of both random responding and fixed responding. Psychopathology variables, as measured by mood disturbance, better predicted fixed responding after controlling for estimates of cognitive abilities, but did not improve the prediction for random responding. These findings suggest that random responding and fixed responding are not only affected by education and intellectual functioning, but also by intentional exaggeration and aspects of psychopathology. Measures of intellectual functioning and effort and response style should be considered for administration in conjunction with self-report personality measures to rule out rival hypotheses of invalid profiles.

  9. Efficacy and Safety of Vasopressin Receptor Antagonists for Euvolemic or Hypervolemic Hyponatremia: A Meta-Analysis.

    PubMed

    Zhang, Xiangyun; Zhao, Mingyi; Du, Wei; Zu, Dongni; Sun, Yingwei; Xiang, Rongwu; Yang, Jingyu

    2016-04-01

    Hyponatremia, defined as a nonartifactual serum sodium level <135 mmol/L, is the most common fluid and electrolyte abnormality in clinical practice. Traditional managements (fluid restriction, hypertonic saline and loop diuretics, etc.) are difficult to maintain or ineffective. Recently, vasopressin receptor antagonists (VRAs) have shown promise for the treatment of hyponatremia. We aimed to conduct a meta-analysis to evaluate the efficacy and safety of VRAs in patients with euvolemic or hypervolemic hyponatremia. We searched Pubmed, Cochrane Library, Web of Science and Springer, etc. (latest search on June 4, 2015) for English publications with randomized controlled trials. Two authors independently screened the citations and extracted data. We calculated pooled relative risk (RR), risk difference (RD), weighted mean difference (WMD) or standard mean difference (SMD), and 95% confidence intervals (CIs) by using random and fixed effect models. We collected data from 18 trials involving 1806 patients. Both random and fixed effect meta-analyses showed that VRAs significantly increased the net change of serum sodium concentration (WMD(random) = 4.89 mEq/L, 95%CIs = 4.35-5.43 and WMD(fixed) = 4.70 mEq/L, 95%CIs = 4.45-4.95), response rate (RR(random )= 2.77, 95%CIs = 2.29-3.36 and RR(fixed) = 2.95, 95%CIs = 2.56-3.41), and 24-hour urine output (SMD(random) = 0.82, 95%CIs = 0.65-1.00 and SMD(fixed) = 0.79, 95%CIs = 0.66-0.93) compared to placebo. Furthermore, VRAs significantly decreased body weight (WMD(random) = -0.87 kg, 95%CIs = -1.24 to -0.49 and WMD(fixed) = -0.91 kg, 95%CIs = -1.22 to -0.59). In terms of safety, rates of drug-related adverse events (AEs), rapid sodium level correction, constipation, dry mouth, thirst, and phlebitis in the VRA-treated group were greater than those in control group. However, there was no difference in the total number of AEs, discontinuations due to AEs, serious AEs, death, headache, hypotension, nausea, anemia, hypernatremia, urinary tract infection, renal failure, pyrexia, upper gastrointestinal bleeding, diarrhea, vomiting, peripheral edema, and dizziness between the 2 groups. Random effect meta-analyses showed that post treatment urine osmolality, supine systolic blood pressure, and diastolic blood pressure were lowered (WMD(random) = -233.07 mOsmol/kg, 95%CIs = -298.20-147.94; WMD(random) = -6.11 mmHg, 95%CIs = -9.810 to -2.41; WMD(random )= -2.59 mmHg, 95%CIs = -4.06 to -1.11, respectively), but serum osmolality was increased (WMD(random) = 9.29 mOsmol/kg, 95%CIs = 5.56-13.03). There was no significant change from baseline in serum potassium concentration between the 2 groups (WMD(fixed) = 0.00 mmHg, 95%CIs = -0.07-0.06). VRAs are relatively effective and safe for the treatment of hypervolemic and euvolemic hyponatremia.

  10. Mean field dynamics of some open quantum systems

    NASA Astrophysics Data System (ADS)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  11. Mean field dynamics of some open quantum systems.

    PubMed

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  12. Diverging conductance at the contact between random and pure quantum XX spin chains

    NASA Astrophysics Data System (ADS)

    Chatelain, Christophe

    2017-11-01

    A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.

  13. Validation of the SINDA/FLUINT code using several analytical solutions

    NASA Technical Reports Server (NTRS)

    Keller, John R.

    1995-01-01

    The Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) code has often been used to determine the transient and steady-state response of various thermal and fluid flow networks. While this code is an often used design and analysis tool, the validation of this program has been limited to a few simple studies. For the current study, the SINDA/FLUINT code was compared to four different analytical solutions. The thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first compared to two separate solutions. The first comparison examined a semi-infinite slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the code (FLUINT) was also compared to two different analytical solutions. The first study examined a tank filling process by an ideal gas in which there is both control volume work and heat transfer. The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The results of all these studies showed that for the situations examined here, the SINDA/FLUINT code was able to match the results of the analytical solutions.

  14. Dirac fields in flat FLRW cosmology: Uniqueness of the Fock quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx; Elizaga Navascués, Beatriz, E-mail: beatriz.elizaga@iem.cfmac.csic.es; Martín-Benito, Mercedes, E-mail: m.martin@hef.ru.nl

    We address the issue of the infinite ambiguity that affects the construction of a Fock quantization of a Dirac field propagating in a cosmological spacetime with flat compact sections. In particular, we discuss a physical criterion that restricts to a unique possibility (up to unitary equivalence) the infinite set of available vacua. We prove that this desired uniqueness is guaranteed, for any possible choice of spin structure on the spatial sections, if we impose two conditions. The first one is that the symmetries of the classical system must be implemented quantum mechanically, so that the vacuum is invariant under themore » symmetry transformations. The second and more important condition is that the constructed theory must have a quantum dynamics that is implementable as a (non-trivial) unitary operator in Fock space. Actually, this unitarity of the quantum dynamics leads us to identify as explicitly time dependent some very specific contributions of the Dirac field. In doing that, we essentially characterize the part of the dynamics governed by the Dirac equation that is unitarily implementable. The uniqueness of the Fock vacuum is attained then once a physically motivated convention for the concepts of particles and antiparticles is fixed.« less

  15. Long-time predictability in disordered spin systems following a deep quench

    NASA Astrophysics Data System (ADS)

    Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  16. Long-time predictability in disordered spin systems following a deep quench.

    PubMed

    Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L

    2017-04-01

    We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.

  17. Illumination discrimination in the absence of a fixed surface-reflectance layout

    PubMed Central

    Radonjić, Ana; Ding, Xiaomao; Krieger, Avery; Aston, Stacey; Hurlbert, Anya C.; Brainard, David H.

    2018-01-01

    Previous studies have shown that humans can discriminate spectral changes in illumination and that this sensitivity depends both on the chromatic direction of the illumination change and on the ensemble of surfaces in the scene. These studies, however, always used stimulus scenes with a fixed surface-reflectance layout. Here we compared illumination discrimination for scenes in which the surface reflectance layout remains fixed (fixed-surfaces condition) to those in which surface reflectances were shuffled randomly across scenes, but with the mean scene reflectance held approximately constant (shuffled-surfaces condition). Illumination discrimination thresholds in the fixed-surfaces condition were commensurate with previous reports. Thresholds in the shuffled-surfaces condition, however, were considerably elevated. Nonetheless, performance in the shuffled-surfaces condition exceeded that attainable through random guessing. Analysis of eye fixations revealed that in the fixed-surfaces condition, low illumination discrimination thresholds (across observers) were predicted by low overall fixation spread and high consistency of fixation location and fixated surface reflectances across trial intervals. Performance in the shuffled-surfaces condition was not systematically related to any of the eye-fixation characteristics we examined for that condition, but was correlated with performance in the fixed-surfaces condition. PMID:29904786

  18. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection

    NASA Astrophysics Data System (ADS)

    Tsao, Shih-Ming; Lai, Ji-Ching; Horng, Horng-Er; Liu, Tu-Chen; Hong, Chin-Yih

    2017-04-01

    Aptamers are oligonucleotides that can bind to specific target molecules. Most aptamers are generated using random libraries in the standard systematic evolution of ligands by exponential enrichment (SELEX). Each random library contains oligonucleotides with a randomized central region and two fixed primer regions at both ends. The fixed primer regions are necessary for amplifying target-bound sequences by PCR. However, these extra-sequences may cause non-specific bindings, which potentially interfere with good binding for random sequences. The Magnetic-Assisted Rapid Aptamer Selection (MARAS) is a newly developed protocol for generating single-strand DNA aptamers. No repeat selection cycle is required in the protocol. This study proposes and demonstrates a method to isolate aptamers for C-reactive proteins (CRP) from a randomized ssDNA library containing no fixed sequences at 5‧ and 3‧ termini using the MARAS platform. Furthermore, the isolated primer-free aptamer was sequenced and binding affinity for CRP was analyzed. The specificity of the obtained aptamer was validated using blind serum samples. The result was consistent with monoclonal antibody-based nephelometry analysis, which indicated that a primer-free aptamer has high specificity toward targets. MARAS is a feasible platform for efficiently generating primer-free aptamers for clinical diagnoses.

  19. Interplay of Determinism and Randomness: From Irreversibility to Chaos, Fractals, and Stochasticity

    NASA Astrophysics Data System (ADS)

    Tsonis, A.

    2017-12-01

    We will start our discussion into randomness by looking exclusively at our formal mathematical system to show that even in this pure and strictly logical system one cannot do away with randomness. By employing simple mathematical models, we will identify the three possible sources of randomness: randomness due to inability to find the rules (irreversibility), randomness due to inability to have infinite power (chaos), and randomness due to stochastic processes. Subsequently we will move from the mathematical system to our physical world to show that randomness, through the quantum mechanical character of small scales, through chaos, and because of the second law of thermodynamics, is an intrinsic property of nature as well. We will subsequently argue that the randomness in the physical world is consistent with the three sources of randomness suggested from the study of simple mathematical systems. Many examples ranging from purely mathematical to natural processes will be presented, which clearly demonstrate how the combination of rules and randomness produces the world we live in. Finally, the principle of least effort or the principle of minimum energy consumption will be suggested as the underlying principle behind this symbiosis between determinism and randomness.

  20. The quantum-field renormalization group in the problem of a growing phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, N.V.; Vasil`ev, A.N.

    1995-09-01

    Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less

  1. Feynman-Kac formula for stochastic hybrid systems.

    PubMed

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  2. Stability diagram for the forced Kuramoto model.

    PubMed

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  3. Optimized hardware framework of MLP with random hidden layers for classification applications

    NASA Astrophysics Data System (ADS)

    Zyarah, Abdullah M.; Ramesh, Abhishek; Merkel, Cory; Kudithipudi, Dhireesha

    2016-05-01

    Multilayer Perceptron Networks with random hidden layers are very efficient at automatic feature extraction and offer significant performance improvements in the training process. They essentially employ large collection of fixed, random features, and are expedient for form-factor constrained embedded platforms. In this work, a reconfigurable and scalable architecture is proposed for the MLPs with random hidden layers with a customized building block based on CORDIC algorithm. The proposed architecture also exploits fixed point operations for area efficiency. The design is validated for classification on two different datasets. An accuracy of ~ 90% for MNIST dataset and 75% for gender classification on LFW dataset was observed. The hardware has 299 speed-up over the corresponding software realization.

  4. Transition to Complicated Behavior in Infinite Dimensional Dynamical Systems

    DTIC Science & Technology

    1990-03-01

    solitons in nonlinear refractive periodic media," Phys. Lett. A. 141 37 (1989). A.3. Dynamics of Free-Running and Injection- Locked Laser Diode Arrays...Fibers * Dynamics of Free-Running and Injection- Locked Laser Diode Arrays I Diffraction/Diffusion Mediated Instabilities in Self-focusing/Defocusing...optics, the interplay between the coherence of solitons and the scattering (Anderson localization) effects of randomness, and the value in looking at

  5. On Monotone Embedding in Information Geometry (Open Access)

    DTIC Science & Technology

    2015-06-25

    the non-parametric ( infinite - dimensional ) setting, as well [4,6], with the α-connection structure cast in a more general way. Theorem 1 of [4] gives... the weighting function for taking the expectation of random variables in calculating the Riemannian metric (G = 1 reduces to F - geometry , with the ...is a trivial rewriting of the convex function f used by [2]. This paper will start in Section 1

  6. Non-equilibrium Phase Transitions: Activated Random Walks at Criticality

    NASA Astrophysics Data System (ADS)

    Cabezas, M.; Rolla, L. T.; Sidoravicius, V.

    2014-06-01

    In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.

  7. Influence of surface heterogeneity in electroosmotic flows—Implications in chromatography, fluid mixing, and chemical reactions in microdevices

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi

    2007-04-01

    We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.

  8. Variational Solutions and Random Dynamical Systems to SPDEs Perturbed by Fractional Gaussian Noise

    PubMed Central

    Zeng, Caibin; Yang, Qigui; Cao, Junfei

    2014-01-01

    This paper deals with the following type of stochastic partial differential equations (SPDEs) perturbed by an infinite dimensional fractional Brownian motion with a suitable volatility coefficient Φ: dX(t) = A(X(t))dt+Φ(t)dB H(t), where A is a nonlinear operator satisfying some monotonicity conditions. Using the variational approach, we prove the existence and uniqueness of variational solutions to such system. Moreover, we prove that this variational solution generates a random dynamical system. The main results are applied to a general type of nonlinear SPDEs and the stochastic generalized p-Laplacian equation. PMID:24574903

  9. Generalized Riemann hypothesis and stochastic time series

    NASA Astrophysics Data System (ADS)

    Mussardo, Giuseppe; LeClair, André

    2018-06-01

    Using the Dirichlet theorem on the equidistribution of residue classes modulo q and the Lemke Oliver–Soundararajan conjecture on the distribution of pairs of residues on consecutive primes, we show that the domain of convergence of the infinite product of Dirichlet L-functions of non-principal characters can be extended from down to , without encountering any zeros before reaching this critical line. The possibility of doing so can be traced back to a universal diffusive random walk behavior of a series C N over the primes which underlies the convergence of the infinite product of the Dirichlet functions. The series C N presents several aspects in common with stochastic time series and its control requires to address a problem similar to the single Brownian trajectory problem in statistical mechanics. In the case of the Dirichlet functions of non principal characters, we show that this problem can be solved in terms of a self-averaging procedure based on an ensemble of block variables computed on extended intervals of primes. Those intervals, called inertial intervals, ensure the ergodicity and stationarity of the time series underlying the quantity C N . The infinity of primes also ensures the absence of rare events which would have been responsible for a different scaling behavior than the universal law of the random walks.

  10. Fickian dispersion is anomalous

    DOE PAGES

    Cushman, John H.; O’Malley, Dan

    2015-06-22

    The thesis put forward here is that the occurrence of Fickian dispersion in geophysical settings is a rare event and consequently should be labeled as anomalous. What people classically call anomalous is really the norm. In a Lagrangian setting, a process with mean square displacement which is proportional to time is generally labeled as Fickian dispersion. With a number of counter examples we show why this definition is fraught with difficulty. In a related discussion, we show an infinite second moment does not necessarily imply the process is super dispersive. By employing a rigorous mathematical definition of Fickian dispersion wemore » illustrate why it is so hard to find a Fickian process. We go on to employ a number of renormalization group approaches to classify non-Fickian dispersive behavior. Scaling laws for the probability density function for a dispersive process, the distribution for the first passage times, the mean first passage time, and the finite-size Lyapunov exponent are presented for fixed points of both deterministic and stochastic renormalization group operators. The fixed points of the renormalization group operators are p-self-similar processes. A generalized renormalization group operator is introduced whose fixed points form a set of generalized self-similar processes. Finally, power-law clocks are introduced to examine multi-scaling behavior. Several examples of these ideas are presented and discussed.« less

  11. Effect of fixed-dose combinations of ezetimibe plus rosuvastatin in patients with primary hypercholesterolemia: MRS-ROZE (Multicenter Randomized Study of ROsuvastatin and eZEtimibe).

    PubMed

    Kim, Kyung-Jin; Kim, Sang-Hyun; Yoon, Young Won; Rha, Seung-Woon; Hong, Soon-Jun; Kwak, Choong-Hwan; Kim, Weon; Nam, Chang-Wook; Rhee, Moo-Yong; Park, Tae-Ho; Hong, Taek-Jong; Park, Sungha; Ahn, Youngkeun; Lee, Namho; Jeon, Hui-Kyung; Jeon, Dong-Woon; Han, Kyoo-Rok; Moon, Keon-Woong; Chae, In-Ho; Kim, Hyo-Soo

    2016-10-01

    We aimed to compare the effects of fixed-dose combinations of ezetimibe plus rosuvastatin to rosuvastatin alone in patients with primary hypercholesterolemia, including a subgroup analysis of patients with diabetes mellitus (DM) or metabolic syndrome (MetS). This multicenter eight-week randomized double-blind phase III study evaluated the safety and efficacy of fixed-dose combinations of ezetimibe 10 mg plus rosuvastatin, compared with rosuvastatin alone in patients with primary hypercholesterolemia. Four hundred and seven patients with primary hypercholesterolemia who required lipid-lowering treatment according to the ATP III guideline were randomized to one of the following six treatments for 8 weeks: fixed-dose combinations with ezetimibe 10 mg daily plus rosuvastatin (5, 10, or 20 mg daily) or rosuvastatin alone (5, 10, or 20 mg daily). Fixed-dose combination of ezetimibe plus rosuvastatin significantly reduced LDL cholesterol, total cholesterol, and triglyceride levels compared with rosuvastatin alone. Depending on the rosuvastatin dose, these fixed-dose combinations of ezetimibe plus rosuvastatin provided LDL cholesterol, total cholesterol, and triglyceride reductions of 56%-63%, 37%-43%, and 19%-24%, respectively. Moreover, the effect of combination treatment on cholesterol levels was more pronounced in patients with DM or MetS than in non-DM or non-MetS patients, respectively, whereas the effect of rosuvastatin alone did not differ between DM vs non-DM or MetS vs non-MetS patients. Fixed-dose combinations of ezetimibe and rosuvastatin provided significantly superior efficacy to rosuvastatin alone in lowering LDL cholesterol, total cholesterol, and triglyceride levels. Moreover, the reduction rate was greater in patients with DM or MetS. © 2016 The Authors Cardiovascular Therapeutics Published by John Wiley & Sons Ltd.

  12. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies

    PubMed Central

    Liu, Xiaolei; Huang, Meng; Fan, Bin; Buckler, Edward S.; Zhang, Zhiwu

    2016-01-01

    False positives in a Genome-Wide Association Study (GWAS) can be effectively controlled by a fixed effect and random effect Mixed Linear Model (MLM) that incorporates population structure and kinship among individuals to adjust association tests on markers; however, the adjustment also compromises true positives. The modified MLM method, Multiple Loci Linear Mixed Model (MLMM), incorporates multiple markers simultaneously as covariates in a stepwise MLM to partially remove the confounding between testing markers and kinship. To completely eliminate the confounding, we divided MLMM into two parts: Fixed Effect Model (FEM) and a Random Effect Model (REM) and use them iteratively. FEM contains testing markers, one at a time, and multiple associated markers as covariates to control false positives. To avoid model over-fitting problem in FEM, the associated markers are estimated in REM by using them to define kinship. The P values of testing markers and the associated markers are unified at each iteration. We named the new method as Fixed and random model Circulating Probability Unification (FarmCPU). Both real and simulated data analyses demonstrated that FarmCPU improves statistical power compared to current methods. Additional benefits include an efficient computing time that is linear to both number of individuals and number of markers. Now, a dataset with half million individuals and half million markers can be analyzed within three days. PMID:26828793

  13. Noteworthy fractal features and transport properties of Cantor tartans

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.; Golmankhaneh, Alireza K.; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel

    2018-06-01

    This Letter is focused on the impact of fractal topology on the transport processes governed by different kinds of random walks on Cantor tartans. We establish that the spectral dimension of the infinitely ramified Cantor tartan ds is equal to its fractal (self-similarity) dimension D. Consequently, the random walk on the Cantor tartan leads to a normal diffusion. On the other hand, the fractal geometry of Cantor tartans allows for a natural definition of power-law distributions of the waiting times and step lengths of random walkers. These distributions are Lévy stable if D > 1.5. Accordingly, we found that the random walk with rests leads to sub-diffusion, whereas the Lévy walk leads to ballistic diffusion. The Lévy walk with rests leads to super-diffusion, if D >√{ 3 }, or sub-diffusion, if 1.5 < D <√{ 3 }.

  14. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    NASA Astrophysics Data System (ADS)

    Zhang, G.

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  15. Precise algorithm to generate random sequential adsorption of hard polygons at saturation.

    PubMed

    Zhang, G

    2018-04-01

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation" limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles and could thus determine the saturation density of spheres with high accuracy. In this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensional polygons. We also calculate the saturation density for regular polygons of three to ten sides and obtain results that are consistent with previous, extrapolation-based studies.

  16. Nonrecurrence and Bell-like inequalities

    NASA Astrophysics Data System (ADS)

    Danforth, Douglas G.

    2017-12-01

    The general class, Λ, of Bell hidden variables is composed of two subclasses ΛR and ΛN such that ΛR⋃ΛN = Λ and ΛR∩ ΛN = {}. The class ΛN is very large and contains random variables whose domain is the continuum, the reals. There are an uncountable infinite number of reals. Every instance of a real random variable is unique. The probability of two instances being equal is zero, exactly zero. ΛN induces sample independence. All correlations are context dependent but not in the usual sense. There is no "spooky action at a distance". Random variables, belonging to ΛN, are independent from one experiment to the next. The existence of the class ΛN makes it impossible to derive any of the standard Bell inequalities used to define quantum entanglement.

  17. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-04-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  18. Two-Dimensional Anisotropic Random Walks: Fixed Versus Random Column Configurations for Transport Phenomena

    NASA Astrophysics Data System (ADS)

    Csáki, Endre; Csörgő, Miklós; Földes, Antónia; Révész, Pál

    2018-06-01

    We consider random walks on the square lattice of the plane along the lines of Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) and den Hollander (J Stat Phys 75:891-918, 1994), whose studies have in part been inspired by the so-called transport phenomena of statistical physics. Two-dimensional anisotropic random walks with anisotropic density conditions á la Heyde (J Stat Phys 27:721-730, 1982, Stochastic processes, Springer, New York, 1993) yield fixed column configurations and nearest-neighbour random walks in a random environment on the square lattice of the plane as in den Hollander (J Stat Phys 75:891-918, 1994) result in random column configurations. In both cases we conclude simultaneous weak Donsker and strong Strassen type invariance principles in terms of appropriately constructed anisotropic Brownian motions on the plane, with self-contained proofs in both cases. The style of presentation throughout will be that of a semi-expository survey of related results in a historical context.

  19. Learning in the Machine: Random Backpropagation and the Deep Learning Channel.

    PubMed

    Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin

    2018-07-01

    Random backpropagation (RBP) is a variant of the backpropagation algorithm for training neural networks, where the transpose of the forward matrices are replaced by fixed random matrices in the calculation of the weight updates. It is remarkable both because of its effectiveness, in spite of using random matrices to communicate error information, and because it completely removes the taxing requirement of maintaining symmetric weights in a physical neural system. To better understand random backpropagation, we first connect it to the notions of local learning and learning channels. Through this connection, we derive several alternatives to RBP, including skipped RBP (SRPB), adaptive RBP (ARBP), sparse RBP, and their combinations (e.g. ASRBP) and analyze their computational complexity. We then study their behavior through simulations using the MNIST and CIFAR-10 bechnmark datasets. These simulations show that most of these variants work robustly, almost as well as backpropagation, and that multiplication by the derivatives of the activation functions is important. As a follow-up, we study also the low-end of the number of bits required to communicate error information over the learning channel. We then provide partial intuitive explanations for some of the remarkable properties of RBP and its variations. Finally, we prove several mathematical results, including the convergence to fixed points of linear chains of arbitrary length, the convergence to fixed points of linear autoencoders with decorrelated data, the long-term existence of solutions for linear systems with a single hidden layer and convergence in special cases, and the convergence to fixed points of non-linear chains, when the derivative of the activation functions is included.

  20. Quasiopen inflation

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1998-04-01

    We show that a large class of two-field models of single-bubble open inflation does not lead to infinite open universes, as was previously thought, but to an ensemble of very large but finite inflating ``islands.'' The reason is that the quantum tunneling responsible for the nucleation of the bubble does not occur simultaneously along both field directions and equal-time hypersurfaces in the open universe are not synchronized with equal-density or fixed-field hypersurfaces. The most probable tunneling trajectory corresponds to a zero value of the inflaton field; large values, necessary for the second period of inflation inside the bubble, only arise as localized fluctuations. The interior of each nucleated bubble will contain an infinite number of such inflating regions of comoving size of order γ-1, where γ is the supercurvature eigenvalue, which depends on the parameters of the model. Each one of these islands will be a quasi-open universe. Since the volume of the hyperboloid is infinite, inflating islands with all possible values of the field at their center will be realized inside of a single bubble. We may happen to live in one of those patches of comoving size d<~γ-1, where the universe appears to be open. In particular, we consider the ``supernatural'' model proposed by Linde and Mezhlumian. There, an approximate U(1) symmetry is broken by a tunneling field in a first order phase transition, and slow-roll inflation inside the nucleated bubble is driven by the pseudo Goldstone field. We find that the excitations of the pseudo Goldstone field produced by the nucleation and subsequent expansion of the bubble place severe constraints on this model. We also discuss the coupled and uncoupled two-field models.

  1. A new solution procedure for a nonlinear infinite beam equation of motion

    NASA Astrophysics Data System (ADS)

    Jang, T. S.

    2016-10-01

    Our goal of this paper is of a purely theoretical question, however which would be fundamental in computational partial differential equations: Can a linear solution-structure for the equation of motion for an infinite nonlinear beam be directly manipulated for constructing its nonlinear solution? Here, the equation of motion is modeled as mathematically a fourth-order nonlinear partial differential equation. To answer the question, a pseudo-parameter is firstly introduced to modify the equation of motion. And then, an integral formalism for the modified equation is found here, being taken as a linear solution-structure. It enables us to formulate a nonlinear integral equation of second kind, equivalent to the original equation of motion. The fixed point approach, applied to the integral equation, results in proposing a new iterative solution procedure for constructing the nonlinear solution of the original beam equation of motion, which consists luckily of just the simple regular numerical integration for its iterative process; i.e., it appears to be fairly simple as well as straightforward to apply. A mathematical analysis is carried out on both natures of convergence and uniqueness of the iterative procedure by proving a contractive character of a nonlinear operator. It follows conclusively,therefore, that it would be one of the useful nonlinear strategies for integrating the equation of motion for a nonlinear infinite beam, whereby the preceding question may be answered. In addition, it may be worth noticing that the pseudo-parameter introduced here has double roles; firstly, it connects the original beam equation of motion with the integral equation, second, it is related with the convergence of the iterative method proposed here.

  2. Random matrix theory of singular values of rectangular complex matrices I: Exact formula of one-body distribution function in fixed-trace ensemble

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adachi, Satoshi; Toda, Mikito; Kubotani, Hiroto

    The fixed-trace ensemble of random complex matrices is the fundamental model that excellently describes the entanglement in the quantum states realized in a coupled system by its strongly chaotic dynamical evolution [see H. Kubotani, S. Adachi, M. Toda, Phys. Rev. Lett. 100 (2008) 240501]. The fixed-trace ensemble fully takes into account the conservation of probability for quantum states. The present paper derives for the first time the exact analytical formula of the one-body distribution function of singular values of random complex matrices in the fixed-trace ensemble. The distribution function of singular values (i.e. Schmidt eigenvalues) of a quantum state ismore » so important since it describes characteristics of the entanglement in the state. The derivation of the exact analytical formula utilizes two recent achievements in mathematics, which appeared in 1990s. The first is the Kaneko theory that extends the famous Selberg integral by inserting a hypergeometric type weight factor into the integrand to obtain an analytical formula for the extended integral. The second is the Petkovsek-Wilf-Zeilberger theory that calculates definite hypergeometric sums in a closed form.« less

  3. Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes

    NASA Astrophysics Data System (ADS)

    Orsingher, Enzo; Polito, Federico

    2012-08-01

    In this paper we consider the relation between random sums and compositions of different processes. In particular, for independent Poisson processes N α ( t), N β ( t), t>0, we have that N_{α}(N_{β}(t)) stackrel{d}{=} sum_{j=1}^{N_{β}(t)} Xj, where the X j s are Poisson random variables. We present a series of similar cases, where the outer process is Poisson with different inner processes. We highlight generalisations of these results where the external process is infinitely divisible. A section of the paper concerns compositions of the form N_{α}(tauk^{ν}), ν∈(0,1], where tauk^{ν} is the inverse of the fractional Poisson process, and we show how these compositions can be represented as random sums. Furthermore we study compositions of the form Θ( N( t)), t>0, which can be represented as random products. The last section is devoted to studying continued fractions of Cauchy random variables with a Poisson number of levels. We evaluate the exact distribution and derive the scale parameter in terms of ratios of Fibonacci numbers.

  4. Financial Management of a Large Multi-site Randomized Clinical Trial

    PubMed Central

    Sheffet, Alice J.; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E.; Longbottom, Mary E.; Howard, Virginia J.; Marler, John R.; Brott, Thomas G.

    2014-01-01

    Background The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years’ funding ($21,112,866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2,500 randomized participants at 40 sites. Aims Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Methods Projections of the original grant’s fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant’s fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Results Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2,500 targeted sample size, 138 (5.5%) were randomized during the first five years and 1,387 (55.5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13,845) of the projected per-patient costs ($152,992) of the fixed model. Conclusions Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. PMID:24661748

  5. Financial management of a large multisite randomized clinical trial.

    PubMed

    Sheffet, Alice J; Flaxman, Linda; Tom, MeeLee; Hughes, Susan E; Longbottom, Mary E; Howard, Virginia J; Marler, John R; Brott, Thomas G

    2014-08-01

    The Carotid Revascularization Endarterectomy versus Stenting Trial (CREST) received five years' funding ($21 112 866) from the National Institutes of Health to compare carotid stenting to surgery for stroke prevention in 2500 randomized participants at 40 sites. Herein we evaluate the change in the CREST budget from a fixed to variable-cost model and recommend strategies for the financial management of large-scale clinical trials. Projections of the original grant's fixed-cost model were compared to the actual costs of the revised variable-cost model. The original grant's fixed-cost budget included salaries, fringe benefits, and other direct and indirect costs. For the variable-cost model, the costs were actual payments to the clinical sites and core centers based upon actual trial enrollment. We compared annual direct and indirect costs and per-patient cost for both the fixed and variable models. Differences between clinical site and core center expenditures were also calculated. Using a variable-cost budget for clinical sites, funding was extended by no-cost extension from five to eight years. Randomizing sites tripled from 34 to 109. Of the 2500 targeted sample size, 138 (5·5%) were randomized during the first five years and 1387 (55·5%) during the no-cost extension. The actual per-patient costs of the variable model were 9% ($13 845) of the projected per-patient costs ($152 992) of the fixed model. Performance-based budgets conserve funding, promote compliance, and allow for additional sites at modest additional cost. Costs of large-scale clinical trials can thus be reduced through effective management without compromising scientific integrity. © 2014 The Authors. International Journal of Stroke © 2014 World Stroke Organization.

  6. Extensively Parameterized Mutation-Selection Models Reliably Capture Site-Specific Selective Constraint.

    PubMed

    Spielman, Stephanie J; Wilke, Claus O

    2016-11-01

    The mutation-selection model of coding sequence evolution has received renewed attention for its use in estimating site-specific amino acid propensities and selection coefficient distributions. Two computationally tractable mutation-selection inference frameworks have been introduced: One framework employs a fixed-effects, highly parameterized maximum likelihood approach, whereas the other employs a random-effects Bayesian Dirichlet Process approach. While both implementations follow the same model, they appear to make distinct predictions about the distribution of selection coefficients. The fixed-effects framework estimates a large proportion of highly deleterious substitutions, whereas the random-effects framework estimates that all substitutions are either nearly neutral or weakly deleterious. It remains unknown, however, how accurately each method infers evolutionary constraints at individual sites. Indeed, selection coefficient distributions pool all site-specific inferences, thereby obscuring a precise assessment of site-specific estimates. Therefore, in this study, we use a simulation-based strategy to determine how accurately each approach recapitulates the selective constraint at individual sites. We find that the fixed-effects approach, despite its extensive parameterization, consistently and accurately estimates site-specific evolutionary constraint. By contrast, the random-effects Bayesian approach systematically underestimates the strength of natural selection, particularly for slowly evolving sites. We also find that, despite the strong differences between their inferred selection coefficient distributions, the fixed- and random-effects approaches yield surprisingly similar inferences of site-specific selective constraint. We conclude that the fixed-effects mutation-selection framework provides the more reliable software platform for model application and future development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  8. Weyl calculus in QED I. The unitary group

    NASA Astrophysics Data System (ADS)

    Amour, L.; Lascar, R.; Nourrigat, J.

    2017-01-01

    In this work, we consider fixed 1/2 spin particles interacting with the quantized radiation field in the context of quantum electrodynamics. We investigate the time evolution operator in studying the reduced propagator (interaction picture). We first prove that this propagator belongs to the class of infinite dimensional Weyl pseudodifferential operators recently introduced in Amour et al. [J. Funct. Anal. 269(9), 2747-2812 (2015)] on Wiener spaces. We give a semiclassical expansion of the symbol of the reduced propagator up to any order with estimates on the remainder terms. Next, taking into account analyticity properties for the Weyl symbol of the reduced propagator, we derive estimates concerning transition probabilities between coherent states.

  9. Recombination Processes and Nonlinear Markov Chains.

    PubMed

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  10. On Born's Conjecture about Optimal Distribution of Charges for an Infinite Ionic Crystal

    NASA Astrophysics Data System (ADS)

    Bétermin, Laurent; Knüpfer, Hans

    2018-04-01

    We study the problem for the optimal charge distribution on the sites of a fixed Bravais lattice. In particular, we prove Born's conjecture about the optimality of the rock salt alternate distribution of charges on a cubic lattice (and more generally on a d-dimensional orthorhombic lattice). Furthermore, we study this problem on the two-dimensional triangular lattice and we prove the optimality of a two-component honeycomb distribution of charges. The results hold for a class of completely monotone interaction potentials which includes Coulomb-type interactions for d≥3 . In a more general setting, we derive a connection between the optimal charge problem and a minimization problem for the translated lattice theta function.

  11. Cobotic architecture for prosthetics.

    PubMed

    Faulring, Eeic L; Colgate, J Edward; Peshkin, Michael A

    2006-01-01

    We envision cobotic infinitely-variable transmissions (IVTs) as an enabling technology for haptics and prosthetics that will allow for increases in the dynamic range of these devices while simultaneously permitting reductions in actuator size and power requirements. Use of cobotic IVTs eliminates the need to make compromises on output flow and effort, which are inherent to choosing a fixed transmission ratio drivetrain. The result is a mechanism with enhanced dynamic range that extends continuously from a completely clutched state to a highly backdrivable state. This high dynamic range allows cobotic devices to control impedance with a high level of fidelity. In this paper, we discuss these and other motivations for using parallel cobotic transmission architecture in prosthetic devices.

  12. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Yu; Lin, Yu; Yu, Guoqiang, E-mail: guoqiang.yu@uky.edu

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo strokemore » model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.« less

  13. Quantifying randomness in real networks

    NASA Astrophysics Data System (ADS)

    Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri

    2015-10-01

    Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.

  14. Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems

    DTIC Science & Technology

    2006-01-01

    i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback

  15. Evaluation of some random effects methodology applicable to bird ringing data

    USGS Publications Warehouse

    Burnham, K.P.; White, Gary C.

    2002-01-01

    Existing models for ring recovery and recapture data analysis treat temporal variations in annual survival probability (S) as fixed effects. Often there is no explainable structure to the temporal variation in S1,..., Sk; random effects can then be a useful model: Si = E(S) + ??i. Here, the temporal variation in survival probability is treated as random with average value E(??2) = ??2. This random effects model can now be fit in program MARK. Resultant inferences include point and interval estimation for process variation, ??2, estimation of E(S) and var (E??(S)) where the latter includes a component for ??2 as well as the traditional component for v??ar(S??\\S??). Furthermore, the random effects model leads to shrinkage estimates, Si, as improved (in mean square error) estimators of Si compared to the MLE, S??i, from the unrestricted time-effects model. Appropriate confidence intervals based on the Si are also provided. In addition, AIC has been generalized to random effects models. This paper presents results of a Monte Carlo evaluation of inference performance under the simple random effects model. Examined by simulation, under the simple one group Cormack-Jolly-Seber (CJS) model, are issues such as bias of ??s2, confidence interval coverage on ??2, coverage and mean square error comparisons for inference about Si based on shrinkage versus maximum likelihood estimators, and performance of AIC model selection over three models: Si ??? S (no effects), Si = E(S) + ??i (random effects), and S1,..., Sk (fixed effects). For the cases simulated, the random effects methods performed well and were uniformly better than fixed effects MLE for the Si.

  16. Mind-Body Interventions for Irritable Bowel Syndrome Patients in the Chinese Population: a Systematic Review and Meta-Analysis.

    PubMed

    Wang, Weidong; Wang, Fang; Fan, Feng; Sedas, Ana Cristina; Wang, Jian

    2017-04-01

    The aim of this study is to identify and assess evidence related to the efficacy of mind-body interventions on irritable bowel syndrome (IBS) in the Chinese population. Drawn from Chinese databases, nine RCTs and three Q-E studies were included in the systematic review. The methodological quality of RCTs was evaluated based on the following criteria: adequate sequence generation, allocation concealment, blinding, completeness of outcome data, selective reporting, and other potential biases. For continuous variables, the effect size (ES) was determined by calculating the standardized mean difference between groups. For dichotomous variables, the ES was determined by calculating the risk ratio (RR) between groups. Given the heterogeneity between the trials and the small number of studies included, both random effects and fixed effects models were used. The inverse variance method was used for pooling. Statistical analyses were performed using Review Manager version 5.0. The total number of papers identified was 710: 462 from English language databases and 248 from Chinese language databases. Twelve studies met our eligibility criteria. Among the studies selected, three were Q-E studies the rest RCTs. Two studies described the randomization process. None of the studies reported allocation concealment nor blinding. Seven studies reported no dropouts. One of the studies mentioned the total amount of dropouts; though the reason for dropping out was not referenced. The other four studies did not clearly report dropouts. With the exception of three studies, there was inadequate information to determine biased reporting for the majority; the level of risk for bias in these studies is unclear. Finally, six meta-analyses were performed. One was conducted with four randomized controlled trials (RCTs) that used cure rate as outcome measures to evaluate gastrointestinal (GI) symptoms, which suggested that mind-body interventions were effective in improving GI symptoms (random effects model: RR = 1.08; 95 % CI 1.01 to 1.17; fixed effects model: RR = 1.07; 95 % CI 1.01 to 1.12). The remaining five were conducted in three RCTs, which suggested that mind-body interventions were effective in improving several aspects of quality of life, including interference with activity (random effects and fixed effects models: SMD = 0.64; 95 % CI 0.41 to 0.86), body image (random effects model: SMD = 0.36; 95 % CI 0.06 to 0.67; fixed effects model: SMD = 0.33; 95 % CI 0.11 to 0.55), health worry (random effects and fixed effects models: SMD = 0.67; 95 % CI 0.44 to 0.90), food avoidance (random effects and fixed effects models: SMD = 0.45; 95 % CI 0.23 to 0.68), and social reaction (random effects model: SMD = 0.79; 95 % CI 0.47 to 1.12; fixed effects model: SMD = 0.78; 95 % CI 0.55 to 1.01), as measured by Irritable Bowel Syndrome Quality of Life Questionnaire ( IBS-QOL). Mind-body interventions may have the potential to improve GI symptoms in Chinese patients with IBS. The improvement of GI symptoms was also accompanied with the improvement of various outcomes, including depression, anxiety, and quality of life, just to mention a few. However, the published studies generally had significant methodological limitations. Future clinical trials with rigorous research design are needed in this field. More studies focusing on the mind-body interventions originated in China, such as tai chi and qi gong should be encouraged.

  17. A Structural Modeling Approach to a Multilevel Random Coefficients Model.

    ERIC Educational Resources Information Center

    Rovine, Michael J.; Molenaar, Peter C. M.

    2000-01-01

    Presents a method for estimating the random coefficients model using covariance structure modeling and allowing one to estimate both fixed and random effects. The method is applied to real and simulated data, including marriage data from J. Belsky and M. Rovine (1990). (SLD)

  18. Improved belief propagation algorithm finds many Bethe states in the random-field Ising model on random graphs

    NASA Astrophysics Data System (ADS)

    Perugini, G.; Ricci-Tersenghi, F.

    2018-01-01

    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of extremal solutions for the BP equations, and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the extremal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one hand this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other hand we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions about the physics of this class of models.

  19. Use of Linear Perspective Scene Cues in a Simulated Height Regulation Task

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Warren, R.

    1984-01-01

    As part of a long-term effort to quantify the effects of visual scene cuing and non-visual motion cuing in flight simulators, an experimental study of the pilot's use of linear perspective cues in a simulated height-regulation task was conducted. Six test subjects performed a fixed-base tracking task with a visual display consisting of a simulated horizon and a perspective view of a straight, infinitely-long roadway of constant width. Experimental parameters were (1) the central angle formed by the roadway perspective and (2) the display gain. The subject controlled only the pitch/height axis; airspeed, bank angle, and lateral track were fixed in the simulation. The average RMS height error score for the least effective display configuration was about 25% greater than the score for the most effective configuration. Overall, larger and more highly significant effects were observed for the pitch and control scores. Model analysis was performed with the optimal control pilot model to characterize the pilot's use of visual scene cues, with the goal of obtaining a consistent set of independent model parameters to account for display effects.

  20. Nonlinear bending models for beams and plates

    PubMed Central

    Antipov, Y. A.

    2014-01-01

    A new nonlinear model for large deflections of a beam is proposed. It comprises the Euler–Bernoulli boundary value problem for the deflection and a nonlinear integral condition. When bending does not alter the beam length, this condition guarantees that the deflected beam has the original length and fixes the horizontal displacement of the free end. The numerical results are in good agreement with the ones provided by the elastica model. Dynamic and two-dimensional generalizations of this nonlinear one-dimensional static model are also discussed. The model problem for an inextensible rectangular Kirchhoff plate, when one side is clamped, the opposite one is subjected to a shear force, and the others are free of moments and forces, is reduced to a singular integral equation with two fixed singularities. The singularities of the unknown function are examined, and a series-form solution is derived by the collocation method in terms of the associated Jacobi polynomials. The procedure requires solving an infinite system of linear algebraic equations for the expansion coefficients subject to the inextensibility condition. PMID:25294960

  1. Heat conduction in diatomic chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    Savin, Alexander V.; Zolotarevskiy, Vadim; Gendelman, Oleg V.

    2017-01-01

    The paper considers heat transport in diatomic one-dimensional lattices, containing equal amounts of particles with different masses. Ordering of the particles in the chain is governed by single correlation parameter - the probability for two neighboring particles to have the same mass. As this parameter grows from zero to unity, the structure of the chain varies from regular staggering chain to completely random configuration, and then - to very long clusters of particles with equal masses. Therefore, this correlation parameter allows a control of typical cluster size in the chain. In order to explore different regimes of the heat transport, two interatomic potentials are considered. The first one is an infinite potential wall, corresponding to instantaneous elastic collisions between the neighboring particles. In homogeneous chains such interaction leads to an anomalous heat transport. The other one is classical Lennard-Jones interatomic potential, which leads to a normal heat transport. The simulations demonstrate that the correlated disorder of the particle arrangement does not change the convergence properties of the heat conduction coefficient, but essentially modifies its value. For the collision potential, one observes essential growth of the coefficient for fixed chain length as the limit of large homogeneous clusters is approached. The thermal transport in these models remains superdiffusive. In the Lennard-Jones chain the effect of correlation appears to be not monotonous in the limit of low temperatures. This behavior stems from the competition between formation of long clusters mentioned above, and Anderson localization close to the staggering ordered state.

  2. Line transport in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Nikoghossian, Artur

    We consider the spectral line transfer in turbulent atmospheres with a spatially correlated velocity field. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. New approach proposed in solving this problem is based on invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity and the line width on the mean correlation length and average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulent one occurs within a comparatively narrow range of variation in the correlation length. The diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere is examined. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  3. Line Transport in Turbulent Atmospheres

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  4. Zero-determinant strategies in finitely repeated games.

    PubMed

    Ichinose, Genki; Masuda, Naoki

    2018-02-07

    Direct reciprocity is a mechanism for sustaining mutual cooperation in repeated social dilemma games, where a player would keep cooperation to avoid being retaliated by a co-player in the future. So-called zero-determinant (ZD) strategies enable a player to unilaterally set a linear relationship between the player's own payoff and the co-player's payoff regardless of the strategy of the co-player. In the present study, we analytically study zero-determinant strategies in finitely repeated (two-person) prisoner's dilemma games with a general payoff matrix. Our results are as follows. First, we present the forms of solutions that extend the known results for infinitely repeated games (with a discount factor w of unity) to the case of finitely repeated games (0 < w < 1). Second, for the three most prominent ZD strategies, the equalizers, extortioners, and generous strategies, we derive the threshold value of w above which the ZD strategies exist. Third, we show that the only strategies that enforce a linear relationship between the two players' payoffs are either the ZD strategies or unconditional strategies, where the latter independently cooperates with a fixed probability in each round of the game, proving a conjecture previously made for infinitely repeated games. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .

  6. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  7. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, G.

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  8. Precise algorithm to generate random sequential adsorption of hard polygons at saturation

    DOE PAGES

    Zhang, G.

    2018-04-30

    Random sequential adsorption (RSA) is a time-dependent packing process, in which particles of certain shapes are randomly and sequentially placed into an empty space without overlap. In the infinite-time limit, the density approaches a "saturation'' limit. Although this limit has attracted particular research interest, the majority of past studies could only probe this limit by extrapolation. We have previously found an algorithm to reach this limit using finite computational time for spherical particles, and could thus determine the saturation density of spheres with high accuracy. Here in this paper, we generalize this algorithm to generate saturated RSA packings of two-dimensionalmore » polygons. We also calculate the saturation density for regular polygons of three to ten sides, and obtain results that are consistent with previous, extrapolation-based studies.« less

  9. The Role of Prostatitis in Prostate Cancer: Meta-Analysis

    PubMed Central

    Yunxia, Zhang; Zhu, Hong; Liu, Junjiang; Pumill, Chris

    2013-01-01

    Objective Use systematic review methods to quantify the association between prostatitis and prostate cancer, under both fixed and random effects model. Evidence Acquisition Case control studies of prostate cancer with information on prostatitis history. All studies published between 1990-2012, were collected to calculate a pooled odds ratio. Selection criteria: the selection criteria are as follows: human case control studies; published from May 1990 to July 2012; containing number of prostatitis, and prostate cancer cases. Evidence Synthesis In total, 20 case control studies were included. A significant association between prostatitis and prostate cancer was found, under both fixed effect model (pooled OR=1.50, 95%CI: 1.39-1.62), and random effects model (OR=1.64, 95%CI: 1.36-1.98). Personal interview based case control studies showed a high level of association (fixed effect model: pooled OR=1.59, 95%CI: 1.47-1.73, random effects model: pooled OR= 1.87, 95%CI: 1.52-2.29), compared with clinical based studies (fixed effect model: pooled OR=1.05, 95%CI: 0.86-1.28, random effects model: pooled OR= 0.98, 95%CI: 0.67-1.45). Additionally, pooled ORs, were calculated for each decade. In a fixed effect model: 1990’s: OR=1.58, 95% CI: 1.35-1.84; 2000’s: OR=1.59, 95% CI: 1.40-1.79; 2010’s: OR=1.37, 95% CI: 1.22-1.56. In a random effects model: 1990’s: OR=1.98, 95% CI: 1.08-3.62; 2000’s: OR=1.64, 95% CI: 1.23-2.19; 2010’s: OR=1.34, 95% CI: 1.03-1.73. Finally a meta-analysis stratified by each country was conducted. In fixed effect models, U.S: pooled OR =1.45, 95%CI: 1.34-1.57; China: pooled OR =4.67, 95%CI: 3.08-7.07; Cuba: pooled OR =1.43, 95%CI: 1.00-2.04; Italy: pooled OR =0.61, 95%CI: 0.13-2.90. In random effects model, U.S: pooled OR=1.50, 95%CI: 1.25-1.80; China: pooled OR =4.67, 95%CI: 3.08-7.07; Cuba: pooled OR =1.43, 95%CI: 1.00-2.04; Italy: pooled OR =0.61, 95%CI: 0.13-2.90.CONCLUSIONS: the present meta-analysis provides the statistical evidence that the association between prostatitis and prostate cancer is significant. PMID:24391995

  10. Transition to Chaos in Random Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos and its critical properties depend on the shape of the single-neuron nonlinear input-output transfer function, near firing threshold. In particular, for nonlinear transfer functions with a sharp rise near threshold, the transition to chaos disappears in the limit of a large network; instead, the system exhibits chaotic fluctuations even for small synaptic gain. Finally, we investigate transition to chaos in network models with spiking dynamics. We show that when synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a transition from fast spiking fluctuations with constant rates to a state where the firing rates exhibit chaotic fluctuations, similar to the transition predicted by rate-based dynamics. Systems with finite synaptic time constants and firing rates exhibit a smooth transition from a regime dominated by stationary firing rates to a regime of slow rate fluctuations. This smooth crossover obeys scaling properties, similar to crossover phenomena in statistical mechanics. The theoretical results are supported by computer simulations of several neuronal architectures and dynamics. Consequences for cortical circuit dynamics are discussed. These results advance our understanding of the properties of intrinsic dynamics in realistic neuronal networks and their functional consequences.

  11. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    PubMed

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  12. Kinematics and dynamics of green water on a fixed platform in a large wave basin in focusing wave and random wave conditions

    NASA Astrophysics Data System (ADS)

    Chuang, Wei-Liang; Chang, Kuang-An; Mercier, Richard

    2018-06-01

    Green water kinematics and dynamics due to wave impingements on a simplified geometry, fixed platform were experimentally investigated in a large, deep-water wave basin. Both plane focusing waves and random waves were employed in the generation of green water. The focusing wave condition was designed to create two consecutive plunging breaking waves with one impinging on the frontal vertical wall of the fixed platform, referred as wall impingement, and the other directly impinging on the deck surface, referred as deck impingement. The random wave condition was generated using the JONSWAP spectrum with a significant wave height approximately equal to the freeboard. A total of 179 green water events were collected in the random wave condition. By examining the green water events in random waves, three different flow types are categorized: collapse of overtopping wave, fall of bulk water, and breaking wave crest. The aerated flow velocity was measured using bubble image velocimetry, while the void fraction was measured using fiber optic reflectometry. For the plane focusing wave condition, measurements of impact pressure were synchronized with the flow velocity and void fraction measurements. The relationship between the peak pressures and the pressure rise times is examined. For the high-intensity impact in the deck impingement events, the peak pressures are observed to be proportional to the aeration levels. The maximum horizontal velocities in the green water events in random waves are well represented by the lognormal distribution. Ritter's solution is shown to quantitatively describe the green water velocity distributions under both the focusing wave condition and the random wave condition. A prediction equation for green water velocity distribution under random waves is proposed.

  13. Contact mechanics for layered materials with randomly rough surfaces.

    PubMed

    Persson, B N J

    2012-03-07

    The contact mechanics model of Persson is applied to layered materials. We calculate the M function, which relates the surface stress to the surface displacement, for a layered material, where the top layer (thickness d) has different elastic properties than the semi-infinite solid below. Numerical results for the contact area as a function of the magnification are presented for several cases. As an application, we calculate the fluid leak rate for laminated rubber seals.

  14. Dynamical conductivity at the dirty superconductor-metal quantum phase transition.

    PubMed

    Del Maestro, Adrian; Rosenow, Bernd; Hoyos, José A; Vojta, Thomas

    2010-10-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.

  15. Fixed-Rate Compressed Floating-Point Arrays.

    PubMed

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  16. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  17. Emergence of multi-scaling in fluid turbulence

    NASA Astrophysics Data System (ADS)

    Donzis, Diego; Yakhot, Victor

    2017-11-01

    We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.

  18. A CTRW-based model of time-resolved fluorescence lifetime imaging in a turbid medium

    NASA Astrophysics Data System (ADS)

    Chernomordik, Victor; Gandjbakhche, Amir H.; Hassan, Moinuddin; Pajevic, Sinisa; Weiss, George H.

    2010-12-01

    We develop an analytic model of time-resolved fluorescent imaging of photons migrating through a semi-infinite turbid medium bounded by an infinite plane in the presence of a single stationary point fluorophore embedded in the medium. In contrast to earlier models of fluorescent imaging in which photon motion is assumed to be some form of continuous diffusion process, the present analysis is based on a continuous-time random walk (CTRW) on a simple cubic lattice, the objective being to estimate the position and lifetime of the fluorophore. This can provide information related to local variations in pH and temperature with potential medical significance. Aspects of the theory were tested using time-resolved measurements of the fluorescence from small inclusions inside tissue-like phantoms. The experimental results were found to be in good agreement with theoretical predictions provided that the fluorophore was not located too close to the planar boundary, a common problem in many diffusive systems.

  19. Random walks of colloidal probes in viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Khan, Manas; Mason, Thomas G.

    2014-04-01

    To overcome limitations of using a single fixed time step in random walk simulations, such as those that rely on the classic Wiener approach, we have developed an algorithm for exploring random walks based on random temporal steps that are uniformly distributed in logarithmic time. This improvement enables us to generate random-walk trajectories of probe particles that span a highly extended dynamic range in time, thereby facilitating the exploration of probe motion in soft viscoelastic materials. By combining this faster approach with a Maxwell-Voigt model (MVM) of linear viscoelasticity, based on a slowly diffusing harmonically bound Brownian particle, we rapidly create trajectories of spherical probes in soft viscoelastic materials over more than 12 orders of magnitude in time. Appropriate windowing of these trajectories over different time intervals demonstrates that random walk for the MVM is neither self-similar nor self-affine, even if the viscoelastic material is isotropic. We extend this approach to spatially anisotropic viscoelastic materials, using binning to calculate the anisotropic mean square displacements and creep compliances along different orthogonal directions. The elimination of a fixed time step in simulations of random processes, including random walks, opens up interesting possibilities for modeling dynamics and response over a highly extended temporal dynamic range.

  20. Theoretical size distribution of fossil taxa: analysis of a null model.

    PubMed

    Reed, William J; Hughes, Barry D

    2007-03-22

    This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family.

  1. Average size of random polygons with fixed knot topology.

    PubMed

    Matsuda, Hiroshi; Yao, Akihisa; Tsukahara, Hiroshi; Deguchi, Tetsuo; Furuta, Ko; Inami, Takeo

    2003-07-01

    We have evaluated by numerical simulation the average size R(K) of random polygons of fixed knot topology K=,3(1),3(1) musical sharp 4(1), and we have confirmed the scaling law R(2)(K) approximately N(2nu(K)) for the number N of polygonal nodes in a wide range; N=100-2200. The best fit gives 2nu(K) approximately 1.11-1.16 with good fitting curves in the whole range of N. The estimate of 2nu(K) is consistent with the exponent of self-avoiding polygons. In a limited range of N (N greater, similar 600), however, we have another fit with 2nu(K) approximately 1.01-1.07, which is close to the exponent of random polygons.

  2. Dynamic probability of reinforcement for cooperation: Random game termination in the centipede game.

    PubMed

    Krockow, Eva M; Colman, Andrew M; Pulford, Briony D

    2018-03-01

    Experimental games have previously been used to study principles of human interaction. Many such games are characterized by iterated or repeated designs that model dynamic relationships, including reciprocal cooperation. To enable the study of infinite game repetitions and to avoid endgame effects of lower cooperation toward the final game round, investigators have introduced random termination rules. This study extends previous research that has focused narrowly on repeated Prisoner's Dilemma games by conducting a controlled experiment of two-player, random termination Centipede games involving probabilistic reinforcement and characterized by the longest decision sequences reported in the empirical literature to date (24 decision nodes). Specifically, we assessed mean exit points and cooperation rates, and compared the effects of four different termination rules: no random game termination, random game termination with constant termination probability, random game termination with increasing termination probability, and random game termination with decreasing termination probability. We found that although mean exit points were lower for games with shorter expected game lengths, the subjects' cooperativeness was significantly reduced only in the most extreme condition with decreasing computer termination probability and an expected game length of two decision nodes. © 2018 Society for the Experimental Analysis of Behavior.

  3. Synchronization versus decoherence of neutrino oscillations at intermediate densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raffelt, Georg G.; Tamborra, Irene

    2010-12-15

    We study collective oscillations of a two-flavor neutrino system with arbitrary but fixed density. In the vacuum limit, modes with different energies quickly dephase (kinematical decoherence), whereas in the limit of infinite density they lock to each other (synchronization). For intermediate densities, we find different classes of solutions. There is always a phase transition in the sense of partial synchronization occurring only above a density threshold. For small mixing angles, partial or complete decoherence can be induced by a parametric resonance, introducing a new time scale to the problem, the final outcome depending on the spectrum and mixing angle. Wemore » derive an analytic relation that allows us to calculate the late-time degree of coherence based on the spectrum alone.« less

  4. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  5. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties.

    PubMed

    Kargovsky, A V; Chichigina, O A; Anashkina, E I; Valenti, D; Spagnolo, B

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  6. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  7. Cooperation for volunteering and partially random partnerships

    NASA Astrophysics Data System (ADS)

    Szabó, György; Vukov, Jeromos

    2004-03-01

    Competition among cooperative, defective, and loner strategies is studied by considering an evolutionary prisoner’s dilemma game for different partnerships. In this game each player can adopt one of its coplayer’s strategy with a probability depending on the difference of payoffs coming from games with the corresponding coplayers. Our attention is focused on the effects of annealed and quenched randomness in the partnership for fixed number of coplayers. It is shown that only the loners survive if the four coplayers are chosen randomly (mean-field limit). On the contrary, on the square lattice all the three strategies are maintained by the cyclic invasions resulting in a self-organizing spatial pattern. If the fixed partnership is described by a regular small-world structure then a homogeneous oscillation occurs in the population dynamics when the measure of quenched randomness exceeds a threshold value. Similar behavior with higher sensitivity to the randomness is found if temporary partners are substituted for the standard ones with some probability at each step of iteration.

  8. Stochastic analysis of three-dimensional flow in a bounded domain

    USGS Publications Warehouse

    Naff, R.L.; Vecchia, A.V.

    1986-01-01

    A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.

  9. Statistics of Delta v magnitude for a trajectory correction maneuver containing deterministic and random components

    NASA Technical Reports Server (NTRS)

    Bollman, W. E.; Chadwick, C.

    1982-01-01

    A number of interplanetary missions now being planned involve placing deterministic maneuvers along the flight path to alter the trajectory. Lee and Boain (1973) examined the statistics of trajectory correction maneuver (TCM) magnitude with no deterministic ('bias') component. The Delta v vector magnitude statistics were generated for several values of random Delta v standard deviations using expansions in terms of infinite hypergeometric series. The present investigation uses a different technique (Monte Carlo simulation) to generate Delta v magnitude statistics for a wider selection of random Delta v standard deviations and also extends the analysis to the case of nonzero deterministic Delta v's. These Delta v magnitude statistics are plotted parametrically. The plots are useful in assisting the analyst in quickly answering questions about the statistics of Delta v magnitude for single TCM's consisting of both a deterministic and a random component. The plots provide quick insight into the nature of the Delta v magnitude distribution for the TCM.

  10. Random walk to a nonergodic equilibrium concept

    NASA Astrophysics Data System (ADS)

    Bel, G.; Barkai, E.

    2006-01-01

    Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.

  11. Diffusion in random networks

    DOE PAGES

    Zhang, Duan Z.; Padrino, Juan C.

    2017-06-01

    The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt $-$1/4 rather than xt $-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less

  12. Random Effects: Variance Is the Spice of Life.

    PubMed

    Jupiter, Daniel C

    Covariates in regression analyses allow us to understand how independent variables of interest impact our dependent outcome variable. Often, we consider fixed effects covariates (e.g., gender or diabetes status) for which we examine subjects at each value of the covariate. We examine both men and women and, within each gender, examine both diabetic and nondiabetic patients. Occasionally, however, we consider random effects covariates for which we do not examine subjects at every value. For example, we examine patients from only a sample of hospitals and, within each hospital, examine both diabetic and nondiabetic patients. The random sampling of hospitals is in contrast to the complete coverage of all genders. In this column I explore the differences in meaning and analysis when thinking about fixed and random effects variables. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Universality for 1d Random Band Matrices: Sigma-Model Approximation

    NASA Astrophysics Data System (ADS)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2018-02-01

    The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.

  14. Micromechanics-based magneto-elastic constitutive modeling of particulate composites

    NASA Astrophysics Data System (ADS)

    Yin, Huiming

    Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.

  15. The Limited Impact of Exposure Duration on Holistic Word Processing.

    PubMed

    Chen, Changming; Abbasi, Najam Ul Hasan; Song, Shuang; Chen, Jie; Li, Hong

    2016-01-01

    The current study explored the impact of stimuli exposure duration on holistic word processing measured by the complete composite paradigm (CPc paradigm). The participants were asked to match the cued target parts of two characters which were presented for either a long (600 ms) or a short duration (170 ms). They were also tested by two popular versions of the CPc paradigm: the "early-fixed" task where the attention cue was visible from the beginning of each trial at a fixed position, and the "delayed-random" task where the cue showed up after the study character at random locations. The holistic word effect, as indexed by the alignment × congruency interaction, was identified in both tasks and was unaffected by the stimuli duration in both tasks. Meanwhile, the "delayed-random" task did not bring about larger holistic word effect than the "early-fixed" task. These results suggest the exposure duration (from around 150 to 600 ms) has a limited impact on the holistic word effect, and have methodological implications for experiment designs in this field.

  16. General Framework for Effect Sizes in Cluster Randomized Experiments

    ERIC Educational Resources Information Center

    VanHoudnos, Nathan

    2016-01-01

    Cluster randomized experiments are ubiquitous in modern education research. Although a variety of modeling approaches are used to analyze these data, perhaps the most common methodology is a normal mixed effects model where some effects, such as the treatment effect, are regarded as fixed, and others, such as the effect of group random assignment…

  17. Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial.

    PubMed

    Woodhouse, Neil R; DiBiase, Andrew T; Papageorgiou, Spyridon N; Johnson, Nicola; Slipper, Carmel; Grant, James; Alsaleh, Maryam; Cobourne, Martyn T

    2015-11-27

    This prospective randomized trial investigated the effect of supplemental vibrational force on orthodontic pain during alignment with fixed-appliances. Eighty-one subjects < 20 years-old undergoing extraction-based fixed-appliance treatment were randomly allocated to supplementary (20-minutes/day) use of an intra-oral vibrational device (AcceleDent(®)) (n = 29); an identical non-functional (sham) device (n = 25) or fixed-appliances only (n = 27). Each subject recorded pain intensity (using a 100-mm visual-analogue scale) and intake of oral analgesia in a questionnaire, following appliance-placement (T1) and first-adjustment (T2) for 1-week (immediately-after, 4, 24, 72-hours and at 1-week). Mean maximum-pain for the total sample was 72.96 mm [SD 21.59; 95%CI 68.19-77.74 mm] with no significant differences among groups (P = 0.282). Subjects taking analgesics reported slightly higher maximum-pain although this was not significant (P = 0.170). The effect of intervention was independent of analgesia (P = 0.883). At T1 and T2, a statistically and clinically significant increase in mean pain was seen at 4 and 24-hours, declining at 72-hours and becoming insignificant at 1-week. For mean alignment-rate, pain-intensity and use of analgesics, no significant differences existed between groups (P > 0.003). The only significant predictor for mean pain was time. Use of an AcceleDent vibrational device had no significant effect on orthodontic pain or analgesia consumption during initial alignment with fixed appliances.

  18. Comparison of the safety and efficacy of a fixed-dose combination regimen and separate formulations for pulmonary tuberculosis treatment.

    PubMed

    Wu, Jiun-Ting; Chiu, Chien-Tung; Wei, Yu-Feng; Lai, Yung-Fa

    2015-06-01

    Fixed-dose combination formulations, which simplify the administration of drugs and prevent the development of drug resistance, have been recommended as a standard anti-tuberculosis treatment regimen. However, the composition and dosage recommendations for fixed-dose combination formulations differ from those for separate formulations. Thus, questions about the effectiveness and side effects of combination formulations remain. The aim of this study was to compare the safety and efficacy of these two types of anti-tuberculosis regimens for pulmonary tuberculosis treatment. A prospective, randomized controlled study was conducted using the directly observed treatment short-course strategy. Patients were randomly allocated to one of two short-course regimens. One year after completing the treatment, these patients' outcomes were analyzed. ClinicalTrials.gov: NCT00979290. A total of 161 patients were enrolled, 142 of whom were evaluable for safety assessment. The two regimens had a similar incidence of adverse effects. In the per-protocol population, serum bilirubin concentrations at the peak level, at week 4, and at week 8 were significantly higher for the fixed-dose combination formulation than for the separate formulations. All patients had negative sputum cultures at the end of the treatment, and no relapse occurred after one year of follow-up. In this randomized study, transient higher serum bilirubin levels were noted for the fixed-dose combination regimen compared with the separate formulations during treatment. However, no significant difference in safety or efficacy was found between the groups when the directly observed treatment short-course strategy was used.

  19. Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.

    2018-05-01

    Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.

  20. Descriptive parameter for photon trajectories in a turbid medium

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Weiss, George H.

    2000-06-01

    In many applications of laser techniques for diagnostic or therapeutic purposes it is necessary to be able to characterize photon trajectories to know which parts of the tissue are being interrogated. In this paper, we consider the cw reflectance experiment on a semi-infinite medium with uniform optical parameters and having a planar interface. The analysis is carried out in terms of a continuous-time random walk and the relation between the occupancy of a plane parallel to the surface to the maximum depth reached by the random walker is studied. The first moment of the ratio of average depth to the average maximum depth yields information about the volume of tissue interrogated as well as giving some indication of the region of tissue that gets the most light. We have also calculated the standard deviation of this random variable. It is not large enough to qualitatively affect information contained in the first moment.

  1. Optimizing random searches on three-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing

    2018-07-01

    Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.

  2. Unifying model for random matrix theory in arbitrary space dimensions

    NASA Astrophysics Data System (ADS)

    Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio

    2018-03-01

    A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.

  3. Robust Algorithms for Detecting a Change in a Stochastic Process with Infinite Memory

    DTIC Science & Technology

    1988-03-01

    breakdown point and the additional assumption of 0-mixing on the nominal meas- influence function . The structure of the optimal algorithm ures. Then Huber’s...are i.i.d. sequences of Gaus- For the breakdown point and the influence function sian random variables, with identical variance o2 . Let we will use...algebraic sign for i=0,1. Here z will be chosen such = f nthat it leads to worst case or earliest breakdown. i (14) Next, the influence function measures

  4. Spectral fluctuations of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhař, Z.; Weidenmüller, H. A.

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  5. Dynamical conductivity at the dirty superconductor-metal quantum phase transition

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Del Maestro, Adrian; Rosenow, Bernd; Vojta, Thomas

    2011-03-01

    We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  6. Discrete-time Markovian-jump linear quadratic optimal control

    NASA Technical Reports Server (NTRS)

    Chizeck, H. J.; Willsky, A. S.; Castanon, D.

    1986-01-01

    This paper is concerned with the optimal control of discrete-time linear systems that possess randomly jumping parameters described by finite-state Markov processes. For problems having quadratic costs and perfect observations, the optimal control laws and expected costs-to-go can be precomputed from a set of coupled Riccati-like matrix difference equations. Necessary and sufficient conditions are derived for the existence of optimal constant control laws which stabilize the controlled system as the time horizon becomes infinite, with finite optimal expected cost.

  7. Monograph on the use of the multivariate Gram Charlier series Type A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatayodom, T.; Heydt, G.

    1978-01-01

    The Gram-Charlier series in an infinite series expansion for a probability density function (pdf) in which terms of the series are Hermite polynomials. There are several Gram-Charlier series - the best known is Type A. The Gram-Charlier series, Type A (GCA) exists for both univariate and multivariate random variables. This monograph introduces the multivariate GCA and illustrates its use through several examples. A brief bibliography and discussion of Hermite polynomials is also included. 9 figures, 2 tables.

  8. Network meta-analysis of disconnected networks: How dangerous are random baseline treatment effects?

    PubMed

    Béliveau, Audrey; Goring, Sarah; Platt, Robert W; Gustafson, Paul

    2017-12-01

    In network meta-analysis, the use of fixed baseline treatment effects (a priori independent) in a contrast-based approach is regularly preferred to the use of random baseline treatment effects (a priori dependent). That is because, often, there is not a need to model baseline treatment effects, which carry the risk of model misspecification. However, in disconnected networks, fixed baseline treatment effects do not work (unless extra assumptions are made), as there is not enough information in the data to update the prior distribution on the contrasts between disconnected treatments. In this paper, we investigate to what extent the use of random baseline treatment effects is dangerous in disconnected networks. We take 2 publicly available datasets of connected networks and disconnect them in multiple ways. We then compare the results of treatment comparisons obtained from a Bayesian contrast-based analysis of each disconnected network using random normally distributed and exchangeable baseline treatment effects to those obtained from a Bayesian contrast-based analysis of their initial connected network using fixed baseline treatment effects. For the 2 datasets considered, we found that the use of random baseline treatment effects in disconnected networks was appropriate. Because those datasets were not cherry-picked, there should be other disconnected networks that would benefit from being analyzed using random baseline treatment effects. However, there is also a risk for the normality and exchangeability assumption to be inappropriate in other datasets even though we have not observed this situation in our case study. We provide code, so other datasets can be investigated. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Correlations of RMT characteristic polynomials and integrability: Hermitean matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, Vladimir Al., E-mail: Vladimir.Osipov@uni-due.d; Kanzieper, Eugene, E-mail: Eugene.Kanzieper@hit.ac.i; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100

    Integrable theory is formulated for correlation functions of characteristic polynomials associated with invariant non-Gaussian ensembles of Hermitean random matrices. By embedding the correlation functions of interest into a more general theory of {tau} functions, we (i) identify a zoo of hierarchical relations satisfied by {tau} functions in an abstract infinite-dimensional space and (ii) present a technology to translate these relations into hierarchically structured nonlinear differential equations describing the correlation functions of characteristic polynomials in the physical, spectral space. Implications of this formalism for fermionic, bosonic, and supersymmetric variations of zero-dimensional replica field theories are discussed at length. A particular emphasismore » is placed on the phenomenon of fermionic-bosonic factorisation of random-matrix-theory correlation functions.« less

  10. The REH theory of protein and nucleic acid divergence - A retrospective update. [Random Evolutionary Hits

    NASA Technical Reports Server (NTRS)

    Holmquist, R.

    1978-01-01

    The random evolutionary hits (REH) theory of evolutionary divergence, originally proposed in 1972, is restated with attention to certain aspects of the theory that have caused confusion. The theory assumes that natural selection and stochastic processes interact and that natural selection restricts those codon sites which may fix mutations. The predicted total number of fixed nucleotide replacements agrees with data for cytochrome c, a-hemoglobin, beta-hemoglobin, and myoglobin. The restatement analyzes the magnitude of possible sources of errors and simplifies calculational methodology by supplying polynomial expressions to replace tables and graphs.

  11. Theoretical size distribution of fossil taxa: analysis of a null model

    PubMed Central

    Reed, William J; Hughes, Barry D

    2007-01-01

    Background This article deals with the theoretical size distribution (of number of sub-taxa) of a fossil taxon arising from a simple null model of macroevolution. Model New species arise through speciations occurring independently and at random at a fixed probability rate, while extinctions either occur independently and at random (background extinctions) or cataclysmically. In addition new genera are assumed to arise through speciations of a very radical nature, again assumed to occur independently and at random at a fixed probability rate. Conclusion The size distributions of the pioneering genus (following a cataclysm) and of derived genera are determined. Also the distribution of the number of genera is considered along with a comparison of the probability of a monospecific genus with that of a monogeneric family. PMID:17376249

  12. Randomness versus specifics for word-frequency distributions

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyong; Minnhagen, Petter

    2016-02-01

    The text-length-dependence of real word-frequency distributions can be connected to the general properties of a random book. It is pointed out that this finding has strong implications, when deciding between two conceptually different views on word-frequency distributions, i.e. the specific 'Zipf's-view' and the non-specific 'Randomness-view', as is discussed. It is also noticed that the text-length transformation of a random book does have an exact scaling property precisely for the power-law index γ = 1, as opposed to the Zipf's exponent γ = 2 and the implication of this exact scaling property is discussed. However a real text has γ > 1 and as a consequence γ increases when shortening a real text. The connections to the predictions from the RGF (Random Group Formation) and to the infinite length-limit of a meta-book are also discussed. The difference between 'curve-fitting' and 'predicting' word-frequency distributions is stressed. It is pointed out that the question of randomness versus specifics for the distribution of outcomes in case of sufficiently complex systems has a much wider relevance than just the word-frequency example analyzed in the present work.

  13. The Random-Threshold Generalized Unfolding Model and Its Application of Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Liu, Chen-Wei; Wu, Shiu-Lien

    2013-01-01

    The random-threshold generalized unfolding model (RTGUM) was developed by treating the thresholds in the generalized unfolding model as random effects rather than fixed effects to account for the subjective nature of the selection of categories in Likert items. The parameters of the new model can be estimated with the JAGS (Just Another Gibbs…

  14. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  15. The analytic structure of non-global logarithms: Convergence of the dressed gluon expansion

    DOE PAGES

    Larkoski, Andrew J.; Moult, Ian; Neill, Duff Austin

    2016-11-15

    Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon ex-pansion was introduced that enables an expansion of the NGL series in terms of a “dressed gluon” building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-N c master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluonmore » expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of α slog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. Furthermore, this allows us to calculate the NGL distribution for all values of α slog from the coefficients of the fixed order expansion.« less

  16. Sugar-sweetened beverages and weight gain in children and adults: a systematic review and meta-analysis123

    PubMed Central

    Pan, An; Willett, Walter C; Hu, Frank B

    2013-01-01

    Background: The relation between sugar-sweetened beverages (SSBs) and body weight remains controversial. Objective: We conducted a systematic review and meta-analysis to summarize the evidence in children and adults. Design: We searched PubMed, EMBASE, and Cochrane databases through March 2013 for prospective cohort studies and randomized controlled trials (RCTs) that evaluated the SSB-weight relation. Separate meta-analyses were conducted in children and adults and for cohorts and RCTs by using random- and fixed-effects models. Results: Thirty-two original articles were included in our meta-analyses: 20 in children (15 cohort studies, n = 25,745; 5 trials, n = 2772) and 12 in adults (7 cohort studies, n = 174,252; 5 trials, n = 292). In cohort studies, one daily serving increment of SSBs was associated with a 0.06 (95% CI: 0.02, 0.10) and 0.05 (95% CI: 0.03, 0.07)-unit increase in BMI in children and 0.22 kg (95% CI: 0.09, 0.34 kg) and 0.12 kg (95% CI: 0.10, 0.14 kg) weight gain in adults over 1 y in random- and fixed-effects models, respectively. RCTs in children showed reductions in BMI gain when SSBs were reduced [random and fixed effects: −0.17 (95% CI: −0.39, 0.05) and −0.12 (95% CI: −0.22, −0.2)], whereas RCTs in adults showed increases in body weight when SSBs were added (random and fixed effects: 0.85 kg; 95% CI: 0.50, 1.20 kg). Sensitivity analyses of RCTs in children showed more pronounced benefits in preventing weight gain in SSB substitution trials (compared with school-based educational programs) and among overweight children (compared with normal-weight children). Conclusion: Our systematic review and meta-analysis of prospective cohort studies and RCTs provides evidence that SSB consumption promotes weight gain in children and adults. PMID:23966427

  17. Ordering of rods near planar and curved surfaces

    NASA Astrophysics Data System (ADS)

    Izzo, Dora; de Oliveira, Mário J.

    2018-01-01

    We study the orientational profile of a semi-infinite system of cylinders bounded in two different ways: by a flat and by a curved wall. The latter corresponds to the interior of a spherical shell, where the dimensions of the rods are comparable to the radius of curvature of the container: they have to accomodate to fill the available space, leading to a rich orientation profile. In order to study these problems, we make a mapping onto a three-state Potts model on a semi-infinite lattice, which is solved using a mean-field approach; we fix the boundary conditions on the surface and in the bulk. In the case of a curved surface, the increase in the effective volume interactions towards the bulk, due to compression, is obtained by increasing the nearest neighbor interactions. The mean-field equations are iterated numerically and we obtain various interesting results concerning the free energy and the orientation profile. We show that there is always a first order transition and the stability of the coexisting phases is strongly affected by the surface. When the surface is disordered and the bulk ordered, the profile may present a step that depends on the degree of disorder on the surface, on the rate of increase of the particle interactions and on the surface external potential. The existence of this step may be relevant to applications in nanotechnology.

  18. Dynamical singularities for complex initial conditions and the motion at a real separatrix.

    PubMed

    Shnerb, Tamar; Kay, K G

    2006-04-01

    This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.

  19. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.

    2008-01-01

    Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.

  20. Neural networks for continuous online learning and control.

    PubMed

    Choy, Min Chee; Srinivasan, Dipti; Cheu, Ruey Long

    2006-11-01

    This paper proposes a new hybrid neural network (NN) model that employs a multistage online learning process to solve the distributed control problem with an infinite horizon. Various techniques such as reinforcement learning and evolutionary algorithm are used to design the multistage online learning process. For this paper, the infinite horizon distributed control problem is implemented in the form of real-time distributed traffic signal control for intersections in a large-scale traffic network. The hybrid neural network model is used to design each of the local traffic signal controllers at the respective intersections. As the state of the traffic network changes due to random fluctuation of traffic volumes, the NN-based local controllers will need to adapt to the changing dynamics in order to provide effective traffic signal control and to prevent the traffic network from becoming overcongested. Such a problem is especially challenging if the local controllers are used for an infinite horizon problem where online learning has to take place continuously once the controllers are implemented into the traffic network. A comprehensive simulation model of a section of the Central Business District (CBD) of Singapore has been developed using PARAMICS microscopic simulation program. As the complexity of the simulation increases, results show that the hybrid NN model provides significant improvement in traffic conditions when evaluated against an existing traffic signal control algorithm as well as a new, continuously updated simultaneous perturbation stochastic approximation-based neural network (SPSA-NN). Using the hybrid NN model, the total mean delay of each vehicle has been reduced by 78% and the total mean stoppage time of each vehicle has been reduced by 84% compared to the existing traffic signal control algorithm. This shows the efficacy of the hybrid NN model in solving large-scale traffic signal control problem in a distributed manner. Also, it indicates the possibility of using the hybrid NN model for other applications that are similar in nature as the infinite horizon distributed control problem.

  1. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  2. Products of random matrices from fixed trace and induced Ginibre ensembles

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  3. Fertility after ovarian follicular wave synchronization and fixed-time natural mating compared to random natural mating in dromedary camels (Camelus dromedarius).

    PubMed

    Nagy, P; Juhasz, J

    2012-06-01

    The objective of the study was to compare the efficiency of two ovarian follicular wave synchronization protocols coupled with fixed-time natural mating with that of random mating in dromedary camels. Dromedaries were assigned randomly to one of the three treatment groups. Group 1 animals (RM; n = 46) were mated randomly. Group 2 camels (1×GnRH-FTM; n = 46) were given a GnRH analog (Buserelin, 20 μg/animal, i.v.; Receptal, Intervet, Holland) at random, then were mated 14 days later. In Group 3 animals (2×GnRH-FTM; n = 41), random GnRH analog was followed by repeated GnRH injection 14 days later and fixed-time natural mating on Day 28. Transrectal examination and ultrasonography were performed at weekly intervals to evaluate ovarian follicular status, diagnose ovulation and pregnancy. Blood samples were collected for progesterone determination by ELISA to confirm ovulation and pregnancy. All female dromedaries were assigned randomly to one of thirteen fertile bulls and were bred once on Days 1, 14 and 28 in Groups 1-3, respectively. Ovarian follicular status and ovulation rate was similar among groups at the start of the study. Seventy-five of the 133 dromedaries (56.4%) ovulated after random natural mating or random GnRH treatment. Mean length of mating was 386 ± 17.8 (±SEM) seconds. There was no significant difference in mating time among groups and in pregnancy rate among dromedary bulls. In Group 3 (2×GnRH-FTM), ovarian follicular status before mating (P < 0.05), ovulation rate (n = 37, 90.2%, P < 0.001) and pregnancy rate at 21 and 60 days (PR 21 days n = 22, 53.7% and PR 60 days n = 19, 46.3%, P < 0.05) were greater compared to random natural mating (Group 1: OR n = 25, 54.3%, PR 21 days n = 13, 28.3% and PR 60 days n = 12, 26.1%). In Group 2 dromedaries (1×GnRH-FTM), treatment tended to improve follicular status before mating, ovulation rate (n = 34, 73.9%) and pregnancy rate at 21 and 60 days (PR 21 days n = 21, 45.7% and PR 60 days n = 16, 34.8%), but the effect was not significant compared to random natural mating. In conclusion, this is the first study demonstrating that favorable pregnancy rate can be achieved following ovarian follicular wave synchronization with repeated GnRH analog and fixed-time natural mating at 14 days intervals in dromedary camels. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Simulation of design-unbiased point-to-particle sampling compared to alternatives on plantation rows

    Treesearch

    Thomas B. Lynch; David Hamlin; Mark J. Ducey

    2016-01-01

    Total quantities of tree attributes can be estimated in plantations by sampling on plantation rows using several methods. At random sample points on a row, either fixed row lengths or variable row lengths with a fixed number of sample trees can be assessed. Ratio of means or mean of ratios estimators can be developed for the fixed number of trees option but are not...

  5. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  6. Tn5-Mob transposon mediated transfer of salt tolerance and symbiotic characteristics between Rhizobia genera.

    PubMed

    Yang, S; Wu, Z; Gao, W; Li, J

    1993-01-01

    Rhizobium meliloti 042B is a fast-growing, salt-tolerant and high efficiency nitrogen-fixing symbiont with alfalfa. Bradyrhizobium japonicum USDA110 grows slowly, and cannot grow in YMA medium containing 0.1M NaCl, but nodulates and fixed nitrogen efficiently with soybean. Eighty-six transconjugants, called SR, were obtained by inserting Tn5-Mob randomly into genomes of 042B using pSUP5011 and helper plasmid RP4. Selecting 4 SR strains randomly and introducing DNA fragment of SR into USDA110 with helper plasmid R68.45 by triparental mating, 106 transconjugants, called BSR, were constructed. Most of BSR strains had the fast-growing phenotype and could tolerate 0.3-0.5M NaCl generally. Some of them produced melanine. When soybean and alfalfa were inoculated with these transconjugants BSR, 47 out of 90 BSR were found to nodulate in both of these plants, but no nitrogenase activity was observed with alfalfa; 26 strains could only nodulate and fix nitrogen in soybean; 13 strains could nodulate in alfalfa but did not fix nitrogen; 4 strains failed to nodulate in either soybean or alfalfa. Among them, 4 transconjugants which tolerated and fixed nitrogen efficiently in soybean were constructed.

  7. [Considerations about the efficiency of treatment regimens with fixed Rifampicin-Isoniazid combinations in pulmonary tuberculosis].

    PubMed

    Munteanu, Ioana; Husar, Iulia; Didilescu, C; Stoicescu, I P

    2004-01-01

    Here are presented the results of a prospective, randomized study regarding the efficiency of regimens with fixed drug combination Rifampicin-Isoniazide manufactured by Antibiotics S.A. of Iasi in comparison with single drugs routinely used in treatment of patients with pulmonary tuberculosis. Newly diagnosed (confirmed by smear and culture) pulmonary tuberculosis patients were selected, and those who accepted to be included in the study, were admitted to the National Institute of Pneumology "Marius Nasta" between August 2001 and September 2002. At the time of admission, they were randomized into two groups: 20 patients received fixed drug combination RMP300 HIN150, and 18 patients received RMP and HIN in single drug tablets (2 patients were excluded). The follow-up of the patients was for one year from the date of enclosure. The smear conversion rate was 83,3% for the patients using single drug tablets, and 70% for those using fixed drug combination, motivated with some more severe TB patterns. The success rate was 100% for all TB patients. Although the present study was done for few patients, we can say that it demonstrated the same efficiency of fixed drug combination produced in Romania, with the single drug tablets, and it suggests a better compliance to treatment with a lower price.

  8. Tensor gauge condition and tensor field decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  9. Quantifying the impact of time-varying baseline risk adjustment in the self-controlled risk interval design.

    PubMed

    Li, Lingling; Kulldorff, Martin; Russek-Cohen, Estelle; Kawai, Alison Tse; Hua, Wei

    2015-12-01

    The self-controlled risk interval design is commonly used to assess the association between an acute exposure and an adverse event of interest, implicitly adjusting for fixed, non-time-varying covariates. Explicit adjustment needs to be made for time-varying covariates, for example, age in young children. It can be performed via either a fixed or random adjustment. The random-adjustment approach can provide valid point and interval estimates but requires access to individual-level data for an unexposed baseline sample. The fixed-adjustment approach does not have this requirement and will provide a valid point estimate but may underestimate the variance. We conducted a comprehensive simulation study to evaluate their performance. We designed the simulation study using empirical data from the Food and Drug Administration-sponsored Mini-Sentinel Post-licensure Rapid Immunization Safety Monitoring Rotavirus Vaccines and Intussusception study in children 5-36.9 weeks of age. The time-varying confounder is age. We considered a variety of design parameters including sample size, relative risk, time-varying baseline risks, and risk interval length. The random-adjustment approach has very good performance in almost all considered settings. The fixed-adjustment approach can be used as a good alternative when the number of events used to estimate the time-varying baseline risks is at least the number of events used to estimate the relative risk, which is almost always the case. We successfully identified settings in which the fixed-adjustment approach can be used as a good alternative and provided guidelines on the selection and implementation of appropriate analyses for the self-controlled risk interval design. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Mobile vs. fixed bearing unicondylar knee arthroplasty: A randomized study on short term clinical outcomes and knee kinematics.

    PubMed

    Li, Ming G; Yao, Felix; Joss, Brendan; Ioppolo, James; Nivbrant, Bo; Wood, David

    2006-10-01

    The literature contains limited yet controversial information regarding whether a fixed or a mobile bearing implant should be used in unicompartmental knee arthroplasty (UKA). This randomized study was to further document the performance and comparison of the two designs. Fifty-six knees in 48 patients (mean age of 72 years) undergoing medial UKA were randomized into a fixed bearing (Miller/Galante) or a mobile bearing (Oxford) UKA. The 2 year clinical outcomes (clinical scores), radiographic findings, and weight bearing knee kinematics (assessed using RSA) were compared between the two groups. The mobile bearing knees displayed a larger and an incrementally increased tibial internal rotation (4.3 degrees, 7.6 degrees, 9.5 degrees vs. 3.0 degrees, 3.0 degrees, 4.2 degrees respectively at 30 degrees, 60 degrees, 90 degrees of knee flexion) compared to the fixed ones. The medial femoral condyle in the mobile bearing knees remained 2 mm from the initial position vs. a 4.2 mm anterior translation in the fixed bearing knees during knee flexion. The contact point in the mobile bearing implant moved 2 mm posteriorly vs. a 6 mm anterior movement in the other group. The mobile bearing knees had a lower incidence of radiolucency at the bone implant interface (8% vs. 37%, p < 0.05). The incidence of lateral compartment OA and progression of OA at patello-femoral joint were equal. No differences were found regarding Knee Society Scores, WOMAC, and SF-36 scores (p > 0.05). This study indicates that mobile bearing knees had a better kinematics, a lower incidence of radiolucency but not yet a better knee function at 2 years.

  11. Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial

    PubMed Central

    Woodhouse, Neil R.; DiBiase, Andrew T.; Papageorgiou, Spyridon N.; Johnson, Nicola; Slipper, Carmel; Grant, James; Alsaleh, Maryam; Cobourne, Martyn T.

    2015-01-01

    This prospective randomized trial investigated the effect of supplemental vibrational force on orthodontic pain during alignment with fixed-appliances. Eighty-one subjects < 20 years-old undergoing extraction-based fixed-appliance treatment were randomly allocated to supplementary (20-minutes/day) use of an intra-oral vibrational device (AcceleDent®) (n = 29); an identical non-functional (sham) device (n = 25) or fixed-appliances only (n = 27). Each subject recorded pain intensity (using a 100-mm visual-analogue scale) and intake of oral analgesia in a questionnaire, following appliance-placement (T1) and first-adjustment (T2) for 1-week (immediately-after, 4, 24, 72-hours and at 1-week). Mean maximum-pain for the total sample was 72.96 mm [SD 21.59; 95%CI 68.19–77.74 mm] with no significant differences among groups (P = 0.282). Subjects taking analgesics reported slightly higher maximum-pain although this was not significant (P = 0.170). The effect of intervention was independent of analgesia (P = 0.883). At T1 and T2, a statistically and clinically significant increase in mean pain was seen at 4 and 24-hours, declining at 72-hours and becoming insignificant at 1-week. For mean alignment-rate, pain-intensity and use of analgesics, no significant differences existed between groups (P > 0.003). The only significant predictor for mean pain was time. Use of an AcceleDent vibrational device had no significant effect on orthodontic pain or analgesia consumption during initial alignment with fixed appliances. PMID:26610843

  12. A randomized controlled trial of self-perceived pain, discomfort, and impairment of jaw function in children undergoing orthodontic treatment with fixed or removable appliances.

    PubMed

    Wiedel, Anna-Paulina; Bondemark, Lars

    2016-03-01

    To compare patients' perceptions of fixed and removable appliance therapy for correction of anterior crossbite in the mixed dentition, with special reference to perceived pain, discomfort, and impairment of jaw function. Sixty-two patients with anterior crossbite and functional shift were recruited consecutively and randomized for treatment with fixed appliances (brackets and archwires) or removable appliances (acrylic plates and protruding springs). A questionnaire, previously found to be valid and reliable, was used for evaluation at the following time points: before appliance insertion, on the evening of the day of insertion, every day/evening for 7 days after insertion, and at the first and second scheduled appointments (after 4 and 8 weeks, respectively). Pain and discomfort intensity were higher for the first 3 days for the fixed appliance. Pain and discomfort scores overall peaked on day 2. Adverse effects on school and leisure activities were reported more frequently in the removable than in the fixed appliance group. The fixed appliance group reported more difficulty eating different kinds of hard and soft food, while the removable appliance group experienced more speech difficulties. No significant intergroup difference was found for self-estimated disturbance of appearance between the appliances. The general levels of pain and discomfort were low to moderate in both groups. There were some statistically significant differences between the groups, but these were only minor and with minor clinical relevance. As both appliances were generally well accepted by the patients, either fixed or removable appliance therapy can be recommended.

  13. Randomly diluted xy and resistor networks near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Harris, A. B.; Lubensky, T. C.

    1987-05-01

    A formulation based on that of Stephen for randomly diluted systems near the percolation threshold is analyzed in detail. By careful consideration of various limiting procedures, a treatment of xy spin models and resistor networks is given which shows that previous calculations (which indicate that these systems having continuous symmetry have the same crossover exponents as the Ising model) are in error. By studying the limit wherein the energy gap goes to zero, we exhibit the mathematical mechanism which leads to qualitatively different results for xy-like as contrasted to Ising-like systems. A distinctive feature of the results is that there is an infinite sequence of crossover exponents needed to completely describe the probability distribution for R(x,x'), the resistance between sites x and x'. Because of the difference in symmetry between the xy model and the resistor network, the former has an infinite sequence of crossover exponents in addition to those of the resistor network. The first crossover exponent φ1=1+ɛ/42 governs the scaling behavior of R(x,x') with ||x-x'||≡r: [R(x,x')]c~xφ1/ν, where [ ]c indicates a conditional average, subject to x and x' being in the same cluster, ν is the correlation length exponent for percolation, and ɛ=6-d, where d is the spatial dimensionality. We give a detailed analysis of the scaling properties of the bulk conductivity and the anomalous diffusion constant introduced by Gefen et al. Our results show conclusively that the Alexander-Orbach conjecture, while numerically quite accurate, is not exact, at least in high spatial dimension. We also evaluate various amplitude ratios associated with susceptibilities, χn involving the nth power of the resistance R(x,x'), e.g., &χ2χ0/χ21=2[1+(19ɛ/420)]. In an appendix we outline how the calculation can be extended to treat the diluted m-component spin model for m>2. As expected, the results for φ1 remain valid for m>2. The techniques described here have led to several recent calculations of various infinite families of exponents.

  14. Collapsed heteroclinic snaking near a heteroclinic chain in dragged meniscus problems.

    PubMed

    Tseluiko, D; Galvagno, M; Thiele, U

    2014-04-01

    A liquid film is studied that is deposited onto a flat plate that is inclined at a constant angle to the horizontal and is extracted from a liquid bath at a constant speed. We analyse steady-state solutions of a long-wave evolution equation for the film thickness. Using centre manifold theory, we first obtain an asymptotic expansion of solutions in the bath region. The presence of an additional temperature gradient along the plate that induces a Marangoni shear stress significantly changes these expansions and leads to the presence of logarithmic terms that are absent otherwise. Next, we numerically obtain steady solutions and analyse their behaviour as the plate velocity is changed. We observe that the bifurcation curve exhibits collapsed (or exponential) heteroclinic snaking when the plate inclination angle is above a certain critical value. Otherwise, the bifurcation curve is monotonic. The steady profiles along these curves are characterised by a foot-like structure that is formed close to the meniscus and is preceded by a thin precursor film further up the plate. The length of the foot increases along the bifurcation curve. Finally, we prove with a Shilnikov-type method that the snaking behaviour of the bifurcation curves is caused by the existence of an infinite number of heteroclinic orbits close to a heteroclinic chain that connects in an appropriate three-dimensional phase space the fixed point corresponding to the precursor film with the fixed point corresponding to the foot and then with the fixed point corresponding to the bath.

  15. Effects of random initial conditions on the dynamical scaling behaviors of a fixed-energy Manna sandpile model in one dimension

    NASA Astrophysics Data System (ADS)

    Kwon, Sungchul; Kim, Jin Min

    2015-01-01

    For a fixed-energy (FE) Manna sandpile model in one dimension, we investigate the effects of random initial conditions on the dynamical scaling behavior of an order parameter. In the FE Manna model, the density ρ of total particles is conserved, and an absorbing phase transition occurs at ρc as ρ varies. In this work, we show that, for a given ρ , random initial distributions of particles lead to the domain structure in which domains with particle densities higher and lower than ρc alternate with each other. In the domain structure, the dominant length scale is the average domain length, which increases via the coalescence of adjacent domains. At ρc, the domain structure slows down the decay of an order parameter and also causes anomalous finite-size effects, i.e., power-law decay followed by an exponential one before the quasisteady state. As a result, the interplay of particle conservation and random initial conditions causes the domain structure, which is the origin of the anomalous dynamical scaling behaviors for random initial conditions.

  16. Coupled continuous time-random walks in quenched random environment

    NASA Astrophysics Data System (ADS)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  17. Random Testing and Model Checking: Building a Common Framework for Nondeterministic Exploration

    NASA Technical Reports Server (NTRS)

    Groce, Alex; Joshi, Rajeev

    2008-01-01

    Two popular forms of dynamic analysis, random testing and explicit-state software model checking, are perhaps best viewed as search strategies for exploring the state spaces introduced by nondeterminism in program inputs. We present an approach that enables this nondeterminism to be expressed in the SPIN model checker's PROMELA language, and then lets users generate either model checkers or random testers from a single harness for a tested C program. Our approach makes it easy to compare model checking and random testing for models with precisely the same input ranges and probabilities and allows us to mix random testing with model checking's exhaustive exploration of non-determinism. The PROMELA language, as intended in its design, serves as a convenient notation for expressing nondeterminism and mixing random choices with nondeterministic choices. We present and discuss a comparison of random testing and model checking. The results derive from using our framework to test a C program with an effectively infinite state space, a module in JPL's next Mars rover mission. More generally, we show how the ability of the SPIN model checker to call C code can be used to extend SPIN's features, and hope to inspire others to use the same methods to implement dynamic analyses that can make use of efficient state storage, matching, and backtracking.

  18. Born Oppenheimer potential energy for interaction of antihydrogen with molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Strasburger, Krzysztof

    2005-09-01

    Inelastic collisions with hydrogen molecules are claimed to be an important channel of antihydrogen (\\overlineH) losses (Armour and Zeman 1999 Int. J. Quantum Chem. 74 645). In the present work, interaction energies for the H_{2}\\--\\overlineH system in the ground state have been calculated within the Born-Oppenheimer approximation. The leptonic problem was solved variationally with the basis of explicitly correlated Gaussian functions. The geometry of H2 was fixed at equilibrium geometry and the \\overlineH atom approached the molecule from two directions—along or perpendicularly to the bond axis. Purely attractive potential energy curve has been obtained for the first nuclear configuration, while a local maximum (lower than the energy at infinite separation) has been found for the second one.

  19. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  20. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport

    NASA Astrophysics Data System (ADS)

    Hu, Jiuning; Chen, Yong P.

    2013-06-01

    We show that in a finite one-dimensional (1D) system with diffusive thermal transport described by the Fourier's law, negative differential thermal conductance (NDTC) cannot occur when the temperature at one end is fixed and there are no abrupt junctions. We demonstrate that NDTC in this case requires the presence of junction(s) with temperature-dependent thermal contact resistance (TCR). We derive a necessary and sufficient condition for the existence of NDTC in terms of the properties of the TCR for systems with a single junction. We show that under certain circumstances we even could have infinite (negative or positive) differential thermal conductance in the presence of the TCR. Our predictions provide theoretical basis for constructing NDTC-based devices, such as thermal amplifiers, oscillators, and logic devices.

  1. On the Liouville Integrability of the Periodic Kostant-Toda Flow on Matrix Loops of Level k

    NASA Astrophysics Data System (ADS)

    Li, Luen-Chau; Nie, Zhaohu

    2017-06-01

    In this work, we consider the periodic Kostant-Toda flow on matrix loops in sl(n,C) of level k, which correspond to periodic infinite band matrices with period n with lower bandwidth equal to k and fixed upper bandwidth equal to 1 with 1's on the first superdiagonal. We show that the coadjoint orbits through the submanifold of such matrix loops can be identified with those of a finite-dimensional Lie group, which appears in the form of a semi-direct product. We then characterize the generic coadjoint orbits and obtain an explicit global cross-section for such orbits. We also establish the Liouville integrability of the periodic Kostant-Toda flow on such orbits via the construction of action-angle variables.

  2. The effect of surface tension on steadily translating bubbles in an unbounded Hele-Shaw cell

    PubMed Central

    2017-01-01

    New numerical solutions to the so-called selection problem for one and two steadily translating bubbles in an unbounded Hele-Shaw cell are presented. Our approach relies on conformal mapping which, for the two-bubble problem, involves the Schottky-Klein prime function associated with an annulus. We show that a countably infinite number of solutions exist for each fixed value of dimensionless surface tension, with the bubble shapes becoming more exotic as the solution branch number increases. Our numerical results suggest that a single solution is selected in the limit that surface tension vanishes, with the scaling between the bubble velocity and surface tension being different to the well-studied problems for a bubble or a finger propagating in a channel geometry. PMID:28588410

  3. Study of the Bellman equation in a production model with unstable demand

    NASA Astrophysics Data System (ADS)

    Obrosova, N. K.; Shananin, A. A.

    2014-09-01

    A production model with allowance for a working capital deficit and a restricted maximum possible sales volume is proposed and analyzed. The study is motivated by the urgency of analyzing well-known problems of functioning low competitive macroeconomic structures. The original formulation of the task represents an infinite-horizon optimal control problem. As a result, the model is formalized in the form of a Bellman equation. It is proved that the corresponding Bellman operator is a contraction and has a unique fixed point in the chosen class of functions. A closed-form solution of the Bellman equation is found using the method of steps. The influence of the credit interest rate on the firm market value assessment is analyzed by applying the developed model.

  4. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  5. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  6. Accounting for center in the Early External Cephalic Version trials: an empirical comparison of statistical methods to adjust for center in a multicenter trial with binary outcomes.

    PubMed

    Reitsma, Angela; Chu, Rong; Thorpe, Julia; McDonald, Sarah; Thabane, Lehana; Hutton, Eileen

    2014-09-26

    Clustering of outcomes at centers involved in multicenter trials is a type of center effect. The Consolidated Standards of Reporting Trials Statement recommends that multicenter randomized controlled trials (RCTs) should account for center effects in their analysis, however most do not. The Early External Cephalic Version (EECV) trials published in 2003 and 2011 stratified by center at randomization, but did not account for center in the analyses, and due to the nature of the intervention and number of centers, may have been prone to center effects. Using data from the EECV trials, we undertook an empirical study to compare various statistical approaches to account for center effect while estimating the impact of external cephalic version timing (early or delayed) on the outcomes of cesarean section, preterm birth, and non-cephalic presentation at the time of birth. The data from the EECV pilot trial and the EECV2 trial were merged into one dataset. Fisher's exact method was used to test the overall effect of external cephalic version timing unadjusted for center effects. Seven statistical models that accounted for center effects were applied to the data. The models included: i) the Mantel-Haenszel test, ii) logistic regression with fixed center effect and fixed treatment effect, iii) center-size weighted and iv) un-weighted logistic regression with fixed center effect and fixed treatment-by-center interaction, iv) logistic regression with random center effect and fixed treatment effect, v) logistic regression with random center effect and random treatment-by-center interaction, and vi) generalized estimating equations. For each of the three outcomes of interest approaches to account for center effect did not alter the overall findings of the trial. The results were similar for the majority of the methods used to adjust for center, illustrating the robustness of the findings. Despite literature that suggests center effect can change the estimate of effect in multicenter trials, this empirical study does not show a difference in the outcomes of the EECV trials when accounting for center effect. The EECV2 trial was registered on 30 July 30 2005 with Current Controlled Trials: ISRCTN 56498577.

  7. Comparison principle for impulsive functional differential equations with infinite delays and applications

    NASA Astrophysics Data System (ADS)

    Li, Xiaodi; Shen, Jianhua; Akca, Haydar; Rakkiyappan, R.

    2018-04-01

    We introduce the Razumikhin technique to comparison principle and establish some comparison results for impulsive functional differential equations (IFDEs) with infinite delays, where the infinite delays may be infinite time-varying delays or infinite distributed delays. The idea is, under the help of Razumikhin technique, to reduce the study of IFDEs with infinite delays to the study of scalar impulsive differential equations (IDEs) in which the solutions are easy to deal with. Based on the comparison principle, we study the qualitative properties of IFDEs with infinite delays , which include stability, asymptotic stability, exponential stability, practical stability, boundedness, etc. It should be mentioned that the developed results in this paper can be applied to IFDEs with not only infinite delays but also persistent impulsive perturbations. Moreover, even for the special cases of non-impulsive effects or/and finite delays, the criteria prove to be simpler and less conservative than some existing results. Finally, two examples are given to illustrate the effectiveness and advantages of the proposed results.

  8. Motion Versus Fixed Distraction of the Joint in the Treatment of Ankle Osteoarthritis

    PubMed Central

    Saltzman, Charles L.; Hillis, Stephen L.; Stolley, Mary P.; Anderson, Donald D.; Amendola, Annunziato

    2012-01-01

    Background: Initial reports have shown the efficacy of fixed distraction for the treatment of ankle osteoarthritis. We hypothesized that allowing ankle motion during distraction would result in significant improvements in outcomes compared with distraction without ankle motion. Methods: We conducted a prospective randomized controlled trial comparing the outcomes for patients with advanced ankle osteoarthritis who were managed with anterior osteophyte removal and either (1) fixed ankle distraction or (2) ankle distraction permitting joint motion. Thirty-six patients were randomized to treatment with either fixed distraction or distraction with motion. The patients were followed for twenty-four months after frame removal. The Ankle Osteoarthritis Scale (AOS) was the main outcome variable. Results: Two years after frame removal, subjects in both groups showed significant improvement compared with the status before treatment (p < 0.02 for both groups). The motion-distraction group had significantly better AOS scores than the fixed-distraction group at twenty-six, fifty-two, and 104 weeks after frame removal (p < 0.01 at each time point). At 104 weeks, the motion-distraction group had an overall mean improvement of 56.6% in the AOS score, whereas the fixed-distraction group had a mean improvement of 22.9% (p < 0.01). Conclusion: Distraction improved the patient-reported outcomes of treatment of ankle osteoarthritis. Adding ankle motion to distraction showed an early and sustained beneficial effect on outcome. Level of Evidence: Therapeutic Level I. See Instructions for Authors for a complete description of levels of evidence. PMID:22637202

  9. Non-equilibrium Green's functions method: Non-trivial and disordered leads

    NASA Astrophysics Data System (ADS)

    He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann

    2014-11-01

    The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.

  10. Protecting clean critical points by local disorder correlations

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas

    2011-03-01

    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  11. Random versus fixed-site sampling when monitoring relative abundance of fishes in headwater streams of the upper Colorado River basin

    USGS Publications Warehouse

    Quist, M.C.; Gerow, K.G.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the upper Colorado River basin (UCRB) have declined in distribution and abundance due to habitat degradation and interactions with normative fishes. Consequently, monitoring populations of both native and nonnative fishes is important for conservation of native species. We used data collected from Muddy Creek, Wyoming (2003-2004), to compare sample size estimates using a random and a fixed-site sampling design to monitor changes in catch per unit effort (CPUE) of native bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, roundtail chub Gila robusta, and speckled dace Rhinichthys osculus, as well as nonnative creek chub Semotilus atromaculatus and white suckers C. commersonii. When one-pass backpack electrofishing was used, detection of 10% or 25% changes in CPUE (fish/100 m) at 60% statistical power required 50-1,000 randomly sampled reaches among species regardless of sampling design. However, use of a fixed-site sampling design with 25-50 reaches greatly enhanced the ability to detect changes in CPUE. The addition of seining did not appreciably reduce required effort. When detection of 25-50% changes in CPUE of native and nonnative fishes is acceptable, we recommend establishment of 25-50 fixed reaches sampled by one-pass electrofishing in Muddy Creek. Because Muddy Creek has habitat and fish assemblages characteristic of other headwater streams in the UCRB, our results are likely to apply to many other streams in the basin. ?? Copyright by the American Fisheries Society 2006.

  12. Efficacy of fluoride varnish for preventing white spot lesions and gingivitis during orthodontic treatment with fixed appliances-a prospective randomized controlled trial.

    PubMed

    Kirschneck, Christian; Christl, Jan-Joachim; Reicheneder, Claudia; Proff, Peter

    2016-12-01

    The development of white spot lesions around orthodontic brackets and gingivitis is a common problem during orthodontic treatment with fixed appliances. This prospective randomized double-blind controlled clinical trial investigated the preventive efficacy of a one-time application of two commonly used fluoride varnishes in patients with low to moderate caries risk. Ninety adolescent orthodontic patients with a low to moderate caries risk were prospectively randomized to three groups of 30 patients each: (1) standardized dental hygiene with fluoride toothpaste and one-time application of placebo varnish (control) or (2) of elmex® fluid or (3) of Fluor Protector S on all dental surfaces at the start of fixed therapy. The extent of enamel demineralization and gingivitis was determined with the ICDAS and the gingivitis index (GI) at baseline and after 4, 12, and 20 weeks. Each treatment group showed a significant increase of the ICDAS index, but not of the GI over the course of time with no significant intergroup differences detectable. A one-time application of fluoride varnish at the start of orthodontic treatment did not provide any additional preventive advantage over sufficient dental hygiene with fluoride toothpaste with regard to formation of white spots and gingivitis in patients with a low to moderate caries risk. In dental practice, patients often receive an application of fluoride varnish at the start of orthodontic treatment with fixed appliances. However, the efficacy of this procedure is still unclear.

  13. Chaos and unpredictability in evolution of cooperation in continuous time

    NASA Astrophysics Data System (ADS)

    You, Taekho; Kwon, Minji; Jo, Hang-Hyun; Jung, Woo-Sung; Baek, Seung Ki

    2017-12-01

    Cooperators benefit others with paying costs. Evolution of cooperation crucially depends on the cost-benefit ratio of cooperation, denoted as c . In this work, we investigate the infinitely repeated prisoner's dilemma for various values of c with four of the representative memory-one strategies, i.e., unconditional cooperation, unconditional defection, tit-for-tat, and win-stay-lose-shift. We consider replicator dynamics which deterministically describes how the fraction of each strategy evolves over time in an infinite-sized well-mixed population in the presence of implementation error and mutation among the four strategies. Our finding is that this three-dimensional continuous-time dynamics exhibits chaos through a bifurcation sequence similar to that of a logistic map as c varies. If mutation occurs with rate μ ≪1 , the position of the bifurcation sequence on the c axis is numerically found to scale as μ0.1, and such sensitivity to μ suggests that mutation may have nonperturbative effects on evolutionary paths. It demonstrates how the microscopic randomness of the mutation process can be amplified to macroscopic unpredictability by evolutionary dynamics.

  14. The structure factor of primes

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Martelli, F.; Torquato, S.

    2018-03-01

    Although the prime numbers are deterministic, they can be viewed, by some measures, as pseudo-random numbers. In this article, we numerically study the pair statistics of the primes using statistical-mechanical methods, particularly the structure factor S(k) in an interval M ≤slant p ≤slant M + L with M large, and L/M smaller than unity. We show that the structure factor of the prime-number configurations in such intervals exhibits well-defined Bragg-like peaks along with a small ‘diffuse’ contribution. This indicates that primes are appreciably more correlated and ordered than previously thought. Our numerical results definitively suggest an explicit formula for the locations and heights of the peaks. This formula predicts infinitely many peaks in any non-zero interval, similar to the behavior of quasicrystals. However, primes differ from quasicrystals in that the ratio between the location of any two predicted peaks is rational. We also show numerically that the diffuse part decays slowly as M and L increases. This suggests that the diffuse part vanishes in an appropriate infinite-system-size limit.

  15. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies.

    PubMed

    Essa, Khalid S

    2014-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values.

  16. A Macroscopic Multifractal Analysis of Parabolic Stochastic PDEs

    NASA Astrophysics Data System (ADS)

    Khoshnevisan, Davar; Kim, Kunwoo; Xiao, Yimin

    2018-05-01

    It is generally argued that the solution to a stochastic PDE with multiplicative noise—such as \\dot{u}= 1/2 u''+uξ, where {ξ} denotes space-time white noise—routinely produces exceptionally-large peaks that are "macroscopically multifractal." See, for example, Gibbon and Doering (Arch Ration Mech Anal 177:115-150, 2005), Gibbon and Titi (Proc R Soc A 461:3089-3097, 2005), and Zimmermann et al. (Phys Rev Lett 85(17):3612-3615, 2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (J Phys A 22(13):2621-2626, 1989; Proc Lond Math Soc (3) 64:125-152, 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as "stretch factors." A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.

  17. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: Highly sensitive for matrix metalloproteinases-2 detection.

    PubMed

    Ren, Xiang; Zhang, Tong; Wu, Dan; Yan, Tao; Pang, Xuehui; Du, Bin; Lou, Wanruo; Wei, Qin

    2017-08-15

    Herein, a super-labeled immunoassay was fabricated for matrix metalloproteinases-2 detection. A self-corrosion ITO micro circuit board was designed in this sensing platform to reduce the random error in the same testing condition, and the self-constructed sensing platform is portable with a cheap price. The K-modified graphene (K-GS) was utilized as the matrix material, which was synthesized well by phenylate and phenanthrene through the polar bond of nonpolar molecule phenylate and the π-π interaction for the first time. An aptamer-based labels based on Au nanoparticles (AuNPs), thionine (Th) and horseradish peroxidase (HRP) were applied as the signal source for tri infinite amplification. This fabricated super-labeled immunoassay exhibit excellent performance for MMPs-2 detection. It displayed a broad linear range of 10 -4 -10ng/mL with a low detection limit of 35 fg/mL, which may have a potential application in the clinical diagnose. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Different approach to the modeling of nonfree particle diffusion

    NASA Astrophysics Data System (ADS)

    Buhl, Niels

    2018-03-01

    A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.

  19. New fast least-squares algorithm for estimating the best-fitting parameters due to simple geometric-structures from gravity anomalies

    PubMed Central

    Essa, Khalid S.

    2013-01-01

    A new fast least-squares method is developed to estimate the shape factor (q-parameter) of a buried structure using normalized residual anomalies obtained from gravity data. The problem of shape factor estimation is transformed into a problem of finding a solution of a non-linear equation of the form f(q) = 0 by defining the anomaly value at the origin and at different points on the profile (N-value). Procedures are also formulated to estimate the depth (z-parameter) and the amplitude coefficient (A-parameter) of the buried structure. The method is simple and rapid for estimating parameters that produced gravity anomalies. This technique is used for a class of geometrically simple anomalous bodies, including the semi-infinite vertical cylinder, the infinitely long horizontal cylinder, and the sphere. The technique is tested and verified on theoretical models with and without random errors. It is also successfully applied to real data sets from Senegal and India, and the inverted-parameters are in good agreement with the known actual values. PMID:25685472

  20. A Macroscopic Multifractal Analysis of Parabolic Stochastic PDEs

    NASA Astrophysics Data System (ADS)

    Khoshnevisan, Davar; Kim, Kunwoo; Xiao, Yimin

    2018-04-01

    It is generally argued that the solution to a stochastic PDE with multiplicative noise—such as \\dot{u}= 1/2 u''+uξ, where {ξ} denotes space-time white noise—routinely produces exceptionally-large peaks that are "macroscopically multifractal." See, for example, Gibbon and Doering (Arch Ration Mech Anal 177:115-150, 2005), Gibbon and Titi (Proc R Soc A 461:3089-3097, 2005), and Zimmermann et al. (Phys Rev Lett 85(17):3612-3615, 2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (J Phys A 22(13):2621-2626, 1989; Proc Lond Math Soc (3) 64:125-152, 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as "stretch factors." A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.

  1. Random regression models using Legendre orthogonal polynomials to evaluate the milk production of Alpine goats.

    PubMed

    Silva, F G; Torres, R A; Brito, L F; Euclydes, R F; Melo, A L P; Souza, N O; Ribeiro, J I; Rodrigues, M T

    2013-12-11

    The objective of this study was to identify the best random regression model using Legendre orthogonal polynomials to evaluate Alpine goats genetically and to estimate the parameters for test day milk yield. On the test day, we analyzed 20,710 records of milk yield of 667 goats from the Goat Sector of the Universidade Federal de Viçosa. The evaluated models had combinations of distinct fitting orders for polynomials (2-5), random genetic (1-7), and permanent environmental (1-7) fixed curves and a number of classes for residual variance (2, 4, 5, and 6). WOMBAT software was used for all genetic analyses. A random regression model using the best Legendre orthogonal polynomial for genetic evaluation of milk yield on the test day of Alpine goats considered a fixed curve of order 4, curve of genetic additive effects of order 2, curve of permanent environmental effects of order 7, and a minimum of 5 classes of residual variance because it was the most economical model among those that were equivalent to the complete model by the likelihood ratio test. Phenotypic variance and heritability were higher at the end of the lactation period, indicating that the length of lactation has more genetic components in relation to the production peak and persistence. It is very important that the evaluation utilizes the best combination of fixed, genetic additive and permanent environmental regressions, and number of classes of heterogeneous residual variance for genetic evaluation using random regression models, thereby enhancing the precision and accuracy of the estimates of parameters and prediction of genetic values.

  2. On Kronecker-Capelli type theorems for infinite systems

    NASA Astrophysics Data System (ADS)

    Fedorov, Foma M.; Potapova, Sargylana V.

    2017-11-01

    On the basis of the new concept of the decrement of an infinite matrices and determinants, we studied the inconsistency of a general infinite systems of linear algebraic equations. We proved the theorem on inconsistency of a infinite system when the decrement of its matrix is nonzero.

  3. Drowsy cheetah hunting antelopes: a diffusing predator seeking fleeing prey

    NASA Astrophysics Data System (ADS)

    Winkler, Karen; Bray, Alan J.

    2005-02-01

    We consider a system of three random walkers (a 'cheetah' surrounded by two 'antelopes') diffusing in one dimension. The cheetah and the antelopes diffuse, but the antelopes experience in addition a deterministic relative drift velocity, away from the cheetah, proportional to their distance from the cheetah, such that they tend to move away from the cheetah with increasing time. Using the backward Fokker-Planck equation we calculate, as a function of their initial separations, the probability that the cheetah has caught neither antelope after infinite time.

  4. A Fundamental Relationship Between Genotype Frequencies and Fitnesses

    PubMed Central

    Lachance, Joseph

    2008-01-01

    The set of possible postselection genotype frequencies in an infinite, randomly mating population is found. Geometric mean heterozygote frequency divided by geometric mean homozygote frequency equals two times the geometric mean heterozygote fitness divided by geometric mean homozygote fitness. The ratio of genotype frequencies provides a measure of genetic variation that is independent of allele frequencies. When this ratio does not equal two, either selection or population structure is present. Within-population HapMap data show population-specific patterns, while pooled data show an excess of homozygotes. PMID:18780726

  5. Microscopic Lagrangian description of warm plasmas. III - Nonlinear wave-particle interaction

    NASA Technical Reports Server (NTRS)

    Galloway, J. J.; Crawford, F. W.

    1977-01-01

    The averaged-Lagrangian method is applied to nonlinear wave-particle interactions in an infinite, homogeneous, magnetic-field-free plasma. The specific example of Langmuir waves is considered, and the combined effects of four-wave interactions and wave-particle interactions are treated. It is demonstrated how the latter lead to diffusion in velocity space, and the quasilinear diffusion equation is derived. The analysis is generalized to the random phase approximation. The paper concludes with a summary of the method as applied in Parts 1-3 of the paper.

  6. Time-dependent reflection at the localization transition

    NASA Astrophysics Data System (ADS)

    Skipetrov, Sergey E.; Sinha, Aritra

    2018-03-01

    A short quasimonochromatic wave packet incident on a semi-infinite disordered medium gives rise to a reflected wave. The intensity of the latter decays as a power law, 1 /tα , in the long-time limit. Using the one-dimensional Aubry-André model, we show that in the vicinity of the critical point of Anderson localization transition, the decay slows down, and the power-law exponent α becomes smaller than both α =2 found in the Anderson localization regime and α =3 /2 expected for a one-dimensional random walk of classical particles.

  7. Karhunen-Loève treatment to remove noise and facilitate data analysis in sensing, spectroscopy and other applications.

    PubMed

    Zaharov, V V; Farahi, R H; Snyder, P J; Davison, B H; Passian, A

    2014-11-21

    Resolving weak spectral variations in the dynamic response of materials that are either dominated or excited by stochastic processes remains a challenge. Responses that are thermal in origin are particularly relevant examples due to the delocalized nature of heat. Despite its inherent properties in dealing with stochastic processes, the Karhunen-Loève expansion has not been fully exploited in measurement of systems that are driven solely by random forces or can exhibit large thermally driven random fluctuations. Here, we present experimental results and analysis of the archetypes (a) the resonant excitation and transient response of an atomic force microscope probe by the ambient random fluctuations and nanoscale photothermal sample response, and (b) the photothermally scattered photons in pump-probe spectroscopy. In each case, the dynamic process is represented as an infinite series with random coefficients to obtain pertinent frequency shifts and spectral peaks and demonstrate spectral enhancement for a set of compounds including the spectrally complex biomass. The considered cases find important applications in nanoscale material characterization, biosensing, and spectral identification of biological and chemical agents.

  8. A Graph Theory Practice on Transformed Image: A Random Image Steganography

    PubMed Central

    Thanikaiselvan, V.; Arulmozhivarman, P.; Subashanthini, S.; Amirtharajan, Rengarajan

    2013-01-01

    Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients. PMID:24453857

  9. Random effects coefficient of determination for mixed and meta-analysis models

    PubMed Central

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2011-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070

  10. Fixed, low radiant exposure vs. incremental radiant exposure approach for diode laser hair reduction: a randomized, split axilla, comparative single-blinded trial.

    PubMed

    Pavlović, M D; Adamič, M; Nenadić, D

    2015-12-01

    Diode lasers are the most commonly used treatment modalities for unwanted hair reduction. Only a few controlled clinical trials but not a single randomized controlled trial (RCT) compared the impact of various laser parameters, especially radiant exposure, onto efficacy, tolerability and safety of laser hair reduction. To compare the safety, tolerability and mid-term efficacy of fixed, low and incremental radiant exposures of diode lasers (800 nm) for axillary hair removal, we conducted an intrapatient, left-to-right, patient- and assessor-blinded and controlled trial. Diode laser (800 nm) treatments were evaluated in 39 study participants (skin type II-III) with unwanted axillary hairs. Randomization and allocation to split axilla treatments were carried out by a web-based randomization tool. Six treatments were performed at 4- to 6-week intervals with study subjects blinded to the type of treatment. Final assessment of hair reduction was conducted 6 months after the last treatment by means of blinded 4-point clinical scale using photographs. The primary endpoint was reduction in hair growth, and secondary endpoints were patient-rated tolerability and satisfaction with the treatment, treatment-related pain and adverse effects. Excellent reduction in axillary hairs (≥ 76%) at 6-month follow-up visit after receiving fixed, low and incremental radiant exposure diode laser treatments was obtained in 59% and 67% of study participants respectively (Z value: 1.342, P = 0.180). Patients reported lower visual analogue scale (VAS) pain score on the fixed (4.26) than on the incremental radiant exposure side (5.64) (P < 0.0003). The only side-effect was mild and transient erythema. Subjects better tolerated the fixed, low radiant exposure protocol (P = 0.03). The majority of the study participants were satisfied with both treatments. Both low and incremental radiant exposures produced similar hair reduction and high and comparable patient satisfaction. However, low radiant exposure diode laser treatments were less painful and better tolerated. © 2015 European Academy of Dermatology and Venereology.

  11. Modality, Infinitives, and Finite Bare Verbs in Dutch and English Child Language

    ERIC Educational Resources Information Center

    Blom, Elma

    2007-01-01

    This article focuses on the meaning of nonfinite clauses ("root infinitives") in Dutch and English child language. I present experimental and naturalistic data confirming the claim that Dutch root infinitives are more often modal than English root infinitives. This cross-linguistic difference is significantly smaller than previously assumed,…

  12. Scalable L-infinite coding of meshes.

    PubMed

    Munteanu, Adrian; Cernea, Dan C; Alecu, Alin; Cornelis, Jan; Schelkens, Peter

    2010-01-01

    The paper investigates the novel concept of local-error control in mesh geometry encoding. In contrast to traditional mesh-coding systems that use the mean-square error as target distortion metric, this paper proposes a new L-infinite mesh-coding approach, for which the target distortion metric is the L-infinite distortion. In this context, a novel wavelet-based L-infinite-constrained coding approach for meshes is proposed, which ensures that the maximum error between the vertex positions in the original and decoded meshes is lower than a given upper bound. Furthermore, the proposed system achieves scalability in L-infinite sense, that is, any decoding of the input stream will correspond to a perfectly predictable L-infinite distortion upper bound. An instantiation of the proposed L-infinite-coding approach is demonstrated for MESHGRID, which is a scalable 3D object encoding system, part of MPEG-4 AFX. In this context, the advantages of scalable L-infinite coding over L-2-oriented coding are experimentally demonstrated. One concludes that the proposed L-infinite mesh-coding approach guarantees an upper bound on the local error in the decoded mesh, it enables a fast real-time implementation of the rate allocation, and it preserves all the scalability features and animation capabilities of the employed scalable mesh codec.

  13. Stochastic dynamics of time correlation in complex systems with discrete time

    NASA Astrophysics Data System (ADS)

    Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail

    2000-11-01

    In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy Si(t) where i=0,1,2,3,..., as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,...). The set of functions Si(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,...) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function Si(t) for time correlation (i=0) and time memory (i=1,2,3,...). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG's shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties.

  14. Routing in Networks with Random Topologies

    NASA Technical Reports Server (NTRS)

    Bambos, Nicholas

    1997-01-01

    We examine the problems of routing and server assignment in networks with random connectivities. In such a network the basic topology is fixed, but during each time slot and for each of tis input queues, each server (node) is either connected to or disconnected from each of its queues with some probability.

  15. Switching to aripiprazole in outpatients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues with risperidone: a randomized, multicentre, open-label study.

    PubMed

    Ryckmans, V; Kahn, J P; Modell, S; Werner, C; McQuade, R D; Kerselaers, W; Lissens, J; Sanchez, R

    2009-05-01

    This study evaluated the safety/tolerability and effectiveness of aripiprazole titrated-dose versus fixed-dose switching strategies from risperidone in patients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues. Patients were randomized to an aripiprazole titrated-dose (starting dose 5 mg/day) or fixed-dose (dose 15 mg/day) switching strategy with risperidone down-tapering. Primary endpoint was rate of discontinuation due to adverse events (AEs) during the 12-week study. Secondary endpoints included positive and negative syndrome scale (PANSS), clinical global impressions - improvement of illness scale (CGI-I), preference of medication (POM), subjective well-being under neuroleptics (SWN-K) and GEOPTE (Grupo Español para la Optimización del Tratamiento de la Esquizofrenia) scales. Rates of discontinuations due to AEs were similar between titrated-dose and fixed-dose strategies (3.5% vs. 5.0%; p=0.448). Improvements in mean PANSS total scores were similar between aripiprazole titrated-dose and fixed-dose strategies (-14.8 vs. -17.2; LOCF), as were mean CGI-I scores (2.9 vs. 2.8; p=0.425; LOCF) and SWN-K scores (+8.6 vs.+10.3; OC,+7.8 vs.+9.8; LOCF). Switching can be effectively and safely achieved through a titrated-dose or fixed-dose switching strategy for aripiprazole, with down-titration of risperidone.

  16. Electrophoresis of fd-virus particles: experiments and an analysis of the effect of finite rod lengths.

    PubMed

    Buitenhuis, Johan

    2012-09-18

    The electrophoretic mobility of rodlike fd viruses is measured and compared to theory, with the theoretical calculations performed according to Stigter (Stigter, D. Charged Colloidal Cylinder with a Gouy Double-Layer. J. Colloid Interface Sci. 1975, 53, 296-306. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt- Solutions. 1. Mobility in Transverse Field. J. Phys. Chem. 1978, 82, 1417-1423. Stigter, D. Electrophoresis of Highly Charged Colloidal Cylinders in Univalent Salt Solutions. 2. Random Orientation in External Field and Application to Polyelectrolytes. J. Phys. Chem. 1978, 82, 1424-1429. Stigter, D. Theory of Conductance of Colloidal Electrolytes in Univalent Salt Solutions. J. Phys. Chem. 1979, 83, 1663-1670), who describes the electrophoretic mobility of infinite cylinders including relaxation effects. Using the dissociation constants of the ionizable groups on the surfaces of the fd viruses, we can calculate the mobility without any adjustable parameter (apart from the possible Stern layer thickness). In addition, the approximation in the theoretical description of Stigter (and others) of using a model of infinitely long cylinders, which consequently is independent of the aspect ratio, is examined by performing more elaborate numerical calculations for finite cylinders. It is shown that, although the electrophoretic mobility of cylindrical particles in the limit of low ionic strength depends on the aspect ratio much more than "end effects", at moderate and high ionic strengths the finite and infinite cylinder models differ only to a degree that can be attributed to end effects. Furthermore, the range of validity of the Stokes regime is systematically calculated.

  17. Geometrical and quantum mechanical aspects in observers' mathematics

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2013-10-01

    When we create mathematical models for Quantum Mechanics we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We prove that Euclidean Geometry works in sufficiently small neighborhood of the given line, but when we enlarge the neighborhood, non-euclidean Geometry takes over. We prove that the physical speed is a random variable, cannot exceed some constant, and this constant does not depend on an inertial coordinate system. We proved the following theorems: Theorem A (Lagrangian). Let L be a Lagrange function of free material point with mass m and speed v. Then the probability P of L = m 2 v2 is less than 1: P(L = m 2 v2) < 1. Theorem B (Nadezhda effect). On the plane (x, y) on every line y = kx there is a point (x0, y0) with no existing Euclidean distance between origin (0, 0) and this point. Conjecture (Black Hole). Our space-time nature is a black hole: light cannot go out infinitely far from origin.

  18. How Fast Can Networks Synchronize? A Random Matrix Theory Approach

    NASA Astrophysics Data System (ADS)

    Timme, Marc; Wolf, Fred; Geisel, Theo

    2004-03-01

    Pulse-coupled oscillators constitute a paradigmatic class of dynamical systems interacting on networks because they model a variety of biological systems including flashing fireflies and chirping crickets as well as pacemaker cells of the heart and neural networks. Synchronization is one of the most simple and most prevailing kinds of collective dynamics on such networks. Here we study collective synchronization [1] of pulse-coupled oscillators interacting on asymmetric random networks. Using random matrix theory we analytically determine the speed of synchronization in such networks in dependence on the dynamical and network parameters [2]. The speed of synchronization increases with increasing coupling strengths. Surprisingly, however, it stays finite even for infinitely strong interactions. The results indicate that the speed of synchronization is limited by the connectivity of the network. We discuss the relevance of our findings to general equilibration processes on complex networks. [5mm] [1] M. Timme, F. Wolf, T. Geisel, Phys. Rev. Lett. 89:258701 (2002). [2] M. Timme, F. Wolf, T. Geisel, cond-mat/0306512 (2003).

  19. Radiative transfer theory for active remote sensing of a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A canopy is modeled as a two-layer medium above a rough interface. The upper layer stands for the forest crown, with the leaves modeled as randomly oriented and distributed disks and needles and the branches modeled as randomly oriented finite dielectric cylinders. The lower layer contains the tree trunks, modeled as randomly positioned vertical cylinders above the rough soil. Radiative-transfer theory is applied to calculate EM scattering from such a canopy, is expressed in terms of the scattering-amplitude tensors (SATs). For leaves, the generalized Rayleigh-Gans approximation is applied, whereas the branch and trunk SATs are obtained by estimating the inner field by fields inside a similar cylinder of infinite length. The Kirchhoff method is used to calculate the soil SAT. For a plane wave exciting the canopy, the radiative-transfer equations are solved by iteration to the first order in albedo of the leaves and the branches. Numerical results are illustrated as a function of the incidence angle.

  20. Dimensional study of the dynamical arrest in a random Lorentz gas.

    PubMed

    Jin, Yuliang; Charbonneau, Patrick

    2015-04-01

    The random Lorentz gas (RLG) is a minimal model for transport in heterogeneous media. Upon increasing the obstacle density, it exhibits a growing subdiffusive transport regime and then a dynamical arrest. Here, we study the dimensional dependence of the dynamical arrest, which can be mapped onto the void percolation transition for Poisson-distributed point obstacles. We numerically determine the arrest in dimensions d=2-6. Comparison of the results with standard mode-coupling theory reveals that the dynamical theory prediction grows increasingly worse with d. In an effort to clarify the origin of this discrepancy, we relate the dynamical arrest in the RLG to the dynamic glass transition of the infinite-range Mari-Kurchan-model glass former. Through a mixed static and dynamical analysis, we then extract an improved dimensional scaling form as well as a geometrical upper bound for the arrest. The results suggest that understanding the asymptotic behavior of the random Lorentz gas may be key to surmounting fundamental difficulties with the mode-coupling theory of glasses.

  1. Generic dynamical features of quenched interacting quantum systems: Survival probability, density imbalance, and out-of-time-ordered correlator

    NASA Astrophysics Data System (ADS)

    Torres-Herrera, E. J.; García-García, Antonio M.; Santos, Lea F.

    2018-02-01

    We study numerically and analytically the quench dynamics of isolated many-body quantum systems. Using full random matrices from the Gaussian orthogonal ensemble, we obtain analytical expressions for the evolution of the survival probability, density imbalance, and out-of-time-ordered correlator. They are compared with numerical results for a one-dimensional-disordered model with two-body interactions and shown to bound the decay rate of this realistic system. Power-law decays are seen at intermediate times, and dips below the infinite time averages (correlation holes) occur at long times for all three quantities when the system exhibits level repulsion. The fact that these features are shared by both the random matrix and the realistic disordered model indicates that they are generic to nonintegrable interacting quantum systems out of equilibrium. Assisted by the random matrix analytical results, we propose expressions that describe extremely well the dynamics of the realistic chaotic system at different time scales.

  2. Random Walk on a Perturbation of the Infinitely-Fast Mixing Interchange Process

    NASA Astrophysics Data System (ADS)

    Salvi, Michele; Simenhaus, François

    2018-05-01

    We consider a random walk in dimension d≥ 1 in a dynamic random environment evolving as an interchange process with rate γ >0. We prove that, if we choose γ large enough, almost surely the empirical velocity of the walker X_t/t eventually lies in an arbitrary small ball around the annealed drift. This statement is thus a perturbation of the case γ =+∞ where the environment is refreshed between each step of the walker. We extend three-way part of the results of Huveneers and Simenhaus (Electron J Probab 20(105):42, 2015), where the environment was given by the 1-dimensional exclusion process: (i) We deal with any dimension d≥1; (ii) We treat the much more general interchange process, where each particle carries a transition vector chosen according to an arbitrary law μ ; (iii) We show that X_t/t is not only in the same direction of the annealed drift, but that it is also close to it.

  3. KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited

    NASA Technical Reports Server (NTRS)

    Craig, J.; Allen, C.

    1987-01-01

    The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.

  4. Large deviations and mixing for dissipative PDEs with unbounded random kicks

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Nersesyan, V.; Pillet, C.-A.; Shirikyan, A.

    2018-02-01

    We study the problem of exponential mixing and large deviations for discrete-time Markov processes associated with a class of random dynamical systems. Under some dissipativity and regularisation hypotheses for the underlying deterministic dynamics and a non-degeneracy condition for the driving random force, we discuss the existence and uniqueness of a stationary measure and its exponential stability in the Kantorovich-Wasserstein metric. We next turn to the large deviations principle (LDP) and establish its validity for the occupation measures of the Markov processes in question. The proof is based on Kifer’s criterion for non-compact spaces, a result on large-time asymptotics for generalised Markov semigroup, and a coupling argument. These tools combined together constitute a new approach to LDP for infinite-dimensional processes without strong Feller property in a non-compact space. The results obtained can be applied to the two-dimensional Navier-Stokes system in a bounded domain and to the complex Ginzburg-Landau equation.

  5. Infinite Multiplets

    DOE R&D Accomplishments Database

    Nambu, Y.

    1967-01-01

    The main ingredients of the method of infinite multiplets consist of: 1) the use of wave functions with an infinite number of components for describing an infinite tower of discrete states of an isolated system (such as an atom, a nucleus, or a hadron), 2) the use of group theory, instead of dynamical considerations, in determining the properties of the wave functions.

  6. Boundary Conditions for Infinite Conservation Laws

    NASA Astrophysics Data System (ADS)

    Rosenhaus, V.; Bruzón, M. S.; Gandarias, M. L.

    2016-12-01

    Regular soliton equations (KdV, sine-Gordon, NLS) are known to possess infinite sets of local conservation laws. Some other classes of nonlinear PDE possess infinite-dimensional symmetries parametrized by arbitrary functions of independent or dependent variables; among them are Zabolotskaya-Khokhlov, Kadomtsev-Petviashvili, Davey-Stewartson equations and Born-Infeld equation. Boundary conditions were shown to play an important role for the existence of local conservation laws associated with infinite-dimensional symmetries. In this paper, we analyze boundary conditions for the infinite conserved densities of regular soliton equations: KdV, potential KdV, Sine-Gordon equation, and nonlinear Schrödinger equation, and compare them with boundary conditions for the conserved densities obtained from infinite-dimensional symmetries with arbitrary functions of independent and dependent variables.

  7. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. No difference in joint awareness after mobile- and fixed-bearing total knee arthroplasty: 3-year follow-up of a randomized controlled trial.

    PubMed

    Schotanus, M G M; Pilot, P; Vos, R; Kort, N P

    2017-12-01

    To compare the patients ability to forget the artificial knee joint in everyday life who were randomized to be operated for mobile- or fixed-bearing total knee arthroplasty (TKA). This single-center randomized controlled trial evaluated the 3-year follow-up of the cemented mobile- and fixed-bearing TKA from the same brand in a series of 41 patients. Clinical examination was during the pre-, 6-week, 6-month, 1-, 2- and 3-year follow-up containing multiple patient-reported outcome measures (PROMs) including the 12-item Forgotten Joint Score (FJS-12) at 3 years. Effect size was calculated for each PROM at 3-year follow-up to quantify the size of the difference between both bearings. At 3-year follow-up, general linear mixed model analysis showed that there were no significant or clinically relevant differences between the two groups for all outcome measures. Calculated effect sizes were small (<0.3) for all the PROMs except for the FJS-12; these were moderate (0.5). The results of this study demonstrate that joint awareness was slightly lower in patients operated with the MB TKA with comparable improved clinical outcome and PROMs at 3-year follow-up. Measuring joint awareness with the FJS-12 is useful and provides more stringent information at 3-year follow-up compared to other PROMs and should be the PROM of choice at each follow-up after TKA. Level I, randomized controlled trial.

  9. Controlled breathing protocols probe human autonomic cardiovascular rhythms

    NASA Technical Reports Server (NTRS)

    Cooke, W. H.; Cox, J. F.; Diedrich, A. M.; Taylor, J. A.; Beightol, L. A.; Ames, J. E. 4th; Hoag, J. B.; Seidel, H.; Eckberg, D. L.

    1998-01-01

    The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (approximately 0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing (P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2 modestly (P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

  10. Influence of the random walk finite step on the first-passage probability

    NASA Astrophysics Data System (ADS)

    Klimenkova, Olga; Menshutin, Anton; Shchur, Lev

    2018-01-01

    A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.

  11. Fixed functional appliances with multibracket appliances have no skeletal effect on the mandible: A systematic review and meta-analysis.

    PubMed

    Ishaq, Ramy Abdul Rahman; AlHammadi, Maged Sultan; Fayed, Mona M S; El-Ezz, Amr Abou; Mostafa, Yehya

    2016-05-01

    Our aim was to assess the skeletal mandibular changes (anteroposterior and vertical) in circumpubertal patients with fixed functional appliances installed on multibracket appliances compared with untreated patients. An open-ended electronic search of 4 databases (PubMed, Embase, Cochrane Library, and Web of Science) up to April 2014 was performed. Additional searches of relevant journals, reference lists of the retrieved articles, systematic reviews, and gray literature were performed. Specific inclusion and exclusion criteria were applied to identify relevant articles. Quality was evaluated using the Cochrane Collaboration risk of bias tool and the Newcastle-Ottawa scale for prospective controlled clinical trials. Meta-analyses were conducted with fixed and random effects models as appropriate. Statistical heterogeneity was also examined. Seven articles were included in the qualitative synthesis and 5 in the meta-analysis. The included randomized controlled trials were at high risk of bias, and the methodologic quality of the prospective controlled clinical trials was high. Based on assessment of the fixed functional appliance phase in isolation, no difference in mandibular anteroposterior positional changes (SNB angle) (standard mean difference, 0.11°; 95% CI, -0.28, 0.50) was found between the treated and control groups. The vertical dimension was not influenced by the fixed functional appliance treatment. There is little high-quality evidence concerning the relative influence of fixed functional appliances on skeletal and dentoalveolar changes. However, based on the limited evidence, it appears that they have little effect on the skeletal mandibular parameters. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Perceived beauty of random texture patterns: A preference for complexity.

    PubMed

    Friedenberg, Jay; Liby, Bruce

    2016-07-01

    We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. THE EFFECTS OF FIXED VERSUS ESCALATING REINFORCEMENT SCHEDULES ON SMOKING ABSTINENCE

    PubMed Central

    Romanowich, Paul; Lamb, R. J.

    2015-01-01

    Studies indicate that when abstinence is initiated, escalating reinforcement schedules maintain continuous abstinence longer than fixed reinforcement schedules. However, these studies were conducted for shorter durations than most clinical trials and also resulted in larger reinforcer value for escalating participants during the 1st week of the experiment. We tested whether escalating reinforcement schedules maintained abstinence longer than fixed reinforcement schedules in a 12-week clinical trial. Smokers (146) were randomized to an escalating reinforcement schedule, a fixed reinforcement schedule, or a control condition. Escalating reinforcement participants received $5.00 for their first breath carbon monoxide (CO) sample <3 ppm, with a $0.50 increase for each consecutive sample. Fixed reinforcement participants received $19.75 for each breath CO sample <3 ppm. Control participants received payments only for delivering a breath CO sample. Similar proportions of escalating and fixed reinforcement participants met the breath CO criterion at least once. Escalating reinforcement participants maintained criterion breath CO levels longer than fixed reinforcement and control participants. Similar to previous short-term studies, escalating reinforcement schedules maintained longer durations of abstinence than fixed reinforcement schedules during a clinical trial. PMID:25640764

  14. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  15. Clinical trials in crisis: four simple methodologic fixes

    PubMed Central

    Vickers, Andrew J.

    2014-01-01

    There is growing consensus that the US clinical trials system is broken, with trial costs and complexity increasing exponentially, and many trials failing to accrue. Yet concerns about the expense and failure rate of randomized trials are only the tip of the iceberg; perhaps what should worry us most is the number of trials that are not even considered because of projected costs and poor accrual. Several initiatives, including the Clinical Trials Transformation Initiative and the “Sensible Guidelines Group” seek to push back against current trends in clinical trials, arguing that all aspects of trials - including design, approval, conduct, monitoring, analysis and dissemination - should be based on evidence rather than contemporary norms. Proposed here are four methodologic fixes for current clinical trials. The first two aim to simplify trials, reducing costs and increasing patient acceptability by dramatically reducing eligibility criteria - often to the single criterion that the consenting physician is uncertain which of the two randomized arms is optimal - and by clinical integration, investment in data infrastructure to bring routinely collected data up to research grade to be used as endpoints in trials. The second two methodologic fixes aim to shed barriers to accrual, either by cluster randomization of clinicians (in the case of modifications to existing treatment) or by early consent, where patients are offered the chance of being randomly selected to be offered a novel intervention if disease progresses at a subsequent point. Such solutions may be partial, or result in a new set of problems of their own. Yet the current crisis in clinical trials mandates innovative approaches: randomized trials have resulted in enormous benefits for patients and we need to ensure that they continue to do so. PMID:25278228

  16. Clinical trials in crisis: Four simple methodologic fixes.

    PubMed

    Vickers, Andrew J

    2014-12-01

    There is growing consensus that the US clinical trials system is broken, with trial costs and complexity increasing exponentially, and many trials failing to accrue. Yet, concerns about the expense and failure rate of randomized trials are only the tip of the iceberg; perhaps what should worry us most is the number of trials that are not even considered because of projected costs and poor accrual. Several initiatives, including the Clinical Trials Transformation Initiative and the "Sensible Guidelines Group" seek to push back against current trends in clinical trials, arguing that all aspects of trials-including design, approval, conduct, monitoring, analysis, and dissemination-should be based on evidence rather than contemporary norms. Proposed here are four methodologic fixes for current clinical trials. The first two aim to simplify trials, reducing costs, and increasing patient acceptability by dramatically reducing eligibility criteria-often to the single criterion that the consenting physician is uncertain which of the two randomized arms is optimal-and by clinical integration, investment in data infrastructure to bring routinely collected data up to research grade to be used as endpoints in trials. The second two methodologic fixes aim to shed barriers to accrual, either by cluster randomization of clinicians (in the case of modifications to existing treatment) or by early consent, where patients are offered the chance of being randomly selected to be offered a novel intervention if disease progresses at a subsequent point. Such solutions may be partial, or result in a new set of problems of their own. Yet, the current crisis in clinical trials mandates innovative approaches: randomized trials have resulted in enormous benefits for patients, and we need to ensure that they continue to do so. © The Author(s) 2014.

  17. Lingual vs. labial fixed orthodontic appliances: systematic review and meta-analysis of treatment effects.

    PubMed

    Papageorgiou, Spyridon N; Gölz, Lina; Jäger, Andreas; Eliades, Theodore; Bourauel, Christoph

    2016-04-01

    The aim of this systematic review was to compare the therapeutic and adverse effects of lingual and labial orthodontic fixed appliances from clinical trials on human patients in an evidence-based manner. Randomized and prospective non-randomized clinical trials comparing lingual and labial appliances were included. Risk of bias within and across studies was assessed using the Cochrane tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Random-effects meta-analyses were conducted, followed by subgroup and sensitivity analyses. Six electronic databases were searched from inception to July 2015, without limitations. A total of 13 papers pertaining to 11 clinical trials were included with a total of 407 (34% male/66% female) patients. Compared with labial appliances, lingual appliances were associated with increased overall oral discomfort, increased speech impediment (measured using auditory analysis), worse speech performance assessed by laypersons, increased eating difficulty, and decreased intermolar width. On the other hand, lingual appliances were associated with increased intercanine width and significantly decreased anchorage loss of the maxillary first molar during space closure. Based on existing trials, there is insufficient evidence to make robust recommendations for lingual fixed orthodontic appliances regarding their therapeutic or adverse effects, as the quality of evidence was low. © 2016 Eur J Oral Sci.

  18. Predictors for Physical Activity in Adolescent Girls Using Statistical Shrinkage Techniques for Hierarchical Longitudinal Mixed Effects Models

    PubMed Central

    Grant, Edward M.; Young, Deborah Rohm; Wu, Tong Tong

    2015-01-01

    We examined associations among longitudinal, multilevel variables and girls’ physical activity to determine the important predictors for physical activity change at different adolescent ages. The Trial of Activity for Adolescent Girls 2 study (Maryland) contributed participants from 8th (2009) to 11th grade (2011) (n=561). Questionnaires were used to obtain demographic, and psychosocial information (individual- and social-level variables); height, weight, and triceps skinfold to assess body composition; interviews and surveys for school-level data; and self-report for neighborhood-level variables. Moderate to vigorous physical activity minutes were assessed from accelerometers. A doubly regularized linear mixed effects model was used for the longitudinal multilevel data to identify the most important covariates for physical activity. Three fixed effects at the individual level and one random effect at the school level were chosen from an initial total of 66 variables, consisting of 47 fixed effects and 19 random effects variables, in additional to the time effect. Self-management strategies, perceived barriers, and social support from friends were the three selected fixed effects, and whether intramural or interscholastic programs were offered in middle school was the selected random effect. Psychosocial factors and friend support, plus a school’s physical activity environment, affect adolescent girl’s moderate to vigorous physical activity longitudinally. PMID:25928064

  19. Microdose GnRH Agonist Flare-Up versus Ultrashort GnRH Agonist Combined with Fixed GnRH Antagonist in Poor Responders of Assisted Reproductive Techniques Cycles.

    PubMed

    Eftekhar, Maryam; Mohammadian, Farnaz; Yousefnejad, Fariba; Khani, Parisa

    2013-01-01

    This study compares the microdose flare-up protocol to the ultrashort gonadotropinreleasing hormone (GnRH) agonist flare combined with the fixed multidose GnRH antagonist protocol in poor responders undergoing ovarian stimulation. In this randomized clinical trial, 120 women who were candidates for assisted reproductive techniques (ART) and had histories of one or more failed in vitro fertilization (IVF) cycles with three or fewer retrieved oocytes were prospectively randomized into two groups. Group I (60 patients) received the microdose flare-up regimen and group II (60 patients) received the ultrashort GnRH agonist combined with fixed GnRH antagonist. There were no significant differences between the groups in the number of used gonadotropin ampoules (p=0.591), duration of stimulation (p=0.610), number of retrieved oocytes (p=0.802), fertilization rate (p=0.456), and the number of transferred embryos (p=0.954). The clinical pregnancy rates were statistically similar in group I (10%) compared with group II (13.3%, p=0.389). According to our results, there is no significant difference between these protocols for improving the ART outcome in poor responders. Additional prospective, randomized studies with more patients is necessary to determine the best protocol (Registration Number: IRCT201105096420N1).

  20. Thrombectomy for ischemic stroke: meta-analyses of recurrent strokes, vasospasms, and subarachnoid hemorrhages.

    PubMed

    Emprechtinger, Robert; Piso, Brigitte; Ringleb, Peter A

    2017-03-01

    Mechanical thrombectomy with stent retrievers is an effective treatment for patients with ischemic stroke. Results of recent meta-analyses report that the treatment is safe. However, the endpoints recurrent stroke, vasospasms, and subarachnoid hemorrhage have not been evaluated sufficiently. Hence, we extracted data on these outcomes from the five recent thrombectomy trials (MR CLEAN, ESCAPE, REVASCAT, SWIFT PRIME, and EXTEND IA published in 2015). Subsequently, we conducted meta-analyses for each outcome. We report the results of the fixed, as well as the random effects model. Three studies reported data on recurrent strokes. While the results did not reach statistical significance in the random effects model (despite a three times elevated risk), the fixed effects model revealed a significantly higher rate of recurrent strokes after thrombectomy. Four studies reported data on subarachnoid hemorrhage. The higher pooled rates in the intervention groups were statistically significant in both, the fixed and the random effects model. One study reported on vasospasms. We recorded 14 events in the intervention group and none in the control group. The efficacy of mechanical thrombectomy is not questioned, yet our results indicate an increased risk for recurrent strokes, subarachnoid hemorrhage, and vasospasms post-treatment. Therefore, we strongly recommend a thoroughly surveillance, concerning these adverse events in future clinical trials and routine registries.

  1. Invariant Functions, Symmetries and Primary Branch Solutions of First Order Autonomous Systems

    NASA Astrophysics Data System (ADS)

    Lou, Sen-Yue; Yao, Ruo-Xia

    2017-07-01

    An invariant function (IF) is defined as a multiplier of a symmetry that means a symmetry multiplied by an IF is still a symmetry. Primary branch solutions of arbitrary first order scalar systems can be obtained by means of the IF and its related symmetry approach. Especially, one recursion operator and some sets of infinitely many high order symmetries are also explicitly given for arbitrary (1+1)-dimensional first order autonomous systems. Because of the intrusion of the arbitrary function, various implicit special exact solutions can be found by fixing the arbitrary functions and selecting different seed solutions. Supported by the National Natural Science Foundations of China under Grant Nos. 11435005, 11471004, 11175092, and 11205092, Shanghai Knowledge Service Platform for Trustworthy Internet of Things No. ZF1213 and K. C. Wong Magna Fund in Ningbo University

  2. Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics.

    PubMed

    Zhao, Meng; Ding, Baocang

    2015-03-01

    This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  3. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-01

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  4. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    NASA Astrophysics Data System (ADS)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  5. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  6. Bending of an Infinite beam on a base with two parameters in the absence of a part of the base

    NASA Astrophysics Data System (ADS)

    Aleksandrovskiy, Maxim; Zaharova, Lidiya

    2018-03-01

    Currently, in connection with the rapid development of high-rise construction and the improvement of joint operation of high-rise structures and bases models, the questions connected with the use of various calculation methods become topical. The rigor of analytical methods is capable of more detailed and accurate characterization of the structures behavior, which will affect the reliability of objects and can lead to a reduction in their cost. In the article, a model with two parameters is used as a computational model of the base that can effectively take into account the distributive properties of the base by varying the coefficient reflecting the shift parameter. The paper constructs the effective analytical solution of the problem of a beam of infinite length interacting with a two-parameter voided base. Using the Fourier integral equations, the original differential equation is reduced to the Fredholm integral equation of the second kind with a degenerate kernel, and all the integrals are solved analytically and explicitly, which leads to an increase in the accuracy of the computations in comparison with the approximate methods. The paper consider the solution of the problem of a beam loaded with a concentrated force applied at the point of origin with a fixed value of the length of the dip section. The paper gives the analysis of the obtained results values for various parameters of coefficient taking into account cohesion of the ground.

  7. Quantum properties of double kicked systems with classical translational invariance in momentum

    NASA Astrophysics Data System (ADS)

    Dana, Itzhack

    2015-01-01

    Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .

  8. General Retarded Contact Self-energies in and beyond the Non-equilibrium Green's Functions Method

    NASA Astrophysics Data System (ADS)

    Kubis, Tillmann; He, Yu; Andrawis, Robert; Klimeck, Gerhard

    2016-03-01

    Retarded contact self-energies in the framework of nonequilibrium Green's functions allow to model the impact of lead structures on the device without explicitly including the leads in the actual device calculation. Most of the contact self-energy algorithms are limited to homogeneous or periodic, semi-infinite lead structures. In this work, the complex absorbing potential method is extended to solve retarded contact self-energies for arbitrary lead structures, including irregular and randomly disordered leads. This method is verified for regular leads against common approaches and on physically equivalent, but numerically different irregular leads. Transmission results on randomly alloyed In0.5Ga0.5As structures show the importance of disorder in the leads. The concept of retarded contact self-energies is expanded to model passivation of atomically resolved surfaces without explicitly increasing the device's Hamiltonian.

  9. Percolation in real multiplex networks

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  10. Interfacial adsorption in two-dimensional pure and random-bond Potts models.

    PubMed

    Fytas, Nikolaos G; Theodorakis, Panagiotis E; Malakis, Anastasios

    2017-03-01

    We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts model for q=3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined signal-to-noise ratios.

  11. Random effects coefficient of determination for mixed and meta-analysis models.

    PubMed

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2012-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.

  12. Fixed 50:50 mixture of nitrous oxide and oxygen to reduce lumbar-puncture-induced pain: a randomized controlled trial.

    PubMed

    Moisset, X; Sia, M A; Pereira, B; Taithe, F; Dumont, E; Bernard, L; Clavelou, P

    2017-01-01

    Lumbar puncture (LP) has been frequently performed for more than a century. This procedure is still stressful and often painful. The aim of the study was to evaluate the efficacy of a fixed 50% nitrous oxide-oxygen mixture compared to placebo to reduce immediate procedural pain and anxiety during LP. A randomized controlled trial was conducted involving adults who needed a cerebrospinal fluid analysis. Patients were randomly assigned to inhale either a fixed 50% nitrous oxide-oxygen mixture (50% N 2 O-O 2 ) or medical air (22% O 2 -78% N 2 ). Cutaneous application of a eutectic mixture of local anaesthetics was systematically done and all LPs were performed with pencil point 25G needles (20G introducer needle). The primary end-point was the maximal pain level felt by the patient during the procedure, the maximal anxiety level being a secondary outcome, both measured using a numerical rating scale (0-10). A total of 66 consecutive patients were randomized. The analysis was intention to treat. The maximal pain was 4.9 ± 2.7 for the 33 patients receiving air and 2.7 ± 2.7 for the 33 receiving 50% N 2 O-O 2 (P = 0.002). Similarly, the maximal LP-induced anxiety was 4.5 ± 3.1 vs. 2.6 ± 2.6 (P = 0.009), respectively. The number needed to treat to avoid one patient undergoing significant pain (pain score ≥ 4/10) was 2.75. Body mass index >25 kg/m 2 was significantly associated with higher pain intensity (P = 0.03). No serious adverse events were attributable to 50% N 2 O-O 2 inhalation. Inhalation of a fixed 50% N 2 O-O 2 mixture is efficient to reduce LP-induced pain and anxiety. © 2016 EAN.

  13. The effects of biome and spatial scale on the Co-occurrence patterns of a group of Namibian beetles

    NASA Astrophysics Data System (ADS)

    Pitzalis, Monica; Montalto, Francesca; Amore, Valentina; Luiselli, Luca; Bologna, Marco A.

    2017-08-01

    Co-occurrence patterns (studied by C-score, number of checkerboard units, number of species combinations, and V-ratio, and by an empirical Bayes approach developed by Gotelli and Ulrich, 2010) are crucial elements in order to understand assembly rules in ecological communities at both local and spatial scales. In order to explore general assembly rules and the effects of biome and spatial scale on such rules, here we studied a group of beetles (Coleoptera, Meloidae), using Namibia as a case of study. Data were gathered from 186 sampling sites, which allowed collection of 74 different species. We analyzed data at the level of (i) all sampled sites, (ii) all sites stratified by biome (Savannah, Succulent Karoo, Nama Karoo, Desert), and (iii) three randomly selected nested areas with three spatial scales each. Three competing algorithms were used for all analyses: (i) Fixed-Equiprobable, (ii) Fixed-Fixed, and (iii) Fixed-Proportional. In most of the null models we created, co-occurrence indicators revealed a non-random structure in meloid beetle assemblages at the global scale and at the scale of biomes, with species aggregation being much more important than species segregation in determining this non-randomness. At the level of biome, the same non-random organization was uncovered in assemblages from Savannah (where the aggregation pattern was particularly strong) and Succulent Karoo, but not in Desert and Nama Karoo. We conclude that species facilitation and similar niche in endemic species pairs may be particularly important as community drivers in our case of study. This pattern is also consistent with the evidence of a higher species diversity (normalized according to biome surface area) in the two former biomes. Historical patterns were perhaps also important for Succulent Karoo assemblages. Spatial scale had a reduced effect on patterning our data. This is consistent with the general homogeneity of environmental conditions over wide areas in Namibia.

  14. Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.; Cheung, Shu Fai

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…

  15. Functional mixed effects spectral analysis

    PubMed Central

    KRAFTY, ROBERT T.; HALL, MARTICA; GUO, WENSHENG

    2011-01-01

    SUMMARY In many experiments, time series data can be collected from multiple units and multiple time series segments can be collected from the same unit. This article introduces a mixed effects Cramér spectral representation which can be used to model the effects of design covariates on the second-order power spectrum while accounting for potential correlations among the time series segments collected from the same unit. The transfer function is composed of a deterministic component to account for the population-average effects and a random component to account for the unit-specific deviations. The resulting log-spectrum has a functional mixed effects representation where both the fixed effects and random effects are functions in the frequency domain. It is shown that, when the replicate-specific spectra are smooth, the log-periodograms converge to a functional mixed effects model. A data-driven iterative estimation procedure is offered for the periodic smoothing spline estimation of the fixed effects, penalized estimation of the functional covariance of the random effects, and unit-specific random effects prediction via the best linear unbiased predictor. PMID:26855437

  16. Saddlepoint approximation to the distribution of the total distance of the continuous time random walk

    NASA Astrophysics Data System (ADS)

    Gatto, Riccardo

    2017-12-01

    This article considers the random walk over Rp, with p ≥ 2, where a given particle starts at the origin and moves stepwise with uniformly distributed step directions and step lengths following a common distribution. Step directions and step lengths are independent. The case where the number of steps of the particle is fixed and the more general case where it follows an independent continuous time inhomogeneous counting process are considered. Saddlepoint approximations to the distribution of the distance from the position of the particle to the origin are provided. Despite the p-dimensional nature of the random walk, the computations of the saddlepoint approximations are one-dimensional and thus simple. Explicit formulae are derived with dimension p = 3: for uniformly and exponentially distributed step lengths, for fixed and for Poisson distributed number of steps. In these situations, the high accuracy of the saddlepoint approximations is illustrated by numerical comparisons with Monte Carlo simulation. Contribution to the "Topical Issue: Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  17. Conditions for observing emergent SU(4) symmetry in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Nishikawa, Yunori; Curtin, Oliver J.; Hewson, Alex C.; Crow, Daniel J. G.; Bauer, Johannes

    2016-06-01

    We analyze conditions for the observation of a low-energy SU(4) fixed point in capacitively coupled quantum dots. One problem, due to dots with different couplings to their baths, has been considered by L. Tosi, P. Roura-Bas, and A. A. Aligia, J. Phys.: Condens. Matter 27, 335601 (2015), 10.1088/0953-8984/27/33/335601. They showed how symmetry can be effectively restored via the adjustment of individual gates voltages, but they make the assumption of infinite on-dot and interdot interaction strengths. A related problem is the difference in the magnitudes between the on-dot and interdot strengths for capacitively coupled quantum dots. Here we examine both factors, based on a two-site Anderson model, using the numerical renormalization group to calculate the local spectral densities on the dots and the renormalized parameters that specify the low-energy fixed point. Our results support the conclusions of Tosi et al. that low-energy SU(4) symmetry can be restored, but asymptotically achieved only if the interdot interaction U12 is greater than or of the order of the bandwidth of the coupled conduction bath D , which might be difficult to achieve experimentally. By comparing the SU(4) Kondo results for a total dot occupation ntot=1 and 2, we conclude that the temperature dependence of the conductance is largely determined by the constraints of the Friedel sum rule rather than the SU(4) symmetry and suggest that an initial increase of the conductance with temperature is a distinguishing characteristic feature of an ntot=1 universal SU(4) fixed point.

  18. Guidance of microswimmers by wall and flow: Thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Ishimoto, Kenta

    2017-10-01

    The motions of an unsteady circular-disk squirmer and a spherical squirmer have been investigated in the presence of a no-slip infinite wall and a background shear flow in order to clarify the similarities and differences between two- and three-dimensional motions. Despite the similar bifurcation structure of the dynamical system, the stability of the fixed points differs due to the Hamiltonian structure of the disk squirmer. Once the unsteady oscillating surface velocity profile is considered, the disk squirmer can behave in a chaotic manner and cease to be confined in a near-wall region. In contrast, in an unsteady spherical squirmer, the dynamics is well attracted by a stable fixed point. Additional wall contact interactions lead to stable fixed points for the disk squirmer, and, in turn, the surface entrapment of the disk squirmer can be stabilized, regardless of the existence of the background flow. Finally, we consider spherical motion under a background flow. The separated time scales of the surface entrapment (thigmotaxis) and the turning toward the flow direction (rheotaxis) enable us to reduce the dynamics to two-dimensional phase space, and simple weather-vane mechanics can predict squirmer rheotaxis. The analogous structure of the phase plane with the wall contact in two and three dimensions implies that the two-dimensional disk swimmer successfully captures the nonlinear interactions, and thus two-dimensional approximation could be useful in designing microfluidic devices for the guidance of microswimmers and for clarifying the locomotions in a complex geometry.

  19. Dynamics and Collapse in a Power System Model with Voltage Variation: The Damping Effect.

    PubMed

    Ma, Jinpeng; Sun, Yong; Yuan, Xiaoming; Kurths, Jürgen; Zhan, Meng

    2016-01-01

    Complex nonlinear phenomena are investigated in a basic power system model of the single-machine-infinite-bus (SMIB) with a synchronous generator modeled by a classical third-order differential equation including both angle dynamics and voltage dynamics, the so-called flux decay equation. In contrast, for the second-order differential equation considering the angle dynamics only, it is the classical swing equation. Similarities and differences of the dynamics generated between the third-order model and the second-order one are studied. We mainly find that, for positive damping, these two models show quite similar behavior, namely, stable fixed point, stable limit cycle, and their coexistence for different parameters. However, for negative damping, the second-order system can only collapse, whereas for the third-order model, more complicated behavior may happen, such as stable fixed point, limit cycle, quasi-periodicity, and chaos. Interesting partial collapse phenomena for angle instability only and not for voltage instability are also found here, including collapse from quasi-periodicity and from chaos etc. These findings not only provide a basic physical picture for power system dynamics in the third-order model incorporating voltage dynamics, but also enable us a deeper understanding of the complex dynamical behavior and even leading to a design of oscillation damping in electric power systems.

  20. Apparatus for measuring the finite load-deformation behavior of a sheet of epithelial cells cultured on a mesoscopic freestanding elastomer membrane.

    PubMed

    Selby, John C; Shannon, Mark A

    2007-09-01

    Details are given for the design, calibration, and operation of an apparatus for measuring the finite load-deformation behavior of a sheet of living epithelial cells cultured on a mesoscopic freestanding elastomer membrane, 10 microm thick and 5 mm in diameter. Although similar in concept to bulge tests used to investigate the mechanical properties of micromachined thin films, cell-elastomer composite diaphragm inflation tests pose a unique set of experimental challenges. Composite diaphragm (CD) specimens are extremely compliant (E<50 kPa), experience large displacements when subject to small inflation pressures (approximately 100 Pa), and must be continuously immersed in a bath of liquid culture medium during the acquisition of load-deformation measurements. Given these considerations, we have constructed an inflation apparatus consisting of an air-piston-cylinder pump integrated with a modular specimen mounting fixture that constitutes a horizontally semi-infinite reservoir of liquid culture medium. In a deformation-controlled inflation test, pressurized air is used to inflate a CD specimen into the liquid reservoir with minimum disturbance of the liquid-air interface. Piston displacements and absolute pump chamber air pressures are utilized as feedback to cycle the displaced (or inflated) CD volume V in a 0.05 Hz triangular or sinusoidal wave form (V(MIN)=0 microl, V(MAX)

  1. Modelling control of epidemics spreading by long-range interactions.

    PubMed

    Dybiec, Bartłomiej; Kleczkowski, Adam; Gilligan, Christopher A

    2009-10-06

    We have studied the spread of epidemics characterized by a mixture of local and non-local interactions. The infection spreads on a two-dimensional lattice with the fixed nearest neighbour connections. In addition, long-range dynamical links are formed by moving agents (vectors). Vectors perform random walks, with step length distributed according to a thick-tail distribution. Two distributions are considered in this paper, an alpha-stable distribution describing self-similar vector movement, yet characterized by an infinite variance and an exponential power characterized by a large but finite variance. Such long-range interactions are hard to track and make control of epidemics very difficult. We also allowed for cryptic infection, whereby an infected individual on the lattice can be infectious prior to showing any symptoms of infection or disease. To account for such cryptic spread, we considered a control strategy in which not only detected, i.e. symptomatic, individuals but also all individuals within a certain control neighbourhood are treated upon the detection of disease. We show that it is possible to eradicate the disease by using such purely local control measures, even in the presence of long-range jumps. In particular, we show that the success of local control and the choice of the optimal strategy depend in a non-trivial way on the dispersal patterns of the vectors. By characterizing these patterns using the stability index of the alpha-stable distribution to change the power-law behaviour or the exponent characterizing the decay of an exponential power distribution, we show that infection can be successfully contained using relatively small control neighbourhoods for two limiting cases for long-distance dispersal and for vectors that are much more limited in their dispersal range.

  2. Site term from single-station sigma analysis of S-waves in western Turkey

    NASA Astrophysics Data System (ADS)

    Akyol, Nihal

    2018-05-01

    The main aim of this study is to obtain site terms from single-station sigma analysis and to compare them with the site functions resulting from different techniques. The dataset consists of 1764 records from 322 micro- and moderate-size local earthquakes recorded by 29 stations in western Turkey. Median models were derived from S-wave Fourier amplitude spectra for selected 22 frequencies, by utilizing the MLR procedure which performs the maximum likelihood (ML) estimation of mixed models where the fixed effects are treated as random (R) effects with infinite variance. At this stage, b (geometrical spreading coefficient) and Q (quality factor) values were decomposed, simultaneously. The residuals of the median models were examined by utilizing the single-station sigma analysis to obtain the site terms of 29 stations. Sigma for the median models is about 0.422 log10 units and decreases to about 0.308, when the site terms from the single-station sigma analysis were considered (27% reduction). The event-corrected within-event standard deviations for each frequency are rather stable, in the range 0.19-0.23 log10 units with an average value of 0.20 (± 0.01). The site terms from single-station sigma analysis were compared with the site function estimates from the horizontal-to-vertical-spectral-ratio (HVSR) and generalized inversion (INV) techniques by Akyol et al. (2013) and Kurtulmuş and Akyol (2015), respectively. Consistency was observed between the single-station sigma site terms and the INV site transfer functions. The results imply that the single-station sigma analysis could separate the site terms with respect to the median models.

  3. GENOPT 2016: Design of a generalization-based challenge in global optimization

    NASA Astrophysics Data System (ADS)

    Battiti, Roberto; Sergeyev, Yaroslav; Brunato, Mauro; Kvasov, Dmitri

    2016-10-01

    While comparing results on benchmark functions is a widely used practice to demonstrate the competitiveness of global optimization algorithms, fixed benchmarks can lead to a negative data mining process. To avoid this negative effect, the GENOPT contest benchmarks can be used which are based on randomized function generators, designed for scientific experiments, with fixed statistical characteristics but individual variation of the generated instances. The generators are available to participants for off-line tests and online tuning schemes, but the final competition is based on random seeds communicated in the last phase through a cooperative process. A brief presentation and discussion of the methods and results obtained in the framework of the GENOPT contest are given in this contribution.

  4. The Impact of the Rate and Variety of Uses of Fixed and Mobile Broadband on the Progress of CPE: A Chartered Accountant's Perspective

    ERIC Educational Resources Information Center

    Rawashdeh, Awni; Al-namlah, Lamia

    2015-01-01

    To examine the impact of the usage of fixed and mobile broadband on the progress of continuing professional education (CPE) from the perspective of chartered accountants in Saudi Arabia, an e-mail survey was conducted. A random sampling of chartered accountants in Saudi Arabia was investigated. This research was aimed to identify any correlation…

  5. Intraocular pressure decrease with preservative-free fixed and unfixed combination of tafluprost and timolol in pseudoexfoliative glaucoma.

    PubMed

    Holló, Gábor; Ropo, Auli

    2015-01-01

    We investigated the intraocular pressure (IOP) lowering efficacy of preservative-free fixed and non-fixed combination of tafluprost 0.0015% and timolol 0.5% in pseudoexfoliative glaucoma (XFG). A per protocol worse eye analysis was made on all XFG patients who participated in a recent 6 month, prospective, randomized, double-masked, parallel group, multicenter phase III study. The mean time-wise IOP decreased by 8.62 to 10.25 mmHg (31.8 to 36.7%) in the fixed dose combination arm (15 patients) and by 5.38 to 11.35 mmHg (21.3 to 41.2%) in the non-fixed combination arm (13 patients), respectively (p < 0.001 for all comparisons). The results show that a preservative-free fixed dose combination of tafluprost and timolol provides a clinically significant IOP reduction in XFG, and may offer an advantage for the XFG patients with dry eye, due to its preservative-free nature.

  6. Detection in fixed and random noise in foveal and parafoveal vision explained by template learning

    NASA Technical Reports Server (NTRS)

    Beard, B. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)

    1999-01-01

    Foveal and parafoveal contrast detection thresholds for Gabor and checkerboard targets were measured in white noise by means of a two-interval forced-choice paradigm. Two white-noise conditions were used: fixed and twin. In the fixed noise condition a single noise sample was presented in both intervals of all the trials. In the twin noise condition the same noise sample was used in the two intervals of a trial, but a new sample was generated for each trial. Fixed noise conditions usually resulted in lower thresholds than twin noise. Template learning models are presented that attribute this advantage of fixed over twin noise either to fixed memory templates' reducing uncertainty by incorporation of the noise or to the introduction, by the learning process itself, of more variability in the twin noise condition. Quantitative predictions of the template learning process show that it contributes to the accelerating nonlinear increase in performance with signal amplitude at low signal-to-noise ratios.

  7. Temperature field determination in slabs, circular plates and spheres with saw tooth heat generating sources

    NASA Astrophysics Data System (ADS)

    Diestra Cruz, Heberth Alexander

    The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.

  8. Effect of membrane microheterogeneity and domain size on fluorescence resonance energy transfer.

    PubMed

    Towles, Kevin B; Brown, Angela C; Wrenn, Steven P; Dan, Nily

    2007-07-15

    Studies of multicomponent membranes suggest lateral inhomogeneity in the form of membrane domains, but the size of small (nanoscale) domains in situ cannot be determined with current techniques. In this article, we present a model that enables extraction of membrane domain size from time-resolved fluorescence resonance energy transfer (FRET) data. We expand upon a classic approach to the infinite phase separation limit and formulate a model that accounts for the presence of disklike domains of finite dimensions within a two-dimensional infinite planar bilayer. The model was tested against off-lattice Monte Carlo calculations of a model membrane in the liquid-disordered (l(d)) and liquid-ordered (l(o)) coexistence regime. Simulated domain size was varied from 5 to 50 nm, and two fluorophores, preferentially partitioning into opposite phases, were randomly mixed to obtain the simulated time-resolved FRET data. The Monte Carlo data show clear differences in the efficiency of energy transfer as a function of domain size. The model fit of the data yielded good agreement for the domain size, especially in cases where the domain diameter is <20 nm. Thus, data analysis using the proposed model enables measurement of nanoscale membrane domains using time-resolved FRET.

  9. Bayesian structural inference for hidden processes.

    PubMed

    Strelioff, Christopher C; Crutchfield, James P

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ε-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ε-machines, irrespective of estimated transition probabilities. Properties of ε-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  10. Bayesian structural inference for hidden processes

    NASA Astrophysics Data System (ADS)

    Strelioff, Christopher C.; Crutchfield, James P.

    2014-04-01

    We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian structural inference (BSI) relies on a set of candidate unifilar hidden Markov model (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological ɛ-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be ɛ-machines, irrespective of estimated transition probabilities. Properties of ɛ-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSI's effectiveness in estimating a process's randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.

  11. Possible disruption of remote viewing by complex weak magnetic fields around the stimulus site and the possibility of accessing real phase space: a pilot study.

    PubMed

    Koren, S A; Persinger, M A

    2002-12-01

    In 2002 Persinger, Roll, Tiller, Koren, and Cook considered whether there are physical processes by which recondite information exists within the space and time of objects or events. The stimuli that compose this information might be directly detected within the whole brain without being processed by the typical sensory modalities. We tested the artist Ingo Swann who can reliably draw and describe randomly selected photographs sealed in envelopes in another room. In the present experiment the photographs were immersed continuously in repeated presentations (5 times per sec.) of one of two types of computer-generated complex magnetic field patterns whose intensities were less than 20 nT over most of the area. WINDOWS-generated but not DOS-generated patterns were associated with a marked decrease in Mr. Swann's accuracy. Whereas the DOS software generated exactly the same pattern, WINDOWS software phase-modulated the actual wave form resulting in an infinite bandwidth and complexity. We suggest that information obtained by processes attributed to "paranormal" phenomena have physical correlates that can be masked by weak, infinitely variable magnetic fields.

  12. A paradox of cumulative culture.

    PubMed

    Kobayashi, Yutaka; Wakano, Joe Yuichiro; Ohtsuki, Hisashi

    2015-08-21

    Culture can grow cumulatively if socially learnt behaviors are improved by individual learning before being passed on to the next generation. Previous authors showed that this kind of learning strategy is unlikely to be evolutionarily stable in the presence of a trade-off between learning and reproduction. This is because culture is a public good that is freely exploited by any member of the population in their model (cultural social dilemma). In this paper, we investigate the effect of vertical transmission (transmission from parents to offspring), which decreases the publicness of culture, on the evolution of cumulative culture in both infinite and finite population models. In the infinite population model, we confirm that culture accumulates largely as long as transmission is purely vertical. It turns out, however, that introduction of even slight oblique transmission drastically reduces the equilibrium level of culture. Even more surprisingly, if the population size is finite, culture hardly accumulates even under purely vertical transmission. This occurs because stochastic extinction due to random genetic drift prevents a learning strategy from accumulating enough culture. Overall, our theoretical results suggest that introducing vertical transmission alone does not really help solve the cultural social dilemma problem. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. RANDOM EVOLUTIONS, MARKOV CHAINS, AND SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

    PubMed Central

    Griego, R. J.; Hersh, R.

    1969-01-01

    Several authors have considered Markov processes defined by the motion of a particle on a fixed line with a random velocity1, 6, 8, 10 or a random diffusivity.5, 12 A “random evolution” is a natural but apparently new generalization of this notion. In this note we hope to show that this concept leads to simple and powerful applications of probabilistic tools to initial-value problems of both parabolic and hyperbolic type. We obtain existence theorems, representation theorems, and asymptotic formulas, both old and new. PMID:16578690

  14. Are There Differences in Gait Mechanics in Patients With A Fixed Versus Mobile Bearing Total Ankle Arthroplasty? A Randomized Trial.

    PubMed

    Queen, Robin M; Franck, Christopher T; Schmitt, Daniel; Adams, Samuel B

    2017-10-01

    Total ankle arthroplasty (TAA) is an alternative to arthrodesis, but no randomized trial has examined whether a fixed bearing or mobile bearing implant provides improved gait mechanics. We wished to determine if fixed- or mobile-bearing TAA results in a larger improvement in pain scores and gait mechanics from before surgery to 1 year after surgery, and to quantify differences in outcomes using statistical analysis and report the standardized effect sizes for such comparisons. Patients with end-stage ankle arthritis who were scheduled for TAA between November 2011 and June 2013 (n = 40; 16 men, 24 women; average age, 63 years; age range, 35-81 years) were prospectively recruited for this study from a single foot and ankle orthopaedic clinic. During this period, 185 patients underwent TAA, with 144 being eligible to participate in this study. Patients were eligible to participate if they were able to meet all study inclusion criteria, which were: no previous diagnosis of rheumatoid arthritis, a contralateral TAA, bilateral ankle arthritis, previous revision TAA, an ankle fusion revision, or able to walk without the use of an assistive device, weight less than 250 pounds (114 kg), a sagittal or coronal plane deformity less than 15°, no presence of avascular necrosis of the distal tibia, no current neuropathy, age older than 35 years, no history of a talar neck fracture, or an avascular talus. Of the 144 eligible patients, 40 consented to participate in our randomized trial. These 40 patients were randomly assigned to either the fixed (n = 20) or mobile bearing implant group (n = 20). Walking speed, bilateral peak dorsiflexion angle, peak plantar flexion angle, sagittal plane ankle ROM, peak ankle inversion angle, peak plantar flexion moment, peak plantar flexion power during stance, peak weight acceptance, and propulsive vertical ground reaction force were analyzed during seven self-selected speed level walking trials for 33 participants using an eight-camera motion analysis system and four force plates. Seven patients were not included in the analysis owing to cancelled surgery (one from each group) and five were lost to followup (four with fixed bearing and one with mobile bearing implants). A series of effect-size calculations and two-sample t-tests comparing postoperative and preoperative increases in outcome variables between implant types were used to determine the differences in the magnitude of improvement between the two patient cohorts from before surgery to 1 year after surgery. The sample size in this study enabled us to detect a standardized shift of 1.01 SDs between group means with 80% power and a type I error rate of 5% for all outcome variables in the study. This randomized trial did not reveal any differences in outcomes between the two implant types under study at the sample size collected. In addition to these results, effect size analysis suggests that changes in outcome differ between implant types by less than 1 SD. Detection of the largest change score or observed effect (propulsive vertical ground reaction force [Fixed: 0.1 ± 0.1; 0.0-1.0; Mobile: 0.0 ± 0.1; 0.0-0.0; p = 0.0.051]) in this study would require a future trial to enroll 66 patients. However, the smallest change score or observed effect (walking speed [Fixed: 0.2 ± 0.3; 0.1-0.4; Mobile: 0.2 ± 0.3; 0.0-0.3; p = 0.742]) requires a sample size of 2336 to detect a significant difference with 80% power at the observed effect sizes. To our knowledge, this is the first randomized study to report the observed effect size comparing improvements in outcome measures between fixed and mobile bearing implant types. This study was statistically powered to detect large effects and descriptively analyze observed effect sizes. Based on our results there were no statistically or clinically meaningful differences between the fixed and mobile bearing implants when examining gait mechanics and pain 1 year after TAA. Level II, therapeutic study.

  15. Anomalous diffusion on a random comblike structure

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Kiefer, James E.; Weiss, George H.

    1987-08-01

    We have recently studied a random walk on a comblike structure as an analog of diffusion on a fractal structure. In our earlier work, the comb was assumed to have a deterministic structure, the comb having teeth of infinite length. In the present paper we study diffusion on a one-dimensional random comb, the length of whose teeth are random variables with an asymptotic stable law distribution φ(L)~L-(1+γ) where 0<γ<=1. Two mean-field methods are used for the analysis, one based on the continuous-time random walk, and the second a self-consistent scaling theory. Both lead to the same conclusions. We find that the diffusion exponent characterizing the mean-square displacement along the backbone of the comb is dw=4/(1+γ) for γ<1 and dw=2 for γ>=1. The probability of being at the origin at time t is P0(t)~t-ds/2 for large t with ds=(3-γ)/2 for γ<1 and ds=1 for γ>1. When a field is applied along the backbone of the comb the diffusion exponent is dw=2/(1+γ) for γ<1 and dw=1 for γ>=1. The theoretical results are confirmed using the exact enumeration method.

  16. Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane

    DTIC Science & Technology

    2014-07-01

    Electromagnetic Scattering by Multiple Cavities Embedded in the Infinite 2D Ground Plane Peijun Li 1 and Aihua W. Wood 2 1 Department of...of the electromagnetic wave scattering by multiple open cavities, which are embedded in an infinite two-dimensional ground plane . By introducing a...equation, variational formulation. I. INTRODUCTION A cavity is referred to as a local perturbation of the infinite ground plane . Given the cavity

  17. Asymptotic Effect of Misspecification in the Random Part of the Multilevel Model

    ERIC Educational Resources Information Center

    Berkhof, Johannes; Kampen, Jarl Kennard

    2004-01-01

    The authors examine the asymptotic effect of omitting a random coefficient in the multilevel model and derive expressions for the change in (a) the variance components estimator and (b) the estimated variance of the fixed effects estimator. They apply the method of moments, which yields a closed form expression for the omission effect. In…

  18. Effect of α-stable sorptive waiting times on microbial transport in microflow cells

    NASA Astrophysics Data System (ADS)

    Bonilla, F. Alejandro; Cushman, John H.

    2002-09-01

    The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mechanisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space. Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This detailed information may be incorporated into nonequilibrium transport-sorption models that capture the heterogeneity in reaction times caused by varying chemical conditions. We have carried out particle (Brownian dynamic) simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a microflow cell. The adhesive heterogeneity is included by introducing adhesive reaction time (understood as time spent at a solid boundary once the particle collides against it) as a random variable that can be infinite (irreversible sorption) or vary over a wide range of values. This is made possible by treating this reaction time random variable as having an α-stable probability distribution whose properties (e.g., infinite moments and long tails) are distinctive from the standard exponential distribution commonly used to model reversible sorption. In addition, the α-stable distribution is renormalizable and hence upscalable to complex porous media. Simulations are performed in a pressure-driven microflow cell. Bacteria motility (driven by an effective Brownian force) acts as a dispersive component in the convective field. Upon collision with the pore wall, bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor dispersion, the ratio of the channel half width b to the Brownian bacteria motility coefficient (D0 or dispersion coefficient) tb=b2/D0 controls the different adhesion regimes along with the value of α. Universal scalings (with respect to dimensionless time t*=t/tb) for the mean position, =V*efftθ*, and mean-square displacement, <ΔX2>=D*efftγ* exist for long-time dispersion and the coefficients were obtained. The model can account for a great many sorptive processes including reversible and irreversible sorption, and sub- and superdispersive regimes with just a few parameters.

  19. Inelastic collapse and near-wall localization of randomly accelerated particles.

    PubMed

    Belan, S; Chernykh, A; Lebedev, V; Falkovich, G

    2016-05-01

    Inelastic collapse of stochastic trajectories of a randomly accelerated particle moving in half-space z>0 has been discovered by McKean [J. Math. Kyoto Univ. 2, 227 (1963)] and then independently rediscovered by Cornell et al. [Phys. Rev. Lett. 81, 1142 (1998)PRLTAO0031-900710.1103/PhysRevLett.81.1142]. The essence of this phenomenon is that the particle arrives at the wall at z=0 with zero velocity after an infinite number of inelastic collisions if the restitution coefficient β of particle velocity is smaller than the critical value β_{c}=exp(-π/sqrt[3]). We demonstrate that inelastic collapse takes place also in a wide class of models with spatially inhomogeneous random forcing and, what is more, that the critical value β_{c} is universal. That class includes an important case of inertial particles in wall-bounded random flows. To establish how inelastic collapse influences the particle distribution, we derive the exact equilibrium probability density function ρ(z,v) for the particle position and velocity. The equilibrium distribution exists only at β<β_{c} and indicates that inelastic collapse does not necessarily imply near-wall localization.

  20. Drift as a mechanism for cultural change: an example from baby names.

    PubMed Central

    Hahn, Matthew W; Bentley, R Alexander

    2003-01-01

    In the social sciences, there is currently no consensus on the mechanism by which cultural elements come and go in human society. For elements that are value-neutral, an appropriate null model may be one of random copying between individuals in the population. We show that the frequency distributions of baby names used in the United States in each decade of the twentieth century, for both males and females, obey a power law that is maintained over 100 years even though the population is growing, names are being introduced and lost every decade and large changes in the frequencies of specific names are common. We show that these distributions are satisfactorily explained by a simple process in which individuals randomly copy names from each other, a process that is analogous to the infinite-allele model of population genetics with random genetic drift. By its simplicity, this model provides a powerful null hypothesis for cultural change. It further explains why a few elements inevitably become highly popular, even if they have no intrinsic superiority over alternatives. Random copying could potentially explain power law distributions in other cultural realms, including the links on the World Wide Web. PMID:12952655

  1. Efficacy of a new sealant to prevent white spot lesions during fixed orthodontic treatment : A 12-month, single-center, randomized controlled clinical trial.

    PubMed

    Hammad, Shaza M; Knösel, Michael

    2016-11-01

    White spot lesions (WSLs) are an undesirable side effect of fixed orthodontic appliance therapy and are reported to occur in 2-96 % of orthodontic patients. In this study, the efficacy of a new sealant to prevent WSLs during fixed orthodontic treatment was compared to a control group that did not receive sealant. For this 2-arm parallel-group randomized trial, 50 subjects aged 12-18 years (mean age 14.57 ± 2.04 years) were recruited from the orthodontics department at Mansoura University, Egypt. Eligibility criteria were no restorations, no active WSLs or caries, and adequate oral hygiene. Subjects were randomized in a 1:1 ratio to one of the two arms prior to undergoing fixed orthodontic treatment, namely a single application of SeLECT Defense™ sealant during the bracketing appointment or no sealant (control arm). Instructions and dentifrices for local home fluoridation regimen were identical in both groups. Oral hygiene was assessed using the Approximal Plaque Index (API) at specified time intervals. Dental photographs were taken for blinded WSLs assessment; inter- and intra-operator error were also calculated. Categorical data were tested using the χ 2 test, and a logistic regression model was adopted to detect associations between decalcification (WSLs), sealant application, and oral hygiene status. Only excellent or good oral hygiene were independent prognostic factors for preventing severe WSLs (p = 0.035). No significant effect on caries incidence was observed for the sealant. In combination with adequate oral hygiene SeLECT Defense™ helps to reduced the frequency of WSLs. However, the sealat showed no significant effect as sole preventive strategy.

  2. Antepartum use of Epi-No birth trainer for preventing perineal trauma: systematic review.

    PubMed

    Brito, Luiz Gustavo Oliveira; Ferreira, Cristine Homsi Jorge; Duarte, Geraldo; Nogueira, Antonio Alberto; Marcolin, Alessandra Cristina

    2015-10-01

    In this systematic review we aimed to assess if the Epi-No birth trainer used during antepartum could prevent perineal trauma in nulliparous women. We searched CENTRAL, MEDLINE, EMBASE, Scielo, and Conference abstracts, looking for randomized controlled studies (RCT). High heterogeneity (i(2) > 50 %) was corrected with random models. All studies were analyzed according to their quality and risk of bias. Nulliparous women or women whose previous pregnancy ended before 21 weeks' gestation were included and the main outcome measures were: episiotomy rates, perineal tears, severe (3rd/4th) perineal tears, and intact perineum. Five studies were included (1,369 participants) for systematic review and two of them (932 participants) were eligible for meta-analysis. Epi-No did not reduce episiotomy rates (RR 0.92 [95%CI 0.75-1.13], n = 710, p =0.44; two studies; fixed model) and second stage of labor (MD -12.50 [95%CI -29.62, -4.62], n = 162, p = 0.54; one study; fixed model), and did not increase intact perineum (RR 1.15 [95 % CI 0.81-1.64], n = 705, p = 0.43; two studies; random model). No influence of Epi-No on reducing all perineal tears (RR 0.99 [95%CI 0.84-1.17], n = 705, p = 0.93, two studies; fixed model) or severe (3rd/4th) perineal tears (RR 1.31 [95%CI 0.72-2.37], n = 705, p = 0.38, two studies; fixed model). Mean birthweight of the Epi-No group was higher than that of the control group in both studies, with no statistical significance. Epi-No birth trainer is a device that did not reduce episiotomy rates and had no influence on reducing perineal tears.

  3. Accelerated sampling by infinite swapping of path integral molecular dynamics with surface hopping

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Zhou, Zhennan

    2018-02-01

    To accelerate the thermal equilibrium sampling of multi-level quantum systems, the infinite swapping limit of a recently proposed multi-level ring polymer representation is investigated. In the infinite swapping limit, the ring polymer evolves according to an averaged Hamiltonian with respect to all possible surface index configurations of the ring polymer and thus connects the surface hopping approach to the mean-field path-integral molecular dynamics. A multiscale integrator for the infinite swapping limit is also proposed to enable efficient sampling based on the limiting dynamics. Numerical results demonstrate the huge improvement of sampling efficiency of the infinite swapping compared with the direct simulation of path-integral molecular dynamics with surface hopping.

  4. The infinite limit as an eliminable approximation for phase transitions

    NASA Astrophysics Data System (ADS)

    Ardourel, Vincent

    2018-05-01

    It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.

  5. Using re-randomization to increase the recruitment rate in clinical trials - an assessment of three clinical areas.

    PubMed

    Kahan, Brennan C

    2016-12-13

    Patient recruitment in clinical trials is often challenging, and as a result, many trials are stopped early due to insufficient recruitment. The re-randomization design allows patients to be re-enrolled and re-randomized for each new treatment episode that they experience. Because it allows multiple enrollments for each patient, this design has been proposed as a way to increase the recruitment rate in clinical trials. However, it is unknown to what extent recruitment could be increased in practice. We modelled the expected recruitment rate for parallel-group and re-randomization trials in different settings based on estimates from real trials and datasets. We considered three clinical areas: in vitro fertilization, severe asthma exacerbations, and acute sickle cell pain crises. We compared the two designs in terms of the expected time to complete recruitment, and the sample size recruited over a fixed recruitment period. Across the different scenarios we considered, we estimated that re-randomization could reduce the expected time to complete recruitment by between 4 and 22 months (relative reductions of 19% and 45%), or increase the sample size recruited over a fixed recruitment period by between 29% and 171%. Re-randomization can increase recruitment most for trials with a short follow-up period, a long trial recruitment duration, and patients with high rates of treatment episodes. Re-randomization has the potential to increase the recruitment rate in certain settings, and could lead to quicker and more efficient trials in these scenarios.

  6. Total curvature and total torsion of knotted random polygons in confinement

    NASA Astrophysics Data System (ADS)

    Diao, Yuanan; Ernst, Claus; Rawdon, Eric J.; Ziegler, Uta

    2018-04-01

    Knots in nature are typically confined spatially. The confinement affects the possible configurations, which in turn affects the spectrum of possible knot types as well as the geometry of the configurations within each knot type. The goal of this paper is to determine how confinement, length, and knotting affect the total curvature and total torsion of random polygons. Previously published papers have investigated these effects in the unconstrained case. In particular, we analyze how the total curvature and total torsion are affected by (1) varying the length of polygons within a fixed confinement radius and (2) varying the confinement radius of polygons with a fixed length. We also compare the total curvature and total torsion of groups of knots with similar complexity (measured as crossing number). While some of our results fall in line with what has been observed in the studies of the unconfined random polygons, a few surprising results emerge from our study, showing some properties that are unique due to the effect of knotting in confinement.

  7. Extending existing structural identifiability analysis methods to mixed-effects models.

    PubMed

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Statistical mechanics model for the emergence of consensus

    NASA Astrophysics Data System (ADS)

    Raffaelli, Giacomo; Marsili, Matteo

    2005-07-01

    The statistical properties of pairwise majority voting over S alternatives are analyzed in an infinite random population. We first compute the probability that the majority is transitive (i.e., that if it prefers A to B to C , then it prefers A to C ) and then study the case of an interacting population. This is described by a constrained multicomponent random field Ising model whose ferromagnetic phase describes the emergence of a strong transitive majority. We derive the phase diagram, which is characterized by a tricritical point and show that, contrary to intuition, it may be more likely for an interacting population to reach consensus on a number S of alternatives when S increases. This effect is due to the constraint imposed by transitivity on voting behavior. Indeed if agents are allowed to express nontransitive votes, the agents’ interaction may decrease considerably the probability of a transitive majority.

  9. Emergent dynamics of Cucker-Smale particles under the effects of random communication and incompressible fluids

    NASA Astrophysics Data System (ADS)

    Ha, Seung-Yeal; Xiao, Qinghua; Zhang, Xiongtao

    2018-04-01

    We study the dynamics of infinitely many Cucker-Smale (C-S) flocking particles under the interplay of random communication and incompressible fluids. For the dynamics of an ensemble of flocking particles, we use the kinetic Cucker-Smale-Fokker-Planck (CS-FP) equation with a degenerate diffusion, whereas for the fluid component, we use the incompressible Navier-Stokes (N-S) equations. These two subsystems are coupled via the drag force. For this coupled model, we present the global existence of weak and strong solutions in Rd (d = 2 , 3). Under the extra regularity assumptions of the initial data, the unique solvability of strong solutions is also established in R2. In a large coupling regime and periodic spatial domain T2 : =R2 /Z2, we show that the velocities of C-S particles and fluids are asymptotically aligned to two constant velocities which may be different.

  10. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses

    PubMed Central

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E.; Gewaltig, Marc-Oliver; Einevoll, Gaute T.

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state. PMID:25400575

  11. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses.

    PubMed

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E; Gewaltig, Marc-Oliver; Einevoll, Gaute T

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state.

  12. Microdose GnRH Agonist Flare-Up versus Ultrashort GnRH Agonist Combined with Fixed GnRH Antagonist in Poor Responders of Assisted Reproductive Techniques Cycles

    PubMed Central

    Eftekhar, Maryam; Mohammadian, Farnaz; Yousefnejad, Fariba; Khani, Parisa

    2013-01-01

    Background: This study compares the microdose flare-up protocol to the ultrashort gonadotropinreleasing hormone (GnRH) agonist flare combined with the fixed multidose GnRH antagonist protocol in poor responders undergoing ovarian stimulation. Materials and Methods: In this randomized clinical trial, 120 women who were candidates for assisted reproductive techniques (ART) and had histories of one or more failed in vitro fertilization (IVF) cycles with three or fewer retrieved oocytes were prospectively randomized into two groups. Group I (60 patients) received the microdose flare-up regimen and group II (60 patients) received the ultrashort GnRH agonist combined with fixed GnRH antagonist. Results: There were no significant differences between the groups in the number of used gonadotropin ampoules (p=0.591), duration of stimulation (p=0.610), number of retrieved oocytes (p=0.802), fertilization rate (p=0.456), and the number of transferred embryos (p=0.954). The clinical pregnancy rates were statistically similar in group I (10%) compared with group II (13.3%, p=0.389). Conclusion: According to our results, there is no significant difference between these protocols for improving the ART outcome in poor responders. Additional prospective, randomized studies with more patients is necessary to determine the best protocol (Registration Number: IRCT201105096420N1). PMID:24520450

  13. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bui-Thanh, T.; Girolami, M.

    2014-11-01

    We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint technique. Various numerical results up to 1025 parameters are presented to demonstrate the ability of the RMHMC method in exploring the geometric structure of the problem to propose (almost) uncorrelated/independent samples that are far away from each other, and yet the acceptance rate is almost unity. The results also suggest that for the PDE models considered the proposed fixed metric RMHMC can attain almost as high a quality performance as the original RMHMC, i.e. generating (almost) uncorrelated/independent samples, while being two orders of magnitude less computationally expensive.

  14. A simple proof of a lemma of Coleman

    NASA Astrophysics Data System (ADS)

    Saikia, A.

    2001-03-01

    Let p be an odd prime. The results in this paper concern the units of the infinite extension of Qp generated by all p-power roots of unity. Letformula herewhere [mu]pn+1 denote the pn+1th roots of 1. Let [script p]n be the maximal ideal of the ring of integers of [Phi]n and let Un be the units congruent to 1 modulo [script p]n.Let [zeta]n be a fixed primitive pn+1th root of unity such that [zeta]pn = [zeta]n [minus sign] 1, [for all]n [gt-or-equal, slanted] 1. Put [pi]n = [zeta]n [minus sign] 1. Thus [pi]n is a local parameter for [Phi]n. Letformula hereKummer already exploited the obvious fact that every u0 [set membership] U0 can be written in the formformula herewhere f0(T) is some power series in Zp[[T

  15. de Sitter space as a tensor network: Cosmic no-hair, complementarity, and complexity

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Cao, ChunJun; Carroll, Sean M.; Chatwin-Davies, Aidan

    2017-12-01

    We investigate the proposed connection between de Sitter spacetime and the multiscale entanglement renormalization ansatz (MERA) tensor network, and ask what can be learned via such a construction. We show that the quantum state obeys a cosmic no-hair theorem: the reduced density operator describing a causal patch of the MERA asymptotes to a fixed point of a quantum channel, just as spacetimes with a positive cosmological constant asymptote to de Sitter space. The MERA is potentially compatible with a weak form of complementarity (local physics only describes single patches at a time, but the overall Hilbert space is infinite dimensional) or, with certain specific modifications to the tensor structure, a strong form (the entire theory describes only a single patch plus its horizon, in a finite-dimensional Hilbert space). We also suggest that de Sitter evolution has an interpretation in terms of circuit complexity, as has been conjectured for anti-de Sitter space.

  16. String theory of the Regge intercept.

    PubMed

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  17. High-energy zero-norm states and symmetries of string theory.

    PubMed

    Chan, Chuan-Tsung; Ho, Pei-Ming; Lee, Jen-Chi; Teraguchi, Shunsuke; Yang, Yi

    2006-05-05

    High-energy limit of zero-norm states in the old covariant first quantized spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed-angle behavior of four-point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to verify our results.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehesa, J.S.; Martinez-Finkelshtein, A.; Sorokin, V.N.

    The asymptotics of the Boltzmann-Shannon information entropy as well as the Renyi entropy for the quantum probability density of a single-particle system with a confining (i.e., bounded below) power-type potential V(x)=x{sup 2k} with k is a member of N and x is a member of R, is investigated in the position and momentum spaces within the semiclassical (WKB) approximation. It is found that for highly excited states both physical entropies, as well as their sum, have a logarithmic dependence on its quantum number not only when k=1 (harmonic oscillator), but also for any fixed k. As a by-product, the extremalmore » case k{yields}{infinity} (the infinite well potential) is also rigorously analyzed. It is shown that not only the position-space entropy has the same constant value for all quantum states, which is a known result, but also that the momentum-space entropy is constant for highly excited states.« less

  19. Argyres-Douglas theories, chiral algebras and wild Hitchin characters

    NASA Astrophysics Data System (ADS)

    Fredrickson, Laura; Pei, Du; Yan, Wenbin; Ye, Ke

    2018-01-01

    We use Coulomb branch indices of Argyres-Douglas theories on S 1 × L( k, 1) to quantize moduli spaces M_H of wild/irregular Hitchin systems. In particular, we obtain formulae for the "wild Hitchin characters" — the graded dimensions of the Hilbert spaces from quantization — for four infinite families of M_H , giving access to many interesting geometric and topological data of these moduli spaces. We observe that the wild Hitchin characters can always be written as a sum over fixed points in M_H under the U(1) Hitchin action, and a limit of them can be identified with matrix elements of the modular transform ST k S in certain two-dimensional chiral algebras. Although naturally fitting into the geometric Langlands program, the appearance of chiral algebras, which was known previously to be associated with Schur operators but not Coulomb branch operators, is somewhat surprising.

  20. Matrix models for the black hole information paradox

    NASA Astrophysics Data System (ADS)

    Iizuka, Norihiro; Okuda, Takuya; Polchinski, Joseph

    2010-02-01

    We study various matrix models with a charge-charge interaction as toy models of the gauge dual of the AdS black hole. These models show a continuous spectrum and power-law decay of correlators at late time and infinite N, implying information loss in this limit. At finite N, the spectrum is discrete and correlators have recurrences, so there is no information loss. We study these models by a variety of techniques, such as Feynman graph expansion, loop equations, and sum over Young tableaux, and we obtain explicitly the leading 1/ N 2 corrections for the spectrum and correlators. These techniques are suggestive of possible dual bulk descriptions. At fixed order in 1/ N 2 the spectrum remains continuous and no recurrence occurs, so information loss persists. However, the interchange of the long-time and large- N limits is subtle and requires further study.

  1. Conformal Bootstrap in Mellin Space

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh; Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2017-02-01

    We propose a new approach towards analytically solving for the dynamical content of conformal field theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the ɛ expansion of the Wilson-Fisher fixed point by reproducing anomalous dimensions and, strikingly, obtaining OPE coefficients to higher orders in ɛ than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement between certain observables in the 3D Ising model and the precise numerical values that have been recently obtained.

  2. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  3. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  4. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2017-12-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  5. Electromagnetic Scattering by Fully Ordered and Quasi-Random Rigid Particulate Samples

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Janna M.; Mackowski, Daniel W.

    2016-01-01

    In this paper we have analyzed circumstances under which a rigid particulate sample can behave optically as a true discrete random medium consisting of particles randomly moving relative to each other during measurement. To this end, we applied the numerically exact superposition T-matrix method to model far-field scattering characteristics of fully ordered and quasi-randomly arranged rigid multiparticle groups in fixed and random orientations. We have shown that, in and of itself, averaging optical observables over movements of a rigid sample as a whole is insufficient unless it is combined with a quasi-random arrangement of the constituent particles in the sample. Otherwise, certain scattering effects typical of discrete random media (including some manifestations of coherent backscattering) may not be accurately replicated.

  6. Document page structure learning for fixed-layout e-books using conditional random fields

    NASA Astrophysics Data System (ADS)

    Tao, Xin; Tang, Zhi; Xu, Canhui

    2013-12-01

    In this paper, a model is proposed to learn logical structure of fixed-layout document pages by combining support vector machine (SVM) and conditional random fields (CRF). Features related to each logical label and their dependencies are extracted from various original Portable Document Format (PDF) attributes. Both local evidence and contextual dependencies are integrated in the proposed model so as to achieve better logical labeling performance. With the merits of SVM as local discriminative classifier and CRF modeling contextual correlations of adjacent fragments, it is capable of resolving the ambiguities of semantic labels. The experimental results show that CRF based models with both tree and chain graph structures outperform the SVM model with an increase of macro-averaged F1 by about 10%.

  7. Singular Behavior of the Leading Lyapunov Exponent of a Product of Random {2 × 2} Matrices

    NASA Astrophysics Data System (ADS)

    Genovese, Giuseppe; Giacomin, Giambattista; Greenblatt, Rafael Leon

    2017-05-01

    We consider a certain infinite product of random {2 × 2} matrices appearing in the solution of some 1 and 1 + 1 dimensional disordered models in statistical mechanics, which depends on a parameter ɛ > 0 and on a real random variable with distribution {μ}. For a large class of {μ}, we prove the prediction by Derrida and Hilhorst (J Phys A 16:2641, 1983) that the Lyapunov exponent behaves like {C ɛ^{2 α}} in the limit {ɛ \\searrow 0}, where {α \\in (0,1)} and {C > 0} are determined by {μ}. Derrida and Hilhorst performed a two-scale analysis of the integral equation for the invariant distribution of the Markov chain associated to the matrix product and obtained a probability measure that is expected to be close to the invariant one for small {ɛ}. We introduce suitable norms and exploit contractivity properties to show that such a probability measure is indeed close to the invariant one in a sense that implies a suitable control of the Lyapunov exponent.

  8. An Analytical Framework for Fast Estimation of Capacity and Performance in Communication Networks

    DTIC Science & Technology

    2012-01-25

    standard random graph (due to Erdos- Renyi ) in the regime where the average degrees remain fixed (and above 1) and the number of nodes get large, is not...abs/1010.3305 (Oct 2010). [6] O. Narayan, I. Saniee, G. H. Tucci, “Lack of Spectral Gap and Hyperbolicity in Asymptotic Erdös- Renyi Random Graphs

  9. Random preferences towards bioenergy environmental externalities: a case study of woody biomass based electricity in the Southern United States

    Treesearch

    Andres Susaeta; Pankaj Lal; Janaki Alavalapati; Evan Mercer

    2011-01-01

    This paper contrasts alternate methodological approaches of investigating public preferences, the random parameter logit (RPL) where tastes and preferences of respondents are assumed to be heterogeneous and the conditional logit (CL) approach where tastes and preferences remain fixed for individuals. We conducted a choice experiment to assess preferences for woody...

  10. Modeling of Academic Achievement of Primary School Students in Ethiopia Using Bayesian Multilevel Approach

    ERIC Educational Resources Information Center

    Sebro, Negusse Yohannes; Goshu, Ayele Taye

    2017-01-01

    This study aims to explore Bayesian multilevel modeling to investigate variations of average academic achievement of grade eight school students. A sample of 636 students is randomly selected from 26 private and government schools by a two-stage stratified sampling design. Bayesian method is used to estimate the fixed and random effects. Input and…

  11. The Acute Effect of Methylphenidate in Brazilian Male Children and Adolescents with ADHD: A Randomized Clinical Trial

    ERIC Educational Resources Information Center

    Szobot, C. M.; Ketzer, C.; Parente, M. A.; Biederman, J.; Rohde, L. A.

    2004-01-01

    Objective: To evaluate the acute efficacy of methylphenidate (MPH) in Brazilian male children and adolescents with ADHD. Method: In a 4-day, double-blind, placebo-controlled, randomized, fix dose escalating, parallel-group trial, 36 ADHD children and adolescents were allocated to two groups: MPH (n = 19) and placebo (n = 17). Participants were…

  12. Quantum transverse-field Ising model on an infinite tree from matrix product states

    NASA Astrophysics Data System (ADS)

    Nagaj, Daniel; Farhi, Edward; Goldstone, Jeffrey; Shor, Peter; Sylvester, Igor

    2008-06-01

    We give a generalization to an infinite tree geometry of Vidal’s infinite time-evolving block decimation (iTEBD) algorithm [G. Vidal, Phys. Rev. Lett. 98, 070201 (2007)] for simulating an infinite line of quantum spins. We numerically investigate the quantum Ising model in a transverse field on the Bethe lattice using the matrix product state ansatz. We observe a second order phase transition, with certain key differences from the transverse field Ising model on an infinite spin chain. We also investigate a transverse field Ising model with a specific longitudinal field. When the transverse field is turned off, this model has a highly degenerate ground state as opposed to the pure Ising model whose ground state is only doubly degenerate.

  13. Infinity: The Twilight Zone of Mathematics.

    ERIC Educational Resources Information Center

    Love, William P.

    1989-01-01

    The theorems and proofs presented are designed to enhance student understanding of the theory of infinity as developed by Cantor and others. Three transfinite numbers are defined to express the cardinality of infinite algebraic sets, infinite sets of geometric points and infinite sets of functions. (DC)

  14. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    NASA Astrophysics Data System (ADS)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  15. 77 FR 49411 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-16

    ....) Exclusive Economic Zone (EEZ)). Information about revenues, variable and fixed costs, capital investment and other socioeconomic information is collected from a random sample of permit holders. This data...

  16. Cellular convection in a chamber with a warm surface raft

    NASA Astrophysics Data System (ADS)

    Whitehead, J. A.; Shea, Erin; Behn, Mark D.

    2011-10-01

    We calculate velocity and temperature fields for Rayleigh-Benard convection in a chamber with a warm raft that floats along the top surface for Rayleigh number up to Ra = 20 000. Two-dimensional, infinite Prandtl number, Boussinesq approximation equations are numerically advanced in time from a motionless state in a chamber of length L' and depth D'. We consider cases with an insulated raft and a raft of fixed temperature. Either oscillatory or stationary flow exists. In the case with an insulated raft over a fluid, there are only three parameters that govern the system: Rayleigh number (Ra), scaled chamber length (L = L'/D'), and scaled raft width (W). For W = 0 and L = 1, linear theory shows that the marginal state without a raft is at a Rayleigh number of 23π4=779.3, but we find that for the smallest W (determined by numerical grid size) the raft approaches the center monotonically in time for Ra<790. For 790871. For larger raft widths, there is a range of W that produces raft oscillation at each Ra up to 20 000. Rafts in longer cavities (L = 2 and 4) have almost no oscillatory behavior. With a raft of temperature set to different values of Tr rather than insulating, a fixed Rayleigh number Ra =20000, a square chamber (L = 1), fixed raft width, and with internal heat generation, there are two ranges of oscillating flow.

  17. Improving the Instruction of Infinite Series

    ERIC Educational Resources Information Center

    Lindaman, Brian; Gay, A. Susan

    2012-01-01

    Calculus instructors struggle to teach infinite series, and students have difficulty understanding series and related concepts. Four instructional strategies, prominently used during the calculus reform movement, were implemented during a 3-week unit on infinite series in one class of second-semester calculus students. A description of each…

  18. Prevention and Treatment of White Spot Lesions During and After Treatment with Fixed Orthodontic Appliances: a Systematic Literature Review.

    PubMed

    Lopatiene, Kristina; Borisovaite, Marija; Lapenaite, Egle

    2016-01-01

    The aim of the systematic literature review is to update the evidence for the prevention of white spot lesions, using materials containing fluoride and/or casein phosphopeptide-amorphous calcium phosphate during and after treatment with fixed orthodontic appliances. Information search for controlled studies on humans published between January 2008 and February 2016 was performed in PubMed, ScienceDirect, Embase, The Cochrane Library. Inclusion criteria were: the English language, study on humans, patients undergoing orthodontic treatment with fixed appliances, randomized or quasi-randomized controlled clinical studies fluoride-containing product or casein derivates used throughout the appliance therapy or straightaway after debonding. 326 articles were reviewed (Embase 141, PubMed 129, ScienceDirect 41, Cochrane 15). Twelve clinical studies fulfilled all inclusion criteria. Use of fluoridated toothpaste had a remineralizing effect on white spot lesions (WSLs) (P < 0.05); fluoride varnish and casein supplements were effective in prevention and early treatment of WSLs (P < 0.05). Early detection of white spot lesions during orthodontic treatment would allow implementing preventive measures to control the demineralization process before lesions progress. The systemic review has showed that the usage of fluoride and casein supplements in ameliorating white spot lesions during and after fixed orthodontic treatment is significantly effective. However the use of casein phosphopeptide-amorphous calcium phosphate can be more beneficial than fluoride rinse in the reduction of demineralization spots.

  19. A meta-analysis of MTHFR C677T and A1298C polymorphisms and risk of acute lymphoblastic leukemia in children.

    PubMed

    Yan, Jingrong; Yin, Ming; Dreyer, ZoAnn E; Scheurer, Michael E; Kamdar, Kala; Wei, Qingyi; Okcu, M Fatih

    2012-04-01

    Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms have been implicated in childhood acute lymphoblastic leukemia (ALL) risk, but previously published studies were inconsistent and recent meta-analyses were not adequate. In a meta-analysis of 21 publications with 4,706 cases and 7,414 controls, we used more stringent inclusion method and summarized data on associations between MTHFR C677T and A1298C polymorphisms and childhood ALL risk. We found an overall association between 677T variant genotypes and reduced childhood ALL risk. Specifically, in the dominant genetic model, an association was found in a fixed-effect (TT + CT vs. CC: OR = 0.92; 95% CI = 0.85-0.99) but not random-effect model, whereas such an association was observed in both homozygote genetic model (TT vs. CC: OR = 0.80; 95% CI = 0.70-0.93 by fixed effects and OR = 0.78; 95% CI = 0.65-0.93 by random effects) and recessive genetic model (TT vs. CC + CT: OR = 0.83; 95% CI = 0.72-0.95 by fixed effects and OR = 0.84; 95% CI = 0.73-0.97 by random effects). These associations were also observed in subgroups by ethnicity: for Asians in all models except for the dominant genetic model by random effect and for Caucasians in all models except for the recessive genetic model. However, the A1298C polymorphism did not appear to have an effect on childhood ALL risk. These results suggest that the MTHFR C677T, but not A1298C, polymorphism is a potential biomarker for childhood ALL risk. Copyright © 2011 Wiley Periodicals, Inc.

  20. Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom

    NASA Astrophysics Data System (ADS)

    Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene

    2006-03-01

    Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).

  1. Random walks with long-range steps generated by functions of Laplacian matrices

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.; Michelitsch, T. M.; Collet, B. A.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2018-04-01

    In this paper, we explore different Markovian random walk strategies on networks with transition probabilities between nodes defined in terms of functions of the Laplacian matrix. We generalize random walk strategies with local information in the Laplacian matrix, that describes the connections of a network, to a dynamic determined by functions of this matrix. The resulting processes are non-local allowing transitions of the random walker from one node to nodes beyond its nearest neighbors. We find that only two types of Laplacian functions are admissible with distinct behaviors for long-range steps in the infinite network limit: type (i) functions generate Brownian motions, type (ii) functions Lévy flights. For this asymptotic long-range step behavior only the lowest non-vanishing order of the Laplacian function is relevant, namely first order for type (i), and fractional order for type (ii) functions. In the first part, we discuss spectral properties of the Laplacian matrix and a series of relations that are maintained by a particular type of functions that allow to define random walks on any type of undirected connected networks. Once described general properties, we explore characteristics of random walk strategies that emerge from particular cases with functions defined in terms of exponentials, logarithms and powers of the Laplacian as well as relations of these dynamics with non-local strategies like Lévy flights and fractional transport. Finally, we analyze the global capacity of these random walk strategies to explore networks like lattices and trees and different types of random and complex networks.

  2. Age-related differences in gap detection: effects of task difficulty and cognitive ability.

    PubMed

    Harris, Kelly C; Eckert, Mark A; Ahlstrom, Jayne B; Dubno, Judy R

    2010-06-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Age-related differences in gap detection: Effects of task difficulty and cognitive ability

    PubMed Central

    Harris, Kelly C.; Eckert, Mark A.; Ahlstrom, Jayne B.; Dubno, Judy R.

    2009-01-01

    Differences in gap detection for younger and older adults have been shown to vary with the complexity of the task or stimuli, but the factors that contribute to these differences remain unknown. To address this question, we examined the extent to which age-related differences in processing speed and workload predicted age-related differences in gap detection. Gap detection thresholds were measured for 10 younger and 11 older adults in two conditions that varied in task complexity but used identical stimuli: (1) gap location fixed at the beginning, middle, or end of a noise burst and (2) gap location varied randomly from trial to trial from the beginning, middle, or end of the noise. We hypothesized that gap location uncertainty would place increased demands on cognitive and attentional resources and result in significantly higher gap detection thresholds for older but not younger adults. Overall, gap detection thresholds were lower for the middle location as compared to beginning and end locations and were lower for the fixed than the random condition. In general, larger age-related differences in gap detection were observed for more challenging conditions. That is, gap detection thresholds for older adults were significantly larger for the random condition than for the fixed condition when the gap was at the beginning and end locations but not the middle. In contrast, gap detection thresholds for younger adults were not significantly different for the random and fixed condition at any location. Subjective ratings of workload indicated that older adults found the gap-detection task more mentally demanding than younger adults. Consistent with these findings, results of the Purdue Pegboard and Connections tests revealed age-related slowing of processing speed. Moreover, age group differences in workload and processing speed predicted gap detection in younger and older adults when gap location varied from trial to trial; these associations were not observed when gap location remained constant across trials. Taken together, these results suggest that age-related differences in complex measures of auditory temporal processing may be explained, in part, by age-related deficits in processing speed and attention. PMID:19800958

  4. Envisioning the Infinite by Projecting Finite Properties

    ERIC Educational Resources Information Center

    Ely, Robert

    2011-01-01

    We analyze interviews with 24 post-secondary students as they reason about infinite processes in the context of the tricky Tennis Ball Problem. By metaphorically projecting various properties from the finite states such as counting and indexing, participants envisioned widely varying final states for the infinite process. Depending on which…

  5. Understanding the Behaviour of Infinite Ladder Circuits

    ERIC Educational Resources Information Center

    Ucak, C.; Yegin, K.

    2008-01-01

    Infinite ladder circuits are often encountered in undergraduate electrical engineering and physics curricula when dealing with series and parallel combination of impedances, as a part of filter design or wave propagation on transmission lines. The input impedance of such infinite ladder circuits is derived by assuming that the input impedance does…

  6. Impact of metal and ceramic fixed orthodontic appliances on judgments of beauty and other face-related attributes.

    PubMed

    Fonseca, Lílian Martins; Araújo, Telma Martins de; Santos, Aline Rôde; Faber, Jorge

    2014-02-01

    Physical attributes, behavior, and personal ornaments exert a direct influence on how a person's beauty and personality are judged. The aim of this study was to investigate how people who wear a fixed orthodontic appliance see themselves and are seen by others in social settings. A total of 60 adults evaluated their own smiling faces in 3 different scenarios: without a fixed orthodontic appliance, wearing a metal fixed orthodontic appliance, and wearing an esthetic fixed orthodontic appliance. Furthermore, 15 adult raters randomly assessed the same faces in standardized front-view facial photographs. Both the subjects and the raters answered a questionnaire in which they evaluated criteria on a numbered scale ranging from 0 to 10. The models judged their own beauty, and the raters assigned scores to beauty, age, intelligence, ridiculousness, extroversion, and success. The self-evaluations showed decreased beauty scores (P <0.0001) when a fixed orthodontic appliance, especially a metal one, was being worn. There was no statistically significant difference between the 3 situations in the 6 criteria analyzed. A fixed orthodontic appliance did not affect how personal attributes are assessed. However, fixed orthodontic appliances apparently changed the subjects' self-perceptions when they looked in the mirror. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. Homogeneous buoyancy-generated turbulence

    NASA Technical Reports Server (NTRS)

    Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R.

    1992-01-01

    Using a theoretical analysis of fundamental equations and a numerical simulation of the flow field, the statistically homogeneous motion that is generated by buoyancy forces after the creation of homogeneous random fluctuations in the density of infinite fluid at an initial instant is examined. It is shown that analytical results together with numerical results provide a comprehensive description of the 'birth, life, and death' of buoyancy-generated turbulence. Results of numerical simulations yielded the mean-square density mean-square velocity fluctuations and the associated spectra as functions of time for various initial conditions, and the time required for the mean-square density fluctuation to fall to a specified small value was estimated.

  8. Recursions for the exchangeable partition function of the seedbank coalescent.

    PubMed

    Kurt, Noemi; Rafler, Mathias

    2017-04-01

    For the seedbank coalescent with mutation under the infinite alleles assumption, which describes the gene genealogy of a population with a strong seedbank effect subject to mutations, we study the distribution of the final partition with mutation. This generalizes the coalescent with freeze by Dong et al. (2007) to coalescents where ancestral lineages are blocked from coalescing. We derive an implicit recursion which we show to have a unique solution and give an interpretation in terms of absorption problems of a random walk. Moreover, we derive recursions for the distribution of the number of blocks in the final partition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. A simple homogeneous model for regular and irregular metallic wire media samples

    NASA Astrophysics Data System (ADS)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  10. Evaluation of Magnetoresistive RAM for Space Applications

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  11. Random phase detection in multidimensional NMR.

    PubMed

    Maciejewski, Mark W; Fenwick, Matthew; Schuyler, Adam D; Stern, Alan S; Gorbatyuk, Vitaliy; Hoch, Jeffrey C

    2011-10-04

    Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.

  12. Effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication: a systematic review and meta-analysis of randomized-controlled trials.

    PubMed

    Sachdeva, Aarti; Nagpal, Jitender

    2009-01-01

    To evaluate the effect of fermented milk-based probiotic preparations on Helicobacter pylori eradication. Systematic review of randomized controlled trials. Electronic databases and hand search of reviews, bibliographies of books and abstracts and proceedings of international conferences. Included trials had to be randomized or quasi-randomized and controlled, using fermented milk-based probiotics in the intervention group, treating Helicobacter-infected patients and evaluating improvement or eradication of H. pylori as an outcome. The search identified 10 eligible randomized controlled trials. Data were available for 963 patients, of whom 498 were in the treatment group and 465 in the control group. The pooled odds ratio (studies n=9) for eradication by intention-to-treat analysis in the treatment versus control group was 1.91 (1.38-2.67; P<0.0001) using the fixed effects model; test for heterogeneity (Cochran's Q=5.44; P=0.488). The pooled risk difference was 0.10 (95% CI 0.05-0.15; P<0.0001) by the fixed effects model (Cochran's Q=13.41; P=0.144). The pooled odds ratio for the number of patients with any adverse effect was 0.51 (95% CI 0.10-2.57; P=0.41; random effects model; heterogeneity by Cochran's Q=68.5; P<0.0001). Fermented milk-based probiotic preparations improve H. pylori eradication rates by approximately 5-15%, whereas the effect on adverse effects is heterogeneous.

  13. Penna Bit-String Model with Constant Population

    NASA Astrophysics Data System (ADS)

    de Oliveira, P. M. C.; de Oliveira, S. Moss; Sá Martins, J. S.

    We removed from the Penna model for biological aging any random killing Verhulst factor. Deaths are due only to genetic diseases and the population size is fixed, instead of fluctuating around some constant value. We show that these modifications give qualitatively the same results obtained in an earlier paper, where the random killings (used to avoid an exponential increase of the population) were applied only to newborns.

  14. Psychometric Functioning of the MMPI-2-RF VRIN-r and TRIN-r Scales with Varying Degrees of Randomness, Acquiescence, and Counter-Acquiescence

    ERIC Educational Resources Information Center

    Handel, Richard W.; Ben-Porath, Yossef S.; Tellegen, Auke; Archer, Robert P.

    2010-01-01

    In the present study, the authors evaluated the effects of increasing degrees of simulated non-content-based (random or fixed) responding on scores on the newly developed Variable Response Inconsistency-Revised (VRIN-r) and True Response Inconsistency-Revised (TRIN-r) scales of the Minnesota Multiphasic Personality Inventory-2 Restructured Form…

  15. Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Bonovas, Stefanos; Fiorino, Gionata; Lytras, Theodore; Malesci, Alberto; Danese, Silvio

    2016-05-14

    To determine the efficacy of calcium supplementation in reducing the recurrence of colorectal adenomas. We conducted a systematic review and meta-analysis of published studies. We searched PubMed, Scopus, the Cochrane Library, the WHO International Clinical Trials Registry Platform, and the ClinicalTrials.gov website, through December 2015. Randomized, placebo-controlled trials assessing supplemental calcium intake for the prevention of recurrence of adenomas were eligible for inclusion. Two reviewers independently selected studies based on predefined criteria, extracted data and outcomes (recurrence of colorectal adenomas, and advanced or "high-risk" adenomas), and rated each trial's risk-of-bias. Between-study heterogeneity was assessed, and pooled risk ratio (RR) estimates with their 95% confidence intervals (95%CI) were calculated using fixed- and random-effects models. To express the treatment effect in clinical terms, we calculated the number needed to treat (NNT) to prevent one adenoma recurrence. We also assessed the quality of evidence using GRADE. Four randomized, placebo-controlled trials met the eligibility criteria and were included. Daily doses of elemental calcium ranged from 1200 to 2000 mg, while the duration of treatment and follow-up of participants ranged from 36 to 60 mo. Synthesis of intention-to-treat data, for participants who had undergone follow-up colonoscopies, indicated a modest protective effect of calcium in prevention of adenomas (fixed-effects, RR = 0.89, 95%CI: 0.82-0.96; random-effects, RR = 0.87, 95%CI: 0.77-0.98; high quality of evidence). The NNT was 20 (95%CI: 12-61) to prevent one colorectal adenoma recurrence within a period of 3 to 5 years. On the other hand, the association between calcium treatment and advanced adenomas did not reach statistical significance (fixed-effects, RR = 0.92, 95%CI: 0.75-1.13; random-effects, RR = 0.92, 95%CI: 0.71-1.18; moderate quality of evidence). Our results suggest a modest chemopreventive effect of calcium supplements against recurrent colorectal adenomas over a period of 36 to 60 mo. Further research is warranted.

  16. Calcium supplementation for the prevention of colorectal adenomas: A systematic review and meta-analysis of randomized controlled trials

    PubMed Central

    Bonovas, Stefanos; Fiorino, Gionata; Lytras, Theodore; Malesci, Alberto; Danese, Silvio

    2016-01-01

    AIM: To determine the efficacy of calcium supplementation in reducing the recurrence of colorectal adenomas. METHODS: We conducted a systematic review and meta-analysis of published studies. We searched PubMed, Scopus, the Cochrane Library, the WHO International Clinical Trials Registry Platform, and the ClinicalTrials.gov website, through December 2015. Randomized, placebo-controlled trials assessing supplemental calcium intake for the prevention of recurrence of adenomas were eligible for inclusion. Two reviewers independently selected studies based on predefined criteria, extracted data and outcomes (recurrence of colorectal adenomas, and advanced or “high-risk” adenomas), and rated each trial’s risk-of-bias. Between-study heterogeneity was assessed, and pooled risk ratio (RR) estimates with their 95% confidence intervals (95%CI) were calculated using fixed- and random-effects models. To express the treatment effect in clinical terms, we calculated the number needed to treat (NNT) to prevent one adenoma recurrence. We also assessed the quality of evidence using GRADE. RESULTS: Four randomized, placebo-controlled trials met the eligibility criteria and were included. Daily doses of elemental calcium ranged from 1200 to 2000 mg, while the duration of treatment and follow-up of participants ranged from 36 to 60 mo. Synthesis of intention-to-treat data, for participants who had undergone follow-up colonoscopies, indicated a modest protective effect of calcium in prevention of adenomas (fixed-effects, RR = 0.89, 95%CI: 0.82-0.96; random-effects, RR = 0.87, 95%CI: 0.77-0.98; high quality of evidence). The NNT was 20 (95%CI: 12-61) to prevent one colorectal adenoma recurrence within a period of 3 to 5 years. On the other hand, the association between calcium treatment and advanced adenomas did not reach statistical significance (fixed-effects, RR = 0.92, 95%CI: 0.75-1.13; random-effects, RR = 0.92, 95%CI: 0.71-1.18; moderate quality of evidence). CONCLUSION: Our results suggest a modest chemopreventive effect of calcium supplements against recurrent colorectal adenomas over a period of 36 to 60 mo. Further research is warranted. PMID:27182169

  17. Students' Conception of Infinite Series

    ERIC Educational Resources Information Center

    Martinez-Planell, Rafael; Gonzalez, Ana Carmen; DiCristina, Gladys; Acevedo, Vanessa

    2012-01-01

    This is a report of a study of students' understanding of infinite series. It has a three-fold purpose: to show that students may construct two essentially different notions of infinite series, to show that one of the constructions is particularly difficult for students, and to examine the way in which these two different constructions may be…

  18. 47 CFR 1.992 - How to calculate indirect equity and voting interests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings Foreign Ownership of Common Carrier, Aeronautical En Route, and Aeronautical Fixed Radio Station Licensees § 1.992 How...

  19. 47 CFR 1.992 - How to calculate indirect equity and voting interests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings Foreign Ownership of Common Carrier, Aeronautical En Route, and Aeronautical Fixed Radio Station Licensees § 1.992 How...

  20. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  1. Reliability of Space-Shuttle Pressure Vessels with Random Batch Effects

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Kulkarni, Pandurang M.

    2000-01-01

    In this article we revisit the problem of estimating the joint reliability against failure by stress rupture of a group of fiber-wrapped pressure vessels used on Space-Shuttle missions. The available test data were obtained from an experiment conducted at the U.S. Department of Energy Lawrence Livermore Laboratory (LLL) in which scaled-down vessels were subjected to life testing at four accelerated levels of pressure. We estimate the reliability assuming that both the Shuttle and LLL vessels were chosen at random in a two-stage process from an infinite population with spools of fiber as the primary sampling unit. Two main objectives of this work are: (1) to obtain practical estimates of reliability taking into account random spool effects and (2) to obtain a realistic assessment of estimation accuracy under the random model. Here, reliability is calculated in terms of a 'system' of 22 fiber-wrapped pressure vessels, taking into account typical pressures and exposure times experienced by Shuttle vessels. Comparisons are made with previous studies. The main conclusion of this study is that, although point estimates of reliability are still in the 'comfort zone,' it is advisable to plan for replacement of the pressure vessels well before the expected Lifetime of 100 missions per Shuttle Orbiter. Under a random-spool model, there is simply not enough information in the LLL data to provide reasonable assurance that such replacement would not be necessary.

  2. Can An Evolutionary Process Create English Text?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.

    Critics of the conventional theory of biological evolution have asserted that while natural processes might result in some limited diversity, nothing fundamentally new can arise from 'random' evolution. In response, biologists such as Richard Dawkins have demonstrated that a computer program can generate a specific short phrase via evolution-like iterations starting with random gibberish. While such demonstrations are intriguing, they are flawed in that they have a fixed, pre-specified future target, whereas in real biological evolution there is no fixed future target, but only a complicated 'fitness landscape'. In this study, a significantly more sophisticated evolutionary scheme is employed tomore » produce text segments reminiscent of a Charles Dickens novel. The aggregate size of these segments is larger than the computer program and the input Dickens text, even when comparing compressed data (as a measure of information content).« less

  3. Fibroblast Activation Protein-Alpha, a Serine Protease that Facilitates Metastasis by Modification of Diverse Microenvironments

    DTIC Science & Technology

    2011-10-01

    lung tissue. We were not able to detect sufficient numbers of cells in this manner. We tried a different procedure for fixing the lungs after they...added after 24 hours. The films were fixed and evaluated microscopically. In four trials, 10 random microscopic fields were selected and... dosing by oral gavage once daily with 1.3 mg/kg L-valine-L-boroproline called talabostat (extracellular & intracellular DASH), 13.3 mg/kg L- glutamyl

  4. Interaction-stabilized steady states in the driven O (N ) model

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Sondhi, S. L.

    2016-05-01

    We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O (N ) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.

  5. Query construction, entropy, and generalization in neural-network models

    NASA Astrophysics Data System (ADS)

    Sollich, Peter

    1994-05-01

    We study query construction algorithms, which aim at improving the generalization ability of systems that learn from examples by choosing optimal, nonredundant training sets. We set up a general probabilistic framework for deriving such algorithms from the requirement of optimizing a suitable objective function; specifically, we consider the objective functions entropy (or information gain) and generalization error. For two learning scenarios, the high-low game and the linear perceptron, we evaluate the generalization performance obtained by applying the corresponding query construction algorithms and compare it to training on random examples. We find qualitative differences between the two scenarios due to the different structure of the underlying rules (nonlinear and ``noninvertible'' versus linear); in particular, for the linear perceptron, random examples lead to the same generalization ability as a sequence of queries in the limit of an infinite number of examples. We also investigate learning algorithms which are ill matched to the learning environment and find that, in this case, minimum entropy queries can in fact yield a lower generalization ability than random examples. Finally, we study the efficiency of single queries and its dependence on the learning history, i.e., on whether the previous training examples were generated randomly or by querying, and the difference between globally and locally optimal query construction.

  6. Occupational exposure to polychlorinated biphenyls and risk of cutaneous melanoma: a meta-analysis.

    PubMed

    Boffetta, Paolo; Catalani, Simona; Tomasi, Cesare; Pira, Enrico; Apostoli, Pietro

    2018-01-01

    The aim of this study was to carry out a meta-analysis of studies on exposure to polychlorinated biphenyls (PCBs) and the risk of malignant melanoma (MM). We searched Scopus, PubMed, and reference lists; among 807 potentially relevant articles, we selected those based on 12 populations. Data were extracted according to a standardized form; the Newcastle-Ottawa Scale was used to assess study quality. Meta-analyses were carried out according to fixed-effect and random-effects models. The fixed-effect summary relative risk (RR) for MM was 0.91 [95% confidence interval (CI): 0.82-1.00]; the random-effects summary RR was 1.05 (95% CI: 0.78-1.32). The random-effects summary RR from eight occupational cohorts was 1.13 (95% CI: 0.91-1.35) and that from four community-based studies was 0.84 (95% CI: 0.36-1.31). The quality of the studies and the methods for PCB exposure assessment did not influence the RR. These results do not support the hypothesis of an association between PCB exposure and the risk of MM.

  7. Correlation effects during liquid infiltration into hydrophobic nanoporous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borman, V. D., E-mail: vdborman@mephi.ru; Belogorlov, A. A.; Byrkin, V. A.

    To explain the thermal effects observed during the infiltration of a nonwetting liquid into a disordered nanoporous medium, we have constructed a model that includes correlation effects in a disordered medium. It is based on analytical methods of the percolation theory. The infiltration of a porous medium is considered as the infiltration of pores in an infinite cluster of interconnected pores. Using the model of randomly situated spheres (RSS), we have been able to take into account the correlation effect of the spatial arrangement and connectivity of pores in the medium. The other correlation effect of the mutual arrangement ofmore » filled and empty pores on the shell of an infinite percolation cluster of filled pores determines the infiltration fluctuation probability. This probability has been calculated analytically. Allowance for these correlation effects during infiltration and defiltration makes it possible to suggest a physical mechanism of the contact angle hysteresis and to calculate the dependences of the contact angles on the degree of infiltration, porosity of the medium, and temperature. Based on the suggested model, we have managed to describe the temperature dependences of the infiltration and defiltration pressures and the thermal effects that accompany the absorption of energy by disordered porous medium-nonwetting liquid systems with various porosities in a unified way.« less

  8. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-11-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  9. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero.

    PubMed

    Zhang, G; Stillinger, F H; Torquato, S

    2016-11-28

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a "perfect glass". A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite.

  10. The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero

    PubMed Central

    Zhang, G.; Stillinger, F. H.; Torquato, S.

    2016-01-01

    Rapid cooling of liquids below a certain temperature range can result in a transition to glassy states. The traditional understanding of glasses includes their thermodynamic metastability with respect to crystals. However, here we present specific examples of interactions that eliminate the possibilities of crystalline and quasicrystalline phases, while creating mechanically stable amorphous glasses down to absolute zero temperature. We show that this can be accomplished by introducing a new ideal state of matter called a “perfect glass”. A perfect glass represents a soft-interaction analog of the maximally random jammed (MRJ) packings of hard particles. These latter states can be regarded as the epitome of a glass since they are out of equilibrium, maximally disordered, hyperuniform, mechanically rigid with infinite bulk and shear moduli, and can never crystallize due to configuration-space trapping. Our model perfect glass utilizes two-, three-, and four-body soft interactions while simultaneously retaining the salient attributes of the MRJ state. These models constitute a theoretical proof of concept for perfect glasses and broaden our fundamental understanding of glass physics. A novel feature of equilibrium systems of identical particles interacting with the perfect-glass potential at positive temperature is that they have a non-relativistic speed of sound that is infinite. PMID:27892452

  11. Validation of test-day models for genetic evaluation of dairy goats in Norway.

    PubMed

    Andonov, S; Ødegård, J; Boman, I A; Svendsen, M; Holme, I J; Adnøy, T; Vukovic, V; Klemetsdal, G

    2007-10-01

    Test-day data for daily milk yield and fat, protein, and lactose content were sampled from the years 1988 to 2003 in 17 flocks belonging to 2 genetically well-tied buck circles. In total, records from 2,111 to 2,215 goats for content traits and 2,371 goats for daily milk yield were included in the analysis, averaging 2.6 and 4.8 observations per goat for the 2 groups of traits, respectively. The data were analyzed by using 4 test-day models with different modeling of fixed effects. Model [0] (the reference model) contained a fixed effect of year-season of kidding with regression on Ali-Schaeffer polynomials nested within the year-season classes, and a random effect of flock test-day. In model [1], the lactation curve effect from model [0] was replaced by a fixed effect of days in milk (in 3-d periods), the same for all year-seasons of kidding. Models [2] and [3] were obtained from model [1] by removing the fixed year-season of kidding effect and considering the flock test-day effect as either fixed or random, respectively. The models were compared by using 2 criteria: mean-squared error of prediction and a test of bias affecting the genetic trend. The first criterion indicated a preference for model [3], whereas the second criterion preferred model [1]. Mean-squared error of prediction is based on model fit, whereas the second criterion tests the ability of the model to produce unbiased genetic evaluation (i.e., its capability of separating environmental and genetic time trends). Thus, a fixed structure with year (year, year-season, or possibly flock-year) was indicated to appropriately separate time trends. Heritability estimates for daily milk yield and milk content were 0.26 and 0.24 to 0.27, respectively.

  12. Effectiveness of Different Bristle Designs of Toothbrushes and Periodontal Status among Fixed Orthodontic Patients: A Double-blind Crossover Design.

    PubMed

    Naik, Sandhya P; Punathil, Sameer; Shetty, Praveena; Jayanti, Ipsita; Jalaluddin, Md; Avijeeta, Anisha

    2018-02-01

    The aim of the present study was to evaluate the effectiveness of different bristle designs of toothbrushes and the periodontal status among patients undergoing fixed orthodontic treatment. This randomized controlled trial (RCT) consisted of 45 adolescents (comprising 20 males and 25 females) undergoing fixed orthodontic treatment. The study participants were randomly allocated to three groups, each group being assigned a locally available toothbrush with a particular design of toothbrush bristle. In the first test phase, group I study participants were allocated to toothbrush with flat bristles, group II study subjects were allocated to toothbrush with zigzag bristles, and group III study participants were allocated to toothbrush with crisscross bristles. The study participants were recalled after 4 weeks to check the effectiveness of the allocated toothbrushes. A washout period of 1 week was maintained to ensure that there was no carryover effect of the different bristle designs. In the second test phase, each patient used the opposite toothbrush bristle design (group I: toothbrush with zigzag bristles, group II: toothbrush with crisscross bristles, and group III: toothbrush with flat bristles). Plaque scores were measured using Turesky-Gilmore-Glickman modification of Quigley-Hein plaque index (PI). In both phase 1 and 2 of this RCT, toothbrush with crisscross bristles exhibited maximum plaque reduction among the three different bristle design toothbrushes following 30 days (p = 0.312 ± 0.102 and 0.280 ± 0.110, respectively), which was statistically significant. It was concluded that all the three designs of toothbrushes were effective in removing plaque in patients with fixed orthodontic appliances. But among the three different toothbrushes, toothbrush with crisscross bristles showed the highest mean plaque reduction. Plaque accumulation around the orthodontic brackets and gingival margins is quite common among the fixed orthodontic patients, who encounter difficulty in maintaining good oral hygiene. Specially designed toothbrushes are very essential for effective plaque removal among the patients undergoing fixed orthodontic treatment.

  13. The University as an Infinite Game: Revitalising Activism in the Academy

    ERIC Educational Resources Information Center

    Harré, Niki; Grant, Barbara M.; Locke, Kirsten; Sturm, Sean

    2017-01-01

    We offer here a metaphor of the university as an "infinite game" in which we bring to life insight, imagination, and radical inclusion; and resist the "finite games" that can lead us astray. We suggest that keeping the infinite game alive within universities is a much-needed form of academic activism. We offer four vignettes…

  14. Orthogonality preserving infinite dimensional quadratic stochastic operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akın, Hasan; Mukhamedov, Farrukh

    In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.

  15. Inspiring Examples in Rearrangements of Infinite Products

    ERIC Educational Resources Information Center

    Ramasinghe, W.

    2007-01-01

    It is well known that simple examples are really encouraging in the understanding of rearrangements of infinite series. In this paper a similar role is played by simple examples in the case of infinite products. Iterated products of double products seem to have a similar spirit of rearrangements of products, although they are not the same.…

  16. The Transition from Comparison of Finite to the Comparison of Infinite Sets: Teaching Prospective Teachers.

    ERIC Educational Resources Information Center

    Tsamir, Pessia

    1999-01-01

    Describes a course in Cantorian Set Theory relating to prospective secondary mathematics teachers' tendencies to overgeneralize from finite to infinite sets. Indicates that when comparing the number of elements in infinite sets, teachers who took the course were more successful and more consistent in their use of single method than those who…

  17. Certain approximation problems for functions on the infinite-dimensional torus: Lipschitz spaces

    NASA Astrophysics Data System (ADS)

    Platonov, S. S.

    2018-02-01

    We consider some questions about the approximation of functions on the infinite-dimensional torus by trigonometric polynomials. Our main results are analogues of the direct and inverse theorems in the classical theory of approximation of periodic functions and a description of the Lipschitz spaces on the infinite-dimensional torus in terms of the best approximation.

  18. Alcohol withdrawal syndrome: symptom-triggered versus fixed-schedule treatment in an outpatient setting.

    PubMed

    Elholm, Bjarne; Larsen, Klaus; Hornnes, Nete; Zierau, Finn; Becker, Ulrik

    2011-01-01

    To investigate whether, in the treatment with chlordiazepoxide for outpatient alcohol withdrawal, there are advantages of symptom-triggered self-medication over a fixed-schedule regimen. A randomized controlled trial in outpatient clinics for people suffering from alcohol dependence (AD) and alcohol-related problems; 165 adult patients in an outpatient setting in a specialized alcohol treatment unit were randomized 1:1 to either a symptom-triggered self-medication or tapered dose, using chlordiazepoxide. Alcohol withdrawal symptoms, amount of medication, duration of symptoms, time to relapse and patient satisfaction were measured. Patients assessed their symptoms using the Short Alcohol Withdrawal Scale (SAWS). Patient satisfaction was monitored by the Diabetes Treatment Satisfaction Questionnaire. We used the Well-Being Index and the European addiction severity index for the 1-year follow-up. We found no differences in the quantity of medication consumed, time to relapse, well being or treatment satisfaction. Symptom-triggered self-medication was as safe as fixed-schedule medication in treating outpatients with AD and mild to moderate symptoms of AWS. The SAWS is a powerful monitoring tool, because it is brief and permits the subject to log the withdrawal symptoms.

  19. Orthodontic aligners and root resorption: A systematic review.

    PubMed

    Elhaddaoui, Rajae; Qoraich, Halima Saadia; Bahije, Loubna; Zaoui, Fatima

    2017-03-01

    Root resorption is one of the leading problems in orthodontic treatment. Most earlier studies have assessed the incidence and severity of root resorption following orthodontic treatment using fixed appliances as well as associated factors. However, few studies have assessed these parameters in the context of orthodontic treatment using thermoplastic splints or aligners. The aim of this systematic review was to assess the incidence and severity of root resorption following orthodontic treatment using aligners and associated factors. A comparative analysis was also made with fixed multi-bracket treatments. The data bases consulted were: Medline, Embase, EBSCO Host, Cochrane Library and Science Direct. Our search included meta-analyses, randomized and non-randomized controled trials, cohort studies and descriptive studies published before December 2015 and evidencing a connection with the incidence and severity of root resorption following orthodontic treatment using aligners alone or compared with fixed multi-bracket treatments. Among the 93 selected references, only 3 studies met our selection criteria. The incidence of root resorption ranged between 0 and 46%, of which 6% were severe cases. Relative to fixed multi-bracket non-extraction treatments to correct the same malocclusions, the incidence of resorption ranged between 2% and 50%, of which 22% were severe cases. In both techniques, the incidence of resorption was higher for the maxillary incisors and was not influenced by either age or sex. In malocclusion cases not requiring extractions, orthodontic aligner treatment is possibly associated with a lower incidence of resorption than fixed multi-bracket treatment. Further research encompassing extraction cases is needed to better assess the incidence and severity of root resorption following the use of these removable appliances. Copyright © 2016 CEO. Published by Elsevier Masson SAS. All rights reserved.

  20. Histological evaluation of oral maintenance programs upon gingival condition in orthodontic patients.

    PubMed

    Hănţoiu, Tudor Alexandru; Hănţoiu, Liana Georgiana; Monea, Adriana

    2015-01-01

    The aim of the study was to conduct a histological evaluation of gingival condition in patients under orthodontic treatment with fixed appliances, according to different oral hygiene maintenance programs. We performed a randomized prospective study on 36 patients with fixed orthodontic appliances (17-25 years of age) divided in three study groups. The investigations were represented by measurements of plaque index and sulcular bleeding index, followed by pathological examination of specimens from gingival tissue. Treatment of orthodontic patients must follow an interdisciplinary approach. All modalities of oral hygiene procedures and their effect on the periodontal tissues must be explained to the patient prior to fixed orthodontic treatment. Fixed orthodontics do not induce periodontal disease if basic principles of oral hygiene are followed in compliant patients, which are correctly instructed to deal with real challenge, represented by complete elimination of debris and bacterial accumulation.

Top