Sample records for inflammatory cell migration

  1. Collective cell migration during inflammatory response

    NASA Astrophysics Data System (ADS)

    Wu, Di; Stroka, Kimberly; Aranda-Espinoza, Helim

    2012-02-01

    Wound scratch healing assays of endothelial cell monolayers is a simple model to study collective cell migration as a function of biological signals. A signal of particular interest is the immune response, which after initial wounding in vivo causes the release of various inflammatory factors such as tumor necrosis alpha (TNF-α). TNF-α is an innate inflammatory cytokine that can induce cell growth, cell necrosis, and change cell morphology. We studied the effects of TNF-α on collective cell migration using the wound healing assays and measured several migration metrics, such as rate of scratch closure, velocities of leading edge and bulk cells, closure index, and velocity correlation functions between migrating cells. We observed that TNF-α alters all migratory metrics as a function of the size of the scratch and TNF-α content. The changes observed in migration correlate with actin reorganization upon TNF-α exposure.

  2. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  3. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  4. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  5. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. S100A8 facilitates the migration of colorectal cancer cells through regulating macrophages in the inflammatory microenvironment.

    PubMed

    Zha, He; Sun, Hui; Li, Xueru; Duan, Liang; Li, Aifang; Gu, Yue; Zeng, Zongyue; Zhao, Jiali; Xie, Jiaqing; Yuan, Shimei; Li, Huan; Zhou, Lan

    2016-07-01

    Previous studies have shown that S100 calcium-binding protein A8 (S100A8) contributes to the survival and migration of colorectal cancer (CRC) cells. However, whether S100A8 participates in the progression and metastasis of CRC via the regulation of macrophages in the tumor inflammatory microenvironment remains unknown. In this study, phorbol myristate acetate (PMA) was used to induce the differentiation of THP-1 monocytes to macrophages. MTT assay, western blot analysis, immunofluorescence staining, semi-quantitative RT-PCR (semi-PCR), quantitative real-time PCR (qPCR), Gaussia luciferase activity assay and ELISA were performed to analyze the roles and molecular mechanisms of S100A8 in the modulation of macrophages. MTT assay, flow cytometric analysis, Hoechst staining, wound healing and Transwell migration assay were used to test the effect of S100A8 on the viability and migration of CRC cells co-cultured with macrophages in the inflammatory microenvironment. We found that THP-1 monocytes were induced by PMA and differentiated to macrophages. S100A8 activated the NF-κB pathway in the macrophages and promoted the expression of miR-155 and inflammatory cytokines IL-1β and TNF-α in the inflammatory microenvironment mimicked by lipopolysaccharides (LPS). Furthermore, S100A8 contributed to augment the migration but not the viability of the CRC cells co-cultured with the macrophages in the inflammatory microenvironment. Altogether, our study demonstrated that S100A8 facilitated the migration of CRC cells in the inflammatory microenvironment, and the underlying molecular mechanisms may be partially attributed to the overexpression of miR-155, IL-1β and TNF-α through activation of the NF-κB pathway in macrophages.

  7. Pre-Treatment of Human Mesenchymal Stem Cells With Inflammatory Factors or Hypoxia Does Not Influence Migration to Osteoarthritic Cartilage and Synovium.

    PubMed

    Leijs, Maarten J C; van Buul, Gerben M; Verhaar, Jan A N; Hoogduijn, Martin J; Bos, Pieter K; van Osch, Gerjo J V M

    2017-04-01

    Mesenchymal stem cells (MSCs) are promising candidates as a cell-based therapy for osteoarthritis (OA), although current results are modest. Pre-treatment of MSCs before application might improve their therapeutic efficacy. Pre-treatment of MSCs with inflammatory factors or hypoxia will improve their migration and adhesion capacities toward OA-affected tissues. Controlled laboratory study. We used real-time polymerase chain reaction to determine the effects of different fetal calf serum (FCS) batches, platelet lysate (PL), hypoxia, inflammatory factors, factors secreted by OA tissues, and OA synovial fluid (SF) on the expression of 12 genes encoding chemokine or adhesion receptors. Migration of MSCs toward factors secreted by OA tissues was studied in vitro, and attachment of injected MSCs was evaluated in vivo in healthy and OA knees of male Wistar rats. Different FCS batches, PL, or hypoxia did not influence the expression of the migration and adhesion receptor genes. Exposure to inflammatory factors altered the expression of CCR1, CCR4, CD44, PDGFRα, and PDGFRβ. MSCs migrated toward factors secreted by OA tissues in vitro. Neither pre-treatment with inflammatory factors nor the presence of OA influenced MSC migration in vitro or adhesion in vivo. Factors secreted by OA tissues increase MSC migration in vitro. In vivo, no difference in MSC adhesion was found between OA and healthy knees. Pre-treatment with inflammatory factors influenced the expression of migration and adhesion receptors of MSCs but not their migration in vitro or adhesion in vivo. To improve the therapeutic capacity of intra-articular injection of MSCs, they need to remain intra-articular for a longer period of time. Pre-treatment of MSCs with hypoxia or inflammatory factors did not increase the migration or adhesion capacity of MSCs and will therefore not likely prolong their intra-articular longevity. Alternative approaches to prolong the intra-articular presence of MSCs should be developed to increase the therapeutic effect of MSCs in OA.

  8. Studying Neutrophil Migration In Vivo Using Adoptive Cell Transfer.

    PubMed

    Miyabe, Yoshishige; Kim, Nancy D; Miyabe, Chie; Luster, Andrew D

    2016-01-01

    Adoptive cell transfer experiments can be used to study the roles of cell trafficking molecules on the migratory behavior of specific immune cell populations in vivo. Chemoattractants and their G protein-coupled seven-transmembrane-spanning receptors regulate migration of cells in vivo, and dysregulated expression of chemoattractants and their receptors is implicated in autoimmune and inflammatory diseases. Inflammatory arthritides, such as rheumatoid arthritis (RA), are characterized by the recruitment of inflammatory cells into joints. The K/BxN serum transfer mouse model of inflammatory arthritis shares many similar features with RA. In this autoantibody-induced model of arthritis, neutrophils are the critical immune cells necessary for the development of joint inflammation and damage. We have used adoptive neutrophil transfer to define the contributions of chemoattractant receptors, cytokines, and activation receptors expressed on neutrophils that critically regulate their entry into the inflamed joint. In this review, we describe the procedure of neutrophil adoptive transfer to study the influence of neutrophil-specific receptors or mediators upon the their recruitment into the joint using the K/BxN model of inflammatory arthritis as a model of how adoptive cell transfer studies can be used to study immune cell migration in vivo.

  9. Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ.

    PubMed

    Li, Xuguang; Dai, Yuankun; Shen, Tao; Gao, Changyou

    2017-06-01

    Cell migration in scaffolds plays a crucial role in tissue regeneration, which can better mimic cell behaviors in vivo . In this study, a novel model has been proposed on controlling 3D cell migration in porous collagen-chitosan scaffolds with various pore structures under the stimulation of inflammatory cells to mimic the angiogenesis process. Endothelial cells (ECs) cultured atop the scaffolds in the Transwell molds which were placed into a well of a 24-well culture plate were promoted to migrate into the scaffolds by chemoattractants such as vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) secreted by the pro-inflammatory macrophages incubated in the well culture plate. The phenotype of macrophages was mediated by 50 ng/ml interferon-gamma (IFN-γ) and different concentrations of lipopolysaccharide (LPS, 150-300 ng/ml). The cell migration depth had a positive correlation with LPS concentration, and thereby the TNF-α concentration. The ECs migrated easier to a deeper zone of the scaffolds prepared at - 10ºC (187 μm in pore diameter) than that at - 20ºC (108 μm in pore diameter) as well. The method provides a useful strategy to study the 3D cell migration, and is helpful to reveal the vascularization process during wound healing in the long run.

  10. Induced migration of endothelial cells into 3D scaffolds by chemoattractants secreted by pro-inflammatory macrophages in situ

    PubMed Central

    Li, Xuguang; Dai, Yuankun; Shen, Tao

    2017-01-01

    Abstract Cell migration in scaffolds plays a crucial role in tissue regeneration, which can better mimic cell behaviors in vivo. In this study, a novel model has been proposed on controlling 3D cell migration in porous collagen-chitosan scaffolds with various pore structures under the stimulation of inflammatory cells to mimic the angiogenesis process. Endothelial cells (ECs) cultured atop the scaffolds in the Transwell molds which were placed into a well of a 24-well culture plate were promoted to migrate into the scaffolds by chemoattractants such as vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) secreted by the pro-inflammatory macrophages incubated in the well culture plate. The phenotype of macrophages was mediated by 50 ng/ml interferon-gamma (IFN-γ) and different concentrations of lipopolysaccharide (LPS, 150–300 ng/ml). The cell migration depth had a positive correlation with LPS concentration, and thereby the TNF-α concentration. The ECs migrated easier to a deeper zone of the scaffolds prepared at − 10ºC (187 μm in pore diameter) than that at − 20ºC (108 μm in pore diameter) as well. The method provides a useful strategy to study the 3D cell migration, and is helpful to reveal the vascularization process during wound healing in the long run. PMID:28596912

  11. Tumor Necrosis Factor-α and Interleukin (IL)-1β, IL-6, and IL-8 Impair In Vitro Migration and Induce Apoptosis of Gingival Fibroblasts and Epithelial Cells, Delaying Wound Healing.

    PubMed

    Basso, Fernanda G; Pansani, Taisa N; Turrioni, Ana Paula S; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-08-01

    Multiple factors affect oral mucosal healing, such as the persistence of an inflammatory reaction. The present study evaluates effects of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, IL-6, and IL-8 on epithelial cells (ECs) and human gingival fibroblasts (GFs) in vitro. GFs and ECs were seeded in 96-well plates (1 × 10(4) cells/well) in plain culture medium (Dulbecco's modified Eagle's medium [DMEM]) containing 1% antibiotic/antimycotic solution and 10% fetal bovine serum, and incubated for 24 hours. Both cell lines were exposed for 24 hours to the following cytokines: 1) TNF-α (100 ng/mL); 2) IL-1β (1 ng/mL); 3) IL-6 (10 ng/mL); and 4) IL-8 (10 ng/mL). All cytokines were diluted in serum-free DMEM. Control cultures were exposed only to serum-free DMEM. Effects of exposure to inflammatory cytokines were determined by means of: 1) apoptosis (anexin V); 2) cell migration (wound healing assay); 3) inflammatory cytokine synthesis (enzyme-linked immunosorbent assay). Data were analyzed by Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Increased apoptosis rates were noted when cells were exposed to inflammatory cytokines, except ECs exposed to IL-1β. Cell migration was negatively affected by all inflammatory cytokines for both cell lines. ECs and GFs exposed to IL-6 and IL-8 significantly increased synthesis of TNF-α and IL-1β. Demonstrated results indicate negative effects of tested inflammatory cytokines on ECs and GFs, inducing apoptosis and impairing cell migration. These results can justify delayed oral mucosa healing in the presence of inflammatory reaction.

  12. Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus

    PubMed Central

    Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Salo, Tuula; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T.

    2017-01-01

    Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function. PMID:28419140

  13. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    PubMed

    Shey, Muki S; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  14. Anti-inflammatory effects of methylthiouracil in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Sae-Kwang; Baek, Moon-Chang, E-mail: mcbaek@knu.ac.kr; Bae, Jong-Sup, E-mail: baejs@knu.ac.kr

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Here, methylthiouracil (MTU), an antithyroid drug, was examined for its effects on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, human neutrophil adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells and mice. We found that post-treatment with MTU inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. MTU induced potent inhibition of LPS-inducedmore » endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and neutrophil migration in vivo. Furthermore, MTU suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with MTU resulted in reduced LPS-induced lethal endotoxemia. These results suggest that MTU exerts anti-inflammatory effects by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. - Highlights: • MTU reduced LPS-mediated hyperpermeability in vitro and in vivo. • MTU inhibited LPS-mediated leukocyte adhesion and migration. • MTU inhibited LPS-mediated production of IL-6 and TNF-α. • MTU reduced LPS-mediated mortality and lung injury.« less

  15. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK.

    PubMed

    Kadiri, Maleck; El Azreq, Mohammed-Amine; Berrazouane, Sofiane; Boisvert, Marc; Aoudjit, Fawzi

    2017-09-01

    T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proliferation, migration and inflammatory responses in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weifeng, E-mail: liwf@mail.xjtu.edu.cn; Zhi, Wenbing; Liu, Fang

    Pathogenesis of atherosclerosis is characterized by the proliferation and migration of vascular smooth muscle cells (VSMCs) and inflammatory lesions. The aim of this study is to elucidate the effect of atractylenolide I (AO-I) on smooth muscle cell inflammation, proliferation and migration induced by oxidized modified low density lipoprotein (Ox-LDL). Here, We found that atractylenolide I inhibited Ox-LDL-induced VSMCs proliferation and migration in a dose-dependent manner, and decreased the production of inflammatory cytokines and the expression of monocyte chemoattractant protein-1 (MCP-1) in VSMCs. The study also identified that AO-I prominently inhibited p38-MAPK and NF-κB activation. More importantly, the specific heme oxygenase-1more » (HO-1) inhibitor zinc protoporphyrin (ZnPP) IX partially abolished the beneficial effects of atractylenolide I on Ox-LDL-induced VSMCs. Furthermore, atractylenolide I blocked the foam cell formation in macrophages induced by Ox-LDL. In summary, inhibitory roles of AO-I in VSMCs proliferation and migration, lipid peroxidation and subsequent inflammatory responses might contribute to the anti-atherosclerotic property of AO-I. - Highlights: • AO-I inhibited Ox-LDL-induced VSMCs proliferation and migration. • AO-I alleviated inflammatory response via inhibiting TNF-α, IL-6 and NO production. • AO-I restored HO-1 expression and down-regulated PCNA expression. • MCP-1 overexpression is potentially regulated by NF-κB and p38 MAPK pathway. • AO-I possesses strong anti-lipid peroxidation effect.« less

  17. Enteroaggregative Escherichia coli Promotes Transepithelial Migration of Neutrophils Through a Conserved 12-Lipoxygenase Pathway

    PubMed Central

    Boll, Erik J.; Struve, Carsten; Sander, Anja; Demma, Zachary; Krogfelt, Karen A.; McCormick, Beth A.

    2014-01-01

    Summary Enteroaggregative Escherichia coli (EAEC) induces release of pro-inflammatory markers and disruption of intestinal epithelial barriers in vitro suggesting an inflammatory aspect to EAEC infection. However, the mechanisms underlying EAEC-induced mucosal inflammatory responses and the extent to which these events contribute to pathogenesis is not well characterized. Employing an established in vitro model we demonstrated that EAEC prototype strain 042 induces migration of polymorphonuclear neutrophils (PMNs) across polarized T84 cell monolayers. This event was mediated through a conserved host cell signaling cascade involving the 12/15-LOX pathway and led to apical secretion of an arachidonic acid-derived lipid PMN chemoattractant, guiding PMNs across the epithelia to the site of infection. Moreover, supporting the hypothesis that inflammatory responses may contribute to EAEC pathogenesis, we found that PMN transepithelial migration promoted enhanced attachment of EAEC 042 to T84 cells. These findings suggest that EAEC-induced PMN infiltration may favor colonization and thus pathogenesis of EAEC. PMID:21951973

  18. Involvement of Nitric Oxide in a Rat Model of Carrageenin-Induced Pleurisy

    PubMed Central

    Iwata, Masahiro; Suzuki, Shigeyuki; Asai, Yuji; Inoue, Takayuki; Takagi, Kenji

    2010-01-01

    Some evidence indicates that nitric oxide (NO) contributes to inflammation, while other evidence supports the opposite conclusion. To clarify the role of NO in inflammation, we studied carrageenin-induced pleurisy in rats treated with an NO donor (NOC-18), a substrate for NO formation (L-arginine), and/or an NO synthase inhibitor (S-(2-aminoethyl) isothiourea or NG-nitro-L-arginine). We assessed inflammatory cell migration, nitrite/nitrate values, lipid peroxidation and pro-inflammatory mediators. NOC-18 and L-arginine reduced the migration of inflammatory cells and edema, lowered oxidative stress, and normalized antioxidant enzyme activities. NO synthase inhibitors increased the exudate formation and inflammatory cell number, contributed to oxidative stress, induced an oxidant/antioxidant imbalance by maintaining high O2 −, and enhanced the production of pro-inflammatory mediators. L-arginine and NOC-18 reversed the proinflammatory effects of NO synthase inhibitors, perhaps by reducing the expression of adhesion molecules on endothelial cells. Thus, our results indicate that NO is involved in blunting—not enhancing—the inflammatory response. PMID:20592757

  19. Lymphatic exosomes promote dendritic cell migration along guidance cues

    PubMed Central

    Brown, Markus; Johnson, Louise A.; Leone, Dario A.; Majek, Peter; Senfter, Daniel; Bukosza, Nora; Asfour, Gabriele; Langer, Brigitte; Parapatics, Katja; Hong, Young-Kwon; Bennett, Keiryn L.; Sixt, Michael

    2018-01-01

    Lymphatic endothelial cells (LECs) release extracellular chemokines to guide the migration of dendritic cells. In this study, we report that LECs also release basolateral exosome-rich endothelial vesicles (EEVs) that are secreted in greater numbers in the presence of inflammatory cytokines and accumulate in the perivascular stroma of small lymphatic vessels in human chronic inflammatory diseases. Proteomic analyses of EEV fractions identified >1,700 cargo proteins and revealed a dominant motility-promoting protein signature. In vitro and ex vivo EEV fractions augmented cellular protrusion formation in a CX3CL1/fractalkine-dependent fashion and enhanced the directional migratory response of human dendritic cells along guidance cues. We conclude that perilymphatic LEC exosomes enhance exploratory behavior and thus promote directional migration of CX3CR1-expressing cells in complex tissue environments. PMID:29650776

  20. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  1. Curcumin is a potent modulator of microglial gene expression and migration

    PubMed Central

    2011-01-01

    Background Microglial cells are important effectors of the neuronal innate immune system with a major role in chronic neurodegenerative diseases. Curcumin, a major component of tumeric, alleviates pro-inflammatory activities of these cells by inhibiting nuclear factor kappa B (NFkB) signaling. To study the immuno-modulatory effects of curcumin on a transcriptomic level, DNA-microarray analyses were performed with resting and LPS-challenged microglial cells after short-term treatment with curcumin. Methods Resting and LPS-activated BV-2 cells were stimulated with curcumin and genome-wide mRNA expression patterns were determined using DNA-microarrays. Selected qRT-PCR analyses were performed to confirm newly identified curcumin-regulated genes. The migration potential of microglial cells was determined with wound healing assays and transwell migration assays. Microglial neurotoxicity was estimated by morphological analyses and quantification of caspase 3/7 levels in 661W photoreceptors cultured in the presence of microglia-conditioned medium. Results Curcumin treatment markedly changed the microglial transcriptome with 49 differentially expressed transcripts in a combined analysis of resting and activated microglial cells. Curcumin effectively triggered anti-inflammatory signals as shown by induced expression of Interleukin 4 and Peroxisome proliferator activated receptor α. Several novel curcumin-induced genes including Netrin G1, Delta-like 1, Platelet endothelial cell adhesion molecule 1, and Plasma cell endoplasmic reticulum protein 1, have been previously associated with adhesion and cell migration. Consequently, curcumin treatment significantly inhibited basal and activation-induced migration of BV-2 microglia. Curcumin also potently blocked gene expression related to pro-inflammatory activation of resting cells including Toll-like receptor 2 and Prostaglandin-endoperoxide synthase 2. Moreover, transcription of NO synthase 2 and Signal transducer and activator of transcription 1 was reduced in LPS-triggered microglia. These transcriptional changes in curcumin-treated LPS-primed microglia also lead to decreased neurotoxicity with reduced apoptosis of 661W photoreceptor cultures. Conclusions Collectively, our results suggest that curcumin is a potent modulator of the microglial transcriptome. Curcumin attenuates microglial migration and triggers a phenotype with anti-inflammatory and neuroprotective properties. Thus, curcumin could be a nutraceutical compound to develop immuno-modulatory and neuroprotective therapies for the treatment of various neurodegenerative disorders. PMID:21958395

  2. Cannabinoid Receptor 2 Suppresses Leukocyte Inflammatory Migration by Modulating the JNK/c-Jun/Alox5 Pathway*

    PubMed Central

    Liu, Yi-Jie; Fan, Hong-Bo; Jin, Yi; Ren, Chun-Guang; Jia, Xiao-E; Wang, Lei; Chen, Yi; Dong, Mei; Zhu, Kang-Yong; Dong, Zhi-Wei; Ye, Bai-Xin; Zhong, Zhong; Deng, Min; Liu, Ting Xi; Ren, Ruibao

    2013-01-01

    Inflammatory migration of immune cells is involved in many human diseases. Identification of molecular pathways and modulators controlling inflammatory migration could lead to therapeutic strategies for treating human inflammation-associated diseases. The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood. Through a chemical genetic screen using a zebrafish model for leukocyte migration, we found that both an agonist of the Cnr2 and inhibitor of the 5-lipoxygenase (Alox5, encoded by alox5) inhibit leukocyte migration in response to acute injury. These agents have a similar effect on migration of human myeloid cells. Consistent with these results, we found that inactivation of Cnr2 by zinc finger nuclease-mediated mutagenesis enhances leukocyte migration, while inactivation of Alox5 blocks leukocyte migration. Further investigation indicates that there is a signaling link between Cnr2 and Alox5 and that alox5 is a target of c-Jun. Cnr2 activation down-regulates alox5 expression by suppressing the JNK/c-Jun activation. These studies demonstrate that Cnr2, JNK, and Alox5 constitute a pathway regulating leukocyte migration. The cooperative effect between the Cnr2 agonist and Alox5 inhibitor also provides a potential therapeutic strategy for treating human inflammation-associated diseases. PMID:23539630

  3. The regulatory effect of SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-l] benzenesulfonamide) on stem cell factor induced migration of mast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Su-Jin; College of Oriental Medicine, Kyung Hee University, 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701; Jeong, Hyun-Ja

    SC-236 (4-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1-pyrazol-1-]benzenesulfonamide; C{sub 16}H{sub 11}ClF{sub 3}N{sub 3}O{sub 2}S), is a highly selective cyclooxygenase (COX)-2 inhibitor. Recently, there have been reports that SC-236 protects against cartilage damage in addition to reducing inflammation and pain in osteoarthritis. However, the mechanism involved in the inflammatory allergic reaction has not been examined. Mast cells accumulation can be related to inflammatory conditions, including allergic rhinitis, asthma, and rheumatoid arthritis. The aim of the present study is to investigate the effects of SC-236 on stem cell factor (SCF)-induced migration, morphological alteration, and cytokine production of rat peritoneal mast cells (RPMCs). We observed that SCF significantly inducedmore » the migration and morphological alteration. The ability of SCF to enhance migration and morphological alteration was abolished by treatment with SC-236. In addition, production of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{beta}, and vascular endothelial growth factor (VEGF) production induced by SCF was significantly inhibited by treatment with SC-236. Previous work has demonstrated that SCF-induced migration and cytokine production of mast cells require p38 MAPK activation. We also showed that SC-236 suppresses the SCF-induced p38 MAPK activation in RPMCs. These data suggest that SC-236 inhibits migration and cytokine production through suppression of p38 MAPK activation. These results provided new insight into the pharmacological actions of SC-236 and its potential therapeutic role in the treatment of inflammatory allergic diseases.« less

  4. Vascular Cell Adhesion Molecule-1 Expression and Signaling During Disease: Regulation by Reactive Oxygen Species and Antioxidants

    PubMed Central

    Marchese, Michelle E.; Abdala-Valencia, Hiam

    2011-01-01

    Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132

  5. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  6. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration.

    PubMed

    Goncharova, Elena A; Goncharov, Dmitry A; Krymskaya, Vera P

    2006-01-01

    Migration of human pulmonary vascular smooth muscle (VSM) cells contributes to vascular remodeling in pulmonary arterial hypertension and atherosclerosis. Evidence also indicates that, in part, migration of airway smooth muscle (ASM) cells may contribute to airway remodeling associated with asthma. Here we describe migration of VSM and ASM cells in vitro using Transwell or Boyden chamber assays. Because dissecting signaling mechanisms regulating cell migration requires molecular approaches, our protocol also describes how to assess migration of transfected VSM and ASM cells. Transwell or Boyden chamber assays can be completed in approximately 8 h and include plating of serum-deprived VSM or ASM cell suspension on membrane precoated with collagen, migration of cells toward chemotactic gradient and visual (Transwell) or digital (Boyden chamber) analysis of membrane. Although the Transwell assay is easy, the Boyden chamber assay requires hands-on experience; however, both assays are reliable cell-based approaches providing valuable information on how chemotactic and inflammatory factors modulate VSM and ASM migration.

  8. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis.

    PubMed

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-04-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).

  9. Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

    PubMed Central

    Kim, Sang-Su; Kim, Jung-Hyun; Han, Ik-Hwan; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-01-01

    Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-1β, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-κB were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-κB, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-κB inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS). PMID:27180569

  10. Inflammation and cancer

    PubMed Central

    Coussens, Lisa M.; Werb, Zena

    2009-01-01

    Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development. PMID:12490959

  11. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    PubMed Central

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  12. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country.

    PubMed

    Backer, Vibeke; Baines, Katherine J; Powell, Heather; Porsbjerg, Celeste; Gibson, Peter G

    2016-02-01

    An overlap between obesity and asthma exists, and inflammatory cells in adipose tissue could drive the development of asthma. Comparison of adipose tissue gene expression among Inuit living in Greenland to those in Denmark provides an opportunity to assess how changes in adipose tissue inflammation can be modified by migration and diet. To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). Of the 1059 Greenlandic Inuit participants, 556 were living in Greenland and 6.4% had asthma. Asthma was increased in Denmark (9%) compared to Greenland (3.6%, p < 0.0001) and associated with increased adipose tissue IL-6 gene expression and increased BMI. There was no association between asthma and adipose tissue mast cell gene expression. Pro-inflammatory gene expression (IL-6, IL-1β) was higher in those living in Denmark, and with increasing BMI and dietary changes. The anti-inflammatory (M2) macrophage marker, CD163, was higher in Greenland-dwelling Inuit (p < 0.01). No association was found between gene expression of mast cell markers in adipose tissue and asthma. Among Greenlandic Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonhwa; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University; Kim, Tae Hoon

    2012-07-01

    Withaferin A (WFA), an active compound from Withania somnifera, is widely researched for its anti-inflammatory, cardioactive and central nervous system effects. In this study, we first investigated the possible barrier protective effects of WFA against pro-inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice induced by high mobility group box 1 protein (HMGB1) and the associated signaling pathways. The barrier protective activities of WFA were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in HMGB1-activated HUVECs. We found that WFA inhibited lipopolysaccharide (LPS)-induced HMGB1 release and HMGB1-mediated barrier disruption, expression of cellmore » adhesion molecules (CAMs) and adhesion/transendothelial migration of leukocytes to human endothelial cells. WFA also suppressed acetic acid-induced hyperpermeability and carboxymethylcellulose-induced leukocytes migration in vivo. Further studies revealed that WFA suppressed the production of interleukin 6, tumor necrosis factor-α (TNF-α) and activation of nuclear factor-κB (NF-κB) by HMGB1. Collectively, these results suggest that WFA protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases. -- Highlights: ► Withaferin A inhibited LPS induced HMGB1 release. ► Withaferin A reduced HMGB1-mediated hyperpermeability. ► Withaferin A inhibited HMGB1-mediated adhesion and migration of leukocytes. ► Withaferin A inhibited HMGB1-mediated activation of NF-κB, IL-6 and TNF-α.« less

  14. Reverse transendothelial cell migration in inflammation: to help or to hinder?

    PubMed

    Burn, Thomas; Alvarez, Jorge Ivan

    2017-05-01

    The endothelium provides a strong barrier separating circulating blood from tissue. It also provides a significant challenge for immune cells in the bloodstream to access potential sites of infection. To mount an effective immune response, leukocytes traverse the endothelial layer in a process known as transendothelial migration. Decades of work have allowed dissection of the mechanisms through which immune cells gain access into peripheral tissues, and subsequently to inflammatory foci. However, an often under-appreciated or potentially ignored question is whether transmigrated leukocytes can leave these inflammatory sites, and perhaps even return across the endothelium and re-enter circulation. Although evidence has existed to support "reverse" transendothelial migration for a number of years, it is only recently that mechanisms associated with this process have been described. Here we review the evidence that supports both reverse transendothelial migration and reverse interstitial migration within tissues, with particular emphasis on some of the more recent studies that finally hint at potential mechanisms. Additionally, we postulate the biological significance of retrograde migration, and whether it serves as an additional mechanism to limit pathology, or provides a basis for the dissemination of systemic inflammation.

  15. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    NASA Astrophysics Data System (ADS)

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  16. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT.

    PubMed

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-07-16

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway.

  17. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    PubMed

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  18. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation.

    PubMed

    Yanagihara, S; Komura, E; Nagafune, J; Watarai, H; Yamaguchi, Y

    1998-09-15

    Dendritic cells (DC) that are stimulated with inflammatory mediators can maturate and migrate from nonlymphoid tissues to lymphoid organs to initiate T cell-mediated immune responses. This migratory step is closely related to the maturation of the DC. In an attempt to identify chemokine receptors that might influence migration and are selectively expressed in mature DC, we have discovered that the chemokine receptor, EBI1/CCR7, is strikingly up-regulated upon maturation in three distinct culture systems: 1) mouse bone marrow-derived DC, 2) mouse epidermal Langerhans cells, and 3) human monocyte-derived DC. The EBI1/CCR7 expressed in mature DC is functional because ELC/MIP-3beta, recently identified as a ligand of EBI1/CCR7, induces a rise in intracellular free calcium concentrations and directional migration of human monocyte-derived mature DC (HLA-DRhigh, CD1a(low), CD14-, CD25+, CD83+, and CD86high) in a dose-dependent manner, but not of immature DC (HLA-DRlow, CD1a(high), CD14-, CD25-, CD83-, and CD86-). In contrast, macrophage inflammatory protein-1alpha (MIP-1alpha), monocyte chemotactic protein-3 (MCP-3), and RANTES are active on immature DC but not on mature DC. Thus, it seems likely that MIP-1alpha, MCP-3, and RANTES can mediate the migration of immature DC located in peripheral sites, whereas ELC/MIP-3beta can direct the migration of Ag-carrying DC from peripheral inflammatory sites, where DC are stimulated to up-regulate the expression of EBI1/CCR7, to lymphoid organs. It is postulated that different chemokines and chemokine receptors are involved in DC migration in vivo, depending on the maturation state of DC.

  19. Hyaluronan as an Immune Regulator in Human Diseases

    PubMed Central

    NOBLE, PAUL W.; LIANG, JIURONG; JIANG, DIANHUA

    2010-01-01

    Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on a variety of cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage by interacting with TLR2 and TLR4 on these parenchymal cells. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and stem cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases. PMID:21248167

  20. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling

    PubMed Central

    2013-01-01

    Background Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Methods Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Results Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. Conclusions A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells. PMID:23433072

  1. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling.

    PubMed

    Chen, Yi-Ching; Tien, Yin-Jing; Chen, Chun-Houh; Beltran, Francesca N; Amor, Evangeline C; Wang, Ran-Juh; Wu, Den-Jen; Mettling, Clément; Lin, Yea-Lih; Yang, Wen-Chin

    2013-02-23

    Morus alba has long been used in traditional Chinese medicine to treat inflammatory diseases; however, the scientific basis for such usage and the mechanism of action are not well understood. This study investigated the action of M. alba on leukocyte migration, one key step in inflammation. Gas chromatography-mass spectrometry (GC-MS) and cluster analyses of supercritical CO2 extracts of three Morus species were performed for chemotaxonomy-aided plant authentication. Phytochemistry and CXCR4-mediated chemotaxis assays were used to characterize the chemical and biological properties of M. alba and its active compound, oxyresveratrol. fluorescence-activated cell sorting (FACS) and Western blot analyses were conducted to determine the mode of action of oxyresveratrol. Chemotaxonomy was used to help authenticate M. alba. Chemotaxis-based isolation identified oxyresveratrol as an active component in M. alba. Phytochemical and chemotaxis assays showed that the crude extract, ethyl acetate fraction and oxyresveratrol from M. alba suppressed cell migration of Jurkat T cells in response to SDF-1. Mechanistic study indicated that oxyresveratrol diminished CXCR4-mediated T-cell migration via inhibition of the MEK/ERK signaling cascade. A combination of GC-MS and cluster analysis techniques are applicable for authentication of the Morus species. Anti-inflammatory benefits of M. alba and its active compound, oxyresveratrol, may involve the inhibition of CXCR-4-mediated chemotaxis and MEK/ERK pathway in T and other immune cells.

  2. Interleukin‑6 induces an epithelial‑mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration.

    PubMed

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-06-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin‑6 (IL‑6) induces craniopharyngioma (CP)‑associated inflammation, particularly in ACP, the role of IL‑6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL‑6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL‑6, IL‑6 receptor (IL‑6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL‑6R (sIL‑6R) in the cystic fluid and supernatants of ACP cells and tumor‑associated fibroblasts. These measurements demonstrated that ACP cells produce IL‑6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL‑6 treatment in a concentration‑dependent manner. Conversely, treatment with an IL‑6‑blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL‑6 treatment increased the expression of vimentin and decreased the expression of E‑cadherin in a dose‑dependent manner. The findings of the present study demonstrate that IL‑6 may promote migration in vitro via the classic‑ and trans‑signaling pathways by inducing epithelial‑mesenchymal transition in ACP cell cultures.

  3. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human adamantinomatous craniopharyngioma cells and promotes tumor cell migration

    PubMed Central

    Zhou, Jie; Zhang, Chao; Pan, Jun; Chen, Ligang; Qi, Song-Tao

    2017-01-01

    Total resection of adamantinomatous craniopharyngioma (ACP) is complex and often leads to postoperative recurrence. This is due to the tendency of the tumor to invade the surrounding brain tissue and the generation of a local inflammatory state between the tumor cells and parenchyma. While there is evidence to suggest that interleukin-6 (IL-6) induces craniopharyngioma (CP)-associated inflammation, particularly in ACP, the role of IL-6 in the progression of ACP remains unclear. The results of the present study demonstrated that CP inflammation was associated with pathological classification, extent of surgery, degree of calcification and postoperative hypothalamic status scale. Cytokine antibody arrays were conducted to measure the expression of IL-6 and other inflammatory factors in tumor tissues in response to various levels of inflammatory exposure. IL-6, IL-6 receptor (IL-6R) and glycoprotein 130 expression was detected by immunohistochemistry. In addition, an ELISA was performed to quantify the levels of soluble IL-6R (sIL-6R) in the cystic fluid and supernatants of ACP cells and tumor-associated fibroblasts. These measurements demonstrated that ACP cells produce IL-6 and its associated proteins. In addition, the results revealed that while the viability of ACP cells was not affected, the migration of ACP cells was promoted by IL-6 treatment in a concentration-dependent manner. Conversely, treatment with an IL-6-blocking monoclonal antibody significantly decreased the migration of ACP cells. In addition, IL-6 treatment increased the expression of vimentin and decreased the expression of E-cadherin in a dose-dependent manner. The findings of the present study demonstrate that IL-6 may promote migration in vitro via the classic- and trans-signaling pathways by inducing epithelial-mesenchymal transition in ACP cell cultures. PMID:28487953

  4. VLA-4 antagonists: potent inhibitors of lymphocyte migration.

    PubMed

    Yang, Ginger X; Hagmann, William K

    2003-05-01

    Circulating lymphocytes normally migrate through extravascular spaces in relatively low numbers as important members of the immunosurveillance process. That is until signals are received by endothelial cells that there is an underlying infection or inflammatory condition. These vascular surface cells in turn overexpress and present ligands to circulating lymphocyte adhesion molecules. Upon encountering this higher density of ligands, lymphocytes, which had been leisurely rolling along the vascular surface, now become more firmly attached, change shape, and migrate through tight junctions to the sites of infection or inflammation. If the initiating events are not resolved and the condition becomes chronic, there can be a sustained extravasation of lymphocytes that can exacerbate the inflammatory condition, which in turn will continue to recruit more inflammatory cells resulting in unwanted tissue destruction. It is for the attenuation of this cycle of sustained inflammatory cell recruitment that very late activating antigen-4 (VLA-4) antagonists are being developed. Most lymphocytes, except neutrophils, express VLA-4 on their surface and they interact with endothelial vascular cell adhesion molecule-1 (VCAM-1). It is this interaction that VLA-4 antagonists are intended to disrupt, thus, putting an end to the cycle of chronic inflammation, which is the hallmark of many diseases. This review will provide an update of VLA-4 antagonists that have appeared since early 2001 and will discuss some of the issues, both positive and negative, that may be encountered in their development. Copyright 2003 Wiley Periodicals, Inc.

  5. Gamma-Terpinene Modulates Acute Inflammatory Response in Mice.

    PubMed

    Ramalho, Theresa Raquel de Oliveira; Oliveira, Maria Talita Pacheco de; Lima, Ana Luisa de Araujo; Bezerra-Santos, Claudio Roberto; Piuvezam, Marcia Regina

    2015-09-01

    The monoterpene gamma-terpinene is a natural compound present in essential oils of a wide variety of plants, including the Eucalyptus genus, which has been reported to possess anti-inflammatory activity. The goal of this study was to evaluate the effect of gamma-terpinene on several in vivo experimental models of acute inflammation. Swiss mice were pretreated with gamma-terpinene and subjected to protocols of paw edema with different phlogistic agents such as carrageenan, prostaglandin-E2, histamine, or bradykinin. The microvascular permeability was measured by intraperitoneal injection of acetic acid and measuring the amount of protein extravasation. Carrageenan-induced peritonitis was used to analyze the effect of gamma-terpinene on inflammatory cell migration and cytokine production. We also developed an acute lung injury protocol to define the anti-inflammatory effect of gamma-terpinene. Mice pretreated with gamma-terpinene displayed reduced paw edema induced by carrageenan from 1-24 h after challenge. A similar reduction was observed when gamma-terpinene was administered after stimulation with PGE2, bradykinin, and histamine. Treatment with gamma-terpinene also inhibited fluid extravasation in the acetic acid model of microvascular permeability. In a carrageenan-induced peritonitis model, gamma-terpinene treatment reduced neutrophil migration as well as the production of interleukin-1β and tumor necrosis factor-α when compared to nontreated animals, and in the acute lung injury protocol, gamma-terpinene diminished the neutrophil migration into lung tissue independently of the total protein extravasation in the lung. These data demonstrate that, in different models of inflammation, treatment with gamma-terpinene alleviated inflammatory parameters such as edema and pro-inflammatory cytokine production, as well as cell migration into the inflamed site, and that this monoterpene has anti-inflammatory properties. Georg Thieme Verlag KG Stuttgart · New York.

  6. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by inflammation triggered by monocyte adhesion and increased endothelial cell proliferation. These events are manifest in inflammatory diseases, such as atherosclerosis. Therefore, our results suggest that DBMSCs could be usefully employed as a therapeutic strategy for atherosclerosis.

  7. Arc/Arg3.1 governs inflammatory dendritic cell migration from the skin and thereby controls T cell activation.

    PubMed

    Ufer, Friederike; Vargas, Pablo; Engler, Jan Broder; Tintelnot, Joseph; Schattling, Benjamin; Winkler, Hana; Bauer, Simone; Kursawe, Nina; Willing, Anne; Keminer, Oliver; Ohana, Ora; Salinas-Riester, Gabriela; Pless, Ole; Kuhl, Dietmar; Friese, Manuel A

    2016-09-23

    Skin-migratory dendritic cells (migDCs) are pivotal antigen-presenting cells that continuously transport antigens to draining lymph nodes and regulate immune responses. However, identification of migDCs is complicated by the lack of distinguishing markers, and it remains unclear which molecules determine their migratory capacity during inflammation. We show that, in the skin, the neuronal plasticity molecule activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) was strictly confined to migDCs. Mechanistically, Arc/Arg3.1 was required for accelerated DC migration during inflammation because it regulated actin dynamics through nonmuscle myosin II. Accordingly, Arc/Arg3.1-dependent DC migration was critical for mounting T cell responses in experimental autoimmune encephalomyelitis and allergic contact dermatitis. Thus, Arc/Arg3.1 was restricted to migDCs in the skin and drove fast DC migration by exclusively coordinating cytoskeletal changes in response to inflammatory challenges. These findings commend Arc/Arg3.1 as a universal switch in migDCs that may be exploited to selectively modify immune responses. Copyright © 2016, American Association for the Advancement of Science.

  8. Effects of TNF-alpha on Endothelial Cell Collective Migration

    NASA Astrophysics Data System (ADS)

    Chen, Desu; Wu, Di; Helim Aranda-Espinoza, Jose; Losert, Wolfgang

    2013-03-01

    Tumor necrosis factor (TNF-alpha) is a small cell-signaling protein usually released by monocytes and macrophages during an inflammatory response. Previous work had shown the effects of TNF-alpha on single cell morphology, migration, and biomechanical properties. However, the effect on collective migrations remains unexplored. In this work, we have created scratches on monolayers of human umbilical endothelial cells (HUVECs) treated with 25ng/mL TNF-alpha on glass substrates. The wound healing like processes were imaged with phase contrast microscopy. Quantitative analysis of the collective migration of cells treated with TNF-alpha indicates that these cells maintain their persistent motion and alignment better than untreated cells. In addition, the collective migration was characterized by measuring the amount of non-affine deformations of the wound healing monolayer. We found a lower mean non-affinity and narrower distribution of non-affinities upon TNF-alpha stimulation. These results suggest that TNF-alpha introduces a higher degree of organized cell collective migration.

  9. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment.

    PubMed

    Tull, Samantha P; Yates, Clara M; Maskrey, Benjamin H; O'Donnell, Valerie B; Madden, Jackie; Grimble, Robert F; Calder, Philip C; Nash, Gerard B; Rainger, G Ed

    2009-08-01

    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-alpha, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs.

  10. Expression of pleiotrophin, an important regulator of cell migration, is inhibited in intestinal epithelial cells by treatment with non-steroidal anti-inflammatory drugs

    USDA-ARS?s Scientific Manuscript database

    Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs for the suppression of inflammation and pain. However, the analgesic properties of NSAIDs are also associated with significant negative side effects, most notably in the gastrointestinal (GI) tract. Increasingly, evi...

  11. Zoledronic acid causes γδ T cells to target monocytes and down-modulate inflammatory homing

    PubMed Central

    Fowler, Daniel W; Copier, John; Dalgleish, Angus G; Bodman-Smith, Mark D

    2014-01-01

    Zoledronic acid (ZA) is a potential immunotherapy for cancer because it can induce potent γδ T-cell-mediated anti-tumour responses. Clinical trials are testing the efficacy of intravenous ZA in cancer patients; however, the effects of systemic ZA on the activation and migration of peripheral γδ T cells remain poorly understood. We found that γδ T cells within ZA-treated peripheral blood mononuclear cells were degranulating, as shown by up-regulated expression of CD107a/b. Degranulation was monocyte dependent because CD107a/b expression was markedly reduced in the absence of CD14+ cells. Consistent with monocyte-induced degranulation, we observed γδ T-cell-dependent induction of monocyte apoptosis, as shown by phosphatidylserine expression on monocytes and decreased percentages of monocytes in culture. Despite the prevailing paradigm that ZA promotes tumour homing in γδ T cells, we observed down-modulation of their tumour homing capacity, as shown by decreased expression of the inflammatory chemokine receptors CCR5 and CXCR3, and reduced migration towards the inflammatory chemokine CCL5. Taken together our data suggest that ZA causes γδ T cells to target monocytes and down-modulate the migratory programme required for inflammatory homing. This study provides novel insight into how γδ T cells interact with monocytes and the possible implications of systemic use of ZA in cancer. PMID:24912747

  12. The venom of South American rattlesnakes inhibits macrophage functions and is endowed with anti-inflammatory properties

    PubMed Central

    Silva, Maria C. C. de Sousa e; Gonçalves, Luis R. C.

    1996-01-01

    The injection of Crotalus durissus terrificus venom into the foot pad of mice did not induce a significant inflammatory response as evaluated by oedema formation, increased vascular permeability and cell migration. The subcutaneous injection of the venom, or its addition to cell cultures, had an inhibitory effect on the spreading and phagocytosis of resident macrophages, without affecting the viability of the cells. This effect was not observed when the venom was added to cultures of thioglycollate elicited macrophages, but it was able to inhibit these macrophage functions when the cells were obtained from animals injected simultaneously with the venom and thioglycollate. These observations suggest that the venom interferes with the mechanisms of macrophage activation. Leukocyte migration induced by intraperitoneal injection of thioglycollate was also inhibited by previous venom injection. This down-regulatory activity of the venom on macrophage functions could account for the mild inflammatory response observed in the site of the snake bite in Crotalus durissus terrificus envenomation in man. PMID:18475692

  13. Regulatory role of periodontal ligament fibroblasts for innate immune cell function and differentiation.

    PubMed

    Konermann, Anna; Stabenow, Dirk; Knolle, Percy A; Held, Stefanie A E; Deschner, James; Jäger, Andreas

    2012-10-01

    Innate immunity is crucial for an effective host defense against pathogenic microorganisms in periodontal tissues. As periodontal ligament (PDL) cells synthesize immunomodulatory cytokines, the aim of this in vitro study was to investigate whether these cells can interact with innate immune cells. Resting and inflammatory primed (IL-1β, TNF-α, HMGB1) human PDL cells were co-cultured with human monocyte-derived dendritic cells or macrophages. Migration, phenotypic maturation and modulation of phagocytosis of Porphyromonas gingivalis by immune cells were investigated upon co-culture with PDL cells and/or their released soluble factors. PDL cells interacted with immune cells under both non-inflammatory and inflammatory conditions. Immune cell migration was significantly enhanced by co-culture with PDL cells, which also affected their phenotypic maturation both through cell-cell contact and through released soluble mediators. The dendritic cell maturation markers CD83 and CD86 were upregulated as much as both 'alternatively activated' M2 macrophage maturation markers CD23 and CD163. In contrast, the 'classically activated' M1 macrophage maturation marker CD64 was downregulated. Finally, PDL cells significantly enhanced the phagocytosis of Porphyromonas gingivalis by immune cells. Our experiments revealed that PDL cells are not only structural elements of the periodontium, but actively influence immune responses by interaction with innate immune cells.

  14. Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages

    PubMed Central

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763

  15. EGCG reverses human neutrophil elastase-induced migration in A549 cells by directly binding to HNE and by regulating α1-AT

    PubMed Central

    Xiaokaiti, Yilixiati; Wu, Haoming; Chen, Ya; Yang, Haopeng; Duan, Jianhui; Li, Xin; Pan, Yan; Tie, Lu; Zhang, Liangren; Li, Xuejun

    2015-01-01

    Lung carcinogenesis is a complex process that occurs in unregulated inflammatory environment. EGCG has been extensively investigated as a multi-targeting anti-tumor and anti-inflammatory compound. In this study, we demonstrated a novel mechanism by which EGCG reverses the neutrophil elastase-induced migration of A549 cells. We found that neutrophil elastase directly triggered human adenocarcinoma A549 cell migration and that EGCG suppressed the elevation of tumor cell migration induced by neutrophil elastase. We observed that EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity based on the CDOCKER algorithm, MD stimulation by GROMACS, SPR assay and elastase enzymatic activity assay. As the natural inhibitor of neutrophil elastase, α1-antitrypsin is synthesized in tumor cells. We further demonstrated that the expression of α1-antitrypsin was up-regulated after EGCG treatment in neutrophil elastase-treated A549 cells. We preliminarily discovered that the EGCG-mediated induction of α1-antitrypsin expression might be correlated with the regulatory effect of EGCG on the PI3K/Akt pathway. Overall, our results suggest that EGCG ameliorates the neutrophil elastase-induced migration of A549 cells. The mechanism underlying this effect may include two processes: EGCG directly binds to neutrophil elastase and inhibits its enzymatic activity; EGCG enhances the expression of α1-antitrypsin by regulating the PI3K/AKT pathway. PMID:26177797

  16. ILK mediates LPS-induced vascular adhesion receptor expression and subsequent leucocyte trans-endothelial migration.

    PubMed

    Hortelano, Sonsoles; López-Fontal, Raquel; Través, Paqui G; Villa, Natividad; Grashoff, Carsten; Boscá, Lisardo; Luque, Alfonso

    2010-05-01

    The inflammatory response to injurious agents is tightly regulated to avoid adverse consequences of inappropriate leucocyte accumulation or failed resolution. Lipopolysaccharide (LPS)-activated endothelium recruits leucocytes to the inflamed tissue through controlled expression of membrane-associated adhesion molecules. LPS responses in macrophages are known to be regulated by integrin-linked kinase (ILK); in this study, we investigated the role of ILK in the regulation of the LPS-elicited inflammatory response in endothelium. This study was performed on immortalized mouse endothelial cells (EC) isolated from lung and coronary vasculature. Cells were thoroughly characterized and the role of ILK in the regulation of the LPS response was investigated by suppressing ILK expression using siRNA and shRNA technologies. Phenotypic and functional analyses confirmed that the immortalized cells behaved as true EC. LPS induced the expression of the inflammatory genes E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). ILK knockdown impaired LPS-mediated endothelial activation by preventing the induction of ICAM-1 and VCAM-1. Blockade of the LPS-induced response inhibited the inflammatory-related processes of firm adhesion and trans-endothelial migration of leucocytes. ILK is involved in the expression of cell adhesion molecules by EC activated with the inflammatory stimulus LPS. This reduced expression modulates leucocyte adhesion to the endothelium and the extravasation process. This finding suggests ILK as a potential anti-inflammatory target for the development of vascular-specific treatments for inflammation-related diseases.

  17. Mutant monocyte chemoattractant protein 1 protein attenuates migration of and inflammatory cytokine release by macrophages exposed to orthopedic implant wear particles.

    PubMed

    Yao, Zhenyu; Keeney, Michael; Lin, Tzu-Hua; Pajarinen, Jukka; Barcay, Katherine; Waters, Heather; Egashira, Kensuke; Yang, Fan; Goodman, Stuart

    2014-09-01

    Wear particles generated from total joint replacements can stimulate macrophages to release chemokines, such as monocyte chemoattractant protein 1 (MCP-1), which is the most important chemokine regulating systemic and local cell trafficking and infiltration of monocyte/macrophages in chronic inflammation. One possible strategy to curtail the adverse events associated with wear particles is to mitigate migration and activation of monocyte/macrophages. The purpose of this study is to modulate the adverse effects of particulate biomaterials and inflammatory stimuli such as endotoxin by interfering with the biological effects of the chemokine MCP-1. In the current study, the function of MCP-1 was inhibited by the mutant MCP-1 protein called 7ND, which blocks its receptor, the C-C chemokine receptor type 2 (CCR2) on macrophages. Addition of 7ND decreased MCP-1-induced migration of THP-1 cells in cell migration experiments in a dose-dependent manner. Conditioned media from murine macrophages exposed to clinically relevant polymethylmethacrylate (PMMA) particles with/without endotoxin [lipopolysaccharide (LPS)] had a chemotactic effect on human macrophages, which was decreased dramatically by 7ND. 7ND demonstrated no adverse effects on the viability of macrophages, and the capability of mesenchymal stem cells (MSCs) to form bone at the doses tested. Finally, proinflammatory cytokine production was mitigated when macrophages were exposed to PMMA particles with/without LPS in the presence of 7ND. Our studies confirm that the MCP-1 mutant protein 7ND can decrease macrophage migration and inflammatory cytokine release without adverse effects at the doses tested. Local delivery of 7ND at the implant site may provide a therapeutic strategy to diminish particle-associated periprosthetic inflammation and osteolysis. © 2013 Wiley Periodicals, Inc.

  18. Identification of resident and inflammatory bone marrow derived cells in the sclera by bone marrow and haematopoietic stem cell transplantation

    PubMed Central

    Hisatomi, Toshio; Sonoda, Koh‐hei; Ishikawa, Fumihiko; Qiao, Hong; Nakamura, Takahiro; Fukata, Mitsuhiro; Nakazawa, Toru; Noda, Kousuke; Miyahara, Shinsuke; Harada, Mine; Kinoshita, Shigeru; Hafezi‐Moghadam, Ali; Ishibashi, Tatsuro; Miller, Joan W

    2007-01-01

    Aims To characterise bone marrow derived cells in the sclera under normal and inflammatory conditions, we examined their differentiation after transplantation from two different sources, bone marrow and haematopoietic stem cells (HSC). Methods Bone marrow and HSC from green fluorescent protein (GFP) transgenic mice were transplanted into irradiated wild‐type mice. At 1 month after transplantation, mice were sacrificed and their sclera examined by histology, immunohistochemistry (CD11b, CD11c, CD45), and transmission and scanning electron microscopy. To investigate bone marrow derived cell recruitment under inflammatory conditions, experimental autoimmune uveitis (EAU) was induced in transplanted mice. Results GFP positive cells were distributed in the entire sclera and comprised 22.4 (2.8)% (bone marrow) and 28.4 (10.9)% (HSC) of the total cells in the limbal zone and 18.1 (6.7)% (bone marrow) and 26.3 (3.4)% (HSC) in the peripapillary zone. Immunohistochemistry showed that GFP (+) CD11c (+), GFP (+) CD11b (+) cells migrated in the sclera after bone marrow and HSC transplantation. Transmission and scanning electron microscopy revealed antigen presenting cells among the scleral fibroblasts. In EAU mice, vast infiltration of GFP (+) cells developed into the sclera. Conclusion We have provided direct and novel evidence for the migration of bone marrow and HSC cells into the sclera differentiating into macrophages and dendritic cells. Vast infiltration of bone marrow and HSC cells was found to be part of the inflammatory process in EAU. PMID:17035278

  19. Apigenin inhibits NF-κB and snail signaling, EMT and metastasis in human hepatocellular carcinoma.

    PubMed

    Qin, Yuan; Zhao, Dong; Zhou, Hong-Gang; Wang, Xing-Hui; Zhong, Wei-Long; Chen, Shuang; Gu, Wen-Guang; Wang, Wei; Zhang, Chun-Hong; Liu, Yan-Rong; Liu, Hui-Juan; Zhang, Qiang; Guo, Yuan-Qiang; Sun, Tao; Yang, Cheng

    2016-07-05

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC.

  20. Apigenin inhibits NF-κB and Snail signaling, EMT and metastasis in human hepatocellular carcinoma

    PubMed Central

    Zhong, Wei-long; Chen, Shuang; Gu, Wen-guang; Wang, Wei; Zhang, Chun-hong; Liu, Yan-rong; Liu, Hui-juan; Zhang, Qiang; Guo, Yuan-qiang; Sun, Tao; Yang, Cheng

    2016-01-01

    Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. In this study, we investigated the effects of apigenin on migration and metastasis in experimental human hepatocellular carcinoma (HCC) cell lines in vitro and in vivo. Apigenin dose-dependently inhibited proliferation, migration, and invasion by PLC and Bel-7402 human HCC cells. It also suppressed tumor growth in PLC cell xenografts without altering body weight, thereby prolonging survival. Apigenin reduced Snai1 and NF-κB expression, reversed increases in epithelial-mesenchymal transition (EMT) marker levels, increased cellular adhesion, regulated actin polymerization and cell migration, and inhibited invasion and migration by HCC cells. Apigenin may therefore inhibit EMT by inhibiting the NF-κB/Snail pathway in human HCC. PMID:27203387

  1. GanedenBC30 cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro.

    PubMed

    Jensen, Gitte S; Benson, Kathleen F; Carter, Steve G; Endres, John R

    2010-03-24

    This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010.Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro.The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2.Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system.

  2. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    Background This study was performed to evaluate anti-inflammatory and immune modulating properties of the probiotic, spore-forming bacterial strain: Bacillus coagulans: GBI-30, (PTA-6086, GanedenBC30TM). In addition, cell wall and metabolite fractions were assayed separately to address whether biological effects were due to cell wall components only, or whether secreted compounds from live bacteria had additional biological properties. The spores were heat-activated, and bacterial cultures were grown. The culture supernatant was harvested as a source of metabolites (MTB), and the bacteria were used to isolate cell wall fragments (CW). Both of these fractions were compared in a series of in vitro assays. Results Both MTB and CW inhibited spontaneous and oxidative stress-induced ROS formation in human PMN cells and increased the phagocytic activity of PMN cells in response to bacteria-like carboxylated fluorospheres. Both fractions supported random PMN and f-MLP-directed PMN cell migration, indicating a support of immune surveillance and antibacterial defense mechanisms. In contrast, low doses of both fractions inhibited PMN cell migration towards the inflammatory mediators IL-8 and LTB4. The anti-inflammatory activity was strongest for CW, where the PMN migration towards IL-8 was inhibited down to dilutions of 1010. Both MTB and CW induced the expression of the CD69 activation marker on human CD3- CD56+ NK cells, and enhanced the expression of CD107a when exposed to K562 tumor cells in vitro. The fractions directly modulated cytokine production, inducing production of the Th2 cytokines IL-4, IL-6, and IL-10, and inhibiting production of IL-2. Both fractions further modulated mitogen-induced cytokine production in the following manner: Both fractions enhanced the PHA-induced production of IL-6 and reduced the PHA-induced production of TNF-alpha. Both fractions enhanced the PWM-induced production of TNF-alpha and IFN-gamma. In addition, MTB also enhanced both the PHA- and the PWM-induced expression of IL-10. Conclusion The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system. PMID:20331905

  3. Mevastatin ameliorates sphingosine 1‐phosphate‐induced COX‐2/PGE2‐dependent cell migration via FoxO1 and CREB phosphorylation and translocation

    PubMed Central

    Hsu, Chih‐Kai; Lin, Chih‐Chung; Hsiao, Li‐Der

    2015-01-01

    Background and Purpose Sphingosine 1‐phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX‐2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase (HMG‐CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P‐evoked COX‐2‐dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. Experimental Approach The expression of COX‐2 was determined by Western blotting, real time‐PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX‐2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX‐2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. Key Results S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR‐independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P‐induced cell migration and COX‐2/PGE2 production via a PPARγ‐dependent signalling pathway. Conclusions and Implications Mevastatin attenuates the S1P‐induced increased expression of COX‐2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future. PMID:26359950

  4. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    PubMed Central

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  5. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in cardiac surgery patients even though the clinical significance remains unknown. This clinical trial was approved by the European Medicines Agency (EudraCT-number: 2010-023942-63) and at ClinicalTrials.gov ( NCT01285271 ; first received: January 24, 2011).

  6. Sigma Receptor 1 activation attenuates release of inflammatory cytokines MIP1γ, MIP2, MIP3α and IL12 (p40/p70) by retinal Müller glial cells

    PubMed Central

    Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.

    2015-01-01

    The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327

  7. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  8. Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions.

    PubMed

    Tang, Yi; Liu, Lin; Wang, Pei; Chen, Donglei; Wu, Ziqiang; Tang, Chunbo

    2017-12-01

    Mesenchymal stem cell (MSC)-mediated periodontal tissue regeneration is considered to be a promising method for periodontitis treatment. The molecular mechanism of functional regulation by MSCs remains unclear, thus limiting their application. Our previous study discovered that Periostin (POSTN) promoted the migration and osteogenic differentiation of periodontal ligament mesenchymal stem cells (PDLSCs), but it is still unclear whether POSTN is able to restore the regenerative potential of PDLSCs under inflammatory conditions. In this study, we investigated the effect of POSTN on PDLSCs under inflammatory conditions and its mechanism. PDLSCs were isolated from periodontal ligament tissue. TNF-α was used at 10 ng/mL to mimic inflammatory conditions. Lentivirus POSTN shRNA was used to knock down POSTN. Recombinant human POSTN (rhPOSTN) was used to stimulate PDLSCs. A scratch assay was used to analyse cell migration. Alkaline phosphatase (ALP) activity, Alizarin Red staining and expression of osteogenesis-related genes were used to investigate the osteogenic differentiation potential. Western blot analysis was used to detect the mitogen-activated protein kinases (MAPK) and AKT signalling pathways. After a 10 ng/mL TNF-α treatment, knockdown of POSTN impeded scratch closure, inhibited ALP activity and mineralization in vitro, and decreased expression of RUNX2, OSX, OPN and OCN in PDLSCs, while 75 ng/mL rhPOSTN significantly accelerated scratch closure, enhanced ALP activity and mineralization in vitro, and increased expression of RUNX2, OSX, OPN and OCN. In addition, knockdown of POSTN inhibited expression of phosphorylated c-Jun N-terminal kinase (p-JNK), while 75 ng/mL rhPOSTN increased expression of p-JNK in PDLSCs with TNF-α treatment. Furthermore, inhibition of JNK by its inhibitor SP600125 dramatically blocked POSTN-enhanced scratch closure, ALP activity and mineralization in PDLSCs. Our results revealed that POSTN might promote the migration and osteogenic differentiation potential of PDLSCs via the JNK pathway, providing insight into the mechanism underlying MSC biology under inflammatory conditions and identifying a potential target for improving periodontal tissue regeneration. © 2017 John Wiley & Sons Ltd.

  9. Bromelain treatment decreases neutrophil migration to sites of inflammation.

    PubMed

    Fitzhugh, David J; Shan, Siqing; Dewhirst, Mark W; Hale, Laura P

    2008-07-01

    Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain- vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50-85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action.

  10. Bromelain Treatment Decreases Neutrophil Migration to Sites of Inflammation

    PubMed Central

    Fitzhugh, David J.; Shan, Siqing; Dewhirst, Mark W.; Hale, Laura P.

    2008-01-01

    Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain- vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50 – 85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action. PMID:18482869

  11. Local application of IGFBP5 protein enhanced periodontal tissue regeneration via increasing the migration, cell proliferation and osteo/dentinogenic differentiation of mesenchymal stem cells in an inflammatory niche.

    PubMed

    Han, Nannan; Zhang, Fengqiu; Li, Guoqing; Zhang, Xiuli; Lin, Xiao; Yang, Haoqing; Wang, Lijun; Cao, Yangyang; Du, Juan; Fan, Zhipeng

    2017-09-29

    Periodontitis is a widespread infectious disease ultimately resulting in tooth loss. The number of mesenchymal stem cells (MSCs) in patients with periodontitis is decreased, and MSC functions are impaired. Rescuing the impaired function of MSCs in periodontitis is the key for treatment, especially in a manner independent of exogenous MSCs. Our previous study found that overexpressed insulin-like growth factor binding protein 5 (IGFBP5) could promote exogenous MSC-mediated periodontal tissue regeneration. Here, we investigate the role of IGFBP5 protein in MSCs and periodontal tissue regeneration independent of exogenous MSCs in an inflammatory niche. TNFα was used to mimic the inflammatory niche. Lentiviral IGFBP5 shRNA was used to silence IGFBP5 and recombinant human IGFBP5 protein (rhIGFBP5) was used to stimulate the periodontal ligament stem cells (PDLSCs) and bone marrow stem cells (BMSCs). The effects of IGFBP5 on PDLSCs were evaluated using the scratch-simulated wound migration, Transwell chemotaxis, alkaline phosphatase (ALP) activity, Alizarin red staining, Cell Counting Kit-8, Western blot, Real-time PCR, Co-IP and ChIP assays. The swine model of periodontitis was used to investigate the functions of IGFBP5 for periodontal regeneration and its anti-inflammation effect. We discovered that 0.5 ng/ml rhIGFBP5 protein enhanced the migration, chemotaxis, osteo/dentinogenic differentiation and cell proliferation of MSCs under the inflammatory condition. Moreover, 0.5 ng/ml rhIGFBP5 application could rescue the impaired functions of IGFBP5-silenced-MSCs in the inflammatory niche. Furthermore, local injection of rhIGFBP5 could promote periodontal tissue regeneration and relieve the local inflammation in a minipig model of periodontitis. Mechanistically, we found that BCOR negatively regulated the expression of IGFBP5 in MSCs. BCOR formed a protein complex with histone demethylase KDM6B and raised histone K27 methylation in the IGFBP5 promoter. This study revealed that rhIGFBP5 could activate the functions of MSCs in an inflammatory niche, provided insight into the mechanism underlying the activated capacities of MSCs, and identified IGFBP5 as a potential cytokine for improving tissue regeneration and periodontitis treatment independent of exogenous MSCs and its potential application in dental clinic.

  12. Sex differences in the phagocytic and migratory activity of microglia and their impairment by palmitic acid.

    PubMed

    Yanguas-Casás, Natalia; Crespo-Castrillo, Andrea; de Ceballos, Maria L; Chowen, Julie A; Azcoitia, Iñigo; Arevalo, Maria Angeles; Garcia-Segura, Luis M

    2018-03-01

    Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells. © 2017 Wiley Periodicals, Inc.

  13. Effects of non-steroidal anti-inflammatory drugs on proliferation, differentiation and migration in equine mesenchymal stem cells.

    PubMed

    Müller, Maike; Raabe, Oksana; Addicks, Klaus; Wenisch, Sabine; Arnhold, Stefan

    2011-03-01

    In equine medicine, stem cell therapies for orthopaedic diseases are routinely accompanied by application of NSAIDs (non-steroidal anti-inflammatory drugs). Thus, it has to be analysed how NSAIDs actually affect the growth and differentiation potential of MSCs (mesenchymal stem cells) in vitro in order to predict the influence of NSAIDs such as phenylbutazone, meloxicam, celecoxib and flunixin on MSCs after grafting in vivo. The effects of NSAIDs were evaluated regarding cell viability and proliferation. Additionally, the multilineage differentiation capacity and cell migration was analysed. NSAIDs at lower concentrations (0.1-1 μM for celecoxib and meloxicam and 10-50 μM for flunixin) exert a positive effect on cell proliferation and migration, while at higher concentrations (10-200 μM for celecoxib and meloxicam and 100-1000 μM for flunixin and phenylbutazone), there is rather a negative influence. While there is hardly any influence on the adipogenic as well as on the chondrogenic MSC differentiation, the osteogenic differentiation potential, as demonstrated with the von Kossa staining, is significantly disturbed. Thus, it can be concluded that the effects of NSAIDs on MSCs are largely dependent on the concentrations used. Additionally, for some differentiation lineages, also the choice of NSAID is critical.

  14. Low grade inflammation inhibits VEGF induced HUVECs migration in p53 dependent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panta, Sushil; Yamakuchi, Munekazu; Kagoshima University Hospital, Kagoshima

    In the course of studying crosstalk between inflammation and angiogenesis, high doses of pro-inflammatory factors have been reported to induce apoptosis in cells. Under normal circumstances also the pro-inflammatory cytokines are being released in low doses and are actively involved in cell signaling pathways. We studied the effects of low grade inflammation in growth factor induced angiogenesis using tumor necrosis factor alfa (TNFα) and vascular endothelial growth factor A (VEGF) respectively. We found that low dose of TNFα can inhibit VEGF induced angiogenesis in human umbilical vein endothelial cells (HUVECs). Low dose of TNFα induces mild upregulation and moreover nuclearmore » localization of tumor suppressor protein 53 (P53) which causes decrease in inhibitor of DNA binding-1 (Id1) expression and shuttling to the cytoplasm. In absence of Id1, HUVECs fail to upregulate β{sub 3}-integrin and cell migration is decreased. Connecting low dose of TNFα induced p53 to β{sub 3}-integrin through Id1, we present additional link in cross talk between inflammation and angiogenesis. - Highlights: • Low grade inflammation (low dose of TNF alfa) inhibits VEGF induced endothelial cells migration. • The low grade inflammation with VEGF treatment upregulates P53 to a nonlethal level. • P53 activation inhibits Id1 shuttling to the cytoplasm in endothelial cells. • Inhibition of Id1 resulted in downregulation of β{sub 3}-integrin which cause decrease in cell migration. • Inflammation and angiogenesis might cross-talk by P53 – Id1 – β{sub 3}-integrin pathway in endothelial cells.« less

  15. Somatostatin Derivate (smsDX) Attenuates the TAM-Stimulated Proliferation, Migration and Invasion of Prostate Cancer via NF-κB Regulation.

    PubMed

    Guo, Zhaoxin; Xing, Zhaoquan; Cheng, Xiangyu; Fang, Zhiqing; Jiang, Chao; Su, Jing; Zhou, Zunlin; Xu, Zhonghua; Holmberg, Anders; Nilsson, Sten; Liu, Zhaoxu

    2015-01-01

    Tumor development and progression are influenced by macrophages of the surrounding microenvironment. To investigate the influences of an inflammatory tumor microenvironment on the growth and metastasis of prostate cancer, the present study used a co-culture model of prostate cancer (PCa) cells with tumor-associated macrophage (TAM)-conditioned medium (MCM). MCM promoted PCa cell (LNCaP, DU145 and PC-3) growth, and a xenograft model in nude mice consistently demonstrated that MCM could promote tumor growth. MCM also stimulated migration and invasion in vitro. Somatostatin derivate (smsDX) significantly attenuated the TAM-stimulated proliferation, migration and invasion of prostate cancer. Immunohistochemistry revealed that NF-κB was over-expressed in PCa and BPH with chronic inflammatory tissue specimens and was positively correlated with macrophage infiltration. Further investigation into the underlying mechanism revealed that NF-κB played an important role in macrophage infiltration. SmsDX inhibited the paracrine loop between TAM and PCa cells and may represent a potential therapeutic agent for PCa.

  16. Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin

    PubMed Central

    van de Ven, Rieneke; Thon, Maria; Gibbs, Susan; de Gruijl, Tanja D.

    2017-01-01

    Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies. PMID:28704477

  17. Effect of platelet lysate on human cells involved in different phases of wound healing.

    PubMed

    Barsotti, Maria Chiara; Chiara Barsotti, Maria; Losi, Paola; Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.

  18. Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing

    PubMed Central

    Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio

    2013-01-01

    Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412

  19. CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Kavanagh, Maria E; Mongan, Ann Marie; Doyle, Suzanne L; Gilmartin, Niamh; O'Farrelly, Cliona; Reynolds, John V; Lysaght, Joanne

    2016-07-01

    Obesity is a global health problem presenting serious risk of disease fuelled by chronic inflammation, including type 2 diabetes mellitus, cardiovascular disease, liver disease and cancer. Visceral fat, in particular the omentum and liver of obese individuals are sites of excessive inflammation. We propose that chemokine-mediated trafficking of pro-inflammatory cells to the omentum and liver contributes to local and subsequent systemic inflammation. Oesophagogastric adenocarcinoma (OAC) is an exemplar model of obesity and inflammation driven cancer. We have demonstrated that T cells actively migrate to the secreted factors from the omentum and liver of OAC patients and that both CD4(+) and CD8(+) T cells bearing the chemokine receptor CCR5 are significantly more prevalent in these tissues compared to matched blood. The CCR5 ligand and inflammatory chemokine MIP-1α is also secreted at significantly higher concentrations in the omentum and liver of our OAC patient cohort compared to matched serum. Furthermore, we report that MIP-1α receptor antagonism can significantly reduce T cell migration to the secreted factors from OAC omentum and liver. These novel data suggest that chemokine receptor antagonism may have therapeutic potential to reduce inflammatory T cell infiltration to the omentum and liver and in doing so, may ameliorate pathological inflammation in obesity and obesity-associated cancer.

  20. A dangerous liaison: Leptin and sPLA2-IIA join forces to induce proliferation and migration of astrocytoma cells.

    PubMed

    Martín, Rubén; Cordova, Claudia; Gutiérrez, Beatriz; Hernández, Marita; Nieto, María L

    2017-01-01

    Glioblastoma, the most aggressive type of primary brain tumour, shows worse prognosis linked to diabetes or obesity persistence. These pathologies are chronic inflammatory conditions characterized by altered profiles of inflammatory mediators, including leptin and secreted phospholipase A2-IIA (sPLA2-IIA). Both proteins, in turn, display diverse pro-cancer properties in different cell types, including astrocytes. Herein, to understand the underlying relationship between obesity and brain tumors, we investigated the effect of leptin, alone or in combination with sPLA2-IIA on astrocytoma cell functions. sPLA2-IIA induced up-regulation of leptin receptors in 1321N1 human astrocytoma cells. Leptin, as well as sPLA2-IIA, increased growth and migration in these cells, through activation/phosphorylation of key proteins of survival cascades. Leptin, at concentrations with minimal or no activating effects on astrocytoma cells, enhanced growth and migration promoted by low doses of sPLA2-IIA. sPLA2-IIA alone induced a transient phosphorylation pattern in the Src/ERK/Akt/mTOR/p70S6K/rS6 pathway through EGFR transactivation, and co-addition of leptin resulted in a sustained phosphorylation of these signaling regulators. Mechanistically, EGFR transactivation and tyrosine- and serine/threonine-protein phosphatases revealed a key role in this leptin-sPLA2-IIA cross-talk. This cooperative partnership between both proteins was also found in primary astrocytes. These findings thus indicate that the adipokine leptin, by increasing the susceptibility of cells to inflammatory mediators, could contribute to worsen the prognosis of tumoral and neurodegenerative processes, being a potential mediator of some obesity-related medical complications.

  1. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways.

    PubMed

    Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.

  2. Anti-inflammatory effects of theophylline, cromolyn and salbutamol in a murine model of pleurisy.

    PubMed Central

    Saleh, T. S.; Calixto, J. B.; Medeiros, Y. S.

    1996-01-01

    1. The aim of this study was to examine the effect of theophylline, cromolyn and salbutamol, three well-known anti-asthmatic drugs, on the early (4 h) and late (48 h) phases of cell migration and fluid leakage induced by carrageenin in the pleural cavity of mice. 2. In the first set of experiments, animals were pretreated (30 min) with different doses of theophylline (0.5-50 mg kg-1, i.p.), cromolyn (0.02-0.2 mg per pleural cavity) or salbutamol (0.05-50 mg kg-1, i.p.); the total and differential cell content, and also the exudate were analysed 4 h after carrageenin (1%) administration. Afterwards, in order to evaluate the time course effects of these drugs on both phases of the inflammatory reaction, one dose employed in the above protocol was chosen, to pretreat (0.5-24 h) different groups of animals. The studied parameters were evaluated 4 and 48 h after pleurisy induction. 3. Acute administration of theophylline (1-50 mg kg-1, i.p.) cromolyn (0.02-0.2 mg per pleural cavity) and salbutamol (0.5-50 mg kg-1, i.p.), 30 min prior to carrageenin, caused significant inhibition of total cell and fluid leakage in the pleural cavity at 4 h (P < 0.01). All drugs exerted a long-lasting inhibitory effect on both exudation and cell migration (P < 0.01) when administered 0.5-8 h before pleurisy induction. However, the temporal profile of the inhibitory effect induced by these drugs on the first phase of the inflammatory reaction was clearly different. Thus, the inhibitory effect induced by theophylline and cromolyn on exudation was significantly longer (up to 24 h) in comparison to their effects on cell migration (only up to 8 h). In contrast, although salbutamol when administered 30 min before pleurisy induction abolished fluid leakage (P < 0.01), this effect was not sustained in the groups pretreated for 4-8 h. In these latter groups, a significant but much smaller reduction of exudation was observed (P < 0.01), whereas the magnitude of cell migration inhibition did not vary. 4. The second phase (48 h) of the inflammatory reaction induced by carrageenin (1%) was significantly inhibited by cromolyn (0.02 mg per pleural cavity) when this drug was administered 0.5-24 h before pleurisy induction (P < 0.01). Similar results were observed when theophylline (50 mg kg-1, i.p.) was administered 0.5-4 h before the injection of the phlogistic agent (P < 0.01). Treatment of the animals with salbutamol (5 mg kg-1, i.p.), 0.5-24 h before pleurisy induction, did not inhibit either cell migration or fluid leakage. In this condition, a significant increase of these parameters was observed in the group pretreated with salbutamol 8-24 h before pleurisy induction (P < 0.01). 5. These results indicate that theophylline and cromolyn were able to inhibit the early (4 h) and late (48 h) phases of the inflammatory reaction induced by carrageenin in a murine model of pleurisy. Salbutamol was effective only against the early phase. The inhibitory effects of theophylline, cromolyn and salbutamol on the early phase of this inflammatory reaction were long-lasting, although a distinct profile of inhibition was observed among them. These findings confirm and extend previous results described in other models of asthma and support both clinical and experimental evidence suggesting that these anti-asthmatic agents exhibit marked anti-inflammatory properties. PMID:8762112

  3. Exploring Inflammatory Disease Drug Effects on Neutrophil Function

    PubMed Central

    Wu, Xiaojie; Kim, Donghyuk; Young, Ashlyn T.; Haynes, Christy L.

    2014-01-01

    Neutrophils are critical inflammatory cells; thus, it is important to characterize the effects of drugs on neutrophil function in the context of inflammatory diseases. Herein, chemically guided neutrophil migration, known as chemotaxis, is studied in the context of drug treatment at the single cell level using a microfluidic platform, complemented by cell viability assays and calcium imaging. Three representative drugs known to inhibit surface receptor expression, signaling enzyme activity, and the elevation of intracellular Ca2+ levels, each playing a significant role in neutrophil chemotactic pathways, are used to examine the in vitro drug effects on cellular behaviors. The microfluidic device establishes a stable concentration gradient of chemokines across a cell culture chamber so that neutrophil migration can be monitored under various drug-exposure conditions. Different time- and concentration-dependent regulatory effects were observed by comparing the motility, polarization, and effectiveness of neutrophil chemotaxis in response to the three drugs. Viability assays revealed distinct drug capabilities in reducing neutrophil viability while calcium imaging clarified the role of Ca2+ in the neutrophil chemotactic pathway. This study provides mechanistic insight into the drug effects on neutrophil function, facilitating comparison of current and potential pharmaceutical approaches. PMID:24946254

  4. Secreted factors from metastatic prostate cancer cells stimulate mesenchymal stem cell transition to a pro-tumourigenic 'activated' state that enhances prostate cancer cell migration.

    PubMed

    Ridge, Sarah M; Bhattacharyya, Dibyangana; Dervan, Eoin; Naicker, Serika D; Burke, Amy J; Murphy, J M; O'leary, Karen; Greene, John; Ryan, Aideen E; Sullivan, Francis J; Glynn, Sharon A

    2018-05-15

    Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent cells that are capable of differentiating into osteocytes, chondrocytes and adipocytes. Recently, MSCs have been found to home to the tumour site and engraft in the tumour stroma. However, it is not yet known whether they have a tumour promoting or suppressive function. We investigated the interaction between prostate cancer cell lines 22Rv1, DU145 and PC3, and bone marrow-derived MSCs. MSCs were 'educated' for extended periods in prostate cancer cell conditioned media and PC3-educated MSCs were found to be the most responsive with a secretory profile rich in pro-inflammatory cytokines. PC3-educated MSCs secreted increased osteopontin (OPN), interleukin-8 (IL-8) and fibroblast growth factor-2 (FGF-2) and decreased soluble fms-like tyrosine kinase-1 (sFlt-1) compared to untreated MSCs. PC3-educated MSCs showed a reduced migration and proliferation capacity that was dependent on exposure to PC3-conditioned medium. Vimentin and α-smooth muscle actin (αSMA) expression was decreased in PC3-educated MSCs compared to untreated MSCs. PC3 and DU145 education of healthy donor and prostate cancer patient-derived MSCs led to a reduced proportion of FAP+ αSMA+ cells contrary to characteristics commonly associated with cancer associated fibroblasts (CAFs). The migration of PC3 cells was increased toward both PC3-educated and DU145-educated MSCs compared to untreated MSCs, while DU145 migration was only enhanced toward patient-derived MSCs. In summary, MSCs developed an altered phenotype in response to prostate cancer conditioned medium which resulted in increased secretion of pro-inflammatory cytokines, modified functional activity and the chemoattraction of prostate cancer cells. © 2017 UICC.

  5. Decreased Migration of Langerhans Precursor-Like Cells in Response to Human Keratinocytes Expressing HPV-16 E6/E7 is Related to Reduced Macrophage Inflammatory Protein-3Alpha Production

    DTIC Science & Technology

    2005-01-01

    high-risk human papillomavirus ( HPV ) types, particularly type 16 and 18, contributes to 90% of cervical cancer cases. HPV infects cutaneous or mucosal...been implicated in cervical/ anogenital cancer and oral squamous cell carcinomas (41). The mucosal lesions caused by HPVs often resolve over time, and a...Decreased Migration of Langerhans Precursor-Like Cells in Response to Human Keratinocytes Expressing HPV -16 E6/E7 is Related to Reduced Macrophage

  6. Dry eye syndrome: developments and lifitegrast in perspective

    PubMed Central

    Lollett, Ivonne V; Galor, Anat

    2018-01-01

    Dry eye (DE) is a chronic ocular condition with high prevalence and morbidity. It has a complex pathophysiology and is multifactorial in nature. Chronic ocular surface inflammation has emerged as a key component of DE that is capable of perpetuating ocular surface damage and leading to symptoms of ocular pain, discomfort, and visual phenomena. It begins with stress to the ocular surface leading to the production of proinflammatory mediators that induce maturation of resident antigen-presenting cells which then migrate to the lymph nodes to activate CD4 T cells. The specific antigen(s) targeted by these pathogenic CD4+ T cells remains unknown. Two emerging theories include self-antigens by autoreactive CD4 T cells or harmless exogenous antigens in the setting of mucosal immunotolerance loss. These CD4 T cells migrate to the ocular surface causing additional inflammation and damage. Lifitegrast is the second topical anti-inflammatory agent to be approved by the US Food and Drug Administration for the treatment of DE and the first to show improvement in DE symptoms. Lifitegrast works by blocking the interaction between intercellular adhesion molecule-1 and lymphocyte functional associated antigen-1, which has been shown to be critical for the migration of antigen-presenting cells to the lymph nodes as well as CD4+ T cell activation and migration to the ocular surface. In four large multicenter, randomized controlled trials, lifitegrast has proven to be effective in controlling both the signs and symptoms of DE with minimal side effects. Further research should include comparative and combination studies with other anti-inflammatory therapies used for DE. PMID:29391773

  7. Delphinidin inhibits BDNF-induced migration and invasion in SKOV3 ovarian cancer cells.

    PubMed

    Lim, Won-Chul; Kim, Hyunhee; Kim, Young-Joo; Park, Seung-Ho; Song, Ji-Hye; Lee, Ki Heon; Lee, In Ho; Lee, Yoo-Kyung; So, Kyeong A; Choi, Kyung-Chul; Ko, Hyeonseok

    2017-12-01

    Brain-derived neurotrophic factor (BDNF), the TrkB ligand, is associated with aggressive malignant behavior, including migration and invasion, in tumor cells and a poor prognosis in patients with various types of cancer. Delphinidin is a diphenylpropane-based polyphenolic ring structure-harboring compound, which exhibits a wide range of pharmacological activities, anti-tumor, anti-oxidant, anti-inflammatory, anti-angiogenic and anti-mutagenic activity. However, the possible role of delphinidin in the cancer migration and invasion is unclear. We investigated the suppressive effect of delphinidin on the cancer migration and invasion. Thus, we found that BDNF enhanced cancer migration and invasion in SKOV3 ovarian cancer cell. To exam the inhibitory role of delphinidin in SKOV3 ovarian cancer migration and invasion, we investigated the use of delphinidin as inhibitors of BDNF-induced motility and invasiveness in SKOV3 ovarian cancer cells in vitro. Here, we found that delphinidin prominently inhibited the BDNF-induced increase in cell migration and invasion of SKOV3 ovarian cancer cells. Furthermore, delphinidin remarkably inhibited BDNF-stimulated expression of MMP-2 and MMP-9. Also, delphinidin antagonized the phosphorylation of Akt and nuclear translocation of NF-κB permitted by the BDNF in SKOV3 ovarian cancer cells. Taken together, our findings provide new evidence that delphinidin suppressed the BDNF-induced ovarian cancer migration and invasion through decreasing of Akt activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation.

    PubMed

    Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri

    2018-01-27

    Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.

  9. Antimetastatic and Anti-Inflammatory Potentials of Essential Oil from Edible Ocimum sanctum Leaves

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran; Ramya, Gunasekar; Ramnath, Gogul

    2014-01-01

    Antimetastatic and anti-inflammatory activities of Ocimum sanctum essential oil (OSEO) have been assessed in this study. OSEO at the concentration of 250 μg/mL and above showed a significant (* P < 0.05) decrease in the number of migrated cancer cells. In addition, OSEO at concentration of 250 μg/mL and above suppressed MMP-9 activity in lipopolysaccharide (LPS) induced inflammatory cells. A dose-dependent downregulation of MMP-9 expression was observed with the treatment of OSEO compared to the control. Our findings indicate that OSEO has both antimetastatic and anti-inflammatory potentials, advocating further investigation for clinical applications in the treatment of inflammation associated cancer. PMID:25431779

  10. Visualization of T Cell-Regulated Monocyte Clusters Mediating Keratinocyte Death in Acquired Cutaneous Immunity.

    PubMed

    Liu, Zheng; Yang, Fei; Zheng, Hao; Fan, Zhan; Qiao, Sha; Liu, Lei; Tao, Juan; Luo, Qingming; Zhang, Zhihong

    2018-06-01

    It remains unclear how monocytes are mobilized to amplify inflammatory reactions in T cell-mediated adaptive immunity. Here, we investigate dynamic cellular events in the cascade of inflammatory responses through intravital imaging of a multicolor-labeled murine contact hypersensitivity model. We found that monocytes formed clusters around hair follicles in the contact hypersensitivity model. In this process, effector T cells encountered dendritic cells under regions of monocyte clusters and secreted IFN-γ, which mobilizes CCR2-dependent monocyte interstitial migration and CXCR2-dependent monocyte cluster formation. We showed that hair follicles shaped the inflammatory microenvironment for communication among the monocytes, keratinocytes, and effector T cells. After disrupting the T cell-mobilized monocyte clusters through CXCR2 antagonization, monocyte activation and keratinocyte apoptosis were significantly inhibited. Our study provides a new perspective on effector T cell-regulated monocyte behavior, which amplifies the inflammatory reaction in acquired cutaneous immunity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma

    PubMed Central

    Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula

    2015-01-01

    Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity. PMID:25811194

  12. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells

    PubMed Central

    Hakami, Nora Y.; Ranjan, Amaresh K.; Hardikar, Anandwardhan A.; Dusting, Greg J.; Peshavariya, Hitesh M.

    2017-01-01

    Introduction: Endothelial progenitor cells (EPCs) display a unique ability to promote angiogenesis and restore endothelial function in injured blood vessels. NADPH oxidase 4 (NOX4)-derived hydrogen peroxide (H2O2) serves as a signaling molecule and promotes endothelial cell proliferation and migration as well as protecting against cell death. However, the role of NOX4 in EPC function is not completely understood. Methods: EPCs were isolated from human saphenous vein and mammary artery discarded during bypass surgery. NOX4 gene and protein expression in EPCs were measured by real time-PCR and Western blot analysis respectively. NOX4 gene expression was inhibited using an adenoviral vector expressing human NOX4 shRNA (Ad-NOX4i). H2O2 production was measured by Amplex red assay. EPC migration was evaluated using a transwell migration assay. EPC proliferation and viability were measured using trypan blue counts. Results: Inhibition of NOX4 using Ad-NOX4i reduced Nox4 gene and protein expression as well as H2O2 formation in EPCs. Inhibition of NOX4-derived H2O2 decreased both proliferation and migration of EPCs. Interestingly, pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) decreased NOX4 expression and reduced survival of EPCs. However, the survival of EPCs was further diminished by TNF-α in NOX4-knockdown cells, suggesting that NOX4 has a protective role in EPCs. Conclusion: These findings suggest that NOX4-type NADPH oxidase is important for proliferation and migration functions of EPCs and protects against pro-inflammatory cytokine induced EPC death. These properties of NOX4 may facilitate the efficient function of EPCs which is vital for successful neovascularization. PMID:28386230

  13. Loss of BMI-1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MD-2/MyD88-mediated NF-κB signaling.

    PubMed

    Ye, Kai; Chen, Qi-Wei; Sun, Ya-Feng; Lin, Jian-An; Xu, Jian-Hua

    2018-02-01

    Increasing evidence from various clinical and experimental studies has demonstrated that the inflammatory microenvironment created by immune cells facilitates tumor migration. Epithelial-mesenchymal transition (EMT) is involved in the progression of cancer invasion and metastasis in an inflammatory microenvironment. B-lymphoma Moloney murine leukemia virus insertion region 1 (BMI-1) acts as an oncogene in various tumors. Ectopic expression of Bmi-1 have an effect on EMT and invasiveness. The purpose of this study was to investigate the efficacy of BMI-1 on inflammation-induced tumor migration and EMT and the underlying mechanism. We observed that the expression of BMI-1, TNF-α, and IL-1β was significantly increased in HT29 and HCT116 cells after THP-1 Conditioned-Medium (THP-1-CM) stimulation. Additionally, inhibition of BMI-1 impeded cell invasion induced by THP-1-CM-stimulation in both HT29 and HCT116 cells. BMI-1 knockdown remarkably repressed THP-1-CM-induced EMT by regulating the expression of EMT biomarkers with an increase in E-cadherin accompanied by decrease in N-cadherin and vimentin. Furthermore, downregulation of BMI-1 dramatically impeded THP-1-CM-triggered Toll-like receptor 4(TLR4)/myeloid differentiation protein 2(MD-2)/myeloid differentiation factor 88(MyD88) activity by repressing the expression of the TLR4/MD-2 complex and MyD88. Further data demonstrated that knockout of BMI-1 also dampened NF-κB THP-1-CM-triggered activity. Taken all data together, our findings established that BMI-1 modulated TLR4/MD-2/MyD88 complex-mediated NF-κB signaling involved in inflammation-induced cancer cells invasion and EMT, and therefore, could be a potential chemopreventive agent against inflammation-associated colorectal cancer. Establishment of an inflammatory microenvironment. Suppression of BMI-1 reverses THP-1-CM-induced inflammatory cytokine production in CRC. Loss of BMI-1 suppressed TLR4/MD-2/MyD88 complex-mediated NF-κB signaling. © 2017 Wiley Periodicals, Inc.

  14. Using optical tweezers to examine the chemotactic force to a single inflammatory cell--eosinophil stimulated by chemoattractants prepared from Toxocara Canis larvae

    NASA Astrophysics Data System (ADS)

    Shih, Po-Chen; Su, Yi-Jr; Chen, Ke-Min; Jen, Lin-Ni; Liu, Cheng-tzu; Hsu, Long

    2005-08-01

    Granulocytes are a group of white blood cells belonging to the innate immune system in human and in murine in which eosinophils play an important role in worm infection-induced inflammation. The migration of these cells is well characterized and has been separated into four steps: rolling, adhesion, transendothelial migration, and chemotaxis, however, the physical characteristics of the chemotactic force to eosinophils from worm component remain largely unknown. Note that optical tweezers are featured in the manipulation of a single cell and the measurement of biological forces. Therefore, we propose to use optical tweezers to examine the chemotactic force to a eosinophil from a T. canis lavae preparation in terms of distance during the migration of eosinophil.

  15. Suppression of Calpain Expression by NSAIDs is Associated with Inhibition of Cell Migration in Rat Duodenum

    PubMed Central

    Silver, Kristopher; Littlejohn, A.; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D.

    2017-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. PMID:28342779

  16. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation.

    PubMed

    Zhang, Fan; Nance, Elizabeth; Alnasser, Yossef; Kannan, Rangaramanujam; Kannan, Sujatha

    2016-03-22

    Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the "impaired" microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function.

  17. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126.

    PubMed

    Tan, Tzu-Wei; Chou, Ying-Erh; Yang, Wei-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Tang, Chih-Hsin

    2014-09-01

    Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Soya-cerebroside, an extract of Cordyceps militaris, suppresses monocyte migration and prevents cartilage degradation in inflammatory animal models

    PubMed Central

    Liu, Shan-Chi; Chiu, Ching-Peng; Tsai, Chun-Hao; Hung, Chun-Yin; Li, Te-Mao; Wu, Yang-Chang; Tang, Chih-Hsin

    2017-01-01

    Pathophysiological events that modulate the progression of structural changes in osteoarthritis (OA) include the secretion of inflammatory molecules, such as proinflammatory cytokines. Interleukin-1beta (IL-1β) is the prototypical inflammatory cytokine that activates OA synovial cells to release cytokines and chemokines in support of the inflammatory response. The monocyte chemoattractant protein-1 (MCP-1/CCL2) is one of the key chemokines that regulate migration and infiltration of monocytes in response to inflammation. We show in this study that IL-1β-induced MCP-1 expression and monocyte migration in OA synovial fibroblasts (OASFs) is effectively inhibited by soya-cerebroside, an extract of Cordyceps militaris. We found that soya-cerebroside up-regulated of microRNA (miR)-432 expression via inhibiting AMPK and AKT signaling pathways in OASFs. Soya-cerebroside also effectively decreased monocyte infiltration and prevented cartilage degradation in a rat inflammatory model. Our findings are the first to demonstrate that soya-cerebroside inhibits monocyte/macrophage infiltration into synoviocytes, attenuating synovial inflammation and preventing cartilage damage by reducing MCP-1 expression in vitro and in vivo. Taken together, we suggest a novel therapeutic strategy based on the use of soya-cerebroside for the management of OA. PMID:28225075

  19. Sulforaphane Reduces HMGB1-Mediated Septic Responses and Improves Survival Rate in Septic Mice.

    PubMed

    Lee, In-Chul; Kim, Dae Yong; Bae, Jong-Sup

    2017-01-01

    Sulforaphane (SFN), a natural isothiocyanate present in cruciferous vegetables such as broccoli and cabbage, is effective in preventing carcinogenesis, diabetes, and inflammatory responses. Inhibition of high mobility group box 1 (HMGB1) and restoration of endothelial integrity is emerging as an attractive therapeutic strategy in the management of severe sepsis or septic shock. In this study, we examined the effects of SFN on HMGB1-mediated septic responses and survival rate in a mouse sepsis model. The anti-inflammatory activities of SFN were monitored based on its effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1. The antiseptic activities of SFN were determined by measuring permeability, leukocyte adhesion and migration, and the activation of pro-inflammatory proteins in HMGB1-activated human umbilical vein endothelial cells (HUVECs) and mice. SFN inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. SFN also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with SFN reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in vivo. Our results indicate that SFN is a possible therapeutic agent that can be used to treat various severe vascular inflammatory diseases via the inhibition of the HMGB1 signaling pathway.

  20. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation

    PubMed Central

    Aherne, Carol M.; Collins, Colm B.; Eltzschig, Holger K.

    2013-01-01

    The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease. PMID:24665394

  1. Progranulin expression in advanced human atherosclerotic plaque.

    PubMed

    Kojima, Yoji; Ono, Koh; Inoue, Katsumi; Takagi, Yasushi; Kikuta, Ken-ichiro; Nishimura, Masaki; Yoshida, Yoshinori; Nakashima, Yasuhiro; Matsumae, Hironobu; Furukawa, Yutaka; Mikuni, Nobuhiro; Nobuyoshi, Masakiyo; Kimura, Takeshi; Kita, Toru; Tanaka, Makoto

    2009-09-01

    Progranulin (PGRN) is a unique growth factor that plays an important role in cutaneous wound healing. It has an anti-inflammatory effect and promotes cell proliferation. However, when it is degraded to granulin peptides (GRNs) by neutrophil proteases, a pro-inflammatory reaction occurs. Since injury, inflammation and repair are common features in the progression of atherosclerosis, it is conceivable that PGRN plays a role in atherogenesis. Immunohistochemical analysis of human carotid endoatherectomy specimens indicated that vascular smooth muscle cells (vSMCs) in the intima expressed PGRN. Some macrophages in the plaque also expressed PGRN. We assessed the effect of PGRN on a human monocytic leukemia cell line (THP-1) and human aortic smooth muscle cells (HASMCs). PGRN alone had no effect on HASMC or THP-1 proliferation or migration. However, when THP-1 cells were stimulated with MCP-1, the number of migrated cells decreased in a PGRN-dose-dependent manner. TNF-alpha-induced HASMC migration was enhanced only at 10nM of PGRN. Interleukin-8 (IL-8) secretion from HASMCs was reduced by forced expression of PGRN and increased by RNAi-mediated knockdown of PGRN. While exogenous treatment with recombinant PGRN decreased IL-8 secretion, degraded recombinant GRNs increased IL-8 secretion from HASMCs. The expression of PGRN mainly reduces inflammation and its degradation into GRNs enhances inflammation in atherosclerotic plaque and may contribute to the progression of atherosclerosis.

  2. FBXW7 protein has dual-role as tumor suppressor and inflammatory pathway inhibitor | Center for Cancer Research

    Cancer.gov

    Toll-like receptors (TLRs) are largely responsible for inducing innate immune responses to infection. TLR4 binds lipopolysaccharide (LPS) from Gram-negative bacteria and initiates a signaling pathway to activate inflammatory responses. TLR4 plays a role in diseases such as sepsis and chronic inflammatory disorders. In tumor cells, TLR4 is involved in dampening immune surveillance, and increasing proliferation, inflammatory cytokine production, and invasive migration. Determining how TLR4 expression and signaling is regulated may enable these adverse conditions to be better managed.

  3. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways

    PubMed Central

    Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940

  4. The Role of TLR and Chemokine in Wear Particle-Induced Aseptic Loosening

    PubMed Central

    Gu, Qiaoli; Shi, Qin; Yang, Huilin

    2012-01-01

    Wear particle-induced periprosthetic osteolysis remains the principal cause of aseptic loosening of orthopaedic implants. Monocytes/macrophages phagocytose wear particles and release cytokines that induce inflammatory response. This response promotes osteoclast differentiation and osteolysis. The precise mechanisms by which wear particles are recognized and induce the accumulation of inflammatory cells in the periprosthetic tissue have not been fully elucidated. Recent studies have shown that toll-like receptors (TLRs) contribute to the cellular interaction with wear particles. Wear particles are recognized by monocytes/macrophages through TLRs coupled with the adaptor protein MyD88. After the initial interaction, wear particles induce both local and systemic migration of monocytes/macrophages to the periprosthetic region. The cellular migration is mediated through chemokines including interleukin-8, macrophage chemotactic protein-1, and macrophage inhibitory protein-1 in the periprosthetic tissues. Interfering with chemokine-receptor axis can inhibit cellular migration and inflammatory response. This paper highlights recent advances in TLR, and chemokine participated in the pathogenesis of aseptic loosening. A comprehensive understanding of the recognition and migration mechanism is critical to the development of measures that prevent wear particle-induced aseptic loosening of orthopaedic implants. PMID:23193363

  5. Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils?

    PubMed

    Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora

    2015-05-01

    Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.

  6. TNF-α stimulates colonic myofibroblast migration via COX-2 and Hsp27.

    PubMed

    Saini, Shyla; Liu, Tiegang; Yoo, James

    2016-07-01

    Crohn's disease (CD) is a chronic inflammatory enteropathy characterized by fibrotic strictures. Myofibroblasts (MFBs) are stromal cells of the gastrointestinal tract found in increased numbers in patients with CD and represent the key effector cells involved in pathologic fibrosis. MFB is a known target of tumor necrosis factor alpha (TNF-α), a proinflammatory cytokine strongly implicated in the pathophysiology of CD. However, the precise mechanisms through which TNF-α contributes to fibrosis remain incompletely understood. Here, we demonstrate for the first time that TNF-α increases MFB migration through the cyclooxygenase 2 (COX-2) and heat-shock protein 27 (Hsp27) pathways. The human colonic MFB cell line 18Co was grown to confluence on 35 × 10 mm cell culture dishes and used from passages 8-14. An in vitro scratch assay assessed the effect of TNF-α (10 ng/mL) on MFB migration over 24 h in the presence or absence of several inhibitors (NS398, SB203580, Hsp27 siRNA). TNF-α significantly increased MFB migration over 24 h. TNF-α also led to the increased expression of COX-2 and stimulated rapid phosphorylation of Hsp27 at serine 82. TNF-α-induced COX-2 expression, Hsp27 phosphorylation, and MFB migration were all significantly inhibited by the P38 MAPK inhibitor SB203580 (P < 0.05). TNF-α-induced MFB migration was also significantly inhibited by NS398 (P < 0.05), a direct inhibitor of COX-2, and by siRNA targeting Hsp27 (P < 0.05). TNF-α stimulates colonic MFB migration through P38 MAPK-mediated activation of COX-2 and Hsp27. Further elucidating these inflammatory signaling pathways may lead to novel therapeutic targets for the treatment of CD-related fibrosis and strictures. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. PGE2 pulsing of murine bone marrow cells reduces migration of daughter monocytes/macrophages in vitro and in vivo

    PubMed Central

    McGonigle, Terence A.; Dwyer, Amy R.; Greenland, Eloise L.; Scott, Naomi M.; Keane, Kevin N.; Newsholme, Philip; Goodridge, Helen S.; Zon, Leonard I.; Pixley, Fiona J.; Hart, Prue H.

    2018-01-01

    Monocytes/macrophages differentiating from bone marrow (BM) cells pulsed for 2 hours at 37°C with a stabilized derivative of prostaglandin E2, 16,16-dimethyl PGE2 (dmPGE2), migrated less efficiently toward a chemoattractant than monocytes/macrophages differentiated from BM cells pulsed with vehicle. To confirm that the effect on BM cells was long lasting and to replicate human BM transplantation, chimeric mice were established with donor BM cells pulsed for 2 hours with dmPGE2 before injection into marrow-ablated congenic recipient mice. After 12 weeks, when high levels (90%) of engraftment were obtained, regenerated BM-derived monocytes/macrophages differentiating in vitro or in vivo migrated inefficiently toward the chemokines colony-stimulating factor-1 (CSF-1) and chemokine (C-C motif) ligand 2 (CCL2) or thioglycollate, respectively. Our results reveal long-lasting changes to progenitor cells of monocytes/macrophages by a 2-hour dmPGE2 pulse that, in turn, limits the migration of their daughter cells to chemoattractants and inflammatory mediators. PMID:28822771

  8. Fibroblast Activation Protein (FAP) Is Essential for the Migration of Bone Marrow Mesenchymal Stem Cells through RhoA Activation

    PubMed Central

    Chung, Kuei-Min; Hsu, Shu-Ching; Chu, Yue-Ru; Lin, Mei-Yao; Jiaang, Weir-Tong; Chen, Ruey-Hwa; Chen, Xin

    2014-01-01

    Background The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. Principal Findings We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Conclusions Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration. PMID:24551161

  9. Fibroblast activation protein (FAP) is essential for the migration of bone marrow mesenchymal stem cells through RhoA activation.

    PubMed

    Chung, Kuei-Min; Hsu, Shu-Ching; Chu, Yue-Ru; Lin, Mei-Yao; Jiaang, Weir-Tong; Chen, Ruey-Hwa; Chen, Xin

    2014-01-01

    The ability of human bone marrow mesenchymal stem cells (BM-MSCs) to migrate and localize specifically to injured tissues is central in developing therapeutic strategies for tissue repair and regeneration. Fibroblast activation protein (FAP) is a cell surface serine protease expressed at sites of tissue remodeling during embryonic development. It is also expressed in BM-MSCs, but not in normal tissues or cells. The function of FAP in BM-MSCs is not known. We found that depletion of FAP proteins significantly inhibited the migration of BM-MSCs in a transwell chemotaxis assay. Such impaired migration ability of BM-MSCs could be rescued by re-expressing FAP in these cells. We then demonstrated that depletion of FAP activated intracellular RhoA GTPase. Consistently, inhibition of RhoA activity using a RhoA inhibitor rescued its migration ability. Inhibition of FAP activity with an FAP-specific inhibitor did not affect the activation of RhoA or the migration of BM-MSCs. Furthermore, the inflammatory cytokines interleukin-1beta (IL-1β) and transforming growth factor-beta (TGF-β) upregulated FAP expression, which coincided with better BM-MSC migration. Our results indicate FAP plays an important role in the migration of BM-MSCs through modulation of RhoA GTPase activity. The peptidase activity of FAP is not essential for such migration. Cytokines IL-1β and TGF-β upregulate the expression level of FAP and thus enhance BM-MSC migration.

  10. Tumour related inhibition of macrophage chemotaxis in patients with colon cancer.

    PubMed Central

    Hermanowicz, A; Gibson, P R; Jewell, D P

    1987-01-01

    The chemotactic migration in vitro of peripheral blood, intestinal mucosal, and mesenteric lymph node mononuclear cells has been assessed in patients with colorectal carcinoma. Peripheral blood mononuclear cells of patients exhibited normal chemotaxis. For control patients with non-malignant, non-inflammatory intestinal disease, the chemotaxis of mucosal mononuclear cells was similar to that of autologous peripheral blood mononuclear cells. The chemotactic migration of mucosal mononuclear cells, however, isolated distant from a colon cancer was less than that of autologous peripheral blood mononuclear cells. Chemotactic migration was progressively impaired with increasing closeness to the tumour itself. Chemotaxis of mucosal mononuclear cell was independent of the site of tumour and the Dukes' grading. Mononuclear cells from mesenteric lymph nodes, however, exhibited impaired migration only in patients with Dukes' C tumours. Supernatants of the collagenase digestion of either tumour or adjacent mucosa contained macrophage directed inhibitors of chemotaxis and these inhibitors were not produced by tumour mononuclear cells. The presence of such inhibitors in the digestion supernatants and the demonstration that proximity to the tumour was associated with impaired mononuclear cell motility suggest that the production of macrophage directed chemotactic inhibitors is by colon cancer cells and that this may be occurring in vivo. PMID:3583069

  11. A potential role for Helicobacter pylori heat shock protein 60 in gastric tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chen-Si; School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan; He, Pei-Juin

    2010-02-05

    Helicobacter pylori has been found to promote the malignant process leading to gastric cancer. Heat shock protein 60 of H. pylori (HpHSP60) was previously been identified as a potent immunogene. This study investigates the role of HpHSP60 in gastric cancer carcinogenesis. The effect of HpHSP60 on cell proliferation, anti-death activity, angiogenesis and cell migration were explored. The results showed that HpHSP60 enhanced migration by gastric cancer cells and promoted tube formation by umbilical vein endothelial cells (HUVECs); however, HpHSP60 did not increase cell proliferation nor was this protein able to rescue gastric cancer cells from death. Moreover, the results alsomore » indicated HpHSP60 had different effects on AGS gastric cancer cells or THP-1 monocytic cells in terms of their expression of pro-inflammatory cytokines, which are known to be important to cancer development. We propose that HpHSP60 may trigger the initiation of carcinogenesis by inducing pro-inflammatory cytokine release and by promoting angiogenesis and metastasis. Thus, this extracellular pathogen-derived HSP60 is potentially a vigorous virulence factor that can act as a carcinogen during gastric tumorigenesis.« less

  12. Functional analysis of HPV-like particle-activated Langerhans cells in vitro.

    PubMed

    Yan, Lisa; Woodham, Andrew W; Da Silva, Diane M; Kast, W Martin

    2015-01-01

    Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.

  13. Curcumin exhibits anti-tumor effect and attenuates cellular migration via Slit-2 mediated down-regulation of SDF-1 and CXCR4 in endometrial adenocarcinoma cells.

    PubMed

    Sirohi, Vijay Kumar; Popli, Pooja; Sankhwar, Pushplata; Kaushal, Jyoti Bala; Gupta, Kanchan; Manohar, Murli; Dwivedi, Anila

    2017-06-01

    Although curcumin shows anti-proliferative and anti-inflammatory activities in various cancers, the effect of curcumin on cellular migration in endometrial adenocarcinoma cells remains to be understood. The current investigation was aimed to explore the anti-proliferative and anti-migratory effects of curcumin and its mechanism of action in endometrial cancer cells. Our in-vitro and in-vivo experimental studies showed that curcumin inhibited the proliferation of endometrial cancer cells and suppressed the tumor growth in Ishikawa xenograft mouse model. Curcumin induced ROS-mediated apoptosis in endometrial cancer cells. Curcumin suppressed the migration rate of Ishikawa and Hec-1B cells as analyzed by scratch wound assay. In transwell migration studies, knock down of Slit-2 reversed the anti-migratory effect of curcumin in these cell lines. Curcumin significantly up-regulated the expression of Slit-2 in Ishikawa, Hec-1B and primary endometrial cancer cells while it down-regulated the expression of stromal cell-derived factor-1 (SDF-1) and CXCR4 which in turn, suppressed the expression of matrix metallopeptidases (MMP) 2 and 9, thus attenuating the migration of endometrial cancer cells. In summary, we have demonstrated that curcumin has inhibitory effect on cellular migration via Slit-2 mediated down-regulation of CXCR4, SDF-1, and MMP2/MMP9 in endometrial carcinoma cells. These findings helped explore the role of Slit-2 in endometrial cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. © 2014 Wiley Periodicals, Inc.

  15. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  16. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.

    PubMed

    Silver, Kristopher; Littlejohn, A; Thomas, Laurel; Bawa, Bhupinder; Lillich, James D

    2017-05-15

    Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the alleviation of pain and inflammation, but these drugs are also associated with a suite of negative side effects. Gastrointestinal (GI) toxicity is particularly concerning since it affects an estimated 70% of individuals taking NSAIDs routinely, and evidence suggests the majority of toxicity is occurring in the small intestine. Traditionally, NSAID-induced GI toxicity has been associated with indiscriminate inhibition of cyclooxygenase isoforms, but other mechanisms, including inhibition of cell migration, intestinal restitution, and wound healing, are likely to contribute to toxicity. Previous efforts demonstrated that treatment of cultured intestinal epithelial cells (IEC) with NSAIDs inhibits expression and activity of calpain proteases, but the effects of specific inhibition of calpain expression in vitro or the effects of NSAIDs on intestinal cell migration in vivo remain to be determined. Accordingly, we examined the effect of suppression of calpain protease expression with siRNA on cell migration in cultured IECs and evaluated the effects of NSAID treatment on epithelial cell migration and calpain protease expression in rat duodenum. Our results show that calpain siRNA inhibits protease expression and slows migration in cultured IECs. Additionally, NSAID treatment of rats slowed migration up the villus axis and suppressed calpain expression in duodenal epithelial cells. Our results are supportive of the hypothesis that suppression of calpain expression leading to slowing of cell migration is a potential mechanism through which NSAIDs cause GI toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections

    PubMed Central

    Faz-López, Berenice

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452

  19. Cell Expansion-Dependent Inflammatory and Metabolic Profile of Human Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Prieto, Patricia; Fernández-Velasco, María; Fernández-Santos, María E; Sánchez, Pedro L; Terrón, Verónica; Martín-Sanz, Paloma; Fernández-Avilés, Francisco; Boscá, Lisardo

    2016-01-01

    Stem cell therapy has emerged as a promising new area in regenerative medicine allowing the recovery of viable tissues. Among the many sources of adult stem cells, bone marrow-derived are easy to expand in culture via plastic adherence and their multipotentiality for differentiation make them ideal for clinical applications. Interestingly, several studies have indicated that MSCs expansion in vitro may be limited mainly due to "cell aging" related to the number of cell divisions in culture. We have determined that MSCs exhibit a progressive decline across successive passages in the expression of stem cell markers, in plasticity and in the inflammatory response, presenting low immunogenicity. We have exposed human MSCs after several passages to TLRs ligands and analyzed their inflammatory response. These cells responded to pro-inflammatory stimuli (i.e., NOS-2 expression) and to anti-inflammatory cytokines (i.e., HO1 and Arg1) until two expansions, rapidly declining upon subculture. Moreover, in the first passages, MSCs were capable to release IL1β, IL6, and IL8, as well as to produce active MMPs allowing them to migrate. Interestingly enough, after two passages, anaerobic glycolysis was enhanced releasing high levels of lactate to the extracellular medium. All these results may have important implications for the safety and efficacy of MSCs-based cell therapies.

  20. FABP4 regulates eosinophil recruitment and activation in allergic airway inflammation.

    PubMed

    Ge, Xiao Na; Bastan, Idil; Dileepan, Mythili; Greenberg, Yana; Ha, Sung Gil; Steen, Kaylee A; Bernlohr, David A; Rao, Savita P; Sriramarao, P

    2018-04-26

    Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a pro-inflammatory role for FABP4 in allergic asthma, although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, was not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation. CRA exposure led to airway recruitment of FABP4-expressing inflammatory cells, specifically eosinophils, in wild type (WT) mice. FABP4 expression in eosinophils was induced by TNF-α as well as IL-4 and IL-13. FABP4-deficient eosinophils exhibited markedly decreased cell spreading/formation of leading edges on vascular cell adhesion molecule-1 and significantly decreased adhesion to intercellular adhesion molecule-1 associated with reduced β2 integrin expression relative to WT cells. Further, FABP4-deficient eosinophils exhibited decreased migration, F-actin polymerization, calcium flux and ERK (1/2) phosphorylation in response to eotaxin-1. In vivo, CRA-challenged FABP4-deficient mice exhibited attenuated eosinophilia and significantly reduced airway inflammation (improved airway reactivity, lower IL-5, IL-13, TNFα and LTC4 levels, decreased airway structural changes) compared to WT mice. In conclusion, expression of FABP4 in eosinophils is induced during conditions of inflammation and plays a pro-inflammatory role in the development of allergic asthma by promoting eosinophil adhesion and migration and contributing to the development of various aspects of airway inflammation.

  1. Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages.

    PubMed

    Lee, Jacinta P W; Foote, Andrew; Fan, Huapeng; Peral de Castro, Celia; Lang, Tali; Jones, Sarah A; Gavrilescu, Nichita; Mills, Kingston H G; Leech, Michelle; Morand, Eric F; Harris, James

    2016-06-02

    MIF (macrophage migration inhibitory factor [glycosylation-inhibiting factor]) is a pro-inflammatory cytokine expressed in multiple cells types, including macrophages. MIF plays a pathogenic role in a number of inflammatory diseases and has been linked to tumor progression in some cancers. Previous work has demonstrated that loss of autophagy in macrophages enhances secretion of IL1 family cytokines. Here, we demonstrate that loss of autophagy, by pharmacological inhibition or siRNA silencing of Atg5, enhances MIF secretion by monocytes and macrophages. We further demonstrate that this is dependent on mitochondrial reactive oxygen species (ROS). Induction of autophagy with MTOR inhibitors had no effect on MIF secretion, but amino acid starvation increased secretion. This was unaffected by Atg5 siRNA but was again dependent on mitochondrial ROS. Our data demonstrate that autophagic regulation of mitochondrial ROS plays a pivotal role in the regulation of inflammatory cytokine secretion in macrophages, with potential implications for the pathogenesis of inflammatory diseases and cancers.

  2. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Song; Zhang Junjie

    2009-01-09

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the {beta} isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which wasmore » inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.« less

  3. Oral Administration of Nano-Emulsion Curcumin in Mice Suppresses Inflammatory-Induced NFκB Signaling and Macrophage Migration

    PubMed Central

    Young, Nicholas A.; Bruss, Michael S.; Gardner, Mark; Willis, William L.; Mo, Xiaokui; Valiente, Giancarlo R.; Cao, Yu; Liu, Zhongfa; Jarjour, Wael N.; Wu, Lai-Chu

    2014-01-01

    Despite the widespread use of curcumin for centuries in Eastern medicine as an anti-inflammatory agent, its molecular actions and therapeutic viability have only recently been explored. While curcumin does have potential therapeutic efficacy, both solubility and bioavailability must be improved before it can be more successfully translated to clinical care. We have previously reported a novel formulation of nano-emulsion curcumin (NEC) that achieves significantly greater plasma concentrations in mice after oral administration. Here, we confirm the immunosuppressive effects of NEC in vivo and further examine its molecular mechanisms to better understand therapeutic potential. Using transgenic mice harboring an NFκB-luciferase reporter gene, we demonstrate a novel application of this in vivo inflammatory model to test the efficacy of NEC administration by bioluminescent imaging and show that LPS-induced NFκB activity was suppressed with NEC compared to an equivalent amount of curcumin in aqueous suspension. Administration of NEC by oral gavage resulted in a reduction of blood monocytes, decreased levels of both TLR4 and RAGE expression, and inhibited secretion of MCP-1. Mechanistically, curcumin blocked LPS-induced phosphorylation of the p65 subunit of NFκB and IκBα in murine macrophages. In a mouse model of peritonitis, NEC significantly reduced macrophage recruitment, but not T-cell or B-cell levels. In addition, curcumin treatment of monocyte derived cell lines and primary human macrophages in vitro significantly inhibited cell migration. These data demonstrate that curcumin can suppress inflammation by inhibiting macrophage migration via NFκB and MCP-1 inhibition and establish that NEC is an effective therapeutic formulation to increase the bioavailability of curcumin in order to facilitate this response. PMID:25369140

  4. Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research.

    PubMed

    Riddy, Darren M; Goy, Emily; Delerive, Philippe; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J

    2018-01-01

    Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.

  5. Quercetin abrogates IL-6/STAT3 signaling and inhibits glioblastoma cell line growth and migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaud-Levesque, Jonathan; Bousquet-Gagnon, Nathalie; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we showmore » that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.« less

  6. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages

    PubMed Central

    Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z

    2016-01-01

    Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases. PMID:27277683

  7. Inflammatory response of a prostate stromal cell line induced by Trichomonas vaginalis.

    PubMed

    Im, S J; Han, I H; Kim, J H; Gu, N Y; Seo, M Y; Chung, Y H; Ryu, J S

    2016-04-01

    While Trichomonas vaginalis, a cause of sexually transmitted infection, is known as a surface-dwelling protozoa, trichomonads have been detected in prostatic tissue from benign prostatic hyperplasia and prostatitis by immunoperoxidase assay or PCR. However, the immune response of prostate stromal cells infected with T. vaginalis has not been investigated. Our objective was to investigate whether T. vaginalis could induce an inflammatory response in prostate stromal cells. Incubation of a human prostate stromal myofibroblast cells (WPMY-1) with live T. vaginalis T016 increased expression of the inflammatory chemokines CXCL8 and CCL2. In addition, TLR4, ROS, MAPK and NF-κB expression increased, while inhibitors of TLR4, ROS, MAPKs and NF-κB reduced CXCL8 and CCL2 production. Medium conditioned by incubation of WPMY-1 cells with T. vaginalis stimulated the migration of human neutrophils and monocytes (THP-1 cells). We conclude that T. vaginalis increases CXCL8 and CCL2 production by human prostate stromal cells by activating TLR4, ROS, MAPKs and NF-κB, and this in turn attracts neutrophils and monocytes and leads to an inflammatory response. This study is the first attempt to demonstrate an inflammatory reaction in prostate stromal cells caused by T. vaginalis. © 2016 John Wiley & Sons Ltd.

  8. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway

    PubMed Central

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity. PMID:23737853

  9. Bioactive Fraction of Geopropolis from Melipona scutellaris Decreases Neutrophils Migration in the Inflammatory Process: Involvement of Nitric Oxide Pathway.

    PubMed

    Franchin, Marcelo; da Cunha, Marcos Guilherme; Denny, Carina; Napimoga, Marcelo Henrique; Cunha, Thiago Mattar; Bueno-Silva, Bruno; Matias de Alencar, Severino; Ikegaki, Masaharu; Luiz Rosalen, Pedro

    2013-01-01

    The aim of this study was to evaluate the activity of the ethanolic extract of geopropolis (EEGP) from Melipona scutellaris and its fractions on the modulation of neutrophil migration in the inflammatory process, and the participation of nitric oxide (NO) pathway, as well as to check the chemical profile of the bioactive fraction. EEGP and its aqueous fraction decreased neutrophil migration in the peritoneal cavity and also the interaction of leukocytes (rolling and adhesion) with endothelial cells. The levels of chemokines CXCL1/KC and CXCL2/MIP-2 were not altered after treatment with EEGP and the aqueous fraction. It was found that the injection of NO pathway antagonists abolished the EEGP and the aqueous fraction inhibitory activity on the neutrophil migration. The expression of intercellular adhesion molecule type 1 (ICAM-1) was reduced, and nitrite levels increased after treatment with EEGP and aqueous fraction. In the carrageenan-induced paw edema model, EEGP and the aqueous fraction showed antiedema activity. No pattern of flavonoid and phenolic acid commonly found in propolis samples of Apis mellifera could be detected in the aqueous fraction samples. These data indicate that the aqueous fraction found has promising bioactive substances with anti-inflammatory activity.

  10. Fyn kinase mediates cortical actin ring depolymerization required for mast cell migration in response to TGF-β in mice.

    PubMed

    Ramírez-Valadez, Karla A; Vázquez-Victorio, Genaro; Macías-Silva, Marina; González-Espinosa, Claudia

    2017-08-01

    Transforming growth factor-β (TGF-β) is a potent mast cell (MC) chemoattractant able to modulate local inflammatory reactions. The molecular mechanism leading to TGF-β-directed MC migration is not fully described. Here we analyzed the role of the Src family protein kinase Fyn on the main TGF-β-induced cytoskeletal changes leading to MC migration. Utilizing bone marrow-derived mast cells (BMMCs) from WT and Fyn-deficient mice we found that BMMC migration to TGF-β was impaired in the absence of the kinase. TGF-β caused depolymerization of the cortical actin ring and changes on the phosphorylation of cofilin, LIMK and CAMKII only in WT cells. Defective cofilin activation and phosphorylation of regulatory proteins was detected in Fyn-deficient BMMCs and this finding correlated with a lower activity of the catalytic subunit of the phosphatase PP2A. Diminished TGF-β-induced chemotaxis of Fyn-deficient cells was also observed in an in vivo model of MC migration (bleomycin-induced scleroderma). Our results show that Fyn kinase is an important positive effector of TGF-β-induced chemotaxis through the control of PP2A activity and this is relevant to pathological processes that are related to TGF-β-dependent mast cell migration. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Colonic migrating motor complexes are inhibited in acute tri-nitro benzene sulphonic acid colitis.

    PubMed

    Hofma, Ben R; Wardill, Hannah R; Mavrangelos, Chris; Campaniello, Melissa A; Dimasi, David; Bowen, Joanne M; Smid, Scott D; Bonder, Claudine S; Beckett, Elizabeth A; Hughes, Patrick A

    2018-01-01

    Inflammatory Bowel Disease (IBD) is characterized by overt inflammation of the intestine and is typically accompanied by symptoms of bloody diarrhea, abdominal pain and cramping. The Colonic Migrating Motor Complex (CMMC) directs the movement of colonic luminal contents over long distances. The tri-nitrobenzene sulphonic acid (TNBS) model of colitis causes inflammatory damage to enteric nerves, however it remains to be determined whether these changes translate to functional outcomes in CMMC activity. We aimed to visualize innate immune cell infiltration into the colon using two-photon laser scanning intra-vital microscopy, and to determine whether CMMC activity is altered in the tri-nitro benzene sulphonic (TNBS) model of colitis. Epithelial barrier permeability was compared between TNBS treated and healthy control mice in-vitro and in-vivo. Innate immune activation was determined by ELISA, flow cytometry and by 2-photon intravital microscopy. The effects of TNBS treatment and IL-1β on CMMC function were determined using a specialized organ bath. TNBS colitis increased epithelial barrier permeability in-vitro and in-vivo. Colonic IL-1β concentrations, colonic and systemic CD11b+ cell infiltration, and the number of migrating CD11b+ cells on colonic blood vessels were all increased in TNBS treated mice relative to controls. CMMC frequency and amplitude were inhibited in the distal and mid colon of TNBS treated mice. CMMC activity was not altered by superfusion with IL-1β. TNBS colitis damages the epithelial barrier and increases innate immune cell activation in the colon and systemically. Innate cell migration into the colon is readily identifiable by two-photon intra-vital microscopy. CMMC are inhibited by inflammation, but this is not due to direct effects of IL-1β.

  12. Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.

    PubMed

    Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi

    2018-02-01

    N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  13. IL-10+ innate-like B cells are part of the skin immune system and require α4β1 integrin to migrate between the peritoneum and inflamed skin1

    PubMed Central

    Glabman, Raisa A.; Ruthel, Gordon; Hamann, Alf; Debes, Gudrun F.

    2016-01-01

    The skin is an important barrier organ and frequent target of autoimmunity and allergy. Here we found innate-like B cells that expressed the anti-inflammatory cytokine IL-10 in the skin of humans and mice. Unexpectedly, innate-like B1 and conventional B2 cells showed differential homing capacities with peritoneal B1 cells preferentially migrating into the inflamed skin of mice. Importantly, the skin-homing B1 cells included IL-10 secreting cells. B1 cell homing into the skin was independent of typical skin-homing trafficking receptors and instead required α4β1-integrin. Moreover, B1 cells constitutively expressed activated β1 integrin and relocated from the peritoneum to the inflamed skin and intestine upon innate stimulation, indicating an inherent propensity to extravasate into inflamed and barrier sites. We conclude that innate-like B cells migrate from central reservoirs into skin, adding an important cell type with regulatory and protective functions to the skin immune system. PMID:26851219

  14. Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy.

    PubMed

    Ferraresi, Alessandra; Phadngam, Suratchanee; Morani, Federica; Galetto, Alessandra; Alabiso, Oscar; Chiorino, Giovanna; Isidoro, Ciro

    2017-03-01

    Interleukin-6 (IL-6), a pro-inflammatory cytokine released by cancer-associated fibroblasts, has been linked to the invasive and metastatic behavior of ovarian cancer cells. Resveratrol is a naturally occurring polyphenol with the potential to inhibit cancer cell migration. Here we show that Resveratrol and IL-6 affect in an opposite manner the expression of RNA messengers and of microRNAs involved in cell locomotion and extracellular matrix remodeling associated with the invasive properties of ovarian cancer cells. Among the several potential candidates responsible for the anti-invasive effect promoted by Resveratrol, here we focused our attention on ARH-I (DIRAS3), that encodes a Ras homolog GTPase of 26-kDa. This protein is known to inhibit cell motility, and it has been shown to regulate autophagy by interacting with BECLIN 1. IL-6 down-regulated the expression of ARH-I and inhibited the formation of LC3-positive autophagic vacuoles, while promoting cell migration. On opposite, Resveratrol could counteract the IL-6 induction of cell migration in ovarian cancer cells through induction of autophagy in the cells at the migration front, which was paralleled by up-regulation of ARH-I and down-regulation of STAT3 expression. Spautin 1-mediated disruption of BECLIN 1-dependent autophagy abrogated the effects of Resveratrol, while promoting cell migration. The present data indicate that Resveratrol elicits its anti-tumor effect through epigenetic mechanisms and support its inclusion in the chemotherapy regimen for highly aggressive ovarian cancers. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. The Upregulation of Integrin αDβ2 (CD11d/CD18) on Inflammatory Macrophages Promotes Macrophage Retention in Vascular Lesions and Development of Atherosclerosis.

    PubMed

    Aziz, Moammir H; Cui, Kui; Das, Mitali; Brown, Kathleen E; Ardell, Christopher L; Febbraio, Maria; Pluskota, Elzbieta; Han, Juying; Wu, Huaizhu; Ballantyne, Christie M; Smith, Jonathan D; Cathcart, Martha K; Yakubenko, Valentin P

    2017-06-15

    Macrophage accumulation is a critical step during development of chronic inflammation, initiating progression of many devastating diseases. Leukocyte-specific integrin α D β 2 (CD11d/CD18) is dramatically upregulated on macrophages at inflammatory sites. Previously we found that CD11d overexpression on cell surfaces inhibits in vitro cell migration due to excessive adhesion. In this study, we have investigated how inflammation-mediated CD11d upregulation contributes to macrophage retention at inflammatory sites during atherogenesis. Atherosclerosis was evaluated in CD11d -/- /ApoE -/- mice after 16 wk on a Western diet. CD11d deficiency led to a marked reduction in lipid deposition in aortas and isolated macrophages. Macrophage numbers in aortic sinuses of CD11d -/- mice were reduced without affecting their apoptosis and proliferation. Adoptive transfer of fluorescently labeled wild-type and CD11d -/- monocytes into ApoE -/- mice demonstrated similar recruitment from circulation, but reduced accumulation of CD11d -/- macrophages within the aortas. Furthermore, CD11d expression was significantly upregulated on macrophages in atherosclerotic lesions and M1 macrophages in vitro. Interestingly, expression of the related ligand-sharing integrin CD11b was not altered. This difference defines their distinct roles in the regulation of macrophage migration. CD11d-deficient M1 macrophages demonstrated improved migration in a three-dimensional fibrin matrix and during resolution of peritoneal inflammation, whereas migration of CD11b -/- M1 macrophages was not affected. These results prove the contribution of high densities of CD11d to macrophage arrest during atherogenesis. Because high expression of CD11d was detected in several inflammation-dependent diseases, we suggest that CD11d/CD18 upregulation on proinflammatory macrophages may represent a common mechanism for macrophage retention at inflammatory sites, thereby promoting chronic inflammation and disease development. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Main pathways of action of Brazilian red propolis on the modulation of neutrophils migration in the inflammatory process.

    PubMed

    Bueno-Silva, Bruno; Franchin, Marcelo; Alves, Claudiney de Freitas; Denny, Carina; Colón, David Fernando; Cunha, Thiago Mattar; Alencar, Severino Matias; Napimoga, Marcelo Henrique; Rosalen, Pedro Luiz

    2016-12-01

    Brazilian propolis is popularly used as treatment for different diseases including the ones with inflammatory origin. Brazilian red propolis chemical profile and its anti-inflammatory properties were recently described however, its mechanism of action has not been investigated yet. Elucidate Brazilian red propolis major pathways of action on the modulation of neutrophil migration during the inflammatory process. The ethanolic extract of propolis (EEP) activity was investigated for neutrophil migration into the peritoneal cavity, intravital microscopy (rolling and adhesion of leukocytes), quantification of cytokines TNF-α, IL-1β and chemokines CXCL1/KC, CXCL2/MIP-2, neutrophil chemotaxis induced by CXCL2/MIP-2, calcium influx and CXCR2 expression on neutrophils. EEP at 10mg/kg prevented neutrophil migration into peritoneal cavity (p < 0.05), reduced leukocyte rolling and adhesion on the mesenteric microcirculation (p < 0.05) and inhibited the release TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 (p < 0.05). EEP at 0.01, 0.1 and 1µg/ml reduced the CXCL2/MIP-2-induced neutrophils chemotaxis (p < 0.05) without affect cell viability (p > 0.05).EEP at 1µg/ml decreased the calcium influx induced by CXCL2/MIP-2 (p<0.05). On the other hand, none of EEP concentrations tested altered CXCR2 expression by neutrophils (p>0.05). Brazilian red propolis appears as a promising anti-inflammatory natural product which mechanism seems to be by reducing leukocyte rolling and adhesion; TNF-α, IL-1β, CXCL1/KC and CXCL2/MIP-2 release; CXCL2/MIP-2-induced chemotaxis and calcium influx. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Anti-inflammatory effects of tobramycin and a copper–tobramycin complex with superoxide dismutase-like activity

    PubMed Central

    Gziut, M; MacGregor, HJ; Nevell, TG; Mason, T; Laight, D; Shute, JK

    2013-01-01

    Background and Purpose Airway inflammation in cystic fibrosis (CF) patients is characterized by accumulations of neutrophils in the airway and T cells in bronchial tissue, with activation of platelets in the circulation. CF patients are routinely treated with systemic or inhaled tobramycin for airway infection with Pseudomonas aeruginosa. Clinical trials have indicated an anti-inflammatory effect of tobramycin beyond its bactericidal activity. Here, we investigate the anti-inflammatory properties of tobramycin in vitro and consider if these relate to the ability of tobramycin to bind copper, which is elevated in blood and sputum in CF. Experimental Approach A copper–tobramycin complex was synthesized. The effect of tobramycin and copper–tobramycin on neutrophil activation and migration of T cells and neutrophils across human lung microvascular endothelial cells in response to thrombin-activated platelets were investigated in vitro. Tobramycin uptake was detected by immunocytochemistry. Intracellular reactive oxygen species were detected using the fluorescent indicator, 2′,7′-dichlorofluorescein diacetate (DCFDA). Neutrophil superoxide, hydrogen peroxide and neutrophil elastase activity were measured using specific substrates. Copper was measured using atomic absorption spectroscopy. Key Results Tobramycin and copper–tobramycin were taken up by endothelial cells via a heparan sulphate-dependent mechanism and significantly inhibited T-cell and neutrophil transendothelial migration respectively. Copper–tobramycin has intracellular and extracellular superoxide dismutase-like activity. Neutrophil elastase inhibition by α1-antitrypsin is enhanced in the presence of copper–tobramycin. Tobramycin and copper–tobramycin are equally effective anti-pseudomonal antibiotics. Conclusions and Implications Anti-inflammatory effects of tobramycin in vivo may relate to the spontaneous formation of a copper–tobramycin complex, implying that copper–tobramycin may be more effective therapy. PMID:23072509

  18. Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions.

    PubMed

    Hoeppli, Romy E; MacDonald, Katherine N; Leclair, Pascal; Fung, Vivian C W; Mojibian, Majid; Gillies, Jana; Rahavi, Seyed M R; Campbell, Andrew I M; Gandhi, Sanjiv K; Pesenacker, Anne M; Reid, Gregor; Lim, Chinten J; Levings, Megan K

    2018-05-15

    Cell-based therapy with CD4 + FOXP3 + Regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-versus-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood. To direct migration to Th1-inflammatory sites, addition of IFN-γ and IL-12 during Treg expansion produced suppressive, epigenetically-stable CXCR3 + TBET + FOXP3 + Th1-Tregs. CXCR3 remained expressed after injection in vivo and Th1-Tregs migrated efficiently towards CXCL10 in vitro. To induce tissue-specific migration, addition of retinoic acid (RA) during Treg expansion induced expression of the gut-homing receptors α4β7-integrin and CCR9. FOXP3 + RA-Tregs had elevated expression of the functional markers LAP and GARP, increased suppressive capacity in vitro and migrated efficiently to healthy and inflamed intestine after injection into mice. Homing-receptor-tailored Tregs were epigenetically stable even after long-term exposure to inflammatory conditions, suppressive in vivo and characterized by Th1- or gut-homing-specific transcriptomes. Tailoring human thymic Treg homing during in vitro expansion offers a new and clinically-applicable approach to improving the potency and specificity of Treg therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  20. In vivo relative quantitative proteomics reveals HMGB1 as a downstream mediator of oestrogen-stimulated keratinocyte migration.

    PubMed

    Shin, Jung U; Noh, Ji Yeon; Lee, Ju Hee; Lee, Won Jai; Yoo, Jong Shin; Kim, Jin Young; Kim, Hyeran; Jung, Inhee; Jin, Shan; Lee, Kwang Hoon

    2015-06-01

    It is known that oestrogen influences skin wound healing by modulating the inflammatory response, cytokine expression and extracellular matrix deposition; accelerating re-epithelialization; and stimulating angiogenesis. To identify novel proteins associated with effects of oestrogen on keratinocyte, stable isotope labelling by amino acids in cell culture (SILAC)-based mass spectrometry was performed. Using SILAC, quantification of 1085 proteins was achieved. Among these proteins, 60 proteins were upregulated and 32 proteins were downregulated. Among significantly upregulated proteins, high-mobility group protein B1 (HMGB1) has been further evaluated for its role in the effect of oestrogen on keratinocytes. HMGB1 expression was strongly induced in oestrogen-treated keratinocytes in dose- and time-dependent manner. Further, HMGB1 was able to significantly accelerate the rate of HaCaT cell migration. To determine whether HMGB1 is involved in E2-induced HaCaT cell migration, cells were transfected with HMGB1 siRNA. Knockdown of HMGB1 blocked oestrogen-induced keratinocyte migration. Collectively, these experiments demonstrate that HMGB1 is a novel downstream mediator of oestrogen-stimulated keratinocyte migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration.

    PubMed

    Ratheesh, Aparna; Biebl, Julia; Vesela, Jana; Smutny, Michael; Papusheva, Ekaterina; Krens, S F Gabriel; Kaufmann, Walter; Gyoergy, Attila; Casano, Alessandra Maria; Siekhaus, Daria E

    2018-05-07

    Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Jianghong, E-mail: jianghonghou@163.com; Xue, Xiaolin; Li, Junnong

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosismore » patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.« less

  3. Cellular and molecular mechanisms of pomegranate juice-induced anti-metastatic effect on prostate cancer cells.

    PubMed

    Wang, Lei; Alcon, Andre; Yuan, Hongwei; Ho, Jeffrey; Li, Qi-Jing; Martins-Green, M

    2011-07-01

    Prostate cancer is the second leading cause of cancer-related deaths among US males. Pomegranate juice (PJ), a natural product, was shown in a clinical trial to inhibit progression of this disease. However, the underlying mechanisms involved in the anti-progression effects of PJ on prostate cancer remain unclear. Here we show that, in addition to causing cell death of hormone-refractory prostate cancer cells, PJ also increases cell adhesion and decreases cell migration of the cells that do not die. We hypothesized that PJ does so by stimulating the expression and/or activation of molecules that alter the cytoskeleton and the adhesion machinery of prostate cancer cells, resulting in enhanced cell adhesion and reduced cell migration. We took an integrative approach to these studies by using Affimetrix gene arrays to study gene expression, microRNA arrays to study the non-coding RNAs, molecules known to be disregulated in cancer cells, and Luminex Multiplex array assays to study the level of secreted pro-inflammatory cytokines/chemokines. PJ up-regulates genes involved in cell adhesion such as E-cadherin, intercellular adhesion molecule 1 (ICAM-1) and down-regulates genes involved in cell migration such as hyaluranan-mediated motility receptor (HMMR) and type I collagen. In addition, anti-invasive microRNAs such as miR-335, miR-205, miR-200, and miR-126, were up-regulated, whereas pro-invasive microRNA such as miR-21 and miR-373, were down-regulated. Moreover, PJ significantly reduced the level of secreted pro-inflammatory cytokines/chemokines such as IL-6, IL-12p40, IL-1β and RANTES, thereby having the potential to decrease inflammation and its impact on cancer progression. PJ also inhibits the ability of the chemokine SDF1α to chemoattract these cancer cells. SDF1α and its receptor CXCR4 are important in metastasis of cancer cells to the bone. Discovery of the mechanisms by which this enhanced adhesion and reduced migration are accomplished can lead to sophisticated and effective prevention of metastasis in prostate and potentially other cancers. This journal is © The Royal Society of Chemistry 2011

  4. Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer

    PubMed Central

    Birtolo, Chiara; Go, Vay Liang W.; Ptasznik, Andrzej; Eibl, Guido; Pandol, Stephen J.

    2016-01-01

    Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer micro-environment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs and tumor infiltrating inflammatory cells to promote cancer growth. Pro-inflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross-talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options. PMID:26658038

  5. Placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway: Potential implications of inflammation bowel disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yi, E-mail: mondayzy@126.com; Tu, Chuantao, E-mail: tu.chuantao@zs-hospital.sh.cn; Zhao, Yuan, E-mail: zhao.yuan@zs-hospital.sh.cn

    Background: Angiogenesis plays a major role in the pathogenesis of inflammatory bowel disease (IBD). Placental growth factor (PlGF) is a specific regulator of pathological angiogenesis and is upregulated in the sera of IBD patients. Therefore, the role of PlGF in IBD angiogenesis was investigated here using HIMECs. Methods: The expression of PlGF and its receptors in human intestinal microvascular endothelial cells (HIMECs) and inflamed mucosa of IBD patients were examined using quantitative PCR and western blot analysis and the role of PlGF in IBD HIMECs was further explored using small interfering RNA (siRNA). The induction of pro-inflammatory cytokine by PlGFmore » in HIMECs was confirmed by ELISA. The capacity of PlGF to induce angiogenesis in HIMECs was tested through proliferation, cell-migration, matrigel tubule-formation assays and its underlying signaling pathway were explored by western blot analysis of ERK1/2 and PI3K/Akt phosphorylation. Results: mRNA and protein expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. Inflamed mucosa of IBD patients also displayed higher expression of PIGF. The production of IL-6 and TNF-α in culture supernatant of HIMECs treated with exogenous recombinant human PlGF-1 (rhPlGF-1) were increased. Furthermore, rhPlGF-1 significantly induced HIMECs migration and tube formation in a dose-dependent manner and knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced these angiogenesis activities. PlGF induced PI3K/Akt phosphorylation in HIMECs and pretreatment of PlGF-stimulated HIMECs with PI3K inhibitor (LY294002) significantly inhibited the PlGF-induced cell migration and tube formation. Conclusion: Our results demonstrated the pro-inflammatory and angiogenic effects of PlGF on HIMECs in IBD through activation of PI3K/Akt signaling pathway. PlGF/PI3K/Akt signaling may serve as a potential therapeutic target for IBD. - Highlights: • Expression of PlGF and its receptor NRP-1 were significantly increased in IBD HIMECs. • Exogenous rhPlGF-1 treatment significantly induced HIMECs migration and tube formation. • Knockdown of endogenous PlGF in IBD HIMECs using siRNA substantially reduced cell angiogenesis activities. • PlGF induced PI3K/Akt phosphorylation in HIMECs which is required for PIGF-induced cell migration and tube formation.« less

  6. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    PubMed

    Liu, Yung-Yang; Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo

    2017-01-01

    Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  7. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury

    PubMed Central

    Chiang, Chi-Huei; Hung, Shih-Chieh; Chian, Chih-Feng; Tsai, Chen-Liang; Chen, Wei-Chih; Zhang, Haibo

    2017-01-01

    Background Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs). However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R) lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels. Methods I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells) and high (1×106 cells) dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined. Results I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS), pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism. Conclusions Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis. PMID:29117205

  8. The inflammatory mediator leukotriene D{sub 4} induces subcellular β-catenin translocation and migration of colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salim, Tavga; Sand-Dejmek, Janna; Section of Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Malmö

    2014-02-15

    The abnormal activation of the Wnt/β-catenin pathway frequently occurs in colorectal cancer. The nuclear translocation of β-catenin activates the transcription of target genes that promote cell proliferation, survival, and invasion. The pro-inflammatory mediator leukotriene D{sub 4} (LTD{sub 4}) exerts its effects through the CysLT{sub 1} receptor. We previously reported an upregulation of CysLT{sub 1}R in patients with colon cancer, suggesting the importance of leukotrienes in colon cancer. The aim of this study was to investigate the impact of LTD{sub 4} on Wnt/β-catenin signaling and its effects on proliferation and migration of colon cancer cells. LTD{sub 4} stimulation led to anmore » increase in β-catenin expression, β-catenin nuclear translocation and the subsequent transcription of MYC and CCND1. Furthermore, LTD{sub 4} significantly reduced the expression of E-cadherin and β-catenin at the plasma membrane and increased the migration and proliferation of HCT116 colon cancer cells. The effects of LTD{sub 4} can be blocked by the inhibition of CysLT{sub 1}R. Furthermore, LTD{sub 4} induced the inhibition of glycogen synthase kinase 3 (GSK)-3β activity, indicating a crosstalk between the G-protein-coupled receptor CysLT{sub 1} and the Wnt/β-catenin pathway. In conclusion, LTD{sub 4}, which can be secreted from macrophages and leukocytes in the tumor microenvironment, induces β-catenin translocation and the activation of β-catenin target genes, resulting in the increased proliferation and migration of colon cancer cells. - Highlights: • Leukotriene D{sub 4} (LTD{sub 4}) lowers membrane β-catenin but increases nuclear β-catenin levels in colon cancer cells. • In agreement, LTD{sub 4} triggers inactivation of GSK-3β, activation of TCF/LEF and increased expression of Cyclin D1 and c-Myc. • LTD{sub 4} also caused a significant reduction in the expression of E-cadherin and an increased migration of colon cancer cells.« less

  9. Human papillomavirus-exposed Langerhans cells are activated by stabilized Poly-I:C.

    PubMed

    Da Silva, Diane M; Woodham, Andrew W; Rijkee, Laurie K; Skeate, Joseph G; Taylor, Julia R; Koopman, Maaike E; Brand, Heike E; Wong, Michael K; McKee, Greg M; Salazar, Andres M; Kast, W Martin

    2015-12-01

    Human papillomaviruses (HPV) establish persistent infections because of evolved immune evasion mechanisms, particularly HPV-mediated suppression of the immune functions of Langerhans cells (LC), the antigen presenting cells of the epithelium. Polyinosinic-polycytidilic acid (Poly-I:C) is broadly immunostimulatory with the ability to enhance APC expression of costimulatory molecules and inflammatory cytokines resulting in T cell activation. Here we investigated the activation of primary human LC derived from peripheral blood monocytes after exposure to HPV16 virus like particles followed by treatment with stabilized Poly-I:C compounds (s-Poly-I:C), and their subsequent induction of HPV16-specific T cells. Our results indicate that HPV16 particles alone were incapable of inducing LC activation as demonstrated by the lack of costimulatory molecules, inflammatory cytokines, chemokine-directed migration, and HPV16-specific CD8 + T cells in vitro . Conversely, s-Poly-I:C caused significant upregulation of costimulatory molecules and induction of chemokine-directed migration of LC that were pre-exposed to HPV16. In HLA-A*0201-positive donors, s-Poly-I:C treatment was able to induce CD8 + T cell immune responses against HPV16-derived peptides. Thus, s-Poly-I:C compounds are attractive for translation into therapeutics in which they could potentially mediate clearance of persistent HPV infection.

  10. The meningeal lymphatic system: a route for HIV brain migration?

    PubMed

    Lamers, Susanna L; Rose, Rebecca; Ndhlovu, Lishomwa C; Nolan, David J; Salemi, Marco; Maidji, Ekaterina; Stoddart, Cheryl A; McGrath, Michael S

    2016-06-01

    Two innovative studies recently identified functional lymphatic structures in the meninges that may influence the development of HIV-associated neurological disorders (HAND). Until now, blood vessels were assumed to be the sole transport system by which HIV-infected monocytes entered the brain by bypassing a potentially hostile blood-brain barrier through inflammatory-mediated semi-permeability. A cascade of specific chemokine signals promote monocyte migration from blood vessels to surrounding brain tissues via a well-supported endothelium, where the cells differentiate into tissue macrophages capable of productive HIV infection. Lymphatic vessels on the other hand are more loosely organized than blood vessels. They absorb interstitial fluid from bodily tissues where HIV may persist and exchange a variety of immune cells (CD4(+) T cells, monocytes, macrophages, and dendritic cells) with surrounding tissues through discontinuous endothelial junctions. We propose that the newly discovered meningeal lymphatics are key to HIV migration among viral reservoirs and brain tissue during periods of undetectable plasma viral loads due to suppressive combinational antiretroviral therapy, thus redefining the migration process in terms of a blood-lymphatic transport system.

  11. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  12. A β-Lactam Antibiotic Dampens Excitotoxic Inflammatory CNS Damage in a Mouse Model of Multiple Sclerosis

    PubMed Central

    Torres-Salazar, Delany; Bittner, Stefan; Zozulya, Alla L.; Weidenfeller, Christian; Kotsiari, Alexandra; Stangel, Martin; Fahlke, Christoph; Wiendl, Heinz

    2008-01-01

    In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), impairment of glial “Excitatory Amino Acid Transporters” (EAATs) together with an excess glutamate-release by invading immune cells causes excitotoxic damage of the central nervous system (CNS). In order to identify pathways to dampen excitotoxic inflammatory CNS damage, we assessed the effects of a β-lactam antibiotic, ceftriaxone, reported to enhance expression of glial EAAT2, in “Myelin Oligodendrocyte Glycoprotein” (MOG)-induced EAE. Ceftriaxone profoundly ameliorated the clinical course of murine MOG-induced EAE both under preventive and therapeutic regimens. However, ceftriaxone had impact neither on EAAT2 protein expression levels in several brain areas, nor on the radioactive glutamate uptake capacity in a mixed primary glial cell-culture and the glutamate-induced uptake currents in a mammalian cell line mediated by EAAT2. Moreover, the clinical effect of ceftriaxone was preserved in the presence of the EAAT2-specific transport inhibitor, dihydrokainate, while dihydrokainate alone caused an aggravated EAE course. This demonstrates the need for sufficient glial glutamate uptake upon an excitotoxic autoimmune inflammatory challenge of the CNS and a molecular target of ceftriaxone other than the glutamate transporter. Ceftriaxone treatment indirectly hampered T cell proliferation and proinflammatory INFγ and IL17 secretion through modulation of myelin-antigen presentation by antigen-presenting cells (APCs) e.g. dendritic cells (DCs) and reduced T cell migration into the CNS in vivo. Taken together, we demonstrate, that a β-lactam antibiotic attenuates disease course and severity in a model of autoimmune CNS inflammation. The mechanisms are reduction of T cell activation by modulation of cellular antigen-presentation and impairment of antigen-specific T cell migration into the CNS rather than or modulation of central glutamate homeostasis. PMID:18773080

  13. Inhibition of Gelatinase B (Matrix Metalloprotease-9) Activity Reduces Cellular Inflammation and Restores Function of Transplanted Pancreatic Islets

    PubMed Central

    Lingwal, Neelam; Padmasekar, Manju; Samikannu, Balaji; Bretzel, Reinhard G.; Preissner, Klaus T.; Linn, Thomas

    2012-01-01

    Islet transplantation provides an approach to compensate for loss of insulin-producing cells in patients with type 1 diabetes. However, the intraportal route of transplantation is associated with instant inflammatory reactions to the graft and subsequent islet destruction as well. Although matrix metalloprotease (MMP)-2 and -9 are involved in both remodeling of extracellular matrix and leukocyte migration, their influence on the outcome of islet transplantation has not been characterized. We observed comparable MMP-2 mRNA expressions in control and transplanted groups of mice, whereas MMP-9 mRNA and protein expression levels increased after islet transplantation. Immunostaining for CD11b (Mac-1)-expressing leukocytes (macrophage, neutrophils) and Ly6G (neutrophils) revealed substantially reduced inflammatory cell migration into islet-transplanted liver in MMP-9 knockout recipients. Moreover, gelatinase inhibition resulted in a significant increase in the insulin content of transplanted pancreatic islets and reduced macrophage and neutrophil influx compared with the control group. These results indicate that the increase of MMP-9 expression and activity after islet transplantation is directly related to enhanced leukocyte migration and that early islet graft survival can be improved by inhibiting MMP-9 (gelatinase B) activity. PMID:22586582

  14. Novel Anti-inflammatory Activity of Epoxyazadiradione against Macrophage Migration Inhibitory Factor

    PubMed Central

    Alam, Athar; Haldar, Saikat; Thulasiram, Hirekodathakallu V.; Kumar, Rahul; Goyal, Manish; Iqbal, Mohd Shameel; Pal, Chinmay; Dey, Sumanta; Bindu, Samik; Sarkar, Souvik; Pal, Uttam; Maiti, Nakul C.; Bandyopadhyay, Uday

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (Ki, 2.11–5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human. PMID:22645149

  15. C5a and C5aR are elevated in joints of rheumatoid and psoriatic arthritis patients, and C5aR blockade attenuates leukocyte migration to synovial fluid.

    PubMed

    Hornum, Lars; Hansen, Anker Jon; Tornehave, Ditte; Fjording, Marianne Scheel; Colmenero, Paula; Wätjen, Inger Falbe; Søe Nielsen, Niels Henrik; Bliddal, Henning; Bartels, Else Marie

    2017-01-01

    Complement activation correlates to rheumatoid arthritis disease activity, and increased amounts of the complement split product C5a is observed in synovial fluids from rheumatoid arthritis patients. Blockade of C5a or its receptor (C5aR) is efficacious in several arthritis models. The aim of this study was to investigate the role of C5a and C5aR in human rheumatoid arthritis and psoriatic arthritis-both with respect to expression and function. Synovial fluid, blood and synovial samples were obtained from rheumatoid arthritis, psoriatic arthritis and osteoarthritis patients as a less inflammatory arthritis type, and blood from healthy subjects. Cells infiltrating synovial tissue were analysed by immunohistochemistry and flow cytometry. SF and blood were analysed for biomarkers by flow cytometry or ELISA. The effect of a blocking anti-human C5aR mAb on leukocyte migration was determined using a Boyden chamber. Appropriate statistical tests were applied for comparisons. C5aR+ cells were detected in most rheumatoid arthritis, in all psoriatic arthritis, but not in non-inflammatory control synovia. C5aR+ cells were primarily neutrophils and macrophages. C5aR+ macrophages were mainly found in lymphoid aggregates in close contact with T cells. C5a levels were increased in both rheumatoid arthritis and psoriatic arthritis synovial fluid compared to osteoarthritis, and in blood from rheumatoid arthritis compared to healthy subjects. Neutrophil and monocyte migration to rheumatoid arthritis synovial fluid was significantly inhibited by anti-C5aR. The data support that the C5a-C5aR axis may be driving the infiltration of inflammatory cells into the synovial fluid and synovium in both rheumatoid and psoriatic arthritis, and suggest that C5a or C5aR may be a promising treatment target in both diseases.

  16. Apolipoprotein A-I inhibits chemotaxis, adhesion, activation of THP-1 cells and improves the plasma HDL inflammatory index.

    PubMed

    Wang, Li; Chen, Wei-Zhong; Wu, Man-Ping

    2010-02-01

    The anti-inflammatory effects of high density lipoprotein (HDL) are well described, however, such effects of Apolipoprotein A-I (ApoA-I) are less studied. Building on our previous study, we further explored the mechanism of anti-inflammatory effects of ApoA-I, and focused especially on the interaction between monocyte and endothelial cells and plasma HDL inflammatory index in LPS-challenged rabbits. Our results show that ApoA-I significantly decreased LPS-induced MCP-1 release from THP-1 cells and ox-LDL-induced THP-1 migration ratio (P<0.01, respectively). ApoA-I significantly decreased sL-selectin, sICAM-1 and sVCAM-1 release (P<0.01, P<0.01, P<0.05, respectively) from LPS-stimulated THP-1 cells. Furthermore, ApoA-I significantly inhibited LPS-induced CD11b and VCAM-1 expression on THP-1 cells (P<0.01, P<0.05, respectively). ApoA-I diminished LPS-induced mCD14 expression (P<0.01) and NFkappaB nuclear translocation in THP-1 cells. After single dose treatment of ApoA-I, the value of plasma HDL inflammatory index in LPS-challenged rabbits was improved significantly (P<0.05). These results suggest that ApoA-I can inhibit chemotaxis, adhesion and activation of human monocytes and improve plasma HDL inflammatory index with presenting beneficial anti-inflammatory effects. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids.

    PubMed

    Murphy, Kaitlin C; Whitehead, Jacklyn; Falahee, Patrick C; Zhou, Dejie; Simon, Scott I; Leach, J Kent

    2017-06-01

    Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E 2 (PGE 2 ) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE 2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE 2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model-demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids. Stem Cells 2017;35:1493-1504. © 2017 AlphaMed Press.

  18. Optimization and Pharmacological Validation of a Leukocyte Migration Assay in Zebrafish Larvae for the Rapid In Vivo Bioactivity Analysis of Anti-Inflammatory Secondary Metabolites

    PubMed Central

    Vicet-Muro, Liliana; Wilches-Arizábala, Isabel María; Esguerra, Camila V.; de Witte, Peter A. M.; Crawford, Alexander D.

    2013-01-01

    Over the past decade, zebrafish (Danio rerio) have emerged as an attractive model for in vivo drug discovery. In this study, we explore the suitability of zebrafish larvae to rapidly evaluate the anti-inflammatory activity of natural products (NPs) and medicinal plants used in traditional medicine for the treatment of inflammatory disorders. First, we optimized a zebrafish assay for leukocyte migration. Inflammation was induced in four days post-fertilization (dpf) zebrafish larvae by tail transection and co-incubation with bacterial lipopolysaccharides (LPS), resulting in a robust recruitment of leukocytes to the zone of injury. Migrating zebrafish leukocytes were detected in situ by myeloperoxidase (MPO) staining, and anti-inflammatory activity was semi-quantitatively scored using a standardized scale of relative leukocyte migration (RLM). Pharmacological validation of this optimized assay was performed with a panel of anti-inflammatory drugs, demonstrating a concentration-responsive inhibition of leukocyte migration for both steroidal and non-steroidal anti-inflammatory drugs (SAIDs and NSAIDs). Subsequently, we evaluated the bioactivity of structurally diverse NPs with well-documented anti-inflammatory properties. Finally, we further used this zebrafish-based assay to quantify the anti-inflammatory activity in the aqueous and methanolic extracts of several medicinal plants. Our results indicate the suitability of this LPS-enhanced leukocyte migration assay in zebrafish larvae as a front-line screening platform in NP discovery, including for the bioassay-guided isolation of anti-inflammatory secondary metabolites from complex NP extracts. PMID:24124487

  19. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration.

    PubMed

    Ye, Baixin; Xiong, Xiaoxing; Deng, Xu; Gu, Lijuan; Wang, Qiongyu; Zeng, Zhi; Gao, Xiang; Gao, Qingping; Wang, Yueying

    2017-12-01

    Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p < 0.0001). Also, we found that meisoindigo did not affect the process of leukocyte reverse migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.

  20. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration

    PubMed Central

    2017-01-01

    Abstract This review provides a concise summary of the changing phenotypes of macrophages and fibroblastic cells during the local inflammatory response, the onset of tissue repair, and the resolution of inflammation which follow injury to an organ. Both cell populations respond directly to damage and present coordinated sequences of activation states which determine the reparative outcome, ranging from true regeneration of the organ to fibrosis and variable functional deficits. Recent work with mammalian models of organ regeneration, including regeneration of full‐thickness skin, hair follicles, ear punch tissues, and digit tips, is summarized and the roles of local immune cells in these systems are discussed. New investigations of the early phase of amphibian limb and tail regeneration, including the effects of pro‐inflammatory and anti‐inflammatory agents, are then briefly discussed, focusing on the transition from the normally covert inflammatory response to the initiation of the regeneration blastema by migrating fibroblasts and the expression of genes for limb patterning. PMID:28616244

  1. Dendritic cell reprogramming by endogenously produced lactic acid.

    PubMed

    Nasi, Aikaterini; Fekete, Tünde; Krishnamurthy, Akilan; Snowden, Stuart; Rajnavölgyi, Eva; Catrina, Anca I; Wheelock, Craig E; Vivar, Nancy; Rethi, Bence

    2013-09-15

    The demand for controlling T cell responses via dendritic cell (DC) vaccines initiated a quest for reliable and feasible DC modulatory strategies that would facilitate cytotoxicity against tumors or tolerance in autoimmunity. We studied endogenous mechanisms in developing monocyte-derived DCs (MoDCs) that can induce inflammatory or suppressor programs during differentiation, and we identified a powerful autocrine pathway that, in a cell concentration-dependent manner, strongly interferes with inflammatory DC differentiation. MoDCs developing at low cell culture density have superior ability to produce inflammatory cytokines, to induce Th1 polarization, and to migrate toward the lymphoid tissue chemokine CCL19. On the contrary, MoDCs originated from dense cultures produce IL-10 but no inflammatory cytokines upon activation. DCs from high-density cultures maintained more differentiation plasticity and can develop to osteoclasts. The cell concentration-dependent pathway was independent of peroxisome proliferator-activated receptor γ (PPARγ), a known endogenous regulator of MoDC differentiation. Instead, it acted through lactic acid, which accumulated in dense cultures and induced an early and long-lasting reprogramming of MoDC differentiation. Our results suggest that the lactic acid-mediated inhibitory pathway could be efficiently manipulated in developing MoDCs to influence the immunogenicity of DC vaccines.

  2. Stem cell transplant in inflammatory bowel disease: a promising modality of treatment for a complicated disease course.

    PubMed

    Salem, George A; Selby, George B

    2017-01-01

    Inflammatory bowel disease (IBD) is a complex, relapsing and remitting, disease characterized by an exaggerated immune response in a susceptible host. The symptoms and complications of the disease can be debilitating. Advances in medical treatment in the last decade changed the course of the disease in many patients. Despite the use of novel agents for controlling disease, a proportion of patients' disease courses continue to be either refractory, or become resistant, to available therapeutic options. Stem-cell therapy, with hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs), is a promising modality of treatment for severe refractory cases, mainly Crohn's disease (CD) patients. HSCs have the ability to migrate to damaged tissue, which provides them with further properties to differentiate to epithelial or immune-modulatory cells to restore normal mucosal tissue and integrity. MSCs therapy is a promising model for patients with perianal CD due to their immunosuppressive properties, ability to migrate to areas of injury, and demonstration of colonic healing, including fistulizing tracts. The results from ongoing clinical trials will provide a valuable understanding of the future of stem-cell therapy as a treatment option in refractory cases of IBD, a disease whose pathogenesis remains unknown, and is notoriously difficult to treat.

  3. Psychological stress exerts an adjuvant effect on skin dendritic cell functions in vivo.

    PubMed

    Saint-Mezard, Pierre; Chavagnac, Cyril; Bosset, Sophie; Ionescu, Marius; Peyron, Eric; Kaiserlian, Dominique; Nicolas, Jean-Francois; Bérard, Frédéric

    2003-10-15

    Psychological stress affects the pathophysiology of infectious, inflammatory, and autoimmune diseases. However, the mechanisms by which stress could modulate immune responses in vivo are poorly understood. In this study, we report that application of a psychological stress before immunization exerts an adjuvant effect on dendritic cell (DC), resulting in increased primary and memory Ag-specific T cell immune responses. Acute stress dramatically enhanced the skin delayed-type hypersensitivity reaction to haptens, which is mediated by CD8(+) CTLs. This effect was due to increased migration of skin DCs, resulting in augmented CD8(+) T cell priming in draining lymph nodes and enhanced recruitment of CD8(+) T cell effectors in the skin upon challenge. This adjuvant effect of stress was mediated by norepinephrine (NE), but not corticosteroids, as demonstrated by normalization of the skin delayed-type hypersensitivity reaction and DC migratory properties following selective depletion of NE. These results suggest that release of NE by sympathetic nerve termini during a psychological stress exerts an adjuvant effect on DC by promoting enhanced migration to lymph nodes, resulting in increased Ag-specific T cell responses. Our findings may open new ways in the treatment of inflammatory diseases, e.g., psoriasis, allergic contact dermatitis, and atopic dermatitis.

  4. GMP-grade platelet lysate enhances proliferation and migration of tenon fibroblasts.

    PubMed

    Carducci, Augusto; Scafetta, Gaia; Siciliano, Camilla; Carnevale, Roberto; Rosa, Paolo; Coccia, Andrea; Mangino, Giorgio; Bordin, Antonella; Vingolo, Enzo Maria; Pierelli, Luca; Lendaro, Eugenio; Ragona, Giuseppe; Frati, Giacomo; De Falco, Elena

    2016-01-01

    Tenon's fibroblasts (TFs), widely employed as in vitro model for many ophthalmological studies, are routinely cultured with FBS. Platelet Lysate (PL), a hemoderivate enriched with growth factors and cytokines has been largely tested in several clinical applications and as substitute of FBS in culture. Here, we investigate whether PL can exert biological effects on TF populations similarly to other cell types. Results show that PL significantly enhances cell proliferation and migration vs. FBS, without influencing cell size/granularity. Upregulation of EGF, VEGF, KDR, MMP2-9, FAK mRNA levels also occurs and phosphorylation of AKT but not of ERK1/2 is significantly enhanced. The inhibition of the PI3kinase/AKT pathway with the specific inhibitor wortmannin, decreases PL-induced cell migration but not proliferation. Condition supernatants containing PL show increased bioavailability of Nitric Oxide and reduced levels of 8-Iso-PGF2-alpha, correlating with cell proliferation and migration. Pro-angiogenic/inflammatory soluble factors (GRO, Angiogenin, EGF, I-309, PARC) are exclusively or greater expressed in media containing PL than FBS. GMP-grade PL preparations positively influence in vitro biological effects of TFs representing a suitable and safer alternative to FBS.

  5. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment.

    PubMed

    Hardcastle, Jayson; Mills, Lisa; Malo, Courtney S; Jin, Fang; Kurokawa, Cheyne; Geekiyanage, Hirosha; Schroeder, Mark; Sarkaria, Jann; Johnson, Aaron J; Galanis, Evanthia

    2017-04-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor and has a dismal prognosis. Measles virus (MV) therapy of GBM is a promising strategy due to preclinical efficacy, excellent clinical safety, and its ability to evoke antitumor pro-inflammatory responses. We hypothesized that combining anti- programmed cell death protein 1 (anti-PD-1) blockade and MV therapy can overcome immunosuppression and enhance immune effector cell responses against GBM, thus improving therapeutic outcome. In vitro assays of MV infection of glioma cells and infected glioma cells with mouse microglia ± aPD-1 blockade were established to assess damage associated molecular pattern (DAMP) molecule production, migration, and pro-inflammatory effects. C57BL/6 or athymic mice bearing syngeneic orthotopic GL261 gliomas were treated with MV, aPD-1, and combination treatment. T2* weighted immune cell-specific MRI and fluorescence activated cell sorting (FACS) analysis of treated mouse brains was used to examine adaptive immune responses following therapy. In vitro, MV infection induced human GBM cell secretion of DAMP (high-mobility group protein 1, heat shock protein 90) and upregulated programmed cell death ligand 1 (PD-L1). MV infection of GL261 murine glioma cells resulted in a pro-inflammatory response and increased migration of BV2 microglia. In vivo, MV+aPD-1 therapy synergistically enhanced survival of C57BL/6 mice bearing syngeneic orthotopic GL261 gliomas. MRI showed increased inflammatory cell influx into the brains of mice treated with MV+aPD-1; FACS analysis confirmed increased T-cell influx predominantly consisting of activated CD8+ T cells. This report demonstrates that oncolytic measles virotherapy in combination with aPD-1 blockade significantly improves survival outcome in a syngeneic GBM model and supports the potential of clinical/translational strategies combining MV with αPD-1 therapy in GBM treatment. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Molecular analysis of human papillomavirus virus-like particle activated Langerhans cells in vitro.

    PubMed

    Woodham, Andrew W; Raff, Adam B; Da Silva, Diane M; Kast, W Martin

    2015-01-01

    Langerhans cells (LC) are the resident antigen-presenting cells in human epithelium, and are therefore responsible for initiating immune responses against human papillomaviruses (HPV) entering the epithelial and mucosal layers in vivo. Upon proper pathogenic stimulation, LC become activated causing an internal signaling cascade that results in the up-regulation of co-stimulatory molecules and the release of inflammatory cytokines. Activated LC then migrate to lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response. However, HPV manipulates LC in a suppressive manner that alters these normal maturation responses. Here, in vitro LC activation assays for the detection of phosphorylated signaling intermediates, the up-regulation of activation-associated surface markers, and the release of inflammatory cytokines in response to HPV particles are described.

  7. Glucocorticoid receptor beta increases migration of human bladder cancer cells.

    PubMed

    McBeth, Lucien; Nwaneri, Assumpta C; Grabnar, Maria; Demeter, Jonathan; Nestor-Kalinoski, Andrea; Hinds, Terry D

    2016-05-10

    Bladder cancer is observed worldwide having been associated with a host of environmental and lifestyle risk factors. Recent investigations on anti-inflammatory glucocorticoid signaling point to a pathway that may impact bladder cancer. Here we show an inverse effect on the glucocorticoid receptor (GR) isoform signaling that may lead to bladder cancer. We found similar GRα expression levels in the transitional uroepithelial cancer cell lines T24 and UMUC-3. However, the T24 cells showed a significant (p < 0.05) increased expression of GRβ compared to UMUC-3, which also correlated with higher migration rates. Knockdown of GRβ in the T24 cells resulted in a decreased migration rate. Mutational analysis of the 3' untranslated region (UTR) of human GRβ revealed that miR144 might positively regulate expression. Indeed, overexpression of miR144 increased GRβ by 3.8 fold. In addition, miR144 and GRβ were upregulated during migration. We used a peptide nucleic acid conjugated to a cell penetrating-peptide (Sweet-P) to block the binding site for miR144 in the 3'UTR of GRβ. Sweet-P effectively prevented miR144 actions and decreased GRβ expression, as well as the migration of the T24 human bladder cancer cells. Therefore, GRβ may have a significant role in bladder cancer, and possibly serve as a therapeutic target for the disease.

  8. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase

    PubMed Central

    Vogel, Megan E.; Kindel, Tammy L.; Smith, Darcey L. H.; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E.

    2015-01-01

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. PMID:26381705

  9. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    PubMed

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.

  10. Blocking NF-κB: an inflammatory issue.

    PubMed

    Rahman, Arshad; Fazal, Fabeha

    2011-11-01

    The nuclear factor (NF)-κB is considered the master regulator of inflammatory responses. Studies in mouse models have established this transcription factor as an important mediator of many inflammatory disease states, including pulmonary diseases such as acute lung injury and acute respiratory distress syndrome. Endothelial cells provide the first barrier for leukocytes migrating to the inflamed sites and hence offer an attractive cellular context for targeting NF-κB for treatment of these diseases. However, recent studies showing that NF-κB also plays an important role in resolution phase of inflammation and in tissue repair and homeostasis have challenged the view of therapeutic inhibition of NF-κB. This article reviews the regulation of NF-κB in the context of endothelial cell signaling and provides a perspective on why "dampening" rather than "abolishing" NF-κB activation may be a safe and effective treatment strategy for inflammation-associated pulmonary and other inflammatory diseases.

  11. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, Ajaz A.; Ahmad, Rizwan; Uppada, SrijayaPrakash B.

    Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells culturedmore » in the presence of TNF-α (10 ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.« less

  12. Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia.

    PubMed

    Moraga, Ana; Pradillo, Jesús M; García-Culebras, Alicia; Palma-Tortosa, Sara; Ballesteros, Ivan; Hernández-Jiménez, Macarena; Moro, María A; Lizasoain, Ignacio

    2015-05-10

    Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in the cortical peri-infarct area. Thus, our results highlight the importance of using aged animals for translation to clinical studies.

  13. Neutralizing Effects of Mimosa tenuiflora Extracts against Inflammation Caused by Tityus serrulatus Scorpion Venom

    PubMed Central

    Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Torres-Rêgo, Manoela; da Silva-Júnior, Arnóbio Antônio; Tambourgi, Denise Vilarinho; Zucolotto, Silvana Maria

    2014-01-01

    Scorpion bite represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world. Inflammatory mediators are thought to be involved in the systemic and local immune response induced by Tityus serrulatus scorpion envenomation. The aim of this study was to evaluate the effect of extracts of Mimosa tenuiflora on model envenomation. In mice, the envenomation model is induced by Tityus serrulatus venom. Previous treatment of mice with fractions from M. tenuiflora was able to suppress the cell migration to the peritoneal cavity. The treatment of mice with M. tenuiflora extracts also decreased the levels of IL-6, IL-12, and IL-1β. We concluded that the administration of the extract and fractions resulted in a reduction in cell migration and showed a reduction in the level of proinflammatory cytokines. This study demonstrates, for the first time, the anti-inflammatory effect of aqueous extract from the Mimosa tenuiflora plant on T. serrulatus venom. PMID:25013776

  14. Neutralizing effects of Mimosa tenuiflora extracts against inflammation caused by Tityus serrulatus scorpion venom.

    PubMed

    Bitencourt, Mariana Angélica Oliveira; de Souza Lima, Maira Conceição Jerônimo; Torres-Rêgo, Manoela; Fernandes, Júlia Morais; da Silva-Júnior, Arnóbio Antônio; Tambourgi, Denise Vilarinho; Zucolotto, Silvana Maria; de Freitas Fernandes-Pedrosa, Matheus

    2014-01-01

    Scorpion bite represents a significant and serious public health problem in certain regions of Brazil, as well as in other parts of the world. Inflammatory mediators are thought to be involved in the systemic and local immune response induced by Tityus serrulatus scorpion envenomation. The aim of this study was to evaluate the effect of extracts of Mimosa tenuiflora on model envenomation. In mice, the envenomation model is induced by Tityus serrulatus venom. Previous treatment of mice with fractions from M. tenuiflora was able to suppress the cell migration to the peritoneal cavity. The treatment of mice with M. tenuiflora extracts also decreased the levels of IL-6, IL-12, and IL-1β. We concluded that the administration of the extract and fractions resulted in a reduction in cell migration and showed a reduction in the level of proinflammatory cytokines. This study demonstrates, for the first time, the anti-inflammatory effect of aqueous extract from the Mimosa tenuiflora plant on T. serrulatus venom.

  15. Increased Transendothelial Transport of CCL3 Is Insufficient to Drive Immune Cell Transmigration through the Blood-Brain Barrier under Inflammatory Conditions In Vitro.

    PubMed

    De Laere, Maxime; Sousa, Carmelita; Meena, Megha; Buckinx, Roeland; Timmermans, Jean-Pierre; Berneman, Zwi; Cools, Nathalie

    2017-01-01

    Many neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro. In a coculture model consisting of a human cerebral microvascular endothelial cell line and human astrocytes, proinflammatory stimulation downregulated the expression of tight junction proteins, while the expression of adhesion molecules and chemokines was upregulated. Moreover, chemokine transport across BBB cocultures was upregulated, as evidenced by a significantly increased concentration of the inflammatory chemokine CCL3 at the luminal side following proinflammatory stimulation. CCL3 transport occurred independently of the chemokine receptors CCR1 and CCR5, albeit that migrated cells displayed increased expression of CCR1 and CCR5. However, overall leukocyte transmigration was reduced in inflammatory conditions, although higher numbers of leukocytes adhered to activated endothelial cells. Altogether, our findings demonstrate that prominent barrier activation following proinflammatory stimulation is insufficient to drive immune cell recruitment, suggesting that additional traffic cues are crucial to mediate the increased immune cell infiltration seen in vivo during neuroinflammation.

  16. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs.

    PubMed

    Wang, Jing; Liu, Dan; Guo, Bo; Yang, Xiao; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Zhang, Xingdong

    2017-03-15

    The inflammatory reaction initiates fracture healing and could play a role in the osteoinductive effect of calcium phosphate (CaP) ceramics, which has been widely confirmed; however, the underlying mechanism has not been fully elucidated. In this study, various signaling molecules from macrophages under the stimulation of osteoinductive biphasic calcium phosphate (BCP) ceramic and its degradation products were examined and evaluated for their influence on the migration and osteoblastic differentiation of mesenchymal stem cells (MSCs). The results of cellular experiments confirmed that the gene expression of most inflammatory factors (IL-1, IL-6 and MCP-1) and growth factors (VEGF, PDGF and EGF) by macrophages were up-regulated to varying degrees by BCP ceramic and its degradation products. Cell migration tests demonstrated that the conditioned media (CMs), which contained abundant signaling molecules secreted by macrophages cultured on BCP ceramic and its degradation products, promoted the migration of MSCs. qRT-PCR analysis indicated that CMs promoted the gene expression of osteogenic markers (ALP, COL-I, OSX, BSP and OPN) in MSCs. ALP activity and mineralization staining further confirmed that CMs promoted the osteoblastic differentiation of MSCs. The present study confirmed the correlation between the inflammatory reaction and osteoinductive capacity of BCP ceramic. The ceramic itself and its degradation products can induce macrophages to express and secrete various signaling molecules, which then recruit and promote the MSCs to differentiate into osteoblasts. Compared with BCP conditioned media, degradation particles played a more substantial role in this process. Thus, inflammation initiated by BCP ceramic and its degradation products could be necessary for osteoinduction by the ceramic. It is known that the inflammatory reaction initiates fracture healing. The aim of this study was to examine whether osteoinductive BCP ceramics could cause macrophages to change their secretion patterns and whether the secreted cytokines could affect migration and osteoblastic differentiation of MSCs. Moreover, the duration of inflammation could be influenced by the local ionic environment and the degradation products of the implant. Our experimental results revealed the correlation between the inflammatory reaction and osteoinductive capacity of BCP ceramic. The ceramic itself and its degradation products can induce macrophages to express and secrete various signaling molecules, which then recruit and promote the MSCs to differentiate into osteoblasts. Compared with ionic microenvironment, degradation particles played a more substantial role in this process. Therefore, the appropriate inflammation initiated by BCP ceramic and its degradation products could be essential for osteoinduction by the ceramic. We believe that the present study improves the understanding of the effect of biomaterial-mediated inflammation on MSC migration and differentiation and established a preliminary correlation between the immune system and osteoinduction by biomaterials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Expression and Function of Anti-Inflammatory Interleukins: The Other Side of the Vascular Response to Injury

    PubMed Central

    Cuneo, Anthony A.; Autieri, Michael V.

    2012-01-01

    Common to multiple vascular diseases, including atherosclerosis, interventional restenosis, and transplant vasculopathy, is a localized inflammatory reaction. Activated vascular smooth muscle cells (VSMC) respond to local inflammation and migrate from the media into the lumen of the vessel where they proliferate and synthesize cytokines which they respond to in an autocrine fashion, sustaining the progression of the lesion. The deleterious effects of pro-inflammatory cytokines, particularly immunomodulatory interleukins, on vascular pathophysiology and development of these maladaptive processes have been the subject of intense study. Although a great deal of attention has been given to the negative effects of pro-inflammatory cytokines and interleukins, relatively little has been reported on the potentially beneficial paracrine and autocrine effects of anti-inflammatory interleukins on the vascular response to injury. The vast majority of emphasis on secretion and function of anti-inflammatory mediators has been placed on leukocytes. Consequently, the role of non-immune cells, and direct effects of anti-inflammatory interleukins on vascular cells is poorly understood. We will review the molecular mechanisms whereby anti-inflammatory interleukins inhibit signal transduction and gene expression in inflammatory cells. We will review studies in which beneficial “indirect” effects of anti-inflammatory interleukins on progression of vascular disease are achieved by modulation of immune function. We will also present the limited studies in which “direct” effects of these interleukins on VSMC and endothelial cells dampen the vascular response to injury. We propose that expression of immunomodulatory cytokines by activated vasculature may represent an auto-regulatory feed back mechanism to promote resolution of the vascular response to injury. PMID:19601851

  18. Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses.

    PubMed

    Kulkarni, Roshan R; Lee, Wonhwa; Jang, Tae Su; Lee, JungIn; Kwak, Soyoung; Park, Mi Seon; Lee, Hyun-Shik; Bae, Jong-Sup; Na, MinKyun

    2015-11-15

    Endothelial dysfunction is a key pathological feature of many inflammatory diseases, including sepsis. In the present study, a new caffeoyl glucoside (1) and two known caffeoylated compounds (2 and 3) were isolated from the fruits of Nandina domestica Thunb. (Berberidaceae). The compounds were investigated for their effects against lipopolysaccharide (LPS)-mediated endothelial inflammatory responses. At 20 μM, 1 and 2 inhibited LPS-induced hyperpermeability, adhesion, and migration of leukocytes across a human endothelial cell monolayer in a dose-dependent manner suggesting that 1 and 2 may serve as potential scaffolds for the development of therapeutic agents to treat vascular inflammatory disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The local lymph node assay being too sensitive?

    PubMed

    Hans-Werner, Vohr; Jürgen, Ahr Hans

    2005-12-01

    The local lymph node assay (LLNA) and modifications thereof were recently recognized by the OECD as stand-alone methods for the detection of skin-sensitizing potential. However, although the validity of the LLNA was acknowledged by the ICCVAM, attention was drawn to one major problem, i.e., the possibility of false positive results caused by non-specific cell activation as a result of inflammatory processes in the skin (irritation). This is based on the fact that inflammatory processes in the skin may lead to non-specific activation of dendritic cells, cell migration and non-specific proliferation of lymph node cells. Measuring cell proliferation by radioactive or non-radioactive methods, without taking the irritating properties of test items into account, leads thus to false positive reactions. In this paper, we have compared both endpoints: (1) cell proliferation alone and (2) cell proliferation in combination with inflammatory (irritating) processes. It turned out that a considerable number of tests were "false positive" to the definition mentioned above. By excluding such false positive results the LLNA seems not to be more sensitive than relevant guinea pig assays. These various methods and results are described here.

  20. 4,5-Di-O-Caffeoylquinic Acid from Ligularia fischeri Suppresses Inflammatory Responses Through TRPV1 Activation.

    PubMed

    Kim, Yiseul; Kim, Jung Tae; Park, Joonwoo; Son, Hee Jin; Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra

    2017-10-01

    Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca 2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC 50  = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dendritic Cell Transmigration through Brain Microvessel Endothelium Is Regulated by MIP-1α Chemokine and Matrix Metalloproteinases1

    PubMed Central

    Zozulya, Alla L.; Reinke, Emily; Baiu, Dana C.; Karman, Jozsef; Sandor, Matyas; Fabry, Zsuzsanna

    2007-01-01

    Dendritic cells (DCs) accumulate in the CNS during inflammatory diseases, but the exact mechanism regulating their traffic into the CNS remains to be defined. We now report that MIP-1α increases the transmigration of bone marrow-derived, GFP-labeled DCs across brain microvessel endothelial cell monolayers. Furthermore, occludin, an important element of endothelial tight junctions, is reorganized when DCs migrate across brain capillary endothelial cell monolayers without causing significant changes in the barrier integrity as measured by transendothelial electrical resistance. We show that DCs produce matrix metalloproteinases (MMP) -2 and -9 and GM6001, an MMP inhibitor, decreases both baseline and MIP-1α -induced DC transmigration. These observations suggest that DC transmigration across brain endothelial cell monolayers is partly MMP dependent. The migrated DCs express higher levels of CD40, CD80, and CD86 costimulatory molecules and induce T cell proliferation, indicating that the transmigration of DCs across brain endothelial cell monolayers contributes to the maintenance of DC Ag-presenting function. The MMP dependence of DC migration across brain endothelial cell monolayers raises the possibility that MMP blockers may decrease the initiation of T cell recruitment and neuroinflammation in the CNS. PMID:17182592

  3. Effect of azathioprine on Na(+)/H(+) exchanger activity in dendritic cells.

    PubMed

    Bhandaru, Madhuri; Pasham, Venkanna; Yang, Wenting; Bobbala, Diwakar; Rotte, Anand; Lang, Florian

    2012-01-01

    Azathioprine is a powerful immunosuppressive drug, which is partially effective by interfering with the maturation and function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs are stimulated by bacterial lipopolysaccharides (LPS), which trigger the formation of reactive oxygen species (ROS), paralleled by activation of the Na(+)/H(+) exchanger. The carrier is involved in the regulation of cytosolic pH, cell volume and migration. The present study explored whether azathioprine influences Na(+)/H(+) exchanger activity in DCs. DCs were isolated from murine bone marrow, cytosolic pH (pH(i)) was estimated utilizing 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF-AM) fluorescence, Na(+)/H(+) exchanger activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, TNFα release utilizing ELISA, and migration utilizing transwell migration assays. Exposure of DCs to lipopolysaccharide (LPS, 1 μg/ml) led to a transient increase of Na(+)/H(+) exchanger activity, an effect paralleled by ROS formation, increased cell volume, TNFα production and stimulated migration. Azathioprine (10 μM) did not significantly alter the Na(+)/H(+) exchanger activity, cell volume and ROS formation prior to LPS exposure but significantly blunted the LPS-induced stimulation of Na(+)/H(+) exchanger activity, ROS formation, cell swelling, TNFα production and cell migration. In conclusion, azathioprine interferes with the activation of dendritic cell Na(+)/H(+) exchanger by bacterial lipopolysaccharides, an effect likely participating in the anti-inflammatory action of the drug. Copyright © 2012 S. Karger AG, Basel.

  4. Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

    PubMed Central

    Styrczewska, Monika; Kostyn, Anna; Kulma, Anna; Majkowska-Skrobek, Grazyna; Augustyniak, Daria; Prescha, Anna; Czuj, Tadeusz; Szopa, Jan

    2015-01-01

    Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification. PMID:26347154

  5. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ordoñez, Marta; Rivera, Io-Guané; Presa, Natalia; Gomez-Muñoz, Antonio

    2016-08-01

    Cell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.1 macrophages. This effect was shown to be dependent on stimulation of phosphatidylinositol 3-kinase (PI3K) and extracellularly regulated kinases 1-2 (ERK1-2) as demonstrated by treating the cells with specific siRNA to knockdown the p85 regulatory subunit of PI3K, or ERK1-2. Inhibition of MMP-2 or MMP-9 pharmacologically or with specific siRNA to silence the genes encoding these MMPs abrogated C1P-stimulated macrophage migration. Also, C1P induced actin polymerization and potently increased phosphorylation of the focal adhesion protein paxillin, which are essential factors in the regulation of cell migration. As expected, blockade of paxillin activation with specific siRNA significantly reduced actin polymerization. In addition, inhibition of actin polymerization with cytochalasin D completely blocked C1P-induced MMP-2 and -9 expression as well as C1P-stimulated macrophage migration. It was also observed that pertussis toxin (Ptx) inhibited Akt, ERK1-2, and paxillin phosphorylation, and completely blocked cell migration. The latter findings support the notion that C1P-stimulated macrophage migration is a receptor mediated effect, and point to MMP-2 and -9 as possible therapeutic targets to control inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Type I IFNs Are Required to Promote Central Nervous System Immune Surveillance through the Recruitment of Inflammatory Monocytes upon Systemic Inflammation

    PubMed Central

    Peralta Ramos, Javier María; Bussi, Claudio; Gaviglio, Emilia Andrea; Arroyo, Daniela Soledad; Baez, Natalia Soledad; Rodriguez-Galan, Maria Cecilia; Iribarren, Pablo

    2017-01-01

    Brain-resident microglia and peripheral migratory leukocytes play essential roles in shaping the immune response in the central nervous system. These cells activate and migrate in response to chemokines produced during active immune responses and may contribute to the progression of neuroinflammation. Herein, we addressed the participation of type I–II interferons in the response displayed by microglia and inflammatory monocytes to comprehend the contribution of these cytokines in the establishment and development of a neuroinflammatory process. Following systemic lipopolysaccharide (LPS) challenge, we found glial reactivity and an active recruitment of CD45hi leukocytes close to CD31+ vascular endothelial cells in circumventricular organs. Isolated CD11b+ CD45hi Ly6Chi Ly6G−-primed inflammatory monocytes were able to induce T cell proliferation, unlike CD11b+ CD45lo microglia. Moreover, ex vivo re-stimulation with LPS exhibited an enhancement of T cell proliferative response promoted by inflammatory monocytes. These myeloid cells also proved to be recruited in a type I interferon-dependent fashion as opposed to neutrophils, unveiling a role of these cytokines in their trafficking. Together, our results compares the phenotypic and functional features between tissue-resident vs peripheral recruited cells in an inflamed microenvironment, identifying inflammatory monocytes as key sentinels in a LPS-induced murine model of neuroinflammation. PMID:29255461

  7. H2S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall.

    PubMed

    Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia

    2016-11-01

    Cardiovascular diseases as atherosclerosis are associated to an inflammatory state of the vessel wall which is accompanied by endothelial dysfunction, and adherence and activation of circulating inflammatory cells. Hydrogen sulfide, a novel cardiovascular protective gaseous mediator, has been reported to exert anti-inflammatory activity. We have recently demonstrated that the SH containing ACE inhibitor zofenoprilat, the active metabolite of zofenopril, controls the angiogenic features of vascular endothelium through H 2 S enzymatic production by cystathionine gamma lyase (CSE). Based on H 2 S donor/generator property of zofenoprilat, the objective of this study was to evaluate whether zofenoprilat exerts anti-inflammatory activity in vascular cells through its ability to increase H 2 S availability. Here we found that zofenoprilat, in a CSE/H 2 S-mediated manner, abolished all the inflammatory features induced by interlukin-1beta (IL-1β) in human umbilical vein endothelial cells (HUVEC), especially the NF-κB/cyclooxygenase-2 (COX-2)/prostanoid biochemical pathway. The pre-incubation with zofenoprilat/CSE dependent H 2 S prevented IL-1β induced paracellular hyperpermeability through the control of expression and localization of cell-cell junctional markers ZO-1 and VE-cadherin. Moreover, zofenoprilat/CSE dependent H 2 S reduced the expression of the endothelial markers CD40 and CD31, involved in the recruitment of circulating mononuclear cells and platelets. Interestingly, this anti-inflammatory activity was also confirmed in vascular smooth muscle cells and fibroblasts as zofenoprilat reduced, in both cell lines, proliferation, migration and COX-2 expression induced by IL-1β, but independently from the SH moiety and H 2 S availability. These in vitro data document the anti-inflammatory activity of zofenoprilat on vascular cells, reinforcing the cardiovascular protective effect of this multitasking drug. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    PubMed

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Histological study of cell migration in the dermis of hamsters after immunisation with two different vaccines against visceral leishmaniasis.

    PubMed

    Moreira, Nádia das Dores; Giunchetti, Rodolfo Cordeiro; Carneiro, Cláudia Martins; Vitoriano-Souza, Juliana; Roatt, Bruno Mendes; Malaquias, Luiz Cosme Cotta; Corrêa-Oliveira, Rodrigo; Reis, Alexandre Barbosa

    2009-04-15

    Vaccine candidates, including live and/or killed parasites, Leishmania-purified fractions, defined recombinant antigens and antigen-encoding DNA-plasmids have been proposed to use as vaccine anti-Leishmania. More recently, the hamsters have been used to pre-selection of antigens candidate to apply in further experiments using canine model. In this report we evaluated the kinetics of cell migration in dermal inflammatory infiltrate, circulating leukocytes and the presence of nitric oxide (NO)/induced nitric oxide synthase during the early (1-24h) and late (48-168h) periods following inoculation of hamsters with antigenic components of anti-canine visceral leishmaniasis vaccines Leishmune and Leishmania braziliensis antigen (LB) with and without saponin (Sap) adjuvant. Our results show that LB caused an early reduction of lymphocytes in the dermis while Sap and LBSap triggered a late recruitment, suggesting the role of the adjuvant in the traffic of antigen-presenting cells and the induction of lymphocyte migration. In that manner our results suggest that the kinetics of cell migration on hamster model may be of value in the selection of vaccine antigens prior the tests in dogs particularly in respect of the toxicity of the preparations.

  10. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis

    PubMed Central

    Marquez-Curtis, Leah A.

    2013-01-01

    Mesenchymal stromal cells (MSCs) are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-)1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair. PMID:24381939

  11. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia.

    PubMed

    Guarda, Caroline Conceição da; Santiago, Rayra Pereira; Fiuza, Luciana Magalhães; Aleluia, Milena Magalhães; Ferreira, Júnia Raquel Dutra; Figueiredo, Camylla Vilas Boas; Yahouedehou, Setondji Cocou Modeste Alexandre; Oliveira, Rodrigo Mota de; Lyra, Isa Menezes; Gonçalves, Marilda de Souza

    2017-06-01

    Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.

  12. Long term intravital multiphoton microscopy imaging of immune cells in healthy and diseased liver using CXCR6.Gfp reporter mice.

    PubMed

    Heymann, Felix; Niemietz, Patricia M; Peusquens, Julia; Ergen, Can; Kohlhepp, Marlene; Mossanen, Jana C; Schneider, Carlo; Vogt, Michael; Tolba, Rene H; Trautwein, Christian; Martin, Christian; Tacke, Frank

    2015-03-24

    Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a detailed insight into their altered behavior upon liver injury and therefore their potential involvement in disease progression.

  13. Physio-pharmacological Investigations About the Anti-inflammatory and Antinociceptive Efficacy of (+)-Limonene Epoxide.

    PubMed

    de Almeida, Antonia Amanda Cardoso; Silva, Renan Oliveira; Nicolau, Lucas Antonio Duarte; de Brito, Tarcísio Vieira; de Sousa, Damião Pergentino; Barbosa, André Luiz Dos Reis; de Freitas, Rivelilson Mendes; Lopes, Luciano da Silva; Medeiros, Jand-Venes Rolim; Ferreira, Paulo Michel Pinheiro

    2017-04-01

    D-limonene epoxidation generates (+)-limonene epoxide, an understudied compound in the pharmacologically point of view. Herein, we investigated the anti-inflammatory and antinociceptive potentialities of (+)-limonene epoxide and suggested a mechanism of action. The anti-inflammatory potential was analyzed using agents to induce paw edema, permeability, and myeloperoxidase (MPO) activity. Pro-inflammatory cytokines and cell migration of peritoneal cells were also assessed. Antinociceptive effects were evaluated by writhing test induced by acetic acid, formalin, and hot plate assays and contribution of opioid pathways. Pretreated animals with (+)-limonene epoxide showed reduced carrageenan-induced paw edema in all doses (25, 50, and 75 mg/kg) (P < 0.05). At 75 mg/kg, it suppressed edema provoked by compound 48/80, histamine, prostaglandin E 2 , and serotonin and reduced permeability determined by Evans blue and MPO activity. It also reduced leukocytes, neutrophils, and IL-1β levels in the peritoneal cavity in comparison with carrageenan group (P < 0.05). (+)-Limonene epoxide diminished abdominal contortions induced by acetic acid (78.9%) and paw licking times in both 1 (41.8%) and 2 (51.5%) phases and a pretreatment with naloxone (3 mg/kg) reverted the antinociceptive action in morphine- and (+)-limonene epoxide-treated groups (P < 0.05). Additionally, it enlarged response times to the thermal stimulus after 60 and 90 min. In conclusion, (+)-limonene epoxide inhibited release/activity of inflammatory mediators, vascular permeability, migration of neutrophils and displayed systemic and peripheral analgesic-dependent effects of the opioid system.

  14. Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration.

    PubMed

    Pan, Hung-Chuan; Chin, Chun-Shih; Yang, Dar-Yu; Ho, Shu-Peng; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-07-01

    Attenuation of pro-inflammatory cytokines and associated inflammatory cell deposits rescues human amniotic fluid mesenchymal stem cells (AFS) from apoptosis. Hyperbaric oxygen (HBO) suppressed stimulus-induced pro-inflammatory cytokine production in blood-derived monocyte-macrophages. Herein, we evaluate the beneficial effect of hyperbaric oxygen on transplanted AFS in a sciatic nerve injury model. Peripheral nerve injury was produced in Sprague-Dawley rats by crushing the left sciatic nerve using a vessel clamp. The AFS were embedded in fibrin glue and delivered to the injured site. Hyperbaric oxygen (100% oxygen, 2 ATA, 60 min/day) was administered 12 h after operation for seven consecutive days. Transplanted cell apoptosis, oxidative stress, inflammatory cell deposits and associated chemokines, pro-inflammatory cytokines, motor function, and nerve regeneration were evaluated 7 and 28 days after injury. Crush injury induced an inflammatory response, disrupted nerve integrity, and impaired nerve function in the sciatic nerve. However, crush injury-provoked inflammatory cytokines, deposits of inflammatory cytokines, and associated macrophage migration chemokines were attenuated in groups receiving hyperbaric oxygen but not in the AFS-only group. No significant increase in oxidative stress was observed after administration of HBO. In transplanted AFS, marked apoptosis was detected and this event was reduced by HBO treatment. Increased nerve myelination and improved motor function were observed in AFS-transplant, HBO-administrated, and AFS/HBO-combined treatment groups. Significantly, the AFS/HBO combined treatment showed the most beneficial effect. AFS in combination with HBO augment peripheral nerve regeneration, which may involve the suppression of apoptotic death in implanted AFS and the attenuation of an inflammatory response detrimental to peripheral nerve regeneration.

  15. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α.

    PubMed

    Zhi, Yunlai; Lu, Hongting; Duan, Yuhe; Sun, Weisheng; Guan, Ge; Dong, Qian; Yang, Chuanmin

    2015-02-01

    Metastasis is a hallmark of malignant neuroblastoma and is the main reason for therapeutic failure and recurrence of the tumor. The CXC chemokine receptor-4 (CXCR4), a Gi protein-coupled receptor for the ligand CXCL12/stromal cell-derived factor-1α (SDF-1α), is expressed in various types of tumor. This receptor mediates the homing of tumor cells to specific organs that express the ligand, CXCL12, for this receptor and plays an important role in tumor growth, invasion, metastasis and angiogenesis. In the present study, the inflammatory cytokine, tumor necrosis factor‑α (TNF‑α) upregulated CXCR4 expression in neuroblastoma cells and increased migration to the CXCR4 ligand SDF‑1α. In addition, this effect was dependent upon NF-κB transcriptional activity, as blocking the NF-κB pathway with pyrrolidinedithiocarbamic acid ammonium salt suppressed TNF-α‑induced upregulation of CXCR4 expression and reduced the migration towards the CXCR4 ligand, SDF-1α. Treating neuroblastoma cells with TNF-α resulted in the activation of nuclear factor-kappa B (NF-κB) and subsequently, the translocation of NF-κB from the cytoplasm to the nucleus. Using immunohistochemistry, NF‑κB and CXCR4 were significantly correlated with each other (P=0.0052, Fisher's exact test) in a cohort of neuroblastoma samples (n=80). The present study indicates that the inflammatory cytokine, TNF-α, partially functions through the NF‑κB signaling pathway to upregulate CXCR4 expression to foster neuroblastoma cell metastasis. These findings indicate that effective inhibition of neuroblastoma metastasis should be directed against the inflammatory cytokine-induced NF‑κB/CXCR4/SDF‑1α signaling pathway.

  16. MAPK/p38 regulation of cytoskeleton rearrangement accelerates induction of macrophage activation by TLR4, but not TLR3.

    PubMed

    Bian, Hongjun; Li, Feifei; Wang, Wenwen; Zhao, Qi; Gao, Shanshan; Ma, Jincai; Li, Xiao; Ren, Wanhua; Qin, Chengyong; Qi, Jianni

    2017-11-01

    Toll-like receptor 3 (TLR3) and TLR4 utilize adaptor proteins to activate mitogen‑activated protein kinase (MAPK), resulting in the acute but transient inflammatory response aimed at the clearance of pathogens. In the present study, it was demonstrated that macrophage activation by lipopolysaccharide (LPS) or poly(I:C), leading to changes in cell morphology, differed significantly between the mouse macrophage cell line RAW264.7 and mouse primary peritoneal macrophages. Moreover, the expression of α- and β-tubulin was markedly decreased following LPS stimulation. By contrast, α- and β-tubulin expression were only mildly increased following poly(I:C) treatment. However, the expression of β-actin and GAPDH was not significantly affected. Furthermore, it was verified that vincristine pretreatment abrogated the cytoskeleton rearrangement and decreased the synthesis and secretion of proinflammatory cytokines and migration of macrophages caused by LPS. Finally, it was observed that the MAPK/p38 signaling pathway regulating cytoskeleton rearrangement may participate in LPS‑induced macrophage cytokine production and migration. Overall, the findings of the present study indicated that MAPK/p38 regulation of the cytoskeleton, particularly tubulin proteins, plays an important role in LPS-induced inflammatory responses via alleviating the synthesis and secretion of proinflammatory cytokines and inhibiting the migration of macrophages.

  17. West African Sorghum bicolor Leaf Sheaths Have Anti-Inflammatory and Immune-Modulating Properties In Vitro

    PubMed Central

    Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon

    2013-01-01

    Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787

  18. Substance-P alleviates dextran sulfate sodium-induced intestinal damage by suppressing inflammation through enrichment of M2 macrophages and regulatory T cells.

    PubMed

    Hong, Hyun Sook; Hwang, Dae Yeon; Park, Ju Hyeong; Kim, Suna; Seo, Eun Jung; Son, Youngsook

    2017-02-01

    Intestinal inflammation alters immune responses in the mucosa and destroys colon architecture, leading to serious diseases such as inflammatory bowel disease (IBD). Thus, regulation of inflammation is regarded as the ultimate therapy for intestinal disease. Substance-P (SP) is known to mediate proliferation, migration, and cellular senescence in a variety of cells. SP was found to mobilize stem cells from bone marrow to the site of injury and to suppress inflammatory responses by inducing regulatory T cells (Tregs) and M2 macrophages. In this study, we explored the effects of SP in a dextran sodium sulfate (DSS)-induced intestine damage model. The effects of SP were evaluated by analyzing crypt structures, proliferating cells within the colon, cytokine secretion profiles, and immune cells population in the spleen/mesenteric lymph nodes in vivo. DSS treatment provoked an inflammatory response with loss of crypts in the intestines of experimental mice. This response was associated with high levels of inflammatory cytokines such as TNF-α and IL-17, and low levels of Tregs and M2 macrophages, leading to severely damaged tissue structure. However, SP treatment inhibited inflammatory responses by modulating cytokine production as well as the balance of Tregs/Th 17 cells and the M1/M2 transition in lymphoid organs, leading to accelerated tissue repair. Collectively, our data indicate that SP can promote the regeneration of tissue following damage by DSS treatment, possibly by modulating immune response. Our results propose SP as a candidate therapeutic for intestine-related inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. IFN-γ promotes transendothelial migration of CD4+ T cells across the blood-brain barrier.

    PubMed

    Sonar, Sandip Ashok; Shaikh, Shagufta; Joshi, Nupura; Atre, Ashwini N; Lal, Girdhari

    2017-10-01

    Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-K b and I-A b molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4 + T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4 + T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4 + T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4 + T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.

  20. Infection-induced regulation of NK cells by macrophages and collagen at the lymph node subcapsular sinus

    PubMed Central

    Coombes, Janine L.; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H.; Robey, Ellen A.

    2012-01-01

    Summary Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii-mouse infection models to address this question. We found that NK cells accumulated in the subcapsular region of the lymph node following infection where they formed low motility contacts with collagen fibers and CD169+ macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169+ macrophages increase the activation state of NK cells. Interestingly, a subset of CD169+ macrophages that co-express the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated following infection, and identify an important accessory cell population for activation of NK cell responses in lymph nodes. PMID:22840403

  1. Allergen-induced migration of human cells in allergic severe combined immunodeficiency mice.

    PubMed

    Duez, C; Akoum, H; Marquillies, P; Cesbron, J Y; Tonnel, A B; Pestel, J

    1998-02-01

    Recently, we have shown that severe combined immunodeficiency (SCID) mice, intraperitoneally reconstituted with peripheral blood mononuclear cells (PBMC) from Dermatophagoides pteronyssinus (Dpt)-sensitive patients, produced human IgE and developed a pulmonary inflammatory-type reaction after exposure to allergen aerosol. In order to understand the potential mechanisms involved in the human cell migration in SCID mice, we analysed their phenotypic profile in the lungs, spleen and thymus, 2 months after Dpt inhalation. The human cell recruitment in these organs was found to be allergen-dependent as CD45+ human cells were only detected in hu-SCID mice after Dpt exposure. The composition of the pulmonary human T-cell infiltrate, preferentially memory (CD45RO), activated (human leucocyte antigen (HLA)-DR) and CD4+ cells, was similar to that described in asthmatic patients. However, CD20+ B cells were predominately recruited in the spleen and thymus and may be IgE-producing cells in the spleen. In the lungs, the percentage of human leucocytes expressing the alpha-chain of the lymphocyte function-associated antigen-1 (LFA-1) (CD11a) was higher than those of CD49d+ or CD54+ cells, in contrast to the spleen and thymus, suggesting a potential role of LFA-1 in the human cell migration towards SCID mice lung. In conclusion, this model could be useful in the study of factors implicated in the cellular migration towards the lymphoid organs during an allergic reaction.

  2. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation.

    PubMed

    Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer

    2010-11-16

    Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases.

  3. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation

    PubMed Central

    Dernedde, Jens; Rausch, Alexandra; Weinhart, Marie; Enders, Sven; Tauber, Rudolf; Licha, Kai; Schirner, Michael; Zügel, Ulrich; von Bonin, Arne; Haag, Rainer

    2010-01-01

    Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases. PMID:21041668

  4. Selective matrix metalloproteinase inhibitor, N-biphenyl sulfonyl phenylalanine hydroxamic acid, inhibits the migration of CD4+ T lymphocytes in patients with HTLV-I-associated myelopathy.

    PubMed

    Ikegami, Mayumi; Umehara, Fujio; Ikegami, Naohito; Maekawa, Ryuji; Osame, Mitsuhiro

    2002-06-01

    Matrix metalloproteinases (MMPs) have been reported to be involved in various inflammatory disorders. Previous studies revealed that MMP-2 and MMP-9 might play important roles in the breakdown of the blood-brain barrier (BBB) in the central nervous system (CNS) of patients with HTLV-I-associated myelopathy (HAM)/tropical spastic paraparesis (TSP). N-Biphenyl sulfonyl-phenylalanine hydroxamic acid (BPHA) selectively inhibits MMP-2, -9 and -14, but not MMP-1, -3 and -7. In the present study, we examined whether or not the selective MMP inhibitor BPHA could inhibit the heightened migrating activity of CD4+ T cells in HAM/TSP patients. The migration assay using an invasion chamber showed that migration of CD4+ T cells in HAM/TSP patients was inhibited by 25 microM BPHA. In addition, the inhibitory ratio of migrating CD4+ lymphocytes was higher in HAM patients compared to normal controls. These results suggest that the selective MMP inhibitor BPHA has therapeutic potential for HAM/TSP.

  5. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.

  6. Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration.

    PubMed

    Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang

    2016-08-01

    Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death.

  7. Activation of cell-surface proteases promotes necroptosis, inflammation and cell migration

    PubMed Central

    Cai, Zhenyu; Zhang, Anling; Choksi, Swati; Li, Weihua; Li, Tao; Zhang, Xue-Min; Liu, Zheng-Gang

    2016-01-01

    Necroptosis is a programmed, caspase-independent cell death that is morphologically similar to necrosis. TNF-induced necroptosis is mediated by receptor-interacting protein kinases, RIP1 and RIP3, and the mixed lineage kinase domain-like (MLKL). After being phosphorylated by RIP3, MLKL is translocated to the plasma membrane and mediates necroptosis. However, the execution of necroptosis and its role in inflammation and other cellular responses remain largely elusive. In this study, we report that MLKL-mediated activation of cell-surface proteases of the a disintegrin and metalloprotease (ADAM) family promotes necroptosis, inflammation and cell migration. ADAMs are specifically activated at the early stage of necroptosis when MLKL is phosphorylated and translocated to the cell plasma membrane. Activation of ADAMs induces ectodomain shedding of diverse cell-surface proteins including adhesion molecules, receptors, growth factors and cytokines. Importantly, the shedding of cell-surface proteins disrupts cell adhesion and accelerates necroptosis, while the soluble fragments of the cleaved proteins trigger the inflammatory responses. We also demonstrate that the shedding of E-cadherin ectodomain from necroptotic cells promotes cell migration. Thus, our study provides a novel mechanism of necroptosis-induced inflammation and new insights into the physiological and pathological functions of this unique form of cell death. PMID:27444869

  8. Proliferation of Prostate Stromal Cell Induced by Benign Prostatic Hyperplasia Epithelial Cell Stimulated With Trichomonas vaginalis via Crosstalk With Mast Cell.

    PubMed

    Kim, Jung-Hyun; Kim, Sang-Su; Han, Ik-Hwan; Sim, Seobo; Ahn, Myoung-Hee; Ryu, Jae-Sook

    2016-11-01

    Chronic inflammation has a role in the pathogenesis of benign prostatic hyperplasia (BPH) and prostate cancer. Mast cells have been detected in chronic inflammatory infiltrate of the prostate, and it is possible that the interaction between prostate epithelial cells and Trichomonas vaginalis influences the activity of mast cells in the prostate stroma. Activated mast cells might influence the biological functions of nearby tissues and cells. In this study, we investigated whether mast cells reacted with the culture supernatant of BPH epithelial cells infected with T. vaginalis may induce the proliferation of prostate stromal cells. To measure the proliferation of prostate stromal cells in response to chronic inflammation caused by the infection of BPH-1 cells with T. vaginalis, the CCK-8 assay and wound healing assay were used. ELISAs, quantitative real-time PCR, western blotting and immunofluorescence were used to measure the production and expression of inflammatory cytokine and cytokine receptor. BPH-1 cells incubated with live trichomonads produced increased levels of CCL2, IL-1β, IL-6, and CXCL8, and induced the migration of mast cells and monocytes. When the culture supernatant of BPH-1 cells stimulated with trichomonads (TCM) was added to mast cells, they became activated, as confirmed by release of β-hexosaminidase and CXCL8. Prostate stromal cells incubated with the culture supernatant of mast cells activated with TCM (M-TCM) proliferated and expressed increased levels of CXCL8, CCL2, and the cytokine receptors CXCR1 and CCR2. Blocking the chemokine receptors reduced the proliferation of stromal cells and also decreased the production of CXCL8 and CCL2. Moreover, the expression of FGF2, cyclin D1, and Bcl-2 was increased in the proliferated stromal cells stimulated with M-TCM. Additionally, the M-TCM-treated stromal cells were more invasive than control cells. The inflammatory mediators released by BPH epithelial cells in response to infection by trichomonads induce the migration and activation of mast cells. The activated mast cells induce the proliferation of prostate stromal cells via CXCL8-CXCR1 and CCL2-CCR2 signaling. Our results therefore show that the inflammatory response by BPH epithelial cells stimulated with T. vaginalis induce the proliferation of prostate stromal cells via crosstalk with mast cells. Prostate 76:1431-1444, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization.

    PubMed

    Green, Chad E; Liu, Tiffany; Montel, Valerie; Hsiao, Gene; Lester, Robin D; Subramaniam, Shankar; Gonias, Steven L; Klemke, Richard L

    2009-08-21

    Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.

  10. Microglia During Development and Aging

    PubMed Central

    Harry, G. Jean

    2013-01-01

    Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, andaxonal degeneration. Changes inmicroglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microgliapotentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging. PMID:23644076

  11. TNFα promotes CAR-dependent migration of leukocytes across epithelial monolayers

    PubMed Central

    Morton, Penny E.; Hicks, Alexander; Ortiz-Zapater, Elena; Raghavan, Swetavalli; Pike, Rosemary; Noble, Alistair; Woodfin, Abigail; Jenkins, Gisli; Rayner, Emma; Santis, George; Parsons, Maddy

    2016-01-01

    Trans-epithelial migration (TEpM) of leukocytes during inflammation requires engagement with receptors expressed on the basolateral surface of the epithelium. One such receptor is Coxsackie and Adenovirus Receptor (CAR) that binds to Junctional Adhesion Molecule-like (JAM-L) expressed on leukocytes. Here we provide the first evidence that efficient TEpM of monocyte-derived THP-1 cells requires and is controlled by phosphorylation of CAR. We show that TNFα acts in a paracrine manner on epithelial cells via a TNFR1-PI3K-PKCδ pathway leading to CAR phosphorylation and subsequent transmigration across cell junctions. Moreover, we show that CAR is hyper-phosphorylated in vivo in acute and chronic lung inflammation models and this response is required to facilitate immune cell recruitment. This represents a novel mechanism of feedback between leukocytes and epithelial cells during TEpM and may be important in controlling responses to pro-inflammatory cytokines in pathological settings. PMID:27193388

  12. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  13. S100A8 promotes migration and infiltration of inflammatory cells in acute anterior uveitis

    PubMed Central

    Wang, Yuqin; Zhang, Zuhui; Zhang, Laihe; Li, Xinxin; Lu, Rui; Xu, Peipei; Zhang, Xuhong; Dai, Mali; Dai, Xiaodan; Qu, Jia; Lu, Fan; Chi, Zailong

    2016-01-01

    Uveitis, the pathologic condition of inflammation of the uvea, frequently leads to severe vision loss and blindness. S100A8 is a calcium-binding protein which mainly expresses in granulocytes and monocytes and plays a prominent role in the regulation of inflammatory processes and immune response. Here, we determined the role of S100A8-positive cells in acute anterior uveitis (AAU) and keratitis. In rat models of endotoxin (lipopolisaccharide, LPS) -induced uveitis (EIU) and keratitis, S100A8-positive granulocytes and monocytes increased significantly in the iris-ciliary body and cornea as well as in the blood. Interestingly, Glucocorticoids slightly increased S100A8 levels in leukocytes, but reduced its presence significantly in the iris-ciliary body after LPS injection. Moreover, inhibition of NF-kB activation remarkably suppressed both progression of AAU and total S100A8 levels in leukocytes and the iris-ciliary body after LPS administration. Additionally, S100A8 protein level was also found to be elevated in the serum of AAU patients parallel with the progression of AAU through the designated clinical stages. Thus, S100A8 plays a pivotal role in the processes of AAU through involvement in migration and infiltration of S100A8-positive cells. Our findings suggest that serum levels of S100A8 protein can be used to monitor inflammatory activity in AAU. PMID:27786310

  14. S100A8 promotes migration and infiltration of inflammatory cells in acute anterior uveitis.

    PubMed

    Wang, Yuqin; Zhang, Zuhui; Zhang, Laihe; Li, Xinxin; Lu, Rui; Xu, Peipei; Zhang, Xuhong; Dai, Mali; Dai, Xiaodan; Qu, Jia; Lu, Fan; Chi, Zailong

    2016-10-27

    Uveitis, the pathologic condition of inflammation of the uvea, frequently leads to severe vision loss and blindness. S100A8 is a calcium-binding protein which mainly expresses in granulocytes and monocytes and plays a prominent role in the regulation of inflammatory processes and immune response. Here, we determined the role of S100A8-positive cells in acute anterior uveitis (AAU) and keratitis. In rat models of endotoxin (lipopolisaccharide, LPS) -induced uveitis (EIU) and keratitis, S100A8-positive granulocytes and monocytes increased significantly in the iris-ciliary body and cornea as well as in the blood. Interestingly, Glucocorticoids slightly increased S100A8 levels in leukocytes, but reduced its presence significantly in the iris-ciliary body after LPS injection. Moreover, inhibition of NF-kB activation remarkably suppressed both progression of AAU and total S100A8 levels in leukocytes and the iris-ciliary body after LPS administration. Additionally, S100A8 protein level was also found to be elevated in the serum of AAU patients parallel with the progression of AAU through the designated clinical stages. Thus, S100A8 plays a pivotal role in the processes of AAU through involvement in migration and infiltration of S100A8-positive cells. Our findings suggest that serum levels of S100A8 protein can be used to monitor inflammatory activity in AAU.

  15. Dexamethasone inhibits activation of monocytes/macrophages in a milieu rich in 27-oxygenated cholesterol.

    PubMed

    Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug; Kim, Koanhoi

    2017-01-01

    Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol.

  16. Dexamethasone inhibits activation of monocytes/macrophages in a milieu rich in 27-oxygenated cholesterol

    PubMed Central

    Kim, Bo-Young; Son, Yonghae; Lee, Jeonga; Choi, Jeongyoon; Kim, Chi Dae; Bae, Sun Sik; Eo, Seong-Kug

    2017-01-01

    Molecular mechanisms underlying the decreased number of macrophages and T cells in the arteries of cholesterol-fed-rabbits following dexamethasone administration are unknown. We investigated the possibility that dexamethasone could affect activation of monocytic cells induced by oxygenated derivatives of cholesterol (oxysterols) using THP-1 monocyte/macrophage cells. 27-Hydroxycholesterol (27OHChol), an oxysterol elevated with hypercholesterolemia, enhanced production of CCL2, known as MCP1, chemokine from monocytes/macrophages and migration of the monocytic cells, but the CCL2 production and the cell migration were reduced by treatment with dexamethasone. Dexamethasone inhibited superproduction of CCL2 induced by 27OHChol plus LPS and attenuated transcription of matrix metalloproteinase 9 as well as secretion of its active gene product induced by 27OHChol. The drug downregulated cellular and surface levels of CD14 and blocked release of soluble CD14 without altering transcription of the gene. Dexamethasone also inhibited expression and phosphorylation of the NF-κB p65 subunit enhanced by 27OHChol. Collectively, these results indicate that dexamethasone inhibits activation of monocytes/macrophages in response to 27OHChol, thereby leading to decreased migration of inflammatory cells in milieu rich in oxygenated derivatives of cholesterol. PMID:29236764

  17. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation.

    PubMed

    Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2014-03-19

    Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.

  18. Gut REG3γ-Associated Lactobacillus Induces Anti-inflammatory Macrophages to Maintain Adipose Tissue Homeostasis

    PubMed Central

    Huang, Yugang; Qi, HouBao; Zhang, Zhiqian; Wang, Enlin; Yun, Huan; Yan, Hui; Su, Xiaomin; Liu, Yingquan; Tang, Zenzen; Gao, Yunhuan; Shang, Wencong; Zhou, Jiang; Wang, Tianze; Che, Yongzhe; Zhang, Yuan; Yang, Rongcun

    2017-01-01

    Gut microbiota may not only affect composition of local immune cells but also affect systemic immune cells. However, it is not completely clear how gut microbiota modulate these immune systems. Here, we found that there exist expanded macrophage pools in huREG3γtgIEC mice. REG3γ-associated Lactobacillus, which is homology to Lactobacillus Taiwanese, could enlarge macrophage pools not only in the small intestinal lamina propria but also in the spleen and adipose tissues. STAT3-mediated signal(s) was a critical factor in the Lactobacillus-mediated anti-inflammatory macrophages. We also offered evidence for critical cellular links among REG3γ-associated Lactobacillus, tissue macrophages, and obesity diseases. Anti-inflammatory macrophages in the lamina propria, which are induced by REG3γ-associated Lactobacillus, may migrate into adipose tissues and are involved in resistance against high-fat diet-mediated obesity. Thus, REG3γ-associated Lactobacillus-induced anti-inflammatory macrophages in gut tissues may play a role in adipose tissue homeostasis. PMID:28928739

  19. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration.

    PubMed

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-08-11

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections.

  20. Synthetic antimicrobial and LPS-neutralising peptides suppress inflammatory and immune responses in skin cells and promote keratinocyte migration

    PubMed Central

    Pfalzgraff, Anja; Heinbockel, Lena; Su, Qi; Gutsmann, Thomas; Brandenburg, Klaus; Weindl, Günther

    2016-01-01

    The stagnation in the development of new antibiotics and the concomitant high increase of resistant bacteria emphasize the urgent need for new therapeutic options. Antimicrobial peptides are promising agents for the treatment of bacterial infections and recent studies indicate that Pep19-2.5, a synthetic anti-lipopolysaccharide (LPS) peptide (SALP), efficiently neutralises pathogenicity factors of Gram-negative (LPS) and Gram-positive (lipoprotein/-peptide, LP) bacteria and protects against sepsis. Here, we investigated the potential of Pep19-2.5 and the structurally related compound Pep19-4LF for their therapeutic application in bacterial skin infections. SALPs inhibited LP-induced phosphorylation of NF-κB p65 and p38 MAPK and reduced cytokine release and gene expression in primary human keratinocytes and dermal fibroblasts. In LPS-stimulated human monocyte-derived dendritic cells and Langerhans-like cells, the peptides blocked IL-6 secretion, downregulated expression of maturation markers and inhibited dendritic cell migration. Both SALPs showed a low cytotoxicity in all investigated cell types. Furthermore, SALPs markedly promoted cell migration via EGFR transactivation and ERK1/2 phosphorylation and accelerated artificial wound closure in keratinocytes. Peptide-induced keratinocyte migration was mediated by purinergic receptors and metalloproteases. In contrast, SALPs did not affect proliferation of keratinocytes. Conclusively, our data suggest a novel therapeutic target for the treatment of patients with acute and chronic skin infections. PMID:27509895

  1. 18β-glycyrrhetinic acid inhibits migration and invasion of human gastric cancer cells via the ROS/PKC-α/ERK pathway.

    PubMed

    Cai, Hongke; Chen, Xi; Zhang, Jianbo; Wang, Jijian

    2018-01-01

    18β-glycyrrhetinic acid (18β-GA) is a bioactive component of licorice root which exerts pharmacological activities including anti-inflammatory, antiviral, anti-oxidative and anti-cancer effects. The current study further investigated the molecular mechanisms associated with the inhibitory effects of 18β-GA on tumor metastasis in human gastric cancer cells. The results indicated that 18β-GA significantly reduced invasion and migration activities and suppressed MMP-2 and 9 activities on SGC-7901cells in a dose-dependent manner. Further study showed 18β-GA upregulated E-cadherin expression but downregulated vimentin expression. The results also showed that 18β-GA inhibited ROS formation, PKC-α expression and the phosphorylation of ERK in a dose-dependent manner. In conclusion, this study revealed that 18β-GA inhibits migration and invasion via the ROS/PKC-α/ERK signaling pathway in gastric cancer cells. This suggests that 18β-GA has the potential to be used as an effective chemopreventive agent for the prevention of gastric cancer metastasis.

  2. AGEs and HMGB1 Increase Inflammatory Cytokine Production from Human Placental Cells, Resulting in an Enhancement of Monocyte Migration.

    PubMed

    Shirasuna, Koumei; Seno, Kotomi; Ohtsu, Ayaka; Shiratsuki, Shogo; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Nagayama, Shiho; Iwata, Hisataka; Kuwayama, Takehito

    2016-05-01

    Advanced glycation end products (AGEs) and high-mobility group box-1 (HMGB1) are considered contributing to placental inflammation. We examined the effect of AGEs and HMGB1 on cytokines from Sw.71 human trophoblast cell lines and the interactions between Sw.71 cells and THP-1-monocytes. Sw.71 cells were cultured with/without AGEs or HMGB1. We examined the role of AGEs or HMGB1 on THP1 migration and effect of AGEs on IL-6 from Sw.71 cells using co-cultures or conditioned medium from THP-1 cells. AGEs and HMGB1 increased interleukin (IL)-6, IL-8, and chemokine C-C motif ligand 2 (CCL2) secretion from Sw.71 cells. The secretion of IL-6 was dependent on reactive oxygen species (ROS) and NF-κB. AGEs stimulated IL-6 secretion through receptor RAGE and TLR4, whereas HMGB1 stimulated it through TLR4. AGEs, but not HMGB1, increased monocyte migration via IL-8 and CCL2 from Sw.71 cells. THP-1 monocytes induced IL-6 secretion from Sw.71 cells, and AGEs further stimulated it. AGEs and HMGB1 may promote sterile placental inflammation cooperating with monocytes/macrophages. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Wound Signaling: Monkeywrenching Macrophage Migration with Microscopes, Movies, and Math.

    PubMed

    Galko, Michael J

    2016-08-08

    Drosophila hemocytes (blood cells) have emerged as a powerful system to image wound-induced inflammatory responses in vivo. New work reveals that layering mathematical modeling on top of imaging may be the most powerful tool yet for determining the properties of wound-induced signals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment

    PubMed Central

    Barbieri, Antonio; Quagliariello, Vincenzo; Del Vecchio, Vitale; Falco, Michela; Luciano, Antonio; Amruthraj, Nagoth Joseph; Nasti, Guglielmo; Ottaiano, Alessandro; Berretta, Massimiliano; Iaffaioli, Rosario Vincenzo; Arra, Claudio

    2017-01-01

    Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer. PMID:28264501

  5. Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment.

    PubMed

    Barbieri, Antonio; Quagliariello, Vincenzo; Del Vecchio, Vitale; Falco, Michela; Luciano, Antonio; Amruthraj, Nagoth Joseph; Nasti, Guglielmo; Ottaiano, Alessandro; Berretta, Massimiliano; Iaffaioli, Rosario Vincenzo; Arra, Claudio

    2017-02-28

    Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer.

  6. Gas6 Promotes Inflammatory (CCR2hiCX3CR1lo) Monocyte Recruitment in Venous Thrombosis.

    PubMed

    Laurance, Sandrine; Bertin, François-René; Ebrahimian, Talin; Kassim, Yusra; Rys, Ryan N; Lehoux, Stéphanie; Lemarié, Catherine A; Blostein, Mark D

    2017-07-01

    Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl 3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6 -/- mice contain less inflammatory (CCR2 hi CX 3 CR1 lo ) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2 hi CX 3 CR1 lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2 hi CX 3 CR1 lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis. © 2017 American Heart Association, Inc.

  7. Influence of the CCR-5/MIP-1 α Axis in the Pathogenesis of Rocio Virus Encephalitis in a Mouse Model

    PubMed Central

    Chávez, Juliana H.; França, Rafael F. O.; Oliveira, Carlo J. F.; de Aquino, Maria T. P.; Farias, Kleber J. S.; Machado, Paula R. L.; de Oliveira, Thelma F. M.; Yokosawa, Jonny; Soares, Edson G.; da Silva, João S.; da Fonseca, Benedito A. L.; Figueiredo, Luiz T. M.

    2013-01-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection. PMID:24080631

  8. Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis.

    PubMed

    Degroote, Roxane L; Uhl, Patrizia B; Amann, Barbara; Krackhardt, Angela M; Ueffing, Marius; Hauck, Stefanie M; Deeg, Cornelia A

    2017-02-10

    The membrane protein expression repertoire of cells changes in course of activation. In equine recurrent uveitis (ERU), a spontaneous autoimmune disease in horses with relapsing and ultimately blinding inner eye inflammation, CD4+ T lymphocytes are the crucial pathogenic cells activated in the periphery directly prior to an inflammatory episode. In order to find relevant changes in the membrane proteome associated to disease, we sorted CD4+ lymphocytes and compared protein abundance from the generated proteome datasets of both healthy horses and ERU cases. We detected formin like 1, a key player in actin dependent cellular processes such as phagocytosis, cell adhesion and cell migration, with significantly higher abundance in the CD4+ cell membrane proteome of horses with ERU. In transmigration experiments, we demonstrated higher migration rate of cells originating from diseased animals connecting formin like 1 to the migratory ability of cells. These findings are the first description of formin like 1 in association to processes involved in migration of inflammatory CD4+ T cells across the blood-retinal barrier in a spontaneous ocular autoimmune disease and suggest formin like 1 to play a role in the molecular mechanisms of ERU disease pathogenesis. Data are available via ProteomeXchange with identifier PXD005384. This comparative proteomic study of membrane proteins of CD4+ T cells identified a novel protein, formin like 1, with expression on the plasma cell membrane of equine CD4+ T cells and a significant change of abundance on CD4+ T cells of horses with a spontaneous autoimmune disease. Functional studies in a cell culture model for transmigration at the blood-retinal barrier (BRB) unraveled a strong impact of formin like 1 on migratory processes of CD4+ T cells across the BRB, a key event in uveitis pathogenesis. These findings provide novel knowledge about changes in the CD4+ immune cell membrane proteome in a spontaneously and naturally occurring autoimmune disease in horses with high relevance for veterinary medicine. Additionally, this model has proven translational quality for human medicine and provides novel proteomic information on autoimmune uveitis in man. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evaluation of the wound healing property of Boesenbergia longiflora rhizomes.

    PubMed

    Sudsai, Teeratad; Wattanapiromsakul, Chatchai; Nakpheng, Titpawan; Tewtrakul, Supinya

    2013-10-28

    The rhizomes of Boesenbergia longiflora (Wall.) Kuntze (Zingiberaceae) have been traditionally used for treatment of inflammatory bowel disease, ulcerative colitis, aphthous ulcer and abscess by decoction with alcohol. The rhizomes of Boesenbergia longiflora were carried out to investigate for anti-inflammatory and wound healing activities in order to support the traditional use. The ethanolic extract of Boesenbergia longiflora and its fractions were tested using relevant in vitro anti-inflammatory and wound healing assays. For the in vitro studies, murine macrophage RAW264.7 cells and mouse fibroblast L929 cells were assessed for anti-inflammatory and fibroblast stimulatory activities, respectively. In vivo anti-inflammatory activity was determined by carrageenan-induced rat paw edema model as well as acute toxicity estimated by the up-and-down method in mice. The present study has demonstrated that the ethanolic extract of Boesenbergia longiflora rhizomes possesses a potent anti-inflammatory and wound healing activities. Among the isolated fractions, the CHCl3 fraction showed potent anti-inflammatory effect through nitric oxide inhibitory activity (IC50=5.5 μg/ml) and reduction of carrageenan-induced rat paw edema (ED50=222.7 mg/kg), whereas this fraction exhibited wound healing property via fibroblast migration on both day 1 (77.3%) and day 2 (100%) as well as enhanced collagen production (187.5 μg/ml) at concentration of 3 μg/ml, compared to that of the controls, 39.4% for fibroblast and 60.8 μg/ml for collagen, respectively. The anti-inflammatory mechanism of the CHCl3 fraction is found to suppress the iNOS and COX-2 mRNA expression. The scientific investigation of wound healing activity of Boesenbergia longiflora rhizomes support the Thai traditional uses for treatment of inflammatory bowel disease, ulcerative colitis, aphthous ulcer and abscess. The EtOH extract and CHCl3 fraction exert potential wound healing property through NO inhibition, anti-oxidant effect and stimulation of fibroblast migration and collagen production. The phytochemical screening revealed that the CHCl3 fraction of Boesenbergia longiflora rhizomes contains diarylheptanoids, flavonoids and terpenes. The isolation of the compounds responsible for the wound healing effect is now in progress. © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior.

    PubMed

    Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena

    2015-01-01

    Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.

  11. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis.

    PubMed

    Das, Undurti N

    2011-12-01

    Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.

  12. Immune modulation of CD4+CD25+ regulatory T cells by zoledronic acid.

    PubMed

    Liu, Hsien; Wang, Shih-Han; Chen, Shin-Cheh; Chen, Ching-Ying; Lo, Jo-Lin; Lin, Tsun-Mei

    2016-11-25

    CD4 + CD25 + regulatory T (Treg) cells suppress tumor immunity by inhibiting immune cells. Manipulation of Treg cells represents a new strategy for cancer treatment. Zoledronic acid (ZA), a nitrogen-containing bisphosphonate, inhibits the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) on osteoblasts to inhibit osteoclastogenesis. In a mouse model of bisphosphonate-related osteonecrosis of the jaw, administration of ZA suppressed Treg-cell activity and activated inflammatory Th17 cells. However, the interaction between ZA and Treg cells remained unclear. This study investigated the immune modulation of Treg cells by ZA. Flow cytometry was used to analyze the phenotypic and immunosuppressive characteristics of Treg cells treated with ZA. Chemotactic migration was evaluated using transwell assays. Quantitative real-time PCR (qRT-PCR) was used to investigate the effect of ZA on the expression of suppressive molecules by Treg cells. Proliferation of isolated Treg cells in culture was inhibited by ZA, although ZA did not induce apoptosis. qRT-PCR and flow cytometry showed that ZA significantly downregulated the expression of CCR4, CTLA4, PD-1 and RANKL on Treg cells. Chemotactic migration and immunosuppressive functions were also significantly attenuated in Treg cells pretreated with ZA, and these effects were dose-dependent. Co-culture with Treg cells significantly increased the migration rate of breast cancer cells, while pretreatment of Treg cells with ZA attenuated this effect. Our findings demonstrated that ZA acted as an immune modulator by significantly inhibiting the expansion, migration, immunosuppressive function and pro-metastatic ability of Treg cells. Immunomodulation of Treg cells by ZA represents a new strategy for cancer therapy.

  13. Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE.

    PubMed

    Sajad, Mir; Zargan, Jamil; Chawla, Raman; Umar, Sadiq; Khan, Haider A

    2011-03-01

    The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35-55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.

  14. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL.

    PubMed

    Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan

    2016-07-01

    Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.

  15. Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization.

    PubMed

    Tang, L; Wu, J J; Ma, Q; Cui, T; Andreopoulos, F M; Gil, J; Valdes, J; Davis, S C; Li, J

    2010-07-01

    Human lactoferrin (hLF), a member of the transferrin family, is known for its antimicrobial and anti-inflammatory effects. Recent studies on various nonskin cell lines indicate that hLF may have a stimulatory effect on cell proliferation. To study the potential role of hLF in wound re-epithelialization. The effects of hLF on cell growth, migration, attachment and survival were assessed, with a rice-derived recombinant hLF (holo-rhLF), using proliferation analysis, scratch migration assay, calcein-AM/propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) method, respectively. The mechanisms of hLF on cell proliferation and migration were explored using specific pathway inhibitors. The involvement of lactoferrin receptor low-density lipoprotein receptor-related protein 1 (LRP1) was examined with RNA interference technique. An in vivo swine second-degree burn wound model was also used to assess wound re-epithelialization. Studies revealed that holo-rhLF significantly stimulated keratinocyte proliferation which could be blocked by mitogen-activated protein kinase (MAPK) kinase 1 inhibitor. Holo-rhLF also showed strong promoting effects on keratinocyte migration, which could be blocked by either inhibition of the MAPK, Src and Rho/ROCK pathways, or downregulation of the LRP1 receptor. With cells under starving or 12-O-tetradecanoylphorbol-13-acetate exposure, the addition of holo-rhLF was found greatly to increase cell viability and inhibit cell apoptosis. Additionally, holo-rhLF significantly increased the rate of wound re-epithelialization in swine second-degree burn wounds. Our studies demonstrate the direct effects of holo-rhLF on wound re-epithelialization including the enhancement of keratinocyte proliferation and migration as well as the protection of cells from apoptosis. The data strongly indicate its potential therapeutic applications in wound healing.

  16. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy.

    PubMed

    Chang, Huasong; Wang, Yuehua; Yin, Xusheng; Liu, Xinying; Xuan, Hongzhuan

    2017-09-26

    Propolis and its major constituent - caffeic acid phenethyl ester (CAPE) have good abilities on antitumor and anti-inflammation. However, little is known about the actions of propolis and CAPE on tumor in inflammatory microenvironment, and inflammatory responses play decisive roles at different stages of tumor development. To understand the effects and mechanisms of ethanol-extracted Chinese propolis (EECP) and its major constituent - CAPE in inflammation-stimulated tumor, we investigated their effects on Toll-like receptor 4 (TLR4) signaling pathway which plays a crucial role in breast cancer MDA-MB-231 cell line. 80% confluent breast cancer MDA-MB-231 cells were stimulated with 1 μg/mL lipopolysaccaride (LPS). Then the cells were divided for treatment by CAPE (25 μg/mL) and EECP (25, 50 and 100 μg/mL), respectively. Cell viability, nitric oxide (NO) production and cell migration were measured by sulforhodamine B assay, chemical method and scratch assay. The levels of TLR4, MyD88, IRAK4, TRIF, caspase 3, PARP, LC3B and p62 were investigated through western blotting. The expression of TLR4, LC3B and nuclear factor-κB p65 (NF-κB p65) were tested by immunofluorescence microscopy assay. Treatment of different concentrations of EECP (25, 50 and 100 μg/mL) and CAPE (25 μg/mL) significantly inhibited LPS-stimulated MDA-MB-231 cell line proliferation, migration and NO production. Furthermore, EECP and CAPE activated caspase3 and PARP to induce cell apoptosis, and also upregulated LC3-II and decreased p62 level to induce autophagy during the process. TLR4 signaling pathway molecules such as TLR4, MyD88, IRAK4, TRIF and NF-κB p65 were all down-regulated after EECP and CAPE treatment in LPS-stimulated MDA-MB-231 cells. These findings indicated that EECP and its major constituent - CAPE inhibited breast cancer MDA-MB-231 cells proliferation in inflammatory microenvironment through activating apoptosis, autophagy and inhibiting TLR4 signaling pathway. EECP and CAPE may hold promising prospects in treating inflammation-induced tumor.

  17. Prostanoids and their receptors that modulate dendritic cell-mediated immunity.

    PubMed

    Gualde, Norbert; Harizi, Hedi

    2004-08-01

    Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.

  18. S100A8 and S100A9 Promotes Invasion and Migration through p38 Mitogen-Activated Protein Kinase-Dependent NF-κB Activation in Gastric Cancer Cells

    PubMed Central

    Kwon, Chae Hwa; Moon, Hyun Jung; Park, Hye Ji; Choi, Jin Hwa; Park, Do Youn

    2013-01-01

    S100A8 and S100A9 (S100A8/A9) are low-molecular weight members of the S100 family of calcium-binding proteins. Recent studies have reported S100A8/A9 promote tumorigenesis. We have previously reported that S100A8/A9 is mostly expressed in stromal cells and inflammatory cells between gastric tumor cells. However, the role of environmental S100A8/A9 in gastric cancer has not been defined. We observed in the present study the effect of S100A8/A9 on migration and invasion of gastric cancer cells. S100A8/A9 treatment increased migration and invasionat lower concentrations that did not affect cell proliferation and cell viability. S100A8/A9 caused activation of p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The phosphorylation of p38 MAPK was not affected by the NF-κB inhibitor Bay whereas activation of NF-κB was blocked by p38 MAPK inhibitor SB203580, indicating that S100A8/A9-induced NF-κB activation is mediated by phosphorylation of p38 MAPK. S100A8/A9-induced cell migration and invasion was inhibited by SB203580 and Bay, suggesting that activation of p38 MAPK and NF-κB is involved in the S100A8/A9 induced cell migration and invasion. S100A8/A9 caused an increase in matrix metalloproteinase 2 (MMP2) and MMP12 expression, which were inhibited by SB203580 and Bay. S100A8/A9-induced cell migration and invasion was inhibited by MMP2 siRNA and MMP12 siRNA, indicating that MMP2 and MMP12 is related to the S100A8/A9 induced cell migration and invasion. Taken together, these results suggest that S100A8/A9 promotes cell migration and invasion through p38 MAPK-dependent NF-κB activation leading to an increase of MMP2 and MMP12 in gastric cancer. PMID:23456298

  19. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  20. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  1. Pleiotrophin, a multifunctional cytokine and growth factor, induces leukocyte responses through the integrin Mac-1.

    PubMed

    Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu

    2017-11-17

    Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appears to cooperate with cell-surface proteoglycans because both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the α M I domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN the α M I domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the α M I domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Infection-induced regulation of natural killer cells by macrophages and collagen at the lymph node subcapsular sinus.

    PubMed

    Coombes, Janine L; Han, Seong-Ji; van Rooijen, Nico; Raulet, David H; Robey, Ellen A

    2012-07-26

    Infection leads to heightened activation of natural killer (NK) cells, a process that likely involves direct cell-to-cell contact, but how this occurs in vivo is poorly understood. We have used two-photon laser-scanning microscopy in conjunction with Toxoplasma gondii mouse infection models to address this question. We found that after infection, NK cells accumulated in the subcapsular region of the lymph node, where they formed low-motility contacts with collagen fibers and CD169(+) macrophages. We provide evidence that interactions with collagen regulate NK cell migration, whereas CD169(+) macrophages increase the activation state of NK cells. Interestingly, a subset of CD169(+) macrophages that coexpress the inflammatory monocyte marker Ly6C had the most potent ability to activate NK cells. Our data reveal pathways through which NK cell migration and function are regulated after infection and identify an important accessory cell population for activation of NK cell responses in lymph nodes. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation.

    PubMed

    Benvenuto, Federica; Voci, Adriana; Carminati, Enrico; Gualandi, Francesca; Mancardi, Gianluigi; Uccelli, Antonio; Vergani, Laura

    2015-12-10

    Systemic delivery of bone marrow-derived mesenchymal stem cells (MSC) seems to be of benefit in the treatment of multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS) sustained by migration of T cells across the brain blood barrier (BBB) and subsequent induction of inflammatory lesions into CNS. MSC have been found to modulate several effector functions of T cells. In this study, we investigated the effects of MSC on adhesion molecules and receptors on T cell surface that sustain their transendothelial migration. We used different co-culture methods combined with real-time PCR and flow cytometry to evaluate the expression both at the mRNA and at the plasma-membrane level of α4 integrin, β2 integrin, ICAM-1 and CXCR3. In parallel, we assessed if MSC are able to modulate expression of adhesion molecules on the endothelial cells that interact with T cells during their transendothelial migration. Our in vitro analyses revealed that MSC: (i) inhibit proliferation and activation of both peripheral blood mononuclear cells (PBMC) and CD3(+)-selected lymphocytes through the release of soluble factors; (ii) exert suppressive effects on those surface molecules highly expressed by activated lymphocytes and involved in transendothelial migration; (iii) inhibit CXCL10-driven chemotaxis of CD3(+) cells; (iv) down-regulated expression of adhesion molecules on endothelial cells. Taken together, these data demonstrate that the immunosuppressive effect of MSC does not exclusively depends on their anti-proliferative activity on T cells, but also on the impairment of leukocyte migratory potential through the inhibition of the adhesion molecules and receptors that are responsible for T cell trafficking across BBB. This could suggest a new mechanism through which MSC modulate T cell responses.

  4. Mast Cells and Th17 Cells Contribute to the Lymphoma-Associated Pro-Inflammatory Microenvironment of Angioimmunoblastic T-Cell Lymphoma

    PubMed Central

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-01-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity. PMID:20595635

  5. Mast cells and Th17 cells contribute to the lymphoma-associated pro-inflammatory microenvironment of angioimmunoblastic T-cell lymphoma.

    PubMed

    Tripodo, Claudio; Gri, Giorgia; Piccaluga, Pier Paolo; Frossi, Barbara; Guarnotta, Carla; Piconese, Silvia; Franco, Giovanni; Vetri, Valeria; Pucillo, Carlo Ennio; Florena, Ada Maria; Colombo, Mario Paolo; Pileri, Stefano Aldo

    2010-08-01

    Reports focusing on the immunological microenvironment of peripheral T-cell lymphomas (PTCL) are rare. Here we studied the reciprocal contribution of regulatory (Treg) and interleukin-17-producing (Th17) T-cells to the composition of the lymphoma-associated microenvironment of angioimmunoblastic T-cell lymphoma (AITL) and PTCL not otherwise specified on tissue microarrays from 30 PTCLs not otherwise specified and 37 AITLs. We found that Th17 but not Treg cells were differently represented in the two lymphomas and correlated with the amount of mast cells (MCs) and granulocytes, which preferentially occurred in the cellular milieu of AITL cases. We observed that MCs directly synthesized interleukin-6 and thus contribute to the establishment of a pro-inflammatory, Th17 permissive environment in AITL. We further hypothesized that the AITL clone itself could be responsible for the preferential accumulation of MCs at sites of infiltration through the synthesis of CXCL-13 and its interaction with the CXCR3 and CXCR5 receptors expressed on MCs. Consistent with this hypothesis, we observed MCs efficiently migrating in response to CXCL-13. On these bases, we conclude that MCs have a role in molding the immunological microenvironment of AITL toward the maintenance of pro-inflammatory conditions prone to Th17 generation and autoimmunity.

  6. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation.

    PubMed

    Zhenyukh, Olha; Civantos, Esther; Ruiz-Ortega, Marta; Sánchez, Maria Soledad; Vázquez, Clotilde; Peiró, Concepción; Egido, Jesús; Mas, Sebastián

    2017-03-01

    Leucine, isoleucine and valine are essential aminoacids termed branched-chain amino acids (BCAA) due to its aliphatic side-chain. In several pathological and physiological conditions increased BCAA plasma concentrations have been described. Elevated BCAA levels predict insulin resistance development. Moreover, BCAA levels higher than 2mmol/L are neurotoxic by inducing microglial activation in maple syrup urine disease. However, there are no studies about the direct effects of BCAA in circulating cells. We have explored whether BCAA could promote oxidative stress and pro-inflammatory status in peripheral blood mononuclear cells (PBMCs) obtained from healthy donors. In cultured PBMCs, 10mmol/L BCAA increased the production of reactive oxygen species (ROS) via both NADPH oxidase and the mitochondria, and activated Akt-mTOR signalling. By using several inhibitors and activators of these molecular pathways we have described that mTOR activation by BCAA is linked to ROS production and mitochondrial dysfunction. BCAA stimulated the activation of the redox-sensitive transcription factor NF-κB, which resulted in the release of pro-inflammatory molecules, such as interleukin-6, tumor necrosis factor-α, intracellular adhesion molecule-1 or CD40L, and the migration of PBMCs. In conclusion, elevated BCAA blood levels can promote the activation of circulating PBMCs, by a mechanism that involving ROS production and NF-κB pathway activation. These data suggest that high concentrations of BCAA could exert deleterious effects on circulating blood cells and therefore contribute to the pro-inflammatory and oxidative status observed in several pathophysiological conditions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Stylostome organization in feeding Leptotrombidium larvae (Acariformes: Trombiculidae).

    PubMed

    Shatrov, Andrew B; Takahashi, Mamoru; Noda, Shinichi; Misumi, Hitoko

    2014-01-01

    The stylostome of larvae of the trombiculids Leptotrombidium scutellare (Nagayo et al.), Leptotrombidium fletcheri (Womersley et Heaslip) and Leptotrombidium deliense (Walch) was studied experimentally at different time intervals after larval attachment using the histological method. The stylostome of these species has the same organization and belongs to the epidermal combined with the mixed type, developing more in width than in length. Neither transverse nor conspicuous longitudinal layers are present within the stylostome walls, which stain predominantly in red with Azan, also showing longitudinal portions with blue staining. Larvae tend to attach closely to each other and scabs, consisting of the hyperkeratotic epidermal layers fusing with migrating inflammatory cells, develop around the attachment sites. The dermis shows inflammatory foci with dilated capillaries and inflammatory cells inserting in the connective tissue layer underneath the stylostome. The feeding cavity, which is moderately expressed, may be found either in the epidermis or in the dermis. It contains inflammatory cells and their debris in the liquefied host tissues. The stylostome length depends on the character of the attachment site (the thicker epidermis or scab the longer the stylostome), and does not directly correspond to the stages of larval feeding. Nevertheless, at the 48-h time interval, nearly all attached larvae are found to be fully fed and their midgut cells are filled with nutritional globules.

  8. Stromal Cell-Derived Factor-1 Is Associated with Angiogenesis and Inflammatory Cell Infiltration in Aneurysm Walls

    PubMed Central

    Hoh, Brian L.; Hosaka, Koji; Downes, Daniel P.; Nowicki, Kamil W.; Wilmer, Erin N.; Velat, Gregory J.; Scott, Edward W.

    2013-01-01

    Object A small percentage of cerebral aneurysms rupture, but when they do, the effects are devastating. Current management of unruptured aneurysms consist of surgery, endovascular treatment, or watchful waiting. If the biology of how aneurysms grow and rupture were better known, a novel drug could be developed to prevent unruptured aneurysms from rupturing. Ruptured cerebral aneurysms are characterized by inflammation-mediated wall remodeling. We studied the role of stromal cell-derived factor-1 (SDF-1) in inflammation-mediated wall remodeling in cerebral aneurysms. Methods Human aneurysms; murine carotid aneurysms; and murine intracranial aneurysms were studied by immunohistochemistry. Flow cytometry analysis was performed on blood from mice developing carotid aneurysms or intracranial aneurysms. The effect of SDF-1 on endothelial cells and macrophages was studied by chemotaxis cell migration assay and capillary tube formation assay. Anti-SDF-1 blocking antibody was given to mice and compared to control (vehicle)-administered mice for its effects on the walls of carotid aneurysms and the development of intracranial aneurysms. Results Human aneurysms, murine carotid aneurysms, and murine intracranial aneurysms, all express SDF-1; and mice with developing carotid aneurysms or intracranial aneurysms have increased progenitor cells expressing CXCR4, the receptor for SDF-1 (P<0.01 and P<0.001, respectively). Human aneurysms and murine carotid aneurysms have endothelial cells, macrophages, and capillaries in the walls of the aneurysms; and the presence of capillaries in the walls of human aneurysms is associated with presence of macrophages (P=0.01). SDF-1 promotes endothelial cell and macrophage migration (P<0.01 for each), and promotes capillary tube formation (P<0.001). When mice are given anti-SDF-1 blocking antibody, there is a significant reduction in endothelial cells (P<0.05), capillaries (P<0.05), and cell proliferation (P<0.05) in the aneurysm wall. Mice given anti-SDF-1 blocking antibody develop significantly fewer intracranial aneurysms (33% versus 89% in mice given control IgG)(P<0.05). Conclusions These data suggest SDF-1 associated with angiogenesis and inflammatory cell migration and proliferation in the walls of aneurysms, and may have a role in the development of intracranial aneurysms. PMID:24160472

  9. Effects of chlorogenic acid on neutrophil locomotion functions in response to inflammatory stimulus.

    PubMed

    Hebeda, C B; Bolonheis, S M; Nakasato, A; Belinati, K; Souza, P D C; Gouvea, D R; Lopes, N P; Farsky, S H P

    2011-05-17

    Species of Lychnophora are used in Brazilian folk medicine as analgesic and anti-inflammatory agents. Chlorogenic acid (CGA) and their analogues are important components of polar extracts of these species, as well in several European and Asian medicinal plants. Some of these phenolic compounds display anti-inflammatory effects. In this paper we report the isolation of CGA from Lychnophora salicifolia and its effects on functions involved in neutrophils locomotion. LC-MS(n) data confirmed the presence of CGA in the plant. Actions of CGA were investigated on neutrophils obtained from peritoneal cavity of Wistar rats (4h after 1% oyster glycogen solution injection; 10 ml), and incubated with vehicle or with 50, 100 or 1000 μM CGA in presence of lipopolysaccharide from Escherichia coli (LPS, 5 μg/ml). Nitric oxide (NO; Griess reaction); prostaglandin E(2) (PGE(2)), interleukin-1β (IL-1β) and tumor necrosis factor-α [TNF-α; enzyme-linked immunosorbent assay (EIA)]; protein (flow cytometry) and gene (RT-PCR) expression of L-selectin, β(2)integrin and platelet-endothelial cell adhesion molecule-1 (PECAM-1) were quantified. In vitro neutrophil adhesion to primary culture of microvascular endothelial cell (PMEC) and neutrophil migration in response to formyl-methionil-leucil-phenilalanine (fMLP, 10(-8)M, Boyden chamber) was determined. CGA treatment did not modify the secretion of inflammatory mediators, but inhibited L-selectin cleavage and reduced β(2) integrin, independently from its mRNA synthesis, and reduced membrane PECAM-1 expression; inhibited neutrophil adhesion and neutrophil migration induced by fMLP. Based on these findings, we highlight the direct inhibitory actions of CGA on adhesive and locomotion properties of neutrophils, which may contribute to its anti-inflammatory effects and help to explain the use of Lychnophora salicifolia as an anti-inflammatory agent. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Acetylcholine contributes to control the physiological inflammatory response during the peri-implantation period.

    PubMed

    Paparini, D; Gori, S; Grasso, E; Scordo, W; Calo, G; Pérez Leirós, C; Ramhorst, R; Salamone, G

    2015-06-01

    Maternal antigen-presenting cells attracted to the pregnant uterus interact with trophoblast cells and modulate their functional profile to favour immunosuppressant responses. Non-neuronal cholinergic system is expressed in human cytotrophoblast cells and in immune cells with homeostatic regulatory functions. The aim of this work was to evaluate whether non-neuronal acetylcholine conditions maternal monocyte and DC migration and activation profiles. We used an in vitro model resembling maternal-placental interface represented by the co-culture of human trophoblast cells (Swan-71 cell line) and monocytes or DC. When cytotrophoblast cells were treated with neostigmine (Neo) to concentrate endogenous acetylcholine levels, monocyte migration was increased. In parallel, high levels of IL-10 and decreased levels of TNF-α were observed upon interaction of maternal monocytes with trophoblast cells. This effect was synergized by Neo and was prevented by atropine, a muscarinic acetylcholine receptor antagonist. Similarly, trophoblast cells increased the migration of DC independently of Neo treatment; however, enhanced IL-10 and MCP-1 synthesis in trophoblast-DC co-cultures with no changes in TNF-α and IL-6 was observed. In fact, there were no changes in HLA-DR, CD86 or CD83 expression. Finally, trophoblast cells treated with Neo increased the expression of two antigen-presenting cells attracting chemokines, MCP-1, MIP-1α and RANTES through muscarinic receptors, and it was prevented by atropine. Our present results support a novel role of acetylcholine synthesized by trophoblast cells to modulate antigen-presenting cell migration and activation favouring an immunosuppressant profile that contributes to immune homeostasis maintenance at the maternal-foetal interface. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  11. High glucose promotes the migration of retinal pigment epithelial cells through increased oxidative stress and PEDF expression

    PubMed Central

    Farnoodian, Mitra; Halbach, Caroline; Slinger, Cassidy; Pattnaik, Bikash R.; Sorenson, Christine M.

    2016-01-01

    Defects in the outer blood-retinal barrier have significant impact on the pathogenesis of diabetic retinopathy and macular edema. However, the detailed mechanisms involved remain largely unknown. This is, in part, attributed to the lack of suitable animal and cell culture models, including those of mouse origin. We recently reported a method for the culture of retinal pigment epithelial (RPE) cells from wild-type and transgenic mice. The RPE cells are responsible for maintaining the integrity of the outer blood-retinal barrier whose dysfunction during diabetes has a significant impact on vision. Here we determined the impact of high glucose on the function of RPE cells. We showed that high glucose conditions resulted in enhanced migration and increased the level of oxidative stress in RPE cells, but minimally impacted their rate of proliferation and apoptosis. High glucose also minimally affected the cell-matrix and cell-cell interactions of RPE cells. However, the expression of integrins and extracellular matrix proteins including pigment epithelium-derived factor (PEDF) were altered under high glucose conditions. Incubation of RPE cells with the antioxidant N-acetylcysteine under high glucose conditions restored normal migration and PEDF expression. These cells also exhibited increased nuclear localization of the antioxidant transcription factor Nrf2 and ZO-1, reduced levels of β-catenin and phagocytic activity, and minimal effect on production of vascular endothelial growth factor, inflammatory cytokines, and Akt, MAPK, and Src signaling pathways. Thus high glucose conditions promote RPE cell migration through increased oxidative stress and expression of PEDF without a significant effect on the rate of proliferation and apoptosis. PMID:27440660

  12. Anti-Inflammatory Effects of Cajaninstilbene Acid and Its Derivatives.

    PubMed

    Huang, Mei-Yan; Lin, Jing; Lu, Kuo; Xu, Hong-Gui; Geng, Zhi-Zhong; Sun, Ping-Hua; Chen, Wei-Min

    2016-04-13

    Cajaninstilbene acid (CSA) is one of the active components isolated from pigeon pea leaves. In this study, anti-inflammatory effects of CSA and its synthesized derivatives were fully valued with regard to their activities on the production of nitric oxide (NO) and pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in vitro cell model, as well as their impacts on the migration of neutrophils and macrophages in fluorescent protein labeled zebrafish larvae model by live image analysis. Furthermore, the anti-inflammatory mechanism of this type of compounds was clarified by western-blot and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that CSA, as well as its synthesized derivatives 5c, 5e and 5h, exhibited strong inhibition activity on the release of NO and inflammatory factor TNF-α and IL-6 in lipopolysaccharides (LPS)-stimulated murine macrophages. CSA and 5c greatly inhibited the migration of neutrophils and macrophages in injury zebrafish larvae. CSA and 5c treatment greatly inhibited the phosphorylation of proteins involved in nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 could reverse partly the roles of CSA and 5c, and CSA and 5c treatment greatly resist the decrease of PPARγ mRNA and protein induced by LPS stimulation. Our results identified the promising anti-inflammatory effects of CSA and its derivatives, which may serve as valuable anti-inflammatory lead compound. Additionally, the mechanism studies demonstrated that the anti-inflammatory activity of CSA and its derivative is associated with the inhibition of NF-κB and MAPK pathways, relying partly on resisting the LPS-induced decrease of PPARγ through improving its expression.

  13. Comparative analysis of gene expression profiles of OPN signaling pathway in four kinds of liver diseases.

    PubMed

    Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan

    2016-09-01

    To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.

  14. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    PubMed

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. LFA-1 Mediates Cytotoxicity and Tissue Migration of Specific CD8+ T Cells after Heterologous Prime-Boost Vaccination against Trypanosoma cruzi Infection

    PubMed Central

    Ferreira, Camila Pontes; Cariste, Leonardo Moro; Santos Virgílio, Fernando Dos; Moraschi, Barbara Ferri; Monteiro, Caroline Brandão; Vieira Machado, Alexandre M.; Gazzinelli, Ricardo Tostes; Bruna-Romero, Oscar; Menin Ruiz, Pedro Luiz; Ribeiro, Daniel Araki; Lannes-Vieira, Joseli; Lopes, Marcela de Freitas; Rodrigues, Mauricio Martins; de Vasconcelos, José Ronnie Carvalho

    2017-01-01

    Integrins mediate the lymphocyte migration into an infected tissue, and these cells are essential for controlling the multiplication of many intracellular parasites such as Trypanosoma cruzi, the causative agent of Chagas disease. Here, we explore LFA-1 and VLA-4 roles in the migration of specific CD8+ T cells generated by heterologous prime-boost immunization during experimental infection with T. cruzi. To this end, vaccinated mice were treated with monoclonal anti-LFA-1 and/or anti-VLA-4 to block these molecules. After anti-LFA-1, but not anti-VLA-4 treatment, all vaccinated mice displayed increased blood and tissue parasitemia, and quickly succumbed to infection. In addition, there was an accumulation of specific CD8+ T cells in the spleen and lymph nodes and a decrease in the number of those cells, especially in the heart, suggesting that LFA-1 is important for the output of specific CD8+ T cells from secondary lymphoid organs into infected organs such as the heart. The treatment did not alter CD8+ T cell effector functions such as the production of pro-inflammatory cytokines and granzyme B, and maintained the proliferative capacity after treatment. However, the specific CD8+ T cell direct cytotoxicity was impaired after LFA-1 blockade. Also, these cells expressed higher levels of Fas/CD95 on the surface, suggesting that they are susceptible to programmed cell death by the extrinsic pathway. We conclude that LFA-1 plays an important role in the migration of specific CD8+ T cells and in the direct cytotoxicity of these cells. PMID:29081775

  16. Nociceptin/orphanin FQ antagonizes lipopolysaccharide-stimulated proliferation, migration and inflammatory signaling in human glioblastoma U87 cells.

    PubMed

    Bedini, Andrea; Baiula, Monica; Vincelli, Gabriele; Formaggio, Francesco; Lombardi, Sara; Caprini, Marco; Spampinato, Santi

    2017-09-15

    Glioblastoma is among the most aggressive brain tumors and has an exceedingly poor prognosis. Recently, the importance of the tumor microenvironment in glioblastoma cell growth and progression has been emphasized. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and endogenous ligands originating from dying cells or the extracellular matrix involved in host defense and in inflammation. G-protein coupled receptors (GPCRs) have gained interest in anti-tumor drug discovery due to the role that they directly or indirectly play by transactivating other receptors, causing cell migration and proliferation. A proteomic analysis showed that the nociceptin receptor (NOPr) is among the GPCRs significantly expressed in glioblastoma cells, including U87 cells. We describe a novel role of the peptide nociceptin (N/OFQ), the endogenous ligand of the NOPr that counteracts cell migration, proliferation and increase in IL-1β mRNA elicited by LPS via TLR4 in U87 glioblastoma cells. Signaling pathways through which N/OFQ inhibits LPS-mediated cell migration and elevation of [Ca 2+ ] i require β-arrestin 2 and are sensitive to TNFR-associated factor 6, c-Src and protein kinase C (PKC). LPS-induced cell proliferation and increase in IL-1β mRNA are counteracted by N/OFQ via β-arrestin 2, PKC and extracellular signal-regulated kinase 1/2; furthermore, the contributions of the transcription factors NF-kB and AP-1 were investigated. Independent of LPS, N/OFQ induces a significant increase in cell apoptosis. Contrary to what was observed in other cell models, a prolonged exposure to this endotoxin did not promote any tolerance of the cellular effects above described, including NOPr down-regulation while N/OFQ loses its inhibitory role. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The flavonoid apigenin from Croton betulaster Mull inhibits proliferation, induces differentiation and regulates the inflammatory profile of glioma cells.

    PubMed

    Coelho, Paulo L C; Oliveira, Mona N; da Silva, Alessandra B; Pitanga, Bruno P S; Silva, Victor D A; Faria, Giselle P; Sampaio, Geraldo P; Costa, Maria de Fatima D; Braga-de-Souza, Suzana; Costa, Silvia L

    2016-11-01

    This study aimed to investigate the antitumor and immunomodulatory properties of the flavonoid apigenin (5,7,4'-trihydroxyflavone), which was extracted from Croton betulaster Mull, in glioma cell culture using the high-proliferative rat C6 glioma cell line as a model. Apigenin was found to have the ability to reduce the viability and proliferation of C6 cells in a time-dependent and dose-dependent manner, with an IC50 of 22.8 µmol/l, 40 times lower than that of temozolomide (1000 µmol/l), after 72 h of apigenin treatment. Even after C6 cells were treated with apigenin for 48 h, high proportions of C6 cells entered apoptosis (39.56%) and autophagy (22%) as shown by flow cytometry using annexin V/propidium iodide and acridine orange staining, respectively. In addition, the flavonoid apigenin induced cell accumulation in the G0/G1 phase of the cell cycle and inhibited glioma cell migration efficiently. Moreover, apigenin induced astroglial differentiation and morphological changes in C6 cells, characterized by increased expression of glial fibrillary acidic protein and decreased expression of nestin protein, a typical marker of neuronal precursors. The immunomodulating effects of apigenin were also characterized by a change in the inflammatory profile as evidenced by a significant decrease in interleukin-10 and tumor necrosis factor production and increased nitric oxide levels. Because apigenin can induce differentiation, apoptosis, and autophagy, can alter the profile of cytokines involved in regulating the immune response, and can reduce the survival, growth, proliferation, and migration of C6 cells, this flavonoid may be considered a potential antitumor drug for the adjuvant treatment of malignant gliomas.

  18. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    PubMed

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  19. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury.

    PubMed

    Kohno, Takashi; Urao, Norifumi; Ashino, Takashi; Sudhahar, Varadarajan; McKinney, Ronald D; Hamakubo, Takao; Iwanari, Hiroko; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-04-01

    Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation after vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. Here, we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of the downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1(-/-) mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor-induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge, as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1(-/-) mice show decreased perivascular macrophage infiltration in wire-injured vessels, as well as thioglycollate-induced peritoneal macrophage recruitment. Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases.

  20. Human intestinal pro-inflammatory CD11chighCCR2+CX3CR1+ macrophages, but not their tolerogenic CD11c-CCR2-CX3CR1- counterparts, are expanded in inflammatory bowel disease.

    PubMed

    Bernardo, D; Marin, A C; Fernández-Tomé, S; Montalban-Arques, A; Carrasco, A; Tristán, E; Ortega-Moreno, L; Mora-Gutiérrez, I; Díaz-Guerra, A; Caminero-Fernández, R; Miranda, P; Casals, F; Caldas, M; Jiménez, M; Casabona, S; De la Morena, F; Esteve, M; Santander, C; Chaparro, M; Gisbert, J P

    2018-05-09

    Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45 + HLA-DR + CD14 + CD64 + ) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11c high CCR2 + CX3CR1 + cells, a phenotype also shared by circulating CD14 + monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c - CCR2 - CX3CR1 - phenotype. CD11c high monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c - Mϕ-like cells produced IL-10. CD11c high pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c - Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14 + monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11c high CCR2 + CX3CR1 + ) into tolerogenic tissue-resident (CD11c - CCR2 - CX3CR1 - ) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c - Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11c high monocyte-like cells.

  1. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells.

    PubMed

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-10-25

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner.

  2. SMAD4 loss enables EGF, TGFβ1 and S100A8/A9 induced activation of critical pathways to invasion in human pancreatic adenocarcinoma cells

    PubMed Central

    Moz, Stefania; Basso, Daniela; Bozzato, Dania; Galozzi, Paola; Navaglia, Filippo; Negm, Ola H.; Arrigoni, Giorgio; Zambon, Carlo-Federico; Padoan, Andrea; Tighe, Paddy; Todd, Ian; Franchin, Cinzia; Pedrazzoli, Sergio; Punzi, Leonardo; Plebani, Mario

    2016-01-01

    Epidermal Growth Factor (EGF) receptor overexpression, KRAS, TP53, CDKN2A and SMAD4 mutations characterize pancreatic ductal adenocarcinoma. This mutational landscape might influence cancer cells response to EGF, Transforming Growth Factor β1 (TGFβ1) and stromal inflammatory calcium binding proteins S100A8/A9. We investigated whether chronic exposure to EGF modifies in a SMAD4-dependent manner pancreatic cancer cell signalling, proliferation and invasion in response to EGF, TGFβ1 and S100A8/A9. BxPC3, homozigously deleted (HD) for SMAD4, and BxPC3-SMAD4+ cells were or not stimulated with EGF (100 ng/mL) for three days. EGF pre-treated and non pretreated cells were stimulated with a single dose of EGF (100 ng/mL), TGFβ1 (0,02 ng/mL), S100A8/A9 (10 nM). Signalling pathways (Reverse Phase Protein Array and western blot), cell migration (Matrigel) and cell proliferation (XTT) were evaluated. SMAD4 HD constitutively activated ERK and Wnt/β-catenin, while inhibiting PI3K/AKT pathways. These effects were antagonized by chronic EGF, which increased p-BAD (anti-apoptotic) in response to combined TGFβ1 and S100A8/A9 stimulation. SMAD4 HD underlied the inhibition of NF-κB and PI3K/AKT in response to TGFβ1 and S100A8/A9, which also induced cell migration. Chronic EGF exposure enhanced cell migration of both BxPC3 and BxPC3-SMAD4+, rendering the cells less sensitive to the other inflammatory stimuli. In conclusion, SMAD4 HD is associated with the constitutive activation of the ERK and Wnt/β-catenin signalling pathways, and favors the EGF-induced activation of multiple signalling pathways critical to cancer proliferation and invasion. TGFβ1 and S100A8/A9 mainly inhibit NF-κB and PI3K/AKT pathways and, when combined, sinergize with EGF in enhancing anti-apoptotic p-BAD in a SMAD4-dependent manner. PMID:27655713

  3. The chemokine CXCL16 induces migration and invasion of glial precursor cells via its receptor CXCR6.

    PubMed

    Hattermann, Kirsten; Ludwig, Andreas; Gieselmann, Volkmar; Held-Feindt, Janka; Mentlein, Rolf

    2008-09-01

    Chemokines are implicated in developmental and inflammatory processes in the brain. The transmembrane chemokine CXCL16 is produced in brain endothelial and reactive astroglial cells and released by shedding. Its receptor CXCR6 is detected during brain development highest at postnatal day 6, found in glial precursor cells differentiated from neural stem cells and in an A2B5-positive glial precursor cell line. Their stimulation by soluble CXCL16 induces the PI3-kinase/Akt and Erk pathways resulting in the activation of the transcription factor AP-1. As biological responses, soluble CXCL16 upregulates its own receptor, increases cell proliferation, stimulates cell migration in wound-healing and in spheroid confrontation assays. Invasion of CXCR6-positive glial cells into CXCL16-expressing spheroids can be blocked by sheddase inhibitors and CXCL16-antibody. Since CXCL16 is induced by cytokines at sites of inflammation, neurodegeneration, ischemia and malignant transformation, it should attract CXCR6-positive glial precursor cells, enhance their invasion and proliferation and thus favor astrogliosis.

  4. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro.

    PubMed

    Xu, Xiu-Ping; He, Hong-Li; Hu, Shu-Ling; Han, Ji-Bin; Huang, Li-Li; Xu, Jing-Yuan; Xie, Jian-Feng; Liu, Ai-Ran; Yang, Yi; Qiu, Hai-Bo

    2017-07-12

    Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.

  5. The pH-sensing receptor OGR1 improves barrier function of epithelial cells and inhibits migration in an acidic environment.

    PubMed

    de Vallière, Cheryl; Vidal, Solange; Clay, Ieuan; Jurisic, Giorgia; Tcymbarevich, Irina; Lang, Silvia; Ludwig, Marie-Gabrielle; Okoniewski, Michal; Eloranta, Jyrki J; Kullak-Ublick, Gerd A; Wagner, Carsten A; Rogler, Gerhard; Seuwen, Klaus

    2015-09-15

    The pH-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1; GPR68) is expressed in the gut. Inflammatory bowel disease is typically associated with a decrease in local pH, which may lead to altered epithelial barrier function and subsequent gastrointestinal repair involving epithelial cell adhesion and migration. As the mechanisms underlying the response to pH changes are not well understood, we have investigated OGR1-mediated, pH-dependent signaling pathways in intestinal epithelial cells. Caco-2 cells stably overexpressing OGR1 were created and validated as tools to study OGR1 signaling. Barrier function, migration, and proliferation were measured using electric cell-substrate impedance-sensing technology. Localization of the tight junction proteins zonula occludens protein 1 and occludin and the rearrangement of cytoskeletal actin were examined by confocal microscopy. Paracellular permeability and protein and gene expression analysis using DNA microarrays were performed on filter-grown Caco-2 monolayers. We report that an acidic pH shift from pH 7.8 to 6.6 improved barrier function and stimulated reorganization of filamentous actin with prominent basal stress fiber formation. Cell migration and proliferation during in vitro wound healing were inhibited. Gene expression analysis revealed significant upregulation of genes related to cytoskeleton remodeling, cell adhesion, and growth factor signaling. We conclude that acidic extracellular pH can have a signaling function and impact the physiology of intestinal epithelial cells. The deconstruction of OGR1-dependent signaling may aid our understanding of mucosal inflammation mechanisms. Copyright © 2015 the American Physiological Society.

  6. Mycophenolate Mofetil Treatment of Systemic Sclerosis Reduces Myeloid Cell Numbers and Attenuates the Inflammatory Gene Signature in Skin.

    PubMed

    Hinchcliff, Monique; Toledo, Diana M; Taroni, Jaclyn N; Wood, Tammara A; Franks, Jennifer M; Ball, Michael S; Hoffmann, Aileen; Amin, Sapna M; Tan, Ainah U; Tom, Kevin; Nesbeth, Yolanda; Lee, Jungwha; Ma, Madeleine; Aren, Kathleen; Carns, Mary A; Pioli, Patricia A; Whitfield, Michael L

    2018-01-31

    Fewer than half of patients with systemic sclerosis demonstrate modified Rodnan skin score improvement during mycophenolate mofetil (MMF) treatment. To understand the molecular basis for this observation, we extended our prior studies and characterized molecular and cellular changes in skin biopsies from subjects with systemic sclerosis treated with MMF. Eleven subjects completed ≥24 months of MMF therapy. Two distinct skin gene expression trajectories were observed across six of these subjects. Three of the six subjects showed attenuation of the inflammatory signature by 24 months, paralleling reductions in CCL2 mRNA expression in skin and reduced numbers of macrophages and myeloid dendritic cells in skin biopsies. MMF cessation at 24 months resulted in an increased inflammatory score, increased CCL2 mRNA and protein levels, modified Rodnan skin score rebound, and increased numbers of skin myeloid cells in these subjects. In contrast, three other subjects remained on MMF >24 months and showed a persistent decrease in inflammatory score, decreasing or stable modified Rodnan skin score, CCL2 mRNA reductions, sera CCL2 protein levels trending downward, reduction in monocyte migration, and no increase in skin myeloid cell numbers. These data summarize molecular changes during MMF therapy that suggest reduction of innate immune cell numbers, possibly by attenuating expression of chemokines, including CCL2. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Regulation of macrophage migration by products of the complement system.

    PubMed Central

    Bianco, C; Götze, O; Cohn, Z A

    1979-01-01

    Agents formerly shown to induce rapid macrophage spreading were examined for their ability to modify the migration of macrophages in the capillary tube assay. Products of the activation of the contact phase of blood coagulation as well as the purified component Bb, the large cleavage fragment of factor B of the alternative complement pathway produced a dose-dependent inhibition of migration. In addition, inflammatory macrophages elicited with either a lipopolysaccharide endotoxin or thioglycollate medium exhibited rapid spreading and inhibited migration, whereas resident cells did not. A close correlation existed, therefore, between enhanced spreading and inhibited migration under both in vitro induced and in vivo situations. Cleavage products of component C5 of the classical complement pathway enhanced macrophage migration and did not alter spreading. In mixtures of C5 cleavage products and Bb, the predominant peptide determined the outcome of the reaction. Factor B, a normal secretory product of macrophages, may represent a common substrate for several of the proteases that induce spreading, inhibit migration, and lead to the generation of the enzymatically active fragment Bb. PMID:284412

  8. Sphingolipids role in the regulation of inflammatory response: From leukocyte biology to bacterial infection.

    PubMed

    Chiricozzi, Elena; Loberto, Nicoletta; Schiumarini, Domitilla; Samarani, Maura; Mancini, Giulia; Tamanini, Anna; Lippi, Giuseppe; Dechecchi, Maria Cristina; Bassi, Rosaria; Giussani, Paola; Aureli, Massimo

    2018-03-01

    Sphingolipids (SLs) are amphiphilic molecules mainly associated with the external leaflet of eukaryotic plasma membrane, and are structural membrane components with key signaling properties. Since the beginning of the last century, a large number of papers described the involvement of these molecules in several aspects of cell physiology and pathology. Several lines of evidence support the critical role of SLs in inflammatory diseases, by acting as anti- or pro-inflammatory mediators. They are involved in control of leukocyte activation and migration, and are recognized as essential players in host response to pathogenic infection. We propose here a critical overview of current knowledge on involvement of different classes of SLs in inflammation, focusing on the role of simple and complex SLs in pathogen-mediated inflammatory response. ©2018 Society for Leukocyte Biology.

  9. Lenalidomide, an anti-tumor drug, regulates retinal endothelial cell function: Implication for treating ocular neovascular disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ling-Feng; Yao, Jin; Wang, Xiao-Qun

    Ocular angiogenesis is an important pathologic character of several ocular diseases, such as retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration (AMD). Inhibition of ocular angiogenesis has great therapeutic value for treating these dieses. Here we show that lenalidomide, an anti-tumor drug, has great anti-angiogenic potential in ocular diseases. Lenalidomide inhibits retinal endothelial cell viability in normal and pathological condition, and inhibits VEGF-induced endothelial cell migration and tube formation in vitro. Moreover, lenalidomide inhibits ocular angiogenesis in vivo through the reduction of angiogenesis- and inflammation-related protein expression. Collectively, lenalidomide is a promising drug for treating ocular angiogenesis through its anti-proliferative andmore » anti-inflammatory property. - Highlights: • Lenalidomide inhibits retinal endothelial cell viability in vitro. • Lenalidomide inhibits retinal endothelial cell migration and tube formation. • Lenalidomide inhibits pathological ocular angiogenesis in vivo. • Lenalidomide inhibits angiogenesis- and inflammation-related protein expression.« less

  10. CXCR6-CXCL16 interaction in the pathogenesis of Juvenile Idiopathic Arthritis.

    PubMed

    Martini, Giorgia; Cabrelle, Anna; Calabrese, Fiorella; Carraro, Samuela; Scquizzato, Elisa; Teramo, Antonella; Facco, Monica; Zulian, Francesco; Agostini, Carlo

    2008-11-01

    In order to evaluate the role of CXCR6/CXCL16 in driving lymphocyte migration into inflamed joints of children with oligoarticular Juvenile Idiopathic Arthritis (JIA) we analysed CXCR6 expression and functional capability in lymphocytes from synovial fluid (SF) by flow cytometry, by real-time polymerase chain reaction (RT-PCR) and migration assays. Furthermore, CXCR6 and CXCL16 expression in synovial tissue (ST) was analysed by immunohistochemistry. T cells isolated from SF of patients with JIA expressed CXCR6 which was functionally active as shown by chemotactic assays. The same cells expressed CXCR3 and it exerted a migratory activity in response to CXCL10. CXCL16 and CXCR6 were intensively expressed on the synovium cells, respectively on macrophages, synoviocytes and endothelial cells and on lymphocytes, synoviocytes and endothelial cells. Taken together, these data suggest that CXCR6 and CXCR3 act coordinately with respective ligands and are involved in the pathophysiology of JIA-associated inflammatory processes.

  11. Can anesthetic-analgesic technique during primary cancer surgery affect recurrence or metastasis?

    PubMed

    Byrne, Kathryn; Levins, Kirk J; Buggy, Donal J

    2016-02-01

    Mortality among cancer patients is more commonly due to the effects of metastasis and recurrence as opposed to the primary tumour. Various perioperative factors have been implicated in tumour growth, including anesthetic agents and analgesia techniques. In this narrative review, we integrate this information to present a summary of the best available evidence to guide the conduct of anesthesia for primary cancer surgery. We conducted a search of the PubMed database up to May 31, 2015 to identify relevant literature using the search terms "anesthesia and metastases", "anesthetic drugs and cancer", "volatile anesthetic agents and cancer", and "anesthetic technique and cancer". There is conflicting evidence regarding volatile agents; however, the majority of studies are in vitro, suggesting that these agents are associated with enhanced expression of tumourigenic markers as well as both proliferation and migration of cancer cells. Nitrous oxide has not been shown to have any effect on cancer recurrence. Local anesthetic agents may reduce the incidence of cancer recurrence through systemic anti-inflammatory action in addition to direct effects on the proliferation and migration of cancer cells. Nonsteroidal anti-inflammatory drugs affect cancer cells via inhibition of cyclooxygenase 2 (COX-2), which leads to reduced resistance of the cancer cell to apoptosis and reduced production of prostaglandins by cancer cells. Nonsteroidal anti-inflammatory drugs also suppress the cancer cell growth cycle through effects independent of COX-2 inhibition. Opioids have been shown to inhibit the function of natural killer cells and to stimulate cancer cell proliferation through effects on angiogenesis and tumour cell signalling pathways. Supplemental oxygen at the time of surgery has a proangiogenic effect on micrometastases, while the use of perioperative dexamethasone does not affect overall rates of cancer survival. Current laboratory research suggests that perioperative interventions may impact recurrence or metastasis through effects on cancer cell signalling, the immune response, or modulation of the neuroendocrine stress response. Further evidence is awaited from prospective randomized-controlled trials. Meanwhile, with limited data upon which to make strong recommendations, anesthesiologists should seek optimal anesthesia and analgesia for their patients based on individual risk-benefit analysis and best available evidence on outcomes other than cancer recurrence.

  12. Iron deposits in the chronically inflamed central nervous system and contributes to neurodegeneration.

    PubMed

    Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben

    2014-05-01

    Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.

  13. Links demystified: Periodontitis and cancer

    PubMed Central

    Pendyala, Gowri; Joshi, Saurabh; Chaudhari, Shantanu; Gandhage, Dhananjay

    2013-01-01

    Cancer is marked by the uncontrolled growth of cells, tissue invasion and metastasis to various organs via the circulatory and lymphatic systems. Recent data have expanded the concept that inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation, and inflammation. The tumor microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival, and migration. Periodontal disease, a chronic inflammatory condition is characterized by an oral bacterial infection leading to inflammation within the supporting tissues of the teeth, which often leads to the destruction of the periodontal tissues and alveolar bone that support the teeth. This oral inflammation often has systemic effects leading to an increased concentration of circulating inflammatory markers with the severity of disease being correlated directly with levels of serum inflammatory markers. Periodontal infection has been linked to organ and systemic diseases. There is documented evidence of significant associations between cancer of the lung, kidney, pancreas, hematological and oral cancers, and periodontal disease. This articles reviews and summarizes the possible biological mechanisms involved between periodontal infection and cancer. PMID:24379856

  14. Links demystified: Periodontitis and cancer.

    PubMed

    Pendyala, Gowri; Joshi, Saurabh; Chaudhari, Shantanu; Gandhage, Dhananjay

    2013-11-01

    Cancer is marked by the uncontrolled growth of cells, tissue invasion and metastasis to various organs via the circulatory and lymphatic systems. Recent data have expanded the concept that inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation, and inflammation. The tumor microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival, and migration. Periodontal disease, a chronic inflammatory condition is characterized by an oral bacterial infection leading to inflammation within the supporting tissues of the teeth, which often leads to the destruction of the periodontal tissues and alveolar bone that support the teeth. This oral inflammation often has systemic effects leading to an increased concentration of circulating inflammatory markers with the severity of disease being correlated directly with levels of serum inflammatory markers. Periodontal infection has been linked to organ and systemic diseases. There is documented evidence of significant associations between cancer of the lung, kidney, pancreas, hematological and oral cancers, and periodontal disease. This articles reviews and summarizes the possible biological mechanisms involved between periodontal infection and cancer.

  15. Regulation of the ovarian inflammatory response at ovulation by nuclear progesterone receptor.

    PubMed

    Akison, Lisa K; Robertson, Sarah A; Gonzalez, Macarena B; Richards, JoAnne S; Smith, C Wayne; Russell, Darryl L; Robker, Rebecca L

    2018-06-01

    The nuclear progesterone receptor (PGR) transcription factor is essential for ovulation; however, the exact mechanisms by which PGR controls ovulation are not known. The aim of this study was to determine whether PGR regulates inflammatory mediators in the ovary. Ovaries from mice lacking PGR (PRKO) and heterozygous PR+/- littermates were subjected to microarray analysis of a large panel of inflammatory genes. Immune cell subsets were detected by gene expression; and neutrophils by immunohistochemistry and chemotaxis assay. PRKO ovaries exhibited dysregulated expression of vasodilator (Edn1), cytokine (Il-6, Tgfb1), adhesion receptor (Cd34), apoptotic factor (Bax) and transcription factors (Nfkb2, Socs1, Stat3). Ptgs2 was also reduced in PRKO ovaries, but mRNA and protein were not different in granulosa cells. There were reduced neutrophils in ovaries of PRKO mice at ovulation; however, chemotaxis assays showed PRKO neutrophils migrate normally and that PRKO ovarian extracts exhibit chemotactic properties in vitro. Specific inflammatory mediators are altered in the ovaries of PRKO mice indicating that progesterone regulates features of inflammation at ovulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. CD74 in Kidney Disease

    PubMed Central

    Valiño-Rivas, Lara; Baeza-Bermejillo, Ciro; Gonzalez-Lafuente, Laura; Sanz, Ana Belen; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2015-01-01

    CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics. PMID:26441987

  17. In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor.

    PubMed

    Badie, B; Schartner, J; Klaver, J; Vorpahl, J

    1999-05-01

    Considered as immune effector cells of the central nervous system, microglia represent a major component of the inflammatory cells found in malignant gliomas. Although their role in brain tumor biology is unclear, accumulation of microglia in malignant brain tumors may be mediated through active secretion of cytokines by glioma cells. Because hepatocyte growth factor/scatter factor (HGF/SF) has been shown to modulate glioma motility through an autocrine mechanism, and because microglia have been reported to express the HGF/SF receptor Met, we hypothesized that microglia recruitment by gliomas may also occur through the secretion of HGF/SF. The effect of glioma cells in augmenting BV-2 murine microglia motility was studied by using an in vitro Boyden chamber migration assay. To determine the chemokines involved in microglia migration, neutralizing monoclonal antibodies against monocyte chemotactic protein-1 and HGF/SF were tested. Immunoblotting was used to check for the expression of HGF/SF by glioma cells, and the expression of Met by BV-2 cells was examined by flow cytometry. BV-2 migration was noted within 7 hours of incubation with both human (U251 MG and U373 MG) and murine (GL261) glioma cell lines. This migration corresponded to HGF/SF secretion by glioma cells and was completely inhibited by neutralizing monoclonal antibody against HGF/SF, but not monocyte chemotactic protein-1. Exposure of BV-2 cells to recombinant HGF/SF, but not monocyte chemotactic protein-1, resulted in their migration and down-regulation of Met in a dose-dependent fashion. HGF/SF, which plays a role in glioma motility and mitogenesis, may also act as a chemokine for microglia and may be responsible for the microglia infiltration in malignant gliomas. This active recruitment of microglia may play an important role in glioma biology.

  18. Burn Eschar Stimulates Fibroblast and Adipose Mesenchymal Stromal Cell Proliferation and Migration but Inhibits Endothelial Cell Sprouting

    PubMed Central

    Monsuur, Hanneke N.; van den Broek, Lenie J.; Jhingoerie, Renushka L.; Vloemans, Adrianus F. P. M.

    2017-01-01

    The majority of full-thickness burn wounds heal with hypertrophic scar formation. Burn eschar most probably influences early burn wound healing, since granulation tissue only forms after escharotomy. In order to investigate the effect of burn eschar on delayed granulation tissue formation, burn wound extract (BWE) was isolated from the interface between non-viable eschar and viable tissue. The influence of BWE on the activity of endothelial cells derived from dermis and adipose tissue, dermal fibroblasts and adipose tissue-derived mesenchymal stromal cells (ASC) was determined. It was found that BWE stimulated endothelial cell inflammatory cytokine (CXCL8, IL-6 and CCL2) secretion and migration. However, BWE had no effect on endothelial cell proliferation or angiogenic sprouting. Indeed, BWE inhibited basic Fibroblast Growth Factor (bFGF) induced endothelial cell proliferation and sprouting. In contrast, BWE stimulated fibroblast and ASC proliferation and migration. No difference was observed between cells isolated from dermis or adipose tissue. The inhibitory effect of BWE on bFGF-induced endothelial proliferation and sprouting would explain why excessive granulation tissue formation is prevented in full-thickness burn wounds as long as the eschar is still present. Identifying the eschar factors responsible for this might give indications for therapeutic targets aimed at reducing hypertrophic scar formation which is initiated by excessive granulation tissue formation once eschar is removed. PMID:28820426

  19. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells

    PubMed Central

    Minelli, R; Serpe, L; Pettazzoni, P; Minero, V; Barrera, G; Gigliotti, CL; Mesturini, R; Rosa, AC; Gasco, P; Vivenza, N; Muntoni, E; Fantozzi, R; Dianzani, U; Zara, GP; Dianzani, C

    2012-01-01

    BACKGROUND AND PURPOSE Cholesteryl butyrate solid lipid nanoparticles (cholbut SLN) provide a delivery system for the anti-cancer drug butyrate. These SLN inhibit the adhesion of polymorphonuclear cells to the endothelium and may act as anti-inflammatory agents. As cancer cell adhesion to endothelium is crucial for metastasis dissemination, here we have evaluated the effect of cholbut SLN on adhesion and migration of cancer cells. EXPERIMENTAL APPROACH Cholbut SLN was incubated with a number of cancer cell lines or human umbilical vein endothelial cells (HUVEC) and adhesion was quantified by a computerized micro-imaging system. Migration was detected by the scratch ‘wound-healing’ assay and the Boyden chamber invasion assay. Expression of ERK and p38 MAPK was analysed by Western blot. Expression of the mRNA for E-cadherin and claudin-1 was measured by RT-PCR. KEY RESULTS Cholbut SLN inhibited HUVEC adhesiveness to cancer cell lines derived from human colon–rectum, breast, prostate cancers and melanoma. The effect was concentration and time-dependent and exerted on both cancer cells and HUVEC. Moreover, these SLN inhibited migration of cancer cells and substantially down-modulated ERK and p38 phosphorylation. The anti-adhesive effect was additive to that induced by the triggering of B7h, which is another stimulus inhibiting both ERK and p38 phosphorylation, and cell adhesiveness. Furthermore, cholbut SLN induced E-cadherin and inhibited claudin-1 expression in HUVEC. CONCLUSION AND IMPLICATIONS These results suggest that cholbut SLN could act as an anti-metastastic agent and they add a new mechanism to the anti-tumour activity of this multifaceted preparation of butyrate. PMID:22049973

  20. Real-time dynamics of neutrophil clustering in response to phototoxicity-induced cell death and tissue damage in mouse ear dermis.

    PubMed

    Park, Sang A; Choe, Young Ho; Park, Eunji; Hyun, Young-Min

    2018-05-22

    Neutrophils are highly motile innate immune cells; they actively migrate in response to inflammatory signals. Using two-photon intravital microscopy, we discovered that neutrophils form stable clusters upon phototoxicity at a certain threshold. Without significant damage to the collagen structure of mouse dermis, neutrophils aggregated together with nearby neutrophils. Surprisingly, this in situ neutrophil clustering resulted in rigorous changes of migratory direction. The density of residing neutrophils was also a critical factor affecting clustering. Additionally, we found that the triggering point of neutrophil aggregation was correlated with the structure of the extracellular matrix in the ear dermis, where autofluorescence was strongly observed. This swarming behavior of neutrophils may reflect an unknown communication mechanism of neutrophils during migration under sterile injury.

  1. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    PubMed

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P < 0.001; n = 6). Doxycycline inhibited ROS production with a lesser extent and at higher concentrations. 10-100 µM minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P < 0.001). These results added new insight into anti-inflammatory effects of minocycline exerted on innate immune h-PMN cell function.

  2. Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.

    PubMed

    Prudente, Arthur S; Sponchiado, Graziela; Mendes, Daniel A G B; Soley, Bruna S; Cabrini, Daniela A; Otuki, Michel F

    2017-09-01

    In the search for improved quality of life, the treatment of skin diseases like psoriasis (hyperproliferative disease) is valid, since it causes huge social discomfort to the patient. In this context, earlier studies showed that Malva sylvestris L. has anti-inflammatory activity demonstrated by acute animal models of skin inflammation, becoming a promising target for further studies. The present investigation aimed to verify the effect of hydroalcoholic extract of M. sylvestris (HEMS) on the chronic inflammatory and hyperproliferative response caused by multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) on mouse ears. Topical application of HEMS reduced oedema, leukocyte migration (mono- and polymorphonuclear cells) and keratinocyte hyperproliferation, confirmed by histology and proliferating cell nuclear antigen (PCNA) immunostaining. It was found that the anti-inflammatory effects of the extract did not involve the glucocorticoid system, and its incubation with HaCaT keratinocytes caused low toxicity and reduced cell proliferation by apoptosis. Thus, HEMS proved to be effective as an anti-psoriatic therapy, with the ability to prevent keratinocyte hyperproliferation and with low toxicity by topical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa.

    PubMed

    Ciaglia, Elena; Malfitano, Anna Maria; Laezza, Chiara; Fontana, Angelo; Nuzzo, Genoveffa; Cutignano, Adele; Abate, Mario; Pelin, Marco; Sosa, Silvio; Bifulco, Maurizio; Gazzerro, Patrizia

    2017-07-28

    We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa . We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal-regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases.

  4. Tauroursodeoxycholic acid reduces glial cell activation in an animal model of acute neuroinflammation

    PubMed Central

    2014-01-01

    Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases. PMID:24645669

  5. Saccharomyces boulardii inhibits lipopolysaccharide-induced activation of human dendritic cells and T cell proliferation

    PubMed Central

    Thomas, S; Przesdzing, I; Metzke, D; Schmitz, J; Radbruch, A; Baumgart, D C

    2009-01-01

    Saccharomyces boulardii (Sb) is a probiotic yeast preparation that has demonstrated efficacy in inflammatory and infectious disorders of the gastrointestinal tract in controlled clinical trials. Although patients clearly benefit from treatment with Sb, little is known on how Sb unfolds its anti-inflammatory properties in humans. Dendritic cells (DC) balance tolerance and immunity and are involved critically in the control of T cell activation. Thus, they are believed to have a pivotal role in the initiation and perpetuation of chronic inflammatory disorders, not only in the gut. We therefore decided to investigate if Sb modulates DC function. Culture of primary (native, non-monocyte-derived) human myeloid CD1c+CD11c+CD123– DC (mDC) in the presence of Sb culture supernatant (active component molecular weight < 3 kDa, as evaluated by membrane partition chromatography) reduced significantly expression of the co-stimulatory molecules CD40 and CD80 (P < 0·01) and the DC mobilization marker CC-chemokine receptor CCR7 (CD197) (P < 0·001) induced by the prototypical microbial antigen lipopolysaccharide (LPS). Moreover, secretion of key proinflammatory cytokines such as tumour necrosis factor-α and interleukin (IL)-6 were notably reduced, while the secretion of anti-inflammatory IL-10 increased. Finally, Sb supernatant inhibited the proliferation of naive T cells in a mixed lymphocyte reaction with mDC. In summary, our data suggest that Sb may exhibit part of its anti-inflammatory potential through modulation of DC phenotype, function and migration by inhibition of their immune response to bacterial microbial surrogate antigens such as LPS. PMID:19161443

  6. Differential effects of immunosuppressive drugs on T-cell motility.

    PubMed

    Datta, A; David, R; Glennie, S; Scott, D; Cernuda-Morollon, E; Lechler, R I; Ridley, A J; Marelli-Berg, F M

    2006-12-01

    The best-characterized mechanism of the action of immunosuppressive drugs is to prevent T-cell clonal expansion, thus containing the magnitude of the ensuing immune response. As T-cell recruitment to the inflammatory site is another key step in the development of T-cell-mediated inflammation, we analyzed and compared the effects of two commonly used immunosuppressants, cyclosporin A (CsA) and the rapamycin-related compound SDZ-RAD, on the motility of human CD4+ T cells. We show that CsA, but not SDZ-RAD, inhibits T-cell transendothelial migration in vitro. CsA selectively impaired chemokine-induced T-cell chemotaxis while integrin-mediated migration was unaffected. The inhibition of T-cell chemotaxis correlated with reduced AKT/PKB but not ERK activation following exposure to the chemokine CXCL-12/SDF-1. In addition, CsA, but not SDZ-RAD, prevents some T-cell receptor-mediated effects on T-cell motility. Finally, we show that CsA, but not SDZ-RAD inhibits tissue infiltration by T cells in vivo. Our data suggest a prominent antiinflammatory role for CsA in T-cell-mediated tissue damage, by inhibiting T-cell trafficking into tissues in addition to containing clonal expansion.

  7. A short protocol using dexamethasone and monophosphoryl lipid A generates tolerogenic dendritic cells that display a potent migratory capacity to lymphoid chemokines

    PubMed Central

    2013-01-01

    Background Generation of tolerogenic dendritic cells (TolDCs) for therapy is challenging due to its implications for the design of protocols suitable for clinical applications, which means not only using safe products, but also working at defining specific biomarkers for TolDCs identification, developing shorter DCs differentiation methods and obtaining TolDCs with a stable phenotype. We describe here, a short-term protocol for TolDCs generation, which are characterized in terms of phenotypic markers, cytokines secretion profile, CD4+ T cell-stimulatory ability and migratory capacity. Methods TolDCs from healthy donors were generated by modulation with dexamethasone plus monophosphoryl lipid A (MPLA-tDCs). We performed an analysis of MPLA-tDCs in terms of yield, viability, morphology, phenotypic markers, cytokines secretion profile, stability, allogeneic and antigen-specific CD4+ T-cell stimulatory ability and migration capacity. Results After a 5-day culture, MPLA-tDCs displayed reduced expression of costimulatory and maturation molecules together to an anti-inflammatory cytokines secretion profile, being able to maintain these tolerogenic features even after the engagement of CD40 by its cognate ligand. In addition, MPLA-tDCs exhibited reduced capabilities to stimulate allogeneic and antigen-specific CD4+ T cell proliferation, and induced an anti-inflammatory cytokine secretion pattern. Among potential tolerogenic markers studied, only TLR-2 was highly expressed in MPLA-tDCs when compared to mature and immature DCs. Remarkable, like mature DCs, MPLA-tDCs displayed a high CCR7 and CXCR4 expression, both chemokine receptors involved in migration to secondary lymphoid organs, and even more, in an in vitro assay they exhibited a high migration response towards CCL19 and CXCL12. Conclusion We describe a short-term protocol for TolDC generation, which confers them a stable phenotype and migratory capacity to lymphoid chemokines, essential features for TolDCs to be used as therapeutics for autoimmunity and prevention of graft rejection. PMID:23706017

  8. T cell receptor-driven transendothelial migration of human effector memory CD4 T cells involves Vav, Rac and Myosin IIA

    PubMed Central

    Manes, Thomas D.; Pober, Jordan S.

    2013-01-01

    Human effector memory (EM) CD4 T cells may be recruited from the blood into a site of inflammation in response either to inflammatory chemokines displayed on or specific antigen presented by venular endothelial cells (ECs), designated as chemokine-driven or TCR-driven transendothelial migration (TEM), respectively. We have previously described differences in the morphological appearance of transmigrating T cells as well as in the molecules that mediate T cell-EC interactions distinguishing these two pathways. Here we report that TCR-driven TEM requires ZAP-70-dependent activation of a pathway involving Vav, Rac and myosin IIA. Chemokine-driven TEM also utilizes ZAP-70, albeit in a quantitatively and spatially different manner of activation, and is independent of Vav, Rac and mysosin IIA, depending instead on an as yet unidentified GTP exchange factor that activates Cdc42. The differential use of small Rho family GTPases to activate the cytoskeleton is consistent with the morphological differences observed in T cells that undergo TEM in response to these distinct recruitment signals. PMID:23420881

  9. Fibroblasts in myocardial infarction: a role in inflammation and repair

    PubMed Central

    Shinde, Arti V.; Frangogiannis, Nikolaos G.

    2014-01-01

    Fibroblasts do not only serve as matrix-producing reparative cells, but exhibit a wide range of functions in inflammatory and immune responses, angiogenesis and neoplasia. The adult mammalian myocardium contains abundant fibroblasts enmeshed within the interstitial and perivascular extracellular matrix. The current review manuscript discusses the dynamic phenotypic and functional alterations of cardiac fibroblasts following myocardial infarction. Extensive necrosis of cardiomyocytes in the infarcted heart triggers an intense inflammatory reaction. In the early stages of infarct healing, fibroblasts become pro-inflammatory cells, activating the inflammasome and producing cytokines, chemokines and proteases. Pro-inflammatory cytokines (such as Interleukin-1) delay myofibroblast transformation, until the wound is cleared from dead cells and matrix debris. Resolution of the inflammatory infiltrate is associated with fibroblast migration, proliferation, matrix protein synthesis and myofibroblast conversion. Growth factors and matricellular proteins play an important role in myofibroblast activation during the proliferative phase of healing. Formation of a mature cross-linked scar is associated with clearance of fibroblasts, as poorly-understood inhibitory signals restrain the fibrotic response. However, in the non-infarcted remodeling myocardium, local fibroblasts may remain activated in response to volume and pressure overload and may promote interstitial fibrosis. Considering their abundance, their crucial role in cardiac inflammation and repair, and their involvement in myocardial dysfunction and arrhythmogenesis, cardiac fibroblasts may be key therapeutic targets in cardiac remodeling. PMID:24321195

  10. Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway

    PubMed Central

    2013-01-01

    Background Advanced glycation end products (AGEs), inflammatory-associated macrophage migration and accumulation are crucial for initiation and progression of diabetic vascular complication. Enzymatic activity of heparanase (HPA) is implicated strongly in dissemination of metastatic tumor cells and cells of the immune system. In addition, HPA enhances the phosphorylation of selected signaling molecules including AKT pathway independent of enzymatic activity. However, virtually nothing is presently known the role of HPA during macrophage migration exposed to AGEs involving signal pathway. Methods These studies were carried out in Ana-1 macrophages. Macrophage viability was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays. HPA and AKT protein expression in macrophages are analysed by Western blotting and HPA mRNA expression by real time quantitative RT-PCR. Release of HPA was determined by ELISA. Macrophage migration was assessed by Transwell assays. Results HPA protein and mRNA were found to be increased significantly in AGEs-treated macrophages. Pretreatment with anti-HPA antibody which recognizes the nonenzymatic terminal of HPA prevented AGEs-induced AKT phosphorylation and macrophage migration. LY294002 (PI3k/AKT inhibitor) inhibited AGEs-induced macrophage migration. Furthermore, pretreatment with anti-receptor for advanced glycation end products (RAGE) antibody attenuated AGEs-induced HPA expression, AKT phosphorylation and macrophage migration. Conclusions These data indicate that AGEs-induced macrophage migration is dependent on HPA involving RAGE-HPA-PI3K/AKT pathway. The nonenzymatic activity of HPA may play a key role in AGEs-induced macrophage migration associated with inflammation in diabetic vascular complication. PMID:23442498

  11. Mirtron microRNA-1236 inhibits VEGFR-3 signaling during inflammatory lymphangiogenesis.

    PubMed

    Jones, Dennis; Li, Yonghao; He, Yun; Xu, Zhe; Chen, Hong; Min, Wang

    2012-03-01

    Vascular endothelial growth factor receptor(VEGFR)-3 is a critical regulator of developmental and adult vasculogenesis and lymphangiogenesis through its interactions with select members of the VEGF family. The goal of this study was to investigate how VEGFR-3 expression is regulated during inflammatory lymphangiogenesis. In this study, we present for the first time evidence that VEGFR-3 can be negatively regulated by a mirtron, hsa-miR-1236 (miR-1236), which is expressed in primary human lymphatic endothelial cells. In human lymphatic endothelial cells, miR-1236 is upregulated in response to IL-1β, a negative regulator of VEGFR-3. miR-1236 binds the 3' untranslated region of Vegfr3, resulting in translational inhibition. Overexpression of miR-1236 significantly decreased expression of VEGFR-3, but not VEGFR-2, in human lymphatic endothelial cells. Compared to a control miR, overexpression of miR-1236 also led to decreased VEGFR-3 signaling. However, VEGFR-2-specific signaling was not affected. miR-1236 can attenuate human lymphatic endothelial cell migration and tube formation, as well as in vivo lymphangiogenesis. Our data suggest that miR-1236 may function as a negative regulator of VEGFR-3 signaling during inflammatory lymphangiogenesis.

  12. THE MECHANISM OF THE INFLAMMATORY PROCESS : III. ELECTROPHORETIC MIGRATION OF INERT PARTICLES AND BLOOD CELLS IN GELATIN SOLS AND GELS WITH REFERENCE TO LEUCOCYTE EMIGRATION THROUGH THE CAPILLARY WALL.

    PubMed

    Abramson, H A

    1928-07-20

    1. Quartz particles and certain other particles move cataphoretically in certain soft gelatin gels, with the same velocity as in the sol. The speed is a function of the true viscosity of the sol or gel, and it is See PDF for Structure apparently not altered in these soft gels by the presence of gel structure. It is proportional to the applied difference of potential. 2. This finding is compatible with the fact that certain sols undergo gelation with no increase of the true viscosity although a marked change in the apparent viscosity takes place. 3. Red cells in soft gelatin-serum gels show a distinct difference in behavior. They migrate through the sol or gel with a speed that is about twice as great as the leucocytes and quartz particles, which latter particles migrate with the same velocity. This ratio has been found to hold for serum and plasma. The absolute velocities are comparatively slightly decreased by the presence of the gel. 4. In more concentrated or stiffer gels, leucocytes, red cells and quartz particles all move at first with the same velocity. By producing mechanical softening of these gels (shearing from cataphoretic movement of the micells within the cell) the red cells presently resume their previous property of independent migration through the gel. 5. The movements of particles in gelatin gels produced by a magnetic force or the force of gravity are of a different nature than those movements produced by cataphoresis. 6. The mechanical nature of obstruction to the cataphoretic migration of leucocytes and red cells in fibrin gels is briefly described. 7. The correlation of cataphoresis of microscopic particles in gels with the order of magnitude and nature of the potential differences in the capillary wall, lends additional evidence to the theory that polymorphonuclear leucocyte emigration and migration are dependent upon these potential differences.

  13. Synthetic 8-hydroxydeoxyguanosine inhibited metastasis of pancreatic cancer through concerted inhibitions of ERM and Rho-GTPase.

    PubMed

    Park, Jong-Min; Han, Young-Min; Jeong, Migyeong; Chung, Myung Hee; Kwon, Chang Il; Ko, Kwang Hyun; Hahm, Ki Baik

    2017-09-01

    8-hydroxydeoxyguanosine (8-OHdG) is generated consequent to oxidative stress, but its paradoxical anti-oxidative, anti-inflammatory, and anti-mutagenic effects via Rho-GTPase inhibition were noted in various models of inflammation and cancer. Metastasis occurs through cell detachment, epithelial-mesenchymal transition (EMT), and cell migration; during these processes, changes in cell morphology are initiated through Rho-GTPase-dependent actin cytoskeleton polymerization. In this study, we explored the anti-metastatic mechanisms of 8-OHdG in Panc-1 pancreatic cancer cells. 8-OHdG inhibits cell migration by inactivating ERM and Rho-GTPase proteins, and inhibiting focal adhesion kinase (FAK) and matrix metalloproteinases (MMPs). At 15min, 8-OHdG significantly inactivated ERM (p < 0.05) and led to a significant retardation of wound healing; siERM and H1152 (ROCK inhibitor) had similar effects (p < 0.05). However, FAK inhibitor 14, DPI (NOX inhibitor), and NAC (antioxidant) significantly delayed wound healing without inhibiting ERM or CD44 (p < 0.05). In the experiments on cell migration, siERM, siCD44, DPI, and 8-OHdG significantly inhibited MMPs. 8-OHdG significantly decreased DCF-DA activation in Panc-1 pancreatic cancer cells and down-regulated NOXs (nox-1, nox-2, and nox-3). Finally, all of these anti-migration actions of 8-OHdG resulted in significant inhibition of EMT, as evidenced by the up-regulation of ZO-1 and claudin-1 and down-regulation of vimentin. We found significant inhibition of lung metastasis of Panc-1 cells by 8-OHdG. In conclusion, exogenous 8-OHdG had potent anti-metastasis effects mediated by either ERM or Rho GTPase inhibition in metastasis-prone pancreatic cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Modulation of the Early Inflammatory Microenvironment in the Alkali-Burned Eye by Systemically Administered Interferon-γ-Treated Mesenchymal Stromal Cells

    PubMed Central

    Javorkova, Eliska; Trosan, Peter; Zajicova, Alena; Krulova, Magdalena; Hajkova, Michaela

    2014-01-01

    The aim of this study was to investigate the effects of systemically administered bone-marrow-derived mesenchymal stromal cells (MSCs) on the early acute phase of inflammation in the alkali-burned eye. Mice with damaged eyes were either untreated or treated 24 h after the injury with an intravenous administration of fluorescent-dye-labeled MSCs that were unstimulated or pretreated with interleukin-1α (IL-1α), transforming growth factor-β (TGF-β), or interferon-γ (IFN-γ). Analysis of cell suspensions prepared from the eyes of treated mice on day 3 after the alkali burn revealed that MSCs specifically migrated to the damaged eye and that the number of labeled MSCs was more than 30-times higher in damaged eyes compared with control eyes. The study of the composition of the leukocyte populations within the damaged eyes showed that all types of tested MSCs slightly decreased the number of infiltrating lymphoid and myeloid cells, but only MSCs pretreated with IFN-γ significantly decreased the percentage of eye-infiltrating cells with a more profound effect on myeloid cells. Determining cytokine and NO production in the damaged eyes confirmed that the most effective immunomodulation was achieved with MSCs pretreated with IFN-γ, which significantly decreased the levels of the proinflammatory molecules IL-1α, IL-6, and NO. Taken together, the results show that systemically administered MSCs specifically migrate to the damaged eye and that IFN-γ-pretreated MSCs are superior in inhibiting the acute phase of inflammation, decreasing leukocyte infiltration, and attenuating the early inflammatory environment. PMID:24849741

  15. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease.

    PubMed Central

    Jones, P. L.; Cowan, K. N.; Rabinovitch, M.

    1997-01-01

    Progressive pulmonary hypertension is characterized by smooth muscle cell proliferation and migration leading to occlusive arterial lesions. Previously, using cultured smooth muscle cells, we demonstrated that epidermal growth factor (EGF)-dependent proliferation and migration are dependent on tenascin-C (Tn) and cellular fibronectin (Fn), respectively. In this study we applied immunohistochemistry to lung biopsy tissue from patients with congenital heart defects and pulmonary hypertension to determine how the distribution and intensity of Tn, EGF, proliferating cell nuclear antigen (PCNA), and Fn expression related to arterial abnormalities. With mildly increased wall thickness, minimal Tn, PCNA, and EGF was evident. With progressive hypertrophy, moderately intense foci of Tn were apparent in the adventitia, periendothelium, and occasionally the media but not consistently co-distributing with EGF and PCNA. With obstructive lesions, intense neointimal Tn expression co-localized with EGF and PCNA. Fn accumulation in the periendothelium increased with medial hypertrophy and became more widespread in a diffuse pattern with neointimal formation. The neointima was predominantly composed of alpha-smooth-muscle-actin-positive cells, occasional inflammatory cells with no evidence of apoptosis. These studies are consistent with Tn modulating EGF-dependent neointimal smooth muscle cell proliferation and Fn providing a gradient for smooth muscle cell migration from media to neointima. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9094991

  16. Cell Recruitment and Cytokines in Skin Mice Sensitized with the Vaccine Adjuvants: Saponin, Incomplete Freund’s Adjuvant, and Monophosphoryl Lipid A

    PubMed Central

    Vitoriano-Souza, Juliana; Moreira, Nádia das Dores; Teixeira-Carvalho, Andréa; Carneiro, Cláudia Martins; Siqueira, Fernando Augusto Mathias; Vieira, Paula Melo de Abreu; Giunchetti, Rodolfo Cordeiro; Moura, Sandra Aparecida de Lima; Fujiwara, Ricardo Toshio; Melo, Maria Norma; Reis, Alexandre Barbosa

    2012-01-01

    Vaccine adjuvants are substances associated with antigens that are fundamental to the formation of an intense, durable, and fast immune response. In this context, the use of vaccine adjuvants to generate an effective cellular immune response is crucial for the design and development of vaccines against visceral leishmaniasis. The objective of this study was to evaluate innate inflammatory response induced by the vaccine adjuvants saponin (SAP), incomplete Freund’s adjuvant (IFA), and monophosphoryl lipid A (MPL). After a single dose of adjuvant was injected into the skin of mice, we analyzed inflammatory reaction, selective cell migration, and cytokine production at the injection site, and inflammatory cell influx in the peripheral blood. We found that all vaccine adjuvants were able to promote cell recruitment to the site without tissue damage. In addition, they induced selective migration of neutrophils, macrophages, and lymphocytes. The influx of neutrophils was notable at 12 h in all groups, but at other time points it was most evident after inoculation with SAP. With regard to cytokines, the SAP led to production of interleukin (IL)-2, IL-6, and IL-4. IFA promoted production of tumor necrosis factor (TNF)-α, interferon (IFN)-γ, IL-6, IL-17, IL-4, and IL-10. We also observed that MPL induced high production of IL-2, TNF-α, and IFN-γ, in addition to IL-6, IL-17, and IL-10. In peripheral blood, values of certain cell populations in the local response changed after stimulation. Our data demonstrate that the three vaccine adjuvants stimulate the early events of innate immune response at the injection site, suggesting their ability to increase the immunogenicity of co-administered antigens. Moreover, this work provides relevant information about elements of innate and acquired immune response induced by vaccine adjuvants administered alone. PMID:22829882

  17. Aldose reductase mediates retinal microglia activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migrationmore » in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.« less

  18. Substance P prevents development of proliferative vitreoretinopathy in mice by modulating TNF-α

    PubMed Central

    Yoo, Kyungsang; Son, Bo Kwon; Kim, Suna; Son, Youngsook; Yu, Seung-Young

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) is an inflammatory fibrotic disease resulting from the inflammatory milieu after retinal detachment, which can prevent retinal healing. This study aimed to elucidate the effect of substance P (SP) on retinal degeneration caused by retinal detachment in vivo and to examine the role of SP in the tumor necrosis factor-alpha (TNF-α)-induced epithelial-mesenchymal transition (EMT) of human RPE cells in vitro. Methods PVR-like retinal damage was induced by intravitreally injecting dispase into mice, and SP was systemically injected twice a week for 3 weeks. Histological analysis and cytokine profile with enzyme-linked immunosorbent assay (ELISA) were performed. The direct effect of SP on induction of EMT in vitro was studied by adding SP to TNF-α-treated ARPE-19 cells and then evaluating the change in the characteristics of the epithelial and mesenchymal cells. Results Dispase injection led to a PVR-like retinal condition, demonstrating an inflammatory response with disruption of RPE interaction within 1 week and severe destruction with enfolding within 3 weeks after the dispase injection. The inflammatory environment promoted apoptosis and migration of fibroblast-like cells in the retinal layer, which can cause fibrotic disease, such as PVR. However, SP treatment suppressed early inflammatory responses by reducing TNF-α and elevating interleukin-10 (IL-10), with cell death and the appearance of fibroblastic cells inhibited and the progression of retinal degeneration obviously delayed. Moreover, SP ameliorated TNF-α-induced EMT of the RPE and directly prevented fibrotic change in the RPE. Conclusions This study revealed that SP can block apoptosis and EMT due to retinal inflammation and inhibit the development of PVR. This effect most likely occurred by modulating the secretion and action of TNF-α.. PMID:29296073

  19. The effect of granulocyte factor and grass pollen allergen on T-lymphocytes from atopic patients in vitro.

    PubMed

    Kocur, E; Zeman, K; Tchorzewski, H

    1993-01-01

    In allergy the immune response is significantly modified by inflammatory processes. Polymorphonuclear leukocytes (PMNLs) are involved in inflammatory processes. Activated PMNLs release many substances, including granulocyte factor (GF), which exerts immunomodulating effects. The present study was performed to determine the effects of allergens and/or GF on the expression of lymphocyte differentiation antigens in short-term cultures and to evaluate the production of migration inhibitory factor (MIF) under the influence of these substances. The studies were carried out on peripheral blood mononuclear cells isolated from patients with type I hypersensitivity, before and after the grass pollen season, and from healthy subjects. GF and allergens were found to increase the CD8 cell number, particularly in 7-day cultures and in patients before exposure to allergens, which correlated with MIF release in these patients under the influence of these factors. The results suggest that the PMNLs may participate in allergic inflammatory reactions.

  20. Role of cathepsin S In periodontal wound healing-an in vitro study on human PDL cells.

    PubMed

    Memmert, Svenja; Nokhbehsaim, Marjan; Damanaki, Anna; Nogueira, Andressa V B; Papadopoulou, Alexandra K; Piperi, Christina; Basdra, Efthimia K; Rath-Deschner, Birgit; Götz, Werner; Cirelli, Joni A; Jäger, Andreas; Deschner, James

    2018-04-05

    Cathepsin S is a cysteine protease, which is expressed in human periodontal ligament (PDL) cells under inflammatory and infectious conditions. This in vitro study was established to investigate the effect of cathepsin S on PDL cell wound closure. An in vitro wound healing assay was used to monitor wound closure in wounded PDL cell monolayers for 72 h in the presence and absence of cathepsin S. In addition, the effects of cathepsin S on specific markers for apoptosis and proliferation were studied at transcriptional level. Changes in the proliferation rate due to cathepsin S stimulation were analyzed by an XTT assay, and the actions of cathepsin S on cell migration were investigated via live cell tracking. Additionally, PDL cell monolayers were treated with a toll-like receptor 2 agonist in the presence and absence of a cathepsin inhibitor to examine if periodontal bacteria can alter wound closure via cathepsins. Cathepsin S enhanced significantly the in vitro wound healing rate by inducing proliferation and by increasing the speed of cell migration, but had no effect on apoptosis. Moreover, the toll-like receptor 2 agonist enhanced significantly the wound closure and this stimulatory effect was dependent on cathepsins. Our findings provide original evidence that cathepsin S stimulates PDL cell proliferation and migration and, thereby, wound closure, suggesting that this cysteine protease might play a critical role in periodontal remodeling and healing. In addition, cathepsins might be exploited by periodontal bacteria to regulate critical PDL cell functions.

  1. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro.

    PubMed

    Sekhejane, Palesa R; Houreld, Nicolette N; Abrahamse, Heidi

    2011-08-01

    This study investigated the effect of low-intensity laser irradiation (LILI) on pro-inflammatory cytokines involved in wound healing processes in diabetes and hypoxia. Diabetes is associated with impaired wound healing and a prolonged inflammatory phase. Pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 are elevated in diabetes. LILI has been reported to accelerate wound healing and decrease inflammatory cytokines. A human skin fibroblast cell line (WS1) was used in vitro. Cells were exposed to various insults, namely, wounding, and a diabetic or hypoxic environment. Experimental cells were exposed to an energy density of 5  J/cm(2) using a continuous wave 636-nm diode laser at an average power of 95  mW, an illuminated area of 9.05  cm(2), and an irradiance of 11 mW/cm(2) (irradiation time, 476  sec). The effect of laser irradiation on cytokine expression was examined at 1 or 24  h post-irradiation. Cellular morphology, viability, proliferation, and cytokine expression (IL-1β, IL-6, and TNF-α) were investigated. Translocation of nuclear factor-kappa B (NF-κB) was also determined. There was a higher rate of migration in irradiated wounded cultures, and irradiated hypoxic cells showed an improvement in cellular morphology. All cell models showed an increase in proliferation. Normal wounded cells showed a decrease in apoptosis, TNF-α, and IL-1β. Diabetic wounded cells showed an increase in viability and a decrease in apoptosis and IL-1β, whereas hypoxic cells showed an increase in viability and IL-6, and a decrease in apoptosis and TNF-α. NF-κB was translocated into the nucleus post-irradiation. Phototherapy resulted in hastened wound closure, increased proliferation, and normalization of cellular function. The decrease in the different pro-inflammatory cytokines and NF-κB translocation was model and time dependent. Overall, laser irradiation resulted in a reduction in inflammatory cytokines and directed cells into the cell survival pathway.

  2. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma

    PubMed Central

    2013-01-01

    Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways. PMID:24047437

  3. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade.

    PubMed

    Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-11-01

    Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH 3 ), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH 3 , Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.

  4. The impact of eicosanoids on the crosstalk between innate and adaptive immunity: the key roles of dendritic cells.

    PubMed

    Harizi, H; Gualde, N

    2005-06-01

    The innate immune response is essentially the first line of defense against an invading pathogen. Through specialized receptors, known as pattern recognition receptors, especially Toll-like receptors, specialized cells of myeloid origin, including macrophages and dendritic cells (DCs) are able to phagocytose microorganisms and induce an innate inflammatory response. Although B and T lymphocytes recognize tissue antigens with high specificity, they are unable to initiate immune responses. The decision to activate an appropriate immune response is made by unique DC, the most professional antigen-presenting cells (APCs) which control the responses of several types of lymphocytes and play central role in the transition between innate and adaptive immunity. Increased secretion of inflammatory endogenous mediators such as cytokines and arachidonic acid-derived lipid mediators, also termed eicosanoids, can activate APC, particularly DC, which in turn induce an adaptive immune response. There is an increasing evidence that eicosanoids play an important role in connecting innate and adaptive immunity by acting on cells of both systems. Prostanoids, a major class of eicosanoids, have a great impact on inflammatory and immune responses. PGE(2) is one of the best known and most well-characterized prostanoids in terms of immunomodulation. Although cytokines are known as key regulators of immunity, eicosanoids, including PGE(2), PGD(2), LTB(4), and LTC(4), may also affect cells of immune system by modulating cytokine release, cell differentiation, survival, migration, antigen presentation, and apoptosis. By acting on various aspects of immune and inflammatory reactions, these lipid mediators emerge as key regulators of the crosstalk between innate and adaptive immunity.

  5. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.

    PubMed

    Silva, Rafaela Ribeiro; Oliveira e Silva, Davi; Fontes, Humberto Rollemberg; Alviano, Celuta Sales; Fernandes, Patricia Dias; Alviano, Daniela Sales

    2013-05-16

    Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as "gigante", was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections.

  6. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Caiyan; Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi; Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement ofmore » cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the viability and proliferation of MEFs. • MEFs sense acidic pH was not regulated by known proton-sensing GPCRs, TRPV1 or ASICs.« less

  7. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    PubMed

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  8. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA).

    PubMed

    Ramella, Martina; Boccafoschi, Francesca; Bellofatto, Kevin; Md, Antonia Follenzi; Fusaro, Luca; Boldorini, Renzo; Casella, Francesco; Porta, Carla; Settembrini, Piergiorgio; Cannas, Mario

    2017-01-01

    Progression of abdominal aortic aneurysm (AAA) is typified by chronic inflammation and extracellular matrix (ECM) degradation of the aortic wall. Vascular inflammation involves complex interactions among inflammatory cells, endothelial cells (ECs), vascular smooth muscle cells (vSMCs), and ECM. Although vascular endothelium and medial neoangiogenesis play a key role in AAA, the molecular mechanisms underlying their involvement are only partially understood. In AAA biopsies, we found increased MMP-9, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which correlated with massive medial neo-angiogenesis (C4d positive staining). In this study, we developed an in vitro model in order to characterize the role of endothelial matrix metalloproteinase-9 (e-MMP-9) as a potential trigger of medial disruption and in the inflammatory response bridging between ECs and vSMC. Lentiviral-mediated silencing of e-MMP-9 through RNA interference inhibited TNF-alpha-mediated activation of NF-κB in EA.hy926 human endothelial cells. In addition, EA.hy926 cells void of MMP-9 failed to migrate in a 3D matrix. Moreover, silenced EA.hy926 affected vSMC behavior in terms of matrix remodeling. In fact, also MMP-9 in vSMC resulted inhibited when endothelial MMP-9 was suppressed.

  9. Novel Role of Copper Transport Protein Antioxidant-1 in Neointimal Formation Following Vascular Injury

    PubMed Central

    Kohno, Takashi; Urao, Norifumi; Ashino, Takashi; Sudhahar, Varadarajan; McKinney, Ronald D.; Hamakubo, Takao; Iwanari, Hiroko; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Objective Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation following vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein Antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. Approach and Results Here we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1−/− mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor (PDGF)-induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1−/− mice show decreased perivascular macrophage infiltration in wire-injured vessels as well as thioglycollate-induced peritoneal macrophage recruitment. Conclusions Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases. PMID:23349186

  10. Expression and function of macrophage migration inhibitory factor in the pathogenesis of UV-induced cutaneous nonmelanoma skin cancer.

    PubMed

    Heise, Ruth; Vetter-Kauczok, Claudia S; Skazik, Claudia; Czaja, Katharina; Marquardt, Yvonne; Lue, Hongqi; Merk, Hans F; Bernhagen, Jürgen; Baron, Jens M

    2012-01-01

    Chronic skin exposure to ultraviolet light stimulates the production of cytokines known to be involved in the initiation of skin cancer. Recent studies in mouse models suggested a role for macrophage migration inhibitory factor (MIF) in the UVB-induced pathogenesis of nonmelanoma skin cancer (NMSC). Our studies aimed at defining the pathophysiological function of MIF in cutaneous inflammatory reactions and in the development and progression of NMSC. Immunohistochemical analysis revealed a moderate expression of MIF in normal human skin samples but an enhanced expression of this cytokine in lesional skin of patients with actinic keratosis or cutaneous SCC. Enzyme-linked immunosorbent assay studies showed a time-dependent increase in MIF secretion after a moderate single-dose UVB irradiation in NHEKs and SCC tumor cells. MIF is known to interact with CXCR2, CXCR4 and CD74. These receptors are not constitutively expressed in keratinocytes and HaCaT cells and their expression is not induced by UVB irradiation either. However, stimulation with IFNγ upregulated CD74 surface expression in these cells. Affymetrix(®) Gene Chip analysis revealed that only keratinocytes prestimulated with IFNγ are responsive to MIF. These findings indicate that MIF may be an important factor in the pathogenesis of NMSC tumorigenesis and progression in an inflammatory environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. The involvement of macrophage-derived tumour necrosis factor and lipoxygenase products on the neutrophil recruitment induced by Clostridium difficile toxin B.

    PubMed Central

    Souza, M H; Melo-Filho, A A; Rocha, M F; Lyerly, D M; Cunha, F Q; Lima, A A; Ribeiro, R A

    1997-01-01

    Clostridium difficile (Cd) toxins appear to mediate the inflammatory response in pseudomembranous colitis and/or colitis associated with the use of antibiotics. In contrast to Cd Toxin A (TxA), Cd Toxin B (TxB) has been reported not to promote fluid secretion or morphological damage in rabbits and hamsters and also does not induce neutrophil chemotaxis in vitro. However, TxB is about 1000 times more potent than TxA in stimulating the release of tumour necrosis factor-alpha (TNF-alpha) by cultured monocytes. In the present study, we investigated the ability of TxB to promote neutrophil migration into peritoneal cavities and subcutaneous air-pouches of rats. We also examined the role of resident peritoneal cells in this process as well as the inflammatory mediators involved. TxB caused a significant and dose-dependent neutrophil influx with a maximal response at 0.1 microgram/cavity after 4 hr. Depleting the peritoneal resident cell population by washing the peritoneal cavity or increasing this population by pretreating the animals with thioglycollate blocked and amplified the TxB-induced neutrophil migration, respectively. Pretreating the animals with MK886 (a lipoxygenase inhibitor), NDGA (a dual cyclo- and lipoxygenase inhibitor) or the glucocorticoid, dexamethasone, but not with indomethacin (a cyclo-oxygenase inhibitor), or BN52021 (a platelet-activating factor antagonist), inhibited the neutrophil migration evoked by TxB. Pretreatment with dexamethasone or the administration of anti-TNF-alpha serum into the air-pouches also significantly reduced the TxB-induced neutrophil migration. Supernatants from TxB-stimulated macrophages induced neutrophil migration when injected into the rat peritoneal cavity. This effect was attenuated by the addition of either MK886 or dexamethasone to the macrophage monolayer and by preincubating the supernatants with anti-TNF-alpha serum. TxB also stimulated the release of TNF-alpha by macrophages. Overall, these results suggest that TxB induces an intense neutrophil migration which is mediated by macrophage-derived TNF-alpha and lipoxygenase products. PMID:9227329

  12. Investigation of Functional Activity of Cells in Granulomatous Inflammatory Lesions from Mice with Latent Tuberculous Infection in the New Ex Vivo Model

    PubMed Central

    2013-01-01

    The new ex vivo model system measuring functional input of individual granuloma cells to formation of granulomatous inflammatory lesions in mice with latent tuberculous infection has been developed and described in the current study. Monolayer cultures of cells that migrated from individual granulomas were established in the proposed culture settings for mouse spleen and lung granulomas induced by in vivo exposure to BCG vaccine. The cellular composition of individual granulomas was analyzed. The expression of the leukocyte surface markers such as phagocytic receptors CD11b, CD11c, CD14, and CD16/CD32 and the expression of the costimulatory molecules CD80, CD83, and CD86 were tested as well as the production of proinflammatory cytokines (IFNγ and IL-1α) and growth factors (GM-CSF and FGFb) for cells of individual granulomas. The colocalization of the phagocytic receptors and costimulatory molecules in the surface microdomains of granuloma cells (with and without acid-fast BCG-mycobacteria) has also been detected. It was found that some part of cytokine macrophage producers have carried acid-fast mycobacteria. Detected modulation in dynamics of production of pro-inflammatory cytokines, growth factors, and leukocyte surface markers by granuloma cells has indicated continued processes of activation and deactivation of granuloma inflammation cells during the latent tuberculous infection progress in mice. PMID:24198843

  13. Quantification of mast cells in different stages of periodontal disease.

    PubMed

    Marjanović, Dragan; Andjelković, Zlatibor; Brkić, Zlata; Videnović, Goran; Šehalić, Meliha; Matvjenko, Vladimir; Leštarević, Snežana; Djordjević, Nadica

    2016-05-01

    Mast cells are mononuclear cells originating from bone marrow. They produce various biologically active substances, which allow them to actively participate in immune and inflammatory processes associated with periodontal disease. The study focused on distribution and density of mast cells in healthy gingiva as well as in different stages of periodontal disease. The material used for this purpose was gingival biopsies taken from 96 patients classified into 4 groups: healthy gingiva, gingivitis, initial and severe periodontal disease. Toluidine blue staining according to Spicer was utilized for identifying mast cells. Basing on our study, the density of mast cells in the gingival tissue increases with the progression of the infection, which means they are more numerous in gingivitis compared to healthy gingiva, as well as in periodontal disease compared to gingivitis. Increase in the number of mast cells in the infected gingiva can be correlated with an increased influx of inflammatory cells from blood circulation into the gingival stroma, as well as with the collagen lysis, since these cells produce substances with collagenolytic potential. Based on the distribution of mast cells, it could be concluded that in the evolution of periodontal disease there are significant dynamic alterations in migration and localization of these cells.

  14. Rhus coriaria suppresses angiogenesis, metastasis and tumor growth of breast cancer through inhibition of STAT3, NFκB and nitric oxide pathways

    PubMed Central

    El Hasasna, Hussain; Saleh, Alaaeldin; Samri, Halima Al; Athamneh, Khawlah; Attoub, Samir; Arafat, Kholoud; Benhalilou, Nehla; Alyan, Sofyan; Viallet, Jean; Dhaheri, Yusra Al; Eid, Ali; Iratni, Rabah

    2016-01-01

    Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis. PMID:26888313

  15. Neutrophils come of age in chronic inflammation

    PubMed Central

    Caielli, Simone; Banchereau, Jacques; Pascual, Virginia

    2013-01-01

    Neutrophils have long been known to participate in acute inflammation, but a role in chronic inflammatory and autoimmune diseases is now emerging. These cells are key players in the recognition and elimination of pathogens, but they also sense self components, including nucleic acids and products of sterile tissue damage. While this normally contributes to tissue repair, it can also lead to the release of highly immunogenic products that can trigger and/or amplify autoimmune pathogenic loops. Understanding the mechanisms that underlie neutrophil activation, migration, survival and their various forms of death in health and disease might provide us with new approaches to treat chronic inflammatory conditions. PMID:23127555

  16. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models

    PubMed Central

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation. PMID:28465628

  17. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models.

    PubMed

    Jones, Daniel P; True, Harry D; Patel, Jyoti

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.

  18. Role of lipid phosphate phosphatase 3 in human aortic endothelial cell function

    PubMed Central

    Touat-Hamici, Zahia; Weidmann, Henri; Blum, Yuna; Proust, Carole; Durand, Hervé; Iannacci, Francesca; Codoni, Veronica; Gaignard, Pauline; Thérond, Patrice; Civelek, Mete; Karabina, Sonia A.; Lusis, Aldons J.; Cambien, François; Ninio, Ewa

    2016-01-01

    Aims Lipid phosphate phosphatase 3; type 2 phosphatidic acid phosphatase β (LPP3; PPAP2B) is a transmembrane protein dephosphorylating and thereby terminating signalling of lipid substrates including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Human LPP3 possesses a cell adhesion motif that allows interaction with integrins. A polymorphism (rs17114036) in PPAP2B is associated with coronary artery disease, which prompted us to investigate the possible role of LPP3 in human endothelial dysfunction, a condition promoting atherosclerosis. Methods and results To study the role of LPP3 in endothelial cells we used human primary aortic endothelial cells (HAECs) in which LPP3 was silenced or overexpressed using either wild type or mutated cDNA constructs. LPP3 silencing in HAECs enhanced secretion of inflammatory cytokines, leucocyte adhesion, cell survival, and migration and impaired angiogenesis, whereas wild-type LPP3 overexpression reversed these effects and induced apoptosis. We also demonstrated that LPP3 expression was negatively correlated with vascular endothelial growth factor expression. Mutations in either the catalytic or the arginine-glycine-aspartate (RGD) domains impaired endothelial cell function and pharmacological inhibition of S1P or LPA restored it. LPA was not secreted in HAECs under silencing or overexpressing LPP3. However, the intra- and extra-cellular levels of S1P tended to be correlated with LPP3 expression, indicating that S1P is probably degraded by LPP3. Conclusions We demonstrated that LPP3 is a negative regulator of inflammatory cytokines, leucocyte adhesion, cell survival, and migration in HAECs, suggesting a protective role of LPP3 against endothelial dysfunction in humans. Both the catalytic and the RGD functional domains were involved and S1P, but not LPA, might be the endogenous substrate of LPP3. PMID:27694435

  19. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients

    PubMed Central

    Garcia, Cristiana C.; Tavares, Luciana P.; Dias, Ana Carolina F.; Kehdy, Fernanda; Alvarado-Arnez, Lucia Elena; Queiroz-Junior, Celso M.; Galvão, Izabela; Lima, Braulio H.; Matos, Aline R.; Gonçalves, Ana Paula F.; Soriani, Frederico M.; Moraes, Milton O.; Marques, João T.; Siqueira, Marilda M.; Machado, Alexandre M. V.; Sousa, Lirlândia P.; Russo, Remo C.; Teixeira, Mauro M.

    2018-01-01

    Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs), rs1129293, rs17847825, and rs2230460. We observed that SNPs rs17847825 and rs2230460 (A and T alleles, respectively) were significantly associated with protection from severe disease using the recessive model in patients infected with influenza A(H1N1)pdm09. Altogether, our results suggest that PI3Kγ is crucial in balancing antiviral and inflammatory responses to IAV infection.

  20. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms.

    PubMed

    Alexander, Matthew R; Murgai, Meera; Moehle, Christopher W; Owens, Gary K

    2012-04-02

    Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.

  1. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis

    PubMed Central

    Kryczka, Jakub

    2017-01-01

    Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633

  2. Fluctuations in Blood Marginal Zone B-Cell Frequencies May Reflect Migratory Patterns Associated with HIV-1 Disease Progression Status

    PubMed Central

    Poudrier, Johanne; Roger, Michel

    2016-01-01

    We have previously shown that overexpression of BLyS/BAFF was associated with increased relative frequencies of innate “precursor” marginal zone (MZ)-like B-cells in the blood of HIV-1-infected rapid and classic progressors. However, along with relatively normal BLyS/BAFF expression levels, these cells remain unaltered in elite-controllers (EC), rather, percentages of more mature MZ-like B-cells are decreased in the blood of these individuals. Fluctuations in frequencies of blood MZ-like B-cell populations may reflect migratory patterns associated with disease progression status, suggesting an important role for these cells in HIV-1 pathogenesis. We have therefore longitudinally measured plasma levels of B-tropic chemokines by ELISA-based technology as well as their ligands by flow-cytometry on blood B-cell populations of HIV-1-infected individuals with different rates of disease progression and uninfected controls. Migration potential of B-cell populations from these individuals were determined by chemotaxis assays. We found important modulations of CXCL13-CXCR5, CXCL12-CXCR4/CXCR7, CCL20-CCR6 and CCL25-CCR9 chemokine-axes and increased cell migration patterns in HIV progressors. Interestingly, frequencies of CCR6 expressing cells were significantly elevated within the precursor MZ-like population, consistent with increased migration in response to CCL20. Although we found little modulation of chemokine-axes in EC, cell migration was greater than that observed for uninfected controls, especially for MZ-like B-cells. Overall the immune response against HIV-1 may involve recruitment of MZ-like B-cells to peripheral sites. Moreover, our findings suggest that “regulated” attraction of these cells in a preserved BLyS/BAFF non-inflammatory environment, such as encountered in EC could be beneficial to the battle and even control of HIV. PMID:27203285

  3. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    NASA Astrophysics Data System (ADS)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-02-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  4. Functional Effects of TGF-beta1 on Mesenchymal Stem Cell Mobilization in Cockroach Allergen Induced Asthma

    PubMed Central

    Xian, Lingling; Li, Changjun; Xu, Ting; Plunkett, Beverly; Huang, Shau-Ku; Wan, Mei; Cao, Xu

    2014-01-01

    Mesenchymal stem cells (MSCs) have been suggested to participate in immune regulation and airway repair/remodeling. Transforming growth factor β1 (TGFβ1) is critical in the recruitment of stem/progenitor cells for tissue repair, remodeling and cell differentiation. In this study, we sought to investigate the role of TGFβ1 in MSC migration in allergic asthma. We examined nestin expression (a marker for MSCs) and TGFβ1 signaling activation in airways in cockroach allergen (CRE) induced mouse models. Compared with control mice, there were increased nestin+ cells in airways, and higher levels of active TGFβ1 in serum and p-Smad2/3 expression in lungs of CRE-treated mice. Increased activation of TGFβ1 signaling was also found in CRE-treated MSCs. We then assessed MSC migration induced by conditioned medium (ECM) from CRE-challenged human epithelium in air/liquid interface (ALI) culture in Transwell assays. MSC migration was stimulated by ECM, but was significantly inhibited by either TGFβ1 neutralizing antibody or TβR1 inhibitor. Intriguingly, increased migration of MSCs from blood and bone marrow to the airway was also observed after systemic injection of GFP+-MSCs, and from bone marrow of Nes-GFP mice following CRE challenge. Furthermore, TGFβ1 neutralizing antibody inhibited the CRE-induced MSC recruitment, but promoted airway inflammation. Finally, we investigated the role of MSCs in modulating CRE induced T cell response, and found that MSCs significantly inhibited CRE-induced inflammatory cytokine secretion (IL-4, IL13, IL17 and IFN-γ) by CD4+ T cells. These results suggest that TGFβ1 may be a key pro-migratory factor in recruiting MSCs to the airways in mouse models of asthma. PMID:24711618

  5. New phytopharmaceutical agent CJ-20001 modulates stress-induced inflammatory infiltration into gastric mucosa.

    PubMed

    Yeo, Marie; Kim, Dong-Kyu; Cho, Sung Won; Lee, Song-Jin; Cho, Il-Hwan; Song, Geun-Seog; Moon, Byoung-Seok

    2012-05-01

    CJ-20001 is a phytopharmaceutical agent and currently being investigated in a Phase II trial for the treatment of acute and chronic gastritis patients in Korea. In this study we addressed the protective effects of CJ-20001 against water immersion restraint stress (WIRS)-induced gastric injury in rats and studied the underlying mechanisms. To evaluate the protective effect of CJ-20001 on stress-induced gastric lesions, rats were exposed to water immersion restraint stress. Inflammatory infiltration into gastric mucosa was examined by immunohistochemistry and in vitro invasion assay. Expression of proinflammatory cytokines was detected with reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with CJ-20001 dose-dependently attenuated the WIRS-induced gastric lesions as demonstrated by gross pathology and histology. WIRS increased infiltration of mast cells and macrophages into the gastric mucosa and submucosal layer, whereas the inflammatory infiltration was markedly inhibited by CJ-20001 administration. An in vitro cell invasion assay showed that treatment with CJ-20001 decreased the migration of macrophages. CJ-20001 suppressed the expression of proinflammatory cytokines, IL-18, IP-10 and GRO/KC, in lipopolysaccharides (LPS)-treated macrophages. These data suggest that novel phytopharmaceutical agent CJ-20001 has the potent anti-inflammatory properties through inhibition of inflammatory infiltration in psycho-physiological stress-induced gastric injury.

  6. Regulation of Inflammatory Gene Expression in PBMCs by Immunostimulatory Botanicals

    PubMed Central

    Denzler, Karen L.; Waters, Robert; Jacobs, Bertram L.; Rochon, Yvan; Langland, Jeffrey O.

    2010-01-01

    Many hundreds of botanicals are used in complementary and alternative medicine for therapeutic use as antimicrobials and immune stimulators. While there exists many centuries of anecdotal evidence and few clinical studies on the activity and efficacy of these botanicals, limited scientific evidence exists on the ability of these botanicals to modulate the immune and inflammatory responses. Using botanogenomics (or herbogenomics), this study provides novel insight into inflammatory genes which are induced in peripheral blood mononuclear cells following treatment with immunomodulatory botanical extracts. These results may suggest putative genes involved in the physiological responses thought to occur following administration of these botanical extracts. Using extracts from immunostimulatory herbs (Astragalus membranaceus, Sambucus cerulea, Andrographis paniculata) and an immunosuppressive herb (Urtica dioica), the data presented supports previous cytokine studies on these herbs as well as identifying additional genes which may be involved in immune cell activation and migration and various inflammatory responses, including wound healing, angiogenesis, and blood pressure modulation. Additionally, we report the presence of lipopolysaccharide in medicinally prepared extracts of these herbs which is theorized to be a natural and active component of the immunostimulatory herbal extracts. The data presented provides a more extensive picture on how these herbs may be mediating their biological effects on the immune and inflammatory responses. PMID:20838436

  7. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts.

    PubMed

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects.

  8. Boron and Poloxamer (F68 and F127) Containing Hydrogel Formulation for Burn Wound Healing.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Karakuş, Emre; Halıcı, Zekai; Topçu, Atila; Demirci, Elif; Sahin, Fikrettin

    2015-11-01

    Burn injuries, the most common and destructive forms of wounds, are generally accompanied with life-threatening infections, inflammation, reduced angiogenesis, inadequate extracellular matrix production, and lack of growth factor stimulation. In the current study, a new antimicrobial carbopol-based hydrogel formulated with boron and pluronic block copolymers was evaluated for its healing activity using in vitro cell culture techniques and an experimental burn model. Cell viability, gene expression, and wound healing assays showed that gel formulation increased wound healing potential. In vitro tube-like structure formation and histopathological examinations revealed that gel not only increased wound closure by fibroblastic cell activity, but also induced vascularization process. Moreover, gel formulation exerted remarkable antimicrobial effects against bacteria, yeast, and fungi. Migration, angiogenesis, and contraction-related protein expressions including collagen, α-smooth muscle actin, transforming growth factor-β1, vimentin, and vascular endothelial growth factor were considerably enhanced in gel-treated groups. Macrophage-specific antigen showed an oscillating expression at the burn wounds, indicating the role of initial macrophage migration to the wound site and reduced inflammation phase. This is the first study indicating that boron containing hydrogel is able to heal burn wounds effectively. The formulation promoted burn wound healing via complex mechanisms including stimulation of cell migration, growth factor expression, inflammatory response, and vascularization.

  9. Visualization of Macrophage Recruitment to Inflammation Lesions using Highly Sensitive and Stable Radionuclide-Embedded Gold Nanoparticles as a Nuclear Bio-Imaging Platform

    PubMed Central

    Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun

    2017-01-01

    Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164

  10. Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway.

    PubMed

    Barreca, Maria M; Spinello, Walter; Cavalieri, Vincenzo; Turturici, Giuseppina; Sconzo, Gabriella; Kaur, Punit; Tinnirello, Rosaria; Asea, Alexzander A A; Geraci, Fabiana

    2017-07-01

    Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Deep hypothermia therapy attenuates LPS-induced microglia neuroinflammation via the STAT3 pathway.

    PubMed

    Tong, G; Krauss, A; Mochner, J; Wollersheim, S; Soltani, P; Berger, F; Schmitt, K R L

    2017-09-01

    Deep hypothermia therapy (HT) is a standard method for neuroprotection during complex pediatric cardiac surgery involving extracorporeal circulation and deep hypothermic cardiac arrest. The procedure, however, can provoke systemic inflammatory response syndrome (SIRS), one of the most severe side effects associated with pediatric cardiac surgery. To date, the cellular inflammatory mechanisms induced by deep HT remain to be elucidated. Therefore, we investigated the effects of deep HT (17°C) and rewarming on the inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 murine microglia. Additionally, we also investigated the application of Stattic, a signal transducer and activator of transcription 3 (STAT3) activation inhibitor, as an alternative to physical cooling to attenuate the LPS-induced inflammatory response. Deep HT had no cytotoxic effect but attenuated microglia migration. IκBα degradation was delayed by deep HT resulting in the attenuation of pNF-κB p65 migration into the nucleus and significant decreases in pro-inflammatory IL-6, TNF-α, and MCP-1 expressions and secretions, as well as decreased anti-inflammatory IL-10 and SOCS3 expressions. Additionally, pStat3 was significantly down regulated under deep hypothermic conditions, also corresponding with the significant reduction in IL-6 and TNF-α expressions. Similar to the effects of HT, the application of Stattic under normothermic conditions resulted in significantly reduced IL-6 and TNF-α expressions. Moreover, attenuation of the inflammatory response resulted in decreased apoptosis in a direct co-culture of microglia and neurons. HT reduces the inflammatory response in LPS-stimulated BV-2 microglial cells, alluding to a possible mechanism of therapeutic hypothermia-induced neuroprotection. In the future, attenuating the phospho-STAT3 pathway may lead to the development of a neuroprotectant with greater clinical efficacy. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Stimulation of Skin and Wound Fibroblast Migration by Mesenchymal Stem Cells Derived from Normal Donors and Chronic Wound Patients

    PubMed Central

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne

    2012-01-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal. PMID:23197781

  14. NEPRILYSIN REGULATES PULMONARY ARTERY SMOOTH MUSCLE CELL PHENOTYPE THROUGH A PDGF RECEPTOR DEPENDENT MECHANISM

    PubMed Central

    Karoor, Vijaya; Oka, Masahiko; Walchak, Sandra J.; Hersh, Louis B.; Miller, York E.; Dempsey, Edward C.

    2013-01-01

    Reduced neprilysin (NEP), a cell surface metallopeptidase, which cleaves and inactivates pro-inflammatory and vasoactive peptides, predisposes the lung vasculature to exaggerated remodeling in response to hypoxia. We hypothesize that loss of NEP in pulmonary artery smooth muscle cells (PASMCs) results in increased migration and proliferation. PASMCs isolated from NEP−/− mice exhibited enhanced migration and proliferation in response to serum and PDGF, which was attenuated by NEP replacement. Inhibition of NEP by overexpression of a peptidase dead mutant or knockdown by siRNA in NEP+/+ cells increased migration and proliferation. Loss of NEP led to an increase in Src kinase activity and phosphorylation of PTEN resulting in activation of the PDGF receptor (PDGFR). Knockdown of Src kinase with siRNA or inhibition with PP2 a src kinase inhibitor decreased PDGFRY751 phosphorylation and attenuated migration and proliferation in NEP−/− SMCs. NEP substrates, endothelin-1(ET-1) or fibroblast growth factor-2 (FGF2), increased activation of Src and PDGFR in NEP+/+ cells, which was decreased by an ETAR antagonist, neutralizing antibody to FGF2 and Src inhibitor. Similar to the observations in PASMCs levels of p-PDGFR, p-Src and p-PTEN were elevated in NEP−/− lungs. ETAR antagonist also attenuated the enhanced responses in NEP−/−PASMCs and lungs. Taken together our results suggest a novel mechanism for regulation of PDGFR signaling by NEP substrates involving Src and PTEN. Strategies that increase lung NEP activity/expression or target key downstream effectors, like Src, PTEN or PDGFR, may be of therapeutic benefit in pulmonary vascular disease. PMID:23381789

  15. Stimulation of skin and wound fibroblast migration by mesenchymal stem cells derived from normal donors and chronic wound patients.

    PubMed

    Rodriguez-Menocal, Luis; Salgado, Marcela; Ford, Dwayne; Van Badiavas, Evangelos

    2012-03-01

    Chronic wounds continue to be a major cause of morbidity for patients and an economic burden on the health care system. Novel therapeutic approaches to improved wound healing will need, however, to address cellular changes induced by a number of systemic comorbidities seen in chronic wound patients, such as diabetes, chronic renal failure, and arterial or venous insufficiency. These effects likely include impaired inflammatory cell migration, reduced growth factor production, and poor tissue remodeling. The multifunctional properties of bone marrow-derived mesenchymal stem cells (MSCs), including their ability to differentiate into various cell types and capacity to secrete factors important in accelerating healing of cutaneous wounds, have made MSCs a promising agent for tissue repair and regeneration. In this study we have used an in vitro scratch assay procedure incorporating labeled MSCs and fibroblasts derived from normal donors and chronic wound patients in order to characterize the induction of mobilization when these cells are mixed. A modified Boyden chamber assay was also used to examine the effect of soluble factors on fibroblast migration. These studies suggest that MSCs play a role in skin wound closure by affecting dermal fibroblast migration in a dose-dependent manner. Deficiencies were noted, however, in chronic wound patient fibroblasts and MSCs as compared with those derived from normal donors. These findings provide a foundation to develop therapies targeted specifically to the use of bone marrow-derived MSCs in wound healing and may provide insight into why some wounds do not heal.

  16. Characterization of synthetic lung surfactant activity against proinflammatory cytokines in human monocytes.

    PubMed

    Otsubo, Eiji; Irimajiri, Kiyohiro; Takei, Tsunetomo; Nomura, Masato

    2002-03-01

    Our previous study demonstrated that the smallest synthetic peptide with the sequence CPVHLKRLLLLLLLLLLLLLLLL, SP-CL16(6-28), admixed with phospholipid (synthetic lung surfactant, SLS) showed strong surface activity. In this study, we attempted to develop a dual-type surfactant with both anti inflammatory and surface activities. SP-CL16(6-28) was first chemically synthesized and then purified for use by centrifugal partition chromatography. A mixture of SP-CL16(6-28) and phospholipid complex was tested for anti inflammatory activity using the human monocyte cell line THP-1. Whether the suppression of tumor necrosis factor-alpha (TNF-a), interleukin (IL)-8, IL-6, IL-1beta, and macrophage migration inhibitory factor (MIF) was reduced by lipopolysaccharide (LPS) in monocytes was examined. Levels of these cytokines were measured by enzyme-linked immunosorbent assay. It was found that SLS significantly and dose dependently inhibited the secretion of TNF-alpha by THP-1 cells following stimulation with LPS. Dipalmitoylphosphatidylcoline did not inhibit the release of cytokines. These findings suggest that SLS has anti inflammatory activity. Therefore it should be possible to develop a SLS with both anti inflammatory activity and surface activity.

  17. Polysaccharides from Ganoderma lucidum attenuate microglia-mediated neuroinflammation and modulate microglial phagocytosis and behavioural response.

    PubMed

    Cai, Qing; Li, Yuanyuan; Pei, Gang

    2017-03-24

    Ganoderma lucidum (GL) has been widely used in Asian countries for hundreds of years to promote health and longevity. The pharmacological functions of which had been classified, including the activation of innate immune responses, suppression of tumour and modulation of cell proliferations. Effective fractions of Ganoderma lucidum polysaccharides (GLP) had already been reported to regulate the immune system. Nevertheless, the role of GLP in the microglia-mediated neuroinflammation has not been sufficiently elucidated. Further, GLP effect on microglial behavioural modulations in correlation with the inflammatory responses remains to be unravelled. The aim of this work was to quantitatively analyse the contributions of GLP on microglia. The BV2 microglia and primary mouse microglia were stimulated by lipopolysaccharides (LPS) and amyloid beta 42 (Aβ 42 ) oligomer, respectively. Investigation on the effect of GLP was carried by quantitative determination of the microglial pro- and anti-inflammatory cytokine expressions and behavioural modulations including migration, morphology and phagocytosis. Analysis of microglial morphology and phagocytosis modulations was confirmed in the zebrafish brain. Quantitative results revealed that GLP down-regulates LPS- or Aβ-induced pro-inflammatory cytokines and promotes anti-inflammatory cytokine expressions in BV-2 and primary microglia. In addition, GLP attenuates inflammation-related microglial migration, morphological alterations and phagocytosis probabilities. We also showed that modulations of microglial behavioural responses were associated with MCP-1 and C1q expressions. Overall, our study provides an insight into the GLP regulation of LPS- and Aβ-induced neuroinflammation and serves an implication that the neuroprotective function of GLP might be achieved through modulation of microglial inflammatory and behavioural responses.

  18. Progression of Luminal Breast Tumors Is Promoted by Ménage à Trois between the Inflammatory Cytokine TNFα and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment

    PubMed Central

    Weitzenfeld, Polina; Meron, Nurit; Leibovich-Rivkin, Tal; Meshel, Tsipi

    2013-01-01

    Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNFα on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNFα and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNFα potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and β1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNFα can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy. PMID:24369447

  19. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish

    PubMed Central

    Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil

    2007-01-01

    Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879

  20. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas

    PubMed Central

    Butcher, Matthew J.; Wu, Chih-I; Waseem, Tayab

    2016-01-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A+ cells play a role in this disease. Although elevated number of CD4+ IL-17A+ (Th17) and IL-17A+TCRγδ+ T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A+ T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 GFP/GFP) apolipoprotein E-deficient (Apoe −/−) mice to investigate the involvement of CXCR6 in the recruitment IL-17A+ T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A+TCRγδ+ T cells within aged Cxcr6 GFP/GFP Apoe −/− aortas, in comparison with age-matched Cxcr6 GFP/+ Apoe −/− aortas. Although CXCR6-sufficient IL-17A+ T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A+ T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 GFP/GFP Apoe −/− IL-17A+ T cells into the aortas of Apoe −/− recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A+TCRγδ+ T-cell recruitment into atherosclerotic lesions. PMID:26614640

  1. CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas.

    PubMed

    Butcher, Matthew J; Wu, Chih-I; Waseem, Tayab; Galkina, Elena V

    2016-05-01

    The adaptive immune response is involved in the development and progression of atherosclerosis and IL-17A(+) cells play a role in this disease. Although elevated number of CD4(+) IL-17A(+) (Th17) and IL-17A(+)TCRγδ(+) T cells are found within murine atherosclerotic aortas and human plaques, the mechanisms governing IL-17A(+) T-cell migration to atherosclerotic lesions are unclear. The chemokine receptor CXCR6 is expressed on several T-cell subsets and plays a pro-atherogenic role in atherosclerosis. Here, we used CXCR6-deficient (Cxcr6 (GFP/GFP) ) apolipoprotein E-deficient (Apoe (-/-) ) mice to investigate the involvement of CXCR6 in the recruitment IL-17A(+) T cells to atherosclerotic aortas. Flow cytometric analyses revealed reductions in Th17 and IL-17A(+)TCRγδ(+) T cells within aged Cxcr6 (GFP/GFP) Apoe (-/-) aortas, in comparison with age-matched Cxcr6 (GFP/+) Apoe (-/-) aortas. Although CXCR6-sufficient IL-17A(+) T cells efficiently migrated toward CXCL16, the migration of CXCR6-deficient IL-17A(+) T cells was abolished in transwell assays. Importantly, the recruitment of Cxcr6 (GFP/GFP) Apoe (-/-) IL-17A(+) T cells into the aortas of Apoe (-/-) recipients was markedly reduced in short-term adoptive transfer experiments. Altogether these results demonstrate an important role of CXCR6 in the regulation of pathological Th17 and IL-17A(+)TCRγδ(+) T-cell recruitment into atherosclerotic lesions. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. T-bet promotes the accumulation of encephalitogenic Th17 cells in the CNS.

    PubMed

    Grifka-Walk, Heather M; Segal, Benjamin M

    2017-03-15

    T-bet enhances the encephalitogenicity of myelin-reactive CD4 + T cells, however its mechanism of action is unknown. In this study we show that T-bet confers a competitive advantage for the accumulation of IL-23 conditioned Th17 effector cells in the central nervous system (CNS). Impaired migration of T-bet deficient Th17 cells to the CNS is associated with altered expression of adhesion molecules and chemokine receptors on their cell surface. Our data suggest that therapeutic targeting of T-bet in individuals with Th17-mediated autoimmune demyelinating disease may inhibit inflammatory infiltration of the CNS and, hence, clinical exacerbations. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Macrophage in the Development of Experimental Crescentic Glomerulonephritis

    PubMed Central

    Thomson, Napier M.; Holdsworth, Stephen R.; Glasgow, Eric F.; Atkins, Robert C.

    1979-01-01

    The role played by the macrophage in the development of injury in rabbit nephrotoxic nephritis (NTN) has been assessed by electron microscopy and glomerular culture of renal tissue obtained by several biopsies during the course of the disease. These observations have been correlated with the other immune, cellular, and biochemical events occurring in the glomerulus, ie, deposition of immunoglobulin and complement, proteinuria, polymorphonuclear leukocyte (PMN) exudation, fibrin deposition, crescent formation, and renal failure. A biphasic macrophage accumulation was detected, corresponding to the heterologous and autologous phases of the disease. In the autologous or crescentic phase, macrophages accumulated within the glomerular tuft from Day 5; their appearance coincided with the accumulation of PMN and development of proteinuria. Fibrin deposition in Bowman's space, which commenced on Days 6 and 7, was rapidly followed by the migration of macrophages from the glomeruli into Bowman's space. Within Bowman's space, macrophages were observed to phagocytose fibrin, transform into epithelioid and giant cells, and accumulate to form a substantial proportion of the cells forming the crescent. The inflammatory process of PMN exudation, macrophage accumulation, fibrin deposition, and crescent formation and the degree of renal failure reached a maximum by Days 12 to 14. Thereafter, resolution of the inflammatory process occurred so that by Day 40 macrophages had disappeared from the glomeruli. However, varying degrees of glomerular damage and renal failure persisted, occurring largely as a result of glomerulosclerosis and sclerosis of crescents. The tissue culture studies also demonstrated mesangial cell proliferation during the inflammatory process but did not show any abnormality of epithelial cell activity. This study demonstrates that the macrophages participate in NTN by accumulating in damaged glomeruli then migrating into Bowman's space (probably in response to fibrin deposition) where they undergo granulomatous transformation and accumulate, contributing to crescent formation. ImagesFigure 2Figure 3Figure 4Figure 1 PMID:371409

  4. Cancer cell: using inflammation to invade the host

    PubMed Central

    Arias, José-Ignacio; Aller, María-Angeles; Arias, Jaime

    2007-01-01

    Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T), node (N) and metastasis (M). However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic), a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces. PMID:17437633

  5. Cytokines, hepatic cell profiling and cell interactions during bone marrow cell therapy for liver fibrosis in cholestatic mice

    PubMed Central

    Pinheiro, Daphne; Leirós, Luana; Dáu, Juliana Barbosa Torreão; Stumbo, Ana Carolina; Thole, Alessandra Alves; Cortez, Erika Afonso Costa; Mandarim-de-Lacerda, Carlos Alberto; de Carvalho, Lais

    2017-01-01

    Bone marrow cells (BMC) migrate to the injured liver after transplantation, contributing to regeneration through multiple pathways, but mechanisms involved are unclear. This work aimed to study BMC migration, characterize cytokine profile, cell populations and proliferation in mice with liver fibrosis transplanted with GFP+ BMC. Confocal microscopy analysis showed GFP+ BMC near regions expressing HGF and SDF-1 in the fibrotic liver. Impaired liver cell proliferation in fibrotic groups was restored after BMC transplantation. Regarding total cell populations, there was a significant reduction in CD68+ cells and increased Ly6G+ cells in transplanted fibrotic group. BMC contributed to the total populations of CD144, CD11b and Ly6G cells in the fibrotic liver, related to an increment of anti-fibrotic cytokines (IL-10, IL-13, IFN-γ and HGF) and reduction of pro-inflammatory cytokines (IL-17A and IL-6). Therefore, HGF and SDF-1 may represent important chemoattractants for transplanted BMC in the injured liver, where these cells can give rise to populations of extrahepatic macrophages, neutrophils and endothelial progenitor cells that can interact synergistically with other liver cells towards the modulation of an anti-fibrotic cytokine profile promoting the onset of liver regeneration. PMID:29176797

  6. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.

    PubMed

    Duan, Jianhui; Xiaokaiti, Yilixiati; Fan, Shengjun; Pan, Yan; Li, Xin; Li, Xuejun

    2017-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors of the digestive system, but the mechanisms of its development and progression are unclear. Inflammation is thought to be fundamental to pancreatic cancer development and caffeic acid phenethyl ester (CAPE) is an active component of honey bee resin or propolis with anti-inflammatory and anticancer activities. We investigated the inhibitory effects of CAPE on cell growth and migration induced by human neutrophil elastase (HNE) and report that HNE induced cancer cell migration at low doses and growth at higher doses. In contrast, lower CAPE doses inhibited migration and higher doses of CAPE inhibited the growth induced by HNE. HNE activity was significantly inhibited by CAPE (7.5-120 µM). Using quantitative real-time PCR and western blotting, we observed that CAPE (18-60 µM) did not affect transcription and translation of α1-antitrypsin (α1-AT), an endogenous HNE inhibitor. However, in an in silico drug target docking model, we found that CAPE directly bound to the binding pocket of HNE (25.66 kcal/mol) according to CDOCKER, and the residue of the catalytic site stabilized the interaction between CAPE and HNE as evidenced by molecular dynamic simulation. Response unit (RU) values of surface plasmon resonance (SPR) significantly increased with incremental CAPE doses (7.5-120 µM), indicating that CAPE could directly bind to HNE in a concentration-dependent manner. Thus, CAPE is an effective inhibitor of HNE via direct interaction whereby it inhibits the migration and growth of PANC-1 cells in a dose-dependent manner.

  7. Myeloid Cell 5-Lipoxygenase Activating Protein Modulates the Response to Vascular Injury

    PubMed Central

    Yu, Zhou; Ricciotti, Emanuela; Miwa, Takashi; Liu, Shulin; Ihida-Stansbury, Kaori; Landersberg, Gavin; Jones, Peter L.; Scalia, Rosario; Song, Wenchao; Assoian, Richard K.; FitzGerald, Garret A.

    2013-01-01

    Rationale Human genetics have implicated the 5- lipoxygenase (5-LO) enzyme in the pathogenesis of cardiovascular disease and an inhibitor of the 5-LO activating protein (FLAP) is in clinical development for asthma. Objective Here we determined whether FLAP deletion modifies the response to vascular injury. Methods and Results Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout (FLAP KO) mice and wild type (WT) controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP KOs while endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine (BrdU) incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP KO macrophages was depressed and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B4 (LTB4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C (TNC), which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin and upregulation of vascular cell adhesion molecule (VCAM) -1 was also suppressed in FLAP KO mice. Transplantation of FLAP replete myeloid cells rescued the proliferative response to vascular injury. Conclusion Expression of lesional FLAP in myeloid cells promotes LTB4 dependent VSMC phenotypic modulation, intimal migration and proliferation. PMID:23250985

  8. Calcium oxalate crystals increased enolase-1 secretion from renal tubular cells that subsequently enhanced crystal and monocyte invasion through renal interstitium.

    PubMed

    Chiangjong, Wararat; Thongboonkerd, Visith

    2016-04-05

    Calcium oxalate monohydrate (COM) crystals cause kidney stone disease by still unclear mechanisms. The present study aimed to characterize changes in secretion of proteins from basolateral compartment of renal tubular epithelial cells after exposure to COM crystals and then correlated them with the stone pathogenesis. Polarized MDCK cells were cultivated in serum-free medium with or without 100 μg/ml COM crystals for 20 h. Secreted proteins collected from the lower chamber (basolateral compartment) were then resolved in 2-D gels and visualized by Deep Purple stain (n = 5 gels/group). Spot matching and intensity analysis revealed six protein spots with significantly altered levels in COM-treated samples. These proteins were then identified by tandem mass spectrometry (Q-TOF MS/MS), including enolase-1, phosphoglycerate mutase-1, actinin, 14-3-3 protein epsilon, alpha-tubulin 2, and ubiquitin-activating enzyme E1. The increased enolase-1 level was confirmed by Western blot analysis. Functional analysis revealed that enolase-1 dramatically induced COM crystal invasion through ECM migrating chamber in a dose-dependent manner. Moreover, enolase-1 bound onto U937 monocytic cell surface markedly enhanced cell migration through the ECM migrating chamber. In summary, our data indicated that the increased secretory enolase-1 induced by COM crystals played an important role in crystal invasion and inflammatory process in renal interstitium.

  9. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells.

    PubMed

    Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul

    2012-01-01

    KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Consistent with the inhibitory effect on PGE(2), KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  10. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    PubMed Central

    Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul

    2012-01-01

    KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS. PMID:23243447

  11. MK2 inhibitor reduces alkali burn-induced inflammation in rat cornea

    PubMed Central

    Chen, Yanfeng; Yang, Wenzhao; Zhang, Xiaobo; Yang, Shu; Peng, Gao; Wu, Ting; Zhou, Yueping; Huang, Caihong; Reinach, Peter S.; Li, Wei; Liu, Zuguo

    2016-01-01

    MK2 activation by p38 MAPK selectively induces inflammation in various diseases. We determined if a MK2 inhibitor (MK2i), improves cornea wound healing by inhibiting inflammation caused by burning rat corneas with alkali. Our study, for the first time, demonstrated that MK2i inhibited alkali burn-induced MK2 activation as well as rises in inflammation based on: a) blunting rises in inflammatory index, inflammatory cell infiltration, ED1+ macrophage and PMN+ neutrophil infiltration; b) suppressing IL-6 and IL-1β gene expression along with those of macrophage inflammatory protein-1α (MIP-1α), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1); c) reducing angiogenic gene expression levels and neovascularization (NV) whereas anti-angiogenic PEDF levels increased. In addition, this study found that MK2i did not affect human corneal epithelial cell (HCEC) proliferation and migration and had no detectable side effects on ocular surface integrity. Taken together, MK2i selectively inhibited alkali burn-induced corneal inflammation by blocking MK2 activation, these effects have clinical relevance in the treatment of inflammation related ocular surface diseases. PMID:27329698

  12. Microalgae-derived oxylipins decrease inflammatory mediators by regulating the subcellular location of NFκB and PPAR-γ.

    PubMed

    Ávila-Román, Javier; Talero, Elena; de Los Reyes, Carolina; García-Mauriño, Sofía; Motilva, Virginia

    2018-02-01

    Oxylipins (OXLs) are bioactive molecules generated by the oxidation of fatty acids that promote the resolution of acute inflammation and prevent chronic inflammatory processes through molecular mechanisms that are not well known. We have previously reported the anti-inflammatory activity of microalgae-derived OXLs and OXL-containing biomass in two inflammatory bowel disease (IBD) models: 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis and TNBS-induced recurrent colitis. In this study, we examined the in vitro anti-inflammatory mechanism of action of the most abundant OXLs isolated from Chlamydomonas debaryana (13S-HOTE and 13S-HODE) and Nannochloropsis gaditana (15S-HEPE). These OXLs decreased IL-1β and IL-6 pro-inflammatory cytokines production as well as iNOS and COX-2 expression levels in THP-1 macrophages. In addition, OXLs decreased IL-8 production in HT-29 colon cells, the major chemokine produced by these cells. The interaction of OXLs with NFκB and PPAR-γ signaling pathways was studied by confocal microscopy. In THP-1 macrophages and HT-29 colon cells, stimulated by LPS and TNFα respectively, a pre-treatment with 13S-HOTE, 13S-HODE and 15S-HEPE (100μM) resulted in a lower nuclear presence of NFκB in both cell lines. The study of the subcellular localization of PPAR-γ showed that the treatment of THP-1 and HT-29 cells with these OXLs caused the migration of PPAR-γ into the nucleus. Colocalization analysis of both transcription factors in LPS-stimulated THP-1 macrophages showed that the pre-treatment with 13S-HOTE, 13S-HODE or 15S-HEPE lowered nuclear colocalization similar to control value, and increased cytosolic localization above control level. These results indicate that these OXLs could act as agonist of PPAR-γ and consequently inhibit NFκB signaling pathway activation, thus lowering the production of inflammatory markers, highlighting the therapeutic potential of these OXLs in inflammatory diseases such as IBD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response

    PubMed Central

    De Marco, Paola; Lappano, Rosamaria; Francesco, Ernestina Marianna De; Cirillo, Francesca; Pupo, Marco; Avino, Silvia; Vivacqua, Adele; Abonante, Sergio; Picard, Didier; Maggiolini, Marcello

    2016-01-01

    Cancer-associated fibroblasts (CAFs) contribute to the malignant aggressiveness through secreted factors like IL1β, which may drive pro-tumorigenic inflammatory phenotypes mainly acting via the cognate receptor named IL1R1. Here, we demonstrate that signalling mediated by the G protein estrogen receptor (GPER) triggers IL1β and IL1R1 expression in CAFs and breast cancer cells, respectively. Thereby, ligand-activation of GPER generates a feedforward loop coupling IL1β induction by CAFs to IL1R1 expression by cancer cells, promoting the up-regulation of IL1β/IL1R1 target genes such as PTGES, COX2, RAGE and ABCG2. This regulatory interaction between the two cell types induces migration and invasive features in breast cancer cells including fibroblastoid cytoarchitecture and F-actin reorganization. A better understanding of the mechanisms involved in the regulation of pro-inflammatory cytokines by GPER-integrated estrogen signals may be useful to target these stroma-cancer interactions. PMID:27072893

  14. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis.

    PubMed

    Wang, Di; Wang, Zhiyan; Zhang, Lili; Wang, Yi

    2017-01-01

    Atherosclerosis has been identified as a chronic inflammatory disease of the arterial vessel wall. Accumulating evidence indicates that different cells from the tunica intima, media, adventitia, and perivascular adipose tissue not only comprise the intact and normal arterial vessel wall but also participate all in the inflammatory response of atherosclerosis via multiple intricate pathways. For instance, endothelial dysfunction has historically been considered to be the initiator of the development of atherosclerosis. The migration and proliferation of smooth muscle cells also play a pivotal role in the progression of atherosclerosis. Additionally, the fibroblasts from the adventitia and adipocytes from perivascular adipose tissue have received considerable attention given their special functions that contribute to atherosclerosis. In addition, numerous types of cytokines produced by different cells from the arterial vessel wall, including endothelium-derived relaxing factors, endothelium-derived contracting factors, tumor necrosis factors, interleukin, adhesion molecules, interferon, and adventitium-derived relaxing factors, have been implicated in atherosclerosis. Herein, we summarize the possible roles of different cells from the entire arterial vessel wall in the pathogenesis of atherosclerosis.

  15. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  16. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging. © 2016 Federation of European Biochemical Societies.

  17. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease.

    PubMed

    Karuppuchamy, T; Behrens, E-H; González-Cabrera, P; Sarkisyan, G; Gima, L; Boyer, J D; Bamias, G; Jedlicka, P; Veny, M; Clark, D; Peach, R; Scott, F; Rosen, H; Rivera-Nieves, J

    2017-01-01

    The sphingosine-1-phosphate receptor-1 (S1P 1 ) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here, we examine the cell subsets that express S1P 1 in intestine using S1P 1 -eGFP mice, the regulation of S1P 1 expression in lymphocytes after administration of dextran sulfate sodium (DSS), after colitis induced by transfer of CD4 + CD45RB hi cells, and by crossing a mouse with TNF-driven ileitis with S1P 1 -eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P 1 expression. We found that not only T and B cells express S1P 1 , but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P 1 expression, while the enzymes that control tissue S1P levels in mice and humans with inflammatory bowel disease (IBD) were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T-cell velocity and induced S1P 1 degradation and retention of Naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P 1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function.

  18. Deletion of calponin 2 in macrophages attenuates the severity of inflammatory arthritis in mice.

    PubMed

    Huang, Qi-Quan; Hossain, M Moazzem; Sun, Wen; Xing, Lianping; Pope, Richard M; Jin, J-P

    2016-10-01

    Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target. Copyright © 2016 the American Physiological Society.

  19. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    PubMed Central

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  20. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach

    PubMed Central

    Mangano, Katia; Mazzon, Emanuela; Basile, Maria Sofia; Di Marco, Roberto; Bramanti, Placido; Mammana, Santa; Petralia, Maria Cristina; Fagone, Paolo; Nicoletti, Ferdinando

    2018-01-01

    Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors. PMID:29707160

  1. Paeonol Suppresses Chondrosarcoma Metastasis through Up-Regulation of miR-141 by Modulating PKCδ and c-Src Signaling Pathway

    PubMed Central

    Horng, Chi-Ting; Shieh, Po-Chuen; Tan, Tzu-Wei; Yang, Wei-Hung; Tang, Chih-Hsin

    2014-01-01

    Chondrosarcoma, a primary malignant bone cancer, has potential for local invasion and distant metastasis, especially to the lungs. Patients diagnosed with it show poor prognosis. Paeonol (2'-hydroxy-4'-methoxyacetophenone), the main active compound of traditional Chinese remedy Paeonia lactiflora Pallas, exhibits anti-inflammatory and anti-tumor activity; whether paeonol regulates metastatic chondrosarcoma is largely unknown. Here, we find paeonol do not increase apoptosis. By contrast, at non-cytotoxic concentrations, paeonol suppresses migration and invasion of chondrosarcoma cells. We also demonstrate paeonol enhancing miR-141 expression and miR-141 inhibitor reversing paeonol-inhibited cell motility; paeonol also reduces protein kinase C (PKC)δ and c-Src kinase activity. Since paeonol inhibits migration and invasion of human chondrosarcoma via up-regulation of miR-141 via PKCδ and c-Src pathways, it thus might be a novel anti-metastasis agent for treatment of metastatic chondrosarcoma. PMID:24992595

  2. Specific disruption of Lnk in murine endothelial progenitor cells promotes dermal wound healing via enhanced vasculogenesis, activation of myofibroblasts, and suppression of inflammatory cell recruitment.

    PubMed

    Lee, Jun Hee; Ji, Seung Taek; Kim, Jaeho; Takaki, Satoshi; Asahara, Takayuki; Hong, Young-Joon; Kwon, Sang-Mo

    2016-10-28

    Although endothelial progenitor cells (EPCs) contribute to wound repair by promoting neovascularization, the mechanism of EPC-mediated wound healing remains poorly understood due to the lack of pivotal molecular targets of dermal wound repair. We found that genetic targeting of the Lnk gene in EPCs dramatically enhances the vasculogenic potential including cell proliferation, migration, and tubule-like formation as well as accelerates in vivo wound healing, with a reduction in fibrotic tissue and improved neovascularization via significant suppression of inflammatory cell recruitment. When injected into wound sites, Lnk -/- EPCs gave rise to a significant number of new vessels, with remarkably increased survival of transplanted cells and decreased recruitment of cytotoxic T cells, macrophages, and neutrophils, but caused activation of fibroblasts in the wound-remodeling phase. Notably, in a mouse model of type I diabetes, transplanted Lnk -/- EPCs induced significantly better wound healing than Lnk +/+ EPCs did. The specific targeting of Lnk may be a promising EPC-based therapeutic strategy for dermal wound healing via improvement of neovascularization but inhibition of excessive inflammation as well as activation of myofibroblasts during dermal tissue remodeling.

  3. The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells.

    PubMed

    Tsui, Ke-Hung; Chang, Ying-Ling; Yang, Pei-Shan; Hou, Chen-Pang; Lin, Yu-Hsiang; Lin, Bing-Wei; Feng, Tsui-Hsia; Juang, Horng-Heng

    2018-04-01

    Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti-inflammatory, anti-oxidant and anti-cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells. Cell proliferation and cell cycle distribution were measured by water-soluble tetrazolium-1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin-6 (IL-6)-inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays. Capillarisin inhibited androgen-independent DU145 and androgen-dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP-2, and MMP-9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL-6-inducible STAT3 activation in DU145 and LNCaP cells. Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP-2, MMP-9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL-6-inducible STAT3 activation. © 2017 John Wiley & Sons Ltd.

  4. Adipogenesis of the mesenchymal stromal cells and bone oedema in rheumatoid arthritis.

    PubMed

    Okada, A; Yamasaki, S; Koga, T; Kawashiri, S Y; Tamai, M; Origuchi, T; Nakamura, H; Eguchi, K; Kawakami, A

    2012-01-01

    Bone oedema is a pathological change in rheumatoid arthritis (RA) that is detectable by magnetic resonance imaging (MRI). Recent histological analyses revealed that a prominent feature of bone oedema is the replacement of adipose tissue with inflammatory cells. Here, we demonstrate the possible roles of mesenchymal stromal cells (MSCs) in bone oedema formation and the pathogenic potential of the cells in RA. Adipogenesis of bone marrow-derived human MSCs was induced by a standard adipogenic induction medium in the presence or absence of cytokines. The cytokine productions from MSCs were screened by an antibody array system and confirmed by ELISA. The migration assay was performed to determine the locomotive abilities of undifferentiated MSCs or MSCs after adipogenesis. The expression of α smooth muscle actin (SMA) and F-actin was examined by immunostaining and phalloidin staining, respectively. TNF-α, interleukin (IL)-1β, IL-6, and TGF-β clearly inhibited the adipogenesis of MSCs. Production of IL-6 was markedly reduced, and IL-8 secretion was augmented in MSCs after adipogenesis. The mobility of MSCs after adipogenesis was clearly reduced in migration assays compared to that of undifferentiated MSCs. Consistent with these findings, SMA and F-actin expressions were clearly suppressed in MSCs committed to adipogenesis. Our data suggest that the inflammatory milieu promotes bone oedema by blocking adipogenesis of MSCs. In bone oedema, the enhanced IL-6 production and the increased mobility of MSCs may contribute to the progression of RA. Therefore, bone oedema may be an important target lesion in the treatment of RA.

  5. IGF-1, oxidative stress, and atheroprotection

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  6. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells.

    PubMed

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi

    2017-01-05

    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  7. HIV infection-induced transcriptional program in renal tubular epithelial cells activates a CXCR2-driven CD4+ T-cell chemotactic response.

    PubMed

    Chen, Ping; Yi, Zhengzi; Zhang, Weijia; Klotman, Mary E; Chen, Benjamin K

    2016-07-31

    Viral replication and interstitial inflammation play important roles in the pathogenesis of HIV-associated nephropathy. Cell-cell interactions between renal tubule epithelial cells (RTECs) and HIV-infected T cells can trigger efficient virus internalization and viral gene expression by RTEC. To understand how HIV replication initiates HIV-associated nephropathy, we studied the cellular response of RTECs to HIV, examining the transcriptional profiles of primary RTECs exposed to cell-free HIV or HIV-infected T cells. HIV-induced gene expression in hRTECs was examined in vitro by Illumina RNA deep sequencing and revealed an innate response to HIV, which was subclassified by gene ontology biological process terms. Chemokine responses were examined by CD4 T-cell chemotaxis assays. As compared with cell-free virus infection, exposure to HIV-infected T cells elicited a stronger upregulation of inflammatory and immune response genes. A major category of upregulated genes are chemokine/cytokine families involved in inflammation and immune response, including inflammatory cytokines CCL20, IL6 and IL8-related chemokines: IL8, CXCL1, CXCL2, CXCL3, CXCL5 and CXCL6. Supernatants from virus-exposed RTECs contained strong chemoattractant activity on primary CD4 T cells, which was potently blocked by a CXCR2 antagonist that antagonizes IL8-related chemokines. We observed a preferential migration of CXCR2-expressing, central memory CD4 T cells in response to HIV infection of RTECs. Interactions between primary RTECs and HIV-infected T cells result in potent induction of inflammatory response genes and release of cytokines/chemokines from RTECs that can attract additional T cells. Activation of these genes reflects an innate response to HIV by nonimmune cells.

  8. Obesity-related systemic factors promote an invasive phenotype in prostate cancer cells.

    PubMed

    Price, R S; Cavazos, D A; De Angel, R E; Hursting, S D; deGraffenried, L A

    2012-06-01

    Obesity is associated with larger tumors, shorter time to PSA failure, and higher Gleason scores. However, the mechanism(s) by which obesity promotes aggressive prostate cancer remains unknown. We hypothesize that circulating factors related to obesity promote prostate cancer progression by modulating components of the metastatic cascade. Male C57BL/6 mice (6 weeks) were fed an ad libitum diet-induced obesity (60% fat) or control diet (10% fat) for 12 weeks. Serum was collected, metabolic and inflammatory proteins were measured by an antibody array. Sera were used to measure, in vitro, characteristics of a metastatic phenotype. Comparable to obese men, obese sera contained higher levels or leptin, vascular endothelial growth factor, PAI-1, interleukin-6 (IL-6) and lower levels of testosterone. In prostate cells, serum was used to assess: proliferation, invasion, migration, epithelial-mesenchymal-transition (EMT) and matrix metalloproteinase (MMP) activity. LNCaP and PacMetUT1 cells exposed to obese sera increased proliferation, whereas PrEC and DU145 were unaffected. LNCaP, PacMetUT1 and DU145 cancer cells exposed to obese sera resulted in increased invasion, migration and MMP-9 activity. Prostate cancer cells exposed to obese sera showed increased vimentin, dispersion of e-cadherin and β-catenin from the plasma membrane. We report, prostate cancer cells exposed to sera from obese mice increases proliferation, invasion, migration, MMP activity and induces changes in proteins critical for EMT.

  9. Epidemiological studies of migration and environmental risk factors in the inflammatory bowel diseases.

    PubMed

    Ko, Yanna; Butcher, Rhys; Leong, Rupert W

    2014-02-07

    Inflammatory bowel diseases (IBD) are idiopathic chronic diseases of the gastrointestinal tract well known to be associated with both genetic and environmental risk factors. Permissive genotypes may manifest into clinical phenotypes under certain environmental influences and these may be best studied from migratory studies. Exploring differences between first and second generation migrants may further highlight the contribution of environmental factors towards the development of IBD. There are few opportunities that have been offered so far. We aim to review the available migration studies on IBD, evaluate the known environmental factors associated with IBD, and explore modern migration patterns to identify new opportunities and candidate migrant groups in IBD migration research.

  10. Direct association of thioredoxin-1 (TRX) with macrophage migration inhibitory factor (MIF): regulatory role of TRX on MIF internalization and signaling.

    PubMed

    Son, Aoi; Kato, Noriko; Horibe, Tomohisa; Matsuo, Yoshiyuki; Mochizuki, Michika; Mitsui, Akira; Kawakami, Koji; Nakamura, Hajime; Yodoi, Junji

    2009-10-01

    Thioredoxin-1 (TRX) is a small (14 kDa) multifunctional protein with the redox-active site Cys-Gly-Pro-Cys. Macrophage migration inhibitory factor (MIF) is a 12 kDa cytokine belonging to the TRX family. Historically, when we purified TRX from the supernatant of ATL-2 cells, a 12 kDa protein was identified along with TRX, which was later proved to be MIF. Here, we show that TRX and MIF form a complex in the cell and the culture supernatant of ATL-2 cells. Using a BIAcore assay, we confirmed that TRX has a specific affinity with MIF. We also found that extracellular MIF was more effectively internalized into the ATL-2 cells expressing TRX on the cell surface, than the Jurkat T cells which do not express surface TRX. Moreover, anti-TRX antibody blocked the MIF internalization, suggesting that the cell surface TRX is involved in MIF internalization into the cells. Furthermore, anti-TRX antibody inhibited MIF-mediated enhancement of TNF-alpha production from macrophage RAW264.7 cells. These results suggest that the cell surface TRX serves as one of the MIF binding molecules or MIF receptor component and inhibits MIF-mediated inflammatory signals.

  11. Therapeutic Potential of Modulating microRNAs in Atherosclerotic Vascular Disease

    PubMed Central

    Araldi, Elisa; Chamorro-Jorganes, Aranzazu; van Solingen, Coen; Fernández-Hernando, Carlos; Suárez, Yajaira

    2013-01-01

    Atherosclerosis (also known as arteriosclerotic vascular disease) is a chronic inflammatory disease of the arterial wall, characterized by the formation of lipid-laden lesions. The activation of endothelial cells at atherosclerotic lesion–prone sites in the arterial tree results in the up-regulation of cell adhesion molecules and chemokines, which mediate the recruitment of circulating monocytes. Accumulation of monocytes and monocyte-derived phagocytes in the wall of large arteries leads to chronic inflammation and the development and progression of atherosclerosis. The lesion experiences the following steps: foam cell formation, fatty streak accumulation, migration and proliferation of vascular smooth muscle cells, and fibrous cap formation. Finally, the rupture of the unstable fibrous cap causes thrombosis in complications of advanced lesions that leads to unstable coronary syndromes, myocardial infarction and stroke. MicroRNAs have recently emerged as a novel class of gene regulators at the post-transcriptional level. Several functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by microRNAs and are described in the present review as well as their potential therapeutic application. PMID:23713860

  12. Role of CXCL13 and CCL20 in the recruitment of B cells to inflammatory foci in chronic arthritis.

    PubMed

    Armas-González, Estefanía; Domínguez-Luis, María Jesús; Díaz-Martín, Ana; Arce-Franco, Mayte; Castro-Hernández, Javier; Danelon, Gabriela; Hernández-Hernández, Vanesa; Bustabad-Reyes, Sagrario; Cantabrana, Alberto; Uguccioni, Mariagrazia; Díaz-González, Federico

    2018-06-07

    B cells exert their pathogenic action in rheumatoid arthritis (RA) locally in the synovium. This study was undertaken to elucidate the chemokines responsible for the recruitment of B cells in the inflamed synovium, taking into account that the rich chemokine milieu present in the synovial tissue can fine-tune modulate discrete chemokine receptors. Expression levels of chemokine receptors from the CC and CXC family, as well as CD27, were assessed by flow cytometry in CD20 + mononuclear cells isolated from the peripheral blood (PB) and synovial fluid (SF) of RA and psoriatic arthritis patients. Transwell experiments were used to study migration of B cells in response to a chemokine or in the presence of multiple chemokines. B cells from the SF of arthritis patients showed a significant increase in the surface expression of CCR1, CCR2, CCR4, CCR5 and CXCR4 with respect to PB. Conversely, SF B cells expressed consistently lower amounts of CXCR5, CXCR7 and CCR6, independent of CD27 expression. Analysis of permeabilized B cells suggested internalization of CXCR5 and CCR6 in SF B cells. In Transwell experiments, CCL20 and CXCL13, ligands of CCR6 and CXCR5, respectively, caused a significantly higher migration of B cells from PB than of those from SF of RA patients. Together, these two chemokines synergistically increased B-cell migration from PB, but not from SF. These results suggest that CXCL13 and CCL20 might play major roles in RA pathogenesis by acting singly on their selective receptors and synergistically in the accumulation of B cells within the inflamed synovium.

  13. Smad4 re-expression increases the sensitivity to parthenolide in colorectal cancer.

    PubMed

    Li, Xuemei; Yang, Huike; Ke, Jia; Liu, Baoquan; Lv, Xiaohong; Li, Xinlei; Zhang, Yafang

    2017-10-01

    Parthenolide (PT), a sesquiterpene lactone extracted from the plant feverfew, has been demonstrated to have anti-inflammatory and anticancer properties. Although PT has been revealed to markedly inhibit colorectal cancer cell proliferation, the inhibitory effects decrease with administration time. These findings revealed that colorectal cancer cells develop resistance to PT. However, the underlying mechanism is unclear. In the present study we observed significantly low expression of Smad4 in 3 PT-resistant cell lines (HCT‑116/PT, HT-29/PT and Caco-2/PT), which were obtained using in vitro concentration gradient-increased induction, but not in their parental cells. In the present study we used the lentiviral‑mediated transfection method to upregulate Smad4 in resistant colorectal cancer cell lines. Flow cytometry assay was used to assess cell apoptosis. Cell migration was detected using a QCM™ 24-well Fluorimetric Cell Migration Assay kit. Our study showed that Smad4 overexpression notably decreased the half maximal inhibitory concentration (IC50) values for PT in the 3 PT-resistant cell lines, and improved the inhibitory effects of PT on cell migration and enhanced apoptosis in vitro as well as suppressed xenografted tumors in a PT-resistant colorectal cancer mouse model. Further study by western blotting into the underlying mechanism demonstrated that Smad4 overexpression suppressed the expression of MDR1 in the resistant cells, and resulted in the accumulation of PT, which in turn promoted the expession of caspase-3 and Bax and inhibited the expression of Bcl-2 and the phosphorylation of NF-κB p65. In short, Smad4 re-expression may be crucial for enhancing the sensitivity and reversing the resistance to PT in PT-resistant colorectal cancer cells.

  14. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts

    PubMed Central

    Paggetti, Jerome; Haderk, Franziska; Seiffert, Martina; Janji, Bassam; Distler, Ute; Ammerlaan, Wim; Kim, Yeoun Jin; Adam, Julien; Lichter, Peter; Solary, Eric; Berchem, Guy

    2015-01-01

    Exosomes derived from solid tumor cells are involved in immune suppression, angiogenesis, and metastasis, but the role of leukemia-derived exosomes has been less investigated. The pathogenesis of chronic lymphocytic leukemia (CLL) is stringently associated with a tumor-supportive microenvironment and a dysfunctional immune system. Here, we explore the role of CLL-derived exosomes in the cellular and molecular mechanisms by which malignant cells create this favorable surrounding. We show that CLL-derived exosomes are actively incorporated by endothelial and mesenchymal stem cells ex vivo and in vivo and that the transfer of exosomal protein and microRNA induces an inflammatory phenotype in the target cells, which resembles the phenotype of cancer-associated fibroblasts (CAFs). As a result, stromal cells show enhanced proliferation, migration, and secretion of inflammatory cytokines, contributing to a tumor-supportive microenvironment. Exosome uptake by endothelial cells increased angiogenesis ex vivo and in vivo, and coinjection of CLL-derived exosomes and CLL cells promoted tumor growth in immunodeficient mice. Finally, we detected α-smooth actin–positive stromal cells in lymph nodes of CLL patients. These findings demonstrate that CLL-derived exosomes actively promote disease progression by modulating several functions of surrounding stromal cells that acquire features of cancer-associated fibroblasts. PMID:26100252

  15. Endothelial E-type prostanoid 4 receptors promote barrier function and inhibit neutrophil trafficking.

    PubMed

    Konya, Viktoria; Üllen, Andreas; Kampitsch, Nora; Theiler, Anna; Philipose, Sonia; Parzmair, Gerald P; Marsche, Gunther; Peskar, Bernhard A; Schuligoi, Rufina; Sattler, Wolfgang; Heinemann, Akos

    2013-02-01

    Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage. In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking. Endothelial barrier function was determined based on electrical impedance measurements. Neutrophil recruitment was assessed based on adhesion and transendothelial migration. Morphologic alterations are shown by using immunofluorescence microscopy. We observed that activation of E-type prostanoid (EP) 4 receptor by PGE(2) or an EP4-selective agonist (ONO AE1-329) enhanced the barrier function of human microvascular lung endothelial cells. EP4 receptor activation prompted similar responses in pulmonary artery and coronary artery endothelial cells. These effects were reversed by an EP4 antagonist (ONO AE3-208), as well as by blocking actin polymerization with cytochalasin B. The EP4 receptor-induced increase in barrier function was independent of the classical cyclic AMP/protein kinase A signaling machinery, endothelial nitric oxide synthase, and Rac1. Most importantly, EP4 receptor stimulation showed potent anti-inflammatory activities by (1) facilitating wound healing of pulmonary microvascular endothelial monolayers, (2) preventing junctional and cytoskeletal reorganization of activated endothelial cells, and (3) impairing neutrophil adhesion to endothelial cells and transendothelial migration. The latter effects could be partially attributed to reduced E-selectin expression after EP4 receptor stimulation. These data indicate that EP4 agonists as anti-inflammatory agents represent a potential therapy for diseases with increased vascular permeability and neutrophil extravasation. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Interleukin Expression after Injury and the Effects of Interleukin-1 Receptor Antagonist

    PubMed Central

    Chamberlain, Connie S.; Leiferman, Ellen M.; Frisch, Kayt E.; Brickson, Stacey L.; Murphy, William L.; Baer, Geoffrey S.; Vanderby, Ray

    2013-01-01

    Ligament healing follows a series of complex coordinated events involving various cell types, cytokines, as well as other factors, producing a mechanically inferior tissue more scar-like than native tissue. Macrophages provide an ongoing source of cytokines to modulate inflammatory cell adhesion and migration as well as fibroblast proliferation. Studying interleukins inherent to ligament healing during peak macrophage activation and angiogenesis may elucidate inflammatory mediators involved in subsequent scar formation. Herein, we used a rat healing model assayed after surgical transection of their medial collateral ligaments (MCLs). On days 3 and 7 post-injury, ligaments were collected and used for microarray analysis. Of the 12 significantly modified interleukins, components of the interleukin-1 family were significantly up-regulated. We therefore examined the influence of interleukin-1 receptor antagonist (IL-1Ra) on MCL healing. Transected rat MCLs received PBS or IL-1Ra at the time of surgery. Inhibition of IL-1 activation decreased pro-inflammatory cytokines (IL-1α, IL-1β, IL-12, IL-2, and IFN-γ), myofibroblasts, and proliferating cells, as well as increased anti-inflammatory cytokines (IL-10), endothelial cells/blood vessel lumen, M2 macrophages, and granulation tissue size without compromising the mechanical properties. These results support the concept that IL-1Ra modulates MCL-localized granulation tissue components and cytokine production to create a transient environment that is less inflammatory. Overall, IL-1Ra may have therapeutic potential early in the healing cascade by stimulating the M2 macrophages and altering the granulation tissue components. However, the single dose of IL-1Ra used in this study was insufficient to maintain the more regenerative early response. Due to the transient influence on most of the healing components tested, IL-1Ra may have greater therapeutic potential with sustained delivery. PMID:23936523

  17. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).

    PubMed

    Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T

    2009-04-01

    The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.

  18. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  19. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils

    PubMed Central

    Henríquez, C.; Riquelme, T. T.; Vera, D.; Julio-Kalajzić, F.; Ehrenfeld, P.; Melvin, J. E.; Figueroa, C. D.; Sarmiento, J.; Flores, C. A.

    2017-01-01

    Aim Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Methods Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. Results We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1−/− mice are significantly less effective at recruiting neutrophils into the site of inflammation. Conclusions These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. PMID:26138196

  20. Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis.

    PubMed

    Wiedemann, Johanna; Rashid, Khalid; Langmann, Thomas

    2018-06-18

    Microglia activation is central to the pathophysiology of retinal degenerative disorders. Resveratrol, a naturally occurring non-flavonoid phenolic compound present in red wine has potent anti-inflammatory and immunomodulatory properties. However, molecular mechanisms by which resveratrol influences microglial inflammatory pathways and housekeeping functions remain unclear. Here, we first studied the immuno-modulatory effects of resveratrol on BV-2 microglial cells at the transcriptome level using DNA-microarrays and selected qRT-PCR analyses. We then analyzed resveratrol effects on microglia morphology, phagocytosis and migration and estimated their neurotoxicity on 661 W photoreceptors by quantification of caspase 3/7 levels. We found that resveratrol effectively blocked gene expression of a broad spectrum of lipopolysaccharide (LPS)-induced pro-inflammatory molecules, including cytokines and complement proteins. These transcriptomic changes were accompanied by potent inhibition of LPS-induced nitric oxide secretion and reduced microglia-mediated apoptosis of 661 W photoreceptor cultures. Our findings highlight novel targets involved in the anti-inflammatory and neuroprotective action of resveratrol against neuroinflammatory responses. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. 18ß-glycyrrhetinic acid derivative promotes proliferation, migration and aquaporin-3 expression in human dermal fibroblasts

    PubMed Central

    Hung, Chi-Feng; Hsiao, Chien-Yu; Hsieh, Wen-Hao; Li, Hsin-Ju; Tsai, Yi-Ju; Lin, Chun-Nan; Chang, Hsun-Hsien; Wu, Nan-Lin

    2017-01-01

    Licorice (Glycyrrhiza) species have been widely used as a traditional medicine and a natural sweetener in foods. The 18β-glycyrrhetinic acid (18β-GA) is a bioactive compound in licorice that exhibits potential anti-cancer, anti-inflammatory, and anti-microbial activities. Many synthesized derivatives of 18β-GA have been reported to be cytotoxic and suggested for the treatment of malignant diseases. In this study, we explored the possible pharmacological roles of an 18β-GA derivative in skin biology using primary human dermal fibroblasts and HaCaT keratinocytes as cell models. We found that this 18β-GA derivative did not cause cell death, but significantly enhanced the proliferation of dermal fibroblasts and HaCaT keratinocytes. A scratch wound healing assay revealed that the 18β-GA derivative promoted the migration of fibroblasts. Due to the important role of aquaporin-3 in cell migration and proliferation, we also investigated the expression of aquaporin-3 and found this compound up-regulated the expression of aquaporin-3 in dermal fibroblasts and HaCaT keratinocytes. In dermal fibroblasts, the 18β-GA derivative induced the phosphorylation of Akt, ERK, and p38. The inhibitor of Akt predominantly suppressed the 18β-GA derivative-induced expression of aquaporin-3. Collectively, this compound had a positive effect on the proliferation, migration, and aquaporin-3 expression of skin cells, implying its potential role in the treatment of skin diseases characterized by impaired wound healing or dermal defects. PMID:28813533

  2. UV Irradiation of Skin Enhances Glycolytic Flux and Reduces Migration Capabilities in Bone Marrow-Differentiated Dendritic Cells.

    PubMed

    McGonigle, Terence A; Keane, Kevin N; Ghaly, Simon; Carter, Kim W; Anderson, Denise; Scott, Naomi M; Goodridge, Helen S; Dwyer, Amy; Greenland, Eloise; Pixley, Fiona J; Newsholme, Philip; Hart, Prue H

    2017-09-01

    A systemic immunosuppression follows UV irradiation of the skin of humans and mice. In this study, dendritic cells (DCs) differentiating from the bone marrow (BM) of UV-irradiated mice had a reduced ability to migrate toward the chemokine (C-C motif) ligand 21. Fewer DCs also accumulated in the peritoneal cavity of UV-chimeric mice (ie, mice transplanted with BM from UV-irradiated mice) after injection of an inflammatory stimulus into that site. We hypothesized that different metabolic states underpin altered DC motility. Compared with DCs from the BM of nonirradiated mice, those from UV-irradiated mice produced more lactate, consumed more glucose, and had greater glycolytic flux in a bioenergetics stress test. Greater expression of 3-hydroxyanthranilate 3,4-dioxygenase was identified as a potential contributor to increased glycolysis. Inhibition of 3-hydroxyanthranilate 3,4-dioxygenase by 6-chloro-dl-tryptophan prevented both increased lactate production and reduced migration toward chemokine (C-C motif) ligand 21 by DCs differentiated from BM of UV-irradiated mice. UV-induced prostaglandin E 2 has been implicated as an intermediary in the effects of UV radiation on BM cells. DCs differentiating from BM cells pulsed in vitro for 2 hours with dimethyl prostaglandin E 2 were functionally similar to those from the BM of UV-irradiated mice. Reduced migration of DCs to lymph nodes associated with increased glycolytic flux may contribute to their reduced ability to initiate new immune responses in UV-irradiated mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  3. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2

    PubMed Central

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-01-01

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK–EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK–EphA2 axis might contribute to cell motility and promote tumour malignant progression. PMID:26158630

  4. Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2.

    PubMed

    Zhou, Yue; Yamada, Naoki; Tanaka, Tomohiro; Hori, Takashi; Yokoyama, Satoru; Hayakawa, Yoshihiro; Yano, Seiji; Fukuoka, Junya; Koizumi, Keiichi; Saiki, Ikuo; Sakurai, Hiroaki

    2015-07-09

    Crosstalk between inflammatory signalling pathways and receptor tyrosine kinases has been revealed as an indicator of cancer malignant progression. In the present study, we focus on EphA2 receptor tyrosine kinase, which is overexpressed in many human cancers. It has been reported that ligand-independent phosphorylation of EphA2 at Ser-897 is induced by Akt. We show that inflammatory cytokines promote RSK-, not Akt-, dependent phosphorylation of EphA2 at Ser-897. In addition, the RSK-EphA2 signalling pathway controls cell migration and invasion of metastatic breast cancer cells. Moreover, Ser-897-phosphorylated EphA2 co-localizes with phosphorylated active form of RSK in various human tumour specimens, and this double positivity is related to poor survival in lung cancer patients, especially those with a smoking history. Taken together, these results indicate that the phosphorylation of EphA2 at Ser-897 is controlled by RSK and the RSK-EphA2 axis might contribute to cell motility and promote tumour malignant progression.

  5. Immunoexcitatory mechanisms in glioma proliferation, invasion and occasional metastasis

    PubMed Central

    Blaylock, Russell L.

    2013-01-01

    There is increasing evidence of an interaction between inflammatory cytokines and glutamate receptors among a number of neurological diseases including traumatic brain injuries, neurodegenerative diseases and central nervous system (CNS) infections. A number of recent studies have now suggested a strong relation between inflammatory mechanisms and excitatory cascades and these may play a role in glioma invasiveness and proliferation. Chronic inflammation appears to be a major initiating mechanism in most human cancers, involving cell-signaling pathways, which are responsible for cell cycling, cancer cell migration, invasion, tumor aggressiveness, and angiogenesis. It is less well appreciated that glutamate receptors also play a significant role in both proliferation and especially glioma invasion. There is some evidence that sustained elevations in glutamate may play a role in initiating certain cancers and new studies demonstrate an interaction between inflammation and glutamate receptors that may enhance tumor invasion and metastasis by affecting a number of cell-signaling mechanisms. These mechanisms are discussed in this paper as well as novel treatment options for reducing immune-glutamate promotion of cancer growth and invasion. PMID:23493580

  6. Ectodomain Shedding by ADAM17: Its Role in Neutrophil Recruitment and the Impairment of This Process during Sepsis.

    PubMed

    Mishra, Hemant K; Ma, Jing; Walcheck, Bruce

    2017-01-01

    Neutrophils are specialized at killing bacteria and are recruited from the blood in a rapid and robust manner during infection. A cascade of adhesion events direct their attachment to the vascular endothelium and migration into the underlying tissue. A disintegrin and metalloproteinase 17 (ADAM17) functions in the cell membrane of neutrophils and endothelial cells by cleaving its substrates, typically in a cis manner, at an extracellular site proximal to the cell membrane. This process is referred to as ectodomain shedding and it results in the downregulation of various adhesion molecules and receptors, and the release of immune regulating factors. ADAM17 sheddase activity is induced upon cell activation and rapidly modulates intravascular adhesion events in response to diverse environmental stimuli. During sepsis, an excessive systemic inflammatory response against infection, neutrophil migration becomes severely impaired. This involves ADAM17 as indicated by increased levels of its cleaved substrates in the blood of septic patients, and that ADAM17 inactivation improves neutrophil recruitment and bacterial clearance in animal models of sepsis. Excessive ADAM17 sheddase activity during sepsis thus appears to undermine in a direct and indirect manner the necessary balance between intravascular adhesion and de-adhesion events that regulate neutrophil migration into sites of infection. This review provides an overview of ADAM17 function and regulation and its potential contribution to neutrophil dysfunction during sepsis.

  7. ESI-MS2 and Anti-inflammatory Studies of Cyclopropanic Triterpenes. UPLC-ESI-MS and MS2 Search of Related Metabolites from Donella ubanguiensis.

    PubMed

    Sandjo, Louis P; Nascimento, Marcus V P Dos Santos; da Silva, Layzon A L; Munhoz, Antonio C M; Pollo, Luiz A E; Biavatti, Maique W; Ngadjui, Bonaventure T; Opatz, Till; Fröde, Tania S

    2017-01-01

    Triterpenes are one of the largest secondary metabolites groups spread in the plant kingdom with various skeletons. These metabolites have showed various bioactivities including anti-inflammatory activity. The study aims to explore the mass spectrometry fragmentation of donellanic acids A-C (DA A-C), three compounds identified from Donella ubanguiensis; in addition, the fragmentation behaviour of these metabolites will serve as a fingerprint to search and characterise triterpenes congeners in fruits, bark and wood crude extracts of D. ubanguiensis. This work was prompted by the anti-inflammatory activity on leukocyte migration, exudate concentrations and myeloperoxidase activity obtained for DA A-B. The bioactivity was performed on mouse model of pleurisy induced by carrageenan and the parameters were analysed by veterinarian automated cell counter and colorimetric assays. While the tandem mass analyses of DA A-C were carried out by a direct infusion ESI-QTOF-MS/MS, the extracts were studied by UPLC-ESI-QTOF-MS and UPLC-ESI-QTOF-MS/MS. DA A displayed interesting anti-inflammatory activity by inhibiting leukocyte migration, exudate concentrations and myeloperoxidase activity (p < 0.05) while DA B was weakly active (p > 0.05). Moreover, the diagnostic of the MS 2 behaviour of DA A-C in conjunction with the chromatograms and the obtained MS 2 data of the crude extract led to the characterisation of three cyclopropane triterpenes (T1-T3) and six saponins (T4-T9) from the fruits, the bark, and the wood extracts. Donella species deserve more investigation since metabolites related to the anti-inflammatory compound (DA A) could be identified. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen

    PubMed Central

    Robertson, Anne L.; Ogryzko, Nikolay V.; Henry, Katherine M.; Loynes, Catherine A.; Foulkes, Matthew J.; Meloni, Marco M.; Wang, Xingang; Ford, Christopher; Jackson, Malcolm; Ingham, Philip W.; Wilson, Heather L.; Farrow, Stuart N.; Solari, Roberto; Flower, Roderick J.; Jones, Simon; Whyte, Moira K. B.

    2016-01-01

    ABSTRACT Neutrophils are essential for host defence and are recruited to sites of inflammation in response to tissue injury or infection. For inflammation to resolve, these cells must be cleared efficiently and in a controlled manner, either by apoptosis or reverse migration. If the inflammatory response is not well-regulated, persistent neutrophils can cause damage to host tissues and contribute to the pathogenesis of chronic inflammatory diseases, which respond poorly to current treatments. It is therefore important to develop drug discovery strategies that can identify new therapeutics specifically targeting neutrophils, either by promoting their clearance or by preventing their recruitment. Our recent in vivo chemical genetic screen for accelerators of inflammation resolution identified a subset of compounds sharing a common chemical signature, the bicyclic benzopyrone rings. Here, we further investigate the mechanisms of action of the most active of this chemical series, isopimpinellin, in our zebrafish model of neutrophilic inflammation. We found that this compound targets both the recruitment and resolution phases of the inflammatory response. Neutrophil migration towards a site of injury is reduced by isopimpinellin and this occurs as a result of PI3K inhibition. We also show that isopimpinellin induces neutrophil apoptosis to drive inflammation resolution in vivo using a new zebrafish reporter line detecting in vivo neutrophil caspase-3 activity and allowing quantification of flux through the apoptotic pathway in real time. Finally, our studies reveal that clinically available ‘cromones’ are structurally related to isopimpinellin and have previously undescribed pro-resolution activity in vivo. These findings could have implications for the therapeutic use of benzopyrones in inflammatory disease. PMID:27079522

  9. Interplay of macrophages and T cells in the lung vasculature.

    PubMed

    Gerasimovskaya, Evgenia; Kratzer, Adelheid; Sidiakova, Asya; Salys, Jonas; Zamora, Martin; Taraseviciene-Stewart, Laimute

    2012-05-15

    In severe pulmonary arterial hypertension (PAH), vascular lesions are composed of phenotypically altered vascular and inflammatory cells that form clusters or tumorlets. Because macrophages are found in increased numbers in intravascular and perivascular space in human PAH, here we address the question whether macrophages play a role in pulmonary vascular remodeling and whether accumulation of macrophages in the lung vasculature could be compromised by the immune system. We used the mouse macrophage cell line RAW 264.7 because these cells are resistant to apoptosis, have high proliferative capacity, and resemble cells in the plexiform lesions that tend to pile up instead of maintaining a monolayer. Cells were characterized by immunocytochemistry with cell surface markers (Lycopersicon Esculentum Lectin, CD117, CD133, FVIII, CD31, VEGFR-2, and S100). Activated, but not quiescent, T cells were able to suppress RAW 264.7 cell proliferative and migration activity in vitro. The carboxyfluorescein diacetate-labeled RAW 264.7 cells were injected into the naïve Sprague Dawley (SD) rat and athymic nude rat. Twelve days later, cells were found in the lung vasculature of athymic nude rats that lack functional T cells, contributing to vascular remodeling. No labeled RAW 264.7 cells were detected in the lungs of immune-competent SD rats. Our data demonstrate that T cells can inhibit in vitro migration and in vivo accumulation of macrophage-like cells.

  10. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xueting; Fang, Shencun; Liu, Haijun

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resultedmore » in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2 decreased HPF-a activation and migration induced by SiO{sub 2}.« less

  11. Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease

    PubMed Central

    Wollny, Tomasz; Wątek, Marzena; Durnaś, Bonita; Niemirowicz, Katarzyna; Piktel, Ewelina; Żendzian-Piotrowska, Małgorzata; Góźdź, Stanisław; Bucki, Robert

    2017-01-01

    Beyond their role as structural molecules, sphingolipids are involved in many important cellular processes including cell proliferation, apoptosis, inflammation, and migration. Altered sphingolipid metabolism is observed in many pathological conditions including gastrointestinal diseases. Inflammatory bowel disease (IBD) represents a state of complex, unpredictable, and destructive inflammation of unknown origin within the gastrointestinal tract. The mechanisms explaining the pathophysiology of IBD involve signal transduction pathways regulating gastro-intestinal system’s immunity. Progressive intestinal tissue destruction observed in chronic inflammation may be associated with an increased risk of colon cancer. Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, functions as a cofactor in inflammatory signaling and becomes a target in the treatment of IBD, which might prevent its conversion to cancer. This paper summarizes new findings indicating the impact of (S1P) on IBD development and IBD-associated carcinogenesis. PMID:28362332

  12. Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics

    PubMed Central

    Jope, Richard S.; Yuskaitis, Christopher J.; Beurel, Eléonore

    2007-01-01

    Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer’s disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions. PMID:16944320

  13. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  14. Laminins affect T cell trafficking and allograft fate

    PubMed Central

    Warren, Kristi J.; Iwami, Daiki; Harris, Donald G.; Bromberg, Jonathan S.; Burrell, Bryna E.

    2014-01-01

    Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4+ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation. PMID:24691446

  15. Bromelain down-regulates myofibroblast differentiation in an in vitro wound healing assay.

    PubMed

    Aichele, Kathrin; Bubel, Monika; Deubel, Gunther; Pohlemann, Tim; Oberringer, Martin

    2013-10-01

    Bromelain, a pineapple-derived enzyme mixture, is a widely used drug to improve tissue regeneration. Clinical and experimental data indicate a better outcome of soft tissue healing under the influence of bromelain. Proteolytic, anti-bacterial, anti-inflammatory, and anti-oedematogenic effects account for this improvement on the systemic level. It remains unknown, whether involved tissue cells are directly influenced by bromelain. In order to gain more insight into those mechanisms by which bromelain modulates tissue regeneration at the cellular level, we applied a well-established in vitro wound healing assay. Two main players of soft tissue healing--fibroblasts and microvascular endothelial cells--were used as mono- and co-cultures. Cell migration, proliferation, apoptosis, and the differentiation of fibroblasts to myofibroblasts as well as interleukin-6 were quantified in response to bromelain (36 × 10(-3) IU/ml) under normoxia and hypoxia. Bromelain attenuated endothelial cell and fibroblast proliferation in a moderate way. This proliferation decrease was not caused by apoptosis, rather, by driving cells into the resting state G0 of the cell cycle. Endothelial cell migration was not influenced by bromelain, whereas fibroblast migration was clearly slowed down, especially under hypoxia. Bromelain led to a significant decrease of myofibroblasts under both normoxic (from 19 to 12 %) and hypoxic conditions (from 22 to 15 %), coincident with higher levels of interleukin-6. Myofibroblast differentiation, a clear sign of fibrotic development, can be attenuated by the application of bromelain in vitro. Usage of bromelain as a therapeutic drug for chronic human wounds thus remains a very promising concept for the future.

  16. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica

    PubMed Central

    2013-01-01

    Background Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as “gigante”, was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. Methods C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. Results The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. Conclusions The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections. PMID:23680079

  17. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin.

    PubMed

    Lomas, D A; Stone, S R; Llewellyn-Jones, C; Keogan, M T; Wang, Z M; Rubin, H; Carrell, R W; Stockley, R A

    1995-10-06

    Neutrophil chemotaxis plays an important role in the inflammatory response and when excessive or persistent may augment tissue damage. The effects of inhibitors indicated the involvement of one or more serine proteinases in human neutrophil migration and shape change in response to a chemoattractant. Monospecific antibodies, chloromethylketone inhibitors, and reactive-site mutants of alpha 1-antitrypsin and alpha 1-antichymotrypsin were used to probe the specificity of the proteinases involved in chemotaxis. Antibodies specific for cathepsin G inhibited chemotaxis. Moreover, rapid inhibitors of cathepsin G and alpha-chymotrypsin suppressed neutrophil chemotaxis to the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) and zymosan-activated serum in multiple blind well assays and to fMLP in migration assays under agarose. The concentrations of antichymotrypsin mutants that reduced chemotaxis by 50% would inactivate free cathepsin G with a half-life of 1.5-3 s, whereas the concentrations of chloromethylketones required to produce a similar inhibition of chemotaxis would inactivate cathepsin G with a half-life of 345 s. These data suggest different modes of action for these two classes of inhibitors. Indeed the chloromethylketone inhibitors of cathepsin G (Z-Gly-Leu-Phe-CMK) and to a lesser extent of chymotrypsin (Cbz-Gly-Gly-Phe-CMK) mediated their effect by preventing a shape change in the purified neutrophils exposed to fMLP. Antichymotrypsin did not affect shape change in response to fMLP even at concentrations that were able to reduce neutrophil chemotaxis by 50%. These results support the involvement of cell surface proteinases in the control of cell migration and show that antichymotrypsin and chloromethylketones have differing modes of action. This opens the possibility for the rational design of anti-inflammatory agents targeted at neutrophil membrane enzymes.

  18. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  19. Effects of Olive Oil Phenolic Compounds on Inflammation in the Prevention and Treatment of Coronary Artery Disease

    PubMed Central

    de Souza, Priscilla Azambuja Lopes; Marcadenti, Aline; Portal, Vera Lúcia

    2017-01-01

    Coronary artery disease (CAD) is responsible for more than 7 million deaths worldwide. In the early stages of the development of atherosclerotic plaques, cardiovascular risk factors stimulate vascular endothelial cells, initiating an inflammatory process, fundamental in the pathogenesis of CAD. The inclusion of potentially cardioprotective foods, such as olive oil, to the diet, may aid in the control of these risk factors, and in the reduction of cytokines and inflammatory markers. The present review aims to address the interaction between phenolic compounds present in olive oil, and inflammation, in the prevention and treatment of CAD. In vitro and in vivo studies suggest that phenolic compounds, such as hydroxytyrosol, tyrosol, and their secoiridoid derivatives, may reduce the expression of adhesion molecules and consequent migration of immune cells, modify the signaling cascade and the transcription network (blocking the signal and expression of the nuclear factor kappa B), inhibit the action of enzymes responsible for the production of eicosanoids, and consequently, decrease circulating levels of inflammatory markers. Daily consumption of olive oil seems to modulate cytokines and inflammatory markers related to CAD in individuals at risk for cardiovascular diseases. However, clinical studies that have evaluated the effects of olive oil and its phenolic compounds on individuals with CAD are still scarce. PMID:28973999

  20. Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a co-culture microenviroment.

    PubMed

    Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang

    2015-11-01

    Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2 cells. Notch signalling pathway is a potentially important mechanism in the regulation of metformin on macrophage polarization and the subsequent change of hepatoma cells. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. The fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus.

    PubMed

    Rink, Elisabeth; Beyer, Teresa; French, Hilari; Watson, Elaine; Aurich, Christine; Donadeu, Xavier

    2018-05-23

    Because of their distinct differentiation, immunomodulatory and migratory capacities, endometrial mesenchymal stromal cells (MSCs) may provide an optimum source of therapeutic cells not only in relation to the uterus but also for regeneration of other tissues. This study reports the fate of endometrial MSCs following intrauterine application in mares. Stromal cell fractions were isolated from endometrial biopsies taken from seven reproductively healthy mares, expanded and fluorescence-labeled in culture. MSCs (15 x 106) or PBS were autologously infused into each uterine horn during early diestrus and subsequently tracked by fluorescence microscopy and flow cytometry of endometrial biopsies and blood samples taken periodically after infusion. The inflammatory response to cell infusion was monitored in endometrial cytology samples. MSCs were detected in endometrial sections at 6, 12 and 24 hours but not later (7 or 14 days) after cell infusion. Cells were in all cases located in the uterine lumen, never within endometrial tissue. No fluorescence signal was detected in blood samples at any time point after infusion. Cytology analyses showed an increase in %PMN between 1 and 3 hours after uterine infusion with either MSCs or PBS, and a further increase by 6 hours only in mares infused with PBS. In summary, endometrial MSCs were detected in the uterine lumen for up to 24 h after infusion but did not migrate into healthy endometrium. Moreover, MSCs effectively attenuated the inflammatory response to uterine infusion. We conclude that endometrial MSCs obtained from routine uterine biopsies could provide a safe and effective cell source for treatment of inflammatory conditions of the uterus and potentially other tissues.

  2. Concurrent presentation of appendicitis and acute cholecystitis: diagnosis of rare occurrence

    PubMed Central

    Gandhi, Jamish; Tan, Jeffrey

    2015-01-01

    A 67-year-old woman presented with a 2-day history of central abdominal pain migrating to the right upper and lower abdomen. On examination she was normothermic but tachycardic. Inflammatory markers were noted to be elevated with a white cell count of 18.5×109/L and C reactive protein of 265 mg/L. A CT scan revealed dual pathology of appendicitis and acute cholecystitis, which was confirmed intraoperatively and histologically. PMID:26396122

  3. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    PubMed

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Transfection with CXCR4 potentiates homing of mesenchymal stem cells in vitro and therapy of diabetic retinopathy in vivo.

    PubMed

    Wang, Jian; Zhang, Wei; He, Guang-Hui; Wu, Bin; Chen, Song

    2018-01-01

    To investigate the effect of the overexpression of C-X-C chemokine receptor type 4 (CXCR4) on homing of mesenchymal stem cells (MSCs) in vitro and therapeutic effects of diabetic retinopathy (DR) in vivo . MSCs were infected by lentivirus constructed with CXCR4. The expression of CXCR4 was examined by immunofluorescence, Western blot, and quantitative polymerase chain reaction. CXCR4-overexpressing MSCs were cultured in vitro to evaluate their chemotaxis, migration, and apoptotic activities. CXCR4-overexpressing MSCs were intravitreally injected to observe and compare their effects in a mouse model of DR. The histological structure of DR in rats was inspected by hematoxylin and eosin staining. The expression of rhodopsin, neuron-specific enolase (NSE), and inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α was examined by Western blot and immunohistochemical analyses. The transduction of MSCs by lentivirus was effective, and the transduced MSCs had high expression levels of CXCR4 gene and protein. Improved migration activities were observed in CXCR4-overexpressing MSCs. Further, reduced retinal damage, upregulation of rhodopsin and NSE protein, and downregulation of inflammatory cytokines IL-6 and TNF-α were observed in CXCR4-overexpressing MSCs in vivo . The homing of MSCs can be enhanced by upregulating CXCR4 levels, possibly improving histological structures of DR. CXCR4-overexpressing MSCs can be a novel strategy for treating DR.

  5. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  6. Suppression of ovalbumin-induced airway inflammatory responses in a mouse model of asthma by Mimosa pudica extract.

    PubMed

    Yang, Eun Ju; Lee, Ji-Sook; Yun, Chi-Young; Ryang, Yong Suk; Kim, Jong-Bae; Kim, In Sik

    2011-01-01

    Asthma is an inflammatory airway disease. The pathogenic mechanisms of asthma include the infiltration of leukocytes and release of cytokines. Mimosa pudica (Mp) has been used traditionally for the treatment of insomnia, diarrhea and inflammatory diseases. Although Mp extract has various therapeutic properties, the effect of this extract on asthma has not yet been reported. This study investigated the suppressive effects of Mp extract on asthmatic responses both in vitro and in vivo. Mp extract was acquired from dried and powdered whole plants of M. pudica using 80% ethanol. BALB/c mice were used for the mouse model of asthma induced by ovalbumin. Mp extract significantly inhibited the HMC-1 cell migration induced by stem cell factor and blocked the release of monocyte chemotactic protein-1 (MCP-1) and interleukin-6 (IL-6) in EoL-1 cells. Leukocytosis, eosinophilia and mucus hypersecretion in asthmatic lung were significantly suppressed by Mp extract. The release of ovalbumin-specific IgE in bronchoalveolar lavage fluid and serum was also decreased. Mp extract treatment resulted in no liver cytotoxicity. The Mp extract has inhibitory properties on asthma and may be used as a potent therapeutic agent for allergic lung inflammation. Copyright © 2010 John Wiley & Sons, Ltd.

  7. Regulatory effects of fisetin on microglial activation.

    PubMed

    Chuang, Jing-Yuan; Chang, Pei-Chun; Shen, Yi-Chun; Lin, Chingju; Tsai, Cheng-Fang; Chen, Jia-Hong; Yeh, Wei-Lan; Wu, Ling-Hsuan; Lin, Hsiao-Yun; Liu, Yu-Shu; Lu, Dah-Yuu

    2014-06-26

    Increasing evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play a key role in neurodegeneration. Fisetin, a plant flavonol commonly found in fruits and vegetables, is frequently added to nutritional supplements due to its antioxidant properties. In the present study, treatment with fisetin inhibited microglial cell migration and ROS (reactive oxygen species) production. Treatment with fisetin also effectively inhibited LPS plus IFN-γ-induced nitric oxide (NO) production, and inducible nitric oxide synthase (iNOS) expression in microglial cells. Furthermore, fisetin also reduced expressions of iNOS and NO by stimulation of peptidoglycan, the major component of the Gram-positive bacterium cell wall. Fisetin also inhibited the enhancement of LPS/IFN-γ- or peptidoglycan-induced inflammatory mediator IL (interlukin)-1 β expression. Besides the antioxidative and anti-inflammatory effects of fisetin, our study also elucidates the manner in fisetin-induced an endogenous anti-oxidative enzyme HO (heme oxygenase)-1 expression. Moreover, the regulatory molecular mechanism of fisetin-induced HO-1 expression operates through the PI-3 kinase/AKT and p38 signaling pathways in microglia. Notably, fisetin also significantly attenuated inflammation-related microglial activation and coordination deficit in mice in vivo. These findings suggest that fisetin may be a candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.

  8. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome.

    PubMed

    Fleshner, Monika

    2013-01-01

    Since the inception of the field of psychoneuroimmunolology research, there has been an appreciation that the physiological response to stressors includes modulation of immune function. Investigators initially focused on the effect of stress on cellular migration and immunosuppression and the resultant decreases in tumor surveillance, anti-viral T cell immunity and antigen-specific antibody responses. More recently, it has become clear that exposure to stressors also potentiate innate immune processes. Stressor exposure, for example, can change the activation status of myeloid lineage cells such as monocytes, macrophages, neutrophils, and microglia, leading to a primed state. In addition, stressor exposure increases the synthesis and release of a vast cadre' of inflammatory proteins both in the blood and within tissues (i.e., spleen, liver, adipose, vasculature and brain). The mechanisms for stress-evoked innate immune 'arousal' remain unknown. The goals of this presidential address are the following: (1) offer a personalized, brief overview of stress and immunity with a focus on 'aroused' innate immunity; (2) describe sterile inflammatory processes and the role of the inflammasome; and (3) suggest that these same processes likely contribute to primed myeloid cells and inflammatory protein responses (systemic and tissue) produced by stress in the absence of pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds.

    PubMed

    Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan

    2017-09-25

    A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.

  10. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling.

    PubMed

    Zhao, Ruizhe; Wang, Xingjie; Jiang, Chenyi; Shi, Fei; Zhu, Yiping; Yang, Boyu; Zhuo, Jian; Jing, Yifeng; Luo, Guangheng; Xia, Shujie; Han, Bangmin

    2018-06-01

    Urinary tract infection, urinary frequency, urgency, urodynia and haemorrhage are common post-operative complications of thulium laser resection of the prostate (TmLRP). Our study mainly focuses on the role of finasteride in prostate wound healing through AR signalling. TmLRP beagles were randomly distributed into different treatment groups. Serum and intra-prostatic testosterone and DHT level were determined. Histological analysis was conducted to study the re-epithelialization and inflammatory response of the prostatic urethra in each group. We investigated the role of androgen in proliferation and inflammatory response in prostate. In addition, the effects of TNF-α on prostate epithelium and stromal cells were also investigated. Testosterone and DHT level increased in testosterone group and DHT decreased in finasteride group. Accelerated wound healing of prostatic urethra was observed in the finasteride group. DHT suppressed proliferation of prostate epithelium and enhanced inflammatory response in prostate. We confirmed that DHT enhanced macrophages TNF-α secretion through AR signalling. TNF-α suppressed proliferation of prostate epithelial cells and retarded cell migration. TNF-α also played a pivotal role in suppressing fibroblasts activation and contraction. Testosterone treatment repressed re-epithelialization and wound healing of prostatic urethra. Finasteride treatment may be an effective way to promote prostate re-epithelialization. © 2017 John Wiley & Sons Ltd.

  11. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    NASA Astrophysics Data System (ADS)

    Jannat, Risat A.; Robbins, Gregory P.; Ricart, Brendon G.; Dembo, Micah; Hammer, Daniel A.

    2010-05-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  12. Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines.

    PubMed

    Campos, Dyély C O; Costa, Andrea S; Luz, Patrícia B; Soares, Pedro M G; Alencar, Nylane M N; Oliveira, Hermógenes D

    2017-10-01

    Previous reports have demonstrated that a thermostable lipid transfer protein isolated from noni seeds (McLTP 1 ; 9.4kDa) displays anti-nociceptive and anti-inflammatory activities. This work aimed to investigate the underlying mechanisms of the anti-inflammatory activity of McLTP 1 in mice. The protein was solubilised in sterile saline (0.9% NaCl) immediately before the treatment of mice by oral or intraperitoneal routes at doses of 8mg/kg. Given orally or intraperitoneally, McLTP 1 significantly inhibited (p<0.05) cell migration in experimental models of carrageenan-induced peritonitis and the formation of paw oedema induced by carrageenan and dextran. Additionally, McLTP 1 demonstrated the ability to significantly inhibit the production of the cytokines IL-1β, IL-6, and TNF-α (p<0.05) and to promote an increase in the production of the anti-inflammatory cytokine IL-10. The treatment of mice with McLTP 1 by the oral or i.p route reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury. This study suggested that the observed anti-inflammatory effects of McLTP 1 can be related to modulation of pro- and anti-inflammatory cytokine levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways

    PubMed Central

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  14. IGF-1, oxidative stress and atheroprotection.

    PubMed

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a crucial role not only in initial lesion formation but also in lesion progression and destabilization. Although most growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that insulin-like growth factor (IGF)-1 exerts both pleiotropic anti-oxidant effects and anti-inflammatory effects, which together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in models of vascular injury and atherosclerosis, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. A Chemokine Receptor CXCR2 Macromolecular Complex Regulates Neutrophil Functions in Inflammatory Diseases*

    PubMed Central

    Wu, Yanning; Wang, Shuo; Farooq, Shukkur M.; Castelvetere, Marcello P.; Hou, Yuning; Gao, Ji-Liang; Navarro, Javier V.; Oupicky, David; Sun, Fei; Li, Chunying

    2012-01-01

    Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases. PMID:22203670

  16. Cytokines in atherosclerosis: Key players in all stages of disease and promising therapeutic targets

    PubMed Central

    Ramji, Dipak P.; Davies, Thomas S.

    2015-01-01

    Atherosclerosis, a chronic inflammatory disorder of the arteries, is responsible for most deaths in westernized societies with numbers increasing at a marked rate in developing countries. The disease is initiated by the activation of the endothelium by various risk factors leading to chemokine-mediated recruitment of immune cells. The uptake of modified lipoproteins by macrophages along with defective cholesterol efflux gives rise to foam cells associated with the fatty streak in the early phase of the disease. As the disease progresses, complex fibrotic plaques are produced as a result of lysis of foam cells, migration and proliferation of vascular smooth muscle cells and continued inflammatory response. Such plaques are stabilized by the extracellular matrix produced by smooth muscle cells and destabilized by matrix metalloproteinase from macrophages. Rupture of unstable plaques and subsequent thrombosis leads to clinical complications such as myocardial infarction. Cytokines are involved in all stages of atherosclerosis and have a profound influence on the pathogenesis of this disease. This review will describe our current understanding of the roles of different cytokines in atherosclerosis together with therapeutic approaches aimed at manipulating their actions. PMID:26005197

  17. Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling.

    PubMed

    Xia, Rong; Chen, Sun-Xiao; Qin, Qin; Chen, Yan; Zhang, Wei-Wei; Zhu, Rong-Rong; Deng, An-Mei

    2016-01-01

    Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.

  18. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes.

    PubMed

    Pène, Jérôme; Chevalier, Sylvie; Preisser, Laurence; Vénéreau, Emilie; Guilleux, Marie-Hélène; Ghannam, Soufiane; Molès, Jean-Pierre; Danger, Yannic; Ravon, Elisa; Lesaux, Sabine; Yssel, Hans; Gascan, Hugues

    2008-06-01

    Chronic inflammatory diseases are characterized by local tissue injury caused by immunocompetent cells, in particular CD4(+) T lymphocytes, that are involved in the pathogenesis of these disorders via the production of distinctive sets of cytokines. Here, we have characterized single CD4(+) T cells that infiltrate inflamed tissue taken from patients with psoriasis, Crohn's disease, rheumatoid arthritis, or allergic asthma. Results from a cytokine production and gene profile analysis identified a population of in vivo differentiatedretinoid-related orphan receptor gamma-expressing T cells, producing high levels of IL-17, that can represent up to 30% of infiltrating T lymphocytes. Activated Th17 cells produced IL-26, TNF-alpha, lymphotoxin-beta, and IL-22. IL-17 and IL-22 concentrations secreted by tissue infiltrating Th17 cells could reach up to 100 nM and were inversely correlated with the production of Th1- and Th2-associated cytokines. In addition, tissue-infiltrating Th17 cells are also characterized by high cell surface expression of CCR6, a chemokine receptor that was not expressed by Th1 and Th2 cells, isolated from the same lesions, and by the production of CCL20/MIP3alpha, a CCR6 ligand, associated with tissue infiltration. Culture supernatants of activated Th17 cells, isolated from psoriatic lesions, induced the expression of gene products associated with inflammation and abnormal keratinocyte differentiation in an IL-17 and IL-22-dependent manner. These results show that tissue-infiltrating Th17 cells contribute to human chronic inflammatory disease via the production of several inflammatory cytokines and the creation of an environment contributing to their migration and sequestration at sites of inflammation.

  19. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease

    PubMed Central

    Karuppuchamy, Thangaraj; Behrens, En-hui; González-Cabrera, Pedro; Sarkisyan, Gor; Gima, Lauren; Boyer, Joshua D.; Bamias, Giorgos; Jedlicka, Paul; Veny, Marisol; Clark, David; Peach, Robert; Scott, Fiona; Rosen, Hugh; Rivera-Nieves, Jesús

    2016-01-01

    The sphingosine-1-phosphate receptor-1 (S1P1) agonist ozanimod ameliorates ulcerative colitis, yet its mechanism of action is unknown. Here we examine the cell subsets that express S1P1 in intestine using S1P1-eGFP mice, the regulation of S1P1 expression in lymphocytes after administration of DSS, after colitis induced by transfer of CD4+CD45RBhi cells and by crossing a mouse with TNF-driven ileitis with S1P1-eGFP mice. We then assayed the expression of enzymes that regulate intestinal S1P levels, and the effect of FTY720 on lymphocyte behavior and S1P1 expression. We found that not only T and B cells express S1P1, but also dendritic (DC) and endothelial cells. Furthermore, chronic but not acute inflammatory signals increased S1P1 expression, while the enzymes that control tissue S1P levels in mice and humans with IBD were uniformly dysregulated, favoring synthesis over degradation. Finally, we observed that FTY720 reduced T cell velocity and induced S1P1 degradation and retention of naïve but not effector T cells. Our data demonstrate that chronic inflammation modulates S1P1 expression and tissue S1P levels and suggests that the anti-inflammatory properties of S1PR agonists might not be solely due to their lymphopenic effects, but also due to potential effects on DC migration and vascular barrier function. PMID:27049060

  20. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-06-01

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB low . Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Expression of macrophage migration inhibitory factor and CD74 in the inner ear and middle ear in lipopolysaccharide-induced otitis media.

    PubMed

    Ishihara, Hisashi; Kariya, Shin; Okano, Mitsuhiro; Zhao, Pengfei; Maeda, Yukihide; Nishizaki, Kazunori

    2016-10-01

    Significant expression of macrophage migration inhibitory factor and its receptor (CD74) was observed in both the middle ear and inner ear in experimental otitis media in mice. Modulation of macrophage migration inhibitory factor and its signaling pathway might be useful in the management of inner ear inflammation due to otitis media. Inner ear dysfunction secondary to otitis media has been reported. However, the specific mechanisms involved are not clearly understood. The aim of this study is to investigate the expression of macrophage migration inhibitory factor and CD74 in the middle ear and inner ear in lipopolysaccharide-induced otitis media. BALB/c mice received a transtympanic injection of either lipopolysaccharide or phosphate-buffered saline (PBS). The mice were sacrificed 24 h after injection, and temporal bones were processed for polymerase chain reaction (PCR) analysis, histologic examination, and immunohistochemistry. PCR examination revealed that the lipopolysaccharide-injected mice showed a significant up-regulation of macrophage migration inhibitory factor in both the middle ear and inner ear as compared with the PBS-injected control mice. The immunohistochemical study showed positive reactions for macrophage migration inhibitory factor and CD74 in infiltrating inflammatory cells, middle ear mucosa, and inner ear in the lipopolysaccharide-injected mice.

  2. Compound C inhibits macrophage chemotaxis through an AMPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Youngyi; Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896; Park, Byung-Hyun, E-mail: bhpark@jbnu.ac.kr

    Macrophage infiltration in adipose tissue is a well-established cause of obesity-linked insulin resistance. AMP-activated protein kinase (AMPK) activation in peripheral tissues such as adipose tissue has beneficial effects on the protection against obesity-induced insulin resistance, which is mainly mediated by prevention of adipose tissue macrophage infiltration and inflammation. In examining the role of AMPK on adipose tissue inflammation, we unexpectedly found that compound C (CC), despite its inhibition of AMPK, robustly inhibited macrophage chemotaxis in RAW 264.7 cells when adipocyte conditioned medium (CM) was used as a chemoattractant. Here, we report that CC inhibition of macrophage migration occurred independently ofmore » AMPK. Mechanistically, this inhibitory effect of cell migration by CC was mediated by inhibition of the focal adhesion kinase, AKT, nuclear factor κB pathways. Moreover, the expression of chemokine monocyte chemoattractant protein-1 and pro-inflammatory genes such as tumor necrosis factor α and inducible nitric oxide synthase were prevented by CC treatment in RAW 264.7 cells stimulated with either adipocyte CM or lipopolysaccharide. Lastly, in accord with the findings of the anti-inflammatory effect of CC, we demonstrated that CC functioned as a repressor of macrophage CM-mediated insulin resistance in adipocytes. Taken together, our results suggest that CC serves as a useful inhibitory molecule against macrophage chemotaxis into adipose tissue and thus might have therapeutic potential for the treatment of obesity-linked adipose inflammation. - Highlights: • Compound C (CC) inhibits macrophage chemotaxis regardless of AMPK suppression. • CC enhances insulin sensitivity in adipocytes. • CC inhibits focal adhesion kinase, AKT, and NF-κB signaling in RAW 264.7 cells.« less

  3. Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach

    PubMed Central

    You, Sungyong; Yoo, Seung-Ah; Choi, Susanna; Kim, Ji-Young; Park, Su-Jung; Ji, Jong Dae; Kim, Tae-Hwan; Kim, Ki-Jo; Cho, Chul-Soo; Hwang, Daehee; Kim, Wan-Uk

    2014-01-01

    Rheumatoid synoviocytes, which consist of fibroblast-like synoviocytes (FLSs) and synovial macrophages (SMs), are crucial for the progression of rheumatoid arthritis (RA). Particularly, FLSs of RA patients (RA-FLSs) exhibit invasive characteristics reminiscent of cancer cells, destroying cartilage and bone. RA-FLSs and SMs originate differently from mesenchymal and myeloid cells, respectively, but share many pathologic functions. However, the molecular signatures and biological networks representing the distinct and shared features of the two cell types are unknown. We performed global transcriptome profiling of FLSs and SMs obtained from RA and osteoarthritis patients. By comparing the transcriptomes, we identified distinct molecular signatures and cellular processes defining invasiveness of RA-FLSs and proinflammatory properties of RA-SMs, respectively. Interestingly, under the interleukin-1β (IL-1β)–stimulated condition, the RA-FLSs newly acquired proinflammatory signature dominant in RA-SMs without losing invasive properties. We next reconstructed a network model that delineates the shared, RA-FLS–dominant (invasive), and RA-SM–dominant (inflammatory) processes. From the network model, we selected 13 genes, including periostin, osteoblast-specific factor (POSTN) and twist basic helix–loop–helix transcription factor 1 (TWIST1), as key regulator candidates responsible for FLS invasiveness. Of note, POSTN and TWIST1 expressions were elevated in independent RA-FLSs and further instigated by IL-1β. Functional assays demonstrated the requirement of POSTN and TWIST1 for migration and invasion of RA-FLSs stimulated with IL-1β. Together, our systems approach to rheumatoid synovitis provides a basis for identifying key regulators responsible for pathological features of RA-FLSs and -SMs, demonstrating how a certain type of cells acquires functional redundancy under chronic inflammatory conditions. PMID:24374632

  4. Asynchronous inflammation and myogenic cell migration limit muscle tissue regeneration mediated by a cellular scaffolds

    PubMed Central

    Garg, Koyal; Ward, Catherine L.; Corona, Benjamin T.

    2016-01-01

    Volumetric muscle loss (VML) following orthopaedic trauma results in chronic loss of strength and can contribute to disability. Tissue engineering and regenerative medicine approaches to regenerate the lost skeletal muscle and improve functional outcomes are currently under development. At the forefront of these efforts, decellularized extracellular matrices (ECMs) have reached clinical testing and provide the foundation for other approaches that include stem/progenitor cell delivery. ECMs have been demonstrated to possess many qualities to initiate regeneration, to include stem cell chemotaxis and pro-regenerative macrophage polarization. However, the majority of observations indicate that ECM-repair of VML does not promote appreciable muscle fiber regeneration. In a recent study, ECM-repair of VML was compared to classical muscle fiber regeneration (Garg et al., 2014, Cell & Tissue Research) mediated by autologous minced grafts. The most salient findings of this study were: 1) Satellite cells did not migrate into the scaffold beyond ~0.5 mm from the remaining host tissue, although other migratory stem cells (Sca-1+) were observed throughout the scaffold;2) Macrophage migration to the scaffold was over two-times that observed with muscle grafts, but they appeared to be less active, as gene expression of pro- and anti-inflammatory cytokines (TNF-α, IL-12, IL-4, IL-10, VEGF, and TGF-β1) was significantly reduced in scaffold-repaired muscles; And, 3) scaffolds did not promote appreciable muscle fiber regeneration. Collectively, these data suggest that the events following ECM transplantation in VML are either incongruous or asynchronous with classical muscle fiber regeneration. PMID:26949720

  5. Clinical implications of mast cell involvement in allergic conjunctivitis.

    PubMed

    Elieh Ali Komi, D; Rambasek, T; Bielory, L

    2018-03-01

    The conjunctiva is a common site for the allergic inflammatory response due to it being highly vascularized, having constant exposure to environmental pollutants and allergenic pollens and having a unique conjunctival associated lymphoid tissue. The primary morbidity of anterior surface conjunctival disorders that include allergic conjunctivitis and tear film disorders is associated with its high frequency of involvement rather than its severity, although the more chronic forms can involve the cornea and lead to sight-threatening conditions. Ocular allergy is associated with IgE-mediated mast cell activation in conjunctival tissue leading to the release of preformed mediators including histamine and proteases and subsequent de novo formation of lipid-derived mediators and cytokines that trigger a cascade of cellular and molecular events leading to extensive migration and infiltration of inflammatory cells to the ocular surface. The trafficking of neutrophils, eosinophils, and lymphocytes to the ocular surface is due to establishing various chemokine gradients (mainly CCL11, CCL24, CCL5, MCP-3, and MCP-4), cell surface expression of adhesion molecules (such as VCAM-1 the ligand for VLA-4), and leukocyte adhesion to vascular endothelium. The release of preformed mediators underlies the acute ocular surface response while the secondary influx of inflammatory cells leading to the recruitment and activation of eosinophils and the subsequent activation of Th2 and Th1 lymphocytes at the level of the conjunctiva reflects the late-phase reaction. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  6. The calcium-activated potassium channel KCa3.1 plays a central role in the chemotactic response of mammalian neutrophils.

    PubMed

    Henríquez, C; Riquelme, T T; Vera, D; Julio-Kalajzić, F; Ehrenfeld, P; Melvin, J E; Figueroa, C D; Sarmiento, J; Flores, C A

    2016-01-01

    Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1(-/-) mice are significantly less effective at recruiting neutrophils into the site of inflammation. These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Nanotextured titanium surfaces stimulate spreading, migration, and growth of rat mast cells.

    PubMed

    Marcatti Amarú Maximiano, William; Marino Mazucato, Vivian; Tambasco de Oliveira, Paulo; Célia Jamur, Maria; Oliver, Constance

    2017-08-01

    Titanium is a biomaterial widely used in dental and orthopedic implants. Since tissue-implant interactions occur at the nanoscale level, nanotextured titanium surfaces may affect cellular activity and modulate the tissue response that occurs at the tissue-implant interface. Therefore, the characterization of diverse cell types in response to titanium surfaces with nanotopography is important for the rational design of implants. Mast cells are multifunctional cells of the immune system that release a range of chemical mediators involved in the inflammatory response that occurs at the tissue-implant interface. Therefore, the aim of this study was to investigate the effects of the nanotopography of titanium surfaces on the physiology of mast cells. The results show that the nanotopography of titanium surfaces promoted the spreading of mast cells, which was accompanied by the reorganization of the cytoskeleton. Also, the nanotopography of titanium surfaces enhanced cell migration and cell growth, but did not alter the number of adherent cells in first hours of culture or affect focal adhesions and mediator release. Thus, the results show that nanotopography of titanium surfaces can affect mast cell physiology, and represents an improved strategy for the rational production of surfaces that stimulate tissue integration with the titanium implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2150-2161, 2017. © 2017 Wiley Periodicals, Inc.

  8. Bardoxolone-methyl inhibits migration and metabolism in MCF7 cells.

    PubMed

    Refaat, Alaa; Pararasa, Chathyan; Arif, Muhammed; Brown, James E P; Carmichael, Amtul; Ali, Sameh S; Sakurai, Hiroaki; Griffiths, Helen R

    2017-02-01

    Bardoxolone-methyl (BAR) is reported to have anti-inflammatory, anti-proliferative and anti-fibrotic effects. BAR activates Nrf2 and may ameliorate oxidative stress through induction of antioxidant genes. However, off-target effects, probably concentration and NFkB-dependent, have limited the clinical use of BAR. Nrf2 regulates expression of antioxidant and mitochondrial genes and has been proposed as a target for both obesity and breast cancer. Therefore, we explored whether BAR can alter migration and proliferation in the MCF7 cell line and whether metabolic function is affected by BAR. Incubation with BAR caused a time-dependent migratory inhibition and an associated decrease in mitochondrial respiration. Both migratory and mitochondrial inhibition by BAR were further enhanced in the presence of fatty acids. In addition to the activation of Nrf2, BAR altered the expression of target mRNA GCLC and UCP1. After 24 h, BAR inhibited both glycolytic capacity, reserve (p < 0.05) and oxidative phosphorylation (p < 0.001) with an associated increase in mitochondrial ROS and loss of intracellular glutathione in MCF7 cells; however, impairment of mitochondrial activity was prevented by N-acetyl cysteine. The fatty acid, palmitate, increased mitochondrial ROS, impaired migration and oxidative phosphorylation but palmitate toxicity towards MCF7 could not be inhibited by N-acetyl cysteine suggesting that they exert effects through different pathways. BAR-activated AKT, induced DNA damage and inhibited cell proliferation. When the proteasome was inhibited, there was loss of BAR-mediated changes in p65 phosphorylation and SOD2 expression suggesting non-canonical NFkB signaling effects. These data suggest that BAR-induced ROS are important in inhibiting MCF7 migration and metabolism by negatively affecting glycolytic capacity and mitochondrial function.

  9. Effects of topical budesonide on epithelial restitution in vivo in guinea pig trachea.

    PubMed Central

    Erjefält, J. S.; Erjefält, I.; Sundler, F.; Persson, C. G.

    1995-01-01

    BACKGROUND--Continuous epithelial shedding and restitution processes may characterise the airways in diseases such as asthma. Epithelial restitution involves several humoral and cellular mechanisms that may potentially be affected by inhaled anti-asthma drugs. The present study examines the effect of a topical steroid on epithelial restitution in vivo in the guinea pig. METHODS--The airway epithelium was mechanically removed from well defined areas of guinea pig trachea without surgery and without damage to the basement membrane or bleeding. An anti-inflammatory dose of budesonide (1 mg) was administered repeatedly to the tracheal surface by local superfusion 24 hours before, at (0 hours), and 24 hours after the denudation. Migration of epithelial cells, formation of a plasma exudation-derived gel, and appearance of luminal leucocytes were recorded by scanning electron microscopy. Cell proliferation was visualised by bromodeoxyuridine immunohistochemistry and tissue neutrophils and eosinophils by enzyme histochemistry. RESULTS--Immediately after creation of the denuded zone ciliated and secretory cells on its border dedifferentiated, flattened out, and migrated speedily (mean (SE) 2.3 (0.3) micron/min) over the basement membrane. After 48 hours the entire denuded zone (800 microns wide) was covered by a tightly sealed epithelium; at this time increased proliferation was observed in new and old epithelium and subepithelial cells. Budesonide had no detectable effect on epithelial dedifferentiation, migration, sealing, or proliferation. Immediately after denudation and continuously during the migration phase plasma was extravasated creating a fibrinous gel rich in leucocytes, particularly neutrophils, over the denuded area. Budesonide had no effect on either the gel or the leucocyte density. CONCLUSIONS--These observations suggest that topical glucocorticoids may not interfere with a fast and efficient restitution of the epithelium in the airways. Images PMID:7570417

  10. Inflammatory responses in the muscle coat of stomach and small bowel in the postoperative ileus model of guinea pig.

    PubMed

    Choi, Hong Kyu; Lee, Young Ju; Lee, Young Ho; Park, Jong Pil; Min, Kevin; Park, Hyojin

    2013-11-01

    Small intestinal function returns first after surgery, and then the function of the stomach returns to normal after postoperative ileus (POI). The aim of this study was to investigate inflammatory responses in the muscle coat of stomach and small intestine in guinea pig POI model. The distance of charcoal migration from pylorus to the distal intestine was measured. Hematoxylin and eosin (H&E) and immunohistochemical stain for calprotectin were done from the histologic sections of stomach, jejunum and ileum obtained at 3 and 6 hour after operation. Data were compared between sham operation and POI groups. The distance of charcoal migration was significantly reduced in the 3 and 6 hour POI groups compared with sham operated groups (p<0.05). On H&E staining, the degree of inflammation was significantly higher in the stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). Calprotectin positive cells were significantly increased in the muscle coat of stomach of 3 hour POI groups compared with jejunum and ileum of POI groups or sham operated groups (p<0.05). There was strong association between the degree of inflammation and calprotectin positive cells in stomach. Postoperative ileus induced by cecal manipulation significantly increased the degree of inflammation and calprotectin positive cells in the muscle coat of stomach as a remote organ. The relevance of degree of inflammation and the recovery time of ileus should be pursued in the future research.

  11. Enamel matrix derivative, inflammation and soft tissue wound healing.

    PubMed

    Miron, R J; Dard, M; Weinreb, M

    2015-10-01

    Over 15 years have now passed since enamel matrix derivative (EMD) emerged as an agent capable of periodontal regeneration. Following thorough investigation, evidenced-based clinical application is now established for a multitude of clinical settings to promote regeneration of periodontal hard tissues. Despite the large number of studies and review articles written on this topic, no single review has compiled the influence of EMD on tissue inflammation, an area of research that merits substantial attention in periodontology. The aim of the present review was to gather all studies that deal with the effects of EMD on tissue inflammation with particular interest in the cellular mechanisms involved in inflammation and soft tissue wound healing/resolution. The effects of EMD on monocytes, macrophages, lymphocytes, neutrophils, fibroblasts and endothelial cells were investigated for changes in cell behavior as well as release of inflammatory markers, including interleukins, prostaglandins, tumor necrosis factor-α, matrix metalloproteinases and members of the OPG-RANKL pathway. In summary, studies listed in this review have reported that EMD is able to significantly decrease interleukin-1b and RANKL expression, increase prostaglandin E2 and OPG expression, increase proliferation and migration of T lymphocytes, induce monocyte differentiation, increase bacterial and tissue debris clearance, as well as increase fibroplasias and angiogenesis by inducing endothelial cell proliferation, migration and capillary-like sprout formation. The outcomes from the present review article indicate that EMD is able to affect substantially the inflammatory and healing responses and lay the groundwork for future investigation in the field. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Inflammatory response of human dental pulp to at-home and in-office tooth bleaching

    PubMed Central

    Vaz, Maysa Magalhães; Lopes, Lawrence Gonzaga; Cardoso, Paula Carvalho; de Souza, João Batista; Batista, Aline Carvalho; Costa, Nádia Lago; Torres, Érica Miranda; Estrela, Carlos

    2016-01-01

    ABSTRACT Tooth bleaching is a technique of choice to obtain a harmonious smile, but bleaching agents may damage the dental pulp. Objective: This study evaluated the inflammatory responses of human dental pulp after the use of two bleaching techniques. Material and Methods: Pulp samples were collected from human third molars extracted for orthodontic reasons and divided into three groups: control - no tooth bleaching (CG) (n=7); at-home bleaching with 15% carbamide peroxide (AH) (n = 10), and in-office bleaching with 38% hydrogen peroxide (IO) (n=12). Pulps were removed and stained with hematoxylin-eosin for microscopic analysis of inflammation intensity, collagen degradation, and pulp tissue organization. Immunohistochemistry was used to detect mast cells (tryptase+), blood vessels (CD31+), and macrophages (CD68+). Chi-square, Kruskal-Wallis, and Mann Whitney tests were used for statistical analysis. The level of significance was set at p<.05. Results: The inflammation intensity and the number of macrophages were significantly greater in IO than in AH and CG (p<0.05). The results of CD31+ (blood vessels per mm2) were similar in CG (61.39±20.03), AH (52.29±27.62), and IO (57.43±8.69) groups (p>0.05). No mast cells were found in the pulp samples analyzed. Conclusion: In-office bleaching with 38% hydrogen peroxide resulted in more intense inflammation, higher macrophages migration, and greater pulp damage then at-home bleaching with 15% carbamide peroxide, however, these bleaching techniques did not induce migration of mast cells and increased the number of blood vessels. PMID:27812622

  13. A three-dimensional in vitro model to demonstrate the haptotactic effect of monocyte chemoattractant protein-1 on atherosclerosis-associated monocyte migration

    PubMed Central

    Ghousifam, Neda; Mortazavian, Seyyed Hamid; Bhowmick, Rudra; Vasquez, Yolanda; Blum, Frank D.; Gappa-Fahlenkamp, Heather

    2017-01-01

    Monocyte transendothelial migration is a multi-step process critical for the initiation and development of atherosclerosis. The chemokine monocyte chemoattractant protein-1 (MCP-1) is overexpressed during atheroma and its concentration gradients in the extracellular matrix (ECM) is critical for the transendothelial recruitment of monocytes. Based on prior observations, we hypothesize that both free and bound gradients of MCP-1 within the ECM are involved in directing monocyte migration. The interaction between a three-dimensional (3D), cell-free, collagen matrix and MCP-1; and its effect on monocyte migration was measured in this study. Our results showed such an interaction existed between MCP-1 and collagen, as 26% of the total MCP-1 added to the collagen matrix was bound to the matrix after extensive washes. We also characterized the collagen-MCP-1 interaction using biophysical techniques. The treatment of the collagen matrix with MCP-1 lead to increased monocyte migration, and this phenotype was abrogated by treating the matrix with an anti-MCP-1 antibody. Thus, our results indicate a binding interaction between MCP-1 and the collagen matrix, which could elicit a haptotactic effect on monocyte migration. A better understanding of such mechanisms controlling monocyte migration will help identify target cytokines and lead to the development of better anti-inflammatory therapeutic strategies. PMID:28041913

  14. Orf virus interleukin-10 and vascular endothelial growth factor-E modulate gene expression in cultured equine dermal fibroblasts.

    PubMed

    Wise, Lyn M; Bodaan, Christa J; Mercer, Andrew A; Riley, Christopher B; Theoret, Christine L

    2016-10-01

    Wounds in horses often exhibit sustained inflammation and inefficient vascularization, leading to excessive fibrosis and clinical complications such as "proud flesh". Orf virus-derived proteins, vascular endothelial growth factor (VEGF)-E and interleukin (ovIL)-10, enhance angiogenesis and control inflammation and fibrosis in skin wounds of laboratory animals. The study aimed to determine if equine dermal cells respond to VEGF-E and ovIL-10. Equine dermal cells are expected to express VEGF and IL-10 receptors, so viral protein treatment is likely to alter cellular gene expression and behaviour in a manner conducive to healing. Skin samples were harvested from the lateral thoracic wall of two healthy thoroughbred horses. Equine dermal cells were isolated using a skin explant method and their phenotype assessed by immunofluorescence. Cells were treated with recombinant proteins, with or without inflammatory stimuli. Gene expression was examined using standard and quantitative reverse transcriptase PCR. Cell behaviour was evaluated in a scratch assay. Cultured cells were half vimentin(+ve) fibroblasts and half alpha smooth muscle actin(+ve) and vimentin(+ve) myofibroblasts. VEGF-E increased basal expression of IL-10 mRNA, whereas VEGF-A and collagenase-1 mRNA expression was increased by ovIL-10. In cells exposed to inflammatory stimulus, both treatments dampened tumour necrosis factor mRNA expression, and ovIL-10 exacerbated expression of monocyte chemoattractant protein. Neither viral protein influenced cell migration greatly. This study shows that VEGF-E and ovIL-10 are active on equine dermal cells and exert anti-inflammatory and anti-fibrotic effects that may enhance skin wound healing in horses. © 2016 ESVD and ACVD.

  15. Tracking the Spatial and Functional Gradient of Monocyte-To-Macrophage Differentiation in Inflamed Lung.

    PubMed

    Sen, Debasish; Jones, Stephen M; Oswald, Erin M; Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F

    2016-01-01

    Myeloid-derived cells such as monocytes, dendritic cells (DCs), and macrophages are at the heart of the immune effector function in an inflammatory response. But because of the lack of an efficient imaging system to trace these cells live during their migration and maturation in their native environment at sub-cellular resolution, our knowledge is limited to data available from specific time-points analyzed by flow cytometry, histology, genomics and other immunological methods. Here, we have developed a ratiometric imaging method for measuring monocyte maturation in inflamed mouse lungs in situ using real-time using 2-photon imaging and complementary methods. We visualized that while undifferentiated monocytes were predominantly found only in the vasculature, a semi-differentiated monocyte/macrophage population could enter the tissue and resembled more mature and differentiated populations by morphology and surface phenotype. As these cells entered and differentiated, they were already selectively localized near inflamed airways and their entry was associated with changes in motility and morphology. We were able to visualize these during the act of differentiation, a process that can be demonstrated in this way to be faster on a per-cell basis under inflammatory conditions. Finally, our in situ analyses demonstrated increases, in the differentiating cells, for both antigen uptake and the ability to mediate interactions with T cells. This work, while largely confirming proposed models for in situ differentiation, provides important in situ data on the coordinated site-specific recruitment and differentiation of these cells and helps elaborate the predominance of immune pathology at the airways. Our novel imaging technology to trace immunogenic cell maturation in situ will complement existing information available on in situ differentiation deduced from other immunological methods, and assist better understanding of the spatio-temporal cellular behavior during an inflammatory response.

  16. T cell receptor–induced phosphoinositide-3-kinase p110δ activity is required for T cell localization to antigenic tissue in mice

    PubMed Central

    Jarmin, Sarah J.; David, Rachel; Ma, Liang; Chai, Jan-Guo; Dewchand, Hamlata; Takesono, Aya; Ridley, Anne J.; Okkenhaug, Klaus; Marelli-Berg, Federica M.

    2008-01-01

    The establishment of T cell–mediated inflammation requires the migration of primed T lymphocytes from the blood stream and their retention in antigenic sites. While naive T lymphocyte recirculation in the lymph and blood is constitutively regulated and occurs in the absence of inflammation, the recruitment of primed T cells to nonlymphoid tissue and their retention at the site are enhanced by various inflammatory signals, including TCR engagement by antigen-displaying endothelium and resident antigen-presenting cells. In this study, we investigated whether signals downstream of TCR ligation mediated by the phosphoinositide-3-kinase (PI3K) subunit p110δ contributed to the regulation of these events. T lymphocytes from mice expressing catalytically inactive p110δ displayed normal constitutive trafficking and migratory responses to nonspecific stimuli. However, these cells lost susceptibility to TCR-induced migration and failed to localize efficiently to antigenic tissue. Importantly, we showed that antigen-induced T cell trafficking and subsequent inflammation was abrogated by selective pharmacological inhibition of PI3K p110δ activity. These observations suggest that pharmacological targeting of p110δ activity is a viable strategy for the therapy of T cell–mediated pathology. PMID:18259608

  17. Effects of endurance exercise training on inflammatory circulating progenitor cell content in lean and obese adults.

    PubMed

    Niemiro, Grace M; Allen, Jacob M; Mailing, Lucy J; Khan, Naiman A; Holscher, Hannah D; Woods, Jeffrey A; De Lisio, Michael

    2018-06-19

    Chronic inflammation underlies many of the health decrements associated with obesity. Circulating progenitor cells can sense and respond to inflammatory stimuli, increasing the local inflammatory response within tissues. Here we show that 6 weeks of endurance exercise training significantly decreases inflammatory circulating progenitor cells in obese adults. These findings provide novel cellular mechanisms for the beneficial effects of exercise in obese adults. Circulating progenitor cells (CPCs) and subpopulations are normally found in the bone marrow, but can migrate to peripheral tissues to participate in local inflammation and/or remodelling. The purpose of this study was to compare the CPC response, particularly the inflammatory-primed haematopoietic stem and progenitor (HSPC) subpopulation, to a 6 week endurance exercise training (EET) intervention between lean and obese adults. Seventeen healthy weight (age: 23.9 ± 5.4 years, body mass index (BMI): 22.0 ± 2.6 kg m -2 ) and 10 obese (age: 29.0 ± 8.0 years, BMI: 33.1 ± 6.0 kg m -2 ) previously sedentary adults participated in an EET. Blood was collected before and after EET for quantification of CPCs and subpopulations via flow cytometry, colony forming unit assays and plasma concentrations of C-X-C motif chemokine 12 (CXCL12), granulocyte-colony stimulating factor (G-CSF), and chemokine (C-C motif) ligand 2 (CCL2). Exercise training reduced the number of circulating HSPCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs). EET increased the colony forming potential of granulocytes and macrophages irrespective of BMI. EET reduced the number of HSPCs expressing the chemokine receptor CCR2 and the pro-inflammatory marker TLR4. EET-induced changes in adipose tissue-derived MSCs and bone marrow-derived MSCs were negatively related to changes in absolute fitness. Our results indicate that EET, regardless of BMI status, decreases CPCs and subpopulations, particularly those primed for contribution to tissue inflammation. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  18. A Real Time Chemotaxis Assay Unveils Unique Migratory Profiles amongst Different Primary Murine Macrophages

    PubMed Central

    Iqbal, Asif J.; Regan-Komito, Daniel; Christou, Ivy; White, Gemma E.; McNeill, Eileen; Kenyon, Amy; Taylor, Lewis; Kapellos, Theodore S.; Fisher, Edward A.; Channon, Keith M.; Greaves, David R.

    2013-01-01

    Chemotaxis assays are an invaluable tool for studying the biological activity of inflammatory mediators such as CC chemokines, which have been implicated in a wide range of chronic inflammatory diseases. Conventional chemotaxis systems such as the modified Boyden chamber are limited in terms of the data captured given that the assays are analysed at a single time-point. We report the optimisation and validation of a label-free, real-time cell migration assay based on electrical cell impedance to measure chemotaxis of different primary murine macrophage populations in response to a range of CC chemokines and other chemoattractant signalling molecules. We clearly demonstrate key differences in the migratory behavior of different murine macrophage populations and show that this dynamic system measures true macrophage chemotaxis rather than chemokinesis or fugetaxis. We highlight an absolute requirement for Gαi signaling and actin cytoskeletal rearrangement as demonstrated by Pertussis toxin and cytochalasin D inhibition. We also studied the chemotaxis of CD14+ human monocytes and demonstrate distinct chemotactic profiles amongst different monocyte donors to CCL2. This real-time chemotaxis assay will allow a detailed analysis of factors that regulate macrophage responses to chemoattractant cytokines and inflammatory mediators. PMID:23516549

  19. Anti-inflammatory, antiproliferative and cytoprotective potential of the Attalea phalerata Mart. ex Spreng. pulp oil

    PubMed Central

    Lescano, Caroline Honaiser; Arrigo, Jucicléia da Silva; Cardoso, Cláudia Andrea Lima; Coutinho, Janclei Pereira; Moslaves, Iluska Senna Bonfá; Ximenes, Thalita Vieira do Nascimento; Kadri, Monica Cristina Toffoli; Weber, Simone Schneider; Perdomo, Renata Trentin; Kassuya, Cândida Aparecida Leite; Vieira, Maria do Carmo; Sanjinez-Argandoña, Eliana Janet

    2018-01-01

    The anti-inflammatory, antiproliferative and cytoprotective activity of the Attalea phalerata Mart. ex Spreng pulp oil was evaluated by in vitro and in vivo methods. As for the chemical profile, the antioxidant activity was performed by spectrophotometry, and the profile of carotenoids and amino acids by chromatography. Our data demonstrated that A. phalerata oil has high carotenoid content, antioxidant activity and the presence of 5 essential amino acids. In the in vitro models of inflammation, the oil demonstrated the capacity to inhibit COX1 and COX2 enzymes, the production of nitric oxide and also induces macrophages to spreading. In the in vivo models of inflammation, the oil inhibited edema and leukocyte migration in the Wistar rats. In the in vitro model of antiproliferative and cytoprotective activity, the oil was shown inactive against the kidney carcinoma and prostate carcinoma lineage cells and with cytoprotective capacity in murine fibroblast cells, inhibiting the cytotoxic action of doxorubicin. Therefore, it is concluded that A. phalerata pulp oil has anti-inflammatory effects with nutraceutical properties potential due to the rich composition. Moreover, the oil also has cytoprotective activity probably because of its ability to inhibit the action of free radicals. PMID:29634766

  20. An Anti-Inflammatory Role of VEGFR2/Src Kinase Inhibitor in Herpes Simplex Virus 1-Induced Immunopathology▿

    PubMed Central

    Sharma, Shalini; Mulik, Sachin; Kumar, Naveen; Suryawanshi, Amol; Rouse, Barry T.

    2011-01-01

    Corneal neovascularization represents a key step in the blinding inflammatory stromal keratitis (SK) lesion caused by ocular infection with herpes simplex virus (HSV). In this report, we describe a novel approach for limiting the angiogenesis caused by HSV infection of the mouse eye. We show that topical or systemic administration of the Src kinase inhibitor (TG100572) that inhibits downstream molecules involved in the vascular endothelial growth factor (VEGF) signaling pathway resulted in markedly diminished levels of HSV-induced angiogenesis and significantly reduced the severity of SK lesions. Multiple mechanisms were involved in the inhibitory effects. These included blockade of IL-8/CXCL1 involved in inflammatory cells recruitment that are a source of VEGF, diminished cellular infiltration in the cornea, and reduced proliferation and migration of CD4+ T cells into the corneas. As multiple angiogenic factors (VEGF and basic fibroblast growth factor [bFGF]) play a role in promoting angiogenesis during SK and since Src kinases are involved in signaling by many of them, the use of Src kinase inhibition represents a promising way of limiting the severity of SK lesions the most common cause of infectious blindness in the Western world. PMID:21471229

  1. Genistein suppresses leptin-induced proliferation and migration of vascular smooth muscle cells and neointima formation.

    PubMed

    Tsai, Yung-Chieh; Leu, Sy-Ying; Peng, Yi-Jen; Lee, Yen-Mei; Hsu, Chih-Hsiung; Chou, Shen-Chieh; Yen, Mao-Hsiung; Cheng, Pao-Yun

    2017-03-01

    Obesity is a strong risk factor for the development of cardiovascular diseases and is associated with a marked increase in circulating leptin concentration. Leptin is a peptide hormone mainly produced by adipose tissue and is regulated by energy level, hormones and various inflammatory mediators. Genistein is an isoflavone that exhibits diverse health-promoting effects. Here, we investigated whether genistein suppressed the atherogenic effect induced by leptin. The A10 cells were treated with leptin and/or genistein, and then the cell proliferation and migration were analysed. The reactive oxygen species (ROS) and proteins levels were also measured, such as p44/42MAPK, cell cycle-related protein (cyclin D1 and p21) and matrix metalloproteinase-2 (MMP-2). Immunohistochemistry and morphometric analysis were used for the neointima formation in a rat carotid artery injury model. Genistein (5 μM) significantly inhibited both the proliferation and migration of leptin (10 ng/ml)-stimulated A10 cells. In accordance with these finding, genistein decreased the leptin-stimulated ROS production and phosphorylation of the p44/42MAPK signal transduction pathway. Meanwhile, genistein reversed the leptin-induced expression of cyclin D1, and cyclin-dependent kinase inhibitor, p21. Genistein attenuated leptin-induced A10 cell migration by inhibiting MMP-2 activity. Furthermore, the leptin (0.25 mg/kg)-augmented neointima formation in a rat carotid artery injury model was attenuated in the genistein (5 mg/kg body weight)-treated group when compared with the balloon injury plus leptin group. Genistein was capable of suppressing the atherogenic effects of leptin in vitro and in vivo, and may be a promising candidate drug in the clinical setting. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. The flavone eupatilin inhibits eotaxin expression in an NF-κB-dependent and STAT6-independent manner.

    PubMed

    Jeon, J I; Ko, S H; Kim, Y-J; Choi, S M; Kang, K K; Kim, H; Yoon, H J; Kim, J M

    2015-03-01

    The CC chemokine eotaxin contributes to epithelium-induced inflammation in airway diseases such as asthma. Eupatilin (5,7-dihydroxy-3',4',6'-trimethoxyflavone), a bioactive component of Artemisia asiatica Nakai (Asteraceae), is reported to inhibit the adhesion of eosinophils to bronchial epithelial cells. However, little is known about the molecular mechanism of eupatilin-induced attenuation of bronchial epithelium-induced inflammation. In this study, we investigated the effect of eupatilin on expression of eotaxin-1 (CCL11), a potent chemoattractant for eosinophils. Eupatilin significantly inhibited eotaxin expression in bronchial epithelial cells stimulated with TNF-α, while NF-κB and IκBα kinase (IKK) activities declined concurrently. Eupatilin also inhibited mitogen-activated protein kinase (MAPK) activity; however, all of these anti-inflammatory activities were reversed by MAPK overexpression. In contrast, eupatilin did not affect the signal transducer and activator of transcription 6 (STAT6) signalling in bronchial epithelial cells stimulated with IL-4. Furthermore, eupatilin significantly attenuated TNF-α-induced eosinophil migration. These results suggest that the eupatilin inhibits the signalling of MAPK, IKK, NF-κB and eotaxin-1 in bronchial epithelial cells, leading to inhibition of eosinophil migration. © 2015 John Wiley & Sons Ltd.

  3. Postarrest stalling rather than crawling favors CD8+ over CD4+ T‐cell migration across the blood–brain barrier under flow in vitro

    PubMed Central

    Rudolph, Henriette; Klopstein, Armelle; Gruber, Isabelle; Blatti, Claudia; Lyck, Ruth

    2016-01-01

    Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells. PMID:27338806

  4. Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma.

    PubMed

    Rao, Savita P; Ge, Xiao Na; Sriramarao, P

    2017-01-01

    Eosinophils are differentiated granulocytes that are recruited from the bone marrow to sites of inflammation via the vascular system. Allergic asthma is characterized by the presence of large numbers of eosinophils in the lungs and airways. Due to their capacity to rapidly release inflammatory mediators such as cytokines, chemokines, growth factors, and cytotoxic granule proteins upon stimulation, eosinophils play a critical role in pro-inflammatory processes in allergen-exposed lungs. Identifying key players and understanding the molecular mechanisms directing eosinophil trafficking and recruitment to inflamed airways is a key to developing therapeutic strategies to limit their influx. Recent studies have brought to light the important role of glycans and glycan binding proteins in regulating recruitment of eosinophils. In addition to the role of previously identified eosinophil- and endothelial-expressed adhesion molecules in mediating eosinophil trafficking and recruitment to the inflamed airways, studies have also indicated a role for galectins (galectin-3) in this process. Galectins are mammalian lectins expressed by various cell types including eosinophils. Intracellularly, they can regulate biological processes such as cell motility. Extracellularly, galectins interact with β-galactosides in cell surface-expressed glycans to regulate cellular responses like production of inflammatory mediators, cell adhesion, migration, and apoptosis. Eosinophils express galectins intracellularly or on the cell surface where they interact with cell surface glycoconjugate receptors. Depending on the type (galectin-1, -3, etc.) and location (extracellular or intracellular, endogenous or exogenously delivered), galectins differentially regulate eosinophil recruitment, activation, and apoptosis and thus exert a pro- or anti-inflammatory outcome. Here, we have reviewed information pertaining to galectins (galectin-1, -3 -9, and -10) that are expressed by eosinophils themselves and/or other cells that play a role in eosinophil recruitment and function in the context of allergic asthma and their potential use as disease biomarkers or therapeutic targets for immunomodulation.

  5. Proinflammatory and anti-inflammatory cytokine balance in gasoline exhaust induced pulmonary injury in mice.

    PubMed

    Sureshkumar, Veerapandian; Paul, Bholanath; Uthirappan, Mani; Pandey, Renu; Sahu, Anand Prakash; Lal, Kewal; Prasad, Arun Kumar; Srivastava, Suresh; Saxena, Ashok; Mathur, Neeraj; Gupta, Yogendra Kumar

    2005-03-01

    Proinflammatory and anti-inflammatory cytokine balance and associated changes in pulmonary bronchoalveolar lavage fluid (BALF) of unleaded gasoline exhaust (GE) exposed mice were investigated. Animals were exposed to GE (1 L/min of GE mixed with 14 L/min of compressed air) using a flow-past, nose-only, dynamic inhalation exposure chamber for different durations (7, 14, and 21 days). The particulate content of the GE was found to be 0.635, +/-0.10 mg PM/m3. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) were observed in BALF of GE-exposed mice, but interleukin 1beta(IL-1beta) and the anti-inflammatory cytokine interleukin-10 (IL-10) remained unaffected. GE induced higher activities of alkaline phosphatase (ALP), gamma-glutamyl transferase (gammaGT), and lactate dehydrogenase (LDH) in the BALF, indicating Type II alveolar epithelial cell injury, Clara-cell injury, and general toxicity, respectively. Total protein in the BALF increased after 14 and 21 days of exposure, indicating enhanced alveolar-capillary permeability. However, the difference in the mean was found statistically insignificant in comparison to the compressed air control. Total cell count in the BALF of GE-exposed mice ranged between 0.898 and 0.813x10(6) cells/ml, whereas the compressed air control showed 0.65x10(6) cells/mL. The histopathological changes in GE-exposed lung includes perivascular, and peribronchiolar cuffing of mononuclear cells, migration of polymorphonuclear cells in the alveolar septa, alveolar thickening, and mild alveolar edematous changes indicating inflammation. The shift in pro- and anti-inflammatory cytokine balance and elevation of the pulmonary marker enzymes indicate toxic insult of GE. This study will help in our understanding of the mechanism of pulmonary injury by GE in the light of cytokine profiles, pulmonary marker enzymes, and lung architecture.

  6. Toward Personalized Cell Therapies: Autologous Menstrual Blood Cells for Stroke

    PubMed Central

    Rodrigues, Maria Carolina O.; Glover, Loren E.; Weinbren, Nathan; Rizzi, Jessica A.; Ishikawa, Hiroto; Shinozuka, Kazutaka; Tajiri, Naoki; Kaneko, Yuji; Sanberg, Paul R.; Allickson, Julie G.; Kuzmin-Nichols, Nicole; Garbuzova-Davis, Svitlana; Voltarelli, Julio Cesar; Cruz, Eduardo; Borlongan, Cesar V.

    2011-01-01

    Cell therapy has been established as an important field of research with considerable progress in the last years. At the same time, the progressive aging of the population has highlighted the importance of discovering therapeutic alternatives for diseases of high incidence and disability, such as stroke. Menstrual blood is a recently discovered source of stem cells with potential relevance for the treatment of stroke. Migration to the infarct site, modulation of the inflammatory reaction, secretion of neurotrophic factors, and possible differentiation warrant these cells as therapeutic tools. We here propose the use of autologous menstrual blood cells in the restorative treatment of the subacute phase of stroke. We highlight the availability, proliferative capacity, pluripotency, and angiogenic features of these cells and explore their mechanistic pathways of repair. Practical aspects of clinical application of menstrual blood cells for stroke will be discussed, from cell harvesting and cryopreservation to administration to the patient. PMID:22162629

  7. Gingival wound healing: an essential response disturbed by aging?

    PubMed

    Smith, P C; Cáceres, M; Martínez, C; Oyarzún, A; Martínez, J

    2015-03-01

    Gingival wound healing comprises a series of sequential responses that allow the closure of breaches in the masticatory mucosa. This process is of critical importance to prevent the invasion of microbes or other agents into tissues, avoiding the establishment of a chronic infection. Wound healing may also play an important role during cell and tissue reaction to long-term injury, as it may occur during inflammatory responses and cancer. Recent experimental data have shown that gingival wound healing is severely affected by the aging process. These defects may alter distinct phases of the wound-healing process, including epithelial migration, granulation tissue formation, and tissue remodeling. The cellular and molecular defects that may explain these deficiencies include several biological responses such as an increased inflammatory response, altered integrin signaling, reduced growth factor activity, decreased cell proliferation, diminished angiogenesis, reduced collagen synthesis, augmented collagen remodeling, and deterioration of the proliferative and differentiation potential of stem cells. In this review, we explore the cellular and molecular basis of these defects and their possible clinical implications. © International & American Associations for Dental Research 2014.

  8. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  9. Potent Anti-Inflammatory Activity of Pyrenocine A Isolated from the Marine-Derived Fungus Penicillium paxilli Ma(G)K

    PubMed Central

    Toledo, Thaís Regina; Dejani, Naiara N.; Monnazzi, Luis Gustavo Silva; Kossuga, Miriam H.; Berlinck, Roberto G. S.; Sette, Lara D.; Medeiros, Alexandra I.

    2014-01-01

    Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NFκB-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model. PMID:24574582

  10. Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear.

    PubMed

    Bank, Lisa M; Bianchi, Lynne M; Ebisu, Fumi; Lerman-Sinkoff, Dov; Smiley, Elizabeth C; Shen, Yu-chi; Ramamurthy, Poornapriya; Thompson, Deborah L; Roth, Therese M; Beck, Christine R; Flynn, Matthew; Teller, Ryan S; Feng, Luming; Llewellyn, G Nicholas; Holmes, Brandon; Sharples, Cyrrene; Coutinho-Budd, Jaeda; Linn, Stephanie A; Chervenak, Andrew P; Dolan, David F; Benson, Jennifer; Kanicki, Ariane; Martin, Catherine A; Altschuler, Richard; Koch, Alisa E; Koch, Alicia E; Jewett, Ethan M; Germiller, John A; Barald, Kate F

    2012-12-01

    This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.

  11. Marked elevation of serum macrophage migration inhibitory factor levels in patients with pemphigus vulgaris.

    PubMed

    Namazi, Mohammad Reza; Fallahzadeh, Mohammad Kazem; Shaghelani, Hassan; Kamali-Sarvestani, Eskandar

    2010-02-01

    There is ample evidence for involvement of macrophage migration inhibitory factor (MIF) in autoimmune and inflammatory diseases. The aim of this study was to determine whether MIF levels were raised in the sera of patients with pemphigus vulgaris (PV). Serum MIF levels were measured using ELISA method in 22 patients with active PV and 21 age- and sex-matched healthy controls and the results were compared with each other. The mean serum MIF levels was significantly higher in PV patients than in control subjects (11.99 +/- 1.63 pg/m vs. 1.83 +/- 0.22 pg/ml; P-value = 0.0001). Elevated MIF levels in the sera of PV patients could participate in disease induction by activation of T cells as well as induction of autoantibody production by B cells. Given that MIF counter-regulates the effects of steroids, MIF antagonists may prove to be very effective, novel steroid-sparing agents for this life-threatening conundrum.

  12. Antiangiogenic properties of cafestol, a coffee diterpene, in human umbilical vein endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuaiyu; Korea Food Research Institute, 516 Baekhyun-dong, Bundang-gu, Songnam, Kyungki-do 463-746; Yoon, Yeo Cho

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Cafestol inhibits tube formation and migration of VEGF-stimulated HUVEC. Black-Right-Pointing-Pointer Cafestol inhibits phosphorylation of FAK and Akt. Black-Right-Pointing-Pointer Cafestol decreases NO production. -- Abstract: As angiogenesis plays important roles in tumor growth and metastasis, searching for antiangiogenic compounds is a promising tactic for treating cancers. Cafestol, a diterpene found mainly in unfiltered coffee, provides benefit through varied biological activity, including antitumorigenic, antioxidative, and anti-inflammatory effects. This study aimed to investigate the effects of cafestol on angiogenesis and to uncover the associated mechanism. We show that cafestol inhibits angiogenesis of human umbilical vascular endothelial cells. This inhibition affects themore » following specific steps of the angiogenic process: proliferation, migration, and tube formation. The inhibitory effects of cafestol are accompanied by decreasing phosphorylation of FAK and Akt and by a decrease in nitric oxide production. Overall, cafestol inhibits angiogenesis by affecting the angiogenic signaling pathway.« less

  13. Multifaceted Leptin network: the molecular connection between obesity and breast cancer

    PubMed Central

    Saxena, Neeraj K.; Sharma, Dipali

    2016-01-01

    High plasma levels of leptin, a major adipocytokine produced by adipocytes, are correlated with increased fat mass in obese state. Leptin is emerging as a key candidate molecule linking obesity with breast cancer. Acting via endocrine, paracrine, and autocrine manner, leptin impacts various stages of breast tumorigenesis from initiation and primary tumor growth to metastatic progression. Leptin also modulates the tumor microenvironment mainly through supporting migration of endothelial cells, neo-angiogenesis and sustaining recruitment of macrophage and monocytes. Various studies have shown that hyperactive leptin-signaling network leads to concurrent activation of multiple oncogenic pathways resulting in enhanced proliferation, decreased apoptosis, acquisition of mesenchymal phenotype, potentiated migration and enhanced invasion potential of tumor cells. Furthermore, the capability of leptin to interact with other molecular effectors of obese state including, estrogen, IGF-1, insulin, VEGF and inflammatory cytokines further increases its impact on breast tumor progression in obese state. This article presents an overview of the studies investigating the involvement of leptin in breast cancer. PMID:24214584

  14. circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination

    PubMed Central

    Zhou, Zewei; Jiang, Rong; Yang, Xiyue; Guo, Huifang; Fang, Shencun; Zhang, Yingming; Cheng, Yusi; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-01

    Rationale: Phagocytosis of silicon dioxide (SiO2) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO2-induced inflammation in pulmonary macrophages. Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation. Results: The results of the experiments indicated that 1) SiO2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO2-induced macrophage activation via ubiquitination; and 3) SiO2-activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1. Conclusions: Our study elucidated a link between SiO2-induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis. PMID:29290828

  15. circRNA Mediates Silica-Induced Macrophage Activation Via HECTD1/ZC3H12A-Dependent Ubiquitination.

    PubMed

    Zhou, Zewei; Jiang, Rong; Yang, Xiyue; Guo, Huifang; Fang, Shencun; Zhang, Yingming; Cheng, Yusi; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-01

    Rationale: Phagocytosis of silicon dioxide (SiO 2 ) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of non-coding RNAs detected within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiological process of silicosis. The upstream molecular mechanisms and functional effects on cell apoptosis, proliferation and migration were investigated to elucidate the role of circRNAs in SiO 2 -induced inflammation in pulmonary macrophages. Methods: Primary cultures of alveolar macrophages from healthy donors and patients as well as the RAW264.7 macrophage cell line were used to explore the functions of circHECTD1 (HECT domain E3 ubiquitin protein ligase 1) in macrophage activation. Results: The results of the experiments indicated that 1) SiO 2 concomitantly decreased circHECTD1 levels and increased HECTD1 protein expression; 2) circHECTD1 and HECTD1 were involved in SiO 2 -induced macrophage activation via ubiquitination; and 3) SiO 2 -activated macrophages promoted fibroblast proliferation and migration via the circHECTD1/HECTD1 pathway. Tissue samples from silicosis patients confirmed the upregulation of HECTD1. Conclusions: Our study elucidated a link between SiO 2 -induced macrophage activation and the circHECTD1/HECTD1 pathway, thereby providing new insight into the potential use of HECTD1 in the development of novel therapeutic strategies for treating silicosis.

  16. NADPH oxidase 2-derived reactive oxygen species signal contributes to bradykinin-induced matrix metalloproteinase-9 expression and cell migration in brain astrocytes

    PubMed Central

    2012-01-01

    Background Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Moreover, bradykinin (BK) induces the expression of several inflammatory proteins in brain astrocytes. Recent studies have suggested that increased oxidative stress is implicated in the brain inflammation and injury. However, whether BK induced MMP-9 expression mediated through oxidative stress remains virtually unknown. Herein we investigated the role of redox signals in BK-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells). Results In the study, we first demonstrated that reactive oxygen species (ROS) plays a crucial role in BK-induced MMP-9 expression in cultured brain astrocytes (in vitro) and animal brain tissue (in vivo) models. Next, BK-induced MMP-9 expression is mediated through a Ca2+-mediated PKC-α linking to p47phox/NADPH oxidase 2 (Nox2)/ROS signaling pathway. Nox2-dependent ROS generation led to activation and up-regulation of the downstream transcriptional factor AP-1 (i.e. c-Fos and c-Jun), which bound to MMP-9 promoter region, and thereby turned on transcription of MMP-9 gene. Functionally, BK-induced MMP-9 expression enhanced astrocytic migration. Conclusions These results demonstrated that in RBA-1 cells, activation of AP-1 (c-Fos/c-Jun) by the PKC-α-mediated Nox2/ROS signals is essential for up-regulation of MMP-9 and cell migration enhanced by BK. PMID:23176293

  17. Gut Microbiota-Derived Tryptophan Metabolites Modulate Inflammatory Response in Hepatocytes and Macrophages.

    PubMed

    Krishnan, Smitha; Ding, Yufang; Saedi, Nima; Choi, Maria; Sridharan, Gautham V; Sherr, David H; Yarmush, Martin L; Alaniz, Robert C; Jayaraman, Arul; Lee, Kyongbum

    2018-04-24

    The gut microbiota plays a significant role in the progression of fatty liver disease; however, the mediators and their mechanisms remain to be elucidated. Comparing metabolite profile differences between germ-free and conventionally raised mice against differences between mice fed a low- and high-fat diet (HFD), we identified tryptamine and indole-3-acetate (I3A) as metabolites that depend on the microbiota and are depleted under a HFD. Both metabolites reduced fatty-acid- and LPS-stimulated production of pro-inflammatory cytokines in macrophages and inhibited the migration of cells toward a chemokine, with I3A exhibiting greater potency. In hepatocytes, I3A attenuated inflammatory responses under lipid loading and reduced the expression of fatty acid synthase and sterol regulatory element-binding protein-1c. These effects were abrogated in the presence of an aryl-hydrocarbon receptor (AhR) antagonist, indicating that the effects are AhR dependent. Our results suggest that gut microbiota could influence inflammatory responses in the liver through metabolites engaging host receptors. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis

    PubMed Central

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-01-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4–6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6+ T cells to 35–50% and anti-T-cell receptor (TCR) activation to 60–80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6+ T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6+ in virus-induced peritoneal exudates (∼47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6+, whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6+, but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge. PMID:17437534

  19. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis.

    PubMed

    Latta, Markus; Mohan, Karkada; Issekutz, Thomas B

    2007-08-01

    Numerous chemokine receptors are increased in number on T cells in inflamed tissues. Our objective was to examine CXCR6 expression on lymphocytes during immune and inflammatory reactions and its potential for mediating T-cell recruitment. The cDNA for rat CXCR6 was cloned and monoclonal antibodies (mAbs) to CXCR6 were developed. CXCR6 was present on 4-6% of CD4 and CD8 T cells in blood, normal lymph nodes (LNs) and the spleen, primarily on memory T cells. In vitro antigen re-stimulation of LN T cells from animals with autoimmune arthritis and experimental autoimmune encephalomyelitis (EAE) increased the proportion of CXCR6(+) T cells to 35-50% and anti-T-cell receptor (TCR) activation to 60-80%. In vivo, after antigen challenge of LNs there was only a small increase in CXCR6(+) T cells on the lymphoblasts in the LNs, and a much higher percentage of T cells were CXCR6(+) in virus-induced peritoneal exudates (approximately 47%) and in allergen-induced lung inflammation (33%). Chemotaxis of CXCR6-expressing inflammatory T cells to CXCL16 was poor, but that to CXCL10 was robust. We conclude that few T cells in normal and antigen-challenged LNs are CXCR6(+), whereas a high proportion of in vitro activated T cells and T cells from inflammatory sites are CXCR6(+), but these cells migrate poorly to CXCL16. This suggests that CXCR6 may contribute to T-cell positioning and activation, rather than recruitment. CXCR6 is also expressed on T cells not only in T helper type 1 (Th1) inflammation (arthritis and EAE) but also, as shown here, in Th2 inflammation, where it is increased after allergen challenge.

  20. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease.

    PubMed

    Shroff, Geeta

    2016-12-13

    BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause delayed neurologic symptoms similar to those seen in Lyme disease (LD) patients. Thymus derived T-cells (myelin reactive) migrate to the blood brain barrier and stimulate an inflammatory cascade in the central nervous system. Cell based therapies play an important role in treating neurological diseases such as MS and LD. CASE REPORT Human embryonic stem cell (hESC) therapy was used to treat two patients with both MS and LD. The hESCs were administered via different routes including intramuscular, intravenous, and supplemental routes (e.g., deep spinal, caudal, intercostal through eye drops) to regenerate the injured cells. Both the patients showed remarkable improvement in their functional skills, overall stamina, cognitive abilities, and muscle strength. Furthermore, the improvement in the patients' conditions were assessed by magnetic resonance tractography and single photon emission computed tomography (SPECT). CONCLUSIONS Therapy with hESCs might emerge as an effective and safe treatment for patients with both MS and LD. Well-designed clinical trials and follow-up studies are needed to prove the long-term efficacy and safety of hESC therapy in the treatment of patients with MS and LD.

  1. Eotaxin-1 is involved in parasite clearance during chronic filarial infection.

    PubMed

    Gentil, K; Lentz, C S; Rai, R; Muhsin, M; Kamath, A D; Mutluer, O; Specht, S; Hübner, M P; Hoerauf, A

    2014-02-01

    Eosinophil migration as key feature of helminth infection is increased during infection with filarial nematodes. In a mouse model of filariasis, we investigated the role of the eosinophil-attracting chemokine Eotaxin-1 on disease outcome. BALB/c and Eotaxin-1(-/-) mice were infected with the rodent filaria Litomosoides sigmodontis, and parasitic parameters, cellular migration to the site of infection, and cellular responsiveness were investigated. We found increased parasite survival but unaffected eosinophil migration to the site of infection in Eotaxin-1(-/-) mice. Expression of CD80 and CD86 was reduced on eosinophils from Eotaxin-1(-/-) mice after in vitro TLR2 stimulation and exposure to filarial antigen, respectively, suggesting a potential reduced activation state of eosinophils in Eotaxin-1 deficient mice. We further demonstrated that macrophages from Eotaxin-1(-/-) mice produce decreased amounts of IL-6 in vitro, a cytokine found to be associated with parasite containment, suggesting possible mechanisms by which Eotaxin-1 regulates activation of inflammatory cells and thus parasite survival. © 2013 John Wiley & Sons Ltd.

  2. Modulation of eosinophil generation and migration by Mangifera indica L. extract (Vimang).

    PubMed

    Sá-Nunes, Anderson; Rogerio, Alexandre P; Medeiros, Alexandra I; Fabris, Viciany E; Andreu, Gilberto P; Rivera, Dagmar G; Delgado, René; Faccioli, Lúcia H

    2006-09-01

    The effects of Vimang, an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae), on cell migration in an experimental model of asthma was investigated. In vivo treatment of Toxocara canis-infected BALB/c mice for 18 days with 50 mg/kg Vimang reduced eosinophil migration into the bronchoalveolar space and peritoneal cavity. Also, eosinophil generation in bone marrow and blood eosinophilia were inhibited in infected mice treated with Vimang. This reduction was associated with inhibition of IL-5 production in serum and eotaxin in lung homogenates. In all these cases the effects of Vimang were more selective than those observed with dexamethasone. Moreover, Vimang treatment is not toxic for the animals, as demonstrated by the normal body weight increase during infection. These data confirm the potent anti-inflammatory effect of Vimang and support its potential use as an alternative therapeutic drug to the treatment of eosinophilic disorders including those caused by nematodes and allergic diseases.

  3. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration

    PubMed Central

    2011-01-01

    Introduction Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair. Methods A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-α, or TGF-β1, in the presence or absence of 10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants treated with 0 or 10 ng/mL IL-1, TNF-α, or TGF-β1 for 14 days. At the end of the culture period, biomechanical testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and Newman-Keuls post hoc test. Results IL-1 and TNF-α decreased cell proliferation in both cell and tissue models of meniscal repair. In the presence of serum, TGF-β1 increased outer zone cell proliferation in the micro-wound and in the cross section of meniscal repair model explants. Both IL-1 and TNF-α decreased the integrative shear strength of repair and extracellular matrix deposition in the meniscal repair model system, while TGF-β1 had no effect on either measure. Conclusions Meniscal cell proliferation in vivo may be diminished following joint injury due to the up-regulation of inflammatory cytokines, thereby limiting native cellular repair of meniscal lesions. Therefore, therapies that can promote meniscal cell proliferation have promise to enhance meniscal repair and improve tissue engineering strategies. PMID:22087734

  4. Altered development of the brain after focal herpesvirus infection of the central nervous system.

    PubMed

    Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J

    2008-02-18

    Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.

  5. Altered development of the brain after focal herpesvirus infection of the central nervous system

    PubMed Central

    Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J.

    2008-01-01

    Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis. PMID:18268036

  6. TNF-{alpha} similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Lars, E-mail: lars.mueller@uksh-kiel.de; Seggern, Lena von; Schumacher, Jennifer

    2010-07-02

    Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparablemore » up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.« less

  7. Effect of Sophora flavescens Aiton extract on degranulation of mast cells and contact dermatitis induced by dinitrofluorobenzene in mice.

    PubMed

    Kim, Hyungwoo; Lee, Mi Ran; Lee, Guem San; An, Won Gun; Cho, Su In

    2012-06-26

    The dried root of Sophora flavescens Aiton (Sophorae radix, SR) has long been used in traditional medicine for the treatment of fever and swelling in eastern countries. The present study investigated the anti-allergic and anti-inflammatory effects of SR using 1-fluoro-2,4-dinitrofluorobenzene (DNFB)-induced contact dermatitis mouse model and in vitro using RBL-2H3 cells. In mice, the topical application of 10 mg/mL of SR effectively inhibited enlargement of ear thickness and weight induced by repeated painting with DNFB. Topical application of SR also inhibited hyperplasia, edema, spongiosis and infiltration of mononuclear cells in ear tissue. In addition, production levels of interferon-gamma and tumor necrosis factor-alpha were decreased by SR in vivo. Finally, the release of histamine and β-hexosaminidase, and migration were inhibited by treatment with SR. These data indicate the potential of SR in treating patients with allergic skin diseases and also suggest that related mechanisms are involved in anti-inflammatory action on the Th 1 skewing reaction and inhibition against recruitment and degranulation of mast cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors

    PubMed Central

    Palanisamy, Kalaiselvi; Krishnaswamy, Rajashree; Paramasivan, Poornima; Chih-Yang, Huang; Vishwanadha, Vijaya Padma

    2015-01-01

    Background and Purpose Oxidative stress and subsequent activation of inflammatory responses is a widely accepted consequence of exposure to environmental toxins. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a well-known environmental toxin, exerts its toxicity through many signalling mechanisms, with liver being the principal organ affected. However, an effective antidote to TCDD-induced toxicity is unknown. The present study evaluated the effect of eicosapentaenoic acid (EPA), an n3 fatty acid, on TCDD-induced toxicity. Experimental Approach In cultures of HepG2 cells, the EPA/AA ratio was determined using gas chromatography, oxidative stress and inflammatory responses through reactive oxygen species (ROS) levels, antioxidant status, [Ca2+]i, nuclear migration of two redox-sensitive transcription factors, NF-κB p65 and Nrf-2, expression of MAP kinase (p-Erk, p-p38), NF-κB p65, COX-2 and Nrf-2. Cellular changes in ΔΨm, acidic vesicular organelle formation, cell cycle analysis and scanning electron microscopy analysis were performed. Key Results EPA offered significant cytoprotection by increasing EPA/AA ratios in cell membranes, inhibiting ROS generation, enhancing antioxidant status and modulating nuclear translocation of redox-sensitive transcription factors (NF-κB p65 and Nrf-2) and expression of NF-κB p65, COX-2 and Nrf-2. Furthermore, TCDD-induced upstream events of MAPK phosphorylation, the increase in [Ca2+]i levels and cell surface changes in microvilli were significantly inhibited by EPA. EPA treatment maintained ΔΨm and prevented formation of acidic vesicular organelles. Conclusion and Implications The present study demonstrates for the first time some underlying molecular mechanisms of cytoprotection exerted by EPA against TCDD-induced oxidative stress and inflammatory responses. PMID:26177858

  10. Redox regulation in metabolic programming and inflammation.

    PubMed

    Griffiths, Helen R; Gao, Dan; Pararasa, Chathyan

    2017-08-01

    Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor production is maintained to support restoration of normal function. Copyright © 2017. Published by Elsevier B.V.

  11. Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation

    PubMed Central

    Adam, Alejandro Pablo

    2015-01-01

    Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing. PMID:26556953

  12. Simultaneously targeting inflammatory response and parasite sequestration in brain to treat Experimental Cerebral Malaria

    PubMed Central

    Dende, Chaitanya; Meena, Jairam; Nagarajan, Perumal; Panda, Amulya K.; Rangarajan, Pundi N.; Padmanaban, Govindarajan

    2015-01-01

    Malaria afflicts around 200 million people annually, with a mortality number close to 600,000. The mortality rate in Human Cerebral Malaria (HCM) is unacceptably high (15–20%), despite the availability of artemisinin-based therapy. An effective adjunct therapy is urgently needed. Experimental Cerebral Malaria (ECM) in mice manifests many of the neurological features of HCM. Migration of T cells and parasite-infected RBCs (pRBCs) into the brain are both necessary to precipitate the disease. We have been able to simultaneously target both these parameters of ECM. Curcumin alone was able to reverse all the parameters investigated in this study that govern inflammatory responses, CD8+ T cell and pRBC sequestration into the brain and blood brain barrier (BBB) breakdown. But the animals eventually died of anemia due to parasite build-up in blood. However, arteether-curcumin (AC) combination therapy even after the onset of symptoms provided complete cure. AC treatment is a promising therapeutic option for HCM. PMID:26227888

  13. TWEAK: A New Player in Obesity and Diabetes

    PubMed Central

    Vendrell, Joan; Chacón, Matilde R.

    2013-01-01

    Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D. PMID:24416031

  14. TWEAK: A New Player in Obesity and Diabetes.

    PubMed

    Vendrell, Joan; Chacón, Matilde R

    2013-12-30

    Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D.

  15. CXCL16 and CXCR6 are upregulated in psoriasis and mediate cutaneous recruitment of human CD8+ T cells.

    PubMed

    Günther, Claudia; Carballido-Perrig, Nicole; Kaesler, Susanne; Carballido, José M; Biedermann, Tilo

    2012-03-01

    Psoriatic skin lesions are characterized by an inflammatory infiltrate, consisting of dendritic cells, monocytes, and both CD4(+) and CD8(+) T lymphocytes. Although the chemokines involved in the migration of CD4(+) T cells into psoriatic skin are well characterized, those regulating CD8(+) T-cell recruitment are less understood. We found that the percentages of peripheral blood CD8(+) T cells expressing CXCR6 were higher in psoriatic patients than in healthy or atopic individuals. In addition, CXCR6 expression in psoriatic patients was more abundant in the CD8(+) than in the CD4(+) T-cell compartment. CXCR6 mRNA expression was also stronger in skin CD8(+) T cells than in the corresponding blood-derived counterparts. Immunofluorescence analysis revealed profound upregulation of the CXCR6 ligand CXCL16 by monocytes, keratinocytes, and dendritic cells in psoriatic skin compared with healthy or atopic dermatitis skin. In line with this, CXCR6(+) CD8(+) T cells also were most prevalent in psoriatic skin. Furthermore, CXCL16 induced Ca(2+) influx and chemotactic migration of psoriatic skin-derived CD8(+) T cells in vitro. Most importantly, CXCL16 potently recruited human CD8(+) T cells to human skin grafts previously transplanted onto SCID mice in vivo. These investigations indicate that CXCL16-CXCR6 interactions mediate homing of CD8(+) T cells into human skin, and thereby contribute to psoriasis pathogenesis.

  16. Targeting Androgen Receptor to Suppress Macrophage-induced EMT and Benign Prostatic Hyperplasia (BPH) Development

    PubMed Central

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi

    2012-01-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68+ macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways. PMID:22915828

  17. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    PubMed

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic approach to battle BPH via targeting AR and AR-mediated inflammatory signaling pathways.

  18. The role of EMMPRIN in T cell biology and immunological diseases.

    PubMed

    Hahn, Jennifer Nancy; Kaushik, Deepak Kumar; Yong, V Wee

    2015-07-01

    EMMPRIN (CD147), originally described as an inducer of the expression of MMPs, has gained attention in its involvement in various immunologic diseases, such that anti-EMMPRIN antibodies are considered as potential therapeutic medications. Given that MMPs are involved in the pathogenesis of various disease states, it is relevant that targeting an upstream inducer would make for an effective therapeutic strategy. Additionally, EMMPRIN is now appreciated to have multiple roles apart from MMP induction, including in cellular functions, such as migration, adhesion, invasion, energy metabolism, as well as T cell activation and proliferation. Here, we review what is known about EMMPRIN in numerous immunologic/inflammatory disease conditions with a particular focus on its complex roles in T cell biology. © Society for Leukocyte Biology.

  19. TNF-α and CD8+ T Cells Mediate the Beneficial Effects of Nitric Oxide Synthase-2 Deficiency in Pulmonary Paracoccidioidomycosis

    PubMed Central

    Bernardino, Simone; Pina, Adriana; Felonato, Maíra; Costa, Tânia A.; Frank de Araújo, Eliseu; Feriotti, Cláudia; Bazan, Silvia Boschi; Keller, Alexandre C.; Leite, Katia R. M.; Calich, Vera L. G.

    2013-01-01

    Background Nitric oxide (NO), a key antimicrobial molecule, was previously shown to exert a dual role in paracoccidioidomycosis, an endemic fungal infection in Latin America. In the intravenous and peritoneal models of infection, NO production was associated with efficient fungal clearance but also with non-organized granulomatous lesions. Because paracoccidioidomycosis is a pulmonary infection, we aimed to characterize the role of NO in a pulmonary model of infection. Methodology/Principal Findings C57Bl/6 wild type (WT) and iNOS−/− mice were i.t. infected with 1×106 Paracoccidioides brasiliensis yeasts and studied at several post-infection periods. Unexpectedly, at week 2 of infection, iNOS−/− mice showed decreased pulmonary fungal burdens associated with an M2-like macrophage profile, which expressed high levels of TGF-β impaired ability of ingesting fungal cells. This early decreased fungal loads were concomitant with increased DTH reactions, enhanced TNF-α synthesis and intense migration of activated macrophages, CD4+ and CD8+ T cells into the lungs. By week 10, iNOS−/− mice showed increased fungal burdens circumscribed, however, by compact granulomas containing elevated numbers of activated CD4+ T cells. Importantly, the enhanced immunological reactivity of iNOS−/− mice resulted in decreased mortality rates. In both mouse strains, depletion of TNF-α led to non-organized lesions and excessive influx of inflammatory cells into the lungs, but only the iNOS−/− mice showed increased mortality rates. In addition, depletion of CD8+ cells abolished the increased migration of inflammatory cells and decreased the number of TNF-α and IFN-γ CD4+ and CD8+ T cells into the lungs of iNOS−/− mice. Conclusions/Significance Our study demonstrated that NO plays a deleterious role in pulmonary paracoccidioidomycosis due to its suppressive action on TNF-α production, T cell immunity and organization of lesions resulting in precocious mortality of mice. It was also revealed that uncontrolled fungal growth can be overcome by an efficient immune response. PMID:23936574

  20. Functional characterization of the turkey macrophage migration inhibitory factor.

    PubMed

    Park, Myeongseon; Kim, Sungwon; Fetterer, Raymond H; Dalloul, Rami A

    2016-08-01

    Macrophage migration inhibitory factor (MIF) is a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. The aim of this study was to clone the turkey MIF (TkMIF) gene, express the active protein, and characterize its basic function. The full-length TkMIF gene was amplified from total RNA extracted from turkey spleen, followed by cloning into a prokaryotic (pET11a) expression vector. Sequence analysis revealed that TkMIF consists of 115 amino acids with 12.5 kDa molecular weight. Multiple sequence alignment revealed 100%, 65%, 95% and 92% identity with chicken, duck, eagle and zebra finch MIFs, respectively. Recombinant TkMIF (rTkMIF) was expressed in Escherichia coli and purified through HPLC and endotoxin removal. SDS-PAGE analysis revealed an approximately 13.5 kDa of rTkMIF monomer containing T7 tag in soluble form. Western blot analysis showed that anti-chicken MIF (ChMIF) polyclonal antisera detected a monomer form of TkMIF at approximately 13.5 kDa size. Further functional analysis revealed that rTkMIF inhibits migration of both mononuclear cells and splenocytes in a dose-dependent manner, but was abolished by the addition of anti-ChMIF polyclonal antisera. qRT-PCR analysis revealed elevated transcripts of pro-inflammatory cytokines by rTkMIF in LPS-stimulated monocytes. rTkMIF also led to increased levels of IFN-γ and IL-17F transcripts in Con A-activated splenocytes, while IL-10 and IL-13 transcripts were decreased. Overall, the sequences of both the turkey and chicken MIF have high similarity and comparable biological functions with respect to migration inhibitory activities of macrophages and enhancement of pro-inflammatory cytokine expression, suggesting that turkey and chicken MIFs would be biologically cross-reactive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Saccharomyces boulardii interferes with Shigella pathogenesis by postinvasion signaling events

    PubMed Central

    Mumy, Karen L.; Chen, Xinhua; Kelly, Ciarán P.; McCormick, Beth A.

    2011-01-01

    Saccharomyces boulardii is gaining in popularity as a treatment for a variety of diarrheal diseases as well as inflammatory bowel disease. This study was designed to examine the effect of this yeast on infection by Shigella flexneri, a highly infectious and human host-adapted enteric pathogen. We investigated key interactions between the bacteria and host cells in the presence of the yeast in addition to a number of host responses including proinflammatory events and markers. Although the presence of the yeast during infection did not alter the number of bacteria that was able to attach or invade human colon cancer-derived T-84 cells, it did positively impact the tight junction protein zonula occluden-2 and significantly increase the barrier integrity of model epithelia. The yeast also decreased ERK, JNK, and NF-κB activation in response to S. flexneri, events likely responsible for the observed reductions in IL-8 secretion and the transepithelial migration of polymorphonuclear leukocytes across T-84 monolayers. These results, suggesting that the yeast allowed for a dampened inflammatory response, were confirmed in vivo utilizing a highly relevant model of human fetal colonic tissue transplanted into scid mice. Furthermore, a cell-free S. boulardii culture supernatant was also capable of reducing IL-8 secretion by infected T-84 cells. These data suggest that although the use of S. boulardii during infection with S. flexneri may alleviate symptoms associated with the inflammatory response of the host, it would not prevent infection. PMID:18032477

  2. MIF Promotes Classical Activation and Conversion of Inflammatory Ly6Chigh Monocytes into TipDCs during Murine Toxoplasmosis

    PubMed Central

    Ruiz-Rosado, Juan de Dios; Olguín, Jonadab E.; Juárez-Avelar, Imelda; Saavedra, Rafael; Terrazas, Luis I.; Robledo-Avila, Frank H.; Vazquez-Mendoza, Alicia; Fernández, Jacquelina; Satoskar, Abhay R.; Partida-Sánchez, Santiago; Rodriguez-Sosa, Miriam

    2016-01-01

    Macrophage migration inhibitory factor (MIF) mediates immunity against Toxoplasma gondii infection by inducing inflammatory cytokines required to control the parasite replication. However, the role of this inflammatory mediator in the cell-mediated immune response against this infection is still poorly understood. Here, we used T. gondii-infected WT and Mif −/− mice to analyze the role of MIF in the maturation of CD11b+ and CD8α + dendritic cells (DCs). We found that MIF promotes maturation of CD11b+ but not CD8α + DCs, by inducing IL-12p70 production and CD86 expression. Infected Mif −/− mice showed significantly lower numbers of TNF and inducible nitric oxide synthase- (iNOS-) producing DCs (TipDCs) compared to infected WT mice. The adoptive transfer of Ly6Chigh monocytes into infected WT or Mif −/− mice demonstrated that MIF participates in the differentiation of Ly6Chigh monocytes into TipDCs. In addition, infected Mif −/− mice display a lower percentage of IFN-γ-producing natural killer (NK) cells compared to WT mice, which is associated with reducing numbers of TipDCs in Mif −/− mice. Furthermore, administration of recombinant MIF (rMIF) into T. gondii-infected Mif −/− mice restored the numbers of TipDCs and reversed the susceptible phenotype of Mif −/− mice. Collectively, these results demonstrate an important role for MIF inducing cell-mediated immunity to T. gondii infection. PMID:27057101

  3. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction ― A Roadway To Multiple Therapeutic Opportunities

    PubMed Central

    Padmanabhan, Jagannath; Gonzalez, Anjelica L.

    2012-01-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047

  4. Key Aging-Associated Alterations in Primary Microglia Response to Beta-Amyloid Stimulation

    PubMed Central

    Caldeira, Cláudia; Cunha, Carolina; Vaz, Ana R.; Falcão, Ana S.; Barateiro, Andreia; Seixas, Elsa; Fernandes, Adelaide; Brites, Dora

    2017-01-01

    Alzheimer’s disease (AD) is characterized by a progressive cognitive decline and believed to be driven by the self-aggregation of amyloid-β (Aβ) peptide into oligomers and fibrils that accumulate as senile plaques. It is widely accepted that microglia-mediated inflammation is a significant contributor to disease pathogenesis; however, different microglia phenotypes were identified along AD progression and excessive Aβ production was shown to dysregulate cell function. As so, the contribution of microglia to AD pathogenesis remains to be elucidated. In this study, we wondered if isolated microglia cultured for 16 days in vitro (DIV) would react differentially from the 2 DIV cells upon treatment with 1000 nM Aβ1–42 for 24 h. No changes in cell viability were observed and morphometric alterations associated to microglia activation, such as volume increase and process shortening, were obvious in 2 DIV microglia, but less evident in 16 DIV cells. These cells showed lower phagocytic, migration and autophagic properties after Aβ treatment than the 2 DIV cultured microglia. Reduced phagocytosis may derive from increased CD33 expression, reduced triggering receptor expressed on myeloid cells 2 (TREM2) and milk fat globule-EGF factor 8 protein (MFG-E8) levels, which were mainly observed in 16 DIV cells. Activation of inflammatory mediators, such as high mobility group box 1 (HMGB1) and pro-inflammatory cytokines, as well as increased expression of Toll-like receptor 2 (TLR2), TLR4 and fractalkine/CX3C chemokine receptor 1 (CX3CR1) cell surface receptors were prominent in 2 DIV microglia, while elevation of matrix metalloproteinase 9 (MMP9) was marked in 16 DIV cells. Increased senescence-associated β-galactosidase (SA-β-gal) and upregulated miR-146a expression that were observed in 16 DIV cells showed to increase by Aβ in 2 DIV microglia. Additionally, Aβ downregulated miR-155 and miR-124, and reduced the CD11b+ subpopulation in 2 DIV microglia, while increased the number of CD86+ cells in 16 DIV microglia. Simultaneous M1 and M2 markers were found after Aβ treatment, but at lower expression in the in vitro aged microglia. Data show key-aging associated responses by microglia when incubated with Aβ, with a loss of reactivity from the 2 DIV to the 16 DIV cells, which course with a reduced phagocytosis, migration and lower expression of inflammatory miRNAs. These findings help to improve our understanding on the heterogeneous responses that microglia can have along the progression of AD disease and imply that therapeutic approaches may differ from early to late stages. PMID:28912710

  5. Interleukin-22 participates in the inflammatory process of vitiligo

    PubMed Central

    Dong, Jinjin; An, Xiaohong; Zhong, Hui; Wang, Yichuan; Shang, Jing; Zhou, Jia

    2017-01-01

    Vitiligo is an acquired depigmentary skin inflammatory disorder. The pathogenesis of inflammatory skin disease involves the release of cytokines from keratinocytes, including interleukin (IL)-1β. IL-22 belongs to a family of cytokines structurally related to IL-10, including IL-19, IL-20, IL-24, and IL-26. In contrast to IL-10, IL-22 has proinflammatory activities. Among skin cell populations only keratinocytes are the major targets of IL-22. In the present study, we demonstrated that IL-22 promoting IL-1β secretion from keratinocytes via the Reactive oxygen species (ROS)-NOD-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1 pathway. It inhibited the expression of protease-activated receptor-2 (PAR-2) of keratinocytes. However, IL-22 had no direct effect on normal human foreskin-derived epidermal melanocytes (NHEM). Considering the closely connection between keratinocytes and melanocytes, and the ability of keratinocytes to produce a plethora of cytokines, in the present work, we examined whether IL-22 could regulate melanocytes functions by keratinocytes participation. Keratinocytes were exposed to IL-22 and the conditional medium was collected. The effect of conditional medium on melanocytes was studied. The expressions of relative proteins were assessed by western blot. Influence of conditional medium on NHEM migration was assessed by Transwell method and the apoptosis by flow cytometry analysis. The IL-22-treating keratinocytes conditional medium inhibited melanogenesis and restrained the expressions of Rab GTPases of NHEM. In addition, the conditional medium suppressed melanocytes migration and induced apoptosis. Our results collectively indicated that IL-22 may potentiate IL-1β-mediated skin inflammation and result in participating in the inflammatory pathogenesis of vitiligo. PMID:29312598

  6. Prevention of neutrophil extravasation by α2-adrenoceptor-mediated endothelial stabilization.

    PubMed

    Herrera-García, Ada María; Domínguez-Luis, María Jesús; Arce-Franco, María; Armas-González, Estefanía; Álvarez de La Rosa, Diego; Machado, José David; Pec, Martina K; Feria, Manuel; Barreiro, Olga; Sánchez-Madrid, Francisco; Díaz-González, Federico

    2014-09-15

    Adrenergic receptors are expressed on the surface of inflammation-mediating cells, but their potential role in the regulation of the inflammatory response is still poorly understood. The objectives of this work were to study the effects of α2-adrenergic agonists on the inflammatory response in vivo and to determine their mechanism of action. In two mouse models of inflammation, zymosan air pouch and thioglycolate-induced peritonitis models, the i.m. treatment with xylazine or UK14304, two α2-adrenergic agonists, reduced neutrophil migration by 60%. The α2-adrenergic antagonist RX821002 abrogated this effect. In flow cytometry experiments, the basal surface expression of L-selectin and CD11b was modified neither in murine nor in human neutrophils upon α2-agonist treatment. Similar experiments in HUVEC showed that UK14304 prevented the activation-dependent upregulation of ICAM-1. In contrast, UK14304 augmented electrical resistance and reduced macromolecular transport through a confluent HUVEC monolayer. In flow chamber experiments, under postcapillary venule-like flow conditions, the pretreatment of HUVECs, but not neutrophils, with α2-agonists decreased transendothelial migration, without affecting neutrophil rolling. Interestingly, α2-agonists prevented the TNF-α-mediated decrease in expression of the adherens junctional molecules, VE-cadherin, β-catenin, and plakoglobin, and reduced the ICAM-1-mediated phosphorylation of VE-cadherin by immunofluorescence and confocal analysis and Western blot analysis, respectively. These findings indicate that α2-adrenoceptors trigger signals that protect the integrity of endothelial adherens junctions during the inflammatory response, thus pointing at the vascular endothelium as a therapeutic target for the management of inflammatory processes in humans. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. The adaptor Lnk (SH2B3): an emerging regulator in vascular cells and a link between immune and inflammatory signaling.

    PubMed

    Devallière, Julie; Charreau, Béatrice

    2011-11-15

    A better knowledge of the process by which inflammatory extracellular signals are relayed from the plasma membrane to specific intracellular sites is a key step to understand how inflammation develops and how it is regulated. This review focuses on Lnk (SH2B3) a member, with SH2B1 and SH2B2, of the SH2B family of adaptor proteins that influences a variety of signaling pathways mediated by Janus kinase and receptor tyrosine kinases. SH2B adaptor proteins contain conserved dimerization, pleckstrin homology, and SH2 domains. Initially described as a regulator of hematopoiesis and lymphocyte differentiation, Lnk now emerges as a key regulator in hematopoeitic and non hematopoeitic cells such as endothelial cells (EC) moderating growth factor and cytokine receptor-mediated signaling. In EC, Lnk is a negative regulator of TNF signaling that reduce proinflammatory phenotype and prevent EC from apoptosis. Lnk is a modulator in integrin signaling and actin cytoskeleton organization in both platelets and EC with an impact on cell adhesion, migration and thrombosis. In this review, we discuss some recent insights proposing Lnk as a key regulator of bone marrow-endothelial progenitor cell kinetics, including the ability to cell growth, endothelial commitment, mobilization, and recruitment for vascular regeneration. Finally, novel findings also provided evidences that mutations in Lnk gene are strongly linked to myeloproliferative disorders but also autoimmune and inflammatory syndromes where both immune and vascular cells display a role. Overall, these studies emphasize the importance of the Lnk adaptor molecule not only as prognostic marker but also as potential therapeutic target. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Short Chain Fatty Acids (SCFA) Reprogram Gene Expression in Human Malignant Epithelial and Lymphoid Cells

    PubMed Central

    Astakhova, Lidiia; Ngara, Mtakai; Babich, Olga; Prosekov, Aleksandr; Asyakina, Lyudmila; Dyshlyuk, Lyubov; Midtvedt, Tore; Zhou, Xiaoying; Ernberg, Ingemar; Matskova, Liudmila

    2016-01-01

    The effect of short chain fatty acids (SCFAs) on gene expression in human, malignant cell lines was investigated, with a focus on signaling pathways. The commensal microbial flora produce high levels of SCFAs with established physiologic effects in humans. The most abundant SCFA metabolite in the human microflora is n-butyric acid. It is well known to activate endogenous latent Epstein-Barr virus (EBV), that was used as a reference read out system and extended to EBV+ epithelial cancer cell lines. N-butyric acid and its salt induced inflammatory and apoptotic responses in tumor cells of epithelial and lymphoid origin. Epithelial cell migration was inhibited. The n-butyric gene activation was reduced by knock-down of the cell membrane transporters MCT-1 and -4 by siRNA. N-butyric acid show biologically significant effects on several important cellular functions, also with relevance for tumor cell phenotype. PMID:27441625

  9. Heme Oxygenase-1 Counteracts Contrast Media-Induced Endothelial Cell Dysfunction

    PubMed Central

    Chang, Chao-Fu; Liu, Xiao-Ming; Peyton, Kelly J.; Durante, William

    2013-01-01

    Endothelial cell (EC) dysfunction is involved in the pathogenesis of contrast-induced acute kidney injury, which is a major adverse event following coronary angiography. In this study, we evaluated the effect of contrast media (CM) on human EC proliferation, migration, and inflammation, and determined if heme oxygenase-1 (HO-1) influences the biological actions of CM. We found that three distinct CM, including high-osmolar (diatrizoate), low-osmolar (iopamidol), and iso-osmolar (iodixanol), stimulated the expression of HO-1 protein and mRNA. The induction of HO-1 was associated with an increase in NF-E2-related factor-2 (Nrf2) activity and reactive oxygen species (ROS). CM also stimulated HO-1 promoter activity and this was prevented by mutating the antioxidant responsive element or by overexpressing dominant-negative Nrf2. In addition, the CM-mediated induction of HO-1 and activation of Nrf2 was abolished by acetylcysteine. Finally, CM inhibited the proliferation and migration of ECs and stimulated the expression of intercellular adhesion molecule-1 and the adhesion of monocytes on ECs. Inhibition or silencing of HO-1 exacerbated the anti-proliferative and inflammatory actions of CM but had no effect on the anti-migratory effect. Thus, induction of HO-1 via the ROS-Nrf2 pathway counteracts the anti-proliferative and inflammatory actions of CM. Therapeutic approaches targeting HO-1 may provide a novel approach in preventing CM-induced endothelial and organ dysfunction. PMID:24239896

  10. The ectoenzyme-side of matrix metalloproteinases (MMPs) makes inflammation by serum amyloid A (SAA) and chemokines go round.

    PubMed

    De Buck, Mieke; Gouwy, Mieke; Struyf, Sofie; Opdenakker, Ghislain; Van Damme, Jo

    2018-06-02

    During an inflammatory response, a large number of distinct mediators appears in the affected tissues or in the blood circulation. These include acute phase proteins such as serum amyloid A (SAA), cytokines and chemokines and proteolytic enzymes. Although these molecules are generated within a cascade sequence in specific body compartments allowing for independent action, their co-appearance in space and time during acute or chronic inflammation points toward important mutual interactions. Pathogen-associated molecular patterns lead to fast induction of the pro-inflammatory endogenous pyrogens, which are evoking the acute phase response. Interleukin-1, tumor necrosis factor-α and interferons simultaneously trigger different cell types, including leukocytes, endothelial cells and fibroblasts for tissue-specific or systemic production of chemokines and matrix metalloproteinases (MMPs). In addition, SAA induces chemokines and both stimulate secretion of MMPs from multiple cell types. As a consequence, these mediators may cooperate to enhance the inflammatory response. Indeed, SAA synergizes with chemokines to increase chemoattraction of monocytes and granulocytes. On the other hand, MMPs post-translationally modify chemokines and SAA to reduce their activity. Indeed, MMPs internally cleave SAA with loss of its cytokine-inducing and direct chemotactic potential whilst retaining its capacity to synergize with chemokines in leukocyte migration. Finally, MMPs truncate chemokines at their NH 2 - or COOH-terminal end, resulting in reduced or enhanced chemotactic activity. Therefore, the complex interactions between chemokines, SAA and MMPs either maintain or dampen the inflammatory response. Copyright © 2018. Published by Elsevier B.V.

  11. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms.

    PubMed

    Athanasopoulos, Athanasios N; Economopoulou, Matina; Orlova, Valeria V; Sobke, Astrid; Schneider, Darius; Weber, Holger; Augustin, Hellmut G; Eming, Sabine A; Schubert, Uwe; Linn, Thomas; Nawroth, Peter P; Hussain, Muzaffar; Hammes, Hans-Peter; Herrmann, Mathias; Preissner, Klaus T; Chavakis, Triantafyllos

    2006-04-01

    Staphylococcus aureus is a major human pathogen interfering with host-cell functions. Impaired wound healing is often observed in S aureus-infected wounds, yet, the underlying mechanisms are poorly defined. Here, we identify the extracellular adherence protein (Eap) of S aureus to be responsible for impaired wound healing. In a mouse wound-healing model wound closure was inhibited in the presence of wild-type S aureus and this effect was reversible when the wounds were incubated with an isogenic Eap-deficient strain. Isolated Eap also delayed wound closure. In the presence of Eap, recruitment of inflammatory cells to the wound site as well as neovascularization of the wound were prevented. In vitro, Eap significantly reduced intercellular adhesion molecule 1 (ICAM-1)-dependent leukocyte-endothelial interactions and diminished the consequent activation of the proinflammatory transcription factor nuclear factor kappaB (NFkappaB) in leukocytes associated with a decrease in expression of tissue factor. Moreover, Eap blocked alphav-integrin-mediated endothelial-cell migration and capillary tube formation, and neovascularization in matrigels in vivo. Collectively, the potent anti-inflammatory and antiangiogenic properties of Eap provide an underlying mechanism that may explain the impaired wound healing in S aureus-infected wounds. Eap may also serve as a lead compound for new anti-inflammatory and antiangiogenic therapies in several pathologies.

  12. Nogo-B regulates migration and contraction of airway smooth muscle cells by decreasing ARPC 2/3 and increasing MYL-9 expression.

    PubMed

    Xu, Wujian; Hong, Weijun; Shao, Yan; Ning, Yunye; Cai, Zailong; Li, Qiang

    2011-01-21

    Abnormal proliferation, apoptosis, migration and contraction of airway smooth muscle (ASM) cells in airway remodeling in asthma are basically excessive repair responses to a network of inflammatory mediators such as PDGF, but the mechanisms of such responses remain unclear. Nogo-B, a member of the reticulum family 4(RTN4), is known to play a key role in arteriogenesis and tissue repair. Further studies are needed to elucidate the role of Nogo-B in airway smooth muscle abnormalities. A mouse model of chronic asthma was established by repeated OVA inhalation and subjected to Nogo-B expression analysis using immunohistochemistry and Western Blotting. Then, primary human bronchial smooth muscle cells (HBSMCs) were cultured in vitro and a siRNA interference was performed to knockdown the expression of Nogo-B in the cells. The effects of Nogo-B inhibition on PDGF-induced HBSMCs proliferation, migration and contraction were evaluated. Finally, a proteomic analysis was conducted to unveil the underlying mechanisms responsible for the function of Nogo-B. Total Nogo-B expression was approximately 3.08-fold lower in chronic asthmatic mice compared to naïve mice, which was obvious in the smooth muscle layer of the airways. Interference of Nogo-B expression by siRNA resulted nearly 96% reduction in mRNA in cultured HBSMCs. In addition, knockdown of Nogo-B using specific siRNA significantly decreased PDGF-induced migration of HBSMCs by 2.3-fold, and increased the cellular contraction by 16% compared to negative controls, but had limited effects on PDGF-induced proliferation. Furthermore, using proteomic analysis, we demonstrate that the expression of actin related protein 2/3 complex subunit 5 (ARPC 2/3) decreased and, myosin regulatory light chain 9 isoform a (MYL-9) increased after Nogo-B knockdown. These data define a novel role for Nogo-B in airway remodeling in chronic asthma. Endogenous Nogo-B, which may exert its effects through ARPC 2/3 and MYL-9, is necessary for the migration and contraction of airway smooth muscle cells.

  13. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers.

    PubMed

    Selman, Moisés; Pardo, Annie

    2006-06-01

    Idiopathic pulmonary fibrosis (IPF), a progressive and relentless lung scarring of unknown etiology, has been recognized as the most lethal interstitial lung disease. Despite the growing interest in IPF, the precise molecular mechanisms underlying the development of fibrosis and leading to the irreversible destruction of the lung are still unknown. Recently, it has been proposed that IPF, instead of being a chronic inflammatory disorder, results from multiple cycles of epithelial cell injury and activation. In turn, active alveolar epithelial cells provoke the migration, proliferation, and activation of mesenchymal cells with the formation of fibroblastic/myofibroblastic foci and the exaggerated accumulation of extracellular matrix, mirroring abnormal wound repair. In this article, some characteristics of the alveolar epithelium are briefly outlined, and the fibrogenic mechanisms specifically operated by active abnormal epithelial cells are examined.

  14. Mechanism of immunomodulatory drugs' action in the treatment of multiple myeloma

    PubMed Central

    Chang, Xiubao; Zhu, Yuanxiao; Shi, Changxin; Stewart, A. Keith

    2014-01-01

    Although immunomodulatory drugs (IMiDs), such as thalidomide, lenalidomide, and pomalidomide, are widely used in the treatment of multiple myeloma (MM), the molecular mechanism of IMiDs' action is largely unknown. In this review, we will summarize recent advances in the application of IMiDs in MM cancer treatment as well as their effects on immunomodulatory activities, anti-angiogenic activities, intervention of cell surface adhesion molecules between myeloma cells and bone marrow stromal cells, anti-inflammatory activities, anti-proliferation, pro-apoptotic effects, cell cycle arrest, and inhibition of cell migration and metastasis. In addition, the potential IMiDs' target protein, IMiDs' target protein's functional role, and the potential molecular mechanisms of IMiDs resistance will be discussed. We wish, by presentation of our naive discussion, that this review article will facilitate further investigation in these fields. PMID:24374776

  15. Langerhans' cell expression of the selectin ligand, sialyl Lewis x.

    PubMed Central

    Ross, E L; Barker, J N; Allen, M H; Chu, A C; Groves, R W; MacDonald, D M

    1994-01-01

    Cellular adhesion molecules play a central role in leucocyte migration through peripheral blood and tissues. A crucial stage in these events in selectin-mediated adhesion involving E-selectin expressed on activated endothelium interacting with a range of carbohydrate ligands expressed by specific subpopulations of leucocytes. As such mechanisms may be relevant to bone marrow-derived dendritic epidermal Langerhans' cell (LC) migration, expression of these carbohydrate ligands was assessed immunocytochemically in whole skin biopsies and in epidermal cell suspensions obtained from adult humans. Double-labelling experiments revealed that sialyl Lewis x, recognized by the monoclonal antibody CSLEX1, was expressed on epidermal LC (n = 9). Furthermore, expression was enhanced at 24 hr following epicutaneous application of antigen and in the inflammatory disorder psoriasis (n = 10). E-selectin was concomitantly strongly expressed on dermal endothelium in psoriasis and allergic contact dermatitis. Intradermal injection of the T-cell-derived cytokine interferon-gamma (IFN-gamma) led to increased LC expression of sialyl Lewis x. In epidermal cell suspensions, in contrast to keratinocytes, CD1a+ cells expressed sialyl Lewis x, intensity of which was enhanced after 4 days in culture. CSLEX1 staining could be abolished and CD15 (non-sialated Lewis x) expression induced by saponification and treatment with neuraminidase. Expression of other selectin ligands was also examined. While the cutaneous lymphocyte antigen defined by the monoclonal antibody HECA-452 reacted with a small minority of LC, sialyl Lewis a and sulphatide were not expressed under any experimental conditions. These studies indicate that E-selectin-sialyl Lewis x interactions are potentially important in LC migration, both into and out of skin. Images Figure 2 Figure 3 Figure 5 Figure 6 PMID:7512530

  16. Myocardial Chemokine Expression and Intensity of Myocarditis in Chagas Cardiomyopathy Are Controlled by Polymorphisms in CXCL9 and CXCL10

    PubMed Central

    Nogueira, Luciana Gabriel; Santos, Ronaldo Honorato Barros; Ianni, Barbara Maria; Fiorelli, Alfredo Inácio; Mairena, Eliane Conti; Benvenuti, Luiz Alberto; Frade, Amanda; Donadi, Eduardo; Dias, Fabrício; Saba, Bruno; Wang, Hui-Tzu Lin; Fragata, Abilio; Sampaio, Marcelo; Hirata, Mario Hiroyuki; Buck, Paula; Mady, Charles; Bocchi, Edimar Alcides; Stolf, Noedir Antonio; Kalil, Jorge; Cunha-Neto, Edecio

    2012-01-01

    Background Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium. Methods and Results Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes. Conclusions Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC. PMID:23150742

  17. Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis.

    PubMed

    Hou, Yu-Chen; Wu, Jin-Ming; Wang, Ming-Yang; Wu, Ming-Hsun; Chen, Kuen-Yuan; Yeh, Sung-Ling; Lin, Ming-Tsan

    2014-01-01

    Migration of T cells into the colon plays a major role in the pathogenesis in inflammatory bowel disease. This study investigated the effects of glutamine (Gln) supplementation on chemokine receptors and adhesion molecules expressed by T cells in mice with dextran sulfate sodium- (DSS-) induced colitis. C57BL/6 mice were fed either a standard diet or a Gln diet replacing 25% of the total nitrogen. After being fed the diets for 5 days, half of the mice from both groups were given 1.5% DSS in drinking water to induce colitis. Mice were killed after 5 days of DSS exposure. DSS colitis resulted in higher expression levels of P-selectin glycoprotein ligand- (PSGL-) 1, leukocyte function-associated antigen- (LFA-) 1, and C-C chemokine receptor type 9 (CCR9) by T helper (Th) and cytotoxic T (Tc) cells, and mRNA levels of endothelial adhesion molecules in colons were upregulated. Gln supplementation decreased expressions of PSGL-1, LFA-1, and CCR9 by Th cells. Colonic gene expressions of endothelial adhesion molecules were also lower in Gln-colitis mice. Histological finding showed that colon infiltrating Th cells were less in the DSS group with Gln administration. Gln supplementation may ameliorate the inflammation of colitis possibly via suppression of T cell migration.

  18. ICAMs Redistributed by Chemokines to Cellular Uropods as a Mechanism for Recruitment of T Lymphocytes

    PubMed Central

    del Pozo, Miguel Angel; Cabañas, Carlos; Montoya, María C.; Ager, Ann; Sánchez-Mateos, Paloma; Sánchez-Madrid, Francisco

    1997-01-01

    The recruitment of leukocytes from the bloodstream is a key step in the inflammatory reaction, and chemokines are among the main regulators of this process. During lymphocyte–endothelial interaction, chemokines induce the polarization of T lymphocytes, with the formation of a cytoplasmic projection (uropod) and redistribution of several adhesion molecules (ICAM-1,-3, CD43, CD44) to this structure. Although it has been reported that these cytokines regulate the adhesive state of integrins in leukocytes, their precise mechanisms of chemoattraction remain to be elucidated. We have herein studied the functional role of the lymphocyte uropod. Confocal microscopy studies clearly showed that cell uropods project away from the cell bodies of adhered lymphocytes and that polarized T cells contact other T cells through the uropod structure. Time-lapse videomicroscopy studies revealed that uropod-bearing T cells were able, through this cellular projection, to contact, capture, and transport additional bystander T cells. Quantitative analysis revealed that the induction of uropods results in a 5–10-fold increase in cell recruitment. Uropod-mediated cell recruitment seems to have physiological relevance, since it was promoted by both CD45R0+ peripheral blood memory T cells as well as by in vivo activated lymphocytes. Additional studies showed that the cell recruitment mediated by uropods was abrogated with antibodies to ICAM-1, -3, and LFA-1, whereas mAb to CD43, CD44, CD45, and L-selectin did not have a significant effect, thus indicating that the interaction of LFA-1 with ICAM-1 and -3 appears to be responsible for this process. To determine whether the increment in cell recruitment mediated by uropod may affect the transendothelial migration of T cells, we carried out chemotaxis assays through confluent monolayers of endothelial cells specialized in lymphocyte extravasation. An enhancement of T cell migration was observed under conditions of uropod formation, and this increase was prevented by incubation with either blocking anti– ICAM-3 mAbs or drugs that impair uropod formation. These data indicate that the cell interactions mediated by cell uropods represent a cooperative mechanism in lymphocyte recruitment, which may act as an amplification system in the inflammatory response. PMID:9128258

  19. Aspirin-triggered lipoxin prevents antiphospholipid antibody effects on human trophoblast migration and endothelial cell interactions.

    PubMed

    Alvarez, Angela M; Mulla, Melissa J; Chamley, Lawrence W; Cadavid, Angela P; Abrahams, Vikki M

    2015-02-01

    Antiphospholipid antibodies (aPL) interfere with several physiologic functions of human trophoblasts, including reducing their ability to migrate, decreasing their production of angiogenic factors, and inducing an inflammatory response. This may provide the underlying mechanism by which aPL responses lead to recurrent pregnancy loss or preeclampsia in women with obstetric antiphospholipid syndrome (APS). Although treatment with heparin may reduce the rate of recurrent pregnancy loss, the risk of preeclampsia remains high. Therefore, alternative treatments are needed for the management of pregnant patients with APS. Since aspirin-triggered lipoxins (ATLs) have immune and angiogenic modulatory properties, the objective of this study was to determine the effects of the ATL 15-epi-lipoxin A4 on the function of aPL-altered human trophoblasts in the first trimester of pregnancy. A first-trimester human trophoblast cell line (HTR8) was treated with mouse anti-human β2 -glycoprotein I monoclonal antibodies (aPL) in the presence or absence of the ATL 15-epi-lipoxin A4 . Trophoblast migration and interactions with endometrial endothelial cells were measured using Transwell and coculture assays. Trophoblast secretion of cytokines and angiogenic factors was measured by enzyme-linked immunosorbent assay. Treatment of HTR8 cells with ATL reversed the aPL-induced decrease in trophoblast migration, an effect that appeared to be regulated through restoration of interleukin-6 production. Using a model of spiral artery transformation, aPL and sera from APS patients with pregnancy morbidity disrupted trophoblast-endothelial cell interactions, and treatment with ATL restored the stability of the cocultures. In contrast, ATL treatment did not resolve the proinflammatory and antiangiogenic responses of trophoblasts induced by aPL. These findings indicate that ATLs may have some benefits in terms of preventing the effects of aPL on trophoblast function, which raises the possibility of the use of ATLs as an adjuvant therapy in women with aPL. Copyright © 2015 by the American College of Rheumatology.

  20. Triple selectin knockout (ELP-/-) mice fail to develop OVA-induced acute asthma phenotype

    PubMed Central

    2011-01-01

    Objective The recruitment of leukocytes from circulation to sites of inflammation requires several families of adhesion molecules among which are selectins expressed on a variety of cells. In addition, they have also been shown to play key roles in the activation of cells in inflammation. Methods To explore the collective role of E-, L-, and P- selectins in OVA-induced Th2 mediated response in acute asthma pathophysiology, ELP-/- mice were used and compared with age-matched wildtype (WT). Results Asthma phenotype was assessed by measuring pulmonary function, inflammation and OVA-specific serum IgE, which were completely abrogated in ELP-/- mice. Adoptive transfer of sensitized L selectin+CD4+ T cells into naïve ELP-/- mice which post-OVA challenge, developed asthma, suggesting that L-selectin may be critically involved in the onset of Th2 response in asthma. Tissue resident ELP-deficient cells were otherwise functionally competent as proved by normal proliferative response. Conclusions: Comparative studies between ELP-/- and WT mice uncovered functional roles of these three integrins in inflammatory response in allergic asthma. All three selectins seem to impede inflammatory migration while only L-selectin also possibly regulates activation of specific T cell subsets in lung and airways. PMID:21835035

Top