CYSTIC FIBROSIS: MICROBIOLOGY AND HOST RESPONSE
Zemanick, Edith T.
2016-01-01
THE EARLIEST DESCRIPTIONS OF LUNG DISEASE IN PEOPLE WITH CYSTIC FIBROSIS (CF) DEMONSTRATED THE INVOLVEMENT OF THREE INTERACTING PATHOPHYSIOLOGICAL ELEMENTS IN CF AIRWAYS: MUCUS OBSTRUCTION, INFLAMMATION, AND INFECTION. OVER THE PAST 7 DECADES, OUR UNDERSTANDING OF CF RESPIRATORY MICROBIOLOGY AND INFLAMMATION HAS EVOLVED WITH THE INTRODUCTION OF NEW TREATMENTS, WITH INCREASED LONGEVITY, AND WITH INCREASINGLY SOPHISTICATED LABORATORY TECHNIQUES. IN THIS CHAPTER, WE WILL REVIEW THE CURRENT STATE OF UNDERSTANDING OF THE ROLES OF INFECTION AND INFLAMMATION AND THEIR ROLES IN DRIVING LUNG DISEASE. WE WILL ALSO DISCUSS HOW THIS CONSTANTLY EVOLVING INFORMATION IS USED TO INFORM CURRENT THERAPEUTIC STRATEGIES, MEASURES AND PREDICTORS OF DISEASE SEVERITY, AND RESEARCH PRIORITIES. PMID:27469179
Ageing and inflammation in the male reproductive tract.
Frungieri, M B; Calandra, R S; Bartke, A; Matzkin, M E
2018-05-08
Ageing is usually characterised by a mild chronic proinflammatory state. Despite the tight association between both processes, the phenomenon has recently been termed inflammageing. Inflammation in the male reproductive tract is frequently linked with bacterial or virus infections but also with a broad range of noninfectious processes. Prostatitis, epididymitis and orchitis, among others, can lead to infertility. However, in spite of the inflammation theory of disease, chronic inflammation in male urogenital system does not always cause symptoms. With advancing age, inflammatory processes are commonly observed in the male reproductive tract. Nevertheless, the incidence of inflammation in reproductive organs and ducts varies greatly among elderly men. Inflammageing is considered a predictor of pathogenesis and the development of age-related diseases. This article briefly summarises the current state of knowledge on inflammageing in the male reproductive tract. Yet, the precise aetiology of inflammageing in the male urogenital system, and its potential contribution not only to infertility but most importantly to adverse health outcomes remains almost unknown. Thus, further investigations are required to elucidate the precise cross-links between inflammation and male reproductive senescence, and to establish the impact of anti-inflammatory drug treatments on elder men's general health status. © 2018 Blackwell Verlag GmbH.
Cytokines, IBD and colitis-associated cancer
Francescone, Ralph; Hou, Vivianty; Grivennikov, Sergei I.
2015-01-01
Inflammatory bowel diseases (IBDs) are debilitating conditions that result in intestinal damage due to chronic inflammation. In addition, the perpetual state of inflammation predisposes individuals to the development of colitis associated cancer (CAC). Because of the immense immune cell infiltration into colon, cytokines produced by immune cells are major players in the initiation and progression of IBD and CAC. In this review, we will explore the functions of many key cytokines and their roles in IBD and CAC, as well as their influences on the immune system and stromal cells. Finally, we will briefly discuss current therapies and current clinical trials targeting cytokines in IBD. PMID:25563695
Wright, K L; Duncan, M; Sharkey, K A
2007-01-01
The emerging potential for the cannabinoid (CB) system in modulating gastrointestinal inflammation has gained momentum over the last few years. Traditional and anecdotal use of marijuana for gastrointestinal disorders, such as diarrhoea and abdominal cramps is recognized, but the therapeutic benefit of cannabinoids in the 21st century is overshadowed by the psychoactive problems associated with CB1 receptor activation. However, the presence and function of the CB2 receptor in the GI tract, whilst not yet well characterized, holds great promise due to its immunomodulatory roles in inflammatory systems and its lack of psychotropic effects. This review of our current knowledge of CB2 receptors in the gastrointestinal tract highlights its role in regulating abnormal motility, modulating intestinal inflammation and limiting visceral sensitivity and pain. CB2 receptors represent a braking system and a pathophysiological mechanism for the resolution of inflammation and many of its symptoms. CB2 receptor activation therefore represents a very promising therapeutic target in gastrointestinal inflammatory states where there is immune activation and motility dysfunction. PMID:17906675
Smoking Is Associated with Acute and Chronic Prostatic Inflammation: Results from the REDUCE Study.
Moreira, Daniel M; Nickel, J Curtis; Gerber, Leah; Muller, Roberto L; Andriole, Gerald L; Castro-Santamaria, Ramiro; Freedland, Stephen J
2015-04-01
Both anti- and proinflammatory effects of cigarette smoking have been described. As prostate inflammation is common, we hypothesized smoking could contribute to prostate inflammation. Thus, we evaluated the association of smoking status with acute and chronic inflammation within the prostate of men undergoing prostate biopsy. We retrospectively analyzed 8,190 men ages 50 to 75 years with PSA levels between 2.5 and 10 ng/mL enrolled in the Reduction by Dutasteride of Prostate Cancer Events study. Smoking status was self-defined as never, former, or current. Prostate inflammation was assessed by systematic central review blinded to smoking status. The association of smoking with inflammation in the baseline, 2-year, and 4-year biopsies was evaluated with univariable and multivariable logistic regressions. At study enrollment, 1,233 (15%), 3,203 (39%), and 3,754 (46%) men were current, former, and never smokers, respectively. Current smokers were significantly younger and had smaller prostates than former and never smokers (all P < 0.05). Former smokers were significantly heavier than current and never smokers (P < 0.001). Acute and chronic prostate inflammations were identified in 1,261 (15%) and 6,352 (78%) baseline biopsies, respectively. In univariable analysis, current smokers were more likely to have acute inflammation than former (OR, 1.35; P, 0.001) and never smokers (OR, 1.36; P, 0.001). The results were unchanged at 2- and 4-year biopsies. In contrast, current smoking was linked with chronic inflammation in the baseline biopsy, but not at 2- and 4-year biopsies. In conclusion, among men undergoing prostate biopsy, current smoking was independently associated with acute and possibly chronic prostate inflammations. ©2015 American Association for Cancer Research.
Rahmati, Maryam; Mobasheri, Ali; Mozafari, Masoud
2016-04-01
Osteoarthritis (OA) has traditionally been defined as a prototypical non-inflammatory arthropathy, but today there is compelling evidence to suggest that it has an inflammatory component. Many recent studies have shown the presence of synovitis in a large number of patients with OA and demonstrated a direct association between joint inflammation and the progression of OA. Pro-inflammatory cytokines, reactive oxygen species (ROS), nitric oxide, matrix degrading enzymes and biomechanical stress are major factors responsible for the progression of OA in synovial joints. The aim of this review is to discuss the significance of a wide range of implicated inflammatory mediators and their contribution to the progression of OA. We also discuss some of the currently available guidelines, practices, and prospects. In addition, this review argues for new innovation in methodologies and instrumentation for the non-invasive detection of inflammation in OA by modern imaging techniques. We propose that identifying early inflammatory events and targeting these alterations will help to ameliorate the major symptoms such as inflammation and pain in OA patients. Copyright © 2016 Elsevier Inc. All rights reserved.
O'Donovan, Aoife; Ahmadian, Ashkan J; Neylan, Thomas C; Pacult, Mark A; Edmondson, Donald; Cohen, Beth E
2017-02-01
Elevated inflammation has been repeatedly observed in posttraumatic stress disorder (PTSD), and it may drive the development of both psychiatric symptoms and physical comorbidities. However, it is not clear if elevated inflammation is a feature of both remitted and current PTSD, and little is known about relationships between specific clusters of PTSD symptoms and inflammation. Exaggerated threat sensitivity, as indexed by threat reactivity and avoidance of perceived threats, may be particularly closely associated with inflammation. We assessed PTSD symptoms and threat sensitivity using the Clinician Administered PTSD Scale in 735 Veterans Affairs patients (35% current PTSD; 16% remitted PTSD) who participated in the Mind Your Heart Study (mean age=59±11; 94% male). High sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen were used as indices of inflammation. Analysis of covariance models with planned contrasts were used to examine differences in inflammation by PTSD status, adjusting for age, sex, race, kidney function and socioeconomic status. Individuals with current PTSD had significantly higher hsCRP and WBC than patients with no history of PTSD, but there were no significant differences in inflammatory markers between those with remitted versus no history of PTSD. Within patients with current PTSD, higher threat reactivity was independently associated with higher hsCRP (β=0.16, p=0.01) and WBC count (β=0.24, <0.001), and higher effortful avoidance was associated with higher fibrinogen (β=0.13, p=0.04). Our data indicate that elevated inflammation may be a feature of current, but not remitted, PTSD. Within patients with PTSD, higher threat reactivity was also associated with elevated inflammation. A better understanding of the relationship between threat sensitivity and inflammation may inform interventions for patients with PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.
Recent patents on mesenchymal stem cell mediated therapy in inflammatory diseases.
Nair, Meera; Saxena, Pooja
2013-05-01
Inflammation is the propitious response of vascular tissue to pathogens, damaged cells or irritants. Recent discoveries on the molecular and cellular basis of inflammation and allergy have markedly altered the understanding of these disorders. Although the conventional therapy used for the treatment of autoimmune and inflammatory diseases has improved the condition of patients but it has also placed them at the stake of enormous side effects. In recent times, the usage of Mesenchymal Stem Cell (MSC) therapy in the field of medical science has provided better alternative, concomitant treatment for these diseases as suggested by preclinical studies. Thus, in this review we have summarized the recent findings on MSCs as a therapeutic agent in treating inflammatory disorders using novel methods. This review also outlines the current state of knowledge on the biology of MSCs and their use as a suitable candidate for cell-based therapeutics. In addition, we focus on various patents, in which administration of MSC attenuates inflammation and injury thereby suggesting its integral role in host immune response, immunomodulation and anti-inflammation, which may in turn lead to novel patents in this field in the future.
Beach, Steven R H; Lei, Man Kit; Simons, Ronald L; Barr, Ashley B; Simons, Leslie G; Ehrlich, Katherine; Brody, Gene H; Philibert, Robert A
2017-12-01
Parent-child relationships have long-term effects on health, particularly later inflammation and depression. We hypothesized that these effects would be mediated by later romantic partner relationships and elevated stressors in young adulthood, helping promote chronic, low grade, inflammation as well as depressive symptoms, and driving their covariation. It has been proposed recently that youth experiencing harsher parenting may also develop a stronger association between inflammation and depressive symptoms in adulthood and altered effects of stressors on outcomes. In the current investigation, we test these ideas using an 18-year longitudinal study of N = 413 African American youth that provides assessment of the parent-child relationship (at age 10), pro-inflammatory cytokine profile and depressive symptoms (at age 28), and potential mediators in early young adulthood (assessed at ages 21 and 24). As predicted, the effect of harsher parent-child relationships (age 10) on pro-inflammatory state and increased depressive symptoms at age 28 were fully mediated through young adult stress and romantic partner relationships. In addition, beyond these mediated effects, parent-child relationships at age 10 moderated the concurrent association between inflammation and depressive symptoms, as well as the prospective association between romantic partner relationships and inflammation, and resulted in substantially different patterns of indirect effects from young adult mediators to outcomes. The results support theorizing that the association of depression and inflammation in young adulthood is conditional on earlier parenting, and suggest incorporating this perspective into models predicting long-term health outcomes.
Hostinar, Camelia E.; Ross, Kharah M.; Chen, Edith; Miller, Gregory E.
2015-01-01
Objective We sought to identify pathways connecting lifecourse socioeconomic status (SES) with chronic, low-grade inflammation, focusing on the explanatory roles of self-control, abdominal adiposity, and health practices. Methods Participants were 360 adults aged 15 - 55 who were free of chronic medical conditions. They were roughly equally divided between low and high current SES, with each group further divided between low and high early-life SES. Structural Equation Modeling (SEM) was used to identify direct and indirect pathways linking early-life and current SES with low-grade, chronic inflammation in adulthood, as manifest by serum interleukin-6 and C-reactive protein. Low SES was hypothesized to relate to inflammation by reducing self-control, which in turn was hypothesized to facilitate lifestyle factors that potentiate inflammation (smoking, alcohol use, sedentary behavior, and weight gain). Results Analyses revealed that self-control was pivotal in linking both early-life and current SES to inflammation. Low early-life SES was related to a harsher family climate, and in turn lower adult self-control, over and above the effects of current SES. Controlling for early-life SES, low current SES was associated with perceived stress, and in turn diminished self-control. Results showed that lower self-control primarily operated through higher abdominal adiposity to associate with greater inflammation. Conclusions The findings suggest a mechanistic scenario wherein low SES in early-life or adulthood depletes self-control and in turn fosters adiposity and inflammation. These pathways should be studied longitudinally to elucidate and potentially ameliorate socioeconomic disparities in health. PMID:25110854
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues
2017-01-01
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations. PMID:29152560
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues.
Nguyen, Q T; Jacobsen, T D; Chahine, N O
2017-11-13
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations.
Immunotoxicity and environment: immunodysregulation and systemic inflammation in children.
Calderón-Garcidueñas, Lilian; Macías-Parra, Mercedes; Hoffmann, Hans J; Valencia-Salazar, Gildardo; Henríquez-Roldán, Carlos; Osnaya, Norma; Monte, Ofelia Camacho-Del; Barragán-Mejía, Gerardo; Villarreal-Calderon, Rodolfo; Romero, Lina; Granada-Macías, Margarita; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Maronpot, Robert R
2009-02-01
Environmental pollutants, chemicals, and drugs have an impact on children's immune system development. Mexico City (MC) children exposed to significant concentrations of air pollutants exhibit chronic respiratory inflammation, systemic inflammation, neuroinflammation, and cognitive deficits. We tested the hypothesis that exposure to severe air pollution plays a role in the immune responses of asymptomatic, apparently healthy children. Blood measurements for markers of immune function, inflammatory mediators, and molecules interacting with the lipopolysaccharide recognition complex were obtained from two cohorts of matched children (aged 9.7 +/- 1.2 years) from southwest Mexico City (SWMC) (n = 66) and from a control city (n = 93) with criteria pollutant levels below current standards. MC children exhibited significant decreases in the numbers of natural killer cells (p = .003) and increased numbers of mCD14+ monocytes (p < .001) and CD8+ cells (p = .02). Lower concentrations of interferon gamma (p = .009) and granulocyte-macrophage colony-stimulating factor (p < .001), an endotoxin tolerance-like state, systemic inflammation, and an anti-inflammatory response were also present in the highly exposed children. C-reactive protein and the prostaglandin E metabolite levels were positively correlated with twenty-four- and forty-eight-hour cumulative concentrations of PM(2.5). Exposure to urban air pollution is associated with immunodysregulation and systemic inflammation in children and is a major health threat.
Curti, Maira Ladeia R.; Jacob, Patrícia; Borges, Maria Carolina; Rogero, Marcelo Macedo; Ferreira, Sandra Roberta G.
2011-01-01
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described. PMID:21773006
Susceptibility to chronic inflammation: an update.
Nasef, Noha Ahmed; Mehta, Sunali; Ferguson, Lynnette R
2017-03-01
Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.
Selenium and inflammatory bowel disease.
Kudva, Avinash K; Shay, Ashley E; Prabhu, K Sandeep
2015-07-15
Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD. Copyright © 2015 the American Physiological Society.
Survey of less-inflammable hydraulic fluids for aircraft
NASA Technical Reports Server (NTRS)
Drake, Wray V; Drell, I L
1950-01-01
A survey of current information on civil and military development of less-inflammable hydraulic fluids for aircraft is presented. Types of less-inflammable fluid reported include: glycol derivative, water base, silicone, ester, and halogenated compound. Specification requirements, physical and chemical properties, hydraulic-system test results, and advantages and disadvantages of various hydraulic fluids are discussed. For completely satisfactory service, some modification of currently available fluids or of present hydraulic-system parts still appears necessary.
An Inflammation-Centric View of Neurological Disease: Beyond the Neuron
Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro
2018-01-01
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972
Martin Jensen, M; Jia, Wanjian; Schults, Austin J; Ye, Xiangyang; Prestwich, Glenn D; Oottamasathien, Siam
2018-05-18
Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS. Copyright © 2018. Published by Elsevier Ltd.
Mira, Juan C; Gentile, Lori F; Mathias, Brittany J; Efron, Philip A; Brakenridge, Scott C; Mohr, Alicia M; Moore, Frederick A; Moldawer, Lyle L
2017-02-01
To provide an appraisal of the evolving paradigms in the pathophysiology of sepsis and propose the evolution of a new phenotype of critically ill patients, its potential underlying mechanism, and its implications for the future of sepsis management and research. Literature search using PubMed, MEDLINE, EMBASE, and Google Scholar. Sepsis remains one of the most debilitating and expensive illnesses, and its prevalence is not declining. What is changing is our definition(s), its clinical course, and how we manage the septic patient. Once thought to be predominantly a syndrome of over exuberant inflammation, sepsis is now recognized as a syndrome of aberrant host protective immunity. Earlier recognition and compliance with treatment bundles has fortunately led to a decline in multiple organ failure and in-hospital mortality. Unfortunately, more and more sepsis patients, especially the aged, are suffering chronic critical illness, rarely fully recover, and often experience an indolent death. Patients with chronic critical illness often exhibit "a persistent inflammation-immunosuppression and catabolism syndrome," and it is proposed here that this state of persisting inflammation, immunosuppression and catabolism contributes to many of these adverse clinical outcomes. The underlying cause of inflammation-immunosuppression and catabolism syndrome is currently unknown, but there is increasing evidence that altered myelopoiesis, reduced effector T-cell function, and expansion of immature myeloid-derived suppressor cells are all contributory. Although newer therapeutic interventions are targeting the inflammatory, the immunosuppressive, and the protein catabolic responses individually, successful treatment of the septic patient with chronic critical illness and persistent inflammation-immunosuppression and catabolism syndrome may require a more complementary approach.
H₂S and substance P in inflammation.
Bhatia, Madhav
2015-01-01
Hydrogen sulfide (H2S) and substance P play a key role in inflammation. Using animal models of inflammation of different etiologies such as acute pancreatitis, sepsis, burns, and joint inflammation, studies have recently shown an important role of the proinflammatory action of H2S and substance P. Also, H2S contributes to inflammation in different conditions via substance P. This chapter reviews methods and key data that have led to our current understanding of the role of H2S and substance P in inflammation. © 2015 Elsevier Inc. All rights reserved.
Monitoring inflammation (including fever) in acute brain injury.
Provencio, J Javier; Badjatia, Neeraj
2014-12-01
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
Sokolove, Jeremy; Wagner, Catriona A; Lahey, Lauren J; Sayles, Harlan; Duryee, Michael J; Reimold, Andreas M; Kerr, Gail; Robinson, William H; Cannon, Grant W; Thiele, Geoffrey M; Mikuls, Ted R
2016-11-01
Cigarette smoking is a major risk factor for RA and has been associated with increased disease severity and lower rates of disease remission. We hypothesized that inflammation and disease activity would be associated with smoking status and this would be related to levels of ACPA. RA patients from the Veterans Affairs RA registry were studied (n = 1466): 76.9% anti-CCP2 positive, 89% male, median age 63 years (interquartile range 57-72), median disease duration 8.45 years (interquartile range 2.8-18). Baseline serum samples were evaluated for levels of anti-CCP2, RF, 19 distinct ACPAs and 17 cytokines. Smoking status at baseline was recorded as current, former or never. The association of smoking status with cytokines, autoantibodies and disease activity (DAS28) was evaluated. Among anti-CCP-positive RA patients, RA-associated cytokines (false-discovery rates q < 0.1%) and DAS28 (P < 0.01) were higher in current smokers compared with former or never smokers. DAS28 and cytokine levels were similar between former and never smokers. In contrast, ACPA concentrations were higher among both current and former smokers compared with never smokers, and levels of ACPA were not associated with DAS28 or cytokine levels. Among anti-CCP2-positive RA patients, current smoking status is associated with elevations in pro-inflammatory cytokines and increased RA disease activity. Similar levels of inflammation and disease activity among former and never smokers suggests that the detrimental effects of smoking could be ameliorated through tobacco cessation. The effect of tobacco cessation on RA disease activity should be evaluated prospectively. Published by Oxford University Press on behalf of the British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the United States.
Chemistry meets biology in colitis-associated carcinogenesis
Mangerich, Aswin; Dedon, Peter C.; Fox, James G.; Tannenbaum, Steven R.; Wogan, Gerald N.
2015-01-01
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD) – a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation. PMID:23926919
The Role of Microglia in Diabetic Retinopathy
Grigsby, Jeffery G.; Cardona, Sandra M.; Pouw, Cindy E.; Muniz, Alberto; Mendiola, Andrew S.; Tsin, Andrew T. C.; Allen, Donald M.; Cardona, Astrid E.
2014-01-01
There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy. There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear. Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina, microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations may account for some of the individual differences commonly seen in patient's susceptibility to diabetic retinopathy. PMID:25258680
Inflammation Fuels Tumor Progress and Metastasis
Liu, Jingyi; Lin, Pengnian Charles; Zhou, Binhua P.
2017-01-01
Inflammation is a beneficial response that can remove pathogens, repair injured tissue and restore homeostasis to damaged tissues and organs. However, increasing evidence indicate that chronic inflammation plays a pivotal role in tumor development, as well as progression, metastasis, and resistance to chemotherapy. We will review the current knowledge regarding the contribution of inflammation to epithelial mesenchymal transition. We will also provide some perspectives on the relationship between ER-stress signals and metabolism, and the role of these processes in the development of inflammation. PMID:26004407
Kraakman, Michael J; Dragoljevic, Dragana; Kammoun, Helene L; Murphy, Andrew J
2016-01-01
Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Atherosclerosis is the most common form of CVD, which is complex and multifactorial with an elevated risk observed in people with either metabolic or inflammatory diseases. Accumulating evidence now links obesity with a state of chronic low-grade inflammation and has renewed our understanding of this condition and its associated comorbidities. An emerging theme linking disease states with atherosclerosis is the increased production of myeloid cells, which can initiate and exacerbate atherogenesis. Although anti-inflammatory drug treatments exist and have been successfully used to treat inflammatory conditions such as rheumatoid arthritis (RA), a commonly observed side effect is dyslipidemia, inadvertently, a major risk factor for the development of atherosclerosis. The mechanisms leading to dyslipidemia associated with anti-inflammatory drug use and whether CVD risk is actually increased by this dyslipidemia are of great therapeutic importance and currently remain poorly understood. Here we review recent data providing links between inflammation, hematopoiesis, dyslipidemia and CVD risk in the context of anti-inflammatory drug use. PMID:27350883
Xu, Heping; Chen, Mei
2016-09-15
The retina, an immune privileged tissue, has specialized immune defense mechanisms against noxious insults that may exist in diseases such as age-related macular degeneration (AMD), diabetic retinopathy (DR), uveoretinitis and glaucoma. The defense system consists of retinal innate immune cells (including microglia, perivascular macrophages, and a small population of dendritic cells) and the complement system. Under normal aging conditions, retinal innate immune cells and the complement system undergo a low-grade activation (parainflammation) which is important for retinal homeostasis. In disease states such as AMD and DR, the parainflammatory response is dysregulated and develops into detrimental chronic inflammation. Complement activation in the retina is an important part of chronic inflammation and may contribute to retinal pathology in these disease states. Here, we review the evidence that supports the role of uncontrolled or dysregulated complement activation in various retinal degenerative and angiogenic conditions. We also discuss current strategies that are used to develop complement-based therapies for retinal diseases such as AMD. The potential benefits of complement inhibition in DR, uveoretinitis and glaucoma are also discussed, as well as the need for further research to better understand the mechanisms of complement-mediated retinal damage in these disease states. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Becker, F; Yi, P; Al-Kofahi, M; Ganta, V C; Morris, J; Alexander, J S
2014-03-01
Alterations in the intestinal lymphatic network are well-established features of human and experimental inflammatory bowel disease (IBD). Such lymphangiogenic expansion might enhance classic intestinal lymphatic transport, eliminating excess accumulations of fluid, inflammatory cells and mediators, and could therefore be interpreted as an 'adaptive' response to acute and chronic inflammatory processes. However, whether these new lymphatic vessels are functional, unregulated or immature (and what factors may promote 'maturation' of these vessels) is currently an area under intense investigation. It is still controversial whether impaired lymphatic function in IBD is a direct consequence of the intestinal inflammation, or a preceding lymphangitis-like event. Current research has uncovered novel regulatory factors as well as new roles for familiar signaling pathways, which appear to be linked to inflammation-induced lymphatic alterations. The current review summarizes mechanisms amplifying lymphatic dysregulation and remodeling in intestinal inflammation at the organ, cell and molecular levels and discusses the influence of lymphangiogenesis and intestinal lymphatic transport function as they relate to IBD pathophysiology.
Systemic inflammation and resting state connectivity of the default mode network.
Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J
2017-05-01
The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Hu, Peng; Yang, Qi; Wang, Dan-Dan; Guan, Shao-Chen; Zhang, Hong-Qi
2016-10-01
The aneurysm wall has been reported to play a critical role in the formation, development, and even rupture of an aneurysm. We used high-resolution magnetic resonance imaging (HRMRI) to investigate the aneurysm wall in an effort to identify evidence of inflammation invasion and define its relationship with aneurysm behavior. Patients with intracranial aneurysms who were prospectively evaluated using HRMRI between July 2013 and June 2014 were enrolled in this study. The aneurysm's wall enhancement and evidence of inflammation invasion were determined. In addition, the relationship between aneurysm wall enhancement and aneurysm size and symptoms, including ruptured aneurysms, giant unruputred intracranial aneurysms (UIAs) presenting as mass effect, progressively growing aneurysms, and aneurysms associated with neurological symptoms, was statistically analyzed. Twenty-five patients with 30 aneurysms were available for the current study. Fourteen aneurysms showed wall enhancement, including 6 ruptured and 8 unruptured aneurysms. Evidence of inflammation was identified directly through histological studies and indirectly through intraoperative investigations and clinical courses. The statistical analysis indicated no significant correlation between aneurysm wall enhancement and aneurysm size. However, there was a strong correlation between wall enhancement and aneurysm symptoms, with a kappa value of 0.86 (95 % CI 0.68-1). Aneurysm wall enhancement on HRMRI might be a sign of inflammatory change. Symptomatic aneurysms exhibited wall enhancement on HRMRI. Wall enhancement had a high consistent correlation of symptomatic aneurysms. Therefore, wall enhancement on HRMRI might predict an unsteady state of an intracranial saccular aneurysm.
Ponizovskiy, Michail R
2016-01-01
Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.
The Dietary Inflammatory Index and Current Wheeze Among Children and Adults in the United States.
Han, Yueh-Ying; Forno, Erick; Shivappa, Nitin; Wirth, Michael D; Hébert, James R; Celedón, Juan C
A proinflammatory diet may increase allergic airway inflammation by affecting innate and adaptive immune responses. In this study, we examine the relation between the diet's inflammatory potential, measured by the Dietary Inflammatory Index (DII), and current asthma, current wheeze, and lung function in U.S. children and adults. We analyzed data from 8,175 children (aged 6-17 years) and 22,294 adults (aged 18-79 years) who participated in the 2007-2012 National Health and Nutrition Examination Survey. The DII was calculated by nutrient intake based on 24-hour dietary recalls, and normalized as per 1,000 calories of food consumed to account for total energy intake. Multivariable regression models were used for the analysis of the DII and current asthma, current wheeze, and lung function measures. Higher DII (a proinflammatory diet) was associated with current wheeze among adults (eg, odds ratio [OR] for quartile 4 vs 1, OR = 1.41, 95% confidence interval [CI] = 1.17-1.70; P trend < .01) and among children with high fractional exhaled nitric oxide (a marker of eosinophilic airway inflammation; OR = 2.38, 95% CI = 1.13-5.02; P trend = .05). The DII also was associated with decreased forced expiratory volume in 1 second and forced vital capacity in adults without asthma or wheezing. The DII was not associated with lung function in children or current asthma in either age group. Our findings suggest that a proinflammatory diet, assessed by the DII, increases the odds of current wheeze in adults and children with allergic (atopic) wheeze. These results further support testing dietary interventions as part of the management of asthma. Copyright © 2018 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Cystic Fibrosis: Microbiology and Host Response.
Zemanick, Edith T; Hoffman, Lucas R
2016-08-01
The earliest descriptions of lung disease in people with cystic fibrosis (CF) showed the involvement of 3 interacting pathophysiologic elements in CF airways: mucus obstruction, inflammation, and infection. Over the past 7 decades, our understanding of CF respiratory microbiology and inflammation has evolved with the introduction of new treatments, increased longevity, and increasingly sophisticated laboratory techniques. This article reviews the current understanding of infection and inflammation and their roles in CF lung disease. It also discusses how this constantly evolving information is used to inform current therapeutic strategies, measures and predictors of disease severity, and research priorities. Copyright © 2016 Elsevier Inc. All rights reserved.
Inflammation: A novel target of current therapies for hepatic encephalopathy in liver cirrhosis.
Luo, Ming; Guo, Jian-Yang; Cao, Wu-Kui
2015-11-07
Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome that most commonly occurs in decompensated liver cirrhosis and incorporates a spectrum of manifestations that ranges from mild cognitive impairment to coma. Although the etiology of HE is not completely understood, it is believed that multiple underlying mechanisms are involved in the pathogenesis of HE, and one of the main factors is thought to be ammonia; however, the ammonia hypothesis in the pathogenesis of HE is incomplete. Recently, it has been increasingly demonstrated that inflammation, including systemic inflammation, neuroinflammation and endotoxemia, acts in concert with ammonia in the pathogenesis of HE in cirrhotic patients. Meanwhile, a good number of studies have found that current therapies for HE, such as lactulose, rifaximin, probiotics and the molecular adsorbent recirculating system, could inhibit different types of inflammation, thereby improving the neuropsychiatric manifestations and preventing the progression of HE in cirrhotic patients. The anti-inflammatory effects of these current therapies provide a novel therapeutic approach for cirrhotic patients with HE. The purpose of this review is to describe the inflammatory mechanisms behind the etiology of HE in cirrhosis and discuss the current therapies that target the inflammatory pathogenesis of HE.
Therapeutic Targets for Management of Periodontitis and Diabetes
Sima, Corneliu; Van Dyke, Thomas E.
2016-01-01
The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from n-3 polyunsaturated fatty acids. PMID:26881443
Therapeutic Targets for Management of Periodontitis and Diabetes
Sima, Corneliu; Van Dyke, Thomas E.
2016-01-01
The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from Ω-3 polyunsaturated fatty acids.
Stromal cells in chronic inflammation and tertiary lymphoid organ formation.
Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge
2015-01-01
Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.
Neuroinflammation in Autism Spectrum Disorders: Role of High Mobility Group Box 1 Protein
Dipasquale, Valeria; Cutrupi, Maria Concetta; Colavita, Laura; Manti, Sara; Cuppari, Caterina; Salpietro, Carmelo
2017-01-01
The pathogenesis of autism spectrum disorder (ASD) likely involves genetic and environmental factors, impacting the complex neurodevelopmental and behavioral abnormalities of the disorder. Scientific research studies emerging within the past two decades suggest that immune dysfunction and inflammation have pathogenic influences through different mechanisms, all leading to both a chronic state of low grade inflammation, and alterations in the central nervous system and immune response, respectively. The high mobility group box-1 protein (HMGB1) is an inflammatory marker which has been shown to play a role in inducing and influencing neuroinflammation. Current evidences suggest a possible role in the multiple pathogenic mechanisms of ASD. The aim of this manuscript is to review the major hypothesis for ASD pathogenesis, with specific regards to the immunological ones, and to provide a comprehensive review of the current data about the association between HMGB1 and ASD. A systematic search has been carried out through Medline via Pubmed to identify all original articles published in English, on the basis of the following keywords: “HMGB1”, “autism”, “autism spectrum disorder”, “neuroinflammation”, and “child”. PMID:29682486
Famakin, Bolanle M.
2014-01-01
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490
Chronic inflammation and impaired development of the preterm brain.
Bennet, Laura; Dhillon, Simerdeep; Lear, Chris A; van den Heuij, Lotte; King, Victoria; Dean, Justin M; Wassink, Guido; Davidson, Joanne O; Gunn, Alistair Jan
2018-02-01
The preterm newborn is at significant risk of neural injury and impaired neurodevelopment. Infants with mild or no evidence of injury may also be at risk of altered brain development, with evidence impaired cell maturation. The underlying causes are multifactorial and include exposure of both the fetus and newborn to hypoxia-ischemia, inflammation (chorioamnionitis) and infection, adverse maternal lifestyle choices (smoking, drug and alcohol use, diet) and obesity, as well as the significant demand that adaptation to post-natal life places on immature organs. Further, many fetuses and infants may have combinations of these events, and repeated (multi-hit) events that may induce tolerance to injury or sensitize to greater injury. Currently there are no treatments to prevent preterm injury or impaired neurodevelopment. However, inflammation is a common pathway for many of these insults, and clinical and experimental evidence demonstrates that acute and chronic inflammation is associated with impaired brain development. This review examines our current knowledge about the relationship between inflammation and preterm brain development, and the potential for stem cell therapy to provide neuroprotection and neurorepair through reducing inflammation and release of trophic factors, which promote cell maturation and repair. Copyright © 2017 Elsevier B.V. All rights reserved.
DAMPs as mediators of sterile inflammation in aging-related pathologies.
Feldman, Noa; Rotter-Maskowitz, Aviva; Okun, Eitan
2015-11-01
Accumulating evidence indicates that aging is associated with a chronic low-level inflammation, termed sterile-inflammation. Sterile-inflammation is a form of pathogen-free inflammation caused by mechanical trauma, ischemia, stress or environmental conditions such as ultra-violet radiation. These damage-related stimuli induce the secretion of molecular agents collectively termed danger-associated molecular patterns (DAMPs). DAMPs are recognized by virtue of specialized innate immune receptors, such as toll-like receptors (TLRs) and NOD-like receptor family, pyrin domain containing 3 (NLRP3). These receptors initiate signal transduction pathways, which typically drive inflammation in response to microbe-associated molecular patterns (MAMPs) and/or DAMPs. This review summarizes the current knowledge on DAMPs-mediated sterile-inflammation, its associated downstream signaling, and discusses the possibility that DAMPs activating TLRs or NLRP3 complex mediate sterile inflammation during aging and in aging-related pathologies. Copyright © 2015 Elsevier B.V. All rights reserved.
You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J
2013-04-01
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
Chronic bowel inflammation and inflammatory joint disease: Pathophysiology.
Speca, Silvia; Dubuquoy, Laurent
2017-07-01
Bowel inflammation is closely linked to chronic joint inflammation. Research reported in the 1980s demonstrated bowel inflammation with gross and microscopic pathological features identical to those of Crohn's disease in over 60% of patients with spondyloarthritis (SpA). Numerous prospective studies have evidenced joint involvement in patients with chronic inflammatory bowel disease (IBD) and bowel inflammation in patients with SpA. Nevertheless, the interactions of joint disease and chronic bowel inflammation remain incompletely elucidated. Two main hypotheses have been suggested to explain potential links between inflammation of the mucosal immune system and peripheral arthritis: one identifies gut bacteria as potentially implicated in the development of joint inflammation and the other involves the recruitment of gut lymphocytes or activated macrophages to the joints. Pathophysiological investigations have established that HLA-B27 is a pivotal pathogenic factor. Here, we review current data on links between chronic bowel inflammation and inflammatory joint disease. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Sharma, Arpeeta; Tate, Mitchel; Mathew, Geetha; Vince, James E.; Ritchie, Rebecca H.; de Haan, Judy B.
2018-01-01
It is now increasingly appreciated that inflammation is not limited to the control of pathogens by the host, but rather that sterile inflammation which occurs in the absence of viral or bacterial pathogens, accompanies numerous disease states, none more so than the complications that arise as a result of hyperglycaemia. Individuals with type 1 or type 2 diabetes mellitus (T1D, T2D) are at increased risk of developing cardiac and vascular complications. Glucose and blood pressure lowering therapies have not stopped the advance of these morbidities that often lead to fatal heart attacks and/or stroke. A unifying mechanism of hyperglycemia-induced cellular damage was initially proposed to link elevated blood glucose levels with oxidative stress and the dysregulation of metabolic pathways. Pre-clinical evidence has, in most cases, supported this notion. However, therapeutic strategies to lessen oxidative stress in clinical trials has not proved efficacious, most likely due to indiscriminate targeting by antioxidants such as vitamins. Recent evidence now suggests that oxidative stress is a major driver of inflammation and vice versa, with the latest findings suggesting not only a key role for inflammatory pathways underpinning metabolic and haemodynamic dysfunction in diabetes, but furthermore that these perturbations are driven by activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome. This review will address these latest findings with an aim of highlighting the interconnectivity between oxidative stress, NLRP3 activation and inflammation as it pertains to cardiac and vascular injury sustained by diabetes. Current therapeutic strategies to lessen both oxidative stress and inflammation will be emphasized. This will be placed in the context of improving the burden of these diabetic complications. PMID:29515457
Post-mating inflammatory responses of the uterus.
Katila, T
2012-08-01
This review attempts to summarize the current knowledge on uterine inflammatory response after mating in horses, pigs and cattle. Post-mating endometritis has been extensively studied in horses as it has been considered to cause infertility. The inflammation is known to occur also in cattle, but it has not been investigated to a similar extent. There are a number of publications about mechanisms of post-mating uterine inflammation in pigs, which seem to resemble those in horses. The major focus of this review is the horse, but relevant literature is presented also on swine and cattle. Spermatozoa, seminal plasma and semen extenders play roles in the induction of inflammation. In addition, sperm numbers, concentration and viability, as well as the site of semen deposition may modulate the inflammatory response. Cytokines, polymorphonuclear leucocytes (PMN) and mononuclear cells represent the uterine inflammatory response to mating. Inflammation is the first line of defence against invasion and eliminates excess spermatozoa and bacteria. Semen deposition elicits a massive PMN invasion, followed by phagocytosis of sperm aided by the formation of neutrophil extracellular traps. Exposure of the female genital tract to semen is important also for endometrial receptivity and pre-implantation embryo development. Seminal plasma (SP) and inflammation elicit transient immune tolerance to antigens present in semen. SP contains immune-regulatory molecules that activate and control immune responses to antigens by stimulating expression of cytokines and growth factors and by initiating tissue remodelling. SP also regulates ovarian function. Effective elimination of excess sperm and inflammatory by-products and subsequent rapid return of the endometrium to the normal state is a prerequisite for pregnancy. Uterine backflow, driven by myometrial contractions and requiring a patent cervix, is an important physical tool in uterine drainage. © 2012 Blackwell Verlag GmbH.
Regeneration of Musculoskeletal Tissues by Prolonged Low-Grade Inflammation
2011-10-01
grade inflammation around a pure collagen based scaffold on implantation into the rabbit patellar tendon. Additionally, the cross-sectional areas of...the tendons treated with the implant were about 40% greater compared to the sham- operated controls. In the current study, we hypothesized that soft...was implanted into the rat patellar tendon using a minimally invasive technique and the inflammation was blocked using liposomal clodronate. The
Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature
Sarlos, Patricia; Kovesdi, Erzsebet; Magyari, Lili; Banfai, Zsolt; Szabo, Andras; Javorhazy, Andras; Melegh, Bela
2014-01-01
Ulcerative colitis (UC) is one of the main types of inflammatory bowel disease, which is caused by dysregulated immune responses in genetically predisposed individuals. Several genetic factors, including interleukin and interleukin receptor gene polymorphisms and other inflammation-related genes play central role in mediating and modulating the inflammation in the human body, thereby these can be the main cause of development of the disease. It is clear these data are very important for understanding the base of the disease, especially in terms of clinical utility and validity, but summarized literature is exiguous for challenge health specialist that can used in the clinical practice nowadays. This review summarizes the current literature on inflammation-related genetic polymorphisms which are associated with UC. We performed an electronic search of Pubmed Database among publications of the last 10 years, using the following medical subject heading terms: UC, ulcerative colitis, inflammation, genes, polymorphisms, and susceptibility. PMID:25133031
Reactive Oxygen Species in Inflammation and Tissue Injury
Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.
2014-01-01
Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888
Balter, Leonie J T; Hulsken, Sasha; Aldred, Sarah; Drayson, Mark T; Higgs, Suzanne; Veldhuijzen van Zanten, Jet J C S; Raymond, Jane E; Bosch, Jos A
2018-05-06
The ability to adequately interpret the mental state of another person is key to complex human social interaction. Recent evidence suggests that this ability, considered a hallmark of 'theory of mind' (ToM), becomes impaired by inflammation. However, extant supportive empirical evidence is based on experiments that induce not only inflammation but also induce discomfort and sickness, factors that could also account for temporary social impairment. Hence, an experimental inflammation manipulation was applied that avoided this confound, isolating effects of inflammation and social interaction. Forty healthy male participants (mean age = 25, SD = 5 years) participated in this double-blind placebo-controlled crossover trial. Inflammation was induced using Salmonella Typhi vaccination (0.025 mg; Typhim Vi, Sanofi Pasteur, UK); saline-injection was used as a control. About 6 h 30 m after injection in each condition, participants completed the Reading the Mind in the Eyes Test (RMET), a validated test for assessing how well the mental states of others can be inferred through observation of the eyes region of the face. Vaccination induced systemic inflammation, elevating IL-6 by +419% (p < .001), without fever, sickness symptoms (e.g., nausea, light-headedness), or mood changes (all p's > .21). Importantly, compared to placebo, vaccination significantly reduced RMET accuracy (p < .05). RMET stimuli selected on valence (positive, negative, neutral) provided no evidence of a selective impact of treatment. By utilizing an inflammation-induction procedure that avoided concurrent sicknesses or symptoms in a double-blinded design, the present study provides further support for the hypothesis that immune activation impairs ToM. Such impairment may provide a mechanistic link explaining social-cognitive deficits in psychopathologies that exhibit low-grade inflammation, such as major depression. Copyright © 2018 Elsevier Inc. All rights reserved.
Harrison, Neil A.; Cooper, Ella; Voon, Valerie; Miles, Ken; Critchley, Hugo D.
2013-01-01
Inflammation is a risk factor for both depression and cardiovascular disease. Depressed mood is also a cardiovascular risk factor. To date, research into mechanisms through which inflammation impacts cardiovascular health rarely takes into account central effects on autonomic cardiovascular control, instead emphasizing direct effects of peripheral inflammatory responses on endothelial reactivity and myocardial function. However, brain responses to inflammation engage neural systems for motivational and homeostatic control and are expressed through depressed mood state and changes in autonomic cardiovascular regulation. Here we combined an inflammatory challenge, known to evoke an acute reduction in mood, with neuroimaging to identify the functional brain substrates underlying potentially detrimental changes in autonomic cardiovascular control. We first demonstrated that alterations in the balance of low to high frequency (LF/HF) changes in heart rate variability (a measure of baroreflex sensitivity) could account for some of the inflammation-evoked changes in diastolic blood pressure, indicating a central (rather than solely local endothelial) origin. Accompanying alterations in regional brain metabolism (measured using 18FDG-PET) were analysed to localise central mechanisms of inflammation-induced changes in cardiovascular state: three discrete regions previously implicated in stressor-evoked blood pressure reactivity, the dorsal anterior and posterior cingulate and pons, strongly mediated the relationship between inflammation and blood pressure. Moreover, activity changes within each region predicted the inflammation-induced shift in LF/HF balance. These data are consistent with a centrally-driven component originating within brain areas supporting stressor evoked blood pressure reactivity. Together our findings highlight mechanisms binding psychological and physiological well-being and their perturbation by peripheral inflammation. PMID:23416033
2014-01-01
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation. PMID:24606981
Relationship between Gingival Inflammation and Pregnancy
Wu, Min; Chen, Shao-Wu; Jiang, Shao-Yun
2015-01-01
An increase in the prevalence and severity of gingival inflammation during pregnancy has been reported since the 1960s. Though the etiology is not fully known, it is believed that increasing plasma sex steroid hormone levels during pregnancy have a dramatic effect on the periodontium. Current works of research have shown that estrogen and progesterone increasing during pregnancy are supposed to be responsible for gingivitis progression. This review is focused not only on epidemiological studies, but also on the effects of progesterone and estrogen on the change of subgingival microbiota and immunologic physiological mediators in periodontal tissue (gingiva and periodontal ligament), which provides current information about the effects of pregnancy on gingival inflammation. PMID:25873767
Straub, Rainer H; Lehle, Karin; Herfarth, Hans; Weber, Markus; Falk, Werner; Preuner, Jurgen; Scholmerich, Jurgen
2002-03-01
Serum levels of dehydroepiandrosterone (DHEA) and DHEA sulphate (DHEAS) are low in chronic inflammatory diseases, although the reasons are unexplained. Furthermore, the behaviour of serum levels of these hormones during an acute inflammatory stressful disease state is not well known. In this study in patients with an acute inflammatory stressful disease state (13 patients undergoing cardiothoracic surgery) and patients with chronic inflammation (61 patients with inflammatory bowel diseases (IBD)) vs. 120 controls, we aimed to investigate adrenal hormone shifts looking at serum levels of DHEA in relation to other adrenal hormones. Furthermore, we tested the predictive role of serum tumour necrosis factor (TNF) and interleukin-6 (IL-6) for a change of serum levels of DHEA in relation to other adrenal hormones. The molar ratio of serum levels of DHEA/androstenedione (ASD) was increased in patients with an acute inflammatory stressful disease state and was decreased in patients with chronic inflammation. The molar ratio of serum levels of DHEAS/DHEA was reduced during an acute inflammatory stressful disease state and was increased in patients with chronic inflammation. A multiple linear regression analysis revealed that elevated serum levels of TNF were associated with a high ratio of serum levels of DHEA/ASD in all groups (for IL-6 in patients with an acute inflammatory stressful disease state only), and, similarly, elevated serum levels of TNF were associated with a high ratio of serum levels of DHEAS/DHEA only in IBD (for IL-6 only in healthy subjects). This study indicates that changes of serum levels of DHEA in relation to serum levels of other adrenal hormones are completely different in patients with an acute inflammatory stressful disease state compared with patients with chronic inflammation. The decrease of serum levels of DHEAS and DHEA is typical for chronic inflammation and TNF and IL-6 play a predictive role for these changes.
The role of stromal cells in the persistence of chronic inflammation
Naylor, A J; Filer, A; Buckley, C D
2013-01-01
Inflammation is an unstable state; it either resolves or persists. Inflammatory reactions often have a propensity for specific anatomical sites. Why inflammation persists with specific tissue tropism remains obscure. Increasing evidence suggests that stromal cells which define tissue architecture are the key cells involved, and therefore make attractive therapeutic targets. Research on stromal cells in general and fibroblasts in particular has so far been hampered by a lack of fibroblast-specific cell markers. This review highlights our increasing understanding of the role of fibroblasts in inflammation, and suggests that these cells provide the cellular basis for site specific chronic inflammation. PMID:23199320
Dinwiddie, Gniesha Y.; Zambrana, Ruth E.; Doamekpor, Lauren A.; Lopez, Lenny
2015-01-01
Inflammation has shown to be an independent predictor of cardiovascular disease (CVD) and growing evidence suggests Non-Hispanic Blacks (NHBs) and certain Hispanic subgroups have higher inflammation burden compared to Non-Hispanic Whites (NHWs). Socioeconomic status (SES) is a hypothesized pathway that may account for the higher inflammation burden for race/ethnic groups yet little is known about the biological processes by which SES “gets under the skin” to affect health and whether income and education have similar or distinct influences on elevated inflammation levels. The current study examines SES (income and education) associations with multiple levels of C-Reactive Protein (CRP), an important biomarker of inflammation, in a sample of 13,362 NHWs, 7696 NHBs and 4545 Mexican Americans (MAs) in the United States from the 2001 to 2008 National Health and Nutrition Examination Survey. After adjusting for age, sex, and statin use, NHBs and MAs had higher intermediate and high CRP levels compared to NHWs. Income lessened the magnitude of the association for both race/ethnic groups. The greater intermediate and high CRP burden for NHBs and MAs was strongly explained by educational attainment. MAs were more vulnerable to high CRP levels for the lowest (i.e., less than nine years) and post high school (i.e., associates degree) educational levels. After additional adjustment for smoking, heavy drinking, high waist circumference, high blood pressure, diabetes and statin use, the strength of the association between race/ethnicity and inflammation was reduced for NHBs with elevated intermediate (RR = 1.31; p ≤ 0.001) and high CRP levels (RR = 1.14; p ≤ 0.001) compared to NHWs but the effect attenuated for MAs for both intermediate (RR = 0.74; p ≤ 0.001) and high CRP levels (RR = 0.38; p ≤ 0.001). These findings suggest educational attainment is a powerful predictor of elevated CRP levels in race/ethnic populations and challenges studies to move beyond examining income as a better predictor in the SES-inflammation pathway. PMID:26703686
Dinwiddie, Gniesha Y; Zambrana, Ruth E; Doamekpor, Lauren A; Lopez, Lenny
2015-12-22
Inflammation has shown to be an independent predictor of cardiovascular disease (CVD) and growing evidence suggests Non-Hispanic Blacks (NHBs) and certain Hispanic subgroups have higher inflammation burden compared to Non-Hispanic Whites (NHWs). Socioeconomic status (SES) is a hypothesized pathway that may account for the higher inflammation burden for race/ethnic groups yet little is known about the biological processes by which SES "gets under the skin" to affect health and whether income and education have similar or distinct influences on elevated inflammation levels. The current study examines SES (income and education) associations with multiple levels of C-Reactive Protein (CRP), an important biomarker of inflammation, in a sample of 13,362 NHWs, 7696 NHBs and 4545 Mexican Americans (MAs) in the United States from the 2001 to 2008 National Health and Nutrition Examination Survey. After adjusting for age, sex, and statin use, NHBs and MAs had higher intermediate and high CRP levels compared to NHWs. Income lessened the magnitude of the association for both race/ethnic groups. The greater intermediate and high CRP burden for NHBs and MAs was strongly explained by educational attainment. MAs were more vulnerable to high CRP levels for the lowest (i.e., less than nine years) and post high school (i.e., associates degree) educational levels. After additional adjustment for smoking, heavy drinking, high waist circumference, high blood pressure, diabetes and statin use, the strength of the association between race/ethnicity and inflammation was reduced for NHBs with elevated intermediate (RR = 1.31; p ≤ 0.001) and high CRP levels (RR = 1.14; p ≤ 0.001) compared to NHWs but the effect attenuated for MAs for both intermediate (RR = 0.74; p ≤ 0.001) and high CRP levels (RR = 0.38; p ≤ 0.001). These findings suggest educational attainment is a powerful predictor of elevated CRP levels in race/ethnic populations and challenges studies to move beyond examining income as a better predictor in the SES-inflammation pathway.
Farrugia, Brooke L; Lord, Megan S; Melrose, James; Whitelock, John M
2018-04-01
Key events that occur during inflammation include the recruitment, adhesion, and transmigration of leukocytes from the circulation to the site of inflammation. These events are modulated by chemokines, integrins, and selectins and the interaction of these molecules with glycosaminoglycans, predominantly heparan sulfate (HS). The development of HS/heparin mimetics that interfere or inhibit the interactions that occur between glycosaminoglycans and modulators of inflammation holds great potential for use as anti-inflammatory therapeutics. This review will detail the role of HS in the events that occur during inflammation, their interaction and modulation of inflammatory mediators, and the current advances in the development of HS/heparin mimetics as anti-inflammatory biotherapeutics.
Lee, Jongsoon
2014-01-01
It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and Type 2 Diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in Type 2 Diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of Type 2 Diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process. PMID:23397293
Aggarwal, Sunil K; Carter, Gregory T; Sullivan, Mark D; ZumBrunnen, Craig; Morrill, Richard; Mayer, Jonathan D
2009-01-01
Cannabis (marijuana) has been used for medicinal purposes for millennia, said to be first noted by the Chinese in c. 2737 BCE. Medicinal cannabis arrived in the United States much later, burdened with a remarkably checkered, yet colorful, history. Despite early robust use, after the advent of opioids and aspirin, medicinal cannabis use faded. Cannabis was criminalized in the United States in 1937, against the advice of the American Medical Association submitted on record to Congress. The past few decades have seen renewed interest in medicinal cannabis, with the National Institutes of Health, the Institute of Medicine, and the American College of Physicians, all issuing statements of support for further research and development. The recently discovered endocannabinoid system has greatly increased our understanding of the actions of exogenous cannabis. Endocannabinoids appear to control pain, muscle tone, mood state, appetite, and inflammation, among other effects. Cannabis contains more than 100 different cannabinoids and has the capacity for analgesia through neuromodulation in ascending and descending pain pathways, neuroprotection, and anti-inflammatory mechanisms. This article reviews the current and emerging research on the physiological mechanisms of cannabinoids and their applications in managing chronic pain, muscle spasticity, cachexia, and other debilitating problems.
Xie, Wenrui; Tan, Zhi-Yong; Barbosa, Cindy; Strong, Judith A.; Cummins, Theodore R.; Zhang, Jun-Ming
2016-01-01
High frequency spontaneous firing in myelinated sensory neurons plays a key role in initiating pain behaviors in several different models, including the radicular pain model in which the rat lumbar dorsal root ganglia (DRG) are locally inflamed. The sodium channel isoform NaV1.6 contributes to pain behaviors and spontaneous activity in this model. Among all the isoforms in adult DRG, NaV1.6 is the main carrier of TTX-sensitive resurgent Na currents that allow high-frequency firing. Resurgent currents flow after a depolarization or action potential, as a blocking particle exits the pore. In most neurons the regulatory β4 subunit is potentially the endogenous blocker. We used in vivo siRNA mediated knockdown of NaVβ4 to examine its role in the DRG inflammation model. NaVβ4 but not control siRNA almost completely blocked mechanical hypersensitivity induced by DRG inflammation. Microelectrode recordings in isolated whole DRGs showed that NaVβ4 siRNA blocked the inflammation-induced increase in spontaneous activity of Aβ neurons, and reduced repetitive firing and other measures of excitability. NaVβ4 was preferentially expressed in larger diameter cells; DRG inflammation increased its expression and this was reversed by NaVβ4 siRNA, based on immunohistochemistry and Western blotting. NaVβ4 siRNA also reduced immunohistochemical NaV1.6 expression. Patch clamp recordings of TTX-sensitive Na currents in acutely cultured medium diameter DRG neurons showed that DRG inflammation increased transient and especially resurgent current; effects blocked by NaVβ4 siRNA. NaVβ4 may represent a more specific target for pain conditions that depend on myelinated neurons expressing NaV1.6. PMID:26785322
Markers of Oxidant Stress that are Clinically Relevant in Aging and Age-related Disease
Jacob, Kimberly D.; Hooten, Nicole Noren; Trzeciak, Andrzej R.; Evans, Michele K.
2013-01-01
Despite the long held hypothesis that oxidant stress results in accumulated oxidative damage to cellular macromolecules and subsequently to aging and age-related chronic disease, it has been difficult to consistently define and specifically identify markers of oxidant stress that are consistently and directly linked to age and disease status. Inflammation because it is also linked to oxidant stress, aging, and chronic disease also plays an important role in understanding the clinical implications of oxidant stress and relevant markers. Much attention has focused on identifying specific markers of oxidative stress and inflammation that could be measured in easily accessible tissues and fluids (lymphocytes, plasma, serum). The purpose of this review is to discuss markers of oxidant stress used in the field as biomarkers of aging and age-related diseases, highlighting differences observed by race when data is available. We highlight DNA, RNA, protein, and lipid oxidation as measures of oxidative stress, as well as other well-characterized markers of oxidative damage and inflammation and discuss their strengths and limitations. We present the current state of the literature reporting use of these markers in studies of human cohorts in relation to age and age-related disease and also with a special emphasis on differences observed by race when relevant. PMID:23428415
Untangling the Gordian knot of HIV, stress, and cognitive impairment.
Valdez, Arielle N; Rubin, Leah H; Neigh, Gretchen N
2016-10-01
As individuals live longer with HIV, this "graying of the HIV epidemic" has introduced a new set of challenges including a growing number of age and inflammation-related diseases such as cardiovascular disease, type II diabetes, cancer, and dementia. The biological underpinnings of these complex and co-morbid diseases are not fully understood and become very difficult to disentangle in the context of HIV and aging. In the current review we examine the contributions and interactions of HIV, stress, and cognitive impairment and query the extent to which inflammation is the linchpin in these dynamic interactions. Given the inter-relatedness of stress, inflammatory mechanisms, HIV, and cognitive impairment, future work will either need to address multiple dimensions simultaneously or embrace the philosophy that breaking the aberrant cycle at any one point will subsequently remedy the other related systems and processes. Such a single-point intervention may be effective in early disease states, but after perpetuation of an aberrant cycle, adaptations in an attempt to internally resolve the issue will likely lead to the need for multifaceted interventions. Acknowledging that HIV, inflammation, and stress may interact with one another and collectively impact cognitive ability is an important step in fully understanding an individual's complete clinical picture and moving towards personalized medicine.
Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine.
Bowe, W; Patel, N B; Logan, A C
2014-06-01
Acne vulgaris has long been postulated to feature a gastrointestinal mechanism, dating back 80 years to dermatologists John H. Stokes and Donald M. Pillsbury. They hypothesised that emotional states (e.g. depression and anxiety) could alter normal intestinal microbiota, increase intestinal permeability, and contribute to systemic inflammation. They were also among the first to propose the use of probiotic Lactobacillus acidophilus cultures. In recent years, aspects of this gut-brain-skin theory have been further validated via modern scientific investigations. It is evident that gut microbes and oral probiotics could be linked to the skin, and particularly acne severity, by their ability to influence systemic inflammation, oxidative stress, glycaemic control, tissue lipid content, and even mood. This intricate relationship between gut microbiota and the skin may also be influenced by diet, a current area of intense scrutiny by those who study acne. Here we provide a historical background to the gut-brain-skin theory in acne, followed by a summary of contemporary investigations and clinical implications.
Inflammatory Regulation of Valvular Remodeling: The Good(?), the Bad, and the Ugly
Mahler, Gretchen J.; Butcher, Jonathan T.
2011-01-01
Heart valve disease is unique in that it affects both the very young and very old, and does not discriminate by financial affluence, social stratus, or global location. Research over the past decade has transformed our understanding of heart valve cell biology, yet still more remains unclear regarding how these cells respond and adapt to their local microenvironment. Recent studies have identified inflammatory signaling at nearly every point in the life cycle of heart valves, yet its role at each stage is unclear. While the vast majority of evidence points to inflammation as mediating pathological valve remodeling and eventual destruction, some studies suggest inflammation may provide key signals guiding transient adaptive remodeling. Though the mechanisms are far from clear, inflammatory signaling may be a previously unrecognized ally in the quest for controlled rapid tissue remodeling, a key requirement for regenerative medicine approaches for heart valve disease. This paper summarizes the current state of knowledge regarding inflammatory mediation of heart valve remodeling and suggests key questions moving forward. PMID:21792386
Functionalized Gold Nanoparticles for the Detection of C-Reactive Protein
António, Maria
2018-01-01
C-reactive protein (CRP) is a very important biomarker of infection and inflammation for a number of diseases. Routine CRP measurements with high sensitivity and reliability are highly relevant to the assessment of states of inflammation and the efficacy of treatment intervention, and require the development of very sensitive, selective, fast, robust and reproducible assays. Gold nanoparticles (Au NPs) are distinguished for their unique electrical and optical properties and the ability to conjugate with biomolecules. Au NP-based probes have attracted considerable attention in the last decade in the analysis of biological samples due to their simplicity, high sensitivity and selectivity. Thus, this article aims to be a critical and constructive analysis of the literature of the last three years regarding the advances made in the development of bioanalytical assays based on gold nanoparticles for the in vitro detection and quantification of C-reactive protein from biological samples. Current methods for Au NP synthesis and the strategies for surface modification aiming at selectivity towards CRP are highlighted. PMID:29597295
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Karshikoff, Bianka; Sundelin, Tina; Lasselin, Julie
2017-01-01
Fatigue is a highly disabling symptom in various medical conditions. While inflammation has been suggested as a potential contributor to the development of fatigue, underlying mechanisms remain poorly understood. In this review, we propose that a better assessment of central fatigue, taking into account its multidimensional features, could help elucidate the role and mechanisms of inflammation in fatigue development. A description of the features of central fatigue is provided, and the current evidence describing the association between inflammation and fatigue in various medical conditions is reviewed. Additionally, the effect of inflammation on specific neuronal processes that may be involved in distinct fatigue dimensions is described. We suggest that the multidimensional aspects of fatigue should be assessed in future studies of inflammation-induced fatigue and that this would benefit the development of effective therapeutic interventions. PMID:28163706
Gudes, Sagi; Barkai, Omer; Caspi, Yaki; Katz, Ben; Lev, Shaya
2014-01-01
Tetrodotoxin-resistant (TTX-r) sodium channels are key players in determining the input-output properties of peripheral nociceptive neurons. Changes in gating kinetics or in expression levels of these channels by proinflammatory mediators are likely to cause the hyperexcitability of nociceptive neurons and pain hypersensitivity observed during inflammation. Proinflammatory mediator, tumor necrosis factor-α (TNF-α), is secreted during inflammation and is associated with the early onset, as well as long-lasting, inflammation-mediated increase in excitability of peripheral nociceptive neurons. Here we studied the underlying mechanisms of the rapid component of TNF-α-mediated nociceptive hyperexcitability and acute pain hypersensitivity. We showed that TNF-α leads to rapid onset, cyclooxygenase-independent pain hypersensitivity in adult rats. Furthermore, TNF-α rapidly and substantially increases nociceptive excitability in vitro, by decreasing action potential threshold, increasing neuronal gain and decreasing accommodation. We extended on previous studies entailing p38 MAPK-dependent increase in TTX-r sodium currents by showing that TNF-α via p38 MAPK leads to increased availability of TTX-r sodium channels by partial relief of voltage dependence of their slow inactivation, thereby contributing to increase in neuronal gain. Moreover, we showed that TNF-α also in a p38 MAPK-dependent manner increases persistent TTX-r current by shifting the voltage dependence of activation to a hyperpolarized direction, thus producing an increase in inward current at functionally critical subthreshold voltages. Our results suggest that rapid modulation of the gating of TTX-r sodium channels plays a major role in the mediated nociceptive hyperexcitability of TNF-α during acute inflammation and may lead to development of effective treatments for inflammatory pain, without modulating the inflammation-induced healing processes. PMID:25355965
Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment
Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi
2016-01-01
All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645
Mohammed, Noor; Subramanian, Venkataraman
2016-01-01
Ulcerative colitis (UC) is a chronic inflammatory bowel condition characterised by a relapsing and remitting course. Symptom control has been the traditional mainstay of medical treatment. It is well known that histological inflammatory activity persists despite adequate symptom control and absence of endoscopic inflammation. Current evidence suggests that presence of histological inflammation poses a greater risk of disease relapse and subsequent colorectal cancer risk. New endoscopic technologies hold promise for developing endoscopic markers of mucosal inflammation. Achieving endoscopic and histological remission appears be the future aim of medical treatments for UC. This review article aims to evaluate the use of endoscopy as a tool in assessment of mucosal inflammation UC and its correlation with disease outcomes. PMID:27895420
The role of inflammation in preterm birth--focus on periodontitis.
Klebanoff, M; Searle, K
2006-12-01
It is universally accepted that acute inflammation is responsible for a substantial fraction of preterm births, particularly early cases. Much of this inflammation is caused by intrauterine infection. There is also evidence that infection and perhaps inflammation remote from the genitourinary tract can trigger preterm labour. Several studies have suggested that periodontitis during pregnancy increases the risk of preterm birth. Periodontitis may cause preterm birth by causing low-grade bacteraemia, which lodges in the decidua, chorion and amnion or by releasing endotoxin into the maternal circulation, which triggers intrauterine inflammation and preterm birth. Alternatively, it may release cytokines and other inflammatory products, which then trigger preterm labour. It is also conceivable that periodontitis might serve as a marker for other unhealthy behaviours, or immune hyperresponsiveness and that hyperresponsiveness to low-grade intrauterine infection itself might cause preterm birth. Currently, there are few data available to distinguish these possibilities. Such distinctions are important since they have clear implications for whether treatment of periodontitis might reduce the incidence of preterm birth. Several clinical trials of treatment of periodontitis are continuing, but until their results are known there is currently little evidence that treatment of periodontitis during pregnancy reduces the incidence of preterm birth.
Polycystic ovary syndrome and chronic inflammation: pharmacotherapeutic implications.
Sirmans, Susan Maureen; Weidman-Evans, Emily; Everton, Victoria; Thompson, Daniel
2012-03-01
To examine the relationship between polycystic ovary syndrome (PCOS), cardiovascular risk factors, cardiovascular disease (CVD), and chronic inflammation and analyze data regarding pharmacologic therapies that are recommended to reduce CVD risk in PCOS and the impact of those therapies on chronic inflammation. A search of MEDLINE (1950-October 2011) was conducted to identify clinical studies pertaining to the identification and treatment of CVD and chronic low-grade inflammation in PCOS. Search terms included polycystic ovary syndrome, cardiovascular disease, inflammation, metformin, thiazolidinedione, and statin. Bibliographies of these studies and review articles were also examined. English-language clinical studies evaluating the effect of metformin, thiazolidinediones, and statins on inflammatory markers, endothelial function, adhesion molecules, fibrinolysis, cytokines, and adipokines in PCOS were included. Women with PCOS have an increased prevalence of many cardiovascular risk factors including obesity, android fat distribution, insulin resistance, impaired glucose tolerance, diabetes, dyslipidemia, hypertension, and metabolic syndrome. Markers of chronic low-grade inflammation, which are associated with an increased risk of CVD, are also elevated in PCOS. Clinical guidelines recommend the use of insulin sensitizers and statins to prevent CVD in some patients with PCOS. Current literature indicates that each of these medication classes has beneficial effects on inflammation, as well. Although there are currently no studies to determine whether these treatments decrease CVD in PCOS, it can be hypothesized that drugs impacting chronic inflammation may reduce cardiovascular risk. Some studies show that metformin, thiazolidinediones, and statins have beneficial effects on inflammatory markers in PCOS; however, the data are inconsistent. There is insufficient information to recommend any pharmacologic therapies for their antiinflammatory effects in PCOS in the absence of other indications such as diabetes and dyslipidemia.
Koethe, John R.; Yolken, Robert H.
2017-01-01
Approximately 1 out of 5 children worldwide suffers from childhood malnutrition or stunting and associated health conditions, including an increased susceptibility to infections and inflammation. Due to improved early interventions, most children even in low-resource settings now survive early childhood malnutrition, yet exhibit continuing evidence of neurodevelopmental deficits, including poor school achievement and behavioral problems. These conditions are compounded in children who continue to be undernourished throughout the adolescent years. At present, these sequelae of malnutrition and infection are of major concern in the adolescent population, given that young people between the ages of 10 and 24 years represent nearly one-quarter of the world’s population. Therefore, there is an urgent need to focus on the well-being of this age group and, in particular, on behavioral, cognitive, and brain disorders of adolescents who experienced malnutrition, infection, and inflammation prenatally, in early childhood, and during adolescence itself. Because one-third of all women globally become pregnant during their adolescent years, brain and behavioral disorders during this period can have an intergenerational impact, affecting the health and well-being of the next generation. This article summarizes the current state of knowledge and evidence gaps regarding childhood and adolescent malnutrition and inflammation and their impact on adolescent neurodevelopment, the limited evidence regarding nutrition and psychosocial interventions, and the role of resilience and protective factors in this age group. This overview should help to inform the development of new strategies to improve the neurodevelopmental outcomes of high risk adolescent populations. PMID:28562250
Stem Cells and Healing: Impact on Inflammation
Ennis, William J.; Sui, Audrey; Bartholomew, Amelia
2013-01-01
Significance The number of patients with nonhealing wounds has rapidly accelerated over the past 10 years in both the United States and worldwide. Some causative factors at the macro level include an aging population, epidemic numbers of obese and diabetic patients, and an increasing number of surgical procedures. At the micro level, chronic inflammation is a consistent finding. Recent Advances A number of treatment modalities are currently used to accelerate wound healing, including energy-based modalities, scaffoldings, the use of mechano-transduction, cytokines/growth factors, and cell-based therapies. The use of stem cell therapy has been hypothesized as a potentially useful adjunct for nonhealing wounds. Specifically, mesenchymal stem cells (MSCs) have been shown to improve wound healing in several studies. Immune modulating properties of MSCs have made them attractive treatment options. Critical Issues Current limitations of stem cell therapy include the potentially large number of cells required for an effect, complex preparation and delivery methods, and poor cell retention in targeted tissues. Comparisons of published in-vitro and clinical trials are difficult due to cell preparation techniques, passage number, and the impact of the micro-environment on cell behavior. Future Directions MSCs may be more useful if they are preactivated with inflammatory cytokines such as tumor necrosis factor alpha or interferon gamma. This article will review the current literature with regard to the use of stem cells for wound healing. In addition the anti-inflammatory effects of MSCs will be discussed along with the potential benefits of stem cell preactivation. PMID:24587974
Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F
2017-01-15
Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Scientists have identified 11 inflammation markers in the bloodstream that are associated with an increased risk of lung cancer. Previous studies of inflammation markers have been on a smaller scale or involved fewer markers. The current study, publi
Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease.
Guarner, Verónica; Rubio-Ruiz, Maria Esther
2015-01-01
Aging is associated with immunosenescence and accompanied by a chronic inflammatory state which contributes to metabolic syndrome, diabetes and their cardiovascular consequences. Risk factors for cardiovascular diseases (CVDs) and diabetes overlap, leading to the hypothesis that both share an inflammatory basis. Obesity is increased in the elderly population, and adipose tissue induces a state of systemic inflammation partially induced by adipokines. The liver plays a pivotal role in the metabolism of nutrients and exhibits alterations in the expression of genes associated with inflammation, cellular stress and fibrosis. Hepatic steatosis and its related inflammatory state (steatohepatitis) are the main hepatic complications of obesity and metabolic diseases. Aging-linked declines in expression and activity of endoplasmic reticulum molecular chaperones and folding enzymes compromise proper protein folding and the adaptive response of the unfolded protein response. These changes predispose aged individuals to CVDs. CVDs and endothelial dysfunction are characterized by a chronic alteration of inflammatory function and markers of inflammation and the innate immune response, including C-reactive protein, interleukin-6, TNF-α, and several cell adhesion molecules are linked to the occurrence of myocardial infarction and stroke in healthy elderly populations and patients with metabolic diseases. 2015 S. Karger AG, Basel.
Nano-sized Contrast Agents to Non-Invasively Detect Renal Inflammation by Magnetic Resonance Imaging
Thurman, Joshua M.; Serkova, Natalie J.
2013-01-01
Several molecular imaging methods have been developed that employ nano-sized contrast agents to detect markers of inflammation within tissues. Renal inflammation contributes to disease progression in a wide range of autoimmune and inflammatory diseases, and a biopsy is currently the only method of definitively diagnosing active renal inflammation. However, the development of new molecular imaging methods that employ contrast agents capable of detecting particular immune cells or protein biomarkers will allow clinicians to evaluate inflammation throughout the kidneys, and to assess a patient's response to immunomodulatory drugs. These imaging tools will improve our ability to validate new therapies and to optimize the treatment of individual patients with existing therapies. This review describes the clinical need for new methods of monitoring renal inflammation, and recent advances in the development of nano-sized contrast agents for detection of inflammatory markers of renal disease. PMID:24206601
Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations.
Chang, Hun Soo; Lee, Tae-Hyeong; Jun, Ji Ae; Baek, Ae Rin; Park, Jong-Sook; Koo, So-My; Kim, Yang-Ki; Lee, Ho Sung; Park, Choon-Sik
2017-01-01
Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi
2017-04-19
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Cytokine production capacity in depression and anxiety.
Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W
2016-05-31
Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18-65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: interleukin (IL)-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may partly explain higher levels of basal, as well as LPS-stimulated inflammation in persons with depressive and anxiety disorders. However, production capacity of several cytokines was positively associated with severity of depressive and in particular anxiety symptoms, even while taking lifestyle and health factors into account. Elevated IL-8 production capacity in both previously and currently depressed and anxious persons might indicate a genetic vulnerability for these disorders.
Noncoding RNAs and chronic inflammation: Micro-managing the fire within.
Alexander, Margaret; O'Connell, Ryan M
2015-09-01
Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age-associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets. © 2015 The Authors. BioEssays published by WILEY Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Introduction: Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in female rats with chronic inflammation, because of GTP’s antioxidant capacity. The current study further evaluates whether GTP can restore bone microstructure along with related mechanism in rats wit...
Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto
2015-10-01
Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Towards a Genetic Definition of Cancer-Associated Inflammation
Prendergast, George C.; Metz, Richard; Muller, Alexander J.
2010-01-01
Chronic inflammation drives the development of many cancers, but a genetic definition of what constitutes ‘cancer-associated’ inflammation has not been determined. Recently, a mouse genetic study revealed a critical role for the immune escape mediator indoleamine 2,3-dioxygenase (IDO) in supporting inflammatory skin carcinogenesis. IDO is generally regarded as being immunosuppressive; however, there was no discernable difference in generalized inflammatory processes in IDO-null mice under conditions where tumor development was significantly suppressed, implicating IDO as key to establishing the pathogenic state of ‘cancer-associated’ inflammation. Here we review recent findings and their potential implications to understanding the relationship between immune escape and inflammation in cancer. Briefly, we propose that genetic pathways of immune escape in cancer are synonymous with pathways that define ‘cancer-associated’ inflammation and that these processes may be identical rather than distinct, as generally presumed, in terms of their genetic definition. PMID:20228228
Aggarwal, Bharat B.; Prasad, Sahdeo; Reuter, Simone; Kannappan, Ramaswamy; Yadev, Vivek R.; Park, Byoungduck; Kim, Ji Hye; Gupta, Subash C.; Phromnoi, Kanokkarn; Sundaram, Chitra; Prasad, Seema; Chaturvedi, Madan M.; Sung, Bokyung
2011-01-01
Inflammation, although first characterized by Cornelius Celsus, a physician in first Century Rome, it was Rudolf Virchow, a German physician in nineteenth century who suggested a link between inflammation and cancer, cardiovascular diseases, diabetes, pulmonary diseases, neurological diseases and other chronic diseases. Extensive research within last three decades has confirmed these observations and identified the molecular basis for most chronic diseases and for the associated inflammation. The transcription factor, Nuclear Factor-kappaB (NF-κB) that controls over 500 different gene products, has emerged as major mediator of inflammation. Thus agents that can inhibit NF-κB and diminish chronic inflammation have potential to prevent or delay the onset of the chronic diseases and further even treat them. In an attempt to identify novel anti-inflammatory agents which are safe and effective, in contrast to high throughput screen, we have turned to “reverse pharmacology” or “bed to benchside” approach. We found that Ayurveda, a science of long life, almost 6000 years old, can serve as a “goldmine” for novel anti-inflammatory agents used for centuries to treat chronic diseases. The current review is an attempt to provide description of various Ayurvedic plants currently used for treatment, their active chemical components, and the inflammatory pathways that they inhibit. PMID:21561421
Hypothalamic inflammation and the central nervous system control of energy homeostasis.
Pimentel, Gustavo D; Ganeshan, Kirthana; Carvalheira, José B C
2014-11-01
The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis.
Bird, Ranjana P
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H 2 S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health. © 2018 Elsevier Inc. All rights reserved.
Hypomagnesemia and its relation with chronic low-grade inflammation in obesity.
Oliveira, Ana Raquel Soares de; Cruz, Kyria Jayanne Clímaco; Severo, Juliana Soares; Morais, Jennifer Beatriz Silva; Freitas, Taynáh Emannuelle Coelho de; Araújo, Rogério Santiago; Marreiro, Dilina do Nascimento
2017-02-01
The accumulation of visceral fat in obesity is associated with excessive production of proinflammatory adipokines, which contributes to low-grade chronic inflammation state. Moreover, the literature has shown that mineral deficiency, in particular of magnesium, has important role in the pathogenesis of this metabolic disorder with relevant clinical repercussions. To bring updated information about the participation of hypomagnesemia in the manifestation of low-grade chronic inflammation in obese individuals. Articles published in PubMed, SciELO, LILACS and ScienceDirect, using the following keywords: "obesity," "magnesium" and "low grade inflammation." Scientific evidence suggests that magnesium deficiency favors the manifestation of low-grade chronic inflammation in obese subjects. From literature data, it is evident the participation of magnesium through biochemical and metabolic reactions in protecting against this metabolic disorder present in obesity.
Noncoding RNAs and chronic inflammation: Micro‐managing the fire within
Alexander, Margaret
2015-01-01
Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets. Copyright Line: © 2015 The Authors BioEssays Published by Wiley‐VCH Verlag GmbH & Co. KGaA. PMID:26249326
Menopause, obesity and inflammation: interactive risk factors for Alzheimer’s disease
Christensen, Amy; Pike, Christian J.
2015-01-01
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD. PMID:26217222
Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi
2017-01-01
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis. PMID:28422073
Cosoli, G; Scalise, L; Tricarico, G; Tomasini, E P; Cerri, G
2016-08-01
Peri-implantitis is a severe inflammatory pathology that affects soit and hard tissues surrounding dental implants. Nowadays, only prevention is effective to contrast peri-implantitis, but, in recent years, there is the clinical evidence of the efficiency of a therapy based on the application of radio frequency electric current, reporting that 81% of the cases (66 implants, 46 patients) were successfully treated. The aim of this paper is to present the therapy mechanism, exploring the distribution of the electric currents in normal and pathologic tissues. A 3D numerical FEM model of tooth root with a dental implant screwed in the alveolar bone has been realized and the therapy has been simulated in COMSOL Multiphysics® environment. Results show that the electric current is focused in the inflamed zone around the implant, due to the fact that its conductivity is higher than the healthy tissue one. Moreover, by means of a movable return electrode, the electric current and field lines can be guided in the most inflamed area, limiting the interference on healthy tissues and improving the therapy in the area of interest. In conclusion, it can be stated that this innovative therapy would make a personalized therapy for peri-implantitis possible, also through impedance measurements, allowing the clinician to evaluate the tissue inflammation state.
[Technological advances and micro-inflammation in dialysis patients].
Ferro, Giuseppe; Ravaglia, Fiammetta; Ferrari, Elisa; Romoli, Elena; Michelassi, Stefano; Caiani, David; Pizzarelli, Francesco
2015-01-01
As currently performed, on line hemodiafiltration reduces, but does not normalize, the micro-inflammation of uremic patients. Recent technological advances make it possible to further reduce the inflammation connected to the dialysis treatment. Short bacterial DNA fragments are pro-inflammatory and can be detected in the dialysis fluids. However, their determination is not currently within normal controls of the quality of the dialysate. The scenario may change once the analysis of these fragments yields reliable, inexpensive, quick and easy to evaluate the results. At variance with standard bicarbonate dialysate, Citrate dialysate induces far less inflammation both for the well-known anti-inflammatory effect of such buffer and also because it is completely acetate free, e.g. a definitely pro-inflammatory buffer. However, the extensive use of citrate dialysate in chronic dialysis is prevented because of concerns about its potential calcium lowering effect. In our view, high convective exchange on line hemodiafiltration performed with dialysate, whose sterility and a-pirogenicity is guaranteed by increasingly sophisticated controls and with citrate buffer whose safety is certified, can serve as the gold standard of dialysis treatments in future.
Xu, Ning; An, Jun
2017-01-01
Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144
Xu, Ning; An, Jun
2017-12-01
Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.
Arnold, Kimberly M; Opdenaker, Lynn M; Flynn, Daniel; Sims-Mourtada, Jennifer
2015-01-01
The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth of CSCs and improve therapeutic outcomes. PMID:25674014
Prostate cancer and inflammation: the evidence
Sfanos, Karen S; De Marzo, Angelo M
2014-01-01
Chronic inflammation is now known to contribute to several forms of human cancer, with an estimated 20% of adult cancers attributable to chronic inflammatory conditions caused by infectious agents, chronic noninfectious inflammatory diseases and / or other environmental factors. Indeed, chronic inflammation is now regarded as an ‘enabling characteristic’ of human cancer. The aim of this review is to summarize the current literature on the evidence for a role for chronic inflammation in prostate cancer aetiology, with a specific focus on recent advances regarding the following: (i) potential stimuli for prostatic inflammation; (ii) prostate cancer immunobiology; (iii) inflammatory pathways and cytokines in prostate cancer risk and development; (iv) proliferative inflammatory atrophy (PIA) as a risk factor lesion to prostate cancer development; and (v) the role of nutritional or other antiinflammatory compounds in reducing prostate cancer risk. PMID:22212087
Role of intestinal inflammation as an early event in obesity and insulin resistance
Ding, Shengli; Lund, Pauline K.
2013-01-01
Purpose of review To highlight recent evidence supporting a concept that intestinal inflammation is a mediator or contributor to development of obesity and insulin resistance. Recent findings Current views suggest that obesity-associated systemic and adipose tissue inflammation promote insulin resistance, which underlies many obesity-linked health risks. Diet-induced changes in gut microbiota also contribute to obesity. Recent findings support a concept that high fat diet and bacteria interact to promote early inflammatory changes in the small intestine that contribute to development of or susceptibility to obesity and insulin resistance. This review summarizes the evidence supporting a role of intestinal inflammation in diet-induced obesity and insulin resistance and discusses mechanisms. Summary The role of diet-induced intestinal inflammation as an early biomarker and mediator of obesity, and insulin resistance warrants further study. PMID:21587067
The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies
Craver, Brianna M.; El Alaoui, Kenza; Scherber, Robyn M.; Fleischman, Angela G.
2018-01-01
Hematopoietic stem cells (HSCs) maintain an organism’s immune system for a lifetime, and derangements in HSC proliferation and differentiation result in hematologic malignancies. Chronic inflammation plays a contributory if not causal role in HSC dysfunction. Inflammation induces HSC exhaustion, which promotes the emergence of mutant clones that may be resistant to an inflammatory microenvironment; this likely promotes the onset of a myeloid hematologic malignancy. Inflammatory cytokines are characteristically high in patients with myeloid malignancies and are linked to disease initiation, symptom burden, disease progression, and worsened prognostic survival. This review will cover our current understanding of the role of inflammation in the initiation, progression, and complications of myeloid hematologic malignancies, drawing from clinical studies as well as murine models. We will also highlight inflammation as a therapeutic target in hematologic malignancies. PMID:29614027
USDA-ARS?s Scientific Manuscript database
Obesity is a worldwide health concern and a well recognized predictor of premature mortality associated with a state of chronic inflammation. The objective was to evaluate the effect of soy protein hydrolysates (SPH) produced from different soybean genotypes by alcalase (SAH) or simulated gastroint...
Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.
Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond
2017-09-07
Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.
Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging
Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond
2017-01-01
Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202
Sex Differences in Depression: Does Inflammation Play a Role?
Derry, Heather M; Padin, Avelina C; Kuo, Jennifer L; Hughes, Spenser; Kiecolt-Glaser, Janice K
2015-10-01
Women become depressed more frequently than men, a consistent pattern across cultures. Inflammation plays a key role in initiating depression among a subset of individuals, and depression also has inflammatory consequences. Notably, women experience higher levels of inflammation and greater autoimmune disease risk compared to men. In the current review, we explore the bidirectional relationship between inflammation and depression and describe how this link may be particularly relevant for women. Compared to men, women may be more vulnerable to inflammation-induced mood and behavior changes. For example, transient elevations in inflammation prompt greater feelings of loneliness and social disconnection for women than for men, which can contribute to the onset of depression. Women also appear to be disproportionately affected by several factors that elevate inflammation, including prior depression, somatic symptomatology, interpersonal stressors, childhood adversity, obesity, and physical inactivity. Relationship distress and obesity, both of which elevate depression risk, are also more strongly tied to inflammation for women than for men. Taken together, these findings suggest that women's susceptibility to inflammation and its mood effects may contribute to sex differences in depression. Depression continues to be a leading cause of disability worldwide, with women experiencing greater risk than men. Due to the depression-inflammation connection, these patterns may promote additional health risks for women. Considering the impact of inflammation on women's mental health may foster a better understanding of sex differences in depression, as well as the selection of effective depression treatments.
Inflammation to cancer: The molecular biology in the pancreas (Review).
Ling, Sunbin; Feng, Tingting; Jia, Kaiqi; Tian, Yu; Li, Yan
2014-06-01
Inflammatory responses are known to be correlated with cancer initiation and progression, and exploration of the route from inflammation to cancer makes a great contribution in elucidating the mechanisms underlying cancer development. Pancreatic cancer (PC) is a lethal disease with a low radical-resection rate and a poor prognosis. As chronic pancreatitis is considered to be a significant etiological factor for PC development, the current review aims to describe the molecular pathways from inflammation to pancreatic carcinogenesis, in support of the strategies for the prevention, diagnosis and treatment of PC.
Mokkala, K; Röytiö, H; Ekblad, U; Laitinen, K
2017-02-07
Overweight during pregnancy predisposes both the mother and foetus to health complications. Maternal complications include gestational diabetes, obstetric problems and type 2 diabetes later in life. Complications for the offspring are not only restricted to the foetal period or birth, such as prematurity and foetal macrosomia, but may also have long-term metabolic health implications through the mechanism of early nutrition programming. One of the key metabolic components characterising overweight in the non-pregnant state is low-grade inflammation manifested by elevated levels of circulatory pro-inflammatory cytokines. In pregnancy, in addition to adipose tissue and placenta, inflammatory response may originate from the gut. The extent to which overweight induces metabolic maladaptation during pregnancy and further compromises maternal and child health is currently poorly understood. In this review, we evaluate recent scientific literature and describe the suggested links between overweight, gut and low-grade inflammation associated metabolic disorders. We focus on overweight pregnant women and gestational diabetes, and discuss how specific dietary factors, probiotics and long-chain polyunsaturated fatty acids (fish oil), might confer health benefits in combatting against metabolic risk factors.
Biology and function of adipose tissue macrophages, dendritic cells and B cells.
Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R
2018-04-01
The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis of Lysine Methyltransferase Inhibitors
NASA Astrophysics Data System (ADS)
Ye, Tao; Hui, Chunngai
2015-07-01
Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.
González, Frank
2015-07-01
A pathophysiology paradigm shift has emerged with the discovery that polycystic ovary syndrome (PCOS) is a proinflammatory state. Despite the dogma that the compensatory hyperinsulinemia of insulin resistance is the promoter of hyperandrogenism, physiological insulin infusion has no effect on androgen levels in PCOS. The dogma also does not explain the cause of hyperandrogenism and ovarian dysfunction in the 30 to 50% of women with PCOS who are of normal weight and lack insulin resistance. Inflammation is the underpinning of insulin resistance in obesity and type 2 diabetes, and may also be the cause of insulin resistance when present in PCOS. The origin of inflammation in PCOS has been ascribed to excess abdominal adiposity or frank obesity. However, nutrients such as glucose and saturated fat can incite inflammation from circulating mononuclear cells (MNC) of women with PCOS independent of excess adiposity and insulin resistance, and can also promote atherogenesis. Hyperandrogenism activates MNC in the fasting state to increase MNC sensitivity to nutrients, and is a potential mechanism for initiating inflammation in PCOS. However, chronic ovarian androgen suppression does not reduce inflammation in normal-weight women with PCOS. Direct exposure of ovarian theca cells to proinflammatory stimuli in vitro increases androgen production. These findings may be corroborated in vivo with anti-inflammatory therapy to normal-weight insulin-sensitive women with PCOS without abdominal adiposity to observe for amelioration of ovarian dysfunction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
[Connective tissue and inflammation].
Jakab, Lajos
2014-03-23
The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.
NASA Astrophysics Data System (ADS)
Xu, Guan; Johnson, Laura A.; Hu, Jack; Dillman, Jonathan R.; Higgins, Peter D. R.; Wang, Xueding
2015-03-01
Crohn's disease (CD) is an autoimmune disease affecting 700,000 people in the United States. This condition may cause obstructing intestinal narrowings (strictures) due to inflammation, fibrosis (deposition of collagen), or a combination of both. Utilizing the unique strong optical absorption of hemoglobin at 532 nm and collagen at 1370 nm, this study investigated the feasibility of non-invasively characterizing intestinal strictures using photoacoustic imaging (PAI). Three normal controls, ten pure inflammation and 9 inflammation plus fibrosis rat bowel wall samples were imaged. Statistical analysis of the PA measurements has shown the capability of discriminating the purely inflammatory from mixed inflammatory and fibrotic strictures.
Tuberculosis in the elderly: Why inflammation matters.
Piergallini, Tucker J; Turner, Joanne
2018-05-01
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, X-L; Albers, K M; Gold, M S
2015-01-22
The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Cytokine production capacity in depression and anxiety
Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W
2016-01-01
Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18–65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: IL-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may partly explain higher levels of basal, as well as LPS-stimulated inflammation in persons with depressive and anxiety disorders. However, production capacity of several cytokines was positively associated with severity of depressive and in particular anxiety symptoms, even while taking lifestyle and health factors into account. Elevated IL-8 production capacity in both previously and currently depressed and anxious persons might indicate a genetic vulnerability for these disorders. PMID:27244234
Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.
Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon
2013-01-01
It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.
Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK
Hughes, Amanda; McMunn, Anne; Bartley, Mel; Kumari, Meena
2015-01-01
Background There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Methods Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. Results CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≥48 and participants from Scotland, which had comparatively high unemployment during this time. Conclusions Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes. PMID:25700535
Integration of technologies for hepatic tissue engineering.
Nahmias, Yaakov; Berthiaume, Francois; Yarmush, Martin L
2007-01-01
The liver is the largest internal organ in the body, responsible for over 500 metabolic, regulatory, and immune functions. Loss of liver function leads to liver failure which causes over 25,000 deaths/year in the United States. Efforts in the field of hepatic tissue engineering include the design of bioartificial liver systems to prolong patient's lives during liver failure, for drug toxicity screening and for the study of liver regeneration, ischemia/reperfusion injury, fibrosis, viral infection, and inflammation. This chapter will overview the current state-of-the-art in hepatology including isolated perfused liver, culture of liver slices and tissue explants, hepatocyte culture on collagen "sandwich" and spheroids, coculture of hepatocytes with non-parenchymal cells, and the integration of these culture techniques with microfluidics and reactor design. This work will discuss the role of oxygen and medium composition in hepatocyte culture and present promising new technologies for hepatocyte proliferation and function. We will also discuss liver development, architecture, and function as they relate to these culture techniques. Finally, we will review current opportunities and major challenges in integrating cell culture, bioreactor design, and microtechnology to develop new systems for novel applications.
Innate inflammation in Type 1 diabetes
Cabrera, Susanne M.; Henschel, Angela M.; Hessner, Martin J.
2015-01-01
Type 1 diabetes mellitus (T1D) is an autoimmune disease often diagnosed in childhood that results in pancreatic β-cell destruction and life-long insulin dependence. T1D susceptibility involves a complex interplay of genetic and environmental factors and has historically been attributed to adaptive immunity, though there is now increasing evidence for a role of innate inflammation. Here, we review studies that define a heightened age-dependent innate inflammatory state in T1D families that is paralleled with high fidelity by the T1D-susceptible BioBreeding rat. Innate inflammation may be driven by changes in interactions between the host and environment, such as through an altered microbiome, intestinal hyper-permeability, or viral exposures. Special focus is placed on the temporal measurement of plasma induced transcriptional signatures of recent onset T1D patients and their siblings as well as in the Biobreeding rat as it defines the natural history of innate inflammation. These sensitive and comprehensive analyses have also revealed that those who successfully managed T1D risk develop an age-dependent immunoregulatory state, providing a possible mechanism for the juvenile nature of T1D. Therapeutic targeting of innate inflammation has been proven effective in preventing and delaying T1D in rat models. Clinical trials of agents that suppress innate inflammation have had more modest success, but efficacy is improved by the addition of combinatorial approaches that target other aspects of T1D pathogenesis. An understanding of innate inflammation and mechanisms by which this susceptibility is both potentiated and mitigated offers important insight into T1D progression and avenues for therapeutic intervention. PMID:25980926
Effects of diesel exhaust on influenza-induced nasal inflammation
Title: Effects of Diesel Exhaust on Influenza-Induced Nasal Inflammation T L Noah, MD1,2, K Horvath, BS3, C Robinette, RN2, 0 Diaz Sanchez, PhD4 and I Jaspers, PhD1,2. 1UNC Dept. of Pediatrics, United States; 2UNC Center for Environmental Medicine, Asthma and Lung Biology, ...
Biomaterials trigger endothelial cell activation when co-incubated with human whole blood.
Herklotz, Manuela; Hanke, Jasmin; Hänsel, Stefanie; Drichel, Juliane; Marx, Monique; Maitz, Manfred F; Werner, Carsten
2016-10-01
Endothelial cell activation resulting from biomaterial contact or biomaterial-induced blood activation may in turn also affect hemostasis and inflammatory processes in the blood. Current in vitro hemocompatibility assays typically ignore these modulating effects of the endothelium. This study describes a co-incubation system of human whole blood, biomaterial and endothelial cells (ECs) that was developed to overcome this limitation. First, human endothelial cells were characterized in terms of their expression of coagulation- and inflammation-relevant markers in response to various activators. Subsequently, their capacity to regulate hemostasis as well as complement and granulocyte activation was monitored in a hemocompatibility assay. After blood contact, quiescent ECs exhibited anticoagulant and anti-inflammatory properties. When they were co-incubated with surfaces exhibiting pro-coagulant or pro-inflammatory characteristics, the ECs down-regulated coagulation but not complement or leukocyte activation. Analysis of intracellular levels of the endothelial activation markers E-selectin and tissue factor showed that co-incubation with model surfaces and blood significantly increased the activation state of ECs. Finally, the coagulation- and inflammation-modulating properties of the ECs were tested after blood/biomaterial exposure. Pre-activation of ECs by biomaterials in the blood induced a pro-coagulant and pro-inflammatory state of the ECs, wherein the pro-coagulant response was higher for biomaterial/blood pre-activated ECs than for TNF-α-pre-activated cells. This work provides evidence that biomaterials, even without directly contacting the endothelium, affect the endothelial activation state with and have consequences for plasmatic and cellular reactions in the blood. Copyright © 2016 Elsevier Ltd. All rights reserved.
Early environments and the ecology of inflammation
McDade, Thomas W.
2012-01-01
Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646
Brain Morphology Links Systemic Inflammation to Cognitive Function in Midlife Adults
Marsland, Anna L.; Gianaros, Peter J.; Kuan, Dora C-H.; Sheu, Lei K.; Krajina, Katarina; Manuck, Stephen B.
2015-01-01
Background Inflammation is linked to cognitive decline in midlife, but the neural basis for this link is unclear. One possibility is that inflammation associates with adverse changes in brain morphology, which accelerates cognitive aging and later dementia risk. Clear evidence is lacking, however, regarding whether inflammation relates to cognition in midlife via changes in brain morphology. Accordingly, the current study examines whether associations of inflammation with cognitive function are mediated by variation in cortical gray matter volume among midlife adults. Methods Plasma levels of interleukin (IL)-6 and C-reactive protein (CRP), relatively stable markers of peripheral systemic inflammation, were assessed in 408 community volunteers aged 30–54 years. All participants underwent structural neuroimaging to assess global and regional brain morphology and completed neuropsychological tests sensitive to early changes in cognitive function. Measurements of brain morphology (regional tissue volumes and cortical thickness and surface area) were derived using Freesurfer. Results Higher peripheral inflammation was associated with poorer spatial reasoning, short term memory, verbal proficiency, learning and memory, and executive function, as well as lower cortical gray and white matter volumes, hippocampal volume and cortical surface area. Mediation models with age, sex and intracranial volume as covariates showed cortical gray matter volume to partially mediate the association of inflammation with cognitive performance. Exploratory analyses of body mass suggested that adiposity may be a source of the inflammation linking brain morphology to cognition. Conclusions Inflammation and adiposity might relate to cognitive decline via influences on brain morphology. PMID:25882911
Kopalli, Spandana Rajendra; Kang, Tae-Bong; Koppula, Sushruta
2016-11-01
Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Tendons – time to revisit inflammation
Rees, Jonathan D; Stride, Matthew; Scott, Alex
2014-01-01
It is currently widely accepted among clinicians that chronic tendinopathy is caused by a degenerative process devoid of inflammation. Current treatment strategies are focused on physical treatments, peritendinous or intratendinous injections of blood or blood products and interruption of painful stimuli. Results have been at best, moderately good and at worst a failure. The evidence for non-infammatory degenerative processes alone as the cause of tendinopathy is surprisingly weak. There is convincing evidence that the inflammatory response is a key component of chronic tendinopathy. Newer anti-inflammatory modalities may provide alternative potential opportunities in treating chronic tendinopathies and should be explored further. PMID:23476034
BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1
Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju
2013-01-01
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588
Innate inflammation as the common pathway of risk factors leading to TIAs and stroke.
del Zoppo, Gregory J; Gorelick, Philip B
2010-10-01
In the early moments of ischemic stroke, the processes of thrombosis, ischemia, and inflammation are intimately interrelated, setting in motion an injury that leads to infarction and permanent damage. Of these, the potential roles that innate inflammation can play in the evolution of brain tissue damage in response to the ischemic injury are not well understood. Observations in the settings of atherosclerotic cardiovascular disease and cerebral ischemia have much to teach each other. The following provides an introductory overview of the conference "Innate Inflammation as the Common Pathway of Risk Factors Leading to Transient Ischemic Attacks and Stroke: Pathophysiology and Potential Interventions," which took place May 9-10, 2010 at the New York Academy of Sciences. This meeting was convened to explore aspects of the cellular and tissue responses to innate inflammation. A faculty of leading experts was assembled to discuss the role of inflammation in laboratory models of stroke and myocardial infarction, define possible novel means from laboratory evidence to alleviate or prevent inflammation underlying stroke and cardiovascular disease, and present information on current examples of clinical translation of these understandings in relation to human stroke and myocardial infarction. © 2010 New York Academy of Sciences.
Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis
Robinson, William H.; Lepus, Christin M.; Wang, Qian; Raghu, Harini; Mao, Rong; Lindstrom, Tamsin M.; Sokolove, Jeremy
2017-01-01
Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease. PMID:27539668
Hypothalamic inflammation and gliosis in obesity
Dorfman, Mauricio D.; Thaler, Joshua P.
2015-01-01
Structured Abstract Purpose of review Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these CNS responses may provide opportunities to develop new weight loss treatments. Recent findings In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. However, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. Summary There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit. PMID:26192704
Ficarra, Vincenzo; Rossanese, Marta; Zazzara, Michele; Giannarini, Gianluca; Abbinante, Maria; Bartoletti, Riccardo; Mirone, Vincenzo; Scaglione, Francesco
2014-12-01
A chronic prostatic inflammation seems to play a crucial role in benign prostatic hyperplasia (BPH) pathogenesis and progression. Therefore, inflammation could represent a new potential target for medical therapy of lower urinary tract symptoms (LUTS) due to BPH (LUTS/BPH). This review article analyzes the evidence supporting the role of inflammation in the onset and progression of BPH, and it assesses the potential impact of previous mechanisms on medical therapy of LUTS/BPH. Literature data support the role of inflammation as a relevant factor in the pathogenesis of BPH. Indeed, several data favour the role of infiltrating lymphocytes in the development and progression of prostate adenoma as an effect of a self-maintaining remodeling process. Although available drugs commonly used in the treatment of LUTS/BPH do not exhibit an anti-inflammatory activity, it seems to be obvious considering the inflammation as a new target in the treatment of LUTS/BPH. Drugs currently investigated for the treatment of prostatic inflammation include the hexanic lipidosterolic extract of Serenoa repens, nonsteroidal anti-inflammatory drugs, and vitamin D receptor agonists.
Das, Taraprasad
2017-12-01
The current evidence of postoperative endophthalmitis management in three important components of care-infection control, inflammation control, and prevention was reviewed, and their current relevance and application in an Indian context were evaluated. The publications from India indicated that Gram-negative bacterial and filamentous fungal infections are relatively higher. There are increasing instances of resistance to ceftazidime by Gram-negative microorganisms. Intravitreal dexamethasone limits inflammation in bacterial endophthalmitis when given together with the intravitreal antibiotics. Intracameral antibiotic could reduce postcataract surgery infection at least in less rigorous surgical environment. Systematic collection of data and periodic evaluation of the current practice against the new evidence are necessary to prevent or treat postcataract surgery endophthalmitis.
The Importance of Neurogenic Inflammation in Blast-Induced Neurotrauma
2013-01-01
mild/moderate BINT are imaged by magnetic resonance imaging ( MRI ) to visualize potential macrophage infiltration; blood-brain barrier (BBB) disturbance...TERMS blast, traumatic brain injury, brain, inflammation, magnetic resonance imaging , mice 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...monitoring the success of therapeutic interventions. In this annual report we have utilized current live imaging methods (i.e. magnetic resonance
2015-06-01
Hypothesis: This work hypothesizes that chemotherapy can permanently alter the balance between the immune system and chronic herpesvirus ...States. PloS one 6, e16103, doi:10.1371/journal.pone.0016103 (2011). 3 Bennett, J. M. et al. Inflammation and reactivation of latent herpesviruses in
Wang, Xiaomei; Malawista, Anna; Qian, Feng; Ramsey, Christine; Allore, Heather G; Montgomery, Ruth R
2018-02-09
The multifactorial immune deterioration in aging--termed "inflamm-aging"--is comprised of a state of low-grade, chronic inflammation and complex dysregulation of responses to immune stimulation. The TAM family (Tyro 3, Axl, and Mer) of receptor tyrosine kinases are negative regulators of Toll like receptor-mediated immune responses that broadly inhibit cytokine receptor cascades to inhibit inflammation. Here we demonstrate elevated expression of TAM receptors in monocytes of older adults, and an age-dependent difference in signaling mediator AKT resulting in dysregulated responses to signaling though Mer. Our results may be especially significant in tissue, where levels of Mer are highest, and may present avenues for modulation of chronic tissue inflammation noted in aging.
The role of inflammation in age-related disease
Howcroft, T. Kevin; Campisi, Judith; Louis, Germaine Buck; Smith, Martyn T.; Wise, Bradley; Wyss-Coray, Tony; Augustine, Alison Deckhut; McElhaney, Janet E.; Kohanski, Ron; Sierra, Felipe
2013-01-01
The National Institutes of Health (NIH) Geroscience Interest Group (GSIG) sponsored workshop, The Role of Inflammation in Age-Related Disease, was held September 6th-7th, 2012 in Bethesda, MD. It is now recognized that a mild pro-inflammatory state is correlated with the major degenerative diseases of the elderly. The focus of the workshop was to better understand the origins and consequences of this low level chronic inflammation in order to design appropriate interventional studies aimed at improving healthspan. Four sessions explored the intrinsic, environmental exposures and immune pathways by which chronic inflammation are generated, sustained, and lead to age-associated diseases. At the conclusion of the workshop recommendations to accelerate progress toward understanding the mechanistic bases of chronic disease were identified. PMID:23474627
Pietzner, Maik; Kaul, Anne; Henning, Ann-Kristin; Kastenmüller, Gabi; Artati, Anna; Lerch, Markus M; Adamski, Jerzy; Nauck, Matthias; Friedrich, Nele
2017-11-30
Inflammation occurs as an immediate protective response of the immune system to a harmful stimulus, whether locally confined or systemic. In contrast, a persisting, i.e., chronic, inflammatory state, even at a low-grade, is a well-known risk factor in the development of common diseases like diabetes or atherosclerosis. In clinical practice, laboratory markers like high-sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen, are used to reveal inflammatory processes. In order to gain a deeper insight regarding inflammation-related changes in metabolism, the present study assessed the metabolic patterns associated with alterations in inflammatory markers. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined a comprehensive panel of 613 plasma and 587 urine metabolites among 925 apparently healthy individuals. Associations between inflammatory markers, namely hsCRP, WBC, and fibrinogen, and metabolite levels were tested by linear regression analyses controlling for common confounders. Additionally, we tested for a discriminative signature of an advanced inflammatory state using random forest analysis. HsCRP, WBC, and fibrinogen were significantly associated with 71, 20, and 19 plasma and 22, 3, and 16 urine metabolites, respectively. Identified metabolites were related to the bradykinin system, involved in oxidative stress (e.g., glutamine or pipecolate) or linked to the urea cycle (e.g., ornithine or citrulline). In particular, urine 3'-sialyllactose was found as a novel metabolite related to inflammation. Prediction of an advanced inflammatory state based solely on 10 metabolites was well feasible (median AUC: 0.83). Comprehensive metabolic profiling confirmed the far-reaching impact of inflammatory processes on human metabolism. The identified metabolites included not only those already described as immune-modulatory but also completely novel patterns. Moreover, the observed alterations provide molecular links to inflammation-associated diseases like diabetes or cardiovascular disorders.
Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture
Chalouhi, Nohra; Ali, Muhammad S.; Starke, Robert M.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.
2012-01-01
Smoking is an established risk factor for subarachnoid hemorrhage yet the underlying mechanisms are largely unknown. Recent data has implicated a role of inflammation in the development of cerebral aneurysms. Inflammation accompanying cigarette smoke exposure may thus be a critical pathway underlying the development, progression, and rupture of cerebral aneurysms. Various constituents of the inflammatory response appear to be involved including adhesion molecules, cytokines, reactive oxygen species, leukocytes, matrix metalloproteinases, and vascular smooth muscle cells. Characterization of the molecular basis of the inflammatory response accompanying cigarette smoke exposure will provide a rational approach for future targeted therapy. In this paper, we review the current body of knowledge implicating cigarette smoke-induced inflammation in cerebral aneurysm formation/rupture and attempt to highlight important avenues for future investigation. PMID:23316103
Origin and Functions of Tissue Macrophages
Epelman, Slava; Lavine, Kory J.; Randolph, Gwendalyn J.
2015-01-01
Macrophages are distributed in tissues throughout the body and contribute to both homeostasis and disease. Recently, it has become evident that most adult tissue macrophages originate during embryonic development and not from circulating monocytes. Each tissue has its own composition of embryonically derived and adult-derived macrophages, but it is unclear whether macrophages of distinct origins are functionally interchangeable or have unique roles at steady state. This new understanding also prompts reconsideration of the function of circulating monocytes. Classical Ly6chi monocytes patrol the extravascular space in resting organs, and Ly6clo nonclassical monocytes patrol the vasculature. Inflammation triggers monocytes to differentiate into macrophages, but whether resident and newly recruited macrophages possess similar functions during inflammation is unclear. Here, we define the tools used for identifying the complex origin of tissue macrophages and discuss the relative contributions of tissue niche versus ontological origin to the regulation of macrophage functions during steady state and inflammation. PMID:25035951
Fan, Rongrong; Toubal, Amine; Goñi, Saioa; Drareni, Karima; Huang, Zhiqiang; Alzaid, Fawaz; Ballaire, Raphaelle; Ancel, Patricia; Liang, Ning; Damdimopoulos, Anastasios; Hainault, Isabelle; Soprani, Antoine; Aron-Wisnewsky, Judith; Foufelle, Fabienne; Lawrence, Toby; Gautier, Jean-Francois; Venteclef, Nicolas; Treuter, Eckardt
2016-07-01
Humans with obesity differ in their susceptibility to developing insulin resistance and type 2 diabetes (T2D). This variation may relate to the extent of adipose tissue (AT) inflammation that develops as their obesity progresses. The state of macrophage activation has a central role in determining the degree of AT inflammation and thus its dysfunction, and these states are driven by epigenomic alterations linked to gene expression. The underlying mechanisms that regulate these alterations, however, are poorly defined. Here we demonstrate that a co-repressor complex containing G protein pathway suppressor 2 (GPS2) crucially controls the macrophage epigenome during activation by metabolic stress. The study of AT from humans with and without obesity revealed correlations between reduced GPS2 expression in macrophages, elevated systemic and AT inflammation, and diabetic status. The causality of this relationship was confirmed by using macrophage-specific Gps2-knockout (KO) mice, in which inappropriate co-repressor complex function caused enhancer activation, pro-inflammatory gene expression and hypersensitivity toward metabolic-stress signals. By contrast, transplantation of GPS2-overexpressing bone marrow into two mouse models of obesity (ob/ob and diet-induced obesity) reduced inflammation and improved insulin sensitivity. Thus, our data reveal a potentially reversible disease mechanism that links co-repressor-dependent epigenomic alterations in macrophages to AT inflammation and the development of T2D.
Induction of hyperandrogenism in lean reproductive-age women stimulates proatherogenic inflammation.
González, F; Sreekumaran Nair, K; Basal, E; Bearson, D M; Schimke, J M; Blair, H E
2015-06-01
We determined the effect of hyperandrogenemia as observed in polycystic ovary syndrome (PCOS) on fasting and glucose-stimulated proatherogenic inflammation markers in lean healthy reproductive-age women. Sixteen lean healthy ovulatory reproductive-age women were treated with 130 mg of DHEA or placebo (n=8 each) for 5 days. Interleukin-6 (IL-6) mRNA and IL-6 release from mononuclear cells (MNC), plasma IL-6 and C-reactive protein (CRP), and MNC-derived (matrix metalloproteinase-2) MMP-2 protein were quantified in the fasting state and 2 h after glucose ingestion, before and after treatment. Before treatment, subjects receiving dehydroepinadrosterone (DHEA) or placebo exhibited no differences in androgens, or any proatherogenic inflammation markers while fasting and after glucose ingestion. Compared with placebo, DHEA administration raised levels of testosterone, androstenedione, and DHEA-sulfate (DHEA-S), and increased the percent change from baseline in fasting IL-6 mRNA, IL-6 release, plasma IL-6, and CRP and MMP-2 protein. However, there were no differences in any of the proatherogenic inflammation markers following glucose ingestion after DHEA administration. We conclude that in lean reproductive-age women, proatherogenic inflammation in the fasting state increases after raising circulating androgens to levels observed in PCOS. However, this hyperandrogenemia-induced MNC activation does not provoke a similar response to subsequent glucose ingestion. © Georg Thieme Verlag KG Stuttgart · New York.
The early fracture hematoma and its potential role in fracture healing.
Kolar, Paula; Schmidt-Bleek, Katharina; Schell, Hanna; Gaber, Timo; Toben, Daniel; Schmidmaier, Gerhard; Perka, Carsten; Buttgereit, Frank; Duda, Georg N
2010-08-01
Research regarding the potency and potential of the fracture hematoma has begun to receive increasing attention. However, currently there is a paucity of relevant literature on the capability and composition of the fracture hematoma. This review briefly summarizes the regenerative fracture healing process and the close interplay between the skeletal and immune systems. The role of immune cells in wound healing is also discussed to clarify their involvement in immunological processes during regeneration. We attempt to describe the current state of knowledge regarding the fracture hematoma as the initial stage of the regenerative process of fracture healing. The review discusses how a better understanding of immune reactions in the hematoma may have implications for bone tissue engineering strategies. We conclude the review by emphasizing how additional investigations of the initial phase of healing will allow us to better differentiate between deleterious and beneficial aspects of inflammation, thereby facilitating improved fracture treatment strategies.
Vogelzangs, N; Duivis, H E; Beekman, A T F; Kluft, C; Neuteboom, J; Hoogendijk, W; Smit, J H; de Jonge, P; Penninx, B W J H
2012-02-21
Growing evidence suggests that immune dysregulation may be involved in depressive disorders, but the exact nature of this association is still unknown and may be restricted to specific subgroups. This study examines the association between depressive disorders, depression characteristics and antidepressant medication with inflammation in a large cohort of controls and depressed persons, taking possible sex differences and important confounding factors into account. Persons (18-65 years) with a current (N = 1132) or remitted (N = 789) depressive disorder according to DSM-IV criteria and healthy controls (N = 494) were selected from the Netherlands Study of Depression and Anxiety. Assessments included clinical characteristics (severity, duration and age of onset), use of antidepressant medication and inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)). After adjustment for sociodemographics, currently depressed men, but not women, had higher levels of CRP (1.33 versus 0.92 mg l(-1), P<0.001, Cohen's d = 0.32) and IL-6 (0.88 versus 0.72 pg ml(-1), P = 0.01, Cohen's d = 0.23) than non-depressed peers. Associations reduced after considering lifestyle and disease indicators--especially body mass index--but remained significant for CRP. After full adjustment, highest inflammation levels were found in depressed men with an older age of depression onset (CRP, TNF-α). Furthermore, inflammation was increased in men using serotonin-norepinephrine reuptake inhibitors (CRP, IL-6) and in men and women using tri- or tetracyclic antidepressants (CRP), but decreased among men using selective serotonin reuptake inhibitors (IL-6). In conclusion, elevated inflammation was confirmed in depressed men, especially those with a late-onset depression. Specific antidepressants may differ in their effects on inflammation.
Vogelzangs, N; Duivis, H E; Beekman, A T F; Kluft, C; Neuteboom, J; Hoogendijk, W; Smit, J H; de Jonge, P; Penninx, B W J H
2012-01-01
Growing evidence suggests that immune dysregulation may be involved in depressive disorders, but the exact nature of this association is still unknown and may be restricted to specific subgroups. This study examines the association between depressive disorders, depression characteristics and antidepressant medication with inflammation in a large cohort of controls and depressed persons, taking possible sex differences and important confounding factors into account. Persons (18–65 years) with a current (N=1132) or remitted (N=789) depressive disorder according to DSM-IV criteria and healthy controls (N=494) were selected from the Netherlands Study of Depression and Anxiety. Assessments included clinical characteristics (severity, duration and age of onset), use of antidepressant medication and inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α)). After adjustment for sociodemographics, currently depressed men, but not women, had higher levels of CRP (1.33 versus 0.92 mg l−1, P<0.001, Cohen's d=0.32) and IL-6 (0.88 versus 0.72 pg ml−1, P=0.01, Cohen's d=0.23) than non-depressed peers. Associations reduced after considering lifestyle and disease indicators — especially body mass index — but remained significant for CRP. After full adjustment, highest inflammation levels were found in depressed men with an older age of depression onset (CRP, TNF-α). Furthermore, inflammation was increased in men using serotonin–norepinephrine reuptake inhibitors (CRP, IL-6) and in men and women using tri- or tetracyclic antidepressants (CRP), but decreased among men using selective serotonin reuptake inhibitors (IL-6). In conclusion, elevated inflammation was confirmed in depressed men, especially those with a late-onset depression. Specific antidepressants may differ in their effects on inflammation. PMID:22832816
Bernelot Moens, Sophie J; van der Valk, Fleur M; Strang, Aart C; Kroon, Jeffrey; Smits, Loek P; Kneepkens, Eva L; Verberne, Hein J; van Buul, Jaap D; Nurmohamed, Michael T; Stroes, Erik S G
2016-05-21
Increasing numbers of patients (up to 40 %) with rheumatoid arthritis (RA) achieve remission, yet it remains to be elucidated whether this also normalizes their cardiovascular risk. Short-term treatment with TNF inhibitors lowers arterial wall inflammation, but not to levels of healthy controls. We investigated whether RA patients in long-term remission are characterized by normalized inflammatory activity of the arterial wall and if this is dependent on type of medication used (TNF-inhibitor versus nonbiological disease-modifying antirheumatic drugs (DMARDs)). Arterial wall inflammation, bone marrow and splenic activity (index of progenitor cell activity) was assessed with (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) in RA patients in remission (disease activity score (DAS28) <2.6 for >6 months) and healthy controls. We performed ex vivo characterization of monocytes using flow cytometry and a transendothelial migration assay. Overall, arterial wall inflammation was comparable in RA patients (n = 23) in long-term remission and controls (n = 17). However, RA subjects using current anti-TNF therapy (n = 13, disease activity score 1.98[1.8-2.2]) have an almost 1.2-fold higher (18)F-FDG uptake in the arterial wall compared to those using DMARDs (but with previous anti-TNF therapy) (n = 10, disease activity score 2.24[1.3-2.5]), which seemed to be predominantly explained by longer duration of their rheumatic disease in a multivariate linear regression analysis. This coincided with increased expression of pro-adhesive (CCR2) and migratory (CD11c, CD18) surface markers on monocytes and a concomitant increased migratory capacity. Finally, we found increased activity in bone marrow and spleen in RA patients using anti-TNF therapy compared to those with DMARDs and controls. A subset of patients with RA in clinical remission have activated monocytes and increased inflammation in the arterial wall, despite the use of potent TNF blocking therapies. In these subjects, RA disease duration was the most important contributor to the level of arterial wall inflammation. This increased inflammatory state implies higher cardiovascular risk in these patients, who thus may require more stringent CV risk management.
Inflammation, cancer, and targets of ginseng.
Hofseth, Lorne J; Wargovich, Michael J
2007-01-01
Chronic inflammation is associated with a high cancer risk. At the molecular level, free radicals and aldehydes, produced during chronic inflammation, can induce deleterious gene mutation and posttranslational modifications of key cancer-related proteins. Other products of inflammation, including cytokines, growth factors, and transcription factors such as nuclear factor kappaB, control the expression of cancer genes (e.g., suppressor genes and oncogenes) and key inflammatory enzymes such as inducible nitric oxide synthase and cyclooxygenase-2. These enzymes in turn directly influence reactive oxygen species and eicosanoid levels. The procancerous outcome of chronic inflammation is increased DNA damage, increased DNA synthesis, cellular proliferation, disruption of DNA repair pathways and cellular milieu, inhibition of apoptosis, and promotion of angiogenesis and invasion. Chronic inflammation is also associated with immunosuppression, which is a risk factor for cancer. Current treatment strategies for reactive species overload diseases are frequently aimed at treating or preventing the cause of inflammation. Although these strategies have led to some progress in combating reactive species overload diseases and associated cancers, exposure often occurs again after eradication, treatment to eradicate the cause fails, or the treatment has long-term side effects. Therefore, the identification of molecules and pathways involved in chronic inflammation and cancer is critical to the design of agents that may help in preventing the progression of reactive species overload disease and cancer associated with disease progression. Here, we use ginseng as an example of an antiinflammatory molecule that targets many of the key players in the inflammation-to-cancer sequence.
Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin
2017-01-01
Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. In addition, dioscin a natural steroidal saponin isolated from Chinese medicinal herbs, enhanced the serotonergic system and produced anti-depressant effect by enhancing 5-HT levels in hippocampus. What is more, this finding was verified by metabolic analyses of hippocampus, indicating 5-HT related metabolic pathway was involved in the pathogenesis of endotoxemia induced acute neuro-inflammation. Moreover, neuro-inflammation and neurogenesis within hippocampus were indexed using quantitative immunofluorescence analysis of GFAP DCX and Ki67, as well as real-time RT-PCR analysis of some gene expression levels in hippocampus. Our in vivo and in vitro studies show dioscin protects hippocampus from endotoxemia induced cascade neuro-inflammation through neurotransmitter 5-HT and HMGB-1/TLR4 signaling pathway, which accounts for the dioscin therapeutic effect in behavioral tests. Therefore, the current findings suggest that dioscin could be a potential approach for the therapy of endotoxemia induced acute neuro-inflammation. PMID:28059131
Hileman, Corrilynn O; Dirajlal-Fargo, Sahera; Lam, Suet Kam; Kumar, Jessica; Lacher, Craig; Combs, Gerald F; McComsey, Grace A
2015-01-01
Background: Selenium is an essential constituent of selenoproteins, which play a substantial role in antioxidant defense and inflammatory cascades. Selenium deficiency is associated with disease states characterized by inflammation, including cardiovascular disease (CVD). Although HIV infection has been associated with low selenium, the role of selenium status in HIV-related CVD is unclear. Objectives: We sought to assess associations between plasma selenium and markers of inflammation, immune activation, and subclinical vascular disease in HIV-infected adults on contemporary antiretroviral therapy (ART) and to determine if statin therapy modifies selenium status. Methods: In the Stopping Atherosclerosis and Treating Unhealthy bone with RosuvastatiN trial, HIV-infected adults on stable ART were randomly assigned 1:1 to rosuvastatin or placebo. Plasma selenium concentrations were determined at entry, week 24, and week 48. Spearman correlation and linear regression analyses were used to assess relations between baseline selenium, HIV-related factors and markers of inflammation, immune activation, and subclinical vascular disease. Changes in selenium over 24 and 48 wk were compared between groups. Results: One hundred forty-seven HIV-infected adults were included. All participants were on ART. Median current CD4+ count was 613, and 76% had HIV-1 RNA ≤48 copies/mL (range: <20–600). Median plasma selenium concentration was 122 μg/L (range: 62–200). At baseline, higher selenium was associated with protease inhibitor (PI) use, lower body mass index, and a higher proportion of activated CD8+ T cells (CD8+CD38+human leukocyte antigen-DR+), but not markers of inflammation or subclinical vascular disease. Over 48 wk, selenium concentrations increased in the statin group (P < 0.01 within group), but the change did not differ between groups (+13.1 vs. +5.3 μg/L; P = 0.14 between groups). Conclusions: Plasma selenium concentrations were within the normal range for the background population and were not associated with subclinical vascular disease in HIV-infected adults on contemporary ART. The association between current PI use and higher selenium may have implications for ART allocation, especially in resource-limited countries. Also, it appears that statin therapy may increase selenium concentrations; however, larger studies are necessary to confirm this finding. This trial was registered at clinicaltrials.gov as NCT01218802. PMID:26269240
NASA Astrophysics Data System (ADS)
McMasters, James F.
Inflammation is the underlying cause of several severe diseases including cardiovascular disease and osteoarthritis. Peripheral artery disease (PAD) is characterized by atherosclerotic occlusions within the peripheral vasculature. Current treatment for severe PAD involves mechanical widening of the artery via percutaneous transluminal angioplasty. Unfortunately, deployment of the balloon damages the endothelial layer, exposing the underlying collagenous matrix. Circulating platelets can bind to this collagen and become activated, releasing proinflammatory cytokines that promote proliferation of local smooth muscle cells. These proliferating cells eventually reocclude the vessel, resulting in restenosis and necessitating the need for a second procedure to reopen the vessel. Current treatments for moderate osteoarthritis include local injection of anti-inflammatory compounds such as glucocorticoids. Unfortunately, prolonged treatment carries with it significant side effects including osteoporosis, and cardiovascular complications. Our lab has developed an anti-inflammatory cell-penetrating peptide that inhibits mitogen-activated protein kinase activated protein kinase 2 (MK2). MK2 is implicated in the inflammatory cascade of atherosclerosis and osteoarthritis, making it a potentially effective strategy for reducing inflammation in both disease states. Unfortunately, these peptides are untargeted and quickly degraded in the presence of serum proteases, making the development of an effective delivery system of paramount importance. The overall goal of the research presented here is to detail the development of a poly(N-isopropylacrylamide) nanoparticle that is able to effectively load and release anti-inflammatory peptides for the treatment of these inflammatory diseases. In this dissertation, I will discuss the development of a collagen-binding nanoparticle that is able to inhibit platelet binding following angioplasty, thereby halting the initial inflammatory cascade. Additionally, these particles demonstrate the ability to reduce inflammation by through the loading and release of MK2-inhibiting cell-penetrating peptides. Additionally, I will cover the development of a hollow nanoparticle system that is designed to load increased quantities of these anti-inflammatory peptides for the treatment of osteoarthritis. This particle demonstrated increased macrophage uptake and prolonged drug release, resulting in a progressive inhibition of osteoarthritic inflammation over 8 days. The results presented here advance our understanding of these nanoparticle platforms, and suggest that they may serve at effective platforms for the treatment of restenosis following angioplasty, as well as osteoarthritis.
Neutrophils in Homeostasis, Immunity, and Cancer.
Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés
2017-01-17
Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Clinical features and pathophysiology of Complex Regional Pain Syndrome – current state of the art
Marinus, Johan; Moseley, G. Lorimer; Birklein, Frank; Baron, Ralf; Maihöfner, Christian; Kingery, Wade S.; van Hilten, Jacobus J.
2017-01-01
That a minor injury can trigger a complex regional pain syndrome (CRPS) - multiple system dysfunction, severe and often chronic pain and disability - has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently increased our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Varying susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS. PMID:21683929
Advances in hydrogel delivery systems for tissue regeneration.
Toh, Wei Seong; Loh, Xian Jun
2014-12-01
Hydrogels are natural or synthetic polymer networks that have high water-absorbing capacity and closely mimic native extracellular matrices. As hydrogel-based cell delivery systems are being increasingly employed in regenerative medicine, several advances have been made in the hydrogel chemistry and modification for enhanced control of cell fate and functions, and modulation of cell and tissue responses against oxidative stress and inflammation in the tissue environment. This review aims to provide the state-of-the-art overview of the recent advances in field, discusses new perspectives and challenges in the regeneration of specific tissues, and highlights some of the limitations of current systems for possible future advancements. Copyright © 2014 Elsevier B.V. All rights reserved.
The Role of TLR2 in Infection and Immunity
Oliveira-Nascimento, Laura; Massari, Paola; Wetzler, Lee M.
2012-01-01
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases. PMID:22566960
Movila, Alexandru; Kajiya, Mikihito; Wisitrasameewong, Wichaya; Stashenko, Philip; Vardar-Sengul, Saynur; Hernandez, Maria; Thomas Temple, H; Kawai, Toshihisa
2018-06-01
We report a novel method for in situ imaging of microvascular permeability in inflamed gingival tissue, using state-of-the-art Cellvizio™ intravital endoscopic technology and a mouse model of ligature-induced periodontitis. The silk ligature was first placed at the upper left second molar. Seven days later, the ligature was removed, and the animals were intravenously injected with Evans blue. Evans blue dye, which selectively binds to blood albumin, was used to monitor the level of inflammation by monitoring vascular permeability in control non-diseased and ligature-induced experimental periodontitis tissue. More specifically, leakage of Evans blue-bound albumin from the micro-capillary to connective tissue indicates the state of inflammation occurring in the specific site. Evans blue leakage from blood vessels was imaged in situ by directly attaching the endoscope (mini Z tip) of the Cellvizio™ system to the gingival tissue without any surgical incision. Evans blue emission intensity was significantly elevated in gingiva of periodontitis lesions, but not control non-ligature placed gingiva, indicating that this technology can be used as a potential minimally invasive diagnostic tool to monitor the level of inflammation at the periodontal disease site. Copyright © 2018 Elsevier B.V. All rights reserved.
Bronchiectasis in Children: Current Concepts in Immunology and Microbiology.
Pizzutto, Susan J; Hare, Kim M; Upham, John W
2017-01-01
Bronchiectasis is a complex chronic respiratory condition traditionally characterized by chronic infection, airway inflammation, and progressive decline in lung function. Early diagnosis and intensive treatment protocols can stabilize or even improve the clinical prognosis of children with bronchiectasis. However, understanding the host immunologic mechanisms that contribute to recurrent infection and prolonged inflammation has been identified as an important area of research that would contribute substantially to effective prevention strategies for children at risk of bronchiectasis. This review will focus on the current understanding of the role of the host immune response and important pathogens in the pathogenesis of bronchiectasis (not associated with cystic fibrosis) in children.
Grosman-Rimon, Liza; Billia, Filio; Fuks, Avi; Jacobs, Ira; A McDonald, Michael; Cherney, David Z; Rao, Vivek
2016-07-15
Surgically implanted continuous flow left ventricular assist devices (CF-LVADs) are currently used in patients with end-stage heart failure (HF). However, CF-LVAD therapy introduces a new set of complications and adverse events in these patients. Major adverse events with the CF-LVAD include right heart failure, vascular dysfunction, stroke, hepatic failure, and multi-organ failure, complications that may have inflammation as a common etiology. Our aim was to review the current evidence showing a relationship between these adverse events and elevated levels of inflammatory biomarkers in CF-LVAD recipients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nur77 deficiency leads to systemic inflammation in elderly mice.
Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua
2015-01-01
Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.
Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto
2015-01-01
Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543
Novel anti-inflammatory therapies for the treatment of atherosclerosis.
Khan, Razi; Spagnoli, Vincent; Tardif, Jean-Claude; L'Allier, Philippe L
2015-06-01
The underlying role of inflammation in atherosclerosis has been characterized. However, current treatment of coronary artery disease (CAD) predominantly consists of targeted reductions in serum lipoprotein levels rather than combating the deleterious effects of acute and chronic inflammation. Vascular inflammation acts by a number of different molecular and cellular pathways to contribute to atherogenesis. Over the last decades, both basic studies and clinical trials have provided evidence for the potential benefits of treatment of inflammation in CAD. During this period, development of pharmacotherapies directed towards inflammation in atherosclerosis has accelerated quickly. This review will highlight specific therapies targeting interleukin-1β (IL-1β), P-selectin and 5-lipoxygenase (5-LO). It will also aim to examine the anti-inflammatory effects of serpin administration, colchicine and intravenous HDL-directed treatment of CAD. We summarize the mechanistic rationale and evidence for these novel anti-inflammatory treatments at both the experimental and clinical levels. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Connaughton, Ruth M; McMorrow, Aoibheann M; McGillicuddy, Fiona C; Lithander, Fiona E; Roche, Helen M
2016-05-01
Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities.
Vieira, A.
2010-01-01
Background: In relation to pharmacognosy, an objective of many ethnobotanical studies is to identify plant species to be further investigated, for example, tested in disease models related to the ethnomedicinal application. To further warrant such testing, research evidence for medicinal applications of these plants (or of their major phytochemical constituents and metabolic derivatives) is typically analyzed in biomedical databases. Methods: As a model of this process, the current report presents novel information regarding traditional anti-inflammation and anti-infection medicinal plant use. This information was obtained from an interview-based ethnobotanical study; and was compared with current biomedical evidence using the Medline® database. Results: Of the 8 anti-infection plant species identified in the ethnobotanical study, 7 have related activities reported in the database; and of the 6 anti-inflammation plants, 4 have related activities in the database. Conclusion: Based on novel and complimentary results from the ethnobotanical and biomedical database analyses, it is suggested that some of these plants warrant additional investigation of potential anti-inflammatory or anti-infection activities in related disease models, and also additional studies in other population groups. PMID:21589754
The genetic basis of obesity complications.
Skrypnik, Katarzyna; Suliburska, Joanna; Skrypnik, Damian; Pilarski, Łukasz; Reguła, Julita; Bogdański, Paweł
2017-01-01
Intensive research is currently being performed into the genetic background of excess body mass compli- cations such as diabetes, cardiovascular disorders, especially atherosclerosis and coronary heart disease. Chronic inflammation is an important process in the pathogenesis of obesity, wherein there is an aberrant ex- pression of genes encoding adipokines. Visceral tissue is characterized by a higher expression and secretion of interleukin-8, interleukin-1ß and plasminogen activator inhibitor 1 in the subcutaneous tissue secretion of leptin prevails. An important complication of obesity is obstructive sleep apnea, often observed in Prader- Willi syndrome. The genetic background of sleep apnea may be a polymorphism of the SREBF1 gene. The consequence of excess body mass is metabolic syndrome, which may be related to the occurrence of the rs926198 variant of gene encoding caveolin-1. The genes of transcription factor TCF7L2 and PPAR-γ2 take part in the pathogenesis of diabetes development. It has been demonstrated that oncogenes FOS, FOSB, and JUN may be co-responsible not only for obesity but also for osteoporosis and colorectal cancer. It has been shown that weight loss causes a modification in the expression of about 100 genes involvedt in the production of substances such as cytokines and other responsible for chronic inflammation in obesity. In future studies on the complications of obesity, such scientific disciplines as proteomics, peptidomics, metabolomics and transcriptomics should be used. The aim of this study is to present the current state of knowledge about the genetic basis of obesity complications.
Vichaya, Elisabeth G; Vermeer, Daniel W; Christian, Diana L; Molkentine, Jessica M; Mason, Kathy A; Lee, John H; Dantzer, Robert
2017-05-01
Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic murine model of HPV-related head and neck cancer. However, the inflammatory state and behavioral changes induced by this tumor clearly differ from other forms of inflammation-induced sickness behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Interplay between coagulation and vascular inflammation in sickle cell disease
Sparkenbaugh, Erica; Pawlinski, Rafal
2013-01-01
Sickle cell disease is the most common inherited hematologic disorder that leads to the irreversible damage of multiple organs. Although sickling of red blood cells and vaso-occlusion are central to the pathophysiology of sickle cell disease the importance of hemolytic anemia and vasculopathy has been recently recognized. Hypercoagulation state is another prominent feature of sickle cell disease and is mediated by activation of both intrinsic and extrinsic coagulation pathways. Growing evidence demonstrates that coagulation may not only contribute to the thrombotic complications, but also to vascular inflammation associated with this disease. This article summarizes the role of vascular inflammation and coagulation activation, discusses potential mechanisms responsible for activation of coagulation and reviews recent data demonstrating the crosstalk between coagulation and vascular inflammation in sickle cell disease. PMID:23593937
[Septopal from E. Merck in the prevention and treatment of bone and soft tissue infections].
Misterka, S
1992-01-01
On the basis of the many years usage of Gentamycin-Septopal in treatment of blood-derived and traumatic inflammation of bones we can say that in both forms of inflammation fully satisfying results were achieved. In chronic traumatic inflammations of bones with active stomias where the inflammatory process lasted many weeks, and from the purulent matter two or more tribes with various sensitiveness to antibiotics, associated treatment was also used with application of large doses cephalosporin antibiotics of Glaxo-Zinacef of Fortum firms. It should be stressed that in treatment of a patient with that disease correct radioisotopic diagnostic of the focus of inflammation and the evaluation of the immunity state of the organism of the patient, especially during long-lasting disease, is, among others, important.
Decreased activity and accelerated apoptosis of neutrophils in the presence of natural polyphenols
Perečko, Tomáš; Harmatha, Juraj; Nosáľ, Radomír; Drábiková, Katarína
2012-01-01
Prolonged or excessive formation and liberation of cytotoxic substances from neutrophils intensifies inflammation and the risk of tissue damage. From this perspective, administration of substances which are able to reduce activity of neutrophils and to enhance apoptosis of these cells may improve the therapy of pathological states connected with persistent inflammation. In this short review, neutrophil oxidative burst and apoptosis are presented as potential targets for pharmacological intervention. Effects of natural polyphenols (resveratrol, pterostilbene, pinosylvin, piceatannol, curcumin, N-feruloylserotonin) are summarised, considering the ability of these compounds to affect inflammation and particularly neutrophil activity. The intended neutrophil inhibition is introduced as a part of a new strategy for pharmacological modulation of chronic inflammatory processes, focused on supporting innate anti-inflammatory mechanisms and enhancing resolution of inflammation. PMID:23118588
RIP3: a molecular switch for necrosis and inflammation
Moriwaki, Kenta; Chan, Francis Ka-Ming
2013-01-01
The receptor-interacting protein kinase 3 (RIP3/RIPK3) has emerged as a critical regulator of programmed necrosis/necroptosis, an inflammatory form of cell death with important functions in pathogen-induced and sterile inflammation. RIP3 activation is tightly regulated by phosphorylation, ubiquitination, and caspase-mediated cleavage. These post-translational modifications coordinately regulate the assembly of a macromolecular signaling complex termed the necrosome. Recently, several reports indicate that RIP3 can promote inflammation independent of its pronecrotic activity. Here, we review our current understanding of the mechanisms that drive RIP3-dependent necrosis and its role in different inflammatory diseases. PMID:23913919
Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB
D’Ignazio, Laura; Batie, Michael; Rocha, Sonia
2017-01-01
Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk. PMID:28536364
ten Kate, Gerrit L.; Sijbrands, Eric J. G.; Valkema, Roelf; ten Cate, Folkert J.; Feinstein, Steven B.; van der Steen, Antonius F. W.; Daemen, Mat J. A. P.
2010-01-01
Current developments in cardiovascular biology and imaging enable the noninvasive molecular evaluation of atherosclerotic vascular disease. Intraplaque neovascularization sprouting from the adventitial vasa vasorum has been identified as an independent predictor of intraplaque hemorrhage and plaque rupture. These intraplaque vasa vasorum result from angiogenesis, most likely under influence of hypoxic and inflammatory stimuli. Several molecular imaging techniques are currently available. Most experience has been obtained with molecular imaging using positron emission tomography and single photon emission computed tomography. Recently, the development of targeted contrast agents has allowed molecular imaging with magnetic resonance imaging, ultrasound and computed tomography. The present review discusses the use of these molecular imaging techniques to identify inflammation and intraplaque vasa vasorum to identify vulnerable atherosclerotic plaques at risk of rupture and thrombosis. The available literature on molecular imaging techniques and molecular targets associated with inflammation and angiogenesis is discussed, and the clinical applications of molecular cardiovascular imaging and the use of molecular techniques for local drug delivery are addressed. PMID:20552308
Misbehaving macrophages in the pathogenesis of psoriasis.
Clark, Rachael A; Kupper, Thomas S
2006-08-01
Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin--or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell-mediated pathways of inflammation.
Gilger, Brian C; Salmon, Jacklyn H; Yi, Na Y; Barden, Curtis A; Chandler, Heather L; Wendt, Jennifer A; Colitz, Carmen M H
2008-10-01
To determine the role of intraocular bacteria in the pathogenesis of equine recurrent uveitis (ERU) in horses from the southeastern United States by evaluating affected eyes of horses with ERU for bacterial DNA and intraocular production of antibodies against Leptospira spp. Aqueous humor, vitreous humor, and serum samples of 24 clinically normal horses, 52 horses with ERU, and 17 horses with ocular inflammation not associated with ERU (ie, non-ERU inflammation). Ribosomal RNA quantitative PCR (real-time PCR) assay was used to detect bacterial DNA in aqueous humor and vitreous humor from clinically normal horses (n = 12) and horses with chronic (> 3-month) ERU (28). Aqueous humor and serum were also evaluated for anti-Leptospira antibody titers from clinically normal horses (n = 12), horses with non-ERU inflammation (17), and horses with confirmed chronic ERU (24). Bacterial DNA was not detected in aqueous humor or vitreous humor of horses with ERU or clinically normal horses. No significant difference was found in titers of anti-Leptospira antibodies in serum or aqueous humor among these 3 groups. Only 2 horses, 1 horse with ERU and 1 horse with non-ERU inflammation, had definitive intraocular production of antibodies against Leptospira organisms. In horses from the southeastern United States, Leptospira organisms may have helped initiate ERU in some, but the continued presence of the organisms did not play a direct role in the pathogenesis of this recurrent disease.
Rojas-Rodríguez, Jorge; Escobar-Linares, Luis E; Garcia-Carrasco, Mario; Escárcega, Ricardo O; Fuentes-Alexandro, Salvador; Zamora-Ustaran, Alfonso
2007-01-01
We propose that the pathogenesis of obesity-induced osteoarthritis may be explained by the metabolic changes in the striated muscle induced by the interaction of insulin resistance and systemic inflammation in obese individuals with metabolic syndrome being osteoarthritis the latest consequence by the physiological changes seen in the metabolic syndrome. Increased levels of TH1 cytokines are produced by activated macrophages in the presence of an acute or chronic infectious disease and suppress the sensitivity of insulin receptors on the membrane of muscle cell and adipocytes. Both cells are activated by inflammatory cytokines and contribute to enhance acute inflammation and to maintain a state of chronic, low-grade inflammation in apparently healthy obese individuals. The increased number of macrophage in the adipose tissue of obese individuals acts as an amplifier of inflammation. Patients with osteoarthritis and metabolic syndrome frequently are complaining about hotness and recurrent edema of feet and hands. It is probable that hyperinsulinemia in the presence of insulin resistance and inflammation, induce vasodilation through the TNF mediated-iNOS overexpression. Patients with metabolic syndrome express clinically the consequence of a poor uptake, storage and energy expenditure by the muscle and any other insulin dependent tissue and the consequence of high insulin plasma levels are vasodilation and increased protein synthesis. The fatigue and muscle weakness induced by insulin resistance and inflammation in obese patients with metabolic syndrome increase the frequency and the intensity of traumatic events of peripheral or axial joints that result in stretch and breaking of tenoperiosteal junction and abrasive damage of cartilage and therefore in these patients with metabolic syndrome and pro-inflammatory state the reparative process of cartilage and periarticular tissues would be severely modified by the growth factor activity in presence of high levels of insulin.
Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation
Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola
2013-01-01
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227
Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry.
Kastenschmidt, Jenna M; Avetyan, Ileen; Villalta, S A
2018-01-01
Although mutations of the dystrophin gene are the causative defect in Duchenne muscular dystrophy (DMD) patients, secondary disease processes such as inflammation contribute greatly to the pathogenesis of DMD. Genetic and histological studies have shown that distinct facets of the immune system promote muscle degeneration or regeneration during muscular dystrophy through mechanisms that are only beginning to be defined. Although histological methods have allowed the enumeration and localization of immune cells within dystrophic muscle, they are limited in their ability to assess the full spectrum of phenotypic states of an immune cell population and its functional characteristics. This chapter highlights flow cytometry methods for the isolation and functional study of immune cell populations from muscle of the mdx mouse model of DMD. We include a detailed description of preparing single-cell suspensions of dystrophic muscle that maintain the integrity of cell-surface markers used to identify macrophages, eosinophils, group 2 innate lymphoid cells, and regulatory T cells. This method complements the battery of histological assays that are currently used to study the role of inflammation in muscular dystrophy, and provides a platform capable of being integrated with multiple downstream methodologies for the mechanistic study of immunity in muscle degenerative diseases.
DREAM regulates BDNF-dependent spinal sensitization
2010-01-01
Background The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) controls the expression of prodynorphin and has been involved in the modulation of endogenous responses to pain. To investigate the role of DREAM in central mechanisms of pain sensitization, we used a line of transgenic mice (L1) overexpressing a Ca2+- and cAMP-insensitive DREAM mutant in spinal cord and dorsal root ganglia. Results L1 DREAM transgenic mice showed reduced expression in the spinal cord of several genes related to pain, including prodynorphin and BDNF (brain-derived neurotrophic factor) and a state of basal hyperalgesia without change in A-type currents. Peripheral inflammation produced enhancement of spinal reflexes and increased expression of BDNF in wild type but not in DREAM transgenic mice. The enhancement of the spinal reflexes was reproduced in vitro by persistent electrical stimulation of C-fibers in wild type but not in transgenic mice. Exposure to exogenous BDNF produced a long-term enhancement of dorsal root-ventral root responses in transgenic mice. Conclusions Our results indicate that endogenous BDNF is involved in spinal sensitization following inflammation and that blockade of BDNF induction in DREAM transgenic mice underlies the failure to develop spinal sensitization. PMID:21167062
Control of Lung Inflammation by Microbiome and Peptidoglycan Recognition Protein
2017-07-01
AWARD NUMBER: W81XWH-16-1-0230 TITLE: Control of Lung Inflammation by Microbiome and Peptidoglycan Recognition Protein PRINCIPAL INVESTIGATOR...the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO
Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK.
Hughes, Amanda; McMunn, Anne; Bartley, Mel; Kumari, Meena
2015-07-01
There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≥48 and participants from Scotland, which had comparatively high unemployment during this time. Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines
Rea, Irene Maeve; Gibson, David S.; McGilligan, Victoria; McNerlan, Susan E.; Alexander, H. Denis; Ross, Owen A.
2018-01-01
Cytokine dysregulation is believed to play a key role in the remodeling of the immune system at older age, with evidence pointing to an inability to fine-control systemic inflammation, which seems to be a marker of unsuccessful aging. This reshaping of cytokine expression pattern, with a progressive tendency toward a pro-inflammatory phenotype has been called “inflamm-aging.” Despite research there is no clear understanding about the causes of “inflamm-aging” that underpin most major age-related diseases, including atherosclerosis, diabetes, Alzheimer’s disease, rheumatoid arthritis, cancer, and aging itself. While inflammation is part of the normal repair response for healing, and essential in keeping us safe from bacterial and viral infections and noxious environmental agents, not all inflammation is good. When inflammation becomes prolonged and persists, it can become damaging and destructive. Several common molecular pathways have been identified that are associated with both aging and low-grade inflammation. The age-related change in redox balance, the increase in age-related senescent cells, the senescence-associated secretory phenotype (SASP) and the decline in effective autophagy that can trigger the inflammasome, suggest that it may be possible to delay age-related diseases and aging itself by suppressing pro-inflammatory molecular mechanisms or improving the timely resolution of inflammation. Conversely there may be learning from molecular or genetic pathways from long-lived cohorts who exemplify good quality aging. Here, we will discuss some of the current ideas and highlight molecular pathways that appear to contribute to the immune imbalance and the cytokine dysregulation, which is associated with “inflammageing” or parainflammation. Evidence of these findings will be drawn from research in cardiovascular disease, cancer, neurological inflammation and rheumatoid arthritis. PMID:29686666
Resolution of inflammation: state of the art, definitions and terms
Serhan, Charles N.; Brain, Sue D.; Buckley, Christopher D.; Gilroy, Derek W.; Haslett, Christopher; O’Neill, Luke A. J.; Perretti, Mauro; Rossi, Adriano G.; Wallace, John L.
2011-01-01
A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution. PMID:17267386
Yang, Zhen; Zan, Yunlong; Zheng, Xiujuan; Hai, Wangxi; Chen, Kewei; Huang, Qiu; Xu, Yuhong; Peng, Jinliang
2015-01-01
[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations. Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared. Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (p<0.01), and in inflammations from different locations (p<0.005). However, SUVmax showed no statistical difference between in situ tumor and inflammation (p = 1.0) and among tumors from different locations (subcutaneous and in situ, p = 0.91). Values of Ki calculated from compartmental modeling showed significant difference between tumor and inflammation both subcutaneously (p<0.005) and orthotopically (p<0.01). Ki showed also location specific values for inflammations (subcutaneous, in situ and spontaneous, p<0.015). However, Ki of tumors from different locations (subcutaneous and in situ) showed no significant difference (p = 0.46). In contrast to static PET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.
Novel approaches to the management of noneosinophilic asthma
Thomson, Neil C.
2016-01-01
Noneosinophilic airway inflammation occurs in approximately 50% of patients with asthma. It is subdivided into neutrophilic or paucigranulocytic inflammation, although the proportion of each subtype is uncertain because of variable cut-off points used to define neutrophilia. This article reviews the evidence for noneosinophilic inflammation being a target for therapy in asthma and assesses clinical trials of licensed drugs, novel small molecules and biologics agents in noneosinophilic inflammation. Current symptoms, rate of exacerbations and decline in lung function are generally less in noneosinophilic asthma than eosinophilic asthma. Noneosinophilic inflammation is associated with corticosteroid insensitivity. Neutrophil activation in the airways and systemic inflammation is reported in neutrophilic asthma. Neutrophilia in asthma may be due to corticosteroids, associated chronic pulmonary infection, altered airway microbiome or delayed neutrophil apoptosis. The cause of poorly controlled noneosinophilic asthma may differ between patients and involve several mechanism including neutrophilic inflammation, T helper 2 (Th2)-low or other subtypes of airway inflammation or corticosteroid insensitivity as well as noninflammatory pathways such as airway hyperreactivity and remodelling. Smoking cessation in asthmatic smokers and removal from exposure to some occupational agents reduces neutrophilic inflammation. Preliminary studies of ‘off-label’ use of licensed drugs suggest that macrolides show efficacy in nonsmokers with noneosinophilic severe asthma and statins, low-dose theophylline and peroxisome proliferator-activated receptor gamma (PPARγ) agonists may benefit asthmatic smokers with noneosinophilic inflammation. Novel small molecules targeting neutrophilic inflammation, such as chemokine (CXC) receptor 2 (CXCR2) antagonists reduce neutrophils, but do not improve clinical outcomes in studies to date. Inhaled phosphodiesterase (PDE)4 inhibitors, dual PDE3 and PDE4 inhibitors, p38MAPK (mitogen-activated protein kinase) inhibitors, tyrosine kinase inhibitors and PI (phosphoinositide) 3kinase inhibitors are under development and these compounds may be of benefit in noneosinophilic inflammation. The results of clinical trials of biological agents targeting mediators associated with noneosinophilic inflammation, such as interleukin (IL)-17 and tumor necrosis factor (TNF)-α are disappointing. Greater understanding of the mechanisms of noneosinophilic inflammation in asthma should lead to improved therapies. PMID:26929306
Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; El-Sherbeeny, Ahmed M; Al-Harbi, Mohammed M; Almukhlafi, Talal S
2017-05-01
The gut is densely inhabited by commensal bacteria, which metabolize dietary fibers/undigested carbohydrates and produce short-chain fatty acids such as acetate. GPR43 is one of the receptors to sense short-chain fatty acids, and expressed in various immune and non-immune cells. Acetate/GPR43 signaling has been shown to affect various inflammatory diseases through Th17 responses and NADPH oxidase (NOX)-derived reactive oxygen species (ROS) generation. However, no study has previously explored the effects of GPR43 activation during psoriasis-like inflammation. Therefore, this study investigated the effect of acetate/phenylacetamide (GPR43 agonists) on imiquimod induced skin inflammation in mice. Mice were administered phenylacetamide/acetate followed by assessment of skin inflammation, NOXs (NOX-2, NOX-4, dual oxidases), and Th17 related signaling. Our study showed induction of epidermal GPR43 after imiquimod treatment, i.e. psoriasis-like inflammation. Acetate administration in psoriatic mice led to further increase in skin inflammation (ear thickness/myeloperoxidase activity) with concurrent increase in Th17 immune responses and epidermal dual oxidase-2 signaling. Further, topical application of GPR43 agonist, phenylacetamide led to enhanced ear thickness with concomitant epidermal IL-6 signaling as well as dual oxidase-2 upregulation which may be responsible for increased psoriasis-like inflammation. Taken together, dual oxidase-2 and IL-6 play important roles in GPR43-mediated skin inflammation. The current study suggests that GPR43 activation in psoriatic patients may lead to aggravation of psoriatic inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver
Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A.G.; Fletcher, Justin A.; Reynolds, Lacy; Sunny, Nishanth E.; He, Tianteng; Nair, L. Arya; Livingston, Kenneth; Fu, Xiaorong; Merritt, Matthew E.; Sherry, A. Dean; Malloy, Craig R.; Shelton, John M.; Lambert, Jennifer; Parks, Elizabeth J.; Corbin, Ian; Magnuson, Mark A.; Browning, Jeffrey D.; Burgess, Shawn C.
2015-01-01
Mitochondria are critical for respiration in all tissues; however, in liver, these organelles also accommodate high-capacity anaplerotic/cataplerotic pathways that are essential to gluconeogenesis and other biosynthetic activities. During nonalcoholic fatty liver disease (NAFLD), mitochondria also produce ROS that damage hepatocytes, trigger inflammation, and contribute to insulin resistance. Here, we provide several lines of evidence indicating that induction of biosynthesis through hepatic anaplerotic/cataplerotic pathways is energetically backed by elevated oxidative metabolism and hence contributes to oxidative stress and inflammation during NAFLD. First, in murine livers, elevation of fatty acid delivery not only induced oxidative metabolism, but also amplified anaplerosis/cataplerosis and caused a proportional rise in oxidative stress and inflammation. Second, loss of anaplerosis/cataplerosis via genetic knockdown of phosphoenolpyruvate carboxykinase 1 (Pck1) prevented fatty acid–induced rise in oxidative flux, oxidative stress, and inflammation. Flux appeared to be regulated by redox state, energy charge, and metabolite concentration, which may also amplify antioxidant pathways. Third, preventing elevated oxidative metabolism with metformin also normalized hepatic anaplerosis/cataplerosis and reduced markers of inflammation. Finally, independent histological grades in human NAFLD biopsies were proportional to oxidative flux. Thus, hepatic oxidative stress and inflammation are associated with elevated oxidative metabolism during an obesogenic diet, and this link may be provoked by increased work through anabolic pathways. PMID:26571396
Familial idiopathic pulmonary fibrosis. Evidence of lung inflammation in unaffected family members
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitterman, P.B.; Rennard, S.I.; Keogh, B.A.
1986-05-22
We evaluated 17 clinically unaffected members of three families with an autosomal dominant form of idiopathic pulmonary fibrosis for evidence of alveolar inflammation. Each person in the study was examined by gallium-67 scanning for a general estimate of pulmonary inflammation, and by bronchoalveolar lavage for characterization of the types of recovered cells and their state of activation. Eight of the 17 subjects had evidence of alveolar inflammation on the lavage studies. Supporting data included increased numbers of neutrophils and activated macrophages that released one or more neutrophil chemoattractants, and growth factors for lung fibroblasts--findings similar to those observed in patientsmore » with overt idiopathic pulmonary fibrosis. Four of these eight also had a positive gallium scan; in all the other clinically unaffected subjects the scan was normal. During a follow-up of two to four years in seven of the eight subjects who had evidence of inflammation, no clinical evidence of pulmonary fibrosis has appeared. These results indicate that alveolar inflammation occurs in approximately half the clinically unaffected family members at risk of inheriting autosomal dominant idiopathic pulmonary fibrosis. Whether these persons with evidence of pulmonary inflammation but no fibrosis will proceed to have clinically evident pulmonary fibrosis is not yet known.« less
Assessment of iron status in settings of inflammation: challenges and potential approaches.
Suchdev, Parminder S; Williams, Anne M; Mei, Zuguo; Flores-Ayala, Rafael; Pasricha, Sant-Rayn; Rogers, Lisa M; Namaste, Sorrel Ml
2017-12-01
The determination of iron status is challenging when concomitant infection and inflammation are present because of confounding effects of the acute-phase response on the interpretation of most iron indicators. This review summarizes the effects of inflammation on indicators of iron status and assesses the impact of a regression analysis to adjust for inflammation on estimates of iron deficiency (ID) in low- and high-infection-burden settings. We overviewed cross-sectional data from 16 surveys for preschool children (PSC) ( n = 29,765) and from 10 surveys for nonpregnant women of reproductive age (WRA) ( n = 25,731) from the Biomarkers Reflecting the Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Effects of C-reactive protein (CRP) and α1-acid glycoprotein (AGP) concentrations on estimates of ID according to serum ferritin (SF) (used generically to include plasma ferritin), soluble transferrin receptor (sTfR), and total body iron (TBI) were summarized in relation to infection burden (in the United States compared with other countries) and population group (PSC compared with WRA). Effects of the concentrations of CRP and AGP on SF, sTfR, and TBI were generally linear, especially in PSC. Overall, regression correction changed the estimated prevalence of ID in PSC by a median of +25 percentage points (pps) when SF concentrations were used, by -15 pps when sTfR concentrations were used, and by +14 pps when TBI was used; the estimated prevalence of ID in WRA changed by a median of +8 pps when SF concentrations were used, by -10 pps when sTfR concentrations were used, and by +3 pps when TBI was used. In the United States, inflammation correction was done only for CRP concentrations because AGP concentrations were not measured; regression correction for CRP concentrations increased the estimated prevalence of ID when SF concentrations were used by 3 pps in PSC and by 7 pps in WRA. The correction of iron-status indicators for inflammation with the use of regression correction appears to substantially change estimates of ID prevalence in low- and high-infection-burden countries. More research is needed to determine the validity of inflammation-corrected estimates, their dependence on the etiology of inflammation, and their applicability to individual iron-status assessment in clinical settings.
The Role of Chronic Inflammation in Obesity-Associated Cancers
2013-01-01
There is a strong relationship between metabolism and immunity, which can become deleterious under conditions of metabolic stress. Obesity, considered a chronic inflammatory disease, is one example of this link. Chronic inflammation is increasingly being recognized as an etiology in several cancers, particularly those of epithelial origin, and therefore a potential link between obesity and cancer. In this review, the connection between the different factors that can lead to the chronic inflammatory state in the obese individual, as well as their effect in tumorigenesis, is addressed. Furthermore, the association between obesity, inflammation, and esophageal, liver, colon, postmenopausal breast, and endometrial cancers is discussed. PMID:23819063
Heck, Bruce E; Park, Joshua J; Makani, Vishruti; Kim, Eun-Cheol; Kim, Dong Hyun
2017-08-01
Osteoarthritis (OA) is an inflammatory joint disease characterized by degeneration of articular cartilage within synovial joints. An estimated 27 million Americans suffer from OA, and the population is expected to reach 67 million in the United States by 2030. Thus, it is urgent to find an effective treatment for OA. Traditional OA treatments have no disease-modifying effect, while regenerative OA therapies such as autologous chondrocyte implantation show some promise. Nonetheless, current regenerative therapies do not overcome synovial inflammation that suppresses the differentiation of mesenchymal stem cells (MSCs) to chondrocytes and the expression of type II collagen, the major constituent of functional cartilage. We discovered a synergistic combination that overcame synovial inflammation to form type II collagen-producing chondrocytes. The combination consists of peroxisome proliferator-activated receptor (PPAR) δ agonist, human bone marrow (hBM)-derived MSCs, and hyaluronic acid (HA) gel. Interestingly, those individual components showed their own strong enhancing effects on chondrogenesis. GW0742, a PPAR-δ agonist, greatly enhanced MSC chondrogenesis and the expression of type II collagen and glycosaminoglycan (GAG) in hBM-MSC-derived chondrocytes. GW0742 also increased the expression of transforming growth factor β that enhances chondrogenesis and suppresses cartilage fibrillation, ossification, and inflammation. HA gel also increased MSC chondrogenesis and GAG production. However, neither GW0742 nor HA gel could enhance the formation of type II collagen-producing chondrocytes from hBM-MSCs within human OA synovial fluid. Our data demonstrated that the combination of hBM-MSCs, PPAR-δ agonist, and HA gel significantly enhanced the formation of type II collagen-producing chondrocytes within OA synovial fluid from 3 different donors. In other words, the novel combination of PPAR-δ agonist, hBM-MSCs, and HA gel can overcome synovial inflammation to form type II collagen cartilage within human OA synovial fluid. This novel articularly injectable formula could improve OA treatment in the future clinical application.
Mansilha, Armando; Sousa, Joel
2018-06-05
Chronic venous disease (CVD) is a common pathology, with significant physical and psychological impacts for patients and high economic costs for national healthcare systems. Throughout the last decades, several risk factors for this condition have been identified, but only recently, have the roles of inflammation and endothelial dysfunction been properly assessed. Although still incompletely understood, current knowledge of the pathophysiological mechanisms of CVD reveals several potential targets and strategies for therapeutic intervention, some of which are addressable by currently available venoactive drugs. The roles of these drugs in the clinical improvement of venous tone and contractility, reduction of edema and inflammation, as well as in improved microcirculation and venous ulcer healing have been studied extensively, with favorable results reported in the literature. Here, we aim to review these pathophysiological mechanisms and their implications regarding currently available venoactive drug therapies.
Parkinson's disease and systemic inflammation.
Ferrari, Carina C; Tarelli, Rodolfo
2011-02-22
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.
Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z
2013-07-01
The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of inflammation in depression: from evolutionary imperative to modern treatment target.
Miller, Andrew H; Raison, Charles L
2016-01-01
Crosstalk between inflammatory pathways and neurocircuits in the brain can lead to behavioural responses, such as avoidance and alarm, that are likely to have provided early humans with an evolutionary advantage in their interactions with pathogens and predators. However, in modern times, such interactions between inflammation and the brain appear to drive the development of depression and may contribute to non-responsiveness to current antidepressant therapies. Recent data have elucidated the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression. Here, we detail our current understanding of these pathways and discuss the therapeutic potential of targeting the immune system to treat depression.
Anti-inflammatory Agents: Present and Future
Dinarello, Charles A.
2012-01-01
Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes “biologicals” such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics. PMID:20303881
Sarcoidosis: a state of the art review from the Thoracic Society of Australia and New Zealand.
Ahmadzai, Hasib; Huang, Shuying; Steinfort, Chris; Markos, James; Allen, Roger Ka; Wakefield, Denis; Wilsher, Margaret; Thomas, Paul S
2018-06-18
Sarcoidosis is a systemic disease of unknown aetiology, characterised by non-caseating granulomatous inflammation. It most commonly manifests in the lungs and intrathoracic lymph nodes but can affect any organ. This summary of an educational resource provided by the Thoracic Society of Australia and New Zealand outlines the current understanding of sarcoidosis and highlights the need for further research. Our knowledge of the aetiology and immunopathogenesis of sarcoidosis remains incomplete. The enigma of sarcoidosis lies in its immunological paradox of type 1 T helper cell-dominated local inflammation co-existing with T regulatory-induced peripheral anergy. Although specific aetiological agents have not been identified, mounting evidence suggests that environmental and microbial antigens may trigger sarcoidosis. Genome-wide association studies have identified candidate genes conferring susceptibility and gene expression analyses have provided insights into cytokine dysregulation leading to inflammation. Sarcoidosis remains a diagnosis of exclusion based on histological evidence of non-caseating granulomas with compatible clinical and radiological findings. In recent years, endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal lymph nodes has facilitated the diagnosis, and whole body positron emission tomography scanning has improved localisation of disease. No single biomarker is adequately sensitive and specific for detecting and monitoring disease activity. Most patients do not require treatment; when indicated, corticosteroids remain the initial standard of care, despite their adverse side effect profile. Other drugs with fewer side effects may be a better long term choice (eg, methotrexate, hydroxychloroquine, azathioprine, mycophenolate), while tumour necrosis factor-α inhibitors are a treatment option for patients with refractory disease.
[T-lymphocytes--do they control rheumatic immune responses?].
Wagner, U; Schulze-Koops, H
2005-09-01
T cells, in particular CD4(+) T cells, have been implicated in mediating many aspects of rheumatoid inflammation. In rheumatoid arthritis (RA), CD4(+) T cells display various functional abnormalities in the synovium as well as in the peripheral circulation. Current evidence suggests, however, that the role of CD4(+) T cells in the development of rheumatoid inflammation exceeds that of activated pro-inflammatory effector T cells that drive the chronic autoimmune response. Subsets of CD4(+) T cells with regulatory capacity, such as CD25(+) Tregs, have been identified in mice and man, and recent observations suggest that in RA, the function of these regulatory T cells is severely impaired. Thus, in RA, defective regulatory immune mechanisms might allow the breakdown of peripheral tolerance, following which the detrimental CD4(+) T-cell-driven immune response evolves and proceeds to chronic inflammation. Here, we review the functional abnormalities and the contribution of different T-cell subsets to rheumatoid inflammation.
Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation.
Iyengar, Neil M; Gucalp, Ayca; Dannenberg, Andrew J; Hudis, Clifford A
2016-12-10
Purpose There is growing evidence that inflammation is a central and reversible mechanism through which obesity promotes cancer risk and progression. Methods We review recent findings regarding obesity-associated alterations in the microenvironment and the local and systemic mechanisms through which these changes support tumor growth. Results Locally, hyperadiposity is associated with altered adipose tissue function, adipocyte death, and chronic low-grade inflammation. Most individuals who are obese harbor inflamed adipose tissue, which resembles chronically injured tissue, with immune cell infiltration and remodeling. Within this distinctly altered local environment, several pathophysiologic changes are found that may promote breast and other cancers. Consistently, adipose tissue inflammation is associated with a worse prognosis in patients with breast and tongue cancers. Systemically, the metabolic syndrome, including dyslipidemia and insulin resistance, occurs in the setting of adipose inflammation and operates in concert with local mechanisms to sustain the inflamed microenvironment and promote tumor growth. Importantly, adipose inflammation and its protumor consequences can be found in some individuals who are not considered to be obese or overweight by body mass index. Conclusion The tumor-promoting effects of obesity occur at the local level via adipose inflammation and associated alterations in the microenvironment, as well as systemically via circulating metabolic and inflammatory mediators associated with adipose inflammation. Accurately characterizing the obese state and identifying patients at increased risk for cancer development and progression will likely require more precise assessments than body mass index alone. Biomarkers of adipose tissue inflammation would help to identify high-risk populations. Moreover, adipose inflammation is a reversible process and represents a novel therapeutic target that warrants further study to break the obesity-cancer link.
Epelman, Slava; Lavine, Kory J.; Beaudin, Anna E.; Sojka, Dorothy K.; Carrero, Javier A.; Calderon, Boris; Brija, Thaddeus; Gautier, Emmanuel L.; Ivanov, Stoyan; Satpathy, Ansuman T.; Schilling, Joel D.; Schwendener, Reto; Sergin, Ismail; Razani, Babak; Forsberg, E. Camilla; Yokoyama, Wayne; Unanue, Emil R.; Colonna, Marco; Randolph, Gwendalyn J.; Mann, Douglas L.
2014-01-01
Summary Cardiac macrophages are crucial for tissue repair after cardiac injury but have not been well characterized. Here we identify four populations of cardiac macrophages. At steady state, resident macrophages were primarily maintained through local proliferation. However, after macrophage depletion or during cardiac inflammation, Ly6chi monocytes contributed to all four macrophage populations, whereas resident macrophages also expanded numerically through proliferation. Genetic fate mapping revealed that yolk-sac and fetal monocyte progenitors gave rise to the majority of cardiac macrophages, and the heart was among a minority of organs in which substantial numbers of yolk-sac macrophages persisted in adulthood. CCR2 expression and dependence distinguished cardiac macrophages of adult monocyte versus embryonic origin. Transcriptional and functional data revealed that monocyte-derived macrophages coordinate cardiac inflammation, while playing redundant but lesser roles in antigen sampling and efferocytosis. These data highlight the presence of multiple cardiac macrophage subsets, with different functions, origins and strategies to regulate compartment. PMID:24439267
Understanding frailty, aging, and inflammation in HIV infection.
Leng, Sean X; Margolick, Joseph B
2015-03-01
Frailty is a clinical syndrome initially characterized in geriatric populations with a hallmark of age-related declines in physiologic reserve and function and increased vulnerability to adverse health outcomes. Recently, frailty has increasingly been recognized as a common and important HIV-associated non-AIDS (HANA) condition. This article provides an overview of our current understanding of frailty and its phenotypic characteristics and evidence that they are related to aging and to chronic inflammation that is associated with aging and also with long-term treated HIV infection. The etiology of this chronic inflammation is unknown but we discuss evidence linking it to persistent infection with cytomegalovirus in both geriatric populations and people living with HIV infection.
León-Pedroza, José Israel; González-Tapia, Luis Alonso; del Olmo-Gil, Esteban; Castellanos-Rodríguez, Diana; Escobedo, Galileo; González-Chávez, Antonio
2015-01-01
Systemic inflammation is characterised by high circulating levels of inflammatory cytokines and increased macrophage infiltration in peripheral tissues. Most importantly, this inflammatory state does not involve damage or loss of function of the infiltrated tissue, which is a distinctive feature of the low-grade systemic inflammation. The term "meta-inflammation" has also been used to refer to the low-grade systemic inflammation due to its strong relationship with the development of cardio-metabolic diseases in obesity. A review is presented on the recent clinical and experimental evidence concerning the role of adipose tissue inflammation as a key mediator of low-grade systemic inflammation. Furthermore, the main molecular mechanisms involved in the inflammatory polarization of macrophages with the ability to infiltrate both the adipose tissue and the vascular endothelium via activation of toll-like receptors by metabolic damage-associated molecular patterns, such as advanced glycation-end products and oxidized lipoproteins, is discussed. Finally, a review is made of the pathogenic mechanisms through which the low-grade systemic inflammation contributes to develop insulin resistance, dyslipidaemia, atherogenesis, type 2 diabetes, and hypertension in obese individuals. A better understanding of the molecular mechanisms of low-grade systemic inflammation in promoting cardio-metabolic diseases is necessary, in order to further design novel anti-inflammatory therapies that take into consideration clinical data, as well as the circulating levels of cytokines, immune cells, and metabolic damage-associated molecular patterns in each patient. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Hüfner, K; Oberguggenberger, A; Kohl, C; Geisler, S; Gamper, E; Meraner, V; Egeter, J; Hubalek, M; Beer, B; Fuchs, D; Sperner-Unterweger, B
2015-10-01
Breast cancer is the most common cancer among females. Approximately 30% of cancer patients develop depression or depressive adaptation disorder within 5 years post diagnosis. Low grade inflammation and subsequent changes in neurotransmitter levels could be the pathophysiological link. In the current study we investigated the association of neurotransmitter precursor amino acids with a diagnosis of depression or state anxiety in 154 subjects suffering from breast cancer (BCA(+)), depression (DPR(+)), both or neither. Sociodemographic parameters, severity of depressive symptoms, and state anxiety (ANX) were recorded. Neopterin, kynurenine/tryptophan and phenylalanine/tyrosine were analysed by HPLC or ELISA. Significantly higher serum neopterin values were found in DPR(+) patients (p = 0.034) and in ANX(+) subjects (p = 0.008), as a marker of Th1-related inflammation. The phenylalanine/tyrosine ratio (index of the catecholamine pathway) was associated with the factors "breast cancer" and "depression" and their interaction (all p < 0.001); it was highest in the DPR(+)BCA(+) group. The kynurenine/tryptophan ratio (index of the serotonin pathway) was significantly associated with the factors "breast cancer" and "state anxiety" and their interaction (p < 0.001, p = 0.026, p = 0.02, respectively); it was highest in the ANX(+)BCA(+) group. In BCA(+) patients kynurenine/tryptophan ratios correlated with severity of state anxiety (r = 0.226, p = 0.048, uncorrected) and phenylalanine/tyrosine ratios with severity of depressive symptoms (r = 0.376, p < 0.05, corrected). In conclusion, levels of neurotransmitter precursor amino acids correlate with mental health, an effect which was much more pronounced in BCA(+) patients than in BCA(-) subjects. Aside from identifying underlying pathophysiological mechanisms, these results could be the basis for future treatment studies: in BCA(+) patients with depression the use of serotonin-noradrenaline reuptake inhibitors might be recommended while in those with predominant anxiety selective serotonin reuptake inhibitors might be the treatment of choice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jensen, Gordon L
2015-01-01
A summary of my 2014 Rhoads Lecture is presented that explores our progress in understanding the complex interplay of malnutrition and inflammation. A historical perspective is provided that highlights the contributions of some of the key pioneers in the nutrition assessment field. Advances in agriculture, education, public health, healthcare, and living standards have affected traditional settings for malnutrition. The chronic disease, surgery, and injury conditions that are associated with modern healthcare are becoming prevalent settings for malnutrition. One consequence has been a growing appreciation for the contributions of inflammation to malnutrition in these clinical conditions. This recognition has driven a fresh look at how we define and think about malnutrition syndromes. An inflammatory component is included in the definitions suggested by the recent Academy of Nutrition and Dietetics and American Society for Parenteral and Enteral Nutrition consensus report that also describes characteristics recommended for the identification and documentation of malnutrition. Efforts are currently underway to evaluate the feasibility and validity of this approach. Recent advances in research highlight the profound impact of inflammation-mediated erosion of muscle mass on clinical outcomes. Research to identify better biomarkers of inflammation and malnutrition must be a leading priority. New "omics" approaches are an especially promising avenue of biomarker investigation. Inflammation can be a good thing; let's try to keep it that way. © 2014 American Society for Parenteral and Enteral Nutrition.
Veskoukis, Aristidis S; Goutianos, Georgios; Paschalis, Vassilis; Margaritelis, Nikos V; Tzioura, Aikaterini; Dipla, Konstantina; Zafeiridis, Andreas; Vrabas, Ioannis S; Kyparos, Antonios; Nikolaidis, Michalis G
2016-04-01
The purpose of the present study was to directly compare oxidative stress and inflammation responses between rats and humans. We contrasted rat and human oxidative stress and inflammatory responses to exercise (pro-oxidant stimulus) and/or vitamin C (anti-oxidant stimulus) administration. Vitamin C was administered orally in both species (16 mg kg(-1) of body weight). Twelve redox biomarkers and seven inflammatory biomarkers were determined in plasma and erythrocytes pre- and post-exercise or pre- and post-exercise combined with vitamin C administration. Exercise increased oxidative stress and induced an inflammatory state in rats and humans. There were only 1/19 significant species × exercise interactions (catalase), indicating similar responses to exercise between rats and humans in redox and inflammatory biomarkers. Vitamin C decreased oxidative stress and increased antioxidant capacity only in humans and did not affect the redox state of rats. In contrast, vitamin C induced an anti-inflammatory state only in rats and did not affect the inflammatory state of humans. There were 10/19 significant species × vitamin C interactions, indicating that rats poorly mimic human oxidative stress and inflammatory responses to vitamin C administration. Exercise after acute vitamin C administration altered redox state only in humans and did not affect the redox state of rats. On the contrary, inflammation biomarkers changed similarly after exercise combined with vitamin C in both rats and humans. The rat adequately mimics human responses to exercise in basic blood redox/inflammatory profile, yet this is not the case after exercise combined with vitamin C administration.
Nadeem, Ahmed; Al-Harbi, Naif O; Al-Harbi, Mohamed M; El-Sherbeeny, Ahmed M; Ahmad, Sheikh F; Siddiqui, Nahid; Ansari, Mushtaq A; Zoheir, Khairy M A; Attia, Sabry M; Al-Hosaini, Khaled A; Al-Sharary, Shakir D
2015-09-01
Psoriasis is one of the most common skin disorders characterized by erythematous plaques that result from hyperproliferative keratinocytes and infiltration of inflammatory leukocytes into dermis and epidermis. Recent studies suggest that IL-23/IL-17A/IL-22 cytokine axis plays an important role in the pathogenesis of psoriasis. The small molecule bromodomain and extraterminal domain (BET) inhibitors, that disrupt interaction of BET proteins with acetylated histones have recently demonstrated efficacy in various models of inflammation through suppression of several pathways, one of them being synthesis of IL-17A/IL-22 which primarily depends on transcription factor, retinoic acid receptor-related orphan receptor C (RORC). However, the efficacy and mechanistic aspect of a BET inhibitor in mouse model of skin inflammation has not been explored previously. Therefore, this study investigated the role of BET inhibitor, JQ-1 in mouse model of psoriasis-like inflammation. Mice were topically applied imiquimod (IMQ) to develop psoriasis-like inflammation on the shaved back and ear followed by assessment of skin inflammation (myeloperoxidase activity, ear thickness, and histopathology), RORC and its signature cytokines (IL-17A/IL-22). JQ-1 suppressed IMQ-induced skin inflammation as reflected by a decrease in ear thickness/myeloperoxidase activity, and RORC/IL-17A/IL-22 expression. Additionally, a RORα/γ agonist SR1078 was utilized to investigate the role of RORC in BET-mediated skin inflammation. SR1078 reversed the protective effect of JQ-1 on skin inflammation at both histological and molecular levels in the IMQ model. The current study suggests that BET bromodomains are involved in psoriasis-like inflammation through induction of RORC/IL-17A pathway. Therefore, inhibition of BET bromodomains may provide a new therapy against skin inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inflammation protects copper deficient rats from carbon tetrachloride toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F.L.; Joseph, E.; DiSilvestro, R.A.
1991-03-11
Copper deficient rats show low resistance to CCl{sub 4}, possibly due to low liver Cu-Zn superoxide dismutase (SOD) activities. If Cu-Zn SOD is involved, deficiency effects should be aggravated by inflammation which further lowers Cu-Zn SOD activities in deficient rats. On the contrary, inflammation from 0.1 ml turpentine (im, lef) protected these rats from CCl{sub 4} damage assessed by serum activities of 2 liver enzymes. CCl{sub 4} was given ip at 200 {mu}l/kg, 48 h after turpentine, 24 h before sacrifice. Rats were fed low copper for 40 days before CCl{sub 4} challenge. Inflammation also protected rats fed adequate coppermore » from injury, though injury in noninflamed rats was less than with noninflamed deficients. Protection could result from the large increase observed in liver metallothionein, an induction not restricted by copper deficiency. Alternatively, inflammation may block P-450 activation of CCl{sub 4}. Both explanations are currently under investigation, as is the role, if any, of Cu-Zn SOD in resisting CCl{sub 4} injury.« less
NASA Astrophysics Data System (ADS)
Meier, A. J. Louise; Rensen, Wouter H. J.; de Bokx, Pieter K.; de Nijs, Ron N. J.
2012-08-01
Frequent monitoring of rheumatoid arthritis (RA) patients enables timely treatment adjustments and improved outcomes. Currently this is not feasible due to a shortage of rheumatologists. An optical spectral transmission device is presented for objective assessment of joint inflammation in RA patients, while improving diagnostic accuracy and clinical workflow. A cross-sectional, nonrandomized observational study was performed with this device. In the study, 77 proximal interphalangeal (PIP) joints in 67 patients have been analyzed. Inflammation of these PIP joints was also assessed by a rheumatologist with a score varying from 1 (not inflamed) to 5 (severely inflamed). Out of 77 measurements, 27 were performed in moderate to strongly inflamed PIP joints. Comparison between the clinical assessment and an optical measurement showed a correlation coefficient r=0.63, p<0.001, 95% CI [0.47, 0.75], and a ROC curve (AUC=0.88) that shows a relative good specificity and sensitivity. Optical spectral transmission measurements in a single joint correlate with clinical assessment of joint inflammation, and therefore might be useful in monitoring joint inflammation in RA patients.
Huang, Yinghong; Cai, Tiange; Xia, Xi; Cai, Y; Wu, Xiao Yu
2016-01-01
A large body of evidence has shown that inflammation and cancer are strongly related. Thus anti-inflammatory agents have been investigated for cancer prevention and treatment in preclinical and clinical studies, including the nonsteroidal anti-inflammatory drugs (NSAIDs) and traditional Chinese medicine (TCM). In TCM, there exist a wide range of biologically active substances, such as saponins, flavonoids, alkaloids, polysaccharides, polyphenols, phenylpropanoids, and quinones. Many of these active ingredients have been reported to inhibit inflammation, activate inflammatory immune response, and/or inhibit cancer cell proliferation and tumor growth. Given the potential role of inflammation in cancer initiation and progression, the inflammatory tumor microenvironment, the cross-talks between inflammatory and cancer cells, and multitargeting activities of some TCM compounds, we summarize the current knowledge on the anti-inflammatory and anti-cancer properties of ingredients of TCM together with their underlying mechanisms in an integrated way. We hope to provide a reliable basis and useful information for the development of new treatment strategies of inflammation and cancer comprehensively using TCM and their active ingredients.
Polycystic Ovary Syndrome as a Proinflammatory State: The Role of Adipokines.
Dimitriadis, Georgios K; Kyrou, Ioannis; Randeva, Harpal S
2016-01-01
Polycystic Ovary Syndrome (PCOS) is a complex heterogeneous disorder and the most common endocrinopathy amongst women of reproductive age. It is characterized by androgen excess, chronic anovulation and an altered cardiometabolic profile. PCOS is linked to impaired adipose tissue (AT) physiology and women with this disorder present with greater risk for insulin resistance (IR), hyperinsulinemia, central adiposity, nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) than matched for age and body mass index (BMI) women without PCOS. Hyperandrogenaemia appears to be driving adipocyte hypertrophy observed in PCOS under the influence of a hyperinsulinaemic state. Changes in the function of adipocytes have an impact on the secretion of adipokines, adipose tissue-derived proinflammatory factors promoting susceptibility to low grade inflammation. In this article, we review the existing knowledge on the interplay between hyperandrogenaemia, insulin resistance, impaired adipocyte biology, adipokines and chronic low-grade inflammation in PCOS. In PCOS, more than one mechanisms have been suggested in the development of a chronic low-grade inflammation state with the most prevalent being that of a direct effect of the immune system on adipose tissue functions as previously reported in obese women without PCOS. Despite the lack of conclusive evidence regarding a direct mechanism linking hyperandrogenaemia to pro-inflammation in PCOS, there have been recent findings indicating that hyperandrogenaemia might be involved in chronic inflammation by exerting an effect on adipocytes morphology and attributes. Increasing evidence suggests that there is an important connection and interaction between proinflammatory pathways, hyperinsulinemia, androgen excess and adipose tissue hypertrophy and, dysfunction in PCOS. While lifestyle changes and individualized prescription of insulin-sensitizing drugs are common in managing PCOS, further studies are warranted to eventually identify an adipokine that could serve as an indirect marker of adipocyte dysfunction in PCOS, used as a reliable and pathognomic sign of metabolic alteration in this syndrome.
Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation
Peverill, William; Powell, Lawrie W.; Skoien, Richard
2014-01-01
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future. PMID:24830559
Calder, P C; Ahluwalia, N; Albers, R; Bosco, N; Bourdet-Sicard, R; Haller, D; Holgate, S T; Jönsson, L S; Latulippe, M E; Marcos, A; Moreines, J; M'Rini, C; Müller, M; Pawelec, G; van Neerven, R J J; Watzl, B; Zhao, J
2013-01-01
To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Norazren; Jambari, Nuzul Nurahya; Zareen, Seema
Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5–10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2 mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples weremore » obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2 mg/kg with no effect at the lowest dose of 0.2 mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics. -- Highlights: ► Safer and effective anti-asthmatic drugs are in great demand. ► tHGA is a new 5-LO/cysLT inhibitor that inhibits allergic asthma in mice. ► tHGA is a natural compound that can be synthesized. ► Doses as low as 2 mg/kg alleviate lung pathology in experimental asthma. ► tHGA is a potential drug lead for the treatment of allergic asthma.« less
Shorakae, Soulmaz; Teede, Helena; de Courten, Barbora; Lambert, Gavin; Boyle, Jacqueline; Moran, Lisa J
2015-07-01
Polycystic ovary syndrome (PCOS) has become increasingly common over recent years and is associated with reproductive features as well as cardiometabolic risk factors, including visceral obesity, dyslipidemia and impaired glucose homeostasis, and potentially cardiovascular disease. Emerging evidence suggests that these long-term metabolic effects are linked to a low-grade chronic inflammatory state with the triad of hyperinsulinemia, hyperandrogenism, and low-grade inflammation acting together in a vicious cycle in the pathophysiology of PCOS. Dysregulation of the sympathetic nervous system may also act as an important component, potentially creating a tetrad in the pathophysiology of PCOS. The aim of this review is to examine the role of chronic inflammation and the sympathetic nervous system in the development of obesity and PCOS and review potential therapeutic options to alleviate low-grade inflammation in this setting. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Parkinson's Disease and Systemic Inflammation
Ferrari, Carina C.; Tarelli, Rodolfo
2011-01-01
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862
de Paiva, Cintia S.
2017-01-01
Dry eye affects millions of people worldwide and causes eye well recognized risk factors for dry eye. Anatomical and inflammation-induced age-related changes affect all components of the lacrimal gland functional unit, inclusive of lacrimal gland, conjunctiva, meibomian gland and compromise ocular surface health. There is increased evidence that inflammation plays a role in dry eye. This review will summarize the current knowledge about aging and dry eye, inclusive of lessons learned from animal models and promising therapies. PMID:28282314
Tumor Progression Locus 2 (TPL2) Regulates Obesity-Associated Inflammation and Insulin Resistance
Perfield, James W.; Lee, Yunkyoung; Shulman, Gerald I.; Samuel, Varman T.; Jurczak, Michael J.; Chang, Eugene; Xie, Chen; Tsichlis, Phillip N.; Obin, Martin S.; Greenberg, Andrew S.
2011-01-01
OBJECTIVE Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated that the obese metabolic state can be improved by ablating certain inflammatory signaling pathways. Tumor progression locus 2 (TPL2), a kinase that integrates signals from Toll receptors, cytokine receptors, and inhibitor of κ-B kinase-β is an important regulator of inflammatory pathways. We used TPL2 knockout (KO) mice to investigate the role of TPL2 in mediating obesity-associated inflammation and insulin resistance. RESEARCH DESIGN AND METHODS Male TPL2KO and wild-type (WT) littermates were fed a low-fat diet or a high-fat diet to investigate the effect of TPL2 deletion on obesity, inflammation, and insulin sensitivity. RESULTS We demonstrate that TPL2 deletion does not alter body weight gain or adipose depot weight. However, hyperinsulinemic euglycemic clamp studies revealed improved insulin sensitivity with enhanced glucose uptake in skeletal muscle and increased suppression of hepatic glucose output in obese TPL2KO mice compared with obese WT mice. Consistent with an improved metabolic phenotype, immune cell infiltration and inflammation was attenuated in the adipose tissue of obese TPL2KO mice coincident with reduced hepatic inflammatory gene expression and lipid accumulation. CONCLUSIONS Our results provide the first in vivo demonstration that TPL2 ablation attenuates obesity-associated metabolic dysfunction. These data suggest TPL2 is a novel target for improving the metabolic state associated with obesity. PMID:21346175
Friedman, Elliot M.; Herd, Pamela
2010-01-01
Objective To examine the associations between income and education and three markers of inflammation: interleukin-6 (IL-6), C-reactive protein (CRP), and fibrinogen. Socioeconomic status is inversely linked with health outcomes, but the biological processes by which social position “gets under the skin” to affect health are poorly understood. Method Cross-sectional analyses involved participants (n = 704) from the second wave of the national population-based Survey of Midlife Development in the United States (MIDUS). Data on pretax household-adjusted income and educational attainment were collected by questionnaire and telephone interview, respectively. Detailed medical history interviews, inventories of medication, and fasting blood samples for assessment of inflammatory proteins were obtained during an overnight clinic stay. Results All three inflammatory proteins were inversely associated with both income and education in bivariate analyses. However, multivariate regression models, adjusting for potential confounds, showed that only low income predicted higher levels of inflammatory proteins. Moreover, inclusion of IL-6 in the regression models for CRP and fibrinogen eliminated the associations with income. Conclusion These results suggest that income explains the association between education and peripheral inflammation. In short, the reason that higher education is linked to reduced peripheral inflammation is because it reduces the risk for low income status, which is what is directly associated with reduced peripheral inflammation. The findings also suggest that the links between income and both CRP and fibrinogen are mediated by IL-6. These observations help to sharpen our understanding of the relationship between social position and biological markers of illness in the United States. PMID:20100883
IL-6-Mediated Activation of Stat3α Prevents Trauma/Hemorrhagic Shock-Induced Liver Inflammation
Moran, Ana; Thacker, Stephen A.; Arikan, Ayse Akcan; Mastrangelo, Mary-Ann A.; Wu, Yong; Yu, Bi; Tweardy, David J.
2011-01-01
Trauma complicated by hemorrhagic shock (T/HS) is the leading cause of morbidity and mortality in the United States for individuals under the age of 44 years. Initial survivors are susceptible to developing multiple organ failure (MOF), which is thought to be caused, at least in part, by excessive or maladaptive activation of inflammatory pathways. We previously demonstrated in rodents that T/HS results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required, and the mechanism(s) for the IL-6 protective effect have not been reported. In the experiments described here, we demonstrated that the extent of liver inflammation induced by T/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver inflammation and is associated with increased Stat3 activation. Global assessment of the livers showed that the main effect of IL-6 was to normalize the T/HS-induced inflammation transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver inflammation and to normalize the T/HS-induced liver inflammation transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated T/HS-induced liver inflammation, confirming a role for Stat3, especially Stat3α, in preventing T/HS-mediated liver inflammation. Thus, T/HS-induced liver inflammation depends on the duration of hypotension and requires resuscitation; IL-6 administration at the start of resuscitation reverses T/HS-induced liver inflammation, through activation of Stat3α, which normalized the T/HS-induced liver inflammation transcriptome. PMID:21738667
Loprinzi, Paul D; Walker, Jerome F; Lee, Hyo
2014-01-01
Chronic obstructive pulmonary disease (COPD) may cause not only inflammation in the lungs but also systemic effects. One potential strategy to reduce systemic inflammation and attenuate disease progression is physical activity (PA). However, no nationally representative studies, to our knowledge, have examined the association between objectively measured physical activity and inflammation among those with COPD. Cross-sectional. National Health and Nutrition Examination Survey 2003-2006. Two hundred thirty-eight former or current smokers with self-reported COPD who had complete data on study variables. Participants wore an accelerometer for ≥4 days to assess light-intensity PA (LPA), moderate-to-vigorous PA (MVPA), and total physical activity (TPA); completed questionnaires to assess self-reported COPD and smoking status; and had their blood taken to assess white blood cell (WBC) and neutrophil levels. Multivariable linear regression analysis was used. LPA (β = -.0004), MVPA (β = -.04), and TPA (β = -.0004) were significantly inversely associated with WBC level. Similarly, LPA (β = -.001) and TPA (β = -.001) were significantly inversely associated with neutrophils; however, MVPA was marginally associated with neutrophils (β = -.05; p =.06). These analyses demonstrate an inverse association between objectively measured PA and inflammation among current or former smokers with COPD. If these findings are confirmed elsewhere, then PA among those with COPD may serve as an anti-inflammatory strategy to possibly decrease cardiovascular and metabolic disease occurrence.
Modulation of inflammation by interleukin-27
Bosmann, Markus; Ward, Peter A.
2013-01-01
A growing body of evidence suggests an essential role of the heterodimeric cytokine, IL-27, for regulating immunity. IL-27 is composed of two subunits (p28 and EBI3) and is classified as a member of the IL-12 family of cytokines. APCs have been recognized as a major cellular source of IL-27 following activation with microbial products or IFNs (types I and II). In this review, we describe the current knowledge of the implications of IL-27 during the pathogenesis of infectious and autoimmune diseases. Experimental studies have used genetically targeted IL-27RA−/− mice, EBI3−/− mice, and p28−/− mice or involved study designs with administration of bioengineered IL-27/IL-27RA homologs. Whereas many reports have described that IL-27 suppresses inflammation, we also review the current literature, suggesting promotion of inflammation by IL-27 in some settings. Recent advances have also been made in understanding the cross-talk of cleavage products of the complement system with IL-27-mediated immune responses. Additional data on IL-27 have been obtained recently by observational studies in human patients with acute and chronic inflammatory diseases. Collectively, the findings from the past decade identify IL-27 as a critical immunoregulatory cytokine, especially for T cells, whereas some controversy is fueled by results challenging the view of IL-27 as a classical silencer of inflammation. PMID:23904441
Systemic inflammation and delirium – important co-factors in the progression of dementia
Cunningham, Colm
2014-01-01
It is widely accepted that inflammation plays some role in the progression of chronic neurodegenerative diseases such as Alzheimer’s disease but its precise role remains elusive. It has been known for many years that systemic inflammatory insults can signal to the brain to induce changes in CNS function, typically grouped under the syndrome of sickness behaviour. These changes are mediated via systemic and CNS cytokine and prostaglandin synthesis. When patients with dementia suffer similar systemic inflammatory insults, delirium is a frequent consequence. This profound and acute exacerbation of cognitive dysfunction is associated with poor prognosis: accelerating cognitive decline and shortening time to permanent institutionalization and death. Therefore a better understanding of how delirium occurs during dementia and how these episodes impact on existing neurodegeneration are now important priorities. The current review summarises the relationship between dementia, systemic inflammation and episodes of delirium and addresses the basic scientific approaches currently being pursued with respect to understanding acute cognitive dysfunction during aging and dementia. In addition, though there are limited studies on this subject, it is becoming increasingly clear that infections and other systemic inflammatory conditions do increase the risk of Alzheimer’s disease and accelerate the progression of established dementia. These data suggest that systemic inflammation is a major contributor to the progression of dementia and constitutes an important clinical target. PMID:21787328
SHARMA, ANKIT; GHATGE, MADANKUMAR; MUNDKUR, LAKSHMI; VANGALA, RAJANI KANTH
2016-01-01
Translational informatics approaches are required for the integration of diverse and accumulating data to enable the administration of effective translational medicine specifically in complex diseases such as coronary artery disease (CAD). In the current study, a novel approach for elucidating the association between infection, inflammation and CAD was used. Genes for CAD were collected from the CAD-gene database and those for infection and inflammation were collected from the UniProt database. The cytomegalovirus (CMV)-induced genes were identified from the literature and the CAD-associated clinical phenotypes were obtained from the Unified Medical Language System. A total of 55 gene ontologies (GO) termed functional communicator ontologies were identifed in the gene sets linking clinical phenotypes in the diseasome network. The network topology analysis suggested that important functions including viral entry, cell adhesion, apoptosis, inflammatory and immune responses networked with clinical phenotypes. Microarray data was extracted from the Gene Expression Omnibus (dataset: GSE48060) for highly networked disease myocardial infarction. Further analysis of differentially expressed genes and their GO terms suggested that CMV infection may trigger a xenobiotic response, oxidative stress, inflammation and immune modulation. Notably, the current study identified γ-glutamyl transferase (GGT)-5 as a potential biomarker with an odds ratio of 1.947, which increased to 2.561 following the addition of CMV and CMV-neutralizing antibody (CMV-NA) titers. The C-statistics increased from 0.530 for conventional risk factors (CRFs) to 0.711 for GGT in combination with the above mentioned infections and CRFs. Therefore, the translational informatics approach used in the current study identified a potential molecular mechanism for CMV infection in CAD, and a potential biomarker for risk prediction. PMID:27035874
Kanagasabai, Thirumagal; Ardern, Chris I
2015-01-01
Sleep is vital for cardiometabolic health, but a societal shift toward poor sleep is a prominent feature of many modern cultures. Concurrently, factors such as diet and lifestyle have also changed and may mediate the relationship between sleep quality and cardiometabolic health. Objectives were to explore (1) the interrelationship and (2) mediating effect of inflammation, oxidative stress, and antioxidants on sleep quality and cardiometabolic health. Cross-sectional data from the US National Health and Nutritional Examination Survey 2005-06 (≥20 y; N = 2,072) was used. Cardiometabolic health was defined as per the Joint Interim Statement; overall sleep quality was determined from six sleep habits and categorized as good, fair, poor, and very poor. Fair quality sleepers had optimal inflammation, oxidative stress, and antioxidant levels. Inflammation was above the current clinical reference range across all sleep quality categories, while oxidative stress was only within the clinical reference range for fair sleep quality. Selected sleep quality-cardiometabolic health relationships were mediated by inflammation, oxidative stress, and antioxidants and were moderated by sex. Our results provide initial evidence of a potential role for inflammation, oxidative stress, and antioxidants in the pathway between poor sleep quality-cardiometabolic decline. Further prospective research is needed to confirm our results.
Regulation of the macrophage oxytocin receptor in response to inflammation
Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.
2017-01-01
It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625
Chronic skin inflammation accelerates macrophage cholesterol crystal formation and atherosclerosis
Ng, Qimin; Sanda, Gregory E.; Dey, Amit K.; Teague, Heather L.; Sorokin, Alexander V.; Dagur, Pradeep K.; Silverman, Joanna I.; Harrington, Charlotte L.; Rodante, Justin A.; Rose, Shawn M.; Varghese, Nevin J.; Belur, Agastya D.; Goyal, Aditya; Gelfand, Joel M.; Springer, Danielle A.; Bleck, Christopher K.E.; Thomas, Crystal L.; Yu, Zu-Xi; Winge, Mårten C.G.; Kruth, Howard S.; Marinkovich, M. Peter; Joshi, Aditya A.; Playford, Martin P.; Mehta, Nehal N.
2018-01-01
Inflammation is critical to atherogenesis. Psoriasis is a chronic inflammatory skin disease that accelerates atherosclerosis in humans and provides a compelling model to understand potential pathways linking these diseases. A murine model capturing the vascular and metabolic diseases in psoriasis would accelerate our understanding and provide a platform to test emerging therapies. We aimed to characterize a new murine model of skin inflammation (Rac1V12) from a cardiovascular standpoint to identify novel atherosclerotic signaling pathways modulated in chronic skin inflammation. The RacV12 psoriasis mouse resembled the human disease state, including presence of systemic inflammation, dyslipidemia, and cardiometabolic dysfunction. Psoriasis macrophages had a proatherosclerotic phenotype with increased lipid uptake and foam cell formation, and also showed a 6-fold increase in cholesterol crystal formation. We generated a triple-genetic K14-RacV12–/+/Srb1–/–/ApoER61H/H mouse and confirmed psoriasis accelerates atherogenesis (~7-fold increase). Finally, we noted a 60% reduction in superoxide dismutase 2 (SOD2) expression in human psoriasis macrophages. When SOD2 activity was restored in macrophages, their proatherogenic phenotype reversed. We demonstrate that the K14-RacV12 murine model captures the cardiometabolic dysfunction and accelerates vascular disease observed in chronic inflammation and that skin inflammation induces a proatherosclerotic macrophage phenotype with impaired SOD2 function, which associated with accelerated atherogenesis. PMID:29321372
Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A
2015-05-01
Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk. Copyright © 2015 Elsevier B.V. All rights reserved.
Steffen, Patrick R; Walker, Jill; Meredith, Richard; Anderson, Chris
2016-01-21
Mexican immigrants have lower cardiovascular disease risk than US citizens, but risk increases with level of acculturation. Our study investigated whether job stress and financial strain would be related to inflammation (C-reactive protein), lipids, and blood pressure, and if they would play a role in the acculturation process in Mexican immigrants. A sample of 310 Mexican immigrants living in the United States were studied on measures of job stress, financial strain, acculturation, and cardiovascular disease risk factors (C-reactive protein, lipids, and blood pressure). Job instability, financial strain, and acculturation, were related to inflammation, but psychological demands and decision latitude were not related. Lipids and blood pressure were not related to the variables of interest. Body mass index (BMI) was related to both increased acculturation and inflammation, and when controlling for BMI, acculturation was no longer a significant predictor of inflammation. Job instability and financial strain remained significant predictors of inflammation after controlling for BMI, sex, and age. Job instability and financial strain were not related to acculturation, suggesting that these factors are significant stressors for both newly arrived and more established immigrants. Job instability and financial strain predict increased inflammation in Mexican immigrants but they do not play a role in the relationship between acculturation and C-reactive protein. The effects of acculturation on inflammation in this study were mediated by BMI.
Raj Krishnamurthy, Vidya M.; Wei, Guo; Baird, Bradley C.; Murtaugh, Maureen; Chonchol, Michel B.; Raphael, Kalani L.; Greene, Tom; Beddhu, Srinivasan
2016-01-01
Chronic kidney disease is considered an inflammatory state and a high fiber intake is associated with decreased inflammation in the general population. Here, we determined whether fiber intake is associated with decreased inflammation and mortality in chronic kidney disease, and whether kidney disease modifies the associations of fiber intake with inflammation and mortality. To do this, we analyzed data from 14,543 participants in the National Health and Nutrition Examination Survey III. The prevalence of chronic kidney disease (estimated glomerular filtration rate less than 60 ml/min per 1.73 m2) was 5.8%. For each 10-g/day increase in total fiber intake, the odds of elevated serum C-reactive protein levels were decreased by 11% and 38% in those without and with kidney disease, respectively. Dietary total fiber intake was not significantly associated with mortality in those without but was inversely related to mortality in those with kidney disease. The relationship of total fiber with inflammation and mortality differed significantly in those with and without kidney disease. Thus, high dietary total fiber intake is associated with lower risk of inflammation and mortality in kidney disease and these associations are stronger in magnitude in those with kidney disease. Interventional trials are needed to establish the effects of fiber intake on inflammation and mortality in kidney disease. PMID:22012132
Sobczak, Marta; Fabisiak, Adam; Murawska, Natalia; Wesołowska, Ewelina; Wierzbicka, Paulina; Wlazłowski, Marcin; Wójcikowska, Marta; Zatorski, Hubert; Zwolińska, Marta; Fichna, Jakub
2014-10-01
Inflammatory bowel diseases (IBD) are chronic, relapsing disorders affecting gastrointestinal (GI) tract and associated with intestinal mucosa damage and inflammation. The principal therapeutic goals in IBD include control of the intestinal inflammation and treatment of the major symptoms, mainly abdominal pain and diarrhea. Current therapeutic strategies for IBD rely on the use of non-specific anti-inflammatory agents and immunosuppressive drugs (e.g. aminosalicylates, monoclonal antibodies, and antibiotics), which cause severe side effects, and - in a significant number of patients - do not induce long-term benefits. In this review, we summarize the epidemiology and the most important risk factors of IBD, including genetic, immunological and environmental. Our main focus is to discuss pharmacological targets for current and future treatments of IBD. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Inflammation, aging, and adiposity: implications for physical therapists.
Addison, Odessa; LaStayo, Paul C; Dibble, Leland E; Marcus, Robin L
2012-01-01
Physical therapists treat older individuals, characterized as both a needy and expanding population. Frailty, a predisability condition with links to chronic inflammatory conditions, is estimated to affect 7% of individuals older than 60 years and 40% of people older than 80 years. Chronic inflammation is one of the most important physiologic correlates of the frailty syndrome and high levels of proinflammatory cytokines, related to both aging and increasing adiposity in older individuals are related to an increased risk of mortality, sarcopenia, reduced muscle strength and decreased mobility. The purpose of this narrative review is to inform the physical therapist of the effects of aging and increasing adiposity on chronic inflammation and the association of inflammation with muscle loss, strength, and mobility impairments in older adults; and to review the current evidence to provide clinical recommendations on physical activity and exercise regimes that may mitigate chronic inflammation in older adults. As physical therapists help manage and treat an increasingly older population, understanding how the inflammatory milieu changes with aging and increasing adiposity and how these changes can be impacted by physical therapists via exercise and physical activity is critical. Exercise is a potent preventive intervention strategy and countermeasure for chronic inflammation and adiposity. Exercise can also benefit the frail older individual by combating the negative effects of chronic inflammation and optimally balancing the production of pro and anti-inflammatory cytokines. In addition to providing an anti-inflammatory environment within muscle to mitigate the effects of chronic inflammation, exercise has the added benefit of improving muscle mass and function and decreasing adiposity in older adults.
Misbehaving macrophages in the pathogenesis of psoriasis
Clark, Rachael A.; Kupper, Thomas S.
2006-01-01
Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin — or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell–mediated pathways of inflammation. PMID:16886055
Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers
Aggarwal, Bharat B; Gupta, Subash C; Sung, Bokyung
2013-01-01
TNFs are major mediators of inflammation and inflammation-related diseases, hence, the United States Food and Drug Administration (FDA) has approved the use of blockers of the cytokine, TNF-α, for the treatment of osteoarthritis, inflammatory bowel disease, psoriasis and ankylosis. These drugs include the chimeric TNF antibody (infliximab), humanized TNF-α antibody (Humira) and soluble TNF receptor-II (Enbrel) and are associated with a total cumulative market value of more than $20 billion a year. As well as being expensive ($15 000–20 000 per person per year), these drugs have to be injected and have enough adverse effects to be given a black label warning by the FDA. In the current report, we describe an alternative, curcumin (diferuloylmethane), a component of turmeric (Curcuma longa) that is very inexpensive, orally bioavailable and highly safe in humans, yet can block TNF-α action and production in in vitro models, in animal models and in humans. In addition, we provide evidence for curcumin's activities against all of the diseases for which TNF blockers are currently being used. Mechanisms by which curcumin inhibits the production and the cell signalling pathways activated by this cytokine are also discussed. With health-care costs and safety being major issues today, this golden spice may help provide the solution. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23425071
Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass
2012-05-02
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.
National Trauma Institute: A National Coordinating Center for Trauma Research Funding
2012-10-28
and why anemia does not resolve. Hepcidin, a peptide made in the liver, has recently been identified as the key regulator of iron homeostasis, and...plays a major role in how and why anemia develops. Hepcidin reduces iron availability by: (1) decreased iron absorption across the intestine and (2... iron deficiency . Hepcidin is Page | 11 increased in states of inflammation, and likely plays an important role in the acute inflammation that
N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit
Huang, Feiruo
2015-01-01
Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits. PMID:26339623
N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit.
Wang, Yue; Huang, Feiruo
2015-01-01
Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.
Impact of inflammation on male fertility.
Sarkar, Oli; Bahrainwala, Jamila; Chandrasekaran, Sambamurthy; Kothari, Shiva; Mathur, Premendu P; Agarwal, Ashok
2011-01-01
The male uro-genital tract is susceptible to gram-negative bacterial infections that produce a state of inflammation, particularly in the testis and epididymis. Development of germline stem cells into motile spermatozoa takes place in these organs and thus any impairment therein has a direct effect on male fertility. A number of factors are known to impair male fertility including environmental and chemical factors, lifestyle, and infections. The last is a little-known and poorly understood cause of male sub-/infertility. The presence of the pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF- alpha), interleukin-1alpha (IL-1alpha) and interleukin-1beta (IL-1beta) in the male uro-genital tract following bacterial infections suggests that such infections could have cytokine-mediated anti-fertility effects. Furthermore, inflammation has been associated with elevated levels of reactive oxygen species and oxidative stress both of which affect male fertility. The present article summarizes the effects of inflammation on the testis, epididymis and spermatozoa. We review the correlations between inflammation and oxidative stress vis-à-vis spermatogenesis and discuss the implications of infections on male fertility/infertility and assisted reproductive technologies for the male.
MECHANISMS INVOLVED IN THE ASSOCIATION BETWEEN PERIDONTAL DISEASES AND CARDIOVASCULAR DISEASE
Teles, Ricardo; Wang, Cun-Yu
2012-01-01
It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This “inflammation hypothesis” raises the possibility that, through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article are to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk. PMID:21223455
Systemic effects of inflammation on health during chronic HIV infection.
Deeks, Steven G; Tracy, Russell; Douek, Daniel C
2013-10-17
Combination antiretroviral therapy for HIV infection improves immune function and eliminates the risk of AIDS-related complications but does not restore full health. HIV-infected adults have excess risk of cardiovascular, liver, kidney, bone, and neurologic diseases. Many markers of inflammation are elevated in HIV disease and strongly predictive of the risk of morbidity and mortality. A conceptual model has emerged to explain this syndrome of diseases where HIV-mediated destruction of gut mucosa leads to local and systemic inflammation. Translocated microbial products then pass through the liver, contributing to hepatic damage, impaired microbial clearance, and impaired protein synthesis. Chronic activation of monocytes and altered liver protein synthesis subsequently contribute to a hypercoagulable state. The combined effect of systemic inflammation and excess clotting on tissue function leads to end-organ disease. Multiple therapeutic interventions designed to reverse these pathways are now being tested in the clinic. It is likely that knowledge gained on how inflammation affects health in HIV disease could have implications for our understanding of other chronic inflammatory diseases and the biology of aging. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of inflammation in depression: from evolutionary imperative to modern treatment target
Miller, Andrew H.; Raison, Charles L.
2017-01-01
Crosstalk between inflammatory pathways and neurocircuits in the brain can lead to behavioural responses, such as avoidance and alarm, that are likely to have provided early humans with an evolutionary advantage in their interactions with pathogens and predators. However, in modern times, such interactions between inflammation and the brain appear to drive the development of depression and may contribute to non-responsiveness to current antidepressant therapies. Recent data have elucidated the mechanisms by which the innate and adaptive immune systems interact with neurotransmitters and neurocircuits to influence the risk for depression. Here, we detail our current understanding of these pathways and discuss the therapeutic potential of targeting the immune system to treat depression. PMID:26711676
Hodgson, Anjelica; Xu, Bin; Satkunasivam, Raj; Downes, Michelle R
2018-02-01
Inflammation and necrosis have been associated with prognosis in multiple epithelial malignancies. Our objective was to evaluate inflammation and necrosis in a cohort of patients with high-grade urothelial carcinomas of the bladder to determine their association with pathological parameters and their prognostic effect on relapse-free and disease-specific survival. A retrospective cohort that underwent radical cystectomy for urothelial carcinomas (n=235) was evaluated for invasive front and central inflammation using the Klintrup-Makinen assessment method. Necrosis was scored using a four-point scale. The relationship of inflammation and necrosis with stage, nodal status, carcinoma in situ, tumour size, margin status and vascular space invasion and the impact on relapse-free and disease-specific survival were calculated using appropriate statistical tests. On multivariate analysis, invasive front inflammation (p=0.003) and necrosis (p=0.000) were independent predictors of relapse-free survival. Both invasive front inflammation (p=0.009) and necrosis (p=0.002) again were independent predictors of disease-specific survival. For pathological features, low invasive front inflammation was associated with lymphovascular space invasion (p=0.008), a positive soft tissue margin (p=0.028) and carcinoma in situ (p=0.042). Necrosis was statistically associated with tumours >3 cm in size (p=0.013) and carcinoma in situ (p<0.001). Necrosis and invasive front inflammation are additional histological variables with independent prognostic relevance in high-grade urothelial carcinoma of the bladder. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Human T cell immunosenescence and inflammation in aging.
Bektas, Arsun; Schurman, Shepherd H; Sen, Ranjan; Ferrucci, Luigi
2017-10-01
The aging process is driven by a finite number of inter-related mechanisms that ultimately lead to the emergence of characteristic phenotypes, including increased susceptibility to multiple chronic diseases, disability, and death. New assays and analytical tools have become available that start to unravel some of these mechanisms. A prevailing view is that aging leads to an imbalance between stressors and stress-buffering mechanisms that causes loss of compensatory reserve and accumulation of unrepaired damage. Central to this paradigm are changes in the immune system and the chronic low-grade proinflammatory state that affect many older individuals, even when they are apparently healthy and free of risk factors. Independent of chronological age, high circulating levels of proinflammatory markers are associated with a high risk of multiple adverse health outcomes in older persons. In this review, we discuss current theories about causes and consequences of the proinflammatory state of aging, with a focus on changes in T cell function. We examine the role of NF-κB activation and its dysregulation and how NF-κB activity differs among subgroups of T cells. We explore emerging hypotheses about immunosenescence and changes in T cell behavior with age, including consideration of the T cell antigen receptor and regulatory T cells (T regs ). We conclude by illustrating how research using advanced technology is uncovering clues at the core of inflammation and aging. Some of the preliminary work in this field is already improving our understanding of the complex mechanisms by which immunosenescence of T cells is intertwined during human aging. © Society for Leukocyte Biology.
Henkel, Janin; Coleman, Charles Dominic; Schraplau, Anne; Jӧhrens, Korinna; Weber, Daniela; Castro, José Pedro; Hugo, Martin; Schulz, Tim Julius; Krämer, Stephanie; Schürmann, Annette; Püschel, Gerhard Paul
2017-03-21
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g. high-fat diets) or overweight and insulin resistance (e.g. methionine-choline-deficient diets) or they are based on monogenetic defects (e.g. ob/ob mice). In the current study, a western-type diet containing soybean oil with high n 6-PUFA and 0.75% cholesterol (SOD+Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast a soybean oil-containing western-type diet without cholesterol (SOD) induced only mild steatosis but neither hepatic inflammation nor fibrosis, weight gain or insulin resistance. Another high-fat diet mainly consisting of lard and supplemented with fructose in drinking water (LAD+Fru) resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD+Cho but livers were devoid of inflammation and fibrosis. Although both LAD+Fru- and SOD+Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD+Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. Summarizing, dietary cholesterol in SOD+Cho diet may trigger hepatic inflammation and fibrosis. SOD+Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.
Designed electromagnetic pulsed therapy: clinical applications.
Gordon, Glen A
2007-09-01
First reduced to science by Maxwell in 1865, electromagnetic technology as therapy received little interest from basic scientists or clinicians until the 1980s. It now promises applications that include mitigation of inflammation (electrochemistry) and stimulation of classes of genes following onset of illness and injury (electrogenomics). The use of electromagnetism to stop inflammation and restore tissue seems a logical phenomenology, that is, stop the inflammation, then upregulate classes of restorative gene loci to initiate healing. Studies in the fields of MRI and NMR have aided the understanding of cell response to low energy EMF inputs via electromagnetically responsive elements. Understanding protein iterations, that is, how they process information to direct energy, we can maximize technology to aid restorative intervention, a promising step forward over current paradigms of therapy.
Nairz, Manfred; Theurl, Igor; Wolf, Dominik; Weiss, Günter
2016-10-01
Iron deficiency and immune activation are the two most frequent causes of anemia, both of which are based on disturbances of iron homeostasis. Iron deficiency anemia results from a reduction of the body's iron content due to blood loss, inadequate dietary iron intake, its malabsorption, or increased iron demand. Immune activation drives a diversion of iron fluxes from the erythropoietic bone marrow, where hemoglobinization takes place, to storage sites, particularly the mononuclear phagocytes system in liver and spleen. This results in iron-limited erythropoiesis and anemia. This review summarizes current diagnostic and pathophysiological concepts of iron deficiency anemia and anemia of inflammation, as well as combined conditions, and provides a brief outlook on novel therapeutic options.
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
Sonnenberg, Gregory F.; Artis, David
2016-01-01
A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198
Genomic and epigenomic regulation of adipose tissue inflammation in obesity.
Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas
2013-12-01
Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molecular and Genetic Inflammation Networks in Major Human Diseases
Zhao, Yongzhong; Forst, Christian V.; Sayegh, Camil E.; Wang, I-Ming; Yang, Xia; Zhang, Bin
2016-01-01
It has been well-recognized that inflammation alongside tissue repair and damage maintaining tissue homeostasis determines the initiation and progression of complex diseases. Albeit with the accomplishment of having captured most critical inflammation involved molecules, genetic susceptibilities, epigenetic factors, and environmental exposures, our schemata on role of inflammation in complex disease, remain largely patchy, in part due to the success of reductionism in terms of research methodology per se. Omics data alongside the advances in data integration technologies have enabled reconstruction of molecular and genetic inflammation networks which shed light on the underlying pathophysiology of complex diseases or clinical conditions. Given the proven beneficial role of anti-inflammation in coronary heart disease as well as other complex diseases and immunotherapy as a revolutionary transition in oncology, it becomes timely to review our current understanding of the inflammation molecular and genetic networks underlying major human diseases. In this Review, we first briefly discuss the complexity of infectious diseases and then highlight recently uncovered molecular and genetic inflammation networks in other major human diseases including obesity, type II diabetes, coronary heart disease, late onset Alzheimer Disease, Parkinson disease, and sporadic cancer. The commonality and specificity of these molecular networks are addressed in the context of genetics based on genome-wide association study (GWAS). The double-sword role of inflammation, such as how the aberrant type 1 and/or type 2immunity leads to chronic and severe clinical conditions, remains open in terms of the inflammasome and the core inflammatome network features. Increasingly available large Omics and clinical data in tandem with systems biology approaches have offered an exciting yet challenging opportunity toward reconstruction of more comprehensive and dynamic molecular and genetic inflammation networks, which hold a great promise in transiting network snapshots to video-style multi-scale interplays of disease mechanisms, in turn leading to effective clinical intervening. PMID:27303926
Current State of Bioabsorbable Polymer-Coated Drug-Eluting Stents
Akinapelli, Abhilash; Chen, Jack P.; Roy, Kristine; Donnelly, Joseph; Dawkins, Keith; Huibregtse, Barbara; Hou, Dongming
2017-01-01
Drug-eluting stents (DES) have been shown to significantly reduce clinical and angiograph-ic restenosis compared to bare metal stents (BMS). The polymer coatings on DES elute antiproliferative drugs to inhibit intimal proliferation and prevent restenosis after stent implantation. Permanent poly-mers which do not degrade in vivo may increase the likelihood of stent-related delayed arterial healing or polymer hypersensitivity. In turn, these limitations may contribute to an increased risk of late clinical events. Intuitively, a polymer which degrades after completion of drug release, leaving an inert metal scaffold in place, may improve arterial healing by removing a chronic source of inflammation, neoath-erosclerosis, and/or late thrombosis. In this way, a biodegradable polymer may reduce late ischemic events. Additionally, improved healing after stent implantation could reduce the requirement for long-term dual antiplatelet therapy and the associated risk of bleeding and cost. This review will focus on bioabsorbable polymer-coated DES currently being evaluated in clinical trials.
Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models.
Rubin, Lewis P; Ross, A Catharine; Stephensen, Charles B; Bohn, Torsten; Tanumihardjo, Sherry A
2017-03-01
The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body's response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review. © 2017 American Society for Nutrition.
Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models123
Rubin, Lewis P; Ross, A Catharine; Stephensen, Charles B; Bohn, Torsten; Tanumihardjo, Sherry A
2017-01-01
The association between inflammation and vitamin A (VA) metabolism and status assessment has been documented in multiple studies with animals and humans. The relation between inflammation and carotenoid status is less clear. Nonetheless, it is well known that carotenoids are associated with certain health benefits. Understanding these relations is key to improving health outcomes and mortality risk in infants and young children. Hyporetinolemia, i.e., low serum retinol concentrations, occurs during inflammation, and this can lead to the misdiagnosis of VA deficiency. On the other hand, inflammation causes impaired VA absorption and urinary losses that can precipitate VA deficiency in at-risk groups of children. Many epidemiologic studies have suggested that high dietary carotenoid intake and elevated plasma concentrations are correlated with a decreased risk of several chronic diseases; however, large-scale carotenoid supplementation trials have been unable to confirm the health benefits and in some cases resulted in controversial results. However, it has been documented that dietary carotenoids and retinoids play important roles in innate and acquired immunity and in the body’s response to inflammation. Although animal models have been useful in investigating retinoid effects on developmental immunity, it is more challenging to tease out the effects of carotenoids because of differences in the absorption, kinetics, and metabolism between humans and animal models. The current understanding of the relations between inflammation and retinoid and carotenoid metabolism and status are the topics of this review. PMID:28298266
Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle
2010-01-01
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments. PMID:21143891
Thornton, Lisa M; Andersen, Barbara L; Schuler, Tammy A; Carson, William E
2009-09-01
To test experimentally whether a psychological intervention reduces depression-related symptoms and markers of inflammation among cancer patients and to test one mechanism for the intervention effects. Depression and inflammation are common among cancer patients. Data suggest that inflammation can contribute to depressive symptoms, although the converse remains untested. As part of a randomized clinical trial, newly diagnosed breast cancer patients (n = 45) with clinically significant depressive symptoms were evaluated and randomized to psychological intervention with assessment or assessment only study arms. The intervention spanned 12 months, with assessments at baseline, 4, 8, and 12 months. Mixed-effects modeling tested the hypothesis that the intervention reduced self-reported depressive symptoms (Center for Epidemiological Studies Depression scale, Profile of Mood States Depression and Fatigue subscales, and Medical Outcomes Study-Short Form 36 Bodily Pain subscale) and immune cell numbers that are elevated in the presence of inflammation (white blood cell count, neutrophil count, and helper/suppressor ratio). Mediation analyses tested whether change in depressive symptoms, pain, or fatigue predicted change in white blood cell count, neutrophil count, or the helper/suppressor ratio. The intervention reduced significantly depressive symptoms, pain, fatigue, and inflammation markers. Moreover, the intervention effect on inflammation was mediated by its effect on depressive symptoms. This is the first experiment to test whether psychological treatment effective in reducing depressive symptoms would also reduce indicators of inflammation. Data show that the intervention reduced directly depressive symptoms and reduced indirectly inflammation. Psychological treatment may treat effectively depressive symptoms, pain, and fatigue among cancer patients.
Chen, Zhihong; Huang, Guilin; Zhang, Nini; Yi, Jie; Yao, Li; Zhang, Lin
2016-04-01
To explore the effects of aspirin and inflammation on the maturation and function of dendritic cells (DC) on the supernatant of VX-2 squamous cell carcinoma. The rabbit buccal VX-2 squamous cell carcinoma models with inflammation were established by tumor particle implantation, mechanical trauma, and high sugar diet. The rabbits were divided into three groups. For the experimental group (rabbit buccal VX-2 squamous cell carcinoma with local inflammation), aspirin were given by gavage for three consecutive days. For the control group (rabbit buccal VX-2 squamous cell carcinoma with local inflammation), normal saline was given by gavage for three consecutive days. For the blank group (tumor without inflammation), normal saline was given by gavage for three consecutive days. Each tumor specimens were collected in three days and made into tissue homogenate. The supernatant was collected after centrifugation. Normal rabbit peripheral blood mononuclear cells were separated and co-cultured with different states of supernatant. The expression of DC surface markers CD83, CD86, and human leukocyte antigen-DR (HLA-DR) were detected by flow cytometry. The state of function of DC was tested by mixed lymphocyte reaction. The positive rate of CD83, CD86, and HLA-DR of the experimental and control groups were both lower than that of the blank group (P<0.05). In addition, the ability to stimulate T cell proliferation of the experimental and control groups were weaker than that of the blank group (P<0.05). No significant difference was observed between the experi- and HLADR of DC. The short-term administration of aspirin is not conducive to the phenoty and function of DC in a rabbit mental and control groups (P>0.05). Inflammation may inhibit the function and expression of CD83, CD86, buccal VX-2 squamous cell carcinoma inflammatory environment
Toll-like receptor signaling and its relevance to intestinal inflammation.
Cario, Elke; Podolsky, Daniel K
2006-08-01
This review discusses the current progress in the understanding of how commensal-mediated activation of toll-like receptors (TLRs) may be involved in the regulation of physiological and pathophysiological processes of the intestinal mucosa including tissue regeneration and inflammation. While regulation of TLRs and their downstream signaling mediators might be used to prevent and treat inflammatory bowel diseases, paradoxically, at this time, it remains uncertain whether this would be more effectively accomplished by enhancing or inhibiting these pathways.
Chen, Yen-Chu; Lin, Yi-Hsun; Wang, Shyh-Hau; Lin, Shih-Ping; Shung, K. Kirk; Wu, Chia-Ching
2014-01-01
Bone fracture induces moderate inflammatory responses that are regulated by cyclooxygenase-2 (COX-2) or 5-lipoxygenase (5-LO) for initiating tissue repair and bone formation. Only a handful of non-invasive techniques focus on monitoring acute inflammation of injured bone currently exists. In the current study, we monitored in vivo inflammation levels during the initial 2 weeks of the inflammatory stage after mouse bone fracture utilizing 50 MHz ultrasound. The acquired ultrasonic images were correlated well with histological examinations. After the bone fracture in the tibia, dynamic changes in the soft tissue at the medial-posterior compartment near the fracture site were monitored by ultrasound on the days of 0, 2, 4, 7, and 14. The corresponding echogenicity increased on the 2nd, 4th, and 7th day, and subsequently declined to basal levels after the 14th day. An increase of cell death was identified by the positive staining of deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and was consistent with ultrasound measurements. The increases of both COX-2 and Leukotriene B4 receptor 1 (BLT1, 5- LO-relative receptor), which are regulators for tissue inflammation, in the immunohistochemistry staining revealed their involvement in bone fracture injury. Monitoring the inflammatory response to various non-steroidal anti-inflammatory drugs (NSAIDs) treatments was investigated by treating injured mice with a daily oral intake of aspirin (Asp), indomethacin (IND), and a selective COX-2 inhibitor (SC-236). The Asp treatment significantly reduced fracture-increased echogenicity (hyperechogenicity, p < 0.05) in ultrasound images as well as inhibited cell death, and expression of COX-2 and BLT1. In contrast, treatment with IND or SC-236 did not reduce the hyperechogenicity, as confirmed by cell death (TUNEL) and expression levels of COX-2 or BLT1. Taken together, the current study reports the feasibility of a noninvasive ultrasound method capable of monitoring post-fracture tissue inflammation that positively correlates with histological findings. Results of this study also suggest that this approach may be further applied to elucidate the underlying mechanisms of inflammatory processes and to develop therapeutic strategies for facilitating fracture healing. PMID:23871514
Developing models for cachexia and their implications in drug discovery.
Konishi, Masaaki; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen
2015-07-01
Cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. Systemic inflammation plays a central role in its pathophysiology. As millions of patients are in a cachectic state of chronic disease, cachexia is one of the major causes of death worldwide. Difficulties in the recruitment and follow-up of clinical trials mean that well-characterized animal models are of great importance in developing cachexia therapies. However, some of the widely used animal models have limitations in procedural reproducibility or in recapitulating in the cachectic phenotype, which has warranted the development of novel models for cachexia. This review focuses on some of the currently developing rodent models designed to mimic each co-morbidity in cachexia. Through developing cancer models, researchers have been seeking more targets for intervention. In cardiac cachexia, technical issues have been overcome by transgenic models. Furthermore, the development of new animal models has enabled the elucidation of the roles of inflammation, anabolism/catabolism in muscle/fat tissue and anorexia on cachexia. As metabolic and inflammatory pathways in cachexia may compromise cardiac muscle, the analysis of cardiac function/tissue in non-cardiac cachexia may be a useful component of cachexia assessment common to different underlying diseases and pave the way for novel drug discovery.
Immunology and Homeopathy. 2. Cells of the Immune System and Inflammation
Bellavite, Paolo; Conforti, Anita; Pontarollo, Francesco; Ortolani, Riccardo
2006-01-01
Here we describe the results of some experimental laboratory studies aimed at verifying the efficacy of high dilutions of substances and of homeopathic medicines in models of inflammation and immunity. Studies carried out on basophils, lymphocytes, granulocytes and fibroblasts are reviewed. This approach may help to test under controlled conditions the main principles of homeopathy such as ‘similarity’ of drug action at the cellular level and the effects of dilution/dynamization on the drug activity. The current situation is that few and rather small groups are working on laboratory models for homeopathy. Regarding the interpretation of data in view of the simile principle, we observe that there are different levels of similarity and that the laboratory data give support to this principle, but have not yet yielded the ultimate answer to the action mechanism of homeopathy. Evidence of the biological activity in vitro of highly diluted-dynamized solutions is slowly accumulating, with some conflicting reports. It is our hope that this review of literature unknown to most people will give an original and useful insight into the ‘state-of-the-art’ of homeopathy, without final conclusions ‘for’ or ‘against’ this modality. This kind of uncertainty may be difficult to accept, but is conceivably the most open-minded position now. PMID:16550219
Abrams, Charles S.
2012-01-01
Abstract Disseminated intravascular coagulation (DIC) profoundly increases the morbidity and mortality of patients who have sepsis. Both laboratory and clinical research advanced the understanding of the biology and pathophysiology of DIC. This, in turn, gave rise to improved therapies and patient outcomes. Beginning with a stimulus causing disruption of vascular integrity, cytokines and chemokines cause activation of systemic coagulation and inflammation. Seemingly paradoxically, the interplay between coagulation and inflammation also inhibits endogenous anticoagulants, fibrinolytics, and antiinflammatory pathways. The earliest documented and best‐studied microbial cause of DIC is the lipopolysaccharide endotoxin of Gram‐negative bacteria. Extensive microvascular thrombi emerge in the systemic vasculature due to dysregulation of coagulation. The result of this unrestrained, widespread small vessel thromboses multiorgan system failure. Consumption of platelets and coagulation factors during this process can lead to an elevated risk of hemorrhage. The management of these patients with simultaneous hemorrhage and thrombosis is complex and challenging. Definitive treatment of DIC, and attenuation of end‐organ damage, requires control of the inciting cause. Currently, activated protein C is the only approved therapy in the United States for sepsis complicated by DIC. Further research is needed in this area to improve clinical outcomes for patients with sepsis. Clin Trans Sci 2012; Volume 5: 85–92 PMID:22376264
Rajendran, Karthick; Devarajan, Nalini; Ganesan, Manohar; Ragunathan, Malathi
2012-08-14
Obesity, characterised by increased fat mass and is currently regarded as a pro-inflammatory state and often associated with increased risk of cardiovascular diseases (CVD) including Myocardial infarction. There is an upregulation of inflammatory markers such as interleukin-6, interleukin-6 receptor and acute phase protein CRP in Acute Myocardial Infarction (AMI) patients but the exact mechanism linking obesity and inflammation is not known. It is of our interest to investigate if serum leptin (ob gene product) is associated with AMI and correlated with inflammatory proteins namely Interleukin-6 (IL-6) and high sensitivity - C reactive protein (hs-CRP). Serum leptin levels were significantly higher in AMI patients when compared to Non-CVD controls. IL-6 and hs-CRP were also elevated in the AMI group and leptin correlated positively with IL-6 and hs-CRP. Incidentally this is the first report from Chennai based population, India. The strong correlation between serum levels of leptin and IL-6 implicates an involvement of leptin in the upregulation of inflammatory cytokines during AMI. We hypothesise that the increase in values of IL-6, hs-CRP and their correlation to leptin in AMI patients could be due to participation of leptin in the signaling cascade after myocardial ischemia.
Carbon Monoxide in Exhaled Breath Testing and Therapeutics
Ryter, Stefan W.; Choi, Augustine M.K.
2013-01-01
Carbon monoxide (CO), a low molecular weight gas, is a ubiquitous environmental product of organic combustion, which is also produced endogenously in the body, as the byproduct of heme metabolism. CO binds to hemoglobin, resulting in decreased oxygen delivery to bodily tissues at toxicological concentrations. At physiological concentrations, CO may have endogenous roles as a potential signaling mediator in vascular function and cellular homeostasis. Exhaled CO (eCO), similar to exhaled nitric oxide (eNO), has been evaluated as a candidate breath biomarker of pathophysiological states, including smoking status, and inflammatory diseases of the lung and other organs. eCO values have been evaluated as potential indicators of inflammation in asthma, stable COPD and exacerbations, cystic fibrosis, lung cancer, or during surgery or critical care. The utility of eCO as a marker of inflammation, and potential diagnostic value remains incompletely characterized. Among other candidate “medicinal gases” with therapeutic potential, (e.g., NO and H2S), CO has been shown to act as an effective anti-inflammatory agent in preclinical animal models of inflammatory disease, acute lung injury, sepsis, ischemia/reperfusion injury and organ graft rejection. Current and future clinical trials will evaluate the clinical applicability of this gas as a biomarker and/or therapeutic in human disease. PMID:23446063
Therapeutic Implications of a Barrier-Based Pathogenesis of Atopic Dermatitis
Wakefield, Joan S.
2015-01-01
Excessive Th2 cell signaling and IgE production play key roles in the pathogenesis of atopic dermatitis (AD). Yet, recent information suggests that the inflammation in AD instead is initiated by inherited insults to the barrier, including a strong association between mutations in FILAGGRIN and SPINK5 in Netherton syndrome, the latter of which provides an important clue that AD is provoked by excess serine protease activity. But acquired stressors to the barrier may also be required to initiate inflammation in AD, and in addition, microbial colonization by Staphylococcus aureus both amplifies inflammation, but also further stresses the barrier in AD. Therapeutic implications of these insights are as follows: While current therapy has been largely directed toward ameliorating Th2-mediated inflammation and/or pruritus, these therapies are fraught with short-term and potential long-term risks. In contrast, “barrier repair” therapy, with a ceramide-dominant triple-lipid mixture of stratum corneum lipids, is more logical, of proven efficacy, and it provides a far-improved safety profile. PMID:21174234
Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.
Titos, Esther; Clària, Joan
2013-12-01
Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.
Immunopsychiatry: important facts.
Khandaker, G M; Dantzer, R; Jones, P B
2017-10-01
Accumulating evidence indicate a role for the immune system particularly inflammation and autoimmunity in the aetiology of major psychiatric disorders such as depression and schizophrenia. In this paper, we discuss some of the key advances in immunopsychiatry in order to highlight to psychiatrists and other health professionals how an increased understanding of this field might enhance our knowledge of illness mechanism and approaches to treatment. We present a brief overview of clinical research that link inflammation and autoimmunity with depression and psychosis, including potential role of inflammation in treatment response, current evidence for the effectiveness of immune-modulating treatment for depression and psychosis, and possible role of inflammation in common physical comorbidities for these disorders such as coronary heart disease and diabetes mellitus. Gaining a better understanding of the role of immune system could be paradigm changing for psychiatry. We need collaborations between clinicians and scientists to deliver high-quality translational research in order to fully realise the clinical potential of this exciting and rapidly expanding field.
Pro-Resolving lipid mediators and Mechanisms in the resolution of acute inflammation
Buckley, Christopher D.; Gilroy, Derek W.; Serhan, Charles N.
2014-01-01
SUMMARY Inflammatory responses, like all biological cascades, are shaped by a delicate balance between positive and negative feedback loops. It is now clear that in addition to positive and negative checkpoints, the inflammatory cascade rather unexpectedly boasts an additional checkpoint, a family of chemicals that actively promote resolution and tissue repair without compromising host defence. Indeed the resolution phase of inflammation is just as actively orchestrated and carefully choreographed as its induction and inhibition. In this review we explore the immunological consequences of these omega-3-derived specialized pro-resolving mediators (SPMs) and discuss their place within what is currently understood of the role of the arachidonic acid-derived prostaglandins, lipoxins and their natural C15-epimers. We propose that treatment of inflammation should not be restricted to the use of inhibitors of the acute cascade (antagonism) but broadened to take account of the enormous therapeutic potential of inducers (agonists) of the resolution phase of inflammation. PMID:24656045
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects
Spinelli, S. L.; O'Brien, J. J.; Bancos, S.; Lehmann, G. M.; Springer, D. L.; Blumberg, N.; Francis, C. W.; Taubman, M. B.; Phipps, R. P.
2008-01-01
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options. PMID:18288284
Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease.
Tashkin, Donald P; Wechsler, Michael E
2018-01-01
COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD.
Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease
Tashkin, Donald P; Wechsler, Michael E
2018-01-01
COPD is a significant cause of morbidity and mortality. In some patients with COPD, eosinophils contribute to inflammation that promotes airway obstruction; approximately a third of stable COPD patients have evidence of eosinophilic inflammation. Although the eosinophil threshold associated with clinical relevance in patients with COPD is currently subject to debate, eosinophil counts hold potential as biomarkers to guide therapy. In particular, eosinophil counts may be useful in assessing which patients may benefit from inhaled corticosteroid therapy, particularly regarding exacerbation prevention. In addition, several therapies targeting eosinophilic inflammation are available or in development, including monoclonal antibodies targeting the IL5 ligand, the IL5 receptor, IL4, and IL13. The goal of this review was to describe the biologic characteristics of eosinophils, their role in COPD during exacerbations and stable disease, and their use as biomarkers to aid treatment decisions. We also propose an algorithm for inhaled corticosteroid use, taking into consideration eosinophil counts and pneumonia history, and emerging eosinophil-targeted therapies in COPD. PMID:29403271
Islam, Md Asiful; Alam, Fahmida; Solayman, Md; Khalil, Md Ibrahim; Kamal, Mohammad Amjad; Gan, Siew Hua
2016-01-01
Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro , in vivo , and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described.
Alsaggar, M; Mills, M; Liu, D
2017-01-01
The worldwide prevalence of obesity is increasing, raising health concerns regarding obesity-related complications. Chronic inflammation has been characterized as a major contributor to the development of obesity and obesity-associated metabolic disorders. The purpose of the current study is to assess whether the overexpression of interferon beta (IFNβ1), an immune-modulating cytokine, will attenuate high-fat diet-induced adipose inflammation and protect animals against obesity development. Using hydrodynamic gene transfer to elevate and sustain blood concentration of IFNβ1 in mice fed a high-fat diet, we showed that the overexpression of Ifnβ1 gene markedly suppressed immune cell infiltration into adipose tissue, and attenuated production of pro-inflammatory cytokines. Systemically, IFNβ1 blocked adipose tissue expansion and body weight gain, independent of food intake. Possible browning of white adipose tissue might also contribute to blockade of weight gain. More importantly, IFNβ1 improved insulin sensitivity and glucose homeostasis. These results suggest that targeting inflammation represents a practical strategy to block the development of obesity and its related pathologies. In addition, IFNβ1-based therapies have promising potential for clinical applications for the prevention and treatment of various inflammation-driven pathologies.
Tomfohr, Lianne M.; Edwards, Kate M.; Madsen, Joshua W.; Mills, Paul J.
2015-01-01
Poor sleep and low social support have each been associated with mortality and morbidity from chronic illness and a small body of research suggests that the two interact to influence systemic inflammation, whereby good social relationships may buffer the relationship between poor sleep and increased inflammation. The current study investigated interactions between sleep and social support in the prediction of inflammation in a clinical population (prehypertensive and hypertensive individuals) at high risk for the development of cardiovascular disease. Using a standardized subjective measure of sleep quality, we found that social support moderated the association between sleep and circulating levels of both IL-6 and CRP, such that poor sleep appeared to confer a risk of increased inflammation only in those participants who also reported low social support. In women, the same relationship was observed for TNF-α. These results extend previous findings into a clinical population and also demonstrate that sleep quality and social support interact in the prediction of two previously uninvestigated clinically relevant inflammatory markers (CRP and TNF-α). High levels of perceived social support may compensate for the negative health impact of poor sleep quality and vice versa. PMID:26402487
Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.
Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh
2017-10-01
Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.
Medeiros, N I; Gomes, J A S; Correa-Oliveira, R
2017-08-01
Cardiomyopathy is the most important clinical manifestation in the chronic phase of Chagas' disease because of its frequency, severity and impact on morbidity and mortality. The extracellular matrix degradation during cardiac remodeling in Trypanosoma cruzi infection is driven by matrix metalloproteinases (MMPs), primarily the MMP-2 and MMP-9 gelatinases. MMPs also regulate some molecules related to inflammation, such as growth factors, cytokines and chemokines. The involvement of MMP-2 and MMP-9 is not yet fully understood in Chagas' disease. It has been proposed that the gelatinases may have opposite effect on inflammation/regulation and cardiac remodeling. MMP-2 would participate in regulation, offering a protective role for cardiac damage in asymptomatic patients and would be a good marker for the initiation of changes in the heart. On the other hand, MMP-9 can be used as a marker for serious changes on the heart and would be associated with inflammation and fibrosis. Here, we consolidate all characteristics involving MMP-2 and MMP-9 in Chagas' disease based on current studies to clarify their participation on the inflammation/regulation and fibrosis, and the synergistic or antagonistic role between them. © 2017 John Wiley & Sons Ltd.
Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon
2013-12-01
Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.
Characterization of lung inflammation and its impact on macrophage function in aging
Canan, Cynthia H.; Gokhale, Nandan S.; Carruthers, Bridget; Lafuse, William P.; Schlesinger, Larry S.; Torrelles, Jordi B.; Turner, Joanne
2014-01-01
Systemic inflammation that occurs with increasing age (inflammaging) is thought to contribute to the increased susceptibility of the elderly to several disease states. The elderly are at significant risk for developing pulmonary disorders and infectious diseases, but the contribution of inflammation in the pulmonary environment has received little attention. In this study, we demonstrate that the lungs of old mice have elevated levels of proinflammatory cytokines and a resident population of highly activated pulmonary macrophages that are refractory to further activation by IFN-γ. The impact of this inflammatory state on macrophage function was determined in vitro in response to infection with M.tb. Macrophages from the lungs of old mice secreted more proinflammatory cytokines in response to M.tb infection than similar cells from young mice and also demonstrated enhanced M.tb uptake and P-L fusion. Supplementation of mouse chow with the NSAID ibuprofen led to a reversal of lung and macrophage inflammatory signatures. These data indicate that the pulmonary environment becomes inflammatory with increasing age and that this inflammatory environment can be reversed with ibuprofen. PMID:24935957
Ruiz-Núñez, Begoña; Pruimboom, Leo; Dijck-Brouwer, D A Janneke; Muskiet, Frits A J
2013-07-01
In this review, we focus on lifestyle changes, especially dietary habits, that are at the basis of chronic systemic low grade inflammation, insulin resistance and Western diseases. Our sensitivity to develop insulin resistance traces back to our rapid brain growth in the past 2.5 million years. An inflammatory reaction jeopardizes the high glucose needs of our brain, causing various adaptations, including insulin resistance, functional reallocation of energy-rich nutrients and changing serum lipoprotein composition. The latter aims at redistribution of lipids, modulation of the immune reaction, and active inhibition of reverse cholesterol transport for damage repair. With the advent of the agricultural and industrial revolutions, we have introduced numerous false inflammatory triggers in our lifestyle, driving us to a state of chronic systemic low grade inflammation that eventually leads to typically Western diseases via an evolutionary conserved interaction between our immune system and metabolism. The underlying triggers are an abnormal dietary composition and microbial flora, insufficient physical activity and sleep, chronic stress and environmental pollution. The disturbance of our inflammatory/anti-inflammatory balance is illustrated by dietary fatty acids and antioxidants. The current decrease in years without chronic disease is rather due to "nurture" than "nature," since less than 5% of the typically Western diseases are primary attributable to genetic factors. Resolution of the conflict between environment and our ancient genome might be the only effective manner for "healthy aging," and to achieve this we might have to return to the lifestyle of the Paleolithic era as translated to the 21st century culture. Copyright © 2013 Elsevier Inc. All rights reserved.
Aptel, Florent; Colin, Cyrille; Kaderli, Sema; Deloche, Catherine; Bron, Alain M; Stewart, Michael W; Chiquet, Christophe
2017-11-01
Prevention and management of postoperative ocular inflammation with corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) have been evaluated in several randomised controlled trials (RCTs). However, neither consensus regarding the efficacies of different regimens nor established guidelines are currently available. This has resulted in different practice patterns throughout the world. A systematic literature review found that for the management of postcataract inflammation nepafenac produced a positive outcome in three of three RCTs (3/3), as did ketorolac (1/1), bromfenac (7/7), loteprednol (3/3) and difluprednate (6/6), but not flurbiprofen (0/1). A single study found that betamethasone produced inconclusive results after retinal detachment (RD) surgery; ketorolac was effective (1/1) after vitrectomy, but triamcinolone was ineffective (0/1) after trabeculectomy. A two-round Delphi survey asked 28 international experts to rate both the inflammatory potential of different eye surgeries and their agreement with different treatment protocols. They rated trabeculectomy, RD surgery and combined phacovitrectomy as more inflammatory than cataract surgery. Vitrectomies for macular hole or epiretinal membrane were not deemed more inflammatory than cataract surgery. For trabeculectomy, they preferred to treat longer than for cataract surgery (NSAID + corticosteroid three times a day for 2 months vs 1 month). For vitrectomy alone, RD surgery and combined phacovitrectomy, the panel preferred the same treatment as for cataract surgery (NSAID + corticosteroid three times a day for 1 month). The discrepancy between preferred treatment and perception of the eye's inflammatory status by the experts for RD and combined vitreoretinal surgeries highlights the need for RCTs to establish treatment guidelines. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Terayama, R; Dubner, R; Ren, K
2002-05-01
Previous studies indicate that descending modulation of nociception is progressively increased following persistent inflammation. The present study was designed to further examine the role of supraspinal neurons in descending modulation following persistent inflammation. Constant levels of paw withdrawal (PW) and tail flick (TF) latencies to noxious heat stimuli were achieved in lightly anesthetized rats (pentobarbital sodium 3-10 mg/kg/h, i.v.). Electrical stimulation (ES, 0.1 ms, 100 Hz, 20-200 A) was delivered to the rostral ventromedial medulla (RVM), mainly the nucleus raphe magnus (NRM). ES produced intensity-dependent inhibition of PW and TF. Following a unilateral hindpaw inflammation produced by injection of complete Freund's adjuvant (CFA), ES-produced inhibition underwent time-dependent changes. There was an initial decrease at 3 h after inflammation and a subsequent increase after inflammation in the excitability of RVM neurons and the inhibition of nocifensive responses. These changes were most robust after stimulation of the inflamed paw although similar findings were seen on the non-inflamed paw and tail. The inflammation-induced dynamic changes in descending modulation appeared to be correlated with changes in the activation of the N-methyl--aspartate (NMDA) excitatory amino acid receptor. Microinjection of an NMDA receptor antagonist, AP5 (1 pmol), resulted in an increase in the current intensity required for inhibition of the PW and TF. The effect of AP5 was less at 3 h after inflammation and significantly greater at 11-24 h after inflammation. In a subsequent experiment, ES-produced inhibition of nocifensive responses after inflammation was examined following selective chemical lesions of the nuclei reticularis gigantocellularis (NGC). Compared to vehicle-injected animals, microinjection of a soma-selective excitotoxin, ibotenic acid, enhanced ES-produced inhibition at 3 h but not at 24 h after inflammation. We propose that these time course changes reflect dynamic alterations in concomitant descending facilitation and inhibition. At early time points, NMDA receptor and NGC activation enhance descending facilitation; as time progresses, the dose-response curve of NMDA shifts to the left and descending inhibition dominates and masks any descending facilitation.
Dooley, Larissa N.; Ganz, Patricia A.; Cole, Steve W.; Crespi, Catherine M.; Bower, Julienne E.
2016-01-01
Background Inflammation contributes to the development of depression in a subset of individuals, but risk factors that render certain individuals vulnerable to inflammation-associated depression are undetermined. Drawing from animal studies showing that reduced neuroplasticity mediates effects of inflammation on depression, we hypothesized that individuals genetically predisposed to lower levels of neuroplasticity would be more susceptible to inflammation-associated depression. The current study examined whether the Met allele of the BDNF Val66met polymorphism, which predisposes individuals to reduced levels of brain-derived neurotrophic factor (BDNF), a protein vital for neuroplasticity, moderates the association between inflammation and depressive symptoms. Methods Our sample was 112 women with early-stage breast cancer who had recently completed cancer treatment, which can activate inflammation. Participants provided blood for genotyping and assessment of circulating inflammatory markers, and completed a questionnaire assessing depressive symptoms, including somatic, affective, and cognitive dimensions. Results There was a significant interaction between C-reactive protein (CRP) and the BDNF Val66met polymorphism in predicting cognitive depressive symptoms (p=.004), such that higher CRP was related to more cognitive depressive symptoms among Met allele carriers, but not among Val/Val homozygotes. Post-hoc longitudinal analyses suggested that, for Met carriers, higher CRP at baseline predicted higher cognitive depressive symptoms across a one-year follow-up period (p<.001). Conclusion The BDNF Met allele may be a risk factor for inflammation-associated cognitive depressive symptoms among breast cancer survivors. Women with breast cancer who carry this genotype may benefit from early identification and treatment. Limitation BDNF genotype is an indirect measure of BDNF protein levels. PMID:26967918
Dolin, Hallie H.; Papadimos, Thomas J.; Stepkowski, Stanislaw; Chen, Xiaohuan; Pan, Zhixing K.
2018-01-01
ABSTRACT Sepsis, which kills over 200,000 patients and costs over $20 billion in the United States alone, presents a constant but preventable challenge in the healthcare system. Among the more challenging problems that it presents is misdiagnosis due to conflation with other inflammatory processes, as its mechanisms are identical to those of other inflammatory states. Unfortunately, current biomarker tests can only assess the severity and mortality risk of each case, whereas no single test exists that can predict sepsis prior to the onset of symptoms for the purpose of pre-emptive care and monitoring. We propose that a single test utilizing three, rather than two, biomarkers that appear most quickly in the blood and are the most specific for sepsis rather than trauma, may improve diagnostic accuracy and lead to lessened patient morbidity and mortality. Such a test would vastly improve patient outcomes and quality of life, prevent complications for sepsis survivors, and prevent hospital readmissions, saving the American healthcare system money. This review summarizes the current use of sepsis biomarkers to prognosticate morbidity and mortality, and rejects the current single-biomarker and even combination biomarker tests as non-specific and inaccurate for current patient needs/pro-inflammatory cytokines, general markers of inflammation, and proteins specific to myeloid cells (and therefore to infection) are discussed. Ultimately, the review suggests a three-biomarker test of procalcitonin (PCT), interleukin-6 (IL-6), and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) to diagnose sepsis before the onset of symptoms. PMID:29016484
Grimm, Elizabeth A.; Sikora, Andrew G.; Ekmekcioglu, Suhendan
2013-01-01
It is widely accepted that many cancers express features of inflammation, driven by both microenvironmental cells and factors, and the intrinsic production of inflammation-associated mediators from malignant cells themselves. Inflammation results in intracellular oxidative stress, with the ultimate biochemical oxidants composed of reactive nitrogens and oxygens. Although the role of inflammation in carcinogensis is well accepted, we now present data that inflammatory processes are also active in the maintenance phase of many aggressive forms of cancer. The oxidative stress of inflammation is proposed to drive a continuous process of DNA adducts and crosslinks, as well as posttranslational modifications to lipids and proteins that we argue support growth and survival. In this Perspective we introduce data on the emerging science of inflammation-driven posttranslational modifications on proteins responsible for driving growth, angiogenesis, immunosuppression, and inhibition of apoptosis. Examples include data from human melanoma, breast, head and neck, lung, and colon cancers. Fortunately, numerous anti-oxidant agents are clinically available, and we further propose that the pharmacological attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth inhibitory state. Our mouse model data using an arginine antagonist that prevents enzymatic production of nitric oxide, directly supports this view. We contend that selected antioxidants be considered as part of the cancer treatment approach, as they are likely to provide a novel and mechanistically justified addition for therapeutic benefit. PMID:23868870
Is inflammation the cause of pre-eclampsia?
Ramma, Wenda; Ahmed, Asif
2011-01-01
It has been proposed that either excessive inflammation or an imbalance in angiogenic factors cause pre-eclampsia. In the present review, the arguments for and against the role of inflammation and/or angiogenic imbalance as the cause of pre-eclampsia are discussed on the basis of the Bradford–Hill criteria for disease causation. Although both angiogenic imbalance and systemic inflammation are implicated in pre-eclampsia, the absence of temporality of inflammatory markers with pre-eclampsia challenges the concept that excessive inflammation is the cause of pre-eclampsia. In contrast, the elevation of anti-angiogenic factors that precede the clinical signs of pre-eclampsia fulfils the criterion of temporality. The second most important criterion is the dose–response relationship. Although such a relationship has not been proven between pro-inflammatory cytokines and pre-eclampsia, high levels of anti-angiogenic factors have been shown to correlate with increased incidence and disease severity, hence satisfying this condition. Finally, as the removal of circulating sFlt-1 (soluble Fms-like tyrosine kinase receptor-1) from pre-eclamptic patients significantly improves the clinical outcome, it fulfils the Hill's experiment principle, which states that removal of the cause by an appropriate experimental regimen should ameliorate the condition. In contrast, treatment with high doses of corticosteroid fails to improve maternal outcome in pre-eclampsia, despite suppressing inflammation. Inflammation may enhance the pathology induced by the imbalance in the angiogenic factors, but does not by itself cause pre-eclampsia. Development of therapies based on the angiogenic and cytoprotective mechanisms seems more promising. PMID:22103497
Harford, Karen A; Reynolds, Clare M; McGillicuddy, Fiona C; Roche, Helen M
2011-11-01
High-fat diet-induced obesity is associated with a chronic state of low-grade inflammation, which pre-disposes to insulin resistance (IR), which can subsequently lead to type 2 diabetes mellitus. Macrophages represent a heterogeneous population of cells that are instrumental in initiating the innate immune response. Recent studies have shown that macrophages are key mediators of obesity-induced IR, with a progressive infiltration of macrophages into obese adipose tissue. These adipose tissue macrophages are referred to as classically activated (M1) macrophages. They release cytokines such as IL-1β, IL-6 and TNFα creating a pro-inflammatory environment that blocks adipocyte insulin action, contributing to the development of IR and type 2 diabetes mellitus. In lean individuals macrophages are in an alternatively activated (M2) state. M2 macrophages are involved in wound healing and immunoregulation. Wound-healing macrophages play a major role in tissue repair and homoeostasis, while immunoregulatory macrophages produce IL-10, an anti-inflammatory cytokine, which may protect against inflammation. The functional role of T-cell accumulation has recently been characterised in adipose tissue. Cytotoxic T-cells are effector T-cells and have been implicated in macrophage differentiation, activation and migration. Infiltration of cytotoxic T-cells into obese adipose tissue is thought to precede macrophage accumulation. T-cell-derived cytokines such as interferon γ promote the recruitment and activation of M1 macrophages augmenting adipose tissue inflammation and IR. Manipulating adipose tissue macrophages/T-cell activity and accumulation in vivo through dietary fat modification may attenuate adipose tissue inflammation, representing a therapeutic target for ameliorating obesity-induced IR.
Lecomte, Manon; Couëdelo, Leslie; Meugnier, Emmanuelle; Loizon, Emmanuelle; Plaisancié, Pascale; Durand, Annie; Géloën, Alain; Joffre, Florent; Vaysse, Carole; Michalski, Marie-Caroline; Laugerette, Fabienne
2017-05-01
Obesity and type 2 diabetes are nutritional pathologies, characterized by a subclinical inflammatory state. Endotoxins are now well recognized as an important factor implicated in the onset and maintain of this inflammatory state during fat digestion in high-fat diet. As a preventive strategy, lipid formulation could be optimized to limit these phenomena, notably regarding fatty acid profile and PL emulsifier content. Little is known about soybean polar lipid (SPL) consumption associated to oils rich in saturated FA vs. anti-inflammatory omega-3 FA such as α-linolenic acid on inflammation and metabolic endotoxemia. We then investigated in mice the effect of different synthetic diets enriched with two different oils, palm oil or flaxseed oil and containing or devoid of SPL on adipose tissue inflammation and endotoxin receptors. In both groups containing SPL, adipose tissue (WAT) increased compared with groups devoid of SPL and an induction of MCP-1 and LBP was observed in WAT. However, only the high-fat diet in which flaxseed oil was associated with SPL resulted in both higher WAT inflammation and higher circulating sCD14 in plasma. In conclusion, we have demonstrated that LPS transporters LBP and sCD14 and adipose tissue inflammation can be modulated by SPL in high fat diets differing in oil composition. Notably high-flaxseed oil diet exerts a beneficial metabolic impact, however blunted by PL addition. Our study suggests that nutritional strategies can be envisaged by optimizing dietary lipid sources in manufactured products, including fats/oils and polar lipid emulsifiers, in order to limit the inflammatory impact of palatable foods. Copyright © 2017 Elsevier Inc. All rights reserved.
Computational Modeling of Inflammation and Wound Healing
Ziraldo, Cordelia; Mi, Qi; An, Gary; Vodovotz, Yoram
2013-01-01
Objective Inflammation is both central to proper wound healing and a key driver of chronic tissue injury via a positive-feedback loop incited by incidental cell damage. We seek to derive actionable insights into the role of inflammation in wound healing in order to improve outcomes for individual patients. Approach To date, dynamic computational models have been used to study the time evolution of inflammation in wound healing. Emerging clinical data on histo-pathological and macroscopic images of evolving wounds, as well as noninvasive measures of blood flow, suggested the need for tissue-realistic, agent-based, and hybrid mechanistic computational simulations of inflammation and wound healing. Innovation We developed a computational modeling system, Simple Platform for Agent-based Representation of Knowledge, to facilitate the construction of tissue-realistic models. Results A hybrid equation–agent-based model (ABM) of pressure ulcer formation in both spinal cord-injured and -uninjured patients was used to identify control points that reduce stress caused by tissue ischemia/reperfusion. An ABM of arterial restenosis revealed new dynamics of cell migration during neointimal hyperplasia that match histological features, but contradict the currently prevailing mechanistic hypothesis. ABMs of vocal fold inflammation were used to predict inflammatory trajectories in individuals, possibly allowing for personalized treatment. Conclusions The intertwined inflammatory and wound healing responses can be modeled computationally to make predictions in individuals, simulate therapies, and gain mechanistic insights. PMID:24527362
Aging and inflammation: etiological culprits of cancer.
Ahmad, Aamir; Banerjee, Sanjeev; Wang, Zhiwei; Kong, Dejuan; Majumdar, Adhip P N; Sarkar, Fazlul H
2009-12-01
The biochemical phenomenon of aging, as universal as it is, still remains poorly understood. A number of diseases are associated with aging either as a cause or consequence of the aging process. The incidence of human cancers increases exponentially with age and therefore cancer stands out as a disease that is intricately connected to the process of aging. Emerging evidence clearly suggests that there is a symbiotic relationship between aging, inflammation and chronic diseases such as cancer; however, it is not clear whether aging leads to the induction of inflammatory processes thereby resulting in the development and maintenance of chronic diseases or whether inflammation is the causative factor for inducing both aging and chronic diseases such as cancer. Moreover, the development of chronic diseases especially cancer could also lead to the induction of inflammatory processes and may cause premature aging, suggesting that longitudinal research strategies must be employed for dissecting the interrelationships between aging, inflammation and cancer. Here, we have described our current understanding on the importance of inflammation, activation of NF-kappaB and various cytokines and chemokines in the processes of aging and in the development of chronic diseases especially cancer. We have also reviewed the prevailing theories of aging and provided succinct evidence in support of novel theories such as those involving cancer stem cells, the molecular understanding of which would likely hold a great promise towards unraveling the complex relationships between aging, inflammation and cancer.
Jha, Manish K.; Trivedi, Madhukar H.
2018-01-01
Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments. PMID:29329256
Guillot, Adrien; Gasmi, Imène; Brouillet, Arthur; Ait-Ahmed, Yeni; Calderaro, Julien; Ruiz, Isaac; Gao, Bin; Lotersztajn, Sophie; Pawlotsky, Jean-Michel; Lafdil, Fouad
2018-03-01
Liver progenitor cells (LPCs)/ductular reactions (DRs) are associated with inflammation and implicated in the pathogenesis of chronic liver diseases. However, how inflammation regulates LPCs/DRs remains largely unknown. Identification of inflammatory processes that involve LPC activation and expansion represent a key step in understanding the pathogenesis of liver diseases. In the current study, we found that diverse types of chronic liver diseases are associated with elevation of infiltrated interleukin (IL)-17-positive (+) cells and cytokeratin 19 (CK19) + LPCs, and both cell types colocalized and their numbers positively correlated with each other. The role of IL-17 in the induction of LPCs was examined in a mouse model fed a choline-deficient and ethionine-supplemented (CDE) diet. Feeding of wild-type mice with the CDE diet markedly elevated CK19 + Ki67 + proliferating LPCs and hepatic inflammation. Disruption of the IL-17 gene or IL-27 receptor, alpha subunit (WSX-1) gene abolished CDE diet-induced LPC expansion and inflammation. In vitro treatment with IL-17 promoted proliferation of bipotential murine oval liver cells (a liver progenitor cell line) and markedly up-regulated IL-27 expression in macrophages. Treatment with IL-27 favored the differentiation of bipotential murine oval liver cells and freshly isolated LPCs into hepatocytes. Conclusion : The current data provide evidence for a collaborative role between IL-17 and IL-27 in promoting LPC expansion and differentiation, respectively, thereby contributing to liver regeneration. ( Hepatology Communications 2018;2:329-343).
Hansen, Peter Riis
2018-01-01
Inflammation plays a significant role in atherosclerosis and cardiovascular disease (CVD). Patients with chronic inflammatory diseases are at increased risk of CVD, but it is debated whether this association is causal or dependent on shared risk factors, other exposures, genes, and/or inflammatory pathways. The current review summarizes epidemiological, clinical, and experimental data supporting the role of shared inflammatory mechanisms between atherosclerotic CVD and rheumatoid arthritis, psoriasis, inflammatory bowel disease, and periodontitis, respectively, and provides insights to future prospects in this area of research. Awareness of the role of inflammation in CVD in patients with chronic inflammatory diseases and the potential for anti-inflammatory therapy, e.g., with tumor necrosis factor-α inhibitors, to also reduce atherosclerotic CVD has evolved into guideline- based recommendations. These include regular CVD risk assessment, aggressive treatment of traditional CVD risk factors, and recognition of reduced CVD as an added benefit of strict inflammatory disease control. At present, chronic inflammatory diseases would appear to qualify as partners in crime and not merely innocent bystanders to CVD. However, definite incremental contributions of inflammation versus effects of the complex interplay with other CVD risk factors may never be fully elucidated and for the foreseeable future, inflammation is posed to maintain its current position as both a marker and a maker of CVD, with clinical utility both for identification of patient at risk of CVD and as target for therapy to reduce CVD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Skin cancer risk in autoimmune connective tissue diseases.
Kostaki, D; Antonini, A; Peris, K; Fargnoli, M C
2014-10-01
Cutaneous malignancies have been significantly associated with autoimmune connective tissue diseases (ACTDs). This review focuses on the current state of knowledge on skin cancer risk in the most prevalent ACTDs in dermatology including lupus erythematosus, scleroderma, dermatomyositis and Sjögren syndrome. Potential pathogenetic mechanisms for the association between ACTDs and malignancy involve disease-related impairment of immune system, sustained cutaneous inflammation, drug-associated immune suppression and increased susceptibility to acquired viral infections. An additional causal role might be played by environmental factors such as UV exposure and smoking. The occurrence of skin cancer can have a profound impact on the already compromised quality of life of ACTD patients. Therefore, effective screening and monitoring strategies are essential for ACTD patients as early detection and prompt therapeutic intervention can reduce morbidity and mortality in these patients.
Role of anti-inflammatory adipokines in obesity-related diseases.
Ohashi, Koji; Shibata, Rei; Murohara, Toyoaki; Ouchi, Noriyuki
2014-07-01
Obesity results in many health complications. Accumulating evidence indicates that the obese state is characterized by chronic low-grade inflammation, thereby leading to the initiation and progression of obesity-related disorders such as type 2 diabetes, hypertension, cardiovascular disease, and atherosclerosis. Fat tissue releases numerous bioactive molecules, called adipokines, which affect whole-body homeostasis. Most adipokines are proinflammatory, whereas a small number of anti-inflammatory adipokines including adiponectin exert beneficial actions on obese complications. The dysregulated production of adipokines seen in obesity is linked to the pathogenesis of various disease processes. In this review we focus on the role of the anti-inflammatory adipokines that are of current interest in the setting of obesity-linked metabolic and cardiovascular diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Inflammation and oxidative stress in obstructive sleep apnea syndrome.
Selmi, Carlo; Montano, Nicola; Furlan, Raffaello; Keen, Carl L; Gershwin, M Eric
2007-12-01
Similar to obesity, with which it is closely associated, obstructive sleep apnea syndrome (OSAS) is rapidly becoming a worldwide epidemic. Current knowledge of its pathogenesis has been significantly enriched by numerous experimental studies that have demonstrated an important role of oxidative stress and inflammation. Furthermore, new and exciting data strongly connect these two components in the perpetuation of the condition via the overexpression of nuclear factor kappaB. Experimental data support the hypothesis that nutrition might represent a promising future approach with antioxidants currently being good candidates for the modulation of cardiovascular sequelae, although weight reduction and controlled positive airway pressure remain the only established treatments for OSAS. We discuss herein the recent literature that illustrates these new paradigms and speculate on possible implications and future scenarios.
Endothelial cells: From innocent bystanders to active participants in immune responses.
Al-Soudi, A; Kaaij, M H; Tas, S W
2017-09-01
The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Langer, Arielle L; Ginzburg, Yelena Z
2017-06-01
Anemia of chronic inflammation (ACI) is a frequently diagnosed anemia and portends an independently increased morbidity and poor outcome associated with multiple underlying diseases. The pathophysiology of ACI is multifactorial, resulting from the effects of inflammatory cytokines which both directly and indirectly suppress erythropoiesis. Recent advances in molecular understanding of iron metabolism provide strong evidence that immune mediators, such as IL-6, lead to hepcidin-induced hypoferremia, iron sequestration, and decreased iron availability for erythropoiesis. The role of hepcidin-ferroportin axis in the pathophysiology of ACI is stimulating the development of new diagnostics and targeted therapies. In this review, we present an overview of and rationale for inflammation-, iron-, and erythropoiesis-related strategies currently in development. © 2017 International Society for Hemodialysis.
Topical flurbiprofen or prednisolone. Effect on corneal wound healing in rabbits.
Miller, D; Gruenberg, P; Miller, R; Bergamini, M V
1981-04-01
Flurbiprofen is a nonsteroidal anti-inflammatory (NSAI) agent currently undergoing clinical investigation. Anti-inflammatory steroids have long been known to delay the healing of corneal stromal wounds. This was designed to compare the effects of equipotent anti-inflammatory doses of flurbiprofen and of prednisolone acetate on the inflammation and the healing (as measured by the wound bursting pressure) or 4-mm through-and-through incisions treated four times a day for ten postoperative days. The results suggest that flurbiprofen and prednisolone are not different in their effect on both postoperative inflammation and postoperative wound healing. Since NSAI agents and steroids inhibit prostaglandin formation at different enzymatic steps, it is possible that prostaglandins not only are responsible for postoperative inflammation but also are required for postoperative wound healing.
Pavlov, Valentin A.; Tracey, Kevin J.
2015-01-01
Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000
The role of measuring airway hyperresponsiveness and inflammatory biomarkers in asthma
Currie, Graeme P; Fardon, Tom C; Lee, Daniel KC
2005-01-01
Asthma is characterized by inflammation and airway hyperresponsiveness, which results in episodic airflow obstruction. It is diagnosed once a compatible clinical history plus objective evidence of diurnal variability in peak expiratory flow or significant reversibility to inhaled bronchodilator is documented. In accordance with current guidelines, measures of airway calibre and symptoms allow patients and clinicians to assess the degree of asthma control and titrate pharmacotherapy. However, these parameters fail to reflect the extent of underlying endobronchial inflammation and airway hyperresponsiveness, which in turn suggests that additional measures of asthma control may be of benefit. This evidence-based review highlights ways by which inflammation and airway hyperresponsiveness can be assessed and how they may provide additional useful information in the diagnosis and management of asthmatic patients. PMID:18360548
Unhealthy smokers: scopes for prophylactic intervention and clinical treatment.
Prasad, Shikha; Kaisar, Mohammad Abul; Cucullo, Luca
2017-10-04
Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently accountable for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current proportion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from a smoking-related illness. Even though there has been a marginal smoking decline of around 5% in recent years (2005 vs 2015), smokers still account for 15% of the US adult population. What is also concerning is that 41,000 out of 480,000 deaths results from secondhand smoke (SHS) exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss prophylactic interventions and associated benefits and provide a rationale for the scope of clinical treatment. Considering these premises, it is evident that much detailed translational and clinical studies are needed. Factors such as the length of smoking cessation for ex-smokers, the level of smoke exposure in case of SHS, pre-established health conditions, genetics (and epigenetics modification caused by chronic smoking) are few of the criteria that need to be evaluated to begin assessing the prophylactic and/or therapeutic impact of treatments aimed at chronic and former smokers (especially early stage ex-smokers) including those frequently subjected to second hand tobacco smoke exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss about prophylactic interventions and associated benefits and provide a rationale and scope for clinical treatment.
Inflammation and Arterial Stiffness in Chronic Kidney Disease: Findings From the CRIC Study.
Peyster, Eliot; Chen, Jing; Feldman, Harold I; Go, Alan S; Gupta, Jayanta; Mitra, Nandita; Pan, Qiang; Porter, Anna; Rahman, Mahboob; Raj, Dominic; Reilly, Muredach; Wing, Maria R; Yang, Wei; Townsend, Raymond R
2017-04-01
Chronic kidney disease (CKD) and arterial stiffness are associated with increased cardiovascular morbidity and mortality. Inflammation is proposed to have a role in the development of arterial stiffness, and CKD is recognized as a proinflammatory state. Arterial stiffness is increased in CKD, and cross-sectional data has suggested a link between increased inflammatory markers in CKD and higher measures of arterial stiffness. However, no large scale investigations have examined the impact of inflammation on the progression of arterial stiffness in CKD. We performed baseline assessments of 5 inflammatory markers in 3,939 participants from the chronic renal insufficiency cohort (CRIC), along with serial measurements of arterial stiffness at 0, 2, and 4 years of follow-up. A total of 2,933 participants completed each of the follow-up stiffness measures. In cross-sectional analysis at enrollment, significant associations with at least 2 measures of stiffness were observed for fibrinogen, interleukin-6, high-sensitivity C-reactive protein, proteinuria, and composite inflammation score after adjustment for confounders. In longitudinal analyses, there were few meaningful correlations between baseline levels of inflammation and changes in metrics of arterial stiffness over time. In a large cohort of CKD participants, we observed multiple significant correlations between initial markers of inflammation and metrics of arterial stiffness, but baseline inflammation did not predict changes in arterial stiffness over time. While well-described biologic mechanisms provide the basis for our understanding of the cross-sectional results, continued efforts to design longitudinal studies are necessary to fully elucidate the relationship between chronic inflammation and arterial stiffening. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Ahn, Sun-Young; Sohn, Sung-Hwa; Lee, Sang-Yeon; Park, Hye-Lim; Park, Yong-Wook; Kim, Hun; Nam, Jae-Hwan
2015-11-01
Obese individuals show increased susceptibility to infection, low vaccine efficacy, and worse pathophysiology. However, it is unclear how obesity affects these events. The aim of this study was to investigate the effect of obesity-triggered chronic inflammation on immune cells after influenza virus infection. Control and lipopolysaccharide mice, in which an osmotic pump continually released Tween saline or lipopolysaccharide, were prepared and 3 weeks later were infected with pandemic H1N1 2009 influenza A virus. In lipopolysaccharide mice, we found a reduction in macrophage activation markers in the steady state, and reduced production of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, and interleukin-6, in restimulated peritoneal macrophages. Interestingly, lipopolysaccharide-triggered chronic inflammation exacerbated the severity of pathological symptoms in the lungs after challenge with influenza virus. Taken together, the increased severity of virus-induced symptoms in obese individuals with chronic inflammation may be, at least partially, caused by macrophage dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.
Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases
Schenkein, Harvey A.; Loos, Bruno G.
2015-01-01
Aims In this paper, inflammatory mechanisms that link periodontal diseases to cardiovascular diseases (CVD) are reviewed. Materials and Methods and Results This paper is a literature review. Studies in the literature implicate a number of possible mechanisms that could be responsible for increased inflammatory responses in atheromatous lesions due to periodontal infections. These include increased systemic levels of inflammatory mediators stimulated by bacteria and their products at sites distant from the oral cavity, elevated thrombotic and hemostatic markers that promote a prothrombotic state and inflammation, cross-reactive systemic antibodies that promote inflammation and interact with the atheroma, promotion of dyslipidemia with consequent increases in proinflammatory lipid classes and subclasses, and common genetic susceptibility factors present in both disease leading to increased inflammatory responses. Conclusions Such mechanisms may be thought to act in concert to increase systemic inflammation in periodontal disease and to promote or exacerbate atherogenesis. However, proof that the increase in systemic inflammation attributable to periodontitis impacts inflammatory responses during atheroma development, thrombotic events, or myocardial infarction or stroke is lacking. PMID:23627334
Commensal bacterial–derived signals regulate basophil hematopoiesis and allergic inflammation
Hill, David A.; Siracusa, Mark C.; Abt, Michael C.; Kim, Brian S.; Kobuley, Dmytro; Kubo, Masato; Kambayashi, Taku; LaRosa, David F.; Renner, Ellen D.; Orange, Jordan S.; Bushman, Frederic D.; Artis, David
2012-01-01
Commensal bacteria that colonize mammalian barrier surfaces are reported to influence T helper type 2 (TH2) cytokine–dependent inflammation and susceptibility to allergic disease, although the mechanisms that underlie these observations are poorly understood. In this report, we identify that deliberate alteration of commensal bacterial populations via oral antibiotic treatment resulted in elevated serum immunoglobulin E (IgE) levels, increased steady–state circulating basophil populations, and exaggerated basophil–mediated TH2 cell responses and allergic inflammation. Elevated serum IgE levels correlated with increased circulating basophil populations in mice and subjects with hyperimmunoglobulinemia E syndrome. Furthermore, B cell–intrinsic expression of MyD88 was required to limit serum IgE levels and circulating basophil populations in mice. Commensal–derived signals were found to influence basophil development by limiting proliferation of bone marrow–resident precursor populations. Collectively, these results identify a previously unrecognized pathway through which commensal–derived signals influence basophil hematopoiesis and susceptibility to TH2 cytokine–dependent inflammation and allergic disease. PMID:22447074
Aounallah, Mouna; Dagenais-Lussier, Xavier; El-Far, Mohamed; Mehraj, Vikram; Jenabian, Mohammad-Ali; Routy, Jean-Pierre; van Grevenynghe, Julien
2016-04-01
HIV-1 infection leads to a depletion of CD4 T-cells associated with a persistent immune inflammation and changes in cellular metabolism. Most effort of managing HIV infection with combination of antiretroviral therapies (ART) has been focused on CD4 T-cell recovery, while control of persistent immune inflammation and metabolism were relatively underappreciated in the past. Recent discoveries on the interplay between innate immunity, inflammation (especially the inflammasome) and metabolic changes in the context of cancer and autoimmunity provide an emerging field for chronic viral infections including HIV-1. In a previous review, we described the deregulated metabolism contributing to immune dysfunctions such as alteration of memory T-cell responses, mucosal protection, and dendritic cell-related antigen presentation. Here, we summarize the latest knowledge on the detrimental influence of long-lasting inflammation and inflammasome activation induced by HIV-1, gut dysbiosis, and bacterial translocation, on metabolism during the course of viral infection. We also report on the inability of ART to fully counteract inflammation, resulting in partial metabolic improvement and leading to an insufficient decrease in the risk of non-AIDS events. Further advances in our understanding of the relationship between inflammation, altered metabolism, and long-term ART is warranted. Additionally, there is a critical need for developing new strategies to regulate the pro-inflammatory signals to enhance cellular metabolism and immune functions in order to improve the quality of life of individuals living with HIV-1. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma
Hong, Gyong Hwa; Kwon, Hyouk-Soo; Lee, Kyoung Young; Ha, Eun Hee; Moon, Keun-Ai; Kim, Seong Who; Oh, Wonil; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook
2017-01-01
Although chronic eosinophilic inflammation is a common feature in patients with asthma, some patients have neutrophil-dominant inflammation, which is known to be associated with severe asthma.Human mesenchymal stem cells (hMSCs) have shown promise in treating various refractory immunological diseases. Thus, hMSCs may represent an alternative therapeutic option for asthma patients with neutrophil-dominant inflammation, in whom current treatments are ineffective. BALB/c mice exposed to ovalbumin and polyinosinic:polycytidylic acid (Poly I:C) to induce neutrophilic airway inflammation were systemically treated with hMSCs to examine whether the hMSCs can modulate neutrophilic airway inflammation. In addition, cytokine production was evaluated in co-cultures of hMSCs with either anti-CD3/CD28-stimulated peripheral blood mononuclear cells (PBMCs) obtained from asthmatic patients or cells of the human bronchial epithelial cell line BEAS-2B to assess the response to hMSC treatment. The total number of immune cells in bronchoalveolar lavage fluid (BALF) showed a dramatic decrease in hMSC-treated asthmatic mice, and, in particular, neutrophilic infiltration was significantly attenuated. This phenomenon was accompanied by reduced CXCL15 production in the BALF. BEAS-2B cells co-cultured with hMSCs showed reduced secretion of IL-8. Moreover, decreased secretion of IL-4, IL-13 and IFN-γ was observed when human PBMCs were cultured with hMSCs, whereas IL-10 production was greatly enhanced. Our data imply that hMSCs may have a role in reducing neutrophilic airway inflammation by downregulating neutrophil chemokine production and modulating T-cell responses. PMID:28127050
Causes of Deafness: Retrospection and Omens.
ERIC Educational Resources Information Center
Champie, Joan
1996-01-01
This study reviewed records of several American schools for the deaf in the 19th century concerning the stated causes of deafness given by parents. The high rate of adventitious deafness is noted. Stated causes are categorized into: fevers, inflammations, medicines/poisons, trauma, heat/cold, ear problems, nervous system problems, head/neck…
... liver transplants in children in the United States. Inflammation, which can cause scarring. Over time, this can lead to liver failure. NIH: National Institute of Diabetes and Digestive and Kidney Diseases
Contact lens wear is intrinsically inflammatory.
Efron, Nathan
2017-01-01
Eye-care practitioners typically associate ocular inflammation during contact lens wear with serious complications such as microbial keratitis; however, more subtle mechanisms may be at play. This paper tests the notion that contact lens wear is intrinsically inflammatory by exploring whether uncomplicated contact lens wear meets the classical, clinical definition of inflammation - rubor (redness), calor (heat), tumor (swelling), dolor (pain) and functio laesa (loss of function) - as well as the contemporary, sub-clinical definition of inflammation (cellular and biochemical reactions). It is demonstrated that all of these clinical and sub-clinical criteria are met with hydrogel lens wear and most are met with silicone hydrogel lens wear, indicating that uncomplicated contact lens wear is intrinsically inflammatory. Consideration of both traditional and contemporary thinking about the role of inflammation in the human body leads to the perhaps surprising conclusion that the chronic, low grade, sub-clinical inflammatory status of the anterior eye during contact lens wear, which may be termed 'para-inflammation', is a positive, protective phenomenon, whereby up-regulation of the immune system, in a non-damaging way, maintains the eye in a state of 'heightened alert', ready to ward off any extrinsic noxious challenge. Characterisation of this inflammatory status may lead to the development of lens engineering or pharmacological strategies to modulate contact lens-induced inflammation, so as to render lens wear more safe and comfortable. © 2016 Optometry Australia.
Yang, Yang Claire; Schorpp, Kristen; Harris, Kathleen Mullan
2014-01-01
Social relationships have long been held to have powerful effects on health and survival, but it remains unclear whether such associations differ by function and domain of relationships over time and what biophysiological mechanisms underlie these links. This study addressed these gaps by examining the longitudinal associations of persistent relationship quality across a ten year span with a major indicator of immune function. Specifically, we examined how perceived social support and social strain from relationships with family, friends, and spouse at a prior point in time are associated with subsequent risks of inflammation, as assessed by overall inflammation burden comprised of five markers (C-reactive protein, interleukin-6, fibrinogen, E-selectin, and intracellular adhesion molecule-1) in a national longitudinal study of 647 adults from the Midlife Development in the United States (1995–2009). Results from multivariate regression analysis show that (1) support from family, friends, and spouse modestly protected against risks of inflammation; (2) family, friend, and total social strain substantially increased risks of inflammation; and (3) the negative associations of social strain were stronger than the positive associations of social support with inflammation. The findings highlight the importance of enriched conceptualizations, measures, and longitudinal analyses of both social and biological stress processes to elucidate the complex pathways linking social relationships to health and illness. PMID:24607674
Code of Federal Regulations, 2012 CFR
2012-04-01
... not use in gilts having a previous or current history of uterine inflammation (i.e., acute, subacute or chronic endometritis). Gilts must not be slaughtered for human consumption for 21 days after the...
Code of Federal Regulations, 2011 CFR
2011-04-01
... not use in gilts having a previous or current history of uterine inflammation (i.e., acute, subacute or chronic endometritis). Gilts must not be slaughtered for human consumption for 21 days after the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... not use in gilts having a previous or current history of uterine inflammation (i.e., acute, subacute or chronic endometritis). Gilts must not be slaughtered for human consumption for 21 days after the...
The gut microbiota, obesity and insulin resistance.
Shen, Jian; Obin, Martin S; Zhao, Liping
2013-02-01
The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate fundamental discoveries in energy metabolism, molecular endocrinology and immunobiology and may lead to new strategies for prevention of obesity and its complications. Copyright © 2012 Elsevier Ltd. All rights reserved.
PRENATAL ALCOHOL EXPOSURE ALTERS STEADY-STATE AND ACTIVATED GENE EXPRESSION IN THE ADULT RAT BRAIN
Stepien, Katarzyna A.; Lussier, Alexandre A.; Neumann, Sarah M.; Pavlidis, Paul; Kobor, Michael S.; Weinberg, Joanne
2016-01-01
Background Prenatal alcohol exposure (PAE) is associated with alterations in numerous physiological systems, including the stress and immune systems . We have previously shown that PAE increases the course and severity of arthritis in an adjuvant-induced arthritis (AA) model. While the molecular mechanisms underlying these effects are not fully known, changes in neural gene expression are emerging as important factors in the etiology of PAE effects. As the prefrontal cortex (PFC) and hippocampus (HPC) play key roles in neuroimmune function, PAE-induced alterations to their transcriptome may underlie abnormal steady-state functions and responses to immune challenge. The current study examined brains from adult PAE and control females from our recent AA study to determine whether PAE causes long-term alterations in gene expression and whether these mediate the altered severity and course of arthritis in PAE females Methods Adult females from PAE, pair-fed [PF], and ad libitum-fed control [C]) groups were injected with either saline or complete Freund’s adjuvant. Animals were terminated at the peak of inflammation or during resolution (days 16 and 39 post-injection, respectively); cohorts of saline-injected PAE, PF and C females were terminated in parallel. Gene expression was analyzed in the PFC and HPC using whole genome mRNA expression microarrays. Results Significant changes in gene expression in both the PFC and HPC were found in PAE compared to controls in response to ethanol exposure alone (saline-injected females), including genes involved in neurodevelopment, apoptosis, and energy metabolism. Moreover, in response to inflammation (adjuvant-injected females), PAE animals showed unique expression patterns, while failing to exhibit the activation of genes and regulators involved in the immune response observed in control and pair-fed animals. Conclusions These results support the hypothesis that PAE affects neuroimmune function at the level of gene expression, demonstrating long-term effects of PAE on the CNS response under steady-state conditions and following an inflammatory insult. PMID:25684047
Kent, D
2015-11-01
This review summarises our current understanding of the molecular basis of subretinal neovascularisation (SRNV) in age-related macular degeneration (AMD). The term neovascular AMD (NVAMD) is derived from the dominant early clinical features of haemorrhage, fluid, and lipid in the subretinal space (SRS) and the historical role of fluorescein angiography in detecting the presence of NV tissue. However, at the cellular level, SRNV resembles an aberrant but stereotypical tissue repair response that incorporates both an early inflammatory phase and a late fibrotic phase in addition to the neovascular (NV) component that dominates the early clinical presentation. This review will seek not only to highlight the important molecules involved in each of these components but to demonstrate that the development of SRNV has its origins in the earliest events in non-NV AMD pathogenesis. Current evidence suggests that this early-stage pathogenesis is characterised by complement-mediated immune dysregulation, leading to a state of chronic inflammation in the retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. These initial events can be seamlessly and inextricably linked to late-stage development of SRNV in AMD by the process of dynamic reciprocity (DyR), the ongoing bidirectional communication between cells, and their surrounding matrix. Moreover, this correlation between disease onset and eventual outcome is reflected in the temporal and spatial correlation between chronic inflammation, NV, and fibrosis within the reparative microenvironment of the SRS. In summary, the downstream consequences of the earliest dysfunctional molecular events in AMD can result in the late-stage entity we recognize clinically as SRNV and is characterized by a spectrum of predictable, related, and stereotypical processes referred to as DyR.
Demidowich, Andrew P.; Davis, Angela I.; Dedhia, Nicket; Yanovski, Jack A.
2016-01-01
Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possibly because targeted interventions were too far downstream of the inciting inflammatory events. Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein member of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the necessary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its activation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout, mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to attenuate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these findings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause improvements in insulin sensitivity and other obesity-related metabolic impairments. PMID:27241260
Demidowich, Andrew P; Davis, Angela I; Dedhia, Nicket; Yanovski, Jack A
2016-07-01
Obesity is a major risk-factor for the development of insulin resistance, type 2 diabetes, and cardiovascular disease. Circulating molecules associated with obesity, such as saturated fatty acids and cholesterol crystals, stimulate the innate immune system to incite a chronic inflammatory state. Studies in mouse models suggest that suppressing the obesity-induced chronic inflammatory state may prevent or reverse obesity-associated metabolic dysregulation. Human studies, however, have been far less positive, possibly because targeted interventions were too far downstream of the inciting inflammatory events. Recently, it has been shown that, within adipose tissue macrophages, assembly of a multi-protein member of the innate immune system, the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, is essential for the induction of this inflammatory state. Microtubules enable the necessary spatial arrangement of the components of the NLRP3 inflammasome in the cell, leading to its activation and propagation of the inflammatory cascade. Colchicine, a medication classically used for gout, mediates its anti-inflammatory effect by inhibiting tubulin polymerization, and has been shown to attenuate macrophage NLRP3 inflammasome arrangement and activation in vitro and in vivo. Given these findings, we hypothesize that, in at-risk individuals (those with obesity-induced inflammation and metabolic dysregulation), long-term colchicine use will lead to suppression of inflammation and thus cause improvements in insulin sensitivity and other obesity-related metabolic impairments. Published by Elsevier Ltd.
State of the science: chronic periodontitis and systemic health.
Otomo-Corgel, Joan; Pucher, Jeffery J; Rethman, Michael P; Reynolds, Mark A
2012-09-01
Inflammatory periodontal diseases exhibit an association with multiple systemic conditions. Currently, there is a lack of consensus among experts on the nature of these associations and confusion among health care providers and the public on how to interpret this rapidly growing body of science. This article overviews the current evidence linking periodontal diseases to diabetes, cardiovascular disease, osteoporosis, preterm low birth weight babies, respiratory diseases, and rheumatoid arthritis. Evidence was taken from systematic reviews, clinical trials, and mechanistic studies retrieved in searches of the PubMed electronic database. The available data provide the basis for applied practical clinical recommendations. Evidence is summarized and critically reviewed from systematic reviews, primary clinical trials, and mechanistic studies Surrogate markers for chronic periodontitis, such as tooth loss, show relatively consistent but weak associations with multiple systemic conditions. Despite biological plausibility, shorter-term interventional trials have generally not supported unambiguous cause-and-effect relationships. Nevertheless, the effective treatment of periodontal infections is important to achieve oral health goals, as well as to reduce the systemic risks of chronic local inflammation and bacteremias. Inflammatory periodontal diseases exhibit an association with multiple systemic conditions. With pregnancy as a possible exception, the local and systemic effects of periodontal infections and inflammation are usually exerted for many years, typically among those who are middle-aged or older. It follows that numerous epidemiological associations linking chronic periodontitis to age-associated and biologically complex conditions such as diabetes, cardiovascular disease, osteoporosis, respiratory diseases, rheumatoid arthritis, certain cancers, erectile dysfunction, kidney disease and dementia, have been reported. In the coming years, it seems likely that additional associations will be reported, despite adjustments for known genetic, behavioral and environmental confounders. Determining cause-and-effect mechanisms is more complicated, especially in circumstances where systemic effects may be subtle. Currently, however, there is a lack of consensus among experts on the nature of these associations and confusion among health care providers and the public on how to interpret this rapidly growing body of science. This article overviews the current evidence linking periodontal diseases to diabetes, cardiovascular disease, osteoporosis, preterm/low birth weight babies, respiratory diseases, and rheumatoid arthritis. Copyright © 2012 Elsevier Inc. All rights reserved.
Lane-Cordova, Abbi D; Ranadive, Sushant M; Kappus, Rebecca M; Cook, Marc D; Phillips, Shane A; Woods, Jeffrey A; Wilund, Kenneth R; Baynard, Tracy; Fernhall, Bo
2016-12-01
Aging is characterized by a state of chronic, low-grade inflammation that impairs vascular function. Acute inflammation causes additional decrements in vascular function, but these responses are not uniform in older compared with younger adults. We sought to determine if older adults with low levels of baseline inflammation respond to acute inflammation in a manner similar to younger adults. We hypothesized age-related differences in the vascular responses to acute inflammation, but that older adults with low baseline inflammation would respond similarly to younger adults. Inflammation was induced with an influenza vaccine in 96 participants [older = 67 total, 38 with baseline C-reactive protein (CRP) > 1.5 mg/l and 29 with CRP < 1.5 mg/l; younger = 29]; serum inflammatory markers IL-6 and CRP, blood pressure and flow-mediated dilation (FMD) were measured 24 and 48 h later. Younger adults increased IL-6 and CRP more than the collective older adult group and increased pulse pressure, whereas older adults decreased SBP and reduced pulse pressure. The entire cohort decreased FMD from 11.3 ± 0.8 to 8.3 ± 0.7 to 8.7 ± 0.7% in younger and from 5.8 ± 0.3 to 5.0 ± 0.4 to 4.7 ± 0.4% in older adults, P less than 0.05 for main effect. Older adult groups with differing baseline CRP had the same IL-6, blood pressure, and FMD response to acute inflammation, P less than 0.05 for all interactions, but the low-CRP group increased CRP at 24 and 48 h (from 0.5 ± 0.1 to 1.4 ± 0.2 to 1.7 ± 0.3 mg/l), whereas the high-CRP group did not (from 4.8 ± 0.5 to 5.4 ± 0.5 to 5.4 ± 0.6 mg/l), P less than 0.001 for interaction. Aging, not age-related chronic, low-grade inflammation, determines the vascular responses to acute inflammation.
González, Frank
2012-01-01
Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived macrophages are the primary source of cytokine production in excess adipose tissue, and also promote adipocyte cytokine production in a paracrine fashion. The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may be a potential mechanism for promoting diet-induced inflammation in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose ingestion incites oxidative stress in normal weight women with PCOS even in the absence of increased abdominal adiposity. In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme responsible for androgen production. These findings support the contention that inflammation directly stimulates the polycystic ovary to produce androgens. PMID:22178787
Hippocampal structure and function are maintained despite severe innate peripheral inflammation.
Süß, Patrick; Kalinichenko, Liubov; Baum, Wolfgang; Reichel, Martin; Kornhuber, Johannes; Loskarn, Sandra; Ettle, Benjamin; Distler, Jörg H W; Schett, Georg; Winkler, Jürgen; Müller, Christian P; Schlachetzki, Johannes C M
2015-10-01
Chronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis. TNFtg mice showed severe erosive arthritis with increased IL-1β and IL-6 expression in tarsal joints with highly elevated human TNF-α levels in the serum. Intriguingly, IL-1β and IL-6 mRNA levels were not altered in the hippocampus of TNFtg mice. In contrast to the pronounced monocytosis in joints and spleen of TNFtg mice, signs of hippocampal microgliosis or astrocytosis were lacking. Furthermore, locomotion was impaired, but there was no locomotion-independent depressive behavior in TNFtg mice. Proliferation and maturation of hippocampal neural precursor cells as well as survival of newly generated neurons were preserved in the dentate gyrus of TNFtg mice despite reduced motor activity and peripheral inflammatory signature. We conclude that peripheral inflammation in TNFtg mice is mediated by chronic activation of the innate immune system. However, severe peripheral inflammation, though impairing locomotor activity, does not elicit depressive-like behavior. These structural and functional findings indicate the maintenance of hippocampal immunity, cellular plasticity, and behavior despite peripheral innate inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.
Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation
Meyer, Alain; Laverny, Gilles; Bernardi, Livio; Charles, Anne Laure; Alsaleh, Ghada; Pottecher, Julien; Sibilia, Jean; Geny, Bernard
2018-01-01
Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. PMID:29725325
Ciaraldi, Theodore P; Aroda, Vanita; Mudaliar, Sunder R; Henry, Robert R
2013-11-01
Chronic low-grade inflammation is a common feature of insulin resistant states, including obesity and type 2 diabetes. Less is known about inflammation in Polycystic Ovary Syndrome (PCOS). Thus we evaluated the impact of PCOS on circulating cytokine levels and the effects of anti-diabetic therapies on insulin action, cytokine and chemokine levels and inflammatory signaling in skeletal muscle. Twenty subjects with PCOS and 12 healthy normal cycling (NC) subjects of similar body mass index were studied. PCOS subjects received oral placebo or pioglitazone, 45 mg/d, for 6 months. All PCOS subjects then had metformin, 2 g/day, added to their treatment. Circulating levels of cytokines, chemokines, and adiponectin, skeletal muscle markers of inflammation and phosphorylation of signaling proteins, insulin action evaluated by the hyperinsulinemic/euglycemic clamp procedure and Homeostasis Model Assessment of Insulin Resistance were measured. Circulating levels of a number of cytokines and chemokines were generally similar between PCOS and NC subjects. Levels in PCOS subjects were not altered by pioglitazone or metformin treatment, even though whole body insulin action and adiponectin levels increased with pioglitazone. In spite of the lack of change in levels of cytokines and chemokines, several markers of inflammation in skeletal muscle were improved with Pio treatment. PCOS may represent a state of elevated sensitivity of inflammatory cells in skeletal muscle to cytokines and chemokines, a property that could be reversed by pioglitazone treatment together with improved insulin action. © 2013.
Tremblay, Sophie; Pai, Alex; Richter, Lindsay; Vafaei, Rod; Potluri, Praneetha; Ellegood, Jacob; Lerch, Jason P; Goldowitz, Daniel
2017-11-01
Despite the increased recognition of cerebellar injury in survivors of preterm birth, the neurodevelopmental consequences of isolated cerebellar injury have been largely unexplored and our current understanding of the functional deficits requires further attention in order to translate knowledge to best practices. Preterm infants are exposed to multiple stressors during their postnatal development including perinatal cerebellar haemorrhage (CBH) and postnatal infection, two major risk factors for neurodevelopmental impairments. We developed a translational mouse model of CBH and/or inflammation to measure the short- and long-term outcomes in cerebellar structure and function. Mice exposed to early combined insults of CBH and early inflammatory state (EIS) have a delay in grasping acquisition, neonatal motor deficits and deficient long-term memory. CBH combined with late inflammatory state (LIS) does not induce neonatal motor problems but leads to poor fine motor function and long-term memory deficits at adulthood. Early combined insults result in poor cerebellar growth from postnatal day 15 until adulthood shown by MRI, which are reflected in diminished volumes of cerebellar structures. There are also decreases in volumes of gray matter and hippocampus. Cerebellar microgliosis appears 24h after the combined insults and persists until postnatal day 15 in the cerebellar molecular layer and cerebellar nuclei in association with a disrupted patterning of myelin deposition, a delay of oligodendrocyte maturation and reduced white matter cerebellar volume. Together, these findings reveal poor outcomes in developing brains exposed to combined cerebellar perinatal insults in association with cerebellar hypoplasia, persistence of microgliosis and alterations of cerebellar white matter maturation and growth. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity.
Ávalos, Yenniffer; Kerr, Bredford; Maliqueo, Manuel; Dorfman, Mauricio
2018-04-12
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types as well as cell and molecular mechanisms that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Since the discovery that high-fat diet and saturated fatty acids (SFAs) increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, and what the role of inflammation in the obesity pathogenesis. Recent studies have proposed that the inhibition of proinflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
[Spuriously unhealthy animal fats].
Cichosz, Grazyna; Czeczot, Hanna
2011-11-01
Animal fats are generally considered as a source of saturated fatty acids and cholesterol, identified with arteriosclerosis and its clinical complications (cardiovascular diseases with heart attack, stroke, cerebral claudication). The real reason of arteriosclerosis are inflammation states of blood vessel endothelium caused by oxidative stress, hiperhomocysteinemia, hipertrigliceridemia, presence of artificial trans isomers and excess of eicosanoids originated from poliunsaturated fatty acids n-6. Present status of science proves that both saturated fatty acids and cholesterol present in animal food can not cause inflammation state. Moreover, animal fats are source of antioxidants active both in food and in human organism. Due to high oxidative stability animal fats do not make threat to human health. Milk fat, though high content of saturated fatty acids and cholesterol, possesses comprehensive pro-health activity--against arteriosclerosis and cancerogenesis.
Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair.
Vivekanantham, Sayinthen; Shah, Savan; Dewji, Rizwan; Dewji, Abbas; Khatri, Chetan; Ologunde, Rele
2015-01-01
Neuroinflammation in Parkinson's disease [PD] is a process that occurs alongside the loss of dopaminergic neurons, and is associated with alterations to many cell types, most notably microglia. This review examines the key evidence contributing to our understanding of the role of inflammation-mediated degeneration of the dopaminergic (DA) nigrostriatal pathway in PD. It will consider the potential role inflammation plays in tissue repair within the brain, inflammation linked gene products that are associated with sporadic Parkinsonian phenotypes (alpha-synuclein, Parkin and Nurr 1), and developing anti-inflammatory drug treatments in PD. With growing evidence supporting the key role of neuroinflammation in PD pathogenesis, new molecular targets are being found that could potentially prevent or delay nigrostriatal DA neuron loss. Hence, this creates the opportunity for disease modifying treatment, to currently what is an incurable disease.
Disturbed sleep: linking allergic rhinitis, mood and suicidal behavior.
Fang, Beverly J; Tonelli, Leonardo H; Soriano, Joseph J; Postolache, Teodor T
2010-01-01
Allergic inflammation is associated with mood disorders, exacerbation of depression, and suicidal behavior. Mediators of inflammation modulate sleep , with Th1 cytokines promoting NREM sleep and increasing sleepiness and Th2 cytokines (produced during allergic inflammation) impairing sleep. As sleep impairment is a rapidly modifiable suicide risk factor strongly associated with mood disorders, we review the literature leading to the hypothesis that allergic rhinitis leads to mood and anxiety disorders and an increased risk of suicide via sleep impairment. Specifically, allergic rhinitis can impair sleep through mechanical (obstructive) and molecular (cytokine production) processes. The high prevalence of mood and anxiety disorders and allergy, the nonabating suicide incidence, the currently available treatment modalities to treat sleep impairment and the need for novel therapeutic targets for mood and anxiety disorders, justify multilevel efforts to explore disturbance of sleep as a pathophysiological link.
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Complement, a target for therapy in inflammatory and degenerative diseases.
Morgan, B Paul; Harris, Claire L
2015-12-01
The complement system is a key innate immune defence against infection and an important driver of inflammation; however, these very properties can also cause harm. Inappropriate or uncontrolled activation of complement can cause local and/or systemic inflammation, tissue damage and disease. Complement provides numerous options for drug development as it is a proteolytic cascade that involves nine specific proteases, unique multimolecular activation and lytic complexes, an arsenal of natural inhibitors, and numerous receptors that bind to activation fragments. Drug design is facilitated by the increasingly detailed structural understanding of the molecules involved in the complement system. Only two anti-complement drugs are currently on the market, but many more are being developed for diseases that include infectious, inflammatory, degenerative, traumatic and neoplastic disorders. In this Review, we describe the history, current landscape and future directions for anti-complement therapies.
Current Status of Gene Engineering Cell Therapeutics
Saudemont, Aurore; Jespers, Laurent; Clay, Timothy
2018-01-01
Ex vivo manipulations of autologous patient’s cells or gene-engineered cell therapeutics have allowed the development of cell and gene therapy approaches to treat otherwise incurable diseases. These modalities of personalized medicine have already shown great promises including product commercialization for some rare diseases. The transfer of a chimeric antigen receptor or T cell receptor genes into autologous T cells has led to very promising outcomes for some cancers, and particularly for hematological malignancies. In addition, gene-engineered cell therapeutics are also being explored to induce tolerance and regulate inflammation. Here, we review the latest gene-engineered cell therapeutic approaches being currently explored to induce an efficient immune response against cancer cells or viruses by engineering T cells, natural killer cells, gamma delta T cells, or cytokine-induced killer cells and to modulate inflammation using regulatory T cells. PMID:29459866
Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis.
Royce, Simon G; Moodley, Yuben; Samuel, Chrishan S
2014-03-01
Inflammatory cell infiltration, cytokine release, epithelial damage, airway/lung remodelling and fibrosis are central features of inflammatory lung disorders, which include asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome and idiopathic pulmonary fibrosis. Although the lung has some ability to repair itself from acute injury, in the presence of ongoing pathological stimuli and/or insults that lead to chronic disease, it no longer retains the capacity to heal, resulting in fibrosis, the final common pathway that causes an irreversible loss of lung function. Despite inflammation, genetic predisposition/factors, epithelial-mesenchymal transition and mechanotransduction being able to independently contribute to airway remodelling and fibrosis, current therapies for inflammatory lung diseases are limited by their ability to only target the inflammatory component of the disease without having any marked effects on remodelling (epithelial damage and fibrosis) that can cause lung dysfunction independently of inflammation. Furthermore, as subsets of patients suffering from these diseases are resistant to currently available therapies (such as corticosteroids), novel therapeutic approaches are required to combat all aspects of disease pathology. This review discusses emerging therapeutic approaches, such as trefoil factors, relaxin, histone deacetylase inhibitors and stem cells, amongst others that have been able to target airway inflammation and airway remodelling while improving related lung dysfunction. A better understanding of the mode of action of these therapies and their possible combined effects may lead to the identification of their clinical potential in the setting of lung disease, either as adjunct or alternative therapies to currently available treatments. © 2013.
Kamaly, Nazila; Fredman, Gabrielle; Fojas, Jhalique Jane R; Subramanian, Manikandan; Choi, Won Ii; Zepeda, Katherine; Vilos, Cristian; Yu, Mikyung; Gadde, Suresh; Wu, Jun; Milton, Jaclyn; Carvalho Leitao, Renata; Rosa Fernandes, Livia; Hasan, Moaraj; Gao, Huayi; Nguyen, Vance; Harris, Jordan; Tabas, Ira; Farokhzad, Omid C
2016-05-24
Inflammation is an essential protective biological response involving a coordinated cascade of signals between cytokines and immune signaling molecules that facilitate return to tissue homeostasis after acute injury or infection. However, inflammation is not effectively resolved in chronic inflammatory diseases such as atherosclerosis and can lead to tissue damage and exacerbation of the underlying condition. Therapeutics that dampen inflammation and enhance resolution are currently of considerable interest, in particular those that temper inflammation with minimal host collateral damage. Here we present the development and efficacy investigations of controlled-release polymeric nanoparticles incorporating the anti-inflammatory cytokine interleukin 10 (IL-10) for targeted delivery to atherosclerotic plaques. Nanoparticles were nanoengineered via self-assembly of biodegradable polyester polymers by nanoprecipitation using a rapid micromixer chip capable of producing nanoparticles with retained IL-10 bioactivity post-exposure to organic solvent. A systematic combinatorial approach was taken to screen nanoparticles, resulting in an optimal bioactive formulation from in vitro and ex vivo studies. The most potent nanoparticle termed Col-IV IL-10 NP22 significantly tempered acute inflammation in a self-limited peritonitis model and was shown to be more potent than native IL-10. Furthermore, the Col-IV IL-10 nanoparticles prevented vulnerable plaque formation by increasing fibrous cap thickness and decreasing necrotic cores in advanced lesions of high fat-fed LDLr(-/-) mice. These results demonstrate the efficacy and pro-resolving potential of this engineered nanoparticle for controlled delivery of the potent IL-10 cytokine for the treatment of atherosclerosis.
Heisler, Jillian M.; O’Connor, Jason C.
2015-01-01
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057
P21-activated kinase in inflammatory and cardiovascular disease.
Taglieri, Domenico M; Ushio-Fukai, Masuko; Monasky, Michelle M
2014-09-01
P-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation. This review explores the physiological functions of PAK during inflammation, the role of PAK in several organ diseases with an emphasis on cardiovascular disease, and the PAK signaling pathway, including activators and targets of PAK. Also, we discuss PAK1 as a pharmacological anti-inflammatory target, explore the potentials and the limitations of the current pharmacological tools to regulate PAK1 activity during inflammation, and provide indications for future research. We conclude that a vast amount of evidence supports the idea that PAK is a central molecule in inflammatory signaling, thus making PAK1 itself a promising prospective pharmacological target. Copyright © 2014 Elsevier Inc. All rights reserved.
2016-01-01
Cumulatively, degenerative disease is one of the most fatal groups of diseases, and it contributes to the mortality and poor quality of life in the world while increasing the economic burden of the sufferers. Oxidative stress and inflammation are the major pathogenic causes of degenerative diseases such as rheumatoid arthritis (RA), diabetes mellitus (DM), and cardiovascular disease (CVD). Although a number of synthetic medications are used to treat these diseases, none of the current regimens are completely safe. Phytochemicals (polyphenols, carotenoids, anthocyanins, alkaloids, glycosides, saponins, and terpenes) from natural products such as dietary fruits, vegetables, and spices are potential sources of alternative medications to attenuate the oxidative stress and inflammation associated with degenerative diseases. Based on in vitro, in vivo, and clinical trials, some of these active compounds have shown good promise for development into novel agents for treating RA, DM, and CVD by targeting oxidative stress and inflammation. In this review, phytochemicals from natural products with the potential of ameliorating degenerative disease involving the bone, metabolism, and the heart are described. PMID:27721914
Inflammation and Cardiovascular Disease Risk: A Case Study of HIV and Inflammatory Joint Disease.
Rahman, Faisal; Martin, Seth S; Whelton, Seamus P; Mody, Freny V; Vaishnav, Joban; McEvoy, John William
2018-04-01
The epidemiologic data associating infection and inflammation with increased risk of cardiovascular disease is well established. Patients with chronically upregulated inflammatory pathways, such as those with HIV and inflammatory joint diseases, often have a risk of future cardiovascular risk that is similar to or higher than patients with diabetes. Thus, it is of heightened importance for clinicians to consider the cardiovascular risk of patients with these conditions. HIV and inflammatory joint diseases are archetypal examples of how inflammatory disorders contribute to vascular disease and provide illustrative lessons that can be leveraged in the prevention of cardiovascular disease. Managing chronic inflammatory diseases calls for a multifaceted approach to evaluation and treatment of suboptimal lifestyle habits, accurate estimation of cardiovascular disease risk with potential upwards recalibration due to chronic inflammation, and more intensive treatment of risk factors because current tools often underestimate the risk in this population. This approach is further supported by the recently published CANTOS trial demonstrating that reducing inflammation can serve as a therapeutic target among persons with residual inflammatory risk for cardiovascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Wang, Dawei; Lou, Xiaoqian; Jiang, Xiao-Ming; Yang, Chenxi; Liu, Xiao-Liang; Zhang, Nan
2018-05-08
With extensive pharmacological actions, quercetin has anti‑oxidant, free radical scavenging, anti‑tumor, anti‑inflammatory, anti‑bacterial and anti‑viral activity. Quercetin also reduces blood glucose and reduces high blood pressure, and has immunoregulation and cardiovascular protection functions. Additionally, it has been reported that it can reduce depression. The current study evaluated whether quercetin protects against inflammation, matrix metalloproteinase‑2 (MMP‑2) activation and apoptosis induction in a rat model of cardiopulmonary resuscitation (CPR), and whether Bmi‑1 expression was involved in the effects. In CPR model rats, treatment with quercetin significantly recovered left ventricular ejection fraction, left ventricular fractional shortening, ejection fraction (%), and left ventricle weight/body weight. Treatment with quercetin significantly inhibited ROS generation, inflammation and MMP‑2 protein expression in the rat model CPR. Finally, quercetin significantly suppressed caspase‑3 activity and activated Bmi‑1 protein expression in the rat model of CPR. The results demonstrated that quercetin protects against inflammation, MMP‑2 activation and apoptosis induction in a rat model of CPR, and that this may be mediated by modulating Bmi‑1 expression.
Aleksandrova, Krasimira; Romero-Mosquera, Beatriz; Hernandez, Vicent
2017-08-30
Inflammatory bowel diseases (IBD) represent a growing public health concern due to increasing incidence worldwide. The current notion on the pathogenesis of IBD is that genetically susceptible individuals develop intolerance to dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among the environmental factors associated with IBD, diet plays an important role in modulating the gut microbiome, influencing epigenetic changes, and, therefore, could be applied as a therapeutic tool to improve the disease course. Nevertheless, the current dietary recommendations for disease prevention and management are scarce and have weak evidence. This review summarises the current knowledge on the complex interactions between diet, microbiome and epigenetics in IBD. Whereas an overabundance of calories and some macronutrients increase gut inflammation, several micronutrients have the potential to modulate it. Immunonutrition has emerged as a new concept putting forward the importance of vitamins such as vitamins A, C, E, and D, folic acid, beta carotene and trace elements such as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific micronutrients exerted a limited benefit. Beyond nutrients, an anti-inflammatory dietary pattern as a complex intervention approach has become popular in recent years. Hence, exclusive enteral nutrition in paediatric Crohn's disease is the only nutritional intervention currently recommended as a first-line therapy. Other nutritional interventions or specific diets including the Specific Carbohydrate Diet (SCD), the low fermentable oligosaccharides, disaccharides, monosaccharides, and polyol (FODMAP) diet and, most recently, the Mediterranean diet have shown strong anti-inflammatory properties and show promise for improving disease symptoms. More work is required to evaluate the role of individual food compounds and complex nutritional interventions with the potential to decrease inflammation as a means of prevention and management of IBD.
Ozdemir, Ozturk; Kayatas, Mansur; Cetinkaya, Selma; Yildirim, Malik Ejder; Silan, Fatma; Kurtulgan, Hande Kucuk; Koksal, Binnur; Urfali, Mine; Candan, Ferhan
2015-03-01
There is an increased mortality risk in long-term hemodialysis patients of renal failure due to the chronic inflammation. The relationship between the chronic renal failure (CRF) and the role of familial genetic markers remains incompletely understood. In the current study, it was aimed to find out the prevalence of common MEFV gene mutations and BcII polymorphism in serum amyloid A1 (SAA1) gene in chronic renal patients (CRF) who require long-term hemodialysis. Current cohort includes 242 CRF patients and 245 healthy individuals from the same population. Total genomic DNA was isolated from peripheral blood-EDTA samples and genotyping of target MEFV gene was carried out by reverse hybridization Strip Assay and real-time techniques. The SAA1 gene was genotyped by the BclI-RFLP method. Increased mutated MEFV genotypes were found in current CRF patients when compared with the control group from the same ethnicity and the difference was statistically significant (Table 2) (OR: 4.9401, 95% CI: 3.0694-7.9509), p<0.0001. The most frequent point mutations were M694V and E148Q. The mutated T allel frequency in the SAA1 gene was also different when compared with the healthy controls and the difference was found to be statistically significant (χ2: 13.18; p=0.000). The current results indicate the germ-line mutations in both genetic biomarkers (MEFV and SAA1 genes) that are related to inflammation and amyloidosis processes may play a crucial role in CRF pathogenesis due to the long-term chronic inflammation.
Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.
Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja
2016-11-01
Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.
The 2009 stock conference report: inflammation, obesity and metabolic disease.
Hevener, A L; Febbraio, M A
2010-09-01
Obesity is linked with many deleterious health consequences and is associated with increased risk of chronic disease including type 2 diabetes, atherosclerosis and certain forms of cancer. Recent work has highlighted the impact of obesity to activate inflammatory gene networks and suggests a causal function of inflammation in the pathogenesis of the metabolic syndrome. Since 2005, when Dr Gokhan Hotamisligil chaired the fourth Stock Conference in Istanbul, Turkey, entitled 'Obesity and Inflammation', there has been an explosion of studies investigating the relationship between obesity, inflammation and substrate metabolism. The exuberance surrounding this field of research is exemplified by the body of work that has been published in these past 4 years, including over 1400 publications. During this time, several novel mechanisms relating to cellular inflammation have been uncovered including the role of the hematopoietic system, toll-like receptor activation, endoplasmic reticulum stress and very recently T-cell activation in obesity-induced insulin resistance. These discoveries have led us to rethink cellular nutrient sensing and its role in inflammation and metabolic disease. Despite burgeoning investigation in this field, there still remain a number of unanswered questions. This review that evolved from the 2009 Stock Conference summarizes current research and identifies the deficiencies in our understanding of this topic. The overall goal of this Stock Conference was to bring together leading investigators in the field of inflammation and obesity research in the hope of fostering new ideas, thus advancing the pursuit of novel therapeutic strategies to reduce disease risk and or better treat chronic disease including type 2 diabetes, cardiovascular disease and cancer. © 2009 The Authors. obesity reviews © 2009 International Association for the Study of Obesity.
Chiang, Jessica J; Bower, Julienne E; Irwin, Michael R; Taylor, Shelley E; Fuligni, Andrew J
2017-11-01
Both early adversity and depression are associated with heightened inflammation. However, few studies have focused on inflammatory reactivity to psychosocial stress and examined adiposity as a potential moderator. Yet, repeated heightened inflammatory reactivity over time is thought to contribute to low-grade chronic inflammation and adipose tissue is a key source of pro-inflammatory cytokines. The purpose of the present study was to examine whether early adversity and depressive symptoms were related to stress-induced inflammation and whether these associations varied by total body and abdominal adiposity as measured by body mass index (BMI) and waist circumference (WC) in a sample of late adolescents. Participants reported on their early family environment and current depressive symptoms, had their height, weight, and WC assessed for adiposity markers, and provided blood samples for IL-6 assessment before and after a standardized laboratory stress task. No main effect of early adversity on IL-6 reactivity to acute stress was observed. However, significant interactions between early adversity and BMI and WC emerged. Greater exposure to early adversity was associated with greater IL-6 responses only among adolescents with higher BMI or WC. The same pattern of findings was observed for depressive symptoms. Additionally, moderated mediation analyses indicated that among adolescents with greater adiposity, early adversity indirectly influenced IL-6 reactivity via current depressive symptoms. These findings contribute to our understanding of vulnerability factors that may amplify the associations between early adversity and depressive symptoms and inflammation during relatively early stages of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Guang-Yin; Huang, Li-Yen Mae; Zhao, Zhi-Qi
2000-01-01
The effect of inflammation on the excitability and the level of substance P (SP) in cat mechanoreceptive C and Aδ dorsal root ganglion (DRG) neurons were studied in vivo using intracellular recording and immunocytochemical techniques. Following injections of carrageenan (Carg) into the cat hindpaw, the percentage of C neurons exhibiting spontaneous activity increased from 7.2 to 20.7 % and the percentage of Aδ neurons increased from 6.9 to 18.6 %. In contrast to most cells from normal cats, which fired regularly below 10 Hz, many cells from Carg-treated cats fired at higher frequencies or in bursts. Inflammation (Carg treatment) also depolarized membrane potentials, increased membrane input resistance, caused the disappearance of inward rectifying currents and lowered the mean current thresholds of tibial nerve-evoked responses in DRG neurons. With inflammation, the percentage of C or Aδ neurons responding to low threshold mechanoreceptive stimuli increased (C neurons: normal, 13 %; inflamed, 41 %; Aδ neurons: normal, 13 %; inflamed, 39 %), while the percentage of C or Aδ neurons responding to high threshold mechanoreceptive stimuli remained unchanged. Some receptive field (RF)-responsive cells were injected with Lucifer Yellow and their SP immunoreactivity was determined. Following Carg treatment, substantially higher percentages of RF-responsive cells were SP positive (C neurons: normal, 35.7 %; inflamed, 60 %; Aδ neurons: normal, 18.2 %; inflamed, 66.7 %). These combined increases in the excitability of DRG neurons and SP-containing RF-responsive neurons could lead to sensitization of sensory neurons, thus contributing to the development of hyperalgesia. PMID:11034623
Rysz-Górzyńska, Magdalena; Banach, Maciej
2016-08-01
A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD.
KLF6 contributes to myeloid cell plasticity in the pathogenesis of intestinal inflammation
Goodman, Wendy A.; Omenetti, Sara; Date, Dipali; Di Martino, Luca; De Salvo, Carlo; Kim, Gun-Dong; Chowdhry, Saleem; Bamias, Giorgos; Cominelli, Fabio; Pizarro, Theresa T.; Mahabeleshwar, Ganapati H.
2016-01-01
Inflammatory bowel disease (IBD) is associated with dysregulated macrophage responses, such that quiescent macrophages acquire a pro-inflammatory activation state and contribute to chronic intestinal inflammation. The transcriptional events governing macrophage activation and gene expression in the context of chronic inflammation such as IBD remain incompletely understood. Here, we identify Kruppel-like transcription factor-6 (KLF6) as a critical regulator of pathogenic myeloid cell activation in human and experimental IBD. We found that KLF6 was significantly upregulated in myeloid cells and intestinal tissue from IBD patients and experimental models of IBD, particularly in actively inflamed regions of the colon. Using complementary gain- and loss-of-function studies, we observed that KLF6 promotes pro-inflammatory gene expression through enhancement of NFκB signaling, while simultaneously suppressing anti-inflammatory gene expression through repression of STAT3 signaling. To study the in vivo role of myeloid KLF6, we treated myeloid-specific KLF6-knockout mice (Mac-KLF6-KO) with dextran sulfate-sodium (DSS) and found that Mac-KLF6-KO mice were protected against chemically-induced colitis; this highlights the central role of myeloid KLF6 in promoting intestinal inflammation. Collectively, our results point to a novel gene regulatory program underlying pathogenic, pro-inflammatory macrophage activation in the setting of chronic intestinal inflammation. PMID:26838049
Ranganathan, Punithavathi; Shanmugam, Arulkumaran; Swafford, Daniel; Suryawanshi, Amol; Bhattacharjee, Pushpak; Hussein, Mohamed S; Koni, Pandelakis A; Prasad, Puttur D; Kurago, Zoya B; Thangaraju, Muthusamy; Ganapathy, Vadivel; Manicassamy, Santhakumar
2018-03-01
At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis. Genetic deletion of GPR81 in mice led to increased Th1/Th17 cell differentiation and reduced regulatory T cell differentiation, resulting in enhanced susceptibility to colonic inflammation. This was due to increased production of proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and decreased expression of immune regulatory factors (IL-10, retinoic acid, and IDO) by intestinal APCs lacking GPR81. Consistent with these findings, pharmacological activation of GPR81 decreased inflammatory cytokine expression and ameliorated colonic inflammation. Taken together, these findings identify a new and important role for the GPR81 signaling pathway in regulating immune tolerance and colonic inflammation. Thus, manipulation of the GPR81 pathway could provide novel opportunities for enhancing regulatory responses and treating colonic inflammation. Copyright © 2018 by The American Association of Immunologists, Inc.
An Updated Mini Review of Vitamin D and Obesity: Adipogenesis and Inflammation State
Mehmood, Zujaja-Tul-Noor Hamid; Papandreou, Dimitrios
2016-01-01
Vitamin D related research continues to expand and theorise regarding its involvement in obesity, as both hypovitaminosis D and obesity strike in pandemic proportions. Vitamin D plays an important role in immune system through Vitamin D Receptors (VDR), which are transcription factors located abundantly in the body. Due to this characteristic, it is potentially linked to obesity, which is a state of inflammation involving the release of cytokines from adipose tissue, and exerting stress on other organs in a state of positive energy balance. Research trials in the past couple of years and systematic reviews from SCOPUS and MEDLINE will be discussed. The role of Vitamin D throughout the lifespan (from fetal imprinting until older age), and in various other obesity mediated chronic conditions shall be highlighted. Various mechanisms attributed to the inverse relationship of Vitamin D and obesity are discussed with research gaps identified, particularly the role of adipokines, epigenetics, calcium and type of adipose tissue. PMID:27703587
Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis.
Soendergaard, Christoffer; Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo
2017-09-23
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH-insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy.
Characterization of Growth Hormone Resistance in Experimental and Ulcerative Colitis
Kvist, Peter Helding; Thygesen, Peter; Reslow, Mats; Nielsen, Ole Haagen; Kopchick, John Joseph; Holm, Thomas Lindebo
2017-01-01
Growth hormone (GH) resistance may develop as a consequence of inflammation during conditions such as inflammatory bowel disease, encompassing ulcerative colitis (UC). However, the specific role of the GH–insulin growth factor (IGF)-1-axis and/or the functional consequences of GH resistance in this condition are unclear. In situ hybridization targeting the GH receptor (GHR) and relevant transcriptional analyses were performed in patients with UC and in IL-10 knock-out mice with piroxicam accelerated colitis (PAC). Using cultured primary epithelial cells, the effects of inflammation on the molecular mechanisms governing GH resistance was verified. Also, the therapeutic potential of GH on mucosal healing was tested in the PAC model. Inflammation induced intestinal GH resistance in UC and experimental colitis by down-regulating GHR expression and up-regulating suppressor of cytokine signalling (SOCS) proteins. These effects are driven by pro-inflammatory mediators (tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6) as confirmed using primary epithelial cells. Treatment of experimental colitis with GH increased IGF-1 and body weight of the mice, but had no effects on colonic inflammation or mucosal healing. The high transcriptional similarity between UC and experimental colitis accentuates the formation of intestinal GH resistance during inflammation. Inflammation-induced GH resistance not only impairs general growth but induces a state of local resistance, which potentially impairs the actions of GH on mucosal healing during colitis when using long-acting GH therapy. PMID:28946616
Overview of Current Concepts in Gastric Intestinal Metaplasia and Gastric Cancer
Adam, Jason D.; Borum, Marie L.; Koh, Joyce M.; Stephen, Sindu
2018-01-01
Gastric intestinal metaplasia is a precancerous change of the mucosa of the stomach with intestinal epithelium, and is associated with an increased risk of dysplasia and cancer. The pathogenesis to gastric cancer is proposed by the Correa hypothesis as the transition from normal gastric epithelium to invasive cancer via inflammation followed by intramucosal cancer and invasion. Multiple risk factors have been associated with the development of gastric intestinal metaplasia interplay, including Helicobacter pylori infection and associated genomics, host genetic factors, environmental milieu, rheumatologic disorders, diet, and intestinal microbiota. Globally, screening guidelines have been established in countries with high incidence. In the United States, no such guidelines have been developed due to lower, albeit increasing, incidence. The American Society for Gastrointestinal Endoscopy recommends a case-by-case patient assessment based upon epidemiology, genetics, and environmental risk factors. Studies have examined the use of a serologic biopsy to stratify risk based upon factors such as H pylori status and virulence factors, along with serologic markers of chronic inflammation including pepsinogen I, pepsinogen II, and gastrin. High-risk patients may then be advised to undergo endoscopic evaluation with mapping biopsies from the antrum (greater curvature, lesser curvature), incisura angularis, and corpus (greater curvature, lesser curvature). Surveillance guidelines have not been firmly established for patients with known gastric intestinal metaplasia, but include repeat endoscopy at intervals according to the histologic risk for malignant transformation. PMID:29606921
Overview of Current Concepts in Gastric Intestinal Metaplasia and Gastric Cancer.
Jencks, David S; Adam, Jason D; Borum, Marie L; Koh, Joyce M; Stephen, Sindu; Doman, David B
2018-02-01
Gastric intestinal metaplasia is a precancerous change of the mucosa of the stomach with intestinal epithelium, and is associated with an increased risk of dysplasia and cancer. The pathogenesis to gastric cancer is proposed by the Correa hypothesis as the transition from normal gastric epithelium to invasive cancer via inflammation followed by intramucosal cancer and invasion. Multiple risk factors have been associated with the development of gastric intestinal metaplasia interplay, including Helicobacter pylori infection and associated genomics, host genetic factors, environmental milieu, rheumatologic disorders, diet, and intestinal microbiota. Globally, screening guidelines have been established in countries with high incidence. In the United States, no such guidelines have been developed due to lower, albeit increasing, incidence. The American Society for Gastrointestinal Endoscopy recommends a case-by-case patient assessment based upon epidemiology, genetics, and environmental risk factors. Studies have examined the use of a serologic biopsy to stratify risk based upon factors such as H pylori status and virulence factors, along with serologic markers of chronic inflammation including pepsinogen I, pepsinogen II, and gastrin. High-risk patients may then be advised to undergo endoscopic evaluation with mapping biopsies from the antrum (greater curvature, lesser curvature), incisura angularis, and corpus (greater curvature, lesser curvature). Surveillance guidelines have not been firmly established for patients with known gastric intestinal metaplasia, but include repeat endoscopy at intervals according to the histologic risk for malignant transformation.
Hypothalamic Mechanisms in Cachexia
Grossberg, Aaron J.; Scarlett, Jarrad M.; Marks, Daniel L.
2010-01-01
The role of nutrition and balanced metabolism in normal growth, development, and health maintenance is well known. Patients affected with either acute or chronic diseases often show disorders of nutrient balance. In some cases, a devastating state of malnutrition known as cachexia arises, brought about by a synergistic combination of a dramatic decrease in appetite and an increase in metabolism of fat and lean body mass. Other common features that are not required for the diagnosis include decreases in voluntary movement, insulin resistance, and anhedonia. This combination is found in a number of disorders including cancer, cystic fibrosis, AIDS, rheumatoid arthritis, renal failure, and Alzheimer's disease. The severity of cachexia in these illnesses is often the primary determining factor in both quality of life, and in eventual mortality. Indeed, body mass retention in AIDS patients has a stronger association with survival than any other current measure of the disease. This has led to intense investigation of cachexia and the proposal of numerous hypotheses regarding its etiology. Most authors suggest that cytokines released during inflammation and malignancy act on the central nervous system to alter the release and function of a number of neurotransmitters, thereby altering both appetite and metabolic rate. This review will discuss the salient features of cachexia in human diseases, and review the mechanisms whereby inflammation alters the function of key brain regions to produce stereotypical illness behavior. PMID:20346963
Inflammation as target in cancer therapy.
Marelli, Giulia; Sica, Antonio; Vannucci, Luca; Allavena, Paola
2017-08-01
Cells of the innate immunity infiltrating tumour tissues promote, rather than halt, cancer cell proliferation and distant spreading. Tumour-Associated Macrophages (TAMs) are abundantly present in the tumour milieu and here trigger and perpetrate a state of chronic inflammation which ultimately supports disease development and contributes to an immune-suppressive environment. Therapeutic strategies to limit inflammatory cells and their products have been successful in pre-clinical tumour models. Early clinical trials with specific cytokine and chemokine inhibitors, or with strategies designed to target TAMs, are on their way in different solid malignancies. Partial clinical responses and stabilization of diseases were observed in some patients, in the absence of significant toxicity. These encouraging results open new perspectives of combination treatments aimed at reducing cancer-promoting inflammation to maximize the anti-tumour efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gastrointestinal parasites: potential therapy for refractory inflammatory bowel diseases.
Moreels, Tom G; Pelckmans, Paul A
2005-02-01
Crohn's disease and ulcerative colitis are chronic relapsing inflammatory bowel diseases (IBDs). Different pharmacological agents are currently used in several combinations to control the inflammatory process. Recently, antibodies against the proinflammatory cytokine tumor necrosis factor-alpha appeared to be very effective in treating patients with Crohn's disease. However, due to the fact that the pathogen causing IBD is still unknown, no causative treatment is currently available that is able to make the disease disappear. Recently, the hygiene hypothesis of the development of immunological diseases was proposed, stating that raising children in extremely hygienic environments with less exposure to parasite infections may negatively affect the development of the immune system, predisposing them to immunologic diseases such as IBD. This hypothesis is supported by experimental data showing that helminthic parasites protect against T helper (TH) type 1 cell-mediated gastrointestinal inflammations like Crohn's disease. Both TH-2 cells and regulatory T cells may be involved in this immunomodulatory mechanism. Here, we review the experimental and clinical studies in favor of the hygiene hypothesis, opening perspectives on new therapies for IBD.
Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface.
Settem, Rajendra P; Honma, Kiyonobu; Stafford, Graham P; Sharma, Ashu
2013-10-17
Protein modification with complex glycans is increasingly being recognized in many pathogenic and non-pathogenic bacteria, and is now thought to be central to the successful life-style of those species in their respective hosts. This review aims to convey current knowledge on the extent of protein glycosylation in periodontal pathogenic bacteria and its role in the modulation of the host immune responses. The available data show that surface glycans of periodontal bacteria orchestrate dendritic cell cytokine responses to drive T cell immunity in ways that facilitate bacterial persistence in the host and induce periodontal inflammation. In addition, surface glycans may help certain periodontal bacteria protect against serum complement attack or help them escape immune detection through glycomimicry. In this review we will focus mainly on the generalized surface-layer protein glycosylation system of the periodontal pathogen Tannerella forsythia in shaping innate and adaptive host immunity in the context of periodontal disease. In addition, we will also review the current state of knowledge of surface protein glycosylation and its potential for immune modulation in other periodontal pathogens.
Treatment-Induced Autophagy Associated with Tumor Dormancy and Relapse
2017-07-01
disease function by Ingenuity Pathway Analysis (IPA). The 239 genes involved in dormancy showed a z-score increase in disease states related to acute ...genes shared by both week 6 groups, one relapsing and the other dormant, showed predicted activation of both chronic and acute disease states. In...genes among 239 shared probe sets involved in maintenance of dormancy shows predicted activation of disease states related to acute inflammation, 682
Inflammation in maternal obesity and gestational diabetes mellitus.
Pantham, P; Aye, I L M H; Powell, T L
2015-07-01
The prevalence of maternal obesity is rising rapidly worldwide and constitutes a major obstetric problem, increasing mortality and morbidity in both mother and offspring. Obese women are predisposed to pregnancy complications such as gestational diabetes mellitus (GDM), and children of obese mothers are more likely to develop cardiovascular and metabolic disease in later life. Maternal obesity and GDM may be associated with a state of chronic, low-grade inflammation termed "metainflammation", as opposed to an acute inflammatory response. This inflammatory environment may be one mechanism by which offspring of obese women are programmed to develop adult disorders. Herein we review the evidence that maternal obesity and GDM are associated with changes in the maternal, fetal and placental inflammatory profile. Maternal inflammation in obesity and GDM may not always be associated with fetal inflammation. We propose that the placenta 'senses' and adapts to the maternal inflammatory environment, and plays a central role as both a target and producer of inflammatory mediators. In this manner, maternal obesity and GDM may indirectly program the fetus for later disease by influencing placental function. Published by Elsevier Ltd.
Modulation of obesity-induced inflammation by dietary fats: mechanisms and clinical evidence
2014-01-01
Obesity plays a pivotal role in the development of low-grade inflammation. Dietary fatty acids are important modulators of inflammatory responses. Saturated fatty acids (SFA) and n-6 polyunsaturated fatty acids (PUFA) have been reported to exert pro-inflammatory effects. n-3 PUFA in particular, possess anti-inflammatory properties. Numerous clinical studies have been conducted over decades to investigate the impact of dietary fatty acids on inflammatory response in obese individuals, however the findings remained uncertain. High fat meals have been reported to increase pro-inflammatory responses, however there is limited evidence to support the role of individual dietary fatty acids in a postprandial state. Evidence in chronic studies is contradictory, the effects of individual dietary fatty acids deserves further attention. Weight loss rather than n-3 PUFA supplementation may play a more prominent role in alleviating low grade inflammation. In this context, the present review provides an update on the mechanistic insight and the influence of dietary fats on low grade inflammation, based on clinical evidence from acute and chronic clinical studies in obese and overweight individuals. PMID:24476102
Chronic inflammation is a feature of Achilles tendinopathy and rupture.
Dakin, Stephanie Georgina; Newton, Julia; Martinez, Fernando O; Hedley, Robert; Gwilym, Stephen; Jones, Natasha; Reid, Hamish A B; Wood, Simon; Wells, Graham; Appleton, Louise; Wheway, Kim; Watkins, Bridget; Carr, Andrew Jonathan
2018-03-01
Recent investigation of human tissue and cells from positional tendons such as the rotator cuff has clarified the importance of inflammation in the development and progression of tendon disease. These mechanisms remain poorly understood in disease of energy-storing tendons such as the Achilles. Using tissue biopsies from patients, we investigated if inflammation is a feature of Achilles tendinopathy and rupture. We studied Achilles tendon biopsies from symptomatic patients with either mid-portion tendinopathy or rupture for evidence of abnormal inflammatory signatures. Tendon-derived stromal cells from healthy hamstring and diseased Achilles were cultured to determine the effects of cytokine treatment on expression of inflammatory markers. Tendinopathic and ruptured Achilles highly expressed CD14+ and CD68+ cells and showed a complex inflammation signature, involving NF-κB, interferon and STAT-6 activation pathways. Interferon markers IRF1 and IRF5 were highly expressed in tendinopathic samples. Achilles ruptures showed increased PTGS2 and interleukin-8 expression. Tendinopathic and ruptured Achilles tissues expressed stromal fibroblast activation markers podoplanin and CD106. Tendon cells isolated from diseased Achilles showed increased expression of pro-inflammatory and stromal fibroblast activation markers after cytokine stimulation compared with healthy hamstring tendon cells. Tissue and cells derived from tendinopathic and ruptured Achilles tendons show evidence of chronic (non-resolving) inflammation. The energy-storing Achilles shares common cellular and molecular inflammatory mechanisms with functionally distinct rotator cuff positional tendons. Differences seen in the profile of ruptured Achilles are likely to be attributable to a superimposed phase of acute inflammation and neo-vascularisation. Strategies that target chronic inflammation are of potential therapeutic benefit for patients with Achilles tendon disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha
2016-01-01
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn's disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.
McCarthy, M M; Yasui, T; Felippe, M J B; Overton, T R
2016-01-01
The objective of the current study was to determine associations between the severity of systemic inflammation during the early postpartum period and performance, energy metabolism, and immune function in dairy cows. Cows were assigned to categorical quartiles (Q; Q1=0.18-0.59, Q2=0.60-1.14, Q3=1.15-2.05, and Q4=2.06-2.50 g of haptoglobin/L) based on the highest plasma haptoglobin (Hp) concentration measured during wk 1 postpartum. Although cows were assigned to different categories of inflammation during the postpartum period, we detected a quadratic relationship of inflammation on prepartum dry matter intake (DMI) and body weight (BW) such that cows in Q2 had lower prepartum DMI and cows in Q2 and Q3 had lower prepartum BW compared with cows in the other quartiles. We also detected a quadratic association of inflammation with postpartum DMI and BW such that cows in Q2 and Q3 also had generally lower postpartum DMI and BW compared with cows in Q1. There was a tendency for a Q × time interaction for milk yield and Q × time interactions for 3.5% fat-corrected milk and energy-corrected milk yields; quadratic relationships suggested decreased milk yield for Q2 and Q3 cows. We also found Q × parity and Q × time interactions for plasma glucose and insulin concentrations, suggesting alterations with differing degrees of inflammation. There was also a Q × time interaction for plasma nonesterified fatty acids concentration. In addition, alterations in liver triglyceride and glycogen contents for cows with inflammation as well as alterations in [1-(14)C]propionate oxidation in vitro were observed. Although we observed limited effects of inflammation on neutrophil and monocyte phagocytosis at d 7 postpartum, inflammation appeared to alter neutrophil and monocyte oxidative burst. Overall, cows with any degree of elevated haptoglobin in the first week after calving had alterations in both pre- and postpartum intake and postpartum metabolism. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Inflammation and fertility in the mare.
Christoffersen, M; Troedsson, Mht
2017-08-01
A transient uterine inflammation post-breeding is a normal physiological reaction in the mare, and it is believed that the inflammatory response is necessary to eliminate bacteria and excess spermatozoa introduced into the uterine lumen. A tight balance between multiple pro- and anti-inflammatory factors is required for resolving the breeding-induced inflammation within 24-36 hr in the reproductively healthy mare, whereas a subpopulation of mares is susceptible to development of a persistent infection that can interfere with fertility. The aetiology of persistent endometritis can be either bacterial or semen-induced and both scenarios can threaten the establishment of pregnancy. Several factors associated with susceptibility to persistent endometritis have been identified including altered innate immune response in the early inflammatory process, reduced myometrial contractions and impaired opsonization; however, the pathogenesis to susceptibility has not been fully elucidated. Current research focuses on the initial hours of uterine inflammatory responses to semen and bacteria, and potential treatments to modify this altered innate immune response. An increased understanding of the mechanisms involved in the disease progression is necessary to improve the treatment and management of these mares. This review attempts to summarize the current knowledge of the uterine inflammatory and immunological responses to breeding-induced endometritis, persistent breeding-induced endometritis (PBIE) and bacterial endometritis in the mare. © 2017 Blackwell Verlag GmbH.
Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance
Desai, Gauri S; Mathews, Suresh T
2014-01-01
Saliva has been progressively studied as a non-invasive and relatively stress-free diagnostic alternative to blood. Currently, saliva testing is used for clinical assessment of hormonal perturbations, detection of HIV antibodies, DNA analysis, alcohol screening, and drug testing. Recently, there has been increasing interest in evaluating the diagnostic potential of saliva in obesity, inflammation, and insulin-resistance. Current literature has demonstrated elevated levels of inflammatory biomarkers including C-reactive protein, tumor necrosis factor-α, interleukin-6, and interferon-γ in saliva of obese/overweight children and adults. Salivary antioxidant status has also been studied as a measure of oxidative stress in individuals with type 2 diabetes. Further, several studies have demonstrated correlations of salivary markers of stress and insulin resistance including cortisol, insulin, adiponectin, and resistin with serum concentrations. These findings suggest the potential diagnostic value of saliva in health screening and risk stratification studies, particularly in the pediatric population, with implications for inflammatory, metabolic and cardiovascular conditions. However, additional studies are required to standardize saliva collection and storage procedures, validate analytical techniques for biomarker detection, and establish reference ranges for routine clinical use. The purpose of this review is to summarize and evaluate recent advancements in using saliva as a diagnostic tool for inflammation and insulin-resistance. PMID:25512775
Inflammation in Chronic Wounds
Zhao, Ruilong; Liang, Helena; Clarke, Elizabeth; Jackson, Christopher; Xue, Meilang
2016-01-01
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research. PMID:27973441
Inflammation in Chronic Wounds.
Zhao, Ruilong; Liang, Helena; Clarke, Elizabeth; Jackson, Christopher; Xue, Meilang
2016-12-11
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.
Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective
Neumann, Silke; Shields, Nicholas J.; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N.
2015-01-01
Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer’s disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells. PMID:26690125
Innate Immunity and Inflammation Post-Stroke: An α7-Nicotinic Agonist Perspective.
Neumann, Silke; Shields, Nicholas J; Balle, Thomas; Chebib, Mary; Clarkson, Andrew N
2015-12-04
Stroke is one of the leading causes of death and long-term disability, with limited treatment options available. Inflammation contributes to damage tissue in the central nervous system across a broad range of neuropathologies, including Alzheimer's disease, pain, Schizophrenia, and stroke. While the immune system plays an important role in contributing to brain damage produced by ischemia, the damaged brain, in turn, can exert a powerful immune-suppressive effect that promotes infections and threatens the survival of stroke patients. Recently the cholinergic anti-inflammatory pathway, in particular its modulation using α7-nicotinic acetylcholine receptor (α7-nAChR) ligands, has shown potential as a strategy to dampen the inflammatory response and facilitate functional recovery in stroke patients. Here we discuss the current literature on stroke-induced inflammation and the effects of α7-nAChR modulators on innate immune cells.
Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia
Ma, Qing; Cornelli, Umberto; Hanin, Israel; Jeske, Walter P.; Linhardt, Robert J.; Walenga, Jeanine M.; Fareed, Jawed; Lee, John M.
2014-01-01
Heparin is a glycosaminoglycan mixture currently used in prophylaxis and treatment of thrombosis. Heparin possesses non-anticoagulant properties, including modulation of various proteases, interactions with fibroblast growth factors, and anti-inflammatory actions. Senile dementia of Alzheimer’s type is accompanied by inflammatory responses contributing to irreversible changes in neuronal viability and brain function. Vascular factors are also involved in the pathogenesis of senile dementia. Inflammation, endogenous proteoglycans, and assembly of senile plagues and neurofibrillary tangles contribute directly and indirectly to further neuronal damage. Neuron salvage can be achieved by anti-inflammation and the competitive inhibition of proteoglycans accumulation. The complexity of the pathology of senile dementia provides numerous potential targets for therapeutic interventions designed to modulate inflammation and proteoglycan assembly. Heparin and related oligosaccharides are known to exhibit anti-inflammatory effects as well as inhibitory effects on proteoglycan assembly and may prove useful as neuroprotective agents. PMID:17504153
Hepatic inflammation and progressive liver fibrosis in chronic liver disease
Czaja, Albert J
2014-01-01
Chronic liver inflammation drives hepatic fibrosis, and current immunosuppressive, anti-inflammatory, and anti-viral therapies can weaken this driver. Hepatic fibrosis is reversed, stabilized, or prevented in 57%-79% of patients by conventional treatment regimens, mainly by their anti-inflammatory actions. Responses, however, are commonly incomplete and inconsistently achieved. The fibrotic mechanisms associated with liver inflammation have been clarified, and anti-fibrotic agents promise to improve outcomes as adjunctive therapies. Hepatitis C virus and immune-mediated responses can activate hepatic stellate cells by increasing oxidative stress within hepatocytes. Angiotensin can be synthesized by activated hepatic stellate cells and promote the production of reactive oxygen species. Anti-oxidants (N-acetylcysteine, S-adenosyl-L-methionine, and vitamin E) and angiotensin inhibitors (losartin) have had anti-fibrotic actions in preliminary human studies, and they may emerge as supplemental therapies. Anti-fibrotic agents presage a new era of supplemental treatment for chronic liver disease. PMID:24627588
Hepatic steatosis and fibrosis: Non-invasive assessment
Karanjia, Rustam N; Crossey, Mary M E; Cox, I Jane; Fye, Haddy K S; Njie, Ramou; Goldin, Robert D; Taylor-Robinson, Simon D
2016-01-01
Chronic liver disease is a major cause of morbidity and mortality worldwide and usually develops over many years, as a result of chronic inflammation and scarring, resulting in end-stage liver disease and its complications. The progression of disease is characterised by ongoing inflammation and consequent fibrosis, although hepatic steatosis is increasingly being recognised as an important pathological feature of disease, rather than being simply an innocent bystander. However, the current gold standard method of quantifying and staging liver disease, histological analysis by liver biopsy, has several limitations and can have associated morbidity and even mortality. Therefore, there is a clear need for safe and non-invasive assessment modalities to determine hepatic steatosis, inflammation and fibrosis. This review covers key mechanisms and the importance of fibrosis and steatosis in the progression of liver disease. We address non-invasive imaging and blood biomarker assessments that can be used as an alternative to information gained on liver biopsy. PMID:28018096
Central Centrifugal Cicatricial Alopecia: New Insights and a Call for Action.
Dlova, Ncoza C; Salkey, Kimberly S; Callender, Valerie D; McMichael, Amy J
2017-10-01
Central centrifugal cicatricial alopecia (CCCA) is a common and progressive form of lymphocyte predominant scarring alopecia which impacts negatively on the quality of life of those affected. It is seen more commonly in women of African descent with prevalence ranging from 2.7% to 5.7%. Current postulates include genetic inheritance, with traction inducing hairstyling practices and hair chemicals as aggravating factors. Histology reveals a perifollicular lymphocytic inflammation of the lower infundibulum, premature desquamation of the inner root sheath, and fibrous connective tissue. Treatment remains challenging and is directed at suppressing and preventing the inflammation, thus aborting scarring, with surgical intervention reserved for those who have stable disease or absence of histological inflammation. Future research with more patient numbers, focusing on the genetics of CCCA may prove useful in order to fully understand the etiology, thus providing more effective treatments for CCCA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Biophysics of selectin-ligand interactions in inflammation and cancer
NASA Astrophysics Data System (ADS)
Siu-Lun Cheung, Luthur; Raman, Phrabha S.; Balzer, Eric M.; Wirtz, Denis; Konstantopoulos, Konstantinos
2011-02-01
Selectins (l-, e- and p-selectin) are calcium-dependent transmembrane glycoproteins that are expressed on the surface of circulating leukocytes, activated platelets, and inflamed endothelial cells. Selectins bind predominantly to sialofucosylated glycoproteins and glycolipids (e-selectin only) present on the surface of apposing cells, and mediate transient adhesive interactions pertinent to inflammation and cancer metastasis. The rapid turnover of selectin-ligand bonds, due to their fast on- and off-rates along with their remarkably high tensile strengths, enables them to mediate cell tethering and rolling in shear flow. This paper presents the current body of knowledge regarding the role of selectins in inflammation and cancer metastasis, and discusses experimental methodologies and mathematical models used to resolve the biophysics of selectin-mediated cell adhesion. Understanding the biochemistry and biomechanics of selectin-ligand interactions pertinent to inflammatory disorders and cancer metastasis may provide insights for developing promising therapies and/or diagnostic tools to combat these disorders.
Novel Frontiers in Epilepsy Treatments: Preventing Epileptogenesis by Targeting Inflammation
D'Ambrosio, Raimondo; Eastman, Clifford L.; Fattore, Cinzia; Perucca, Emilio
2014-01-01
Currently available epilepsy drugs only affect the symptoms (seizures), and there is a need for innovative treatments that target the underlying disease. Increasing evidence points to inflammation as a potentially important mechanism in epileptogenesis. In the last decade, a new generation of etiologically realistic syndrome-specific experimental models have been developed which are expected to capture the epileptogenic mechanisms operating in the corresponding patient populations, and to exhibit similar treatment-responsiveness. Recently, an intervention known have broad-ranging anti-inflammatory effects (selective brain cooling) has been found to prevent the development of spontaneously occurring seizures in an etiologically realistic rat model of post-traumatic epilepsy. Several drugs used clinically for other indications also have the potential for inhibiting inflammation, and should be investigated for anti-epileptogenic activity in these models. If results of such studies are positive, these compounds could enter rapidly Phase III trials in patients at high risk of developing epilepsy. PMID:23738999
Inflammation as a Therapeutic Target for Diabetic Neuropathies
Ang, Lynn; Holmes, Crystal; Gallagher, Katherine; Feldman, Eva L.
2016-01-01
Diabetic neuropathies (DNs) are one of the most prevalent chronic complications of diabetes and a major cause of disability, high mortality, and poor quality of life. Given the complex anatomy of the peripheral nervous system and types of fiber dysfunction, DNs have a wide spectrum of clinical manifestations. The treatment of DNs continues to be challenging, likely due to the complex pathogenesis that involves an array of systemic and cellular imbalances in glucose and lipids metabolism. These lead to the activation of various biochemical pathways, including increased oxidative/nitrosative stress, activation of the polyol and protein kinase C pathways, activation of polyADP ribosylation, and activation of genes involved in neuronal damage, cyclooxygenase-2 activation, endothelial dysfunction, altered Na+/K+-ATPase pump function, impaired C-peptide-related signaling pathways, endoplasmic reticulum stress, and low-grade inflammation. This review summarizes current evidence regarding the role of low-grade inflammation as a potential therapeutic target for DNs. PMID:26897744
Bruner-Tran, Kaylon L.; Herington, Jennifer L.; Duleba, Antoni J.; Taylor, Hugh S.; Osteen, Kevin G.
2013-01-01
Progesterone action normally mediates the balance between anti-inflammatory and pro-inflammatory processes throughout the female reproductive tract. However, in women with endometriosis, endometrial progesterone resistance, characterized by alterations in progesterone responsive gene and protein expression, is now considered a central element in disease pathophysiology. Recent studies additionally suggest that the peritoneal microenvironment of endometriosis patients exhibits altered physiological characteristics that may further promote inflammation-driven disease development and progression. Within this review, we summarize our current understanding of the pathogenesis of endometriosis with an emphasis on the role that inflammation plays in generating not only the progesterone-resistant eutopic endometrium but also a peritoneal microenvironment that may contribute significantly to disease establishment. Viewing endometriosis from the emerging perspective that a progesterone resistant endometrium and an immunologically compromised peritoneal microenvironment are biologically linked risk factors for disease development provides a novel mechanistic framework to identify new therapeutic targets for appropriate medical management. PMID:23598784
A Review of Experimental Evidence Linking Neurotoxic Organophosphorus Compounds and Inflammation
Banks, Christopher N.; Lein, Pamela J.
2012-01-01
Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity. PMID:22342984
Pelvic inflammatory disease (PID) is an infection and inflammation of the uterus, ovaries, and other female reproductive organs. It causes scarring ... United States. Gonorrhea and chlamydia, two sexually transmitted diseases, are the most common causes of PID. Other ...
Using polyphenol derivatives to prevent muscle wasting.
Francaux, Marc; Deldicque, Louise
2018-05-01
To highlight recent evidence for the ability of polyphenols and their derivatives to reduce muscle wasting in different pathological states. From January 2016 to August 2017, four articles dealt with the effects of polyphenols on muscle wasting, which were all carried out in mice. The four studies found that polyphenols reduced muscle mass loss associated with cancer cachexia, acute inflammation or sciatic nerve section. One study even showed that muscle mass was totally preserved when rutin was added to the diet of mice undergoing cancer cachexia. The beneficial effects of polyphenols on muscle wasting were mainly due to a reduction in the activation of the nuclear factor-kappa B pathway, a lower oxidative stress level and a better mitochondrial function. In addition, urolithin B was found to have a testosterone-like effect and to favorably regulate muscle protein balance. During the last 20 months, additional data have been collected about the beneficial effects of rutin, curcumin, quercetin, ellagitanins and urolithin B to limit the loss of muscle mass associated with several pathological states. However, currently, scientific evidence lacks for their use as nutraceuticals in human.
Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome.
Alemany, Marià
2013-01-01
Metabolic syndrome (MS) is a widespread pathologic state that manifests as multiple intertwined diseases affecting the entire body. This review analyzes the contribution of adipose tissue inflammation to its development. The main factor in the appearance of MS is an excess of dietary energy (largely fats), eliciting insulin resistance and creating the problem of excess energy disposal. Under these conditions, amino acid catabolism is diminished, which indirectly alters the production of nitric oxide and affects blood flow regulation. The oxidation of nitric oxide to nitrite and nitrate affects microbiota composition and functions. Adipose tissue cannot incorporate excessive nutrients after cell enlargement and loss of function. Tissue damage is a form of aggression, and the response is proinflammatory cytokine release. Cytokines favor the massive penetration of immune system cells, such as macrophages, which unsuccessfully try to fight an elusive danger for which they are not prepared. The consequence is low-level maintenance of the inflammatory state, which affects endoplasmic reticulum function and the endothelial response to excess regulatory mechanisms affecting blood flow and substrate/oxygen supply. When inflammation becomes chronic, the pathologic consequences are disseminated throughout the body because unused substrates and signals from adipose tissue affect energy partitioning and organ function. This maintenance of an unbalanced state ultimately results in the establishment of MS and associated pathologies. New research should focus on identifying ways to disarm the inflammatory response of adipose tissue when the dangers of dietary excess have already been controlled. Copyright © 2013. Published by Elsevier Inc.
Complications of TNF-α antagonists and iron homeostasis
TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...
Inflaming the Brain: CRPS a model disease to understand Neuroimmune interactions in Chronic Pain
Linnman, C; Becerra, L; Borsook, D
2012-01-01
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS. PMID:23188523
Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain.
Linnman, C; Becerra, L; Borsook, D
2013-06-01
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.
Inflammation--a lifelong companion. Attempt at a non-analytical holistic view.
Ferencík, M; Stvrtinová, V; Hulín, I; Novák, M
2007-01-01
Inflammation is a key component of the immune system. It has important functions in both defense and pathophysiological events maintaining the dynamic homeostasis of a host organism including its tissues, organs and individual cells. On the cellular level it is controlled by more than 400 currently known genes. Their polymorphisms and environmental conditions give rise to different genotypes in human population. Pro-inflammatory genotype, which dominates in the present population, may be advantageous in childhood but not in elderly people because it is characterized by an increased vulnerability to, and intensity of, inflammatory reactions. These reactions may be the possible reasons of chronic inflammatory diseases, especially in old age. Better understanding of complex molecular and cellular inflammatory mechanisms is indispensable for detailed knowledge of pathogenesis of many diseases, their prevention and directed drug therapy. Here we summarize the basic current knowledge on these mechanisms.
Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud
2013-12-01
The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself. © 2013.
Souied, Eric H.; Dugel, Pravin U.; Ferreira, Alberto; Hashmonay, Ron; Lu, Jingsong; Kelly, Simon P.
2016-01-01
ABSTRACT Purpose: Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents including ranibizumab and aflibercept are used to treat patients with ocular disorders such as neovascular age-related macular degeneration (nAMD); however, the injections are associated with rare instances of severe ocular inflammation. This study compared severe ocular inflammation rates in patients treated with ranibizumab versus aflibercept. Methods: United States physician-level claims data covering an 18-month period for each therapy were analyzed. The primary analysis compared severe ocular inflammation event rates per 1000 injections. Sensitivity and subgroup analyses evaluated the impact of factors including intraocular surgery, intravitreal antibiotic administration, and previous intravitreal injections. Results: The analysis included 432,794 injection claims (ranibizumab n = 253,647, aflibercept n = 179,147); significantly, more unique severe ocular inflammation events occurred in patients receiving aflibercept than ranibizumab (1.06/1000 injections, 95% confidence interval [CI], 0.91–1.21, vs. 0.64/1000 injections, 95% CI 0.54–0.74; p < 0.0001). Comparable results were observed for analyses of patients who had undergone glaucoma or cataract surgeries, had antibiotic-associated endophthalmitis, had non-antibiotic-associated endophthalmitis, and were non-treatment-naive. In contrast, no significant differences in severe ocular inflammation claims were recorded in treatment-naive patients who had no record of anti-VEGF treatment in the 6 months preceding the index claim. No significant change occurred in the rate of severe ocular inflammation claims over time following ranibizumab treatment. Conclusions: Severe ocular inflammation was more frequent following intravitreal injection with aflibercept than with ranibizumab during routine clinical use in patients with nAMD. This highlights the importance of real-world, post-approval, observational monitoring of novel medicines, and may aid clinical decision-making, including choice of anti-VEGF agent. PMID:26855278
Karki, Pratap; Birukova, Anna A.
2018-01-01
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH. PMID:29714090
New insights into the impact of neuro-inflammation in rheumatoid arthritis
Fuggle, Nicholas R.; Howe, Franklyn A.; Allen, Rachel L.; Sofat, Nidhi
2014-01-01
Rheumatoid arthritis (RA) is considered to be, in many respects, an archetypal autoimmune disease that causes activation of pro-inflammatory pathways resulting in joint and systemic inflammation. RA remains a major clinical problem with the development of several new therapies targeted at cytokine inhibition in recent years. In RA, biologic therapies targeted at inhibition of tumor necrosis factor alpha (TNFα) have been shown to reduce joint inflammation, limit erosive change, reduce disability and improve quality of life. The cytokine TNFα has a central role in systemic RA inflammation and has also been shown to have pro-inflammatory effects in the brain. Emerging data suggests there is an important bidirectional communication between the brain and immune system in inflammatory conditions like RA. Recent work has shown how TNF inhibitor therapy in people with RA is protective for Alzheimer's disease. Functional MRI studies to measure brain activation in people with RA to stimulus by finger joint compression, have also shown that those who responded to TNF inhibition showed a significantly greater activation volume in thalamic, limbic, and associative areas of the brain than non-responders. Infections are the main risk of therapies with biologic drugs and infections have been shown to be related to disease flares in RA. Recent basic science data has also emerged suggesting that bacterial components including lipopolysaccharide induce pain by directly activating sensory neurons that modulate inflammation, a previously unsuspected role for the nervous system in host-pathogen interactions. In this review, we discuss the current evidence for neuro-inflammation as an important factor that impacts on disease persistence and pain in RA. PMID:25414636
Innate Immune Regulation of Serratia marcescens–Induced Corneal Inflammation and Infection
Zhou, Rong; Zhang, Rui; Sun, Yan; Platt, Sean; Szczotka-Flynn, Loretta; Pearlman, Eric
2012-01-01
Purpose. Serratia marcescens is frequently isolated from lenses of patients with contact lens-associated corneal infiltrates. In the current study, we examined the role of toll-like receptors (TLRs) and interleukin-1 receptor type 1 (IL-1R1) in S. marcescens–induced corneal inflammation and infection. Methods. The central corneal epithelium of C57BL/6 and gene knockout mice was abraded, and 1 × 107 S. marcescens were added in the presence of a silicone hydrogel contact lens, and we examined corneal inflammation by confocal microscopy and neutrophil enumeration. Viable bacteria were quantified by colony-forming units (CFU). Results. S. marcescens induced neutrophil recruitment to the corneal stroma, and increased corneal thickness and haze in C57BL/6 mice. Conversely, CFU was significantly lower by 48 hours post infection. In contrast, MyD88−/−, IL-1R−/−, TLR4−/−, and TLR4/5−/− corneas infected with S. marcescens had significantly increased CFU, indicating impaired clearance. However, there was no significant difference in CFU among C57BL/6, TIRAP−/−, and TRIF−/− mice. Tobramycin-killed S. marcescens induced corneal inflammation in C57BL/6 mice, which was impaired significantly in MD-2−/− mice and in C57BL/6 mice pretreated topically with the MD-2 antagonist eritoran tetrasodium. Conclusions. S. marcescens induces corneal inflammation by activation of TLR4/MD-2/MyD88 and the IL-1R1/MyD88 pathways, which are potential therapeutic targets for inhibition of S. marcescens-induced corneal inflammation. PMID:23033384
Clinical evidence of inflammation driving secondary brain injury: A systematic review
Hinson, Holly E.; Rowell, Susan; Schreiber, Martin
2015-01-01
Background Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. Objectives The goal of this systematic review is to address the question: “What is the evidence in humans that inflammation is linked to secondary brain injury?” As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Data Sources Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Study Eligibility Criteria Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. Appraisal and Synthesis Methods To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Results Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Limitations Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been inadvertently excluded due to use of non-search term key words. Conclusions and Implications of Key Findings Clinical evidence of inflammation causing secondary brain injury in humans is gaining momentum. While inflammation is certainly present, it is not clear from the literature at what juncture inflammation becomes maladaptive, promoting secondary injury rather than facilitating repairand identifying patients with maladaptive inflammation (neuro-inflammation, systemic, or both) after TBI remains elusive. Direct agonism/antagonism represents an exciting target for future study. Level of Evidence Systematic review, level III. PMID:25539220
Oschman, James L; Chevalier, Gaétan; Brown, Richard
2015-01-01
Multi-disciplinary research has revealed that electrically conductive contact of the human body with the surface of the Earth (grounding or earthing) produces intriguing effects on physiology and health. Such effects relate to inflammation, immune responses, wound healing, and prevention and treatment of chronic inflammatory and autoimmune diseases. The purpose of this report is two-fold: to 1) inform researchers about what appears to be a new perspective to the study of inflammation, and 2) alert researchers that the length of time and degree (resistance to ground) of grounding of experimental animals is an important but usually overlooked factor that can influence outcomes of studies of inflammation, wound healing, and tumorigenesis. Specifically, grounding an organism produces measurable differences in the concentrations of white blood cells, cytokines, and other molecules involved in the inflammatory response. We present several hypotheses to explain observed effects, based on current research results and our understanding of the electronic aspects of cell and tissue physiology, cell biology, biophysics, and biochemistry. An experimental injury to muscles, known as delayed onset muscle soreness, has been used to monitor the immune response under grounded versus ungrounded conditions. Grounding reduces pain and alters the numbers of circulating neutrophils and lymphocytes, and also affects various circulating chemical factors related to inflammation. PMID:25848315
Cardiovascular disease in autoimmune rheumatic diseases.
Hollan, Ivana; Meroni, Pier Luigi; Ahearn, Joseph M; Cohen Tervaert, J W; Curran, Sam; Goodyear, Carl S; Hestad, Knut A; Kahaleh, Bashar; Riggio, Marcello; Shields, Kelly; Wasko, Mary C
2013-08-01
Various autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis, spondyloarthritis, vasculitis and systemic lupus erythematosus, are associated with premature atherosclerosis. However, premature atherosclerosis has not been uniformly observed in systemic sclerosis. Furthermore, although experimental models of atherosclerosis support the role of antiphospholipid antibodies in atherosclerosis, there is no clear evidence of premature atherosclerosis in antiphospholipid syndrome (APA). Ischemic events in APA are more likely to be caused by pro-thrombotic state than by enhanced atherosclerosis. Cardiovascular disease (CVD) in ARDs is caused by traditional and non-traditional risk factors. Besides other factors, inflammation and immunologic abnormalities, the quantity and quality of lipoproteins, hypertension, insulin resistance/hyperglycemia, obesity and underweight, presence of platelets bearing complement protein C4d, reduced number and function of endothelial progenitor cells, apoptosis of endothelial cells, epigenetic mechanisms, renal disease, periodontal disease, depression, hyperuricemia, hypothyroidism, sleep apnea and vitamin D deficiency may contribute to the premature CVD. Although most research has focused on systemic inflammation, vascular inflammation may play a crucial role in the premature CVD in ARDs. It may be involved in the development and destabilization of both atherosclerotic lesions and of aortic aneurysms (a known complication of ARDs). Inflammation in subintimal vascular and perivascular layers appears to frequently occur in CVD, with a higher frequency in ARD than in non-ARD patients. It is possible that this inflammation is caused by infections and/or autoimmunity, which might have consequences for treatment. Importantly, drugs targeting immunologic factors participating in the subintimal inflammation (e.g., T- and B-cells) might have a protective effect on CVD. Interestingly, vasa vasorum and cardiovascular adipose tissue may play an important role in atherogenesis. Inflammation and complement depositions in the vessel wall are likely to contribute to vascular stiffness. Based on biopsy findings, also inflammation in the myocardium and small vessels may contribute to premature CVD in ARDs (cardiac ischemia and heart failure). There is an enormous need for an improved CVD prevention in ARDs. Studies examining the effect of DMARDs/biologics on vascular inflammation and CV risk are warranted. Copyright © 2013 Elsevier B.V. All rights reserved.
Fu, Hui; Fang, Peng; Zhou, Hai-Yun; Zhou, Jun; Yu, Xiao-Wei; Ni, Ming; Zheng, Jie-Yan; Jin, You; Chen, Jian-Guo; Wang, Fang; Hu, Zhuang-Li
2016-02-01
Orofacial pain is a common clinical symptom that is accompanied by tooth pain, migraine and gingivitis. Accumulating evidence suggests that acid-sensing ion channels (ASICs), especially ASIC3, can profoundly affect the physiological properties of nociception in peripheral sensory neurons. The aim of this study is to examine the contribution of ASICs in trigeminal ganglion (TG) neurons to orofacial inflammatory pain. A Western blot (WB), immunofluorescence assay of labelled trigeminal ganglion neurons, orofacial formalin test, cell preparation and electrophysiological experiments are performed. This study demonstrated that ASIC1, ASIC2a and ASIC3 are highly expressed in TG neurons innervating the orofacial region of rats. The amplitude of ASIC currents in these neurons increased 119.72% (for ASIC1-like current) and 230.59% (for ASIC3-like current) in the formalin-induced orofacial inflammatory pain model. In addition, WB and immunofluorescence assay demonstrated a significantly augmented expression of ASICs in orofacial TG neurons during orofacial inflammation compared with the control group. The relative protein density of ASIC1, ASIC2a and ASIC3 also increased 58.82 ± 8.92%, 45.30 ± 11.42% and 55.32 ± 14.71%, respectively, compared with the control group. Furthermore, pharmacological blockade of ASICs and genetic deletion of ASIC1 attenuated the inflammation response. These findings indicate that peripheral inflammation can induce the upregulation of ASICs in TG neurons, causing orofacial inflammatory pain. Additionally, the specific inhibitor of ASICs may have a significant analgesic effect on orofacial inflammatory pain. © 2016 John Wiley & Sons Australia, Ltd.
Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review.
Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan; Subbiah, Suresh Kumar
2018-02-13
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections.
Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity
Trim, William; Turner, James E.; Thompson, Dylan
2018-01-01
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350
Santos, Maria José; Pedro, Luís Mendes; Canhão, Helena; Fernandes E Fernandes, José; Canas da Silva, José; Fonseca, João Eurico; Saldanha, Carlota
2011-12-01
Rheological characteristics of blood are strongly linked to atherothrombosis in the general population, but its contribution to atherosclerosis in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) is currently unclear. This work examines the relationship between blood rheology, traditional cardiovascular (CV) risk factors, inflammation and subclinical atherosclerosis in SLE and RA. Whole blood viscosity (WBV), plasma viscosity (PV), erythrocyte deformability (ED), aggregation (EA) and erythrocyte NO production were measured in 197 patients (96 SLE and 101 RA) and compared to 97 controls, all females without previous CV events. Clinical information was obtained and fasting lipids and acute phase reactants were measured. The relationship between hemorheological parameters, CV risk factors and inflammation was assessed in patients and the impact of these variables on carotid intima-media thickness (cIMT) was evaluated in univariate followed by multivariate regression analyses. WBV and ED are significantly lower in patients, while EA is elevated as compared with controls. Hemorheological disturbances correlate with CV risk factors and markers of inflammation and are more profound in patients with metabolic syndrome. Multivariable analysis showed that menopause (OR 34.72, 95%CI 4.44-271.77), obesity (OR 4.09, 95%CI 1.00-16.68) and WBV (OR 3.98; 95%CI 1.23-12.83) are positively associated whereas current corticosteroid dose (OR 0.87; 95%CI 0.78-0.98), and erythrocyte NO production (OR 0.16; 95%CI 0.05-0.52) are negatively associated with cIMT. Disturbed hemorheological parameters in SLE and RA women are related to the presence of CV risk factors and inflammation. WBV and erythrocyte NO are independently associated with the early stages of atherosclerosis. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review
Teh, Seoh Wei; Mok, Pooi Ling; Abd Rashid, Munirah; Bastion, Mae-Lynn Catherine; Ibrahim, Normala; Higuchi, Akon; Murugan, Kadarkarai; Mariappan, Rajan
2018-01-01
Ocular microbial infection has emerged as a major public health crisis during the past two decades. A variety of causative agents can cause ocular microbial infections; which are characterized by persistent and destructive inflammation of the ocular tissue; progressive visual disturbance; and may result in loss of visual function in patients if early and effective treatments are not received. The conventional therapeutic approaches to treat vision impairment and blindness resulting from microbial infections involve antimicrobial therapy to eliminate the offending pathogens or in severe cases; by surgical methods and retinal prosthesis replacing of the infected area. In cases where there is concurrent inflammation, once infection is controlled, anti-inflammatory agents are indicated to reduce ocular damage from inflammation which ensues. Despite advances in medical research; progress in the control of ocular microbial infections remains slow. The varying level of ocular tissue recovery in individuals and the incomplete visual functional restoration indicate the chief limitations of current strategies. The development of a more extensive therapy is needed to help in healing to regain vision in patients. Stem cells are multipotent stromal cells that can give rise to a vast variety of cell types following proper differentiation protocol. Stem cell therapy shows promise in reducing inflammation and repairing tissue damage on the eye caused by microbial infections by its ability to modulate immune response and promote tissue regeneration. This article reviews a selected list of common infectious agents affecting the eye; which include fungi; viruses; parasites and bacteria with the aim of discussing the current antimicrobial treatments and the associated therapeutic challenges. We also provide recent updates of the advances in stem cells studies on sepsis therapy as a suggestion of optimum treatment regime for ocular microbial infections. PMID:29438279
Special Delivery | The UCSB Current
Mitragotri inflammation bioengineering Center for BioEngineering engineering Categories Alumni Business Sciences Staff International Affairs Medicine + Health Students Theater + Dance Environment Archives Topics Arts + Culture Science + Technology Alumni Campus About News@UCSB Public Affairs &
Kianoush, Sina; Yakoob, Mohammad Yawar; Al-Rifai, Mahmoud; DeFilippis, Andrew P; Bittencourt, Marcio S; Duncan, Bruce B; Bensenor, Isabela M; Bhatnagar, Aruni; Lotufo, Paulo A; Blaha, Michael J
2017-06-24
There is a need to identify sensitive biomarkers of early tobacco-related cardiovascular disease. We examined the association of smoking status, burden, time since quitting, and intensity, with markers of inflammation and subclinical atherosclerosis. We studied 14 103 participants without clinical cardiovascular disease in ELSA-Brasil (Brazilian Longitudinal Study of Adult Health). We evaluated baseline cross-sectional associations between smoking parameters and inflammation (high-sensitivity C-reactive protein [hsCRP]) and measures of subclinical atherosclerosis (carotid intima-media thickness, ankle-brachial index, and coronary artery calcium [CAC]). The cohort included 1844 current smokers, 4121 former smokers, and 8138 never smokers. Mean age was 51.7±8.9 years; 44.8% were male. After multivariable adjustment, compared with never smokers, current smokers had significantly higher levels of hsCRP (β=0.24, 0.19-0.29 mg/L; P <0.001) and carotid intima-media thickness (β=0.03, 0.02-0.04 mm; P <0.001) and odds of ankle-brachial index ≤1.0 (odds ratio: 2.52; 95% confidence interval, 2.06-3.08; P <0.001) and CAC >0 (odds ratio: 1.83; 95% confidence interval, 1.46-2.30; P <0.001). Among former and current smokers, pack-years of smoking (burden) were significantly associated with hsCRP ( P <0.001 and P =0.006, respectively) and CAC ( P <0.001 and P =0.002, respectively). Among former smokers, hsCRP and carotid intima-media thickness levels and odds of ankle-brachial index ≤1.0 and CAC >0 were lower with increasing time since quitting ( P <0.01). Among current smokers, number of cigarettes per day (intensity) was positively associated with hsCRP ( P <0.001) and CAC >0 ( P =0.03) after adjusting for duration of smoking. Strong associations were observed between smoking status, burden, and intensity with inflammation (hsCRP) and subclinical atherosclerosis (carotid intima-media thickness, ankle-brachial index, CAC). These markers of early cardiovascular disease injury may be used for the further study and regulation of traditional and novel tobacco products. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Bhatavadekar, Neel B; Williams, Ray C
2009-10-01
New strategies for periodontal disease management have been emerging as more is learned about the role of the host response. Our increasing understanding of inflammation and its resolution has opened the door to the study of new periodontal treatment strategies. This review examines periodontal disease in the light of a new understanding of the role of inflammation in disease expression thus setting the stage for the development of new prevention and treatment strategies of a widespread disease. We examined current publications and focused on articles relating to anti-inflammatory and pro-resolution mechanisms in periodontal disease. Recent research has examined the inflammatory and resolution cascade in greater detail while looking at endogenous and exogenous mediators that can be utilised to achieve therapeutic end-points. The possible introduction of 'resolution indices' for drug testing warrants a new look at pharmacologic agents that might have been overlooked for their beneficial effects in periodontal disease treatment. The emerging awareness of inflammation and its control in periodontal disease management underscores the importance of exploring inflammatory pathways and mediators, thus exploring new ways to control inflammation. This direction of research promises a new era in drug discovery and therapeutics for periodontal disease treatment.
Stecher, Bärbel; Westendorf, Astrid M; Barthel, Manja; Kremer, Marcus; Chaffron, Samuel; Macpherson, Andrew J; Buer, Jan; Parkhill, Julian; Dougan, Gordon; von Mering, Christian; Hardt, Wolf-Dietrich
2007-01-01
Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen. PMID:17760501
Lay, Angelina J.; Liang, Zhong; Rosen, Elliot D.; Castellino, Francis J.
2005-01-01
Anticoagulant protein C (PC) is important not only for maintenance of normal hemostasis, but also for regulating the host immune response during inflammation. Because mice with a designed total genetic deficiency in PC (PC–/– mice) die soon after birth, attempts to dissect PC function in various coagulation/inflammation-based pathologies through use of mice with less than 50% of normal PC levels have not been successful to date. In the current investigation, we have used a novel transgenic strategy to generate different mouse models expressing 1–18% of normal PC levels. In contrast to PC–/– mice, mice with only partial PC deficiency survived beyond birth and also developed thrombosis and inflammation. The onset and severity of these phenotypes vary significantly and are strongly dependent on plasma PC levels. Our findings additionally provide the first evidence that maternal PC is vital for sustaining pregnancy beyond 7.5 days postcoitum, likely by regulating the balance of coagulation and inflammation during trophoblast invasion. These low PC–expressing transgenic mouse lines provide novel animal models that can be used to elucidate the importance of PC in maintenance of the organism and in disease. PMID:15902301
Shimoura, Noriko; Nagai, Hiroshi; Fujiwara, Susumu; Jimbo, Haruki; Yoshimoto, Takayuki; Nishigori, Chikako
2017-05-01
The interleukin (IL)-23/IL-17 axis is strongly implicated in the pathogenesis of psoriasis. Previous studies showed that IL-18 was elevated in early active and progressive plaque-type psoriatic lesions and that serum or plasma levels of IL-18 correlated with the Psoriasis Area and Severity Index. However, the mechanism whereby IL-18 affects disease severity remains unknown. In this study, we investigated the effects of IL-18 on a psoriasis-like skin inflammation model induced by recombinant mouse IL-23. We found that IL-18, cooperatively with IL-23, induced prominent inflammation and enhanced psoriasis-like epidermal hyperplasia. In the skin of mice treated with IL-23 plus IL-18, the expression of interferon-γ was significantly upregulated and that of chemokine (C-X-C motif) ligand 9 (CXCL9) was synergistically increased. Histologically, strong positive signals of CXCL9 were observed around the infiltrating inflammatory cells. The current results suggest that IL-18 might synergize with IL-23 to induce a T helper 1 immune reaction, without inhibiting the IL-23/IL-17 axis, and thus may aggravate psoriatic inflammation.
Role of Inflammation in Diabetic Retinopathy
Rübsam, Anne; Parikh, Sonia; Fort, Patrice E.
2018-01-01
Diabetic retinopathy is a common complication of diabetes and remains the leading cause of blindness among the working-age population. For decades, diabetic retinopathy was considered only a microvascular complication, but the retinal microvasculature is intimately associated with and governed by neurons and glia, which are affected even prior to clinically detectable vascular lesions. While progress has been made to improve the vascular alterations, there is still no treatment to counteract the early neuro-glial perturbations in diabetic retinopathy. Diabetes is a complex metabolic disorder, characterized by chronic hyperglycemia along with dyslipidemia, hypoinsulinemia and hypertension. Increasing evidence points to inflammation as one key player in diabetes-associated retinal perturbations, however, the exact underlying molecular mechanisms are not yet fully understood. Interlinked molecular pathways, such as oxidative stress, formation of advanced glycation end-products and increased expression of vascular endothelial growth factor have received a lot of attention as they all contribute to the inflammatory response. In the current review, we focus on the involvement of inflammation in the pathophysiology of diabetic retinopathy with special emphasis on the functional relationships between glial cells and neurons. Finally, we summarize recent advances using novel targets to inhibit inflammation in diabetic retinopathy. PMID:29565290
Therapeutic Implications of Brain–Immune Interactions: Treatment in Translation
Miller, Andrew H; Haroon, Ebrahim; Felger, Jennifer C
2017-01-01
A wealth of data has been amassed that details a complex, yet accessible, series of pathways by which the immune system, notably inflammation, can influence the brain and behavior. These data have opened the window to a diverse array of novel targets whose potential efficacy is tied to specific neurotransmitters and neurocircuits as well as specific behaviors. What is clear is that the impact of inflammation on the brain cuts across psychiatric disorders and engages dopaminergic and glutamatergic pathways that regulate motivation and motor activity as well as the sensitivity to threat. Given the ability to identify patient populations with increased inflammation, the precision of interventions can be further tuned, in conjunction with the ability to establish target engagement in the brain through the use of multiple neuroimaging strategies. After a brief overview of the mechanisms by which inflammation affects the brain and behavior, this review examines the extant literature on the efficacy of anti-inflammatory treatments, while forging guidelines for future intelligent clinical trial design. An examination of the most promising therapeutic strategies is also provided, along with some of the most exciting clinical trials that are currently being planned or underway. PMID:27555382
Autism spectrum disorder in children born preterm—role of exposure to perinatal inflammation
Meldrum, Suzanne J.; Strunk, T.; Currie, A.; Prescott, S. L.; Simmer, K.; Whitehouse, A. J. O.
2013-01-01
Autism Spectrum Disorder (ASD) is the collective term for neurodevelopmental disorders characterized by qualitative impairments in social interaction, communication, and a restricted range of activities and interests. Many countries, including Australia, have reported a dramatic increase in the number of diagnoses over the past three decades, with current prevalence of ASD at 1 in every 110 individuals (~1%). The potential role for an immune-mediated mechanism in ASD has been implicated by several studies, and some evidence suggests a potential link between prenatal infection-driven inflammation and subsequent development of ASD. Furthermore, a modest number of contemporary studies have reported a markedly increased prevalence of ASD in children born preterm, who are at highest risk of exposure to perinatal inflammation. However, the mechanisms that underpin the susceptibility to infection-driven inflammation during pregnancy and risk of preterm birth, and how these intersect with the subsequent development of ASD in the offspring, is not understood. This review aims to summarize and discuss the potential mechanisms and evidence for the role of prenatal infection on the central nervous system, and how it may increase the susceptibility for ASD pathogenesis in children born preterm. PMID:23885233
Chapman, Karen E.; Coutinho, Agnes E.; Zhang, Zhenguang; Kipari, Tiina; Savill, John S.; Seckl, Jonathan R.
2013-01-01
Since the discovery of cortisone in the 1940s and its early success in treatment of rheumatoid arthritis, glucocorticoids have remained the mainstay of anti-inflammatory therapies. However, cortisone itself is intrinsically inert. To be effective, it requires conversion to cortisol, the active glucocorticoid, by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Despite the identification of 11β-HSD in liver in 1953 (which we now know to be 11β-HSD1), its physiological role has been little explored until recently. Over the past decade, however, it has become apparent that 11β-HSD1 plays an important role in shaping endogenous glucocorticoid action. Acute inflammation is more severe with 11β-HSD1-deficiency or inhibition, yet in some inflammatory settings such as obesity or diabetes, 11β-HSD1-deficiency/inhibition is beneficial, reducing inflammation. Current evidence suggests both beneficial and detrimental effects may result from 11β-HSD1 inhibition in chronic inflammatory disease. Here we review recent evidence pertaining to the role of 11β-HSD1 in inflammation. This article is part of a Special Issue entitled ‘CSR 2013’. PMID:23435016
Exercise Prevents Mental Illness
NASA Astrophysics Data System (ADS)
Purnomo, K. I.; Doewes, M.; Giri, M. K. W.; Setiawan, K. H.; Wibowo, I. P. A.
2017-03-01
Multiple current studies show that neuroinflammation may contribute to mental illness such as depression, anxiety, and mood disorder. Chronic inflammation in peripheral tissues is indicated by the increase of inflammatory marker like cytokine IL-6, TNF-α, and IL-1β. Pro-inflammatory cytokine in peripheral tissues can reach brain tissues and activate microglia and it causes neuroinflammation. Psychological stress may led peripheral and central inflammation. Activated microglia will produce pro-inflammatory cytokine, ROS, RNS, and tryptophan catabolizes. This neuroinflammation can promote metabolism changes of any neurotransmitter, such as serotonin, dopamine, and glutamate that will influence neurocircuit in the brain including basal ganglia and anterior cingulated cortex. It leads to mental illness. Exercise give contribution to reduce tissue inflammation. When muscle is contracting in an exercise, muscle will produce the secretion of cytokine like IL-6, IL-1ra, and IL-10. It will react as anti-inflammation and influence macrophage, T cell, monosit, protein Toll-Like Receptor (TLR), and then reduce neuroinflammation, characterised by the decrease of pro-inflammatory cytokine and prevent the activation of microglia in the brain. The objective of the present study is to review scientific articles in the literature related to the contribution of exercise to prevent and ease mental illness.
Hasselbalch, Hans C
2014-02-01
A novel murine model for myeloproliferative neoplasms (MPNs) generated by overexpression of the transcription factor NF-E2 has recently been described. Sustained overexpression of NF-E2 in this model induced myeloid expansion with anemia, leukocytosis and thrombocytosis. Herein, it is debated if NF-E2 overexpression also might have induced a sustained state of in vivo leukocyte and platelet activation with chronic and self-perpetuating production of inflammatory products from activated leukocytes and platelets. If so, this novel murine model also may excellently describe the deleterious impact of sustained chronic NF-E2 overexpression during uncontrolled chronic inflammation upon the hematopoietic system--the development of clonal myeloproliferation. Accordingly, this novel murine model may also have delivered the proof of concept of chronic inflammation as a trigger and driver of clonal evolution in MPNs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Translational applications of evaluating physiologic variability in human endotoxemia
Scheff, Jeremy D.; Mavroudis, Panteleimon D.; Calvano, Steve E.; Androulakis, Ioannis P.
2012-01-01
Dysregulation of the inflammatory response is a critical component of many clinically challenging disorders such as sepsis. Inflammation is a biological process designed to lead to healing and recovery, ultimately restoring homeostasis; however, the failure to fully achieve those beneficial results can leave a patient in a dangerous persistent inflammatory state. One of the primary challenges in developing novel therapies in this area is that inflammation is comprised of a complex network of interacting pathways. Here, we discuss our approaches towards addressing this problem through computational systems biology, with a particular focus on how the presence of biological rhythms and the disruption of these rhythms in inflammation may be applied in a translational context. By leveraging the information content embedded in physiologic variability, ranging in scale from oscillations in autonomic activity driving short-term heart rate variability (HRV) to circadian rhythms in immunomodulatory hormones, there is significant potential to gain insight into the underlying physiology. PMID:23203205
Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease
Wollny, Tomasz; Wątek, Marzena; Durnaś, Bonita; Niemirowicz, Katarzyna; Piktel, Ewelina; Żendzian-Piotrowska, Małgorzata; Góźdź, Stanisław; Bucki, Robert
2017-01-01
Beyond their role as structural molecules, sphingolipids are involved in many important cellular processes including cell proliferation, apoptosis, inflammation, and migration. Altered sphingolipid metabolism is observed in many pathological conditions including gastrointestinal diseases. Inflammatory bowel disease (IBD) represents a state of complex, unpredictable, and destructive inflammation of unknown origin within the gastrointestinal tract. The mechanisms explaining the pathophysiology of IBD involve signal transduction pathways regulating gastro-intestinal system’s immunity. Progressive intestinal tissue destruction observed in chronic inflammation may be associated with an increased risk of colon cancer. Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, functions as a cofactor in inflammatory signaling and becomes a target in the treatment of IBD, which might prevent its conversion to cancer. This paper summarizes new findings indicating the impact of (S1P) on IBD development and IBD-associated carcinogenesis. PMID:28362332
Anti-inflammatory effects of insulin.
Dandona, Paresh; Chaudhuri, Ajay; Mohanty, Priya; Ghanim, Husam
2007-07-01
This review deals with the recent observations on the pro-inflammatory effects of glucose and the anti-inflammatory actions of insulin. Apart from being novel, they are central to our understanding of why hyperglycemia is a prognosticator of bad clinical outcomes including patients with acute coronary syndromes, stroke and in patients in the intensive care unit. The pro-inflammatory effect of glucose as well as that of other macronutrients including fast food meals provides the basis of chronic oxidative stress and inflammation in the obese and their propensity to atherosclerotic disease. The anti-inflammatory action of insulin provides a neutralizing effect to balance macronutrient induced inflammation on the one hand and the possibility of using insulin as an anti-inflammatory drug on the other. The actions of macronutrients and insulin described above explain why insulin resistant states like obesity and type 2 diabetes are associated with oxidative stress, inflammation and atherosclerosis. They also suggest that insulin may be antiatherogenic.
Sleep Disturbance, Inflammation and Depression Risk in Cancer Survivors
Irwin, Michael R.; Olmstead, Richard E.; Ganz, Patricia A.; Haque, Reina
2012-01-01
Over two-thirds of the 11.4 million cancer survivors in the United States can expect long-term survival, with many others living with cancer as a chronic disease controlled by ongoing therapy. However, behavioral co-morbidities often arise during treatment and persist long-term to complicate survival and reduce quality of life. In this review, the inter-relationships between cancer, depression, and sleep disturbance are described, with a focus on the role of sleep disturbance as a risk factor for depression. Increasing evidence also links alterations in inflammatory biology dynamics to these long-term effects of cancer diagnosis and treatment, and the hypothesis that sleep disturbance drives inflammation, which together contribute to depression, is discussed. Better understanding of the associations between inflammation and behavioral co-morbidities has the potential to refine prediction of risk and development of strategies for the prevention and treatment of sleep disturbance and depression in cancer survivors. PMID:22634367
Viral meningitis and encephalitis.
Tuppeny, Misti
2013-09-01
Meningitis is an inflammation of the meninges, whereas encephalitis is inflammation of the parenchymal brain tissue. The single distinguishing element between the 2 diagnoses is the altered state of consciousness, focal deficits, and seizures found in encephalitis. Consequently meningoencephalitis is a term used when both findings are present in the patient. Viral meningitis is not necessarily reported as it is often underdiagnosed, whereas encephalitis cases are on the increase in various areas of North America. Improved imaging and viral diagnostics, as well as enhanced neurocritical care management, have improved patient outcomes to date. Copyright © 2013 Elsevier Inc. All rights reserved.
Affective reactivity to daily stressors is associated with elevated inflammation.
Sin, Nancy L; Graham-Engeland, Jennifer E; Ong, Anthony D; Almeida, David M
2015-12-01
Inflammation increases the risk of chronic diseases, but the links between emotional responses to daily events and inflammation are unknown. We examined individual differences in affective reactivity to daily stressors (i.e., changes in positive and negative affect in response to stressors) as predictors of inflammatory markers interleukin-6 (IL-6) and C-reactive protein (CRP). A cross-sectional sample of 872 adults from the National Study of Daily Experiences (substudy of Midlife in the United States II) reported daily stressors and affect during telephone interviews for 8 days. Blood samples were obtained at a separate clinic visit and assayed for inflammatory markers. Multilevel models estimated trait affective reactivity slopes for each participant, which were inputted into regression models to predict inflammation. People who experienced greater decreases in positive affect on days when stressors occurred (i.e., positive affect reactivity) had elevated log IL-6, independent of demographic, physical, psychological, and behavioral factors (B = 1.12, SE = 0.45, p = .01). Heightened negative affect reactivity was associated with higher log CRP among women (p = .03) but not men (p = .57); health behaviors accounted for this association in women. Adults who fail to maintain positive affect when faced with minor stressors in everyday life appear to have elevated levels of IL-6, a marker of inflammation. Women who experience increased negative affect when faced with minor stressors may be at particular risk of elevated inflammation. These findings add to growing evidence regarding the health implications of affective reactivity to daily stressors. (c) 2015 APA, all rights reserved).
Affective reactivity to daily stressors is associated with elevated inflammation
Sin, Nancy L.; Graham-Engeland, Jennifer E.; Ong, Anthony D.; Almeida, David M.
2015-01-01
Objective Inflammation increases the risk of chronic diseases, but the links between emotional responses to daily events and inflammation are unknown. We examined individual differences in affective reactivity to daily stressors (i.e., changes in positive and negative affect in response to stressors) as predictors of inflammatory markers interleukin-6 (IL-6) and C-reactive protein (CRP). Methods A cross-sectional sample of 872 adults from the National Study of Daily Experiences (sub-study of Midlife in the United States II) reported daily stressors and affect during telephone interviews for 8 days. Blood samples were obtained at a separate clinic visit and assayed for inflammatory markers. Multilevel models estimated trait affective reactivity slopes for each participant, which were inputted into regression models to predict inflammation. Results People who experienced greater decreases in positive affect on days when stressors occurred (i.e, positive affect reactivity) had elevated log IL-6, independent of demographic, physical, psychological, and behavioral factors (B = 1.12, SE = 0.45, p = 0.01). Heightened negative affect reactivity was associated with higher log CRP among women (p = 0.03) but not men (p = 0.57); health behaviors accounted for this association in women. Conclusions Adults who fail to maintain positive affect when faced with minor stressors in everyday life appear to have elevated levels of IL-6, a marker of inflammation. Women who experience increased negative affect when faced with minor stressors may be at particular risk of elevated inflammation. These findings add to growing evidence regarding the health implications of affective reactivity to daily stressors. PMID:26030309
Matsumoto, Cal S; Zasloff, Michael A; Fishbein, Thomas M
2014-06-01
The purpose of this review is to highlight the similarities between inflammatory bowel disease and the state of the intestine allograft after transplantation. The mutant nucleotide-binding oligomerization protein 2 (NOD2) gene, which encodes for an intracellular protein that serves as an innate immune system microbial sensor in macrophages, dendritic cells, and certain intestinal epithelial cells, has been recognized as a risk factor in Crohn's disease. Similarly, recent studies have also highlighted the contribution the NOD2 mutation may have on intestinal failure itself. More specifically, in intestinal transplant recipients with the NOD2 mutation, the discovery of the reduced ability to prevent bacterial clearance, increased enterocyte stress response, and failure of key downstream expression of important cytokines and growth factors have been implicated as major factors in intestinal transplant outcomes, namely graft loss and septic death. Treatment strategies with anti tumor necrosis factor (TNF) α, similar to inflammatory bowel disease, have been employed in intestinal transplantation with promising results. In intestinal transplantation, there is evidence that the classical alloimmunity pathways that lead toward graft dysfunction and eventual graft loss may, in fact, be working in concert with a disordered innate immune system to produce a state of chronic inflammation not unlike that seen in inflammatory bowel disease.
Iron Supplementation Decreases Severity of Allergic Inflammation in Murine Lung
Hale, Laura P.; Kant, Erin Potts; Greer, Paula K.; Foster, W. Michael
2012-01-01
The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans. PMID:23029172
The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.
Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo
2017-02-01
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Penas Steinhardt, Alberto; López, Ariel Pablo; González, Claudio Daniel; Vilariño, Jorge; Frechtel, Gustavo Daniel; Cerrone, Gloria Edith
2017-01-01
The Metabolic Syndrome (MetS) is a cluster of cardiometabolic risk factors, usually accompanied by the presence of insulin resistance (IR) and a systemic subclinical inflammation state. Metabolically healthy obese (MHO) individuals seem to be protected against cardiometabolic complications. The aim of this work was to characterize phenotypically the low-grade inflammation and the IR in MHO individuals in comparison to obese individuals with MetS and control non obese. We studied two different populations: 940 individuals from the general population of Buenos Aires and 518 individuals from the general population of Venado Tuerto; grouped in three groups: metabolically healthy non-obese individuals (MHNO), MHO and obese individuals with MetS (MSO). Inflammation was measured by the levels of hs-CRP (high-sensitivity C reactive protein), and we found that MHO presented an increase in inflammation when compared with MHNO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but they did not differ from MSO. To evaluate IR we analyzed the HOMA (Homoeostatic Model Assessment) values, and we found differences between MHO and MSO (Buenos Aires: p<0.001; Venado Tuerto: p<0.001), but not between MHNO and MHO. In conclusion, MHO group would be defined as a subgroup of obese individuals with an intermediate phenotype between MHNO and MSO individuals considering HOMA, hs-CRP and central obesity. PMID:29284058
Lin, Zih-Chan; Lee, Chiang-Wen; Tsai, Ming-Horng; Ko, Horng-Huey; Fang, Jia-You; Chiang, Yao-Chang; Liang, Chan-Jung; Hsu, Lee-Fen; Hu, Stephen Chu-Sung; Yen, Feng-Lin
2016-01-01
Exposure to particulate matter (PM), a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical applications. To address these issues, we successfully synthesized a eupafolin nanoparticle delivery system (ENDS). Our findings showed that ENDS could overcome the physicochemical drawbacks of raw eupafolin with respect to water solubility and skin penetration, through reduction of particle size and formation of an amorphous state with hydrogen bonding. Moreover, ENDS was superior to raw eupafolin in attenuating PM-induced oxidative stress and inflammation in HaCaT keratinocytes, by mediating the antioxidant pathway (decreased reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activity) and anti-inflammation pathway (decreased cyclooxygenase-2 expression and prostaglandin E2 production through downregulation of mitogen-activated protein kinase and nuclear factor-κB signaling). In summary, ENDS shows better antioxidant and anti-inflammatory activities than raw eupafolin through improvement of water solubility and skin penetration. Therefore, ENDS may potentially be used as a medicinal drug and/or cosmeceutical product to prevent PM-induced skin inflammation. PMID:27570454
Lopez-Legarrea, Patricia; de la Iglesia, Rocio; Abete, Itziar; Navas-Carretero, Santiago; Martinez, J Alfredo; Zulet, M Angeles
2014-04-01
The aim of this study was to compare the effect of two energy-restricted, differing with regard to protein content, on the inflammation state of obese individuals with features of metabolic syndrome. Ninety-six participants completed an 8-wk randomized intervention trial that compared the RESMENA diet (-30% energy, with 30% energy from protein) with a control diet (-30% energy, with 15% energy from protein) that was based on American Heart Association criteria. The mean body weight losses were 7.09 ± 0.82 kg and 6.73 ± 0.71 kg, respectively, with no differences seen between the groups. The endpoint inflammation score-which was based on high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-α, and plasminogen activator inhibitor-1 levels-was significantly lower (P = 0.012) in the low-protein group (6.81 ± 2.32 versus 7.94 ± 1.94). The linear regression analyses revealed that total protein intake was positively associated with inflammation (P = 0.007) as well as with animal protein (P = 0.025) and meat protein (P = 0.015), but neither vegetable- nor fish-derived proteins were found to influence inflammatory status. Our results suggest that the type of protein consumed (more than the total protein consumed) within an energy-restricted diet influences the inflammation status associated with obesity-related comorbidities. Copyright © 2014 Elsevier Inc. All rights reserved.
Nuclear receptors and nonalcoholic fatty liver disease1
Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.
2016-01-01
Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic side effects. The impact of nuclear receptor crosstalk in NAFLD is likely to be profound, but requires further elucidation. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie. PMID:26962021
Voit, Eberhard O
2009-01-01
Modern advances in molecular biology have produced enormous amounts of data characterizing physiological and disease states in cells and organisms. While bioinformatics has facilitated the organizing and mining of these data, it is the task of systems biology to merge the available information into dynamic, explanatory and predictive models. This article takes a step into this direction. It proposes a conceptual approach toward formalizing health and disease and illustrates it in the context of inflammation and preconditioning. Instead of defining health and disease states, the emphasis is on simplexes in a high-dimensional biomarker space. These simplexes are bounded by physiological constraints and permit the quantitative characterization of personalized health trajectories, health risk profiles that change with age, and the efficacy of different treatment options. The article mainly focuses on concepts but also briefly describes how the proposed concepts might be formulated rigorously within a mathematical framework.
Mullen, Liam; Chew, Pei Gee; Frost, Frederick; Ahmed, Ayesha; Khand, Aleem
2016-01-01
In cardiac magnetic resonance imaging, hyperenhancement of the pericardium post gadolinium administration in acute chest pain often signifies pericarditis with an acute inflammatory response and neovascularization. In the context of constrictive pericarditis, case series have indicated that the intensity of hyperenhancement and the thickness of the pericardium imply reversibility of the physiology of the constrictive pericarditis. We present a case of intense hyperenhancement and marked thickening of the pericardium in a patient with constrictive pericarditis with antecedent chest pain. Surgical resection of the pericardium and microscopy revealed a chronic fibrotic state with no evidence of inflammation or neovascularization, thus clarifying the failure of initial medical/anti-inflammatory treatment. Our case highlights the fact that hyperenhancement of the pericardium post gadolinium is non-specific for histology and does not necessarily imply the reversibility of pericardial constriction. © 2016 S. Karger AG, Basel.
THE SPONTANEOUSLY HYPERTENSIVE RAT: AN EXPERIMENTAL MODEL OF SULFUR DIOXIDE-INDUCED AIRWAYS DISEASE
Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction, inflammation and mucus hypersecretion; features that capture bronchitis, emphysema and often asthma. However, current rodent models do not reflect this human disease. Because genetically predisp...
New advances in molecular mechanisms and emerging therapeutic targets in alcoholic liver diseases
Williams, Jessica A; Manley, Sharon; Ding, Wen-Xing
2014-01-01
Alcoholic liver disease is a major health problem in the United States and worldwide. Chronic alcohol consumption can cause steatosis, inflammation, fibrosis, cirrhosis and even liver cancer. Significant progress has been made to understand key events and molecular players for the onset and progression of alcoholic liver disease from both experimental and clinical alcohol studies. No successful treatments are currently available for treating alcoholic liver disease; therefore, development of novel pathophysiological-targeted therapies is urgently needed. This review summarizes the recent progress on animal models used to study alcoholic liver disease and the detrimental factors that contribute to alcoholic liver disease pathogenesis including miRNAs, S-adenosylmethionine, Zinc deficiency, cytosolic lipin-1β, IRF3-mediated apoptosis, RIP3-mediated necrosis and hepcidin. In addition, we summarize emerging adaptive protective effects induced by alcohol to attenuate alcohol-induced liver pathogenesis including FoxO3, IL-22, autophagy and nuclear lipin-1α. PMID:25278688
The aryl hydrocarbon receptor: multitasking in the immune system.
Stockinger, Brigitta; Di Meglio, Paola; Gialitakis, Manolis; Duarte, João H
2014-01-01
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Assessment of U.S. Pediatrician Knowledge of Toxocariasis.
Woodhall, Dana M; Garcia, Amanda P; Shapiro, Craig A; Wray, Shequenta L; Shane, Andi L; Mani, Chitra S; Stimpert, Kelly K; Fox, LeAnne M; Montgomery, Susan P
2017-10-01
Toxocariasis, one of a group of parasitic diseases known as neglected parasitic infections, is a disease caused by the larvae of two species of Toxocara roundworms, Toxocara canis , from dogs, and less commonly Toxocara cati , from cats. Although most infected individuals are asymptomatic, clinical manifestations may include fever, fatigue, coughing, wheezing, or abdominal pain (visceral toxocariasis) or vision loss, retina damage, or eye inflammation (ocular toxocariasis). To assess U.S. pediatrician knowledge of toxocariasis, we conducted an electronic survey of American Academy of Pediatrics members. Of the 2,684 respondents, 1,120 (47%) pediatricians correctly selected toxocariasis as the diagnosis in an unknown case presentation with findings typical for toxocariasis; overall 1,695 (85%) stated they were not confident that their knowledge of toxocariasis was current. This knowledge gap suggests a need for improved toxocariasis awareness and education for U.S. pediatricians, especially those caring for children at risk for infection.
The role of dietary fibre in inflammatory bowel disease.
Pituch-Zdanowska, Aleksandra; Banaszkiewicz, Aleksandra; Albrecht, Piotr
2015-01-01
The aetiology of inflammatory bowel diseases (IBD), which are primarily Crohn's disease and ulcerative colitis, still remains unclear, while the incidence of IBD is constantly increasing, especially in the industrialised countries. Among genetic, environmental, and immunological factors, changes in the composition of the intestinal microflora and diet are indicated as very important in initiating and sustaining inflammation in patients with IBD. Above all nutrients dietary fibre is an especially important component of diet in the context of IBD. A potentially protective effect of high-fibre diet on intestinal disorders was described as early as in 1973. Several trials performed in animal models of IBD and human studies have reported that supplementation of some types of dietary fibre can prolong remission and reduce lesions of the intestinal mucosa during the course of the disease. This paper presents the current state of knowledge on the effects of dietary fibre in IBD.
Roth, Joachim
2006-09-01
The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.
[Immunomodulatory properties of stem mesenchymal cells in autoimmune diseases].
Sánchez-Berná, Isabel; Santiago-Díaz, Carlos; Jiménez-Alonso, Juan
2015-01-20
Autoimmune diseases are a cluster of disorders characterized by a failure of the immune tolerance and a hyperactivation of the immune system that leads to a chronic inflammation state and the damage of several organs. The medications currently used to treat these diseases usually consist of immunosuppressive drugs that have significant systemic toxic effects and are associated with an increased risk of opportunistic infections. Recently, several studies have demonstrated that mesenchymal stem cells have immunomodulatory properties, a feature that make them candidates to be used in the treatment of autoimmune diseases. In the present study, we reviewed the role of this therapy in the treatment of systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, Crohn's disease and multiple sclerosis, as well as the potential risks associated with its use. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.
PARPs and ADP-Ribosylation: 50 Years … and Counting.
Kraus, W Lee
2015-06-18
Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. Copyright © 2015 Elsevier Inc. All rights reserved.
Inflammasome Activity in Non-Microbial Lung Inflammation
Ather, Jennifer L.; Martin, Rebecca A.; Ckless, Karina; Poynter, Matthew E.
2015-01-01
The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer. PMID:25642415
Platelet–neutrophil interactions under thromboinflammatory conditions
Li, Jing; Kim, Kyungho; Barazia, Andrew; Tseng, Alan
2015-01-01
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet–neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet–neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet– neutrophil interactions in thromboinflammatory disease. PMID:25650236
INTESTINAL ALKALINE PHOSPHATASE: A SUMMARY OF ITS ROLE IN CLINICAL DISEASE
Fawley, Jason; Gourlay, David
2016-01-01
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP’s physiologic function, mechanisms of action and current research in specific surgical diseases. PMID:27083970
Lamonaca, Palma; Prinzi, Giulia; Kisialiou, Aliaksei; Cardaci, Vittorio; Fini, Massimo; Russo, Patrizia
2017-03-20
Metabolic disorder has been frequently observed in chronic obstructive pulmonary disease (COPD) patients. However, the exact correlation between obesity, which is a complex metabolic disorder, and COPD remains controversial. The current study summarizes a variety of drugs from marine sources that have anti-obesity effects and proposed potential mechanisms by which lung function can be modulated with the anti-obesity activity. Considering the similar mechanism, such as inflammation, shared between obesity and COPD, the study suggests that marine derivatives that act on the adipose tissues to reduce inflammation may provide beneficial therapeutic effects in COPD subjects with high body mass index (BMI).
Radiotracers Used for the Scintigraphic Detection of Infection and Inflammation
Tsopelas, Chris
2015-01-01
Over the last forty years, a small group of commercial radiopharmaceuticals have found their way into routine medical use, for the diagnostic imaging of patients with infection or inflammation. These molecular radiotracers usually participate in the immune response to an antigen, by tagging leukocytes or other molecules/cells that are endogenous to the process. Currently there is an advancing effort by researchers in the preclinical domain to design and develop new agents for this application. This review discusses radiopharmaceuticals used in the nuclear medicine clinic today, as well as those potential radiotracers that exploit an organism's defence mechanisms to an infectious or inflammatory event. PMID:25741532
Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.
Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R
2014-06-20
This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. © 2014 American Heart Association, Inc.
The unfolded protein response in immunity and inflammation
Grootjans, Joep; Kaser, Arthur; Kaufman, Randal J.; Blumberg, Richard S.
2017-01-01
The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses. PMID:27346803
Blessman, Donna Jean
2008-01-01
Advanced practice nurses are faced with the clinical challenge of recognizing risk factors for chronic hepatitis C, not only in the native-born population, but also in the immigrant populations in the United States. Hispanics/Latinos constitute 13% of the U.S. population and are the fastest growing minority in the United States. A greater understanding of chronic hepatitis C in this populace was accomplished by reviewing current literature in the areas of natural history, epidemiology of risk factors, screening practices, and therapy outcomes. This review serves as a foundation for the creation of a culturally competent assessment tool for the screening of chronic hepatitis C in this population. The information from the literature review suggests that Hispanics/Latinos have an overall prevalence rate for chronic hepatitis C of 2.6%; have faster liver fibrosis progression rates; are infected at an earlier age; are more likely to be HIV coinfected; and show significantly higher alanine transaminase, aspartate transaminase, and bilirubin levels. They also have more portal inflammation than do Caucasians and African Americans and a higher prevalence of cirrhosis than do African Americans--more so in Hispanic women than in Hispanic men. Transfusion, tattoos, and iatrogenic transfer are risk factors that need to be assessed.
Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.
2016-01-01
Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992
Obesity's effect on asthma extends to diagnostic criteria.
Lugogo, Njira; Green, Cynthia L; Agada, Noah; Zhang, Siyi; Meghdadpour, Susanne; Zhou, Run; Yang, Siyun; Anstrom, Kevin J; Israel, Elliot; Martin, Richard; Lemanske, Robert F; Boushey, Homer; Lazarus, Stephen C; Wasserman, Stephen I; Castro, Mario; Calhoun, William; Peters, Stephen P; DiMango, Emily; Chinchilli, Vernon; Kunselman, Susan; King, Tonya S; Icitovic, Nikolina; Kraft, Monica
2018-03-01
The use of inflammatory biomarkers to delineate the type of lung inflammation present in asthmatic subjects is increasingly common. However, the effect of obesity on these markers is unknown. We aimed to determine the effect of obesity on conventional markers of inflammation in asthmatic subjects. We performed secondary analysis of data from 652 subjects previously enrolled in 2 Asthma Clinical Research Network trials. We performed linear correlations between biomarkers and logistic regression analysis to determine the predictive value of IgE levels, blood eosinophil counts, and fraction of exhaled nitric oxide values in relationship to sputum eosinophil counts (>2%), as well as to determine whether cut points existed that would maximize the sensitivity and specificity for predicting sputum eosinophilia in the 3 weight groups. Overall, statistically significant but relatively weak correlations were observed among all 4 markers of inflammation. Within obese subjects, the only significant correlation found was between IgE levels and blood eosinophil counts (r = 0.33, P < .001); furthermore, all other correlations between inflammatory markers were approximately 0, including correlations with sputum eosinophil counts. In addition, the predictive value of each biomarker alone or in combination was poor in obese subjects. In fact, in obese subjects none of the biomarkers of inflammation significantly predicted the presence of high sputum eosinophil counts. Obese asthmatic subjects have lower cut points for IgE levels (268 IU), fraction of exhaled nitric oxide values (14.5 ppb), and blood eosinophil counts (96 cells/μL) than all other groups. In obese asthmatic subjects conventional biomarkers of inflammation are poorly predictive of eosinophilic airway inflammation. As such, biomarkers currently used to delineate eosinophilic inflammation in asthmatic subjects should be approached with caution in these subjects. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background Current evidence suggests a central role for autophagy in many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Furthermore, it is well admitted that inflammation contributes to the progression of these diseases. Interestingly, crosstalks between autophagy and inflammation have been reported in vitro and at the peripheral level such as in Crohn’s disease. However, the impact of systemic inflammation on autophagic components in the brain remains to be documented. Therefore, this study monitored autophagy markers after acute and chronic lipopolysaccharide (LPS)-induced inflammatory stress in mice. Results We showed that acute inflammation, 24 h post-intraperitoneal 10 mg/kg LPS, substantially increased cytokine production (Interleukin(IL)-1β, Tumor necrosis factor (TNF)-α and IL-6), decreased the levels of autophagy markers (Beclin-1, p62 and LC3 II) and reduced p70S6K activation in cortex and hippocampus. In hippocampus, IL-1β levels and LC3 II expression were positively and highly correlated and a negative correlation was noted between TNF-α levels and p70S6K activation. Chronic inflammation by injection of 0.5 mg/kg LPS every three days during three months led to a moderate IL-1β production and decreased TNF-α levels. Interestingly, Beclin-1 and LC3 II levels decreased while those of p62 increased. Cortical IL-1β levels positively correlated with Beclin-1 and LC3 II and on the contrary inversely correlated with p62. Conclusion The present study is the first showing links between IL-1β-mediated inflammation and autophagy in the brain. It could open to new therapeutic strategies in brain diseases where regulation impairment of inflammation and autophagy progress with the severity of diseases. PMID:25169902
Alfonso, Helman; Franklin, Peter; Ching, Simon; Croft, Kevin; Burcham, Phil; Olsen, Nola; Reid, Alison; Joyce, David; de Klerk, Nick; Musk, Aw Bill
2015-10-01
Many of the pathological consequences in the lung following inhalation of asbestos fibres arise as a consequence of persistent oxidative stress and inflammation. Inflammatory responses can be observed in asymptomatic asbestos-exposed individuals. There are currently no interventions to reduce inflammatory or oxidative responses to asbestos before disease develops. We investigated the effects of oral N-acetylcysteine (NAC) on indicators of inflammation or oxidative stress in asymptomatic people previously exposed to asbestos. A double-blind, randomized, placebo-controlled study was conducted to assess the effectiveness and safety of 1800 mg of NAC given orally over a period of 4 months. This was a proof of principle study. Effectiveness was assessed using indicators of inflammation or oxidation as primary end-points. Serum levels of total combined thiols (cysteine, cysteinylglycine, glutathione and homocysteine) were used to monitor the NAC supplementation. Thirty-four subjects were randomly allocated to NAC and 32 to placebo. Serum levels of total combined thiols were similar between the groups after intervention. There were no differences in levels of inflammatory or oxidative stress end-points between the groups. No adverse effects were identified. No evidence was found that NAC supplementation replenishes total combined thiols in the blood of healthy subjects with a history of asbestos exposure. There was also no evidence of reduced indicators of inflammation or oxidative stress. Further studies should determine the conditions required to increase levels of total anti-oxidant capacity in the blood and in the lungs of subjects with either asbestos-related diseases or subclinical lung inflammation. © 2015 Asian Pacific Society of Respirology.
Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy
2018-01-01
Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.
Update on inflammation in chronic kidney disease.
Akchurin, Oleh M; Kaskel, Frederick
2015-01-01
Despite recent advances in chronic kidney disease (CKD) and end-stage renal disease (ESRD) management, morbidity and mortality in this population remain exceptionally high. Persistent, low-grade inflammation has been recognized as an important component of CKD, playing a unique role in its pathophysiology and being accountable in part for cardiovascular and all-cause mortality, as well as contributing to the development of protein-energy wasting. The variety of factors contribute to chronic inflammatory status in CKD, including increased production and decreased clearance of pro-inflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, including those related to dialysis access, altered metabolism of adipose tissue, and intestinal dysbiosis. Inflammation directly correlates with the glomerular filtration rate (GFR) in CKD and culminates in dialysis patients, where extracorporeal factors, such as impurities in dialysis water, microbiological quality of the dialysate, and bioincompatible factors in the dialysis circuit play an additional role. Genetic and epigenetic influences contributing to inflammatory activation in CKD are currently being intensively investigated. A number of interventions have been proposed to target inflammation in CKD, including lifestyle modifications, pharmacological agents, and optimization of dialysis. Importantly, some of these therapies have been recently tested in randomized controlled trials. Chronic inflammation should be regarded as a common comorbid condition in CKD and especially in dialysis patients. A number of interventions have been proven to be safe and effective in well-designed clinical studies. This includes such inexpensive approaches as modification of physical activity and dietary supplementation. Further investigations are needed to evaluate the effects of these interventions on hard outcomes, as well as to better understand the role of inflammation in selected CKD populations (e.g., in children). © 2015 S. Karger AG, Basel.
Campisi, Jay; Sharkey, Craig; Johnson, John D; Asea, Alexzander; Maslanik, Thomas; Bernstein-Hanley, Isaac; Fleshner, Monika
2012-11-01
Activation of the in vivo stress response can facilitate antibacterial host defenses. One possible mechanism for this effect is stress-induced release of heat shock protein 72 (Hsp72) into the extracellular environment. Hsp72 is a ubiquitous cellular protein that is up-regulated in response to cellular stress, and modulates various aspects of immune function including macrophage inflammatory/bactericidal responses and T-cell function when found in the extracellular environment. The current study tested the hypothesis that in vivo extracellular Hsp72 (eHsp72) at the site of inflammation contributes to stress-induced restricted development of bacteria, and facilitated recovery from bacteria-induced inflammation, and that this effect is independent of alpha beta (αβ) T cells. Male F344 rats were exposed to either inescapable electrical tail-shocks or no stress, and subcutaneously injected with Escherichia coli (ATCC 15746). The role of eHsp72 was investigated by Hsp72-immunoneutralization at the inflammatory site. The potential contribution of T cells was examined by testing male athymic (rnu/rnu) nude rats lacking mature αβ T cells and heterozygous thymic intact control (rnu/+) rats. The results were that stressor exposure increased plasma concentrations of eHsp72 and facilitated recovery from bacterial inflammation. Immunoneutralization of eHsp72 at the inflammatory site attenuated this effect. Stressor exposure impacted bacterial inflammation and eHsp72 equally in both athymic and intact control rats. These results support the hypothesis that eHsp72 at the site of inflammation, and not αβ T cells, contributes to the effect of stressor exposure on subcutaneous bacterial inflammation.
Ben Barka, Zaineb; Grintzalis, Konstantinos; Polet, Madeleine; Heude, Clement; Sommer, Ulf; Ben Miled, Hanène; Ben Rhouma, Khémais; Mohsen, Sakly; Tebourbi, Olfa; Schneider, Yves-Jacques
2018-02-20
Consumption of ethanol may have severe effects on human organs and tissues and lead to acute and chronic inflammation of internal organs. The present study aims at investigating the potential protective effects of three different extracts prepared from the leaves, root, and stem of the sumac, Rhus tripartita, against ethanol-induced toxicity and inflammation using intestinal cells as a cell culture system, in vitro model of the intestinal mucosa. The results showed an induction of cytotoxicity by ethanol, which was partially reversed by co-administration of the plant extracts. As part of investigating the cellular response and the mechanism of toxicity, the role of reduced thiols and glutathione-S-transferases were assessed. In addition, intestinal cells were artificially imposed to an inflammation state and the anti-inflammatory effect of the extracts was estimated by determination of interleukin-8. Finally, a detailed characterization of the contents of the three plant extracts by high resolution Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry revealed significant differences in their chemical compositions. Copyright © 2017 Elsevier B.V. All rights reserved.
Inflammation: friend or foe for animal production?
Broom, Leon J; Kogut, Michael H
2018-02-01
Inflammation is an essential immune response that seeks to contain microbial infection and repair damaged tissue. Increased pro-inflammatory mediators have been associated with enhanced resistance to a range of important poultry and pig pathogens. However, inflammation may also have undesirable consequences, including potentially exacerbating tissue damage and diverting nutrients away from productive purposes. The negative effects of inflammation have led to the active pursuit of anti-inflammatory feed additives and/or strategies. These approaches may, however, impair the ability of an animal to respond appropriately and effectively to the array of pathogens that are likely to be encountered in commercial production, and specifically young animals who may be particularly reliant on innate immune responses. Thus, promoting an animal's capacity to mount a rapid, acute inflammatory response to control and contain the infection and the timely transition to anti-inflammatory, tissue repair processes, and a homeostatic state are suggested as the optimum scenario to maintain an animal's resistance to pathogens and minimize non-productive nutrient losses. Important future studies will help to unravel the trade-offs, and relevant metabolic pathways, between robust immune defense and optimum productive performance, and thus provide real insight into methods to appropriately influence this relationship. © 2017 Poultry Science Association Inc.
Dendritic Cells Limit Fibro-Inflammatory Injury in NASH
Henning, Justin R.; Graffeo, Christopher S.; Rehman, Adeel; Fallon, Nina C.; Zambirinis, Constantinos P.; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Saeed, Usama Bin; Rao, Raghavendra S.; Badar, Sana; Quesada, Juan P.; Acehan, Devrim; Miller, George
2013-01-01
Non-alcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation. We postulated that DC are important in the progression of NASH. We found that intrahepatic DC expand and mature in NASH liver and assume an activated immune-phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibro-inflammation. Our mechanistic studies support a regulatory role for DC in NASH by limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic debris. We found that DC limit CD8+ T cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Conclusion Our findings support a role for DC in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. PMID:23322710
Blocking fatty acid-fueled mROS production within macrophages alleviates acute gouty inflammation.
Hall, Christopher J; Sanderson, Leslie E; Lawrence, Lisa M; Pool, Bregina; van der Kroef, Maarten; Ashimbayeva, Elina; Britto, Denver; Harper, Jacquie L; Lieschke, Graham J; Astin, Jonathan W; Crosier, Kathryn E; Dalbeth, Nicola; Crosier, Philip S
2018-05-01
Gout is the most common inflammatory arthritis affecting men. Acute gouty inflammation is triggered by monosodium urate (MSU) crystal deposition in and around joints that activates macrophages into a proinflammatory state, resulting in neutrophil recruitment. A complete understanding of how MSU crystals activate macrophages in vivo has been difficult because of limitations of live imaging this process in traditional animal models. By live imaging the macrophage and neutrophil response to MSU crystals within an intact host (larval zebrafish), we reveal that macrophage activation requires mitochondrial ROS (mROS) generated through fatty acid oxidation. This mitochondrial source of ROS contributes to NF-κB-driven production of IL-1β and TNF-α, which promote neutrophil recruitment. We demonstrate the therapeutic utility of this discovery by showing that this mechanism is conserved in human macrophages and, via pharmacologic blockade, that it contributes to neutrophil recruitment in a mouse model of acute gouty inflammation. To our knowledge, this study is the first to uncover an immunometabolic mechanism of macrophage activation that operates during acute gouty inflammation. Targeting this pathway holds promise in the management of gout and, potentially, other macrophage-driven diseases.
Mohamed, Nadia R; Abdelhalim, Mervat M; Khadrawy, Yasser A; Elmegeed, Gamal A; Abdel-Salam, Omar M E
2012-11-01
Oxidative stress and inflammation have been implicated in several neurodegenerative and developmental brain disorders. The present work was devoted to the design and synthesis of novel steroid derivatives bearing promising heterocyclic moiety that would act to reduce neuro-inflammation and oxidative stress in brain. The novel heterocyclic steroids were synthesized and their chemical structures were confirmed by studying their analytical and spectral data. The tested compounds were assayed in the model of neuro-inflammation produced in rats by cerebral lipopolysaccharide injection. The intracerebral administration of bacterial endotoxin resulted in cerebral inflammatory state evidenced by increased malondialdehyde (MDA), decreased reduced glutathione (GSH) level, increased nitric oxide as well as increased acetylcholinesterase (AChE) activity in the brain. Compounds 6, 10, 8b and 13a markedly increased reduced glutathione. Malondialadehyde and nitric oxide levels were reduced to normal values after treatment with all tested compounds. AChE activity was normalized by compound 8b and reduced to below normal values by compounds 10 and 14a. These results are exciting in that these agents might be useful candidates in treatment of cerebral inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.
Boumaza, Saliha; Belkebir, Aicha; Neggazi, Samia; Sahraoui, Hamid; Berdja, Sihem; Smail, Leila; Benazzoug, Yasmina; Kacimi, Ghoti; Aouichat Bouguerra, Souhila
In our study, we propose to analyze the effects of resveratrol (RES) and quercetin (QRC) on proliferation markers, oxidative stress, apoptosis, and inflammation of aortic fibroblasts of Psammomys obesus after induced oxidative stress by hydrogen peroxide (H2O2). Fibroblasts were incubated in RES 375 μM and QRC 0.083 μM for 24 hours after exposure to H2O2 1.2 mM for 6 hours. We performed the proliferation rate, cells viability, morphological analyses, cytochrome c, Akt, ERK1/2, and p38 MAPK quantification. The redox status was achieved by proportioning of malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl proteins, catalase, and superoxide dismutase activity. The inflammation was measured by TNFα, MCP1, and NF-kB assay. The extracellular matrix (ECM) remodeling was performed by SDS-PAGE. Stressed fibroblasts showed a decrease of cell proliferation and viability, hypertrophy and oncosis, chromatin hypercondensation and increase of cytochrome c release characteristic of apoptosis, activation of ERK1/2 and Akt pathway, and decreases in p38 MAPK pathways marking the cellular resistance. The redox state was disrupted by increased malondialdehyde, nitric monoxide, advanced oxidation protein products, carbonyl protein production, catalase and superoxide dismutase activity, and a decreased production of proteins including collagens. Inflammation state was marked by MCP-1, TNFα, and NF-kB increase. Treatment of fibroblasts stressed by RES and QRC inverted the oxidative stress situation decreasing apoptosis and inflammation, and improving the altered redox status and rearrangement of disorders observed in extracellular matrix. H2O2 induced biochemical and morphological alterations leading to apoptosis. An improved general condition is observed after treatment with RES and QRC; this explains the antioxidant and antiapoptotic effects of polyphenols.
Diego, Vincent P.; Rainwater, David L.; Wang, Xing-Li; Cole, Shelley A.; Curran, Joanne E.; Johnson, Matthew P.; Jowett, Jeremy B. M.; Dyer, Thomas D.; Williams, Jeff T.; Moses, Eric K.; Comuzzie, Anthony G.; MacCluer, Jean W.; Mahaney, Michael C.; Blangero, John
2007-01-01
Because obesity leads to a state of chronic, low-grade inflammation and oxidative stress, we hypothesized that the contribution of genes to variation in a biomarker of these two processes may be influenced by the degree of adiposity. We tested this hypothesis using samples from the San Antonio Family Heart Study that were assayed for activity of lipoprotein-associated phospholipase A2 (Lp-PLA2), a marker of inflammation and oxidative stress. Using an approach to model discrete genotype×environment (G×E) interaction, we assigned individuals to one of two discrete diagnostic states (or “adiposity environments”): nonobese or obese, according to criteria suggested by the World Health Organization. We found a genomewide maximum LOD of 3.39 at 153 cM on chromosome 1 for Lp-PLA2. Significant G×E interaction for Lp-PLA2 at the genomewide maximum (P=1.16×10-4) was also found. Microarray gene-expression data were analyzed within the 1-LOD interval of the linkage signal on chromosome 1. We found two transcripts—namely, for Fc gamma receptor IIA and heat-shock protein (70 kDa)—that were significantly associated with Lp-PLA2 (P<.001 for both) and showed evidence of cis-regulation with nominal LOD scores of 2.75 and 13.82, respectively. It would seem that there is a significant genetic response to the adiposity environment in this marker of inflammation and oxidative stress. Additionally, we conclude that G×E interaction analyses can improve our ability to identify and localize quantitative-trait loci. PMID:17160904
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections. PMID:25184525
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections.
Current treatment options in (peri)myocarditis and inflammatory cardiomyopathy.
Maisch, B; Pankuweit, S
2012-09-01
In inflammatory dilated cardiomyopathy and myocarditis there is--apart from heart failure and antiarrhythmic therapies--no alternative to an aetiologically driven specific treatment. Prerequisite are noninvasive and invasive biomarkers including endomyocardial biopsy and PCR on cardiotropic agents. This review deals with the different etiologies of myocarditis and inflammatory cardiomyopathy including the genetic background, the predisposition for heart failure and inflammation. It analyses the epidemiologic shift in pathogenetic agents in the last 20 years, the role of innate and aquired immunity including the T- and B-cell driven immune responses. The phases and clinical faces of myocarditis are summarized. Up-to-date information on current treatment options starting with heart failure and antiarrhythmic therapy are provided. Although inflammation can resolve spontaneously, specific treatment directed to the causative aetiology is often required. For fulminant, acute and chronic autoreactive myocarditis immunosuppressive treatment is beneficial, while for viral cardiomyopathy and myocarditis ivIg can resolve inflammation and is as successful as interferon therapy in enteroviral and adenoviral myocarditis. For Parvo B19 and HHV6 myocarditis eradication of the virus is still a problem by any of these treatment options. Finally, the potential of stem cell therapy has to be tested in future trials. In virus-negative, autoreactive perimyocardial disease a locoregional approach with intrapericardial instillation of high local doses of triamcinolone acetate has been shown to be highly efficient and with few systemic side-effects.
Gulf War Illness Inflammation Reduction Trial
2017-10-01
United States military personnel were deployed to the Kuwaiti Theater of Operations during Operation Desert Shield and Operation Desert Storm (Gulf...differential, plasma proteomics, platelet function studies, and the measurement of multiple coagulation parameters. The pilot study results provide strong
Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.
Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru
2013-09-01
We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.
Inflammatory mediators in mastitis and lactation insufficiency.
Ingman, Wendy V; Glynn, Danielle J; Hutchinson, Mark R
2014-07-01
Mastitis is a common inflammatory disease during lactation that causes reduced milk supply. A growing body of evidence challenges the central role of pathogenic bacteria in mastitis, with disease severity associated with markers of inflammation rather than infection. Inflammation in the mammary gland may be triggered by microbe-associated molecular patterns (MAMPs) as well as danger-associated molecular patterns (DAMPs) binding to pattern recognition receptors such as the toll-like receptors (TLRs) on the surface of mammary epithelial cells and local immune cell populations. Activation of the TLR4 signalling pathway and downstream nuclear factor kappa B (NFkB) is critical to mediating local mammary gland inflammation and systemic immune responses in mouse models of mastitis. However, activation of NFkB also induces epithelial cell apoptosis and reduced milk protein synthesis, suggesting that inflammatory mediators activated during mastitis promote partial involution. Perturbed milk flow, maternal stress and genetic predisposition are significant risk factors for mastitis, and could lead to a heightened TLR4-mediated inflammatory response, resulting in increased susceptibility and severity of mastitis disease in the context of low MAMP abundance. Therefore, heightened host inflammatory signalling may act in concert with pathogenic or commensal bacterial species to cause both the inflammation associated with mastitis and lactation insufficiency. Here, we present an alternate paradigm to the widely held notion that breast inflammation is driven principally by infectious bacterial pathogens, and suggest there may be other therapeutic strategies, apart from the currently utilised antimicrobial agents, that could be employed to prevent and treat mastitis in women.
Cannabinoids, inflammation, and fibrosis.
Zurier, Robert B; Burstein, Sumner H
2016-11-01
Cannabinoids apparently act on inflammation through mechanisms different from those of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs). As a class, the cannabinoids are generally free from the adverse effects associated with NSAIDs. Their clinical development thus provides a new approach to treatment of diseases characterized by acute and chronic inflammation and fibrosis. A concise survey of the anti-inflammatory actions of the phytocannabinoids Δ 9 -tetrahydrocannabinol (THC), cannabidiol, cannabichromene, and cannabinol is presented. Mention is also made of the noncannabinoid plant components and pyrolysis products, followed by a discussion of 3 synthetic preparations-Cesamet (nabilone; Meda Pharmaceuticals, Somerset, NJ, USA), Marinol (dronabinol; THC; AbbVie, Inc., North Chicago, IL, USA), and Sativex (Cannabis extract; GW Pharmaceuticals, Cambridge United Kingdom)-that have anti-inflammatory effects. A fourth synthetic cannabinoid, ajulemic acid (AJA; CT-3; Resunab; Corbus Pharmaceuticals, Norwood, MA, USA), is discussed in greater detail because it represents the most recent advance in this area and is currently undergoing 3 phase 2 clinical trials by Corbus Pharmaceuticals. The endogenous cannabinoids, including the closely related lipoamino acids, are then discussed. The review concludes with a presentation of a possible mechanism for the anti-inflammatory and antifibrotic actions of these substances. Thus, several cannabinoids may be considered candidates for development as anti-inflammatory and antifibrotic agents. Of special interest is their possible use for treatment of chronic inflammation, a major unmet medical need.-Zurier, R. B., Burstein, S. H. Cannabinoids, inflammation, and fibrosis. © FASEB.
Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice.
Vichaya, Elisabeth G; Hunt, Sarah C; Dantzer, Robert
2014-11-01
Inflammation has been implicated in the development of various psychiatric disorders, including depression. However, the neurobehavioral mechanism involved in this relationship remains elusive. This gap in knowledge may best be filled by evaluating elementary neurobehavioral units affected by inflammation rather than behavioral changes in conventional animal tests of depression. To this end, the current study used a concurrent choice paradigm to evaluate inflammation-induced motivational changes. Male C57BL/6J mice (n=27) were food restricted to between 85 and 90% of their free-feeding weight and were trained to perform a concurrent choice task where they nose-poked for grain rewards on a fixed ratio (FR) 1 schedule (low effort/low reward) and chocolate-flavored rewards on a FR-10 schedule (high effort/high reward). A counterbalanced-within subjects design was used. A single intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) was used to induce peripheral inflammation. Twenty-four hours after LPS administration, mice showed a reduction in the total number of nose pokes. A proportionally greater reduction in nose pokes was observed for grain, resulting in an increase in percent chocolate pellets earned. These behavioral changes cannot be explained by reduced appetite as feeding before the test led to a similar increase in percent chocolate pellets earned but without any decrease in responding. These results indicate that inflammation modulates incentive motivation by affecting willingness to exert effort for reward and not by reducing sensitivity to reward.
Breser, María L.; Salazar, Florencia C.; Rivero, Viginia E.; Motrich, Rubén D.
2017-01-01
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is the most common urologic morbidity in men younger than 50 years and is characterized by a diverse range of pain and inflammatory symptoms, both in type and severity, that involve the region of the pelvis, perineum, scrotum, rectum, testes, penis, and lower back. In most patients, pain is accompanied by inflammation in the absence of an invading infectious agent. Since CP/CPPS etiology is still not well established, available therapeutic options for patients are far from satisfactory for either physicians or patients. During the past two decades, chronic inflammation has been deeply explored as the cause of CP/CPPS. In this review article, we summarize the current knowledge regarding immunological mechanisms underlying chronic pelvic pain and prostate inflammation in CP/CPPS. Cumulative evidence obtained from both human disease and animal models indicate that several factors may trigger chronic inflammation in the form of autoimmunity against prostate, fostering chronic prostate recruitment of Th1 cells, and different other leukocytes, including mast cells, which might be the main actors in the consequent development of chronic pelvic pain. Thus, the local inflammatory milieu and the secretion of inflammatory mediators may induce neural sensitization leading to chronic pelvic pain development. Although scientific advances are encouraging, additional studies are urgently needed to establish the relationship between prostatitis development, mast cell recruitment to the prostate, and the precise mechanisms by which they would induce pelvic pain. PMID:28824626
Bush, Barbara Crafton; Donley, Timothy G
2002-01-01
To develop a format for educating the appropriate health care professionals as to the relationships between periodontal inflammation and increased risks for poor diabetes control, cardiovascular disease, cerebrovascular disease, pre-term low birth weight, pneumonia and gastric ulcer reinfection. Dental hygiene students in the Advanced Periodontology curriculum were instructed to review current literature regarding the increased risk for systemic health problems when periodontal inflammation is present. Abstracts of the reviewed material were then presented in group setting to all course participants. For each systemic entity (diabetes, cardio/cerebrovascular disease, adverse pregnancy outcome, pneumonia, gastric ulcer) literature-based evidence of periodontal disease's association, affect, pathogenesis, validity and clinical significance was determined. Consensus statements for each entity were developed and used as a basis for clinical interpretation. Following this, patient health-history materials were developed to obtain the necessary information from patients while educating them about the increased risk for systemic health problems when periodontal inflammation is present. Lastly, correspondence materials were developed to alert managing physicians and medical auxiliaries about the increased risk for systemic problems in their patients who may present with periodontal inflammation. A methodology which medical personnel can use to quickly screen for the presence of periodontal inflammation in at-risk patients was also developed in these correspondences. An educational model and clinical materials were developed which are aimed at alerting patients, dental and medical personnel to the increased risk for systemic health problems when inflammatory periodontal disease is present.
REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH
Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005-2.1 pg on column), limit of quantification (0.0005-4.2 pg on column), inter- and intraday accuracy (85-115%) and precision (< 5%), recovery (40-109%) and stability (40-105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M.; Nording, Malin L.
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005–2.1 pg on column), limit of quantification (0.0005–4.2 pg on column), inter- and intraday accuracy (85–115%) and precision (< 5%), recovery (40–109%) and stability (40–105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation. PMID:26186333
Gehrke, Nadine; Nagel, Michael; Straub, Beate K; Wörns, Marcus A; Schuchmann, Marcus; Galle, Peter R; Schattenberg, Jörn M
2018-03-01
Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP -/- ) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68 + macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP -/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP -/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological options in these indications.
Transient receptor potential cation channels in visceral sensory pathways
Blackshaw, L Ashley
2014-01-01
The extensive literature on this subject is in direct contrast to the limited range of clinical uses for ligands of the transient receptor potential cation channels (TRPs) in diseases of the viscera. TRPV1 is the most spectacular example of this imbalance, as it is in other systems, but it is nonetheless the only TRP target that is currently targeted clinically in bladder sensory dysfunction. It is not clear why this discrepancy exists, but a likely answer is in the promiscuity of TRPs as sensors and transducers for environmental mechanical and chemical stimuli. This review first describes the different sensory pathways from the viscera, and on which nociceptive and non-nociceptive neurones within these pathways TRPs are expressed. They not only fulfil roles as both mechano-and chemo-sensors on visceral afferents, but also form an effector mechanism for cell activation after activation of GPCR and cytokine receptors. Their role may be markedly changed in diseased states, including chronic pain and inflammation. Pain presents the most obvious potential for further development of therapeutic interventions targeted at TRPs, but forms of inflammation are emerging as likely to benefit also. However, despite much basic research, we are still at the beginning of exploring such potential in visceral sensory pathways. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24641218
Alam, Mohammad Z; Alam, Qamre; Kamal, Mohammad A; Abuzenadah, Adel M; Haque, Absarul
2014-04-01
Imbalances in gut microbiota are associated with metabolic disorder, which are a group of obesity-related metabolic abnormalities that increase an individual's risk of developing type 2 diabetes (T2D) and Alzheimer's disease (AD). Although a number of risk factors have been postulated that may trigger the development of AD, the root cause of this disease is still a matter of debate. This review further investigates the etiology of AD by accumulating the current role played by gut microbiota in human, and trying to establish an inter-link between T2D and AD pathogenesis. There is a growing body of evidence which suggests that obesity is associated with alteration in the normal gut flora, reduced bacterial diversity, metabolic pathways and altered representation of bacterial genes. Obesity and T2D are considered to be induced as a result of changes within the composition of gut microbiota. The evidence gathered so far clearly advocates the involvement of gut microbes in causing obesity, a state of chronic and low-grade inflammation. Hence, understanding the microbiota of the gut is significant in relation to inflammation, as it is a key contributor for diabetes which has a direct relation to the AD pathogenesis. Comparative analysis of gut microbiota may enable further novel insight into the complex biology of AD, which is very important in order to take preventive measure such as early diagnosis, identification of new therapeutic targets and development of novel drugs.
Nutrigenetics and nutrigenomics of atherosclerosis.
Merched, Aksam J; Chan, Lawrence
2013-06-01
The latest genome-wide association studies (GWAS) have re-energized our effort to understand the genetic basis of atherosclerotic cardiovascular disease. Although the knowledge generated by GWAS has confirmed that mediators of inflammation and perturbed lipid metabolism are major players in cardiovascular disease (CVD) development, much of individual disease heritability remains unexplained by the variants identified through GWAS. Moreover, results from interventions that aim at the pharmaceutical modification of lipid parameters fall short of expectation. These elusive treatment goals based on heritability studies highlight a key supportive, and perhaps even primary, role of nutritional therapy to achieve better health outcomes. Nonetheless, effective and specific interventions for CVD prevention using principles of "personalized" nutrition require a better knowledge of gene-diet interactions, an area that remains poorly explored. Dietary fatty acids such as omega-3 polyunsaturated fatty acids (PUFAs) are an excellent example of a widely studied "environment" that interacts with the genetic makeup in relation to CVD. A thorough exploration of the nutrigenomics and nutrigenetics of omega-3 PUFAs is key to understanding the etiology, and developing effective preventive measures. In this review, we will summarize the current state of knowledge of genetic interactions with omega-3 PUFAs in modulating lipid metabolism and inflammation, and defining health outcomes. Nutrigenetics and nutrigenomics are still in their infancy with respect to CVD prediction and therapy. Integration of the progress in the omics, including metabolomics, lipidomics, transcriptomics, and proteomics, coupled with advances in nutrigenomic and nutrigenetic research will move us towards personalized medicine as the ultimate paradigm of responsible clinical practice.
Cancer-related fatigue: Mechanisms, risk factors, and treatments
Bower, Julienne E.
2015-01-01
Fatigue is one of the most common and distressing side effects of cancer and its treatment, and may persist for years after treatment completion in otherwise healthy survivors. Cancer-related fatigue causes disruption in all aspects of quality of life and may be a risk factor for reduced survival. The prevalence and course of fatigue in cancer patients has been well characterized, and there is growing understanding of underlying biological mechanisms. Inflammation has emerged as a key biological pathway for cancer-related fatigue, with studies documenting links between markers of inflammation and fatigue before, during, and particularly after treatment. There is considerable variability in the experience of cancer-related fatigue that is not explained by disease- or treatment-related characteristics, suggesting that host factors may play an important role in the development and persistence of this symptom. Indeed, longitudinal studies have begun to identify genetic, biological, psychosocial, and behavioral risk factors for cancer-related fatigue. Given the multi-factorial nature of cancer-related fatigue, a variety of intervention approaches have been examined in randomized controlled trials, including physical activity, psychosocial, mind-body, and pharmacological treatments. Although there is currently no gold standard for treating fatigue, several of these approaches have shown beneficial effects and can be recommended to patients. This report provides a state of the science review of mechanisms, risk factors, and interventions for cancer-related fatigue, with a focus on recent longitudinal studies and randomized trials that have targeted fatigued patients. PMID:25113839
Current status of the measurement of blood hepcidin levels in chronic kidney disease.
Macdougall, Iain C; Malyszko, Jolanta; Hider, Robert C; Bansal, Sukhvinder S
2010-09-01
Hepcidin is a small defensin-like peptide produced in the liver in response to anemia, hypoxia, or inflammation. In addition to its anti-microbial properties, it has also been found to be a key regulator of iron utilization, providing increased understanding of why chronic kidney disease patients absorb iron poorly from the gut and also why many hemodialysis patients develop functional iron deficiency in the presence of inflammation. Hepcidin synthesis is upregulated in uremia, as in other inflammatory states. The ability to measure hepcidin in biologic fluids has stimulated interest in the potential applicability of this measurement as a more informative marker of iron status than the traditional iron indices such as serum ferritin and transferrin saturation. Until recently, however, the assays for measuring hepcidin have lacked precision, accuracy, and internal validation. Over the last few years, however, several assays have become available that address these limitations. Broadly speaking, these can be divided into radioimmunoassays, ELISAs, and mass spectrometry methods. The purpose of this review is to outline the various assays available at the present time, to critique their advantages and limitations, and to report comparative data in patients with chronic kidney disease. A concern with the immunoassays is that they detect more than biologically active hepcidin-25. Mass spectrometric assays are specific for hepcidin-25 but are labor intensive and require more costly and sophisticated instrumentation. Thus, although mass spectrometry is more accurate, it is less practical for routine clinical use at the present time.
Koda, Yoichi; Tsuruta, Ryosuke; Fujita, Motoki; Miyauchi, Takashi; Kaneda, Kotaro; Todani, Masaki; Aoki, Tetsuya; Shitara, Masaki; Izumi, Tomonori; Kasaoka, Shunji; Yuasa, Makoto; Maekawa, Tsuyoshi
2010-01-22
The aim of this study was to assess the effect of moderate hypothermia (MH) on generation of jugular venous superoxide radical (O2-.), oxidative stress, early inflammation, and endothelial injury in forebrain ischemia/reperfusion (FBI/R) rats. Twenty-one Wistar rats were allocated to a control group (n=7, 37 degrees C), a pre-MH group (n=7, 32 degrees C before ischemia), and a post-MH group (n=7, 32 degrees C after reperfusion). MH was induced before induction of ischemia in the pre-MH group and just after reperfusion in the post-MH group. Forebrain ischemia was induced by occlusion of bilateral common carotid arteries with hemorrhagic hypotension for 10 min, followed by reperfusion. O(2)(-)(.) in the jugular vein was measured from the produced current using a novel O2-. sensor. The O2-. current showed a gradual increase during forebrain ischemia in the control and post-MH groups but was attenuated in the pre-MH group. Following reperfusion, the current showed a marked increase in the control group but was strongly attenuated in the pre- and post-MH groups. Concentrations of malondialdehyde, high-mobility group box 1 (HMGB1) protein, and intercellular adhesion molecule-1 (ICAM-1) in the brain and plasma 120 min after reperfusion in the pre- and post-MH groups were significantly lower than those in the control group, except for plasma HMGB1 in the post-MH group. In conclusion, MH suppressed O2-. measured in the jugular vein, oxidative stress, early inflammation, and endothelial injury in FBI/R rats. Copyright 2009 Elsevier B.V. All rights reserved.
Su, Shaoyong; Miller, Andrew H.; Snieder, Harold; Bremner, J. Douglas; Ritchie, James; Maisano, Carisa; Jones, Linda; Murrah, Nancy V.; Goldberg, Jack; Vaccarino, Viola
2010-01-01
Objective To examine the extent to which a common genetic pathway is also involved in the relationship between depressive symptoms, in the absence of major depressive disorder (MDD), and inflammation. Recent data suggested that MDD and inflammation share common genes. Methods We recruited 188 male twins from the Vietnam Era Twin Registry who were free of symptomatic coronary artery disease and MDD, with mean ± standard deviation (SD) age of 55 ± 2.75 years, including 54 monozygotic and 40 dizygotic twin pairs. These pairs were assessed for two inflammatory markers, interleukin (IL)-6 and C-reactive protein (CRP). Current depressive symptoms were measured with the Beck Depression Inventory-II. Generalized estimating equations were used to examine the phenotypic association between depression and inflammatory markers. Biometrical genetic modeling was performed to estimate the genetic and environmental contributions to this association. Results An association was observed between severity of current depressive symptoms and increased levels of inflammatory markers (p < .001 for IL-6 and p = .005 for CRP). After adjustment for other factors, the association was slightly attenuated but remained statistically significant for IL-6 (p = .002). The heritability of IL-6, CRP, and depressive symptoms were estimated as 0.37, 0.65, and 0.48, respectively. Genetic modeling found a significant genetic correlation between IL-6 and depressive symptoms (rG = 0.22, p = .046), indicating that about 66% of the covariance between them can be explained by shared genetic influences. Conclusions Current depressive symptoms are significantly correlated with inflammatory markers. This covariation is due, in large part, to genes that are common to depressive symptoms and inflammation. PMID:19073752
Krehl, Susanne; Loewinger, Maria; Florian, Simone; Kipp, Anna P.; Banning, Antje; Wessjohann, Ludger A.; Brauer, Martin N.; Iori, Renato; Esworthy, Robert S.; Chu, Fong-Fong; Brigelius-Flohé, Regina
2012-01-01
Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective. PMID:22180572
Krehl, Susanne; Loewinger, Maria; Florian, Simone; Kipp, Anna P; Banning, Antje; Wessjohann, Ludger A; Brauer, Martin N; Iori, Renato; Esworthy, Robert S; Chu, Fong-Fong; Brigelius-Flohé, Regina
2012-03-01
Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.
Ling, Shi-qi; Li, Wei-hua; Xu, Jian-gang; Kuang, Wen-hui; Li, Chao-yang
2010-11-01
To discuss the relationship between corneal lymphangiogenesis and inflammation index (IF) in alkali burned corneas. Experimental research. Rat corneal hemangiogenesis and lymphangiogenesis were examined by 5'-nase-alkaline phosphatase (5'-NA-ALP) double enzyme-histochemistry and whole mount immunofluorescence at 1 day, 3 days, and 1, 2, 3, 4, 5, 6, 7, 8 weeks after alkaline burns, and the blood vessel counting (BVC) and the lymphatic vessel counting (LVC) were recorded. The state of corneal inflammation was observed under the slit lamp and evaluated by inflammation index (IF) grading at the same time. Then, the association of LVC with IF was examined. In addition, eleven human alkali burned corneas were obtained from 11 patients undergoing corneal transplantation in Zhongshan Ophthalmic Center from January 2005 to June 2008. Corneal lymphangiogenesis was examined by lymphatic vessel endothelial receptor (LYVE-1) immunohistochemistry. The significance of the differences in IF, inflammatory cells counting, burn history, and age between two groups was analyzed by using paired student's t-test. New lymphatic vessels were present in rat alkali burned corneas. Corneal lymphangiogenesis developed 3 days after alkaline burns, reached the top 2 weeks after the injury, then decreased gradually, and disappeared at the end of the 5th week. Corneal lymphatics occurred behind corneal inflammation, but disappeared before corneal inflammation and hemangiogenesis. LVC was strongly and positively correlated with IF (r = 0.572, P < 0.01) after corneal alkaline burns. Among eleven human alkali burned corneas, corneal lymphatic vessels were present in 3 corneas. Compared with the other 8 cases without corneal lymphangiogenesis, the scores of IF was significantly higher (t = 3.28, P < 0.05), the inflammatory cells counting dramatically increased (t = 2.42, P < 0.05), but the age decreased significantly (t = 2.62, P < 0.05). However, the difference in burn history between two groups was not significant (t = 1.28, P > 0.05). Corneal lymphangiogenesis develops after alkaline-burns and correlates closely with inflammation index.
Dietary PUFA and flavonoids as deterrents for environmental pollutants.
Watkins, Bruce A; Hannon, Kevin; Ferruzzi, Mario; Li, Yong
2007-03-01
Various nutrients and plant-derived phytochemicals are associated with a reduced risk of many diet-related chronic diseases including cardiovascular disease, cancer, diabetes, arthritis and osteoporosis. A common theme that links many chronic diseases is uncontrolled inflammation. The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) and flavonoids are known to possess anti-inflammatory actions in cell cultures, animal models and humans. Minimizing the condition of persistent inflammation has been a primary aim for drug development, but understanding how food components attenuate this process is at the nexus for improving the human condition. The prevalence of environmental toxins such as heavy metals and organics that contribute to diminished levels of antioxidants likely aggravates inflammatory states when intakes of omega-3 PUFA and flavonoids are marginal. Scientists at Purdue University have formed a collaboration to better understand the metabolism and physiology of flavonoids. This new effort is focused on determining how candidate flavonoids and their metabolites affect gene targets of inflammation in cell culture and animal models. The challenge of this research is to understand how LC omega-3 PUFA and flavonoids affect the biology of inflammation. The goal is to determine how nutrients and phytochemicals attenuate chronic inflammation associated with a number of diet-related diseases that occur throughout the life cycle. The experimental approach involves molecular, biochemical and physiological endpoints of aging, cancer, obesity and musculoskeletal diseases. Examples include investigations on the combined effects of PUFA and cyanidins on inflammatory markers in cultures of human cancer cells. The actions of catechins and PUFA on muscle loss and osteopenia are being studied in a rodent model of disuse atrophy to explain how muscle and bone communicate to prevent tissue loss associated with injury, disease and aging. The purpose of this review is to introduce the concept for studying food components that influence inflammation and how LC omega-3 PUFA and flavonoids could be used therapeutically against inflammation that is mediated by environmental pollutants.
GLP-1 nanomedicine alleviates gut inflammation
Anbazhagan, Arivarasu N.; Thaqi, Mentor; Priyamvada, Shubha; Jayawardena, Dulari; Kumar, Anoop; Gujral, Tarunmeet; Chatterjee, Ishita; Mugarza, Edurne; Saksena, Seema; Onyuksel, Hayat; Dudeja, Pradeep K.
2017-01-01
The gut hormone, glucagon like peptide-1 (GLP-1) exerts anti-inflammatory effects. However, its clinical use is limited by its short half-life. Previously, we have shown that GLP-1 as a nanomedicine (GLP-1 in sterically stabilized phospholipid micelles, GLP-1-SSM) has increased in vivo stability. The current study was aimed at testing the efficacy of this GLP-1 nanomedicine in alleviating colonic inflammation and associated diarrhea in dextran sodium sulfate (DSS) induced mouse colitis model. Our results show that GLP-1-SSM treatment markedly alleviated the colitis phenotype by reducing the expression of pro-inflammatory cytokine IL-1β, increasing goblet cells and preserving intestinal epithelial architecture in colitis model. Further, GLP-1-SSM alleviated diarrhea (as assessed by luminal fluid) by increasing protein expression of intestinal chloride transporter DRA (down regulated in adenoma). Our results indicate thatGLP-1 nanomedicine may act as a novel therapeutic tool in alleviating gut inflammation and associated diarrhea in inflammatory bowel disease (IBD). PMID:27553076
[Inflammation and obesity (lipoinflammation)].
Izaola, Olatz; de Luis, Daniel; Sajoux, Ignacio; Domingo, Joan Carles; Vidal, Montse
2015-06-01
Obesity is a chronic disease with multiple origins. It is a widespread global phenomenon carrying potentially serious complications which requires a multidisciplinary approach due to the significant clinical repercussions and elevated health costs associated with the disease. The most recent evidence indicates that it shares a common characteristic with other prevalent, difficult-to-treat pathologies: chronic, low-grade inflammation which perpetuates the disease and is associated with multiple complications. The current interest in lipoinflammation or chronic inflammation associated with obesity derives from an understanding of the alterations and remodelling that occurs in the adipose tissue, with the participation of multiple factors and elements throughout the process. Recent research highlights the importance of some of these molecules, called pro-resolving mediators, as possible therapeutic targets in the treatment of obesity. This article reviews the evidence published on the mechanisms that regulate the adipose tissue remodelling process and lipoinflammation both in obesity and in the mediators that are directly involved in the appearance and resolution of the inflammatory process. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Inflammasomes in Inflammation-Induced Cancer
Lin, Chu; Zhang, Jun
2017-01-01
The inflammasome is an important multiprotein complex that functions during inflammatory immune responses. The activation of inflammasome will lead to the autoactivation of caspase-1 and subsequent cleavage of proIL-1β and proIL-18, which are key sources of inflammatory manifestations. Recently, the roles of inflammasomes in cancers have been extensively explored, especially in inflammation-induced cancers. In different and specific contexts, inflammasomes exhibit distinct and even contrasting effects in cancer development. In some cases, inflammasomes initiate carcinogenesis through the extrinsic pathway and maintain the malignant cancer microenvironment through the intrinsic pathway. On the contrary, inflammasomes also exert anticancer effects by specialized programmed cell death called pyroptosis and immune regulatory functions. The phases and compartments in which inflammasomes are activated strongly influence the final immune effects. We systemically summarize the functions of inflammasomes in inflammation-induced cancers, especially in gastrointestinal and skin cancers. Besides, information about the current therapeutic use of inflammasome-related products and potential future developing directions are also introduced. PMID:28360909
Therapeutic Effects of Olive and Its Derivatives on Osteoarthritis: From Bench to Bedside.
Chin, Kok-Yong; Pang, Kok-Lun
2017-09-26
Osteoarthritis is a major cause of morbidity among the elderly worldwide. It is a disease characterized by localized inflammation of the joint and destruction of cartilage, leading to loss of function. Impaired chondrocyte repair mechanisms, due to inflammation, oxidative stress and autophagy, play important roles in the pathogenesis of osteoarthritis. Olive and its derivatives, which possess anti-inflammatory, antioxidant and autophagy-enhancing activities, are suitable candidates for therapeutic interventions for osteoarthritis. This review aimed to summarize the current evidence on the effects of olive and its derivatives, on osteoarthritis and chondrocytes. The literature on animal and human studies has demonstrated a beneficial effect of olive and its derivatives on the progression of osteoarthritis. In vitro studies have suggested that the augmentation of autophagy (though sirtuin-1) and suppression of inflammation by olive polyphenols could contribute to the chondroprotective effects of olive polyphenols. More research and well-planned clinical trials are required to justify the use of olive-based treatment in osteoarthritis.
JAM related proteins in mucosal homeostasis and inflammation
Luissint, Anny-Claude; Nusrat, Asma; Parkos, Charles A.
2014-01-01
Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include Junctional Adhesion Molecules (JAMs) that belong to the CTX (Cortical Thymocyte marker for Xenopus) family of proteins. JAM family encompasses three classical members (JAM-A, -B and –C) and related molecules including JAM4, JAM-Like protein (JAM-L), Coxsackie and Adenovirus Receptor (CAR), CAR-Like Membrane Protein (CLMP) and Endothelial cell-Selective Adhesion Molecule (ESAM). JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation. PMID:24667924
Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases
Hardaway, Aimalie L.; Herroon, Mackenzie K.; Rajagurubandara, Erandi
2014-01-01
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease. PMID:24398857
COPD and stroke: are systemic inflammation and oxidative stress the missing links?
Austin, Victoria; Crack, Peter J.; Bozinovski, Steven; Miller, Alyson A.
2016-01-01
Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation and loss of lung function, and is currently the third largest cause of death in the world. It is now well established that cardiovascular-related comorbidities such as stroke contribute to morbidity and mortality in COPD. The mechanisms linking COPD and stroke remain to be fully defined but are likely to be interconnected. The association between COPD and stroke may be largely dependent on shared risk factors such as aging and smoking, or the association of COPD with traditional stroke risk factors. In addition, we propose that COPD-related systemic inflammation and oxidative stress may play important roles by promoting cerebral vascular dysfunction and platelet hyperactivity. In this review, we briefly discuss the pathogenesis of COPD, acute exacerbations of COPD (AECOPD) and cardiovascular comorbidities associated with COPD, in particular stroke. We also highlight and discuss the potential mechanisms underpinning the link between COPD and stroke, with a particular focus on the roles of systemic inflammation and oxidative stress. PMID:27215677
Tumor-related interleukins: old validated targets for new anti-cancer drug development.
Setrerrahmane, Sarra; Xu, Hanmei
2017-09-19
In-depth knowledge of cancer molecular and cellular mechanisms have revealed a strong regulation of cancer development and progression by the inflammation which orchestrates the tumor microenvironment. Immune cells, residents or recruited, in the inflammation milieu can have rather contrasting effects during cancer development. Accumulated clinical and experimental data support the notion that acute inflammation could exert an immunoprotective effect leading to tumor eradication. However, chronic immune response promotes tumor growth and invasion. These reactions are mediated by soluble mediators or cytokines produced by either host immune cells or tumor cells themselves. Herein, we provide an overview of the current understanding of the role of the best-validated cytokines involved in tumor progression, IL-1, IL-4 and IL-6; in addition to IL-2 cytokines family, which is known to promote tumor eradication by immune cells. Furthermore, we summarize the clinical attempts to block or bolster the effect of these tumor-related interleukins in anti-cancer therapy development.
The inflammatory signal adaptor RIPK3: functions beyond necroptosis
Moriwaki, Kenta; Chan, Francis Ka-Ming
2018-01-01
Receptor interacting protein kinase 3 (RIPK3) is an essential serine/threonine kinase for necroptosis, a type of regulated necrosis. A variety of stimuli can cause RIPK3 activation through phosphorylation. Activated RIPK3 in turn phosphorylates and activates the downstream necroptosis executioner mixed lineage kinase domain-like (MLKL). Necroptosis is a highly inflammatory type of cell death because of the release of intracellular immunogenic contents from disrupted plasma membrane. Indeed, RIPK3-deficient mice exhibited reduced inflammation in many inflammatory disease models. These results have been interpreted as evidence that necroptosis is a key driver for RIPK3-induced inflammation. Interestingly, recent studies show that RIPK3 also regulates NF-κB, inflammasome activation, and kinase-independent apoptosis. These studies also reveal that these non-necroptotic functions contribute significantly to disease pathogenesis. In this review, we summarize our current understanding of necroptotic and non-necroptotic functions of RIPK3 and discuss how these effects contribute to RIPK3-mediated inflammation. PMID:28069136
Epigenetic regulation in dental pulp inflammation
Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L
2016-01-01
Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577
Rajendran, R; Rajeev, R; Anil, S; Alasqah, Mohammed; Rabi, Abdul Gafoor
2009-01-01
The oral cavity has been considered a potential reservoir for Helicobacter pylori (H pylori) , from where the organism causes recurrent gastric infections. With this case-control study we tried to evaluate the role of H pylori in the etiology of mucosal inflammation, a condition that compounds the morbid state associated with oral submucous fibrosis (OSF). Subjects ( n = 150) were selected following institutional regulations on sample collection and grouped into test cases and positive and negative controls based on the presence of mucosal fibrosis and inflammation. The negative controls had none of the clinical signs. All patients underwent an oral examination as well as tests to assess oral hygiene/periodontal disease status; a rapid urease test (RUT) of plaque samples was also done to estimate the H pylori bacterial load. We used univariate and mutivariate logistic regression for statistical analysis of the data and calculated the odds ratios to assess the risk posed by the different variables. The RUT results differed significantly between the groups, reflecting the variations in the bacterial loads in each category. The test was positive in 52% in the positive controls (where nonspecific inflammation of oral mucosa was seen unassociated with fibrosis), in 46% of the test cases, and in 18% of the negative controls (healthy volunteers) (chi2 = 13.887; P < 0.01). A positive correlation was seen between the oral hygiene/periodontal disease indices and RUT reactivity in all the three groups. The contribution of the H pylori in dental plaque to mucosal inflammation and periodontal disease was significant. Logistic regression analysis showed gastrointestinal disease and poor oral hygiene as being the greatest risk factors for bacterial colonization, irrespective of the subject groups. A positive correlation exists between RUT reactivity and the frequency of mucosal inflammation.
Sanguigno, Luca; Casamassa, Antonella; Funel, Niccola; Minale, Massimiliano; Riccio, Rodolfo; Riccio, Salvatore; Boscia, Francesca; Brancaccio, Paola; Pollina, Luca Emanuele; Anzilotti, Serenella; Di Renzo, Gianfranco
2018-01-01
Triticum vulgare has been extensively used in traditional medicine thanks to its properties of accelerating tissue repair. The specific extract of Triticum vulgare manufactured by Farmaceutici Damor (TVE-DAMOR) is already present in some pharmaceutical formulations used in the treatment of decubitus ulcers, skin lesions and burns. It has been recently suggested that this Triticum vulgare extract may possess potential anti-inflammatory properties. In the light of these premises the aim of the present paper was to verify the anti-inflammatory role of TVE, using the LPS-stimulated microglia model of inflammation. In particular the effect of different concentrations of TVE on the release of several mediators of inflammation such as nitric oxide, IL-6, PGE2 and TNF alpha was evaluated. More important, the anti-inflammatory effect of TVE was confirmed also in primary rat microglia cultures. The results of the present study show that TVE exerts anti-inflammatory properties since it reduces the release of all the evaluated markers of inflammation, such as NO, IL6, TNF alpha and PGE2 in LPS-activated BV2 microglial cells. Intriguingly, TVE reduced microglia activation and NO release also in primary microglia. Indeed, to verify the pathway of modulation of the inflammatory markers reported above, we found that TVE restores the cytoplasmic expression of p65 protein, kwown as specific marker associated with activation of inflammatory response. The evidence for an inhibitory activity on inflammation of this specific extract of Triticum vulgare may open the way to the possibility of a therapeutical use of the Triticum vulgare extract as an anti-inflammatory compound in certain pathological states such as burns, decubitus ulcers, folliculitis and inflammation of peripheral nerve. PMID:29902182
Kalinkovich, Alexander; Livshits, Gregory
2017-05-01
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway. Copyright © 2016 Elsevier B.V. All rights reserved.
2014-01-01
Background Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study was designed to investigate whether endogenous H2S synthesizing enzyme cystathionine-β-synthetase (CBS) plays a role in inflammatory pain in temporomandibular joint (TMJ). Methods TMJ inflammatory pain was induced by injection of complete Freund’s adjuvant (CFA) into TMJ of adult male rats. Von Frey filaments were used to examine pain behavioral responses in rats following injection of CFA or normal saline (NS). Whole cell patch clamp recordings were employed on acutely isolated TG neurons from rats 2 days after CFA injection. Western blot analysis was carried out to measure protein expression in TGs. Results Injection of CFA into TMJ produced a time dependent hyperalgesia as evidenced by reduced escape threshold in rats responding to VFF stimulation. The reduced escape threshold was partially reversed by injection of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor for CBS, in a dose-dependent manner. CFA injection led to a marked upregulation of CBS expression when compared with age-matched controls. CFA injection enhanced neuronal excitability as evidenced by depolarization of resting membrane potentials, reduction in rheobase, and an increase in number of action potentials evoked by 2 and 3 times rheobase current stimulation and by a ramp current stimulation of TG neurons innervating the TMJ area. CFA injection also led to a reduction of IK but not IA current density of TG neurons. Application of AOAA in TMJ area reduced the production of H2S in TGs and reversed the enhanced neural hyperexcitability and increased the IK currents of TG neurons. Conclusion These data together with our previous report indicate that endogenous H2S generating enzyme CBS plays an important role in TMJ inflammation, which is likely mediated by inhibition of IK currents, thus identifying a specific molecular mechanism underlying pain and sensitization in TMJ inflammation. PMID:24490955
Snyder, Robert J.; Fife, Caroline; Moore, Zena
2016-01-01
ABSTRACT OBJECTIVES: To discuss how patient considerations and the initial wound environment can affect wound treatment and summarize the way in which the initial US Wound Registry measures capture aspects of the DIME (Debridement/devitalized tissue, Infection or inflammation, Moisture balance, and wound Edge preparation/wound depth) principles. DISCUSSION: The treatment of chronic wounds often involves extended hospital stays and long-term outpatient follow-up visits with costly advanced therapeutic interventions. As complex care is required for chronic wounds, treatment guidelines such as DIME have evolved to include consideration of patient-centered concerns and etiology, as well as features of wound bed preparation. The US healthcare system is in the midst of transitioning to a quality-based system. However, as wound care is not yet a recognized specialty, it is poorly represented in the current approved quality-based measures. CONCLUSION: This article helps to identify the practice guidelines that are not currently represented by quality metrics. PMID:27089149
Resveratrol and Ophthalmic Diseases
Abu-Amero, Khaled K.; Kondkar, Altaf A.; Chalam, Kakarla V.
2016-01-01
Resveratrol, a naturally occurring plant polyphenol found in grapes, is the principal biologically active component in red wine. Clinical studies have shown that resveratrol due to its potent anti-oxidant and anti-inflammatory properties are cardio-protective, chemotherapeutic, neuroprotective, and display anti-aging effects. Oxidative stress and inflammation play a critical role in the initiation and progression of age-related ocular diseases (glaucoma, cataract, diabetic retinopathy and macular degeneration) that lead to progressive loss of vision and blindness. In vitro and in vivo (animal model) experimental studies performed so far have provided evidence for the biological effects of resveratrol on numerous pathways including oxidative stress, inflammation, mitochondrial dysfunction, apoptosis, pro-survival or angiogenesis that are implicated in the pathogenesis of these age-related ocular disorders. In this review, we provide a brief overview of current scientific literature on resveratrol, its plausible mechanism(s) of action, its potential use and current limitations as a nutritional therapeutic intervention in the eye and its related disorders. PMID:27058553
MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a.
Rippo, Maria Rita; Olivieri, Fabiola; Monsurrò, Vladia; Prattichizzo, Francesco; Albertini, Maria Cristina; Procopio, Antonio Domenico
2014-08-01
Mitochondria are intimately involved in the aging process. The decline of autophagic clearance during aging affects the equilibrium between mitochondrial fusion and fission, leading to a build-up of dysfunctional mitochondria, oxidative stress, chronic low-grade inflammation, and increased apoptosis rates, the main hallmarks of aging. Current research suggests that a large number of microRNAs (miRs or miRNAs) are differentially expressed during cell aging. Other lines of evidence indicate that several miRs likely share in "inflamm-aging", an aging-related state characterized by systemic chronic inflammation that in turn provides a biological background favoring susceptibility to age-related diseases and disabilities. Interestingly, miRs can modulate mitochondrial activity, and a discrete miR set has recently been identified in mitochondria of different species and cell types (mitomiRs). Here we show that some mitomiRs (let7b, mir-146a, -133b, -106a, -19b, -20a, -34a, -181a and -221) are also among the miRs primarily involved in cell aging and in inflamm-aging. Of note, Ingenuity Pathway Analysis (IPA) of aging-related mitomiR targets has disclosed a number of resident mitochondrial proteins playing large roles in energy metabolism, mitochondrial transport and apoptosis. Among these, Bcl-2 family members--which are critically involved in maintaining mitochondrial integrity--may play a role in controlling mitochondrial function and dysfunction during cellular aging, also considering that Bcl-2, the master member of the family, is an anti-oxidant and anti-apoptotic factor and regulates mitochondrial fission/fusion and autophagy. This intriguing hypothesis is supported by several observations: i) in endothelial cells undergoing replicative senescence (HUVECs), a well-established model of cell senescence, miR-146a, miR-34a, and miR-181a are over-expressed whereas their target Bcl-2 is down-regulated; ii) IPA of the miR-146a, miR-34a and miR-181a network shows that they are closely linked to each other, to Bcl-2 and to mitochondria; and iii) miR-146a, miR-34a, and miR-181a are involved in important cell functions (growth, proliferation, death, survival, maintenance) and age-related diseases (cancer, skeletal and muscle disorders, neurological, cardiovascular and metabolic diseases). In conclusion several aging-related mitomiRs may play a direct role in controlling mitochondrial function by regulating mitochondrial protein expression. Their modulation could thus mediate the loss of mitochondrial integrity and function in aging cells, inducing or contributing to the inflammatory response and to age-related diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha
2016-01-01
The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn’s disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis. PMID:27046199
Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.
López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón
2016-07-01
Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic inflammation, which allows the study of physio-pathological stress aspects over prolonged time periods of at least 60days. Copyright © 2016 Elsevier Inc. All rights reserved.
Environmental chemicals and preterm birth: Biological mechanisms and the state of the science
Ferguson, Kelly K.; Chin, Helen B.
2017-01-01
Purpose of review Preterm birth is a significant worldwide health problem of uncertain origins. The extant body of literature examining environmental contaminant exposures in relation to preterm birth is extensive but results remain ambiguous for most organic pollutants, metals and metalloids, and air pollutants. In the present review we examine recent epidemiologic studies investigating these associations, and identify recent advances and the state of the science. Additionally, we highlight biological mechanisms of action in the pathway between chemical exposures and preterm birth, including inflammation, oxidative stress, and endocrine disruption, that deserve more attention in this context. Recent findings Important advances have been made in the study of the environment and preterm birth, particularly in regard to exposure assessment methods, exploration of effect modification by co-morbidities and exposures, and in identification of windows of vulnerability during gestation. There is strong evidence for an association between maternal exposure to some persistent pesticides, lead, and fine particulate matter, but data on other contaminants is sparse and only suggestive trends can be noted with the current data. Summary Beyond replicating current findings, further work must be done to improve understanding of mechanisms underlying the associations observed between environmental chemical exposures and preterm birth. By examining windows of vulnerability, disaggregating preterm birth by phenotypes, and measuring biomarkers of mechanistic pathways in these epidemiologic studies we can improve our ability to detect associations with exposure, provide additional evidence for causality in an observational setting, and identify opportunities for intervention. PMID:28944158
Environmental chemicals and preterm birth: Biological mechanisms and the state of the science.
Ferguson, Kelly K; Chin, Helen B
2017-03-01
Preterm birth is a significant worldwide health problem of uncertain origins. The extant body of literature examining environmental contaminant exposures in relation to preterm birth is extensive but results remain ambiguous for most organic pollutants, metals and metalloids, and air pollutants. In the present review we examine recent epidemiologic studies investigating these associations, and identify recent advances and the state of the science. Additionally, we highlight biological mechanisms of action in the pathway between chemical exposures and preterm birth, including inflammation, oxidative stress, and endocrine disruption, that deserve more attention in this context. Important advances have been made in the study of the environment and preterm birth, particularly in regard to exposure assessment methods, exploration of effect modification by co-morbidities and exposures, and in identification of windows of vulnerability during gestation. There is strong evidence for an association between maternal exposure to some persistent pesticides, lead, and fine particulate matter, but data on other contaminants is sparse and only suggestive trends can be noted with the current data. Beyond replicating current findings, further work must be done to improve understanding of mechanisms underlying the associations observed between environmental chemical exposures and preterm birth. By examining windows of vulnerability, disaggregating preterm birth by phenotypes, and measuring biomarkers of mechanistic pathways in these epidemiologic studies we can improve our ability to detect associations with exposure, provide additional evidence for causality in an observational setting, and identify opportunities for intervention.
The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation.
Engin, Atilla
2017-01-01
Obesity is characterized by a state of chronic, low-grade inflammation. However, excessive fatty acid release may worsen adipose tissue inflammation and contributes to insulin resistance. In this case, several novel and highly active molecules are released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines. Most likely cytokines that are released by inflammatory cells infiltrating obese adipose tissue are such as tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2) and IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation. In this process, toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress through hyperactivation of c-Jun N-terminal Kinase (JNK) -Activator Protein 1 (AP1) and inhibitor of nuclear factor kappa-B kinase beta (IKKbeta)-nuclear factor kappa B (NF-kappaB) pathways play an important role, and may also affect vascular endothelial function by modulating vascular nitric oxide and superoxide release. Additionally, systemic oxidative stress, macrophage recruitment, increase in the expression of NOD-like receptor (NLR) family protein (NLRP3) inflammasone and adipocyte death are predominant determinants in the pathogenesis of obesity-associated adipose tissue inflammation. In this chapter potential involvement of these factors that contribute to the adverse effects of obesity are reviewed.
Targeting inflammation in diabetes: Newer therapeutic options
Agrawal, Neeraj Kumar; Kant, Saket
2014-01-01
Inflammation has been recognised to both decrease beta cell insulin secretion and increase insulin resistance. Circulating cytokines can affect beta cell function directly leading to secretory dysfunction and increased apoptosis. These cytokines can also indirectly affect beta cell function by increasing adipocyte inflammation.The resulting glucotoxicity and lipotoxicity further enhance the inflammatory process resulting in a vicious cycle. Weight reduction and drugs such as metformin have been shown to decrease the levels of C-Reactive Protein by 31% and 13%, respectively. Pioglitazone, insulin and statins have anti-inflammatory effects. Interleukin 1 and tumor necrosis factor-α antagonists are in trials and NSAIDs such as salsalate have shown an improvement in insulin sensitivity. Inhibition of 12-lipo-oxygenase, histone de-acetylases, and activation of sirtuin-1 are upcoming molecular targets to reduce inflammation. These therapies have also been shown to decrease the conversion of pre-diabetes state to diabetes. Drugs like glicazide, troglitazone, N-acetylcysteine and selective COX-2 inhibitors have shown benefit in diabetic neuropathy by decreasing inflammatory markers. Retinopathy drugs are used to target vascular endothelial growth factor, angiopoietin-2, various proteinases and chemokines. Drugs targeting the proteinases and various chemokines are pentoxifylline, inhibitors of nuclear factor-kappa B and mammalian target of rapamycin and are in clinical trials for diabetic nephropathy. Commonly used drugs such as insulin, metformin, peroxisome proliferator-activated receptors, glucagon like peptide-1 agonists and dipeptidyl peptidase-4 inhibitors also decrease inflammation. Anti-inflammatory therapies represent a potential approach for the therapy of diabetes and its complications. PMID:25317247
[The intestinal microbiota: A new player in depression?
Meyrel, M; Varin, L; Detaint, B; Mouaffak, F
2018-02-01
Depression is the leading cause of disability in the world according to the World Health Organization. The effectiveness of the available antidepressant therapies is limited. Data from the literature suggest that some subtypes of depression may be associated with chronic low grade inflammation. The uncovering of the role of intestinal microbiota in the development of the immune system and its bidirectional communication with the brain have led to growing interest on reciprocal interactions between inflammation, microbiota and depression. Our purpose is to review the state of knowledge on these interactions. We carried out a literature search on Pubmed, Go pubmed, psyC info, Elsevier, Embase until August 13, 2016 using the keywords "depression", "microbiota" and "inflammation". Dysbiosis reported in patients suffering from depression seems to contribute to low grade systemic inflammation which in turn feeds back depression. The hypothetical mechanisms behind these interactions are multiple: leaky gut, hyperreactivity of the corticotropic axis, disturbed neurotransmission. Abnormal microbial exposure during childhood and perinatal stress are reported to influence both the maturation of the immune system and the microbiota hence contributing to the ethiopathogeny of depression. There is no evidence in the literature to support a role for diet. The evidence supporting a causal relationship between dysbiosis and depression through low grade inflammation is limited and precludes us from drawing firm conclusions. Further studies are needed to improve our knowledge. Copyright © 2017 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Liong, Stella; Lappas, Martha
2015-12-01
Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.