Sample records for inflammatory cellular components

  1. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  2. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  3. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  4. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  5. Inflammation--a lifelong companion. Attempt at a non-analytical holistic view.

    PubMed

    Ferencík, M; Stvrtinová, V; Hulín, I; Novák, M

    2007-01-01

    Inflammation is a key component of the immune system. It has important functions in both defense and pathophysiological events maintaining the dynamic homeostasis of a host organism including its tissues, organs and individual cells. On the cellular level it is controlled by more than 400 currently known genes. Their polymorphisms and environmental conditions give rise to different genotypes in human population. Pro-inflammatory genotype, which dominates in the present population, may be advantageous in childhood but not in elderly people because it is characterized by an increased vulnerability to, and intensity of, inflammatory reactions. These reactions may be the possible reasons of chronic inflammatory diseases, especially in old age. Better understanding of complex molecular and cellular inflammatory mechanisms is indispensable for detailed knowledge of pathogenesis of many diseases, their prevention and directed drug therapy. Here we summarize the basic current knowledge on these mechanisms.

  6. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    PubMed

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  7. The protective effect of bee venom on fibrosis causing inflammatory diseases.

    PubMed

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-11-16

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient's skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  8. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    PubMed Central

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-01-01

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease. PMID:26580653

  9. Deacylation of Purified Lipopolysaccharides by Cellular and Extracellular Components of a Sterile Rabbit Peritoneal Inflammatory Exudate

    PubMed Central

    Weinrauch, Yvette; Katz, Seth S.; Munford, Robert S.; Elsbach, Peter; Weiss, Jerrold

    1999-01-01

    The extent to which the mammalian host is capable of enzymatic degradation and detoxification of bacterial lipopolysaccharides (LPS) is still unknown. Partial deacylation of LPS by the enzyme acyloxyacyl hydrolase (AOAH) provides such a mechanism, but its participation in the disposal of LPS under physiological conditions has not been established. In this study, deacylation of isolated radiolabeled LPS by both cellular and extracellular components of a sterile inflammatory peritoneal exudate elicited in rabbits was examined ex vivo. AOAH-like activity, tested under artificial conditions (pH 5.4, 0.1% Triton X-100), was evident in all components of the exudate (mononuclear cells [MNC] > polymorphonuclear leukocytes [PMN] > inflammatory [ascitic] fluid [AF]). Under more physiological conditions, in a defined medium containing purified LPS-binding protein, the LPS-deacylating activity of MNC greatly exceeded that of PMN. In AF, MNC (but not PMN) also produced rapid and extensive CD14-dependent LPS deacylation. Under these conditions, almost all MNC-associated LPS underwent deacylation within 1 h, a rate greatly exceeding that previously found in any cell type. The remaining extracellular LPS was more slowly subject to CD14-independent deacylation in AF. Quantitative analysis showed a comparable release of laurate and myristate but no release of 3-hydroxymyristate, consistent with an AOAH-like activity. These findings suggest a major role for CD14+ MNC and a secondary role for AF in the deacylation of cell-free LPS at extravascular inflammatory sites. PMID:10377115

  10. Differential Action between Schisandrin A and Schisandrin B in Eliciting an Anti-Inflammatory Action: The Depletion of Reduced Glutathione and the Induction of an Antioxidant Response

    PubMed Central

    Leong, Pou Kuan; Wong, Hoi Shan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Ko, Kam Ming

    2016-01-01

    Schisandrin A (Sch A) and schisandrin B (Sch B) are active components of Schisandrae Fructus. We compared the biochemical mechanism underlying the anti-inflammatory action of Sch A and Sch B, using cultured lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and concanavalin (ConA)-stimulated mouse splenocytes. Pre-incubation with Sch A or Sch B produced an anti-inflammatory action in LPS-stimulated RAW264.7 cells, as evidenced by the inhibition of the pro-inflammatory c-Jun N-terminal kinases/p38 kinase/nuclear factor-κB signaling pathway as well as the suppression of various pro-inflammatory cytokines and effectors, with the extent of inhibition by Sch A being more pronounced. The greater activity of Sch A in anti-inflammatory response was associated with a greater decrease in cellular reduced glutathione (GSH) level and a greater increase in glutathione S-transferase activity than corresponding changes produced by Sch B. However, upon incubation, only Sch B resulted in the activation of the nuclear factor (erythroid-derived 2)-like factor 2 and the induction of a significant increase in the expression of thioredoxin (TRX) in RAW264.7 cells. The Sch B-induced increase in TRX expression was associated with the suppression of pro-inflammatory cytokines and effectors in LPS-stimulated macrophages. Studies in a mouse model of inflammation (carrageenan-induced paw edema) indicated that while long-term treatment with either Sch A or Sch B suppressed the extent of paw edema, only acute treatment with Sch A produced a significant degree of inhibition on the inflammatory response. Although only Sch A decreased the cellular GSH level and suppressed the release of pro-inflammatory cytokines and cell proliferation in ConA-simulated splenocytes in vitro, both Sch A and Sch B treatments, while not altering cellular GSH levels, suppressed ConA-stimulated splenocyte proliferation ex vivo. These results suggest that Sch A and Sch B may act differentially on activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions. PMID:27195753

  11. Tyrosine kinases in inflammatory dermatologic disease

    PubMed Central

    Paniagua, Ricardo T.; Fiorentino, David; Chung, Lorinda; Robinson, William H.

    2010-01-01

    Tyrosine kinases are enzymes that catalyze the phosphorylation of tyrosine residues on protein substrates. They are key components of signaling pathways that drive an array of cellular responses including proliferation, differentiation, migration, and survival. Specific tyrosine kinases have recently been identified as critical to the pathogenesis of several autoimmune and inflammatory diseases. Small-molecule inhibitors of tyrosine kinases are emerging as a novel class of therapy that may provide benefit in certain patient subsets. In this review, we highlight tyrosine kinase signaling implicated in inflammatory dermatologic diseases, evaluate strategies aimed at inhibiting these aberrant signaling pathways, and discuss prospects for future drug development. PMID:20584561

  12. Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces

    PubMed Central

    Abdel Hadi, Loubna; Di Vito, Clara; Riboni, Laura

    2016-01-01

    Complex sphingolipids are essential structural components of intestinal membranes, providing protection and integrity to the intestinal mucosa and regulating intestinal absorption processes. The role of sphingolipid signaling has been established in numerous cellular events, including intestinal cell survival, growth, differentiation, and apoptosis. A significant body of knowledge demonstrates that intestinal sphingolipids play a crucial role, as such and through their signaling pathways, in immunity and inflammatory disorders. In this review, we report on and discuss the current knowledge on the metabolism, signaling, and functional implications of sphingolipids in inflammatory bowel disease (IBD), focusing on the different aspects of sphingolipid actions on inflammatory responses and on the potential of sphingolipid-targeted molecules as anti-IBD therapeutic agents. PMID:26880864

  13. Treatment of inflammatory diseases with mesenchymal stem cells.

    PubMed

    Newman, Robert E; Yoo, Dana; LeRoux, Michelle A; Danilkovitch-Miagkova, Alla

    2009-06-01

    Human mesenchymal stem cells (hMSCs) are rare progenitor cells present in adult bone marrow that have the capacity to differentiate into a variety of tissue types, including bone, cartilage, tendon, fat, and muscle. In addition to multilineage differentiation capacity, MSCs regulate immune and inflammatory responses, providing therapeutic potential for treating diseases characterized by the presence of an inflammatory component. The availability of bone marrow and the ability to isolate and expand hMSCs ex vivo make these cells an attractive candidate for drug development. The low immunogenicity of these cells suggests that hMSCs can be transplanted universally without matching between donors and recipients. MSCs universality, along with the ability to manufacture and store these cells long-term, present a unique opportunity to produce an "off-the-shelf" cellular drug ready for treatment of diseases in acute settings. Accumulated animal and human data support MSC therapeutic potential for inflammatory diseases. Several phase III clinical trials for treatment of acute Graft Versus Host Disease (GVHD) and Crohn's disease are currently in progress. The current understanding of cellular and molecular targets underlying the mechanisms of MSCs action in inflammatory settings as well as clinical experience with hMSCs is summarized in this review.

  14. Dedifferentiated liposarcoma with inflammatory myofibroblastic tumor-like features.

    PubMed

    Lucas, David R; Shukla, Abhishek; Thomas, Dafydd G; Patel, Rajiv M; Kubat, Anthony J; McHugh, Jonathan B

    2010-06-01

    The dedifferentiated component of dedifferentiated liposarcoma shows wide histologic variation including tumors with heterologous differentiation. Myofibroblastic differentiation has been recognized in dedifferentiated liposarcoma. However, tumors closely resembling inflammatory myofibroblastic tumor have not. We report the clinicopathologic, immunohistochemical, and molecular finding in 6 cases of dedifferentiated liposarcoma with inflammatory myofibroblastic tumor-like features treated at our institution. The tumors occurred mostly in middle age or elderly men, involved mostly the inguinal/scrotal region or retroperitoneum, and behaved aggressively. Microscopically, the dedifferentiated component closely resembled or, if taken out of context, was indistinguishable from inflammatory myofibroblastic tumor. All 3 major patterns seen in inflammatory myofibroblastic tumor (myxoid, cellular, and hypocellular fibrous) were represented. Areas resembling nodular fasciitis or desmoid fibromatosis were frequent findings. One tumor had heterologous osseous differentiation. In 4 tumors the inflammatory myofibroblastic tumor-like areas were diffuse, whereas in 2 they were combined with noninflammatory myofibroblastic tumor-like high-grade sarcoma. Five tumors stained for smooth muscle actin or desmin, none stained for ALK-1, 5 stained for MDM2, and 5 had amplified MDM2 by fluorescence in situ hybridization. Well-differentiated liposarcomatous components were present in every tumor. All patients developed locally recurrent or metastatic disease. At last follow-up 2 patients had died of disease and 2 were alive with disease. Dedifferentiated liposarcoma can have prominent inflammatory myofibroblastic tumor-like features, a finding that further expands its histologic spectrum. Awareness of this finding can prevent one from misdiagnosing dedifferentiated liposarcoma as inflammatory myofibroblastic tumor, a much less aggressive neoplasm.

  15. Innate Immune Activation in Obesity

    PubMed Central

    Lumeng, Carey N.

    2014-01-01

    The innate immune system is a prewired set of cellular and humoral components that has developed to sense perturbations in normal physiology and trigger responses to restore the system back to baseline. It is now understood that many of these components can also sense the physiologic changes that occur with obesity and be activated. While the exact reasons for this chronic immune response to obesity are unclear, there is strong evidence to suggest that innate inflammatory systems link obesity and disease. Based on this, anti-inflammatory therapies for diseases like type 2 diabetes and metabolic syndrome may form the core of future treatment plans. This review will highlight the components involved in the innate immune response and discuss the evidence that they contribute to the pathogenesis of obesity-associated diseases. PMID:23068074

  16. Modulation of Cellular Stress Response via the Erythropoietin/CD131 Heteroreceptor Complex in Mouse Mesenchymal-Derived Cells

    PubMed Central

    Bohr, Stefan; Patel, Suraj J; Vasko, Radovan; Shen, Keyue; Iracheta-Vellve, Arvin; Lee, Jungwoo; Bale, Shyam Sundhar; Chakraborty, Nilay; Brines, Michael; Cerami, Anthony; Berthiaume, Francois; Yarmush, Martin L

    2014-01-01

    Tissue protective properties of erythropoietin (EPO) have let to the discovery of an alternative EPO-signaling via an EPO-R/CD131 receptor complex which can now be specifically targeted through pharmaceutically designed short sequence peptides such as ARA290. However, little is still known about specific functions of alternative EPO-signaling in defined cell populations. In this study we investigated effects of signaling through EPO-R/CD131 complex on cellular stress responses and pro-inflammatory activation in different mesenchymal-derived phenotypes. We show that anti-apoptotic, anti-inflammatory effects of ARA290 and EPO coincide with the externalization of CD131 receptor component as an immediate response to cellular stress. In addition, alternative EPO-signaling strongly modulated transcriptional, translational or metabolic responses after stressor removal. Specifically, we saw that ARA290 was able overcome a TNFα-mediated inhibition of transcription factor activation related to cell stress responses, most notably of serum response factor (SRF), heat shock transcription factor protein 1 (HSF1) and activator protein 1 (AP1). We conclude that alternative EPO-signaling acts as a modulator of pro-inflammatory signaling pathways and likely plays a role in restoring tissue homeostasis. PMID:25373867

  17. A strategy to estimate the rate of recruitment of inflammatory cells during bovine intramammary infection under field management.

    PubMed

    Detilleux, J

    2017-06-08

    In most infectious diseases, among which bovine mastitis, promptness of the recruitment of inflammatory cells (mainly neutrophils) in inflamed tissues has been shown to be of prime importance in the resolution of the infection. Although this information should aid in designing efficient control strategies, it has never been quantified in field studies. Here, a system of ordinary differential equations is proposed that describes the dynamic process of the inflammatory response to mammary pathogens. The system was tested, by principal differential analysis, on 1947 test-day somatic cell counts collected on 756 infected cows, from 50 days before to 50 days after the diagnosis of clinical mastitis. Cell counts were log-transformed before estimating recruitment rates. Daily rates of cellular recruitment was estimated at 0.052 (st. err. = 0.005) during health. During disease, an additional cellular rate of recruitment was estimated at 0.004 (st. err. = 0.001) per day and per bacteria. These estimates are in agreement with analogous measurements of in vitro neutrophil functions. Results suggest the method is adequate to estimate one of the components of innate resistance to mammary pathogens at the individual level and in field studies. Extension of the method to estimate components of innate tolerance and limits of the study are discussed.

  18. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    PubMed

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes. These spice-derived components may have a potential to improve chronic inflammatory conditions in obesity.

  19. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  20. Vegetable dust and airway disease: inflammatory mechanisms.

    PubMed Central

    Cooper, J A; Buck, M G; Gee, J B

    1986-01-01

    Exposure to cotton or grain dust causes an obstructive bronchitis in certain subjects, mechanisms of which are poorly understood. A difficulty encountered in discerning mechanisms of this airway disease is the lack of knowledge of the active components of these dusts. Clinical features suggest common but not exact mechanisms of the airway disease associated with these vegetable dusts. Human and animal studies show evidence of acellular and cellular inflammatory mechanisms of the bronchoconstriction and inflammation associated with these disorders. Potential cellular sources include alveolar macrophages, polymorphonuclear leukocytes, mast cells, basophils, eosinophils and lymphocytes. Acellular origins include the complement and humoral antibody systems, both of which have been implicated, although their pathogenic role in grain or cotton dust disorders is uncertain. In this review we critically address potential inflammatory mechanisms of airway alterations resulting from cotton or grain dust exposure. General mechanisms of bronchoconstriction are first presented, then specific studies dealing with either of the two dusts are discussed. We believe this area of research may be fruitful in dissecting mechanisms of bronchoconstriction and airway inflammation, especially as more human studies are undertaken. PMID:3519205

  1. Role of Complement on Broken Surfaces After Trauma.

    PubMed

    Huber-Lang, Markus; Ignatius, Anita; Brenner, Rolf E

    2015-01-01

    Activation of both the complement and coagulation cascade after trauma and subsequent local and systemic inflammatory response represent a major scientific and clinical problem. After severe tissue injury and bone fracture, exposure of innate immunity to damaged cells and molecular debris is considered a main trigger of the posttraumatic danger response. However, the effects of cellular fragments (e.g., histones) on complement activation remain enigmatic. Furthermore, direct effects of "broken" bone and cartilage surfaces on the fluid phase response of complement and its interaction with key cells of connective tissues are still unknown. Here, we summarize data suggesting direct and indirect complement activation by extracellular and cellular danger associated molecular patterns. In addition, key complement components and the corresponding receptors (such as C3aR, C5aR) have been detected on "exposed surfaces" of the damaged regions. On a cellular level, multiple effects of complement activation products on osteoblasts, osteoclasts, chondrocytes and mesenchymal stem cells have been found.In conclusion, the complement system may be activated by trauma-altered surfaces and is crucially involved in connective tissue healing and posttraumatic systemic inflammatory response.

  2. Changes in ion transport in inflammatory disease.

    PubMed

    Eisenhut, Michael

    2006-03-29

    Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalities in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed.

  3. Changes in ion transport in inflammatory disease

    PubMed Central

    Eisenhut, Michael

    2006-01-01

    Ion transport is essential for maintenance of transmembranous and transcellular electric potential, fluid transport and cellular volume. Disturbance of ion transport has been associated with cellular dysfunction, intra and extracellular edema and abnormalities of epithelial surface liquid volume. There is increasing evidence that conditions characterized by an intense local or systemic inflammatory response are associated with abnormal ion transport. This abnormal ion transport has been involved in the pathogenesis of conditions like hypovolemia due to fluid losses, hyponatremia and hypokalemia in diarrhoeal diseases, electrolyte abnormalites in pyelonephritis of early infancy, septicemia induced pulmonary edema, and in hypersecretion and edema induced by inflammatory reactions of the mucosa of the upper respiratory tract. Components of membranous ion transport systems, which have been shown to undergo a change in function during an inflammatory response include the sodium potassium ATPase, the epithelial sodium channel, the Cystic Fibrosis Transmembrane Conductance Regulator and calcium activated chloride channels and the sodium potassium chloride co-transporter. Inflammatory mediators, which influence ion transport are tumor necrosis factor, gamma interferon, interleukins, transforming growth factor, leukotrienes and bradykinin. They trigger the release of specific messengers like prostaglandins, nitric oxide and histamine which alter ion transport system function through specific receptors, intracellular second messengers and protein kinases. This review summarizes data on in vivo measurements of changes in ion transport in acute inflammatory conditions and in vitro studies, which have explored the underlying mechanisms. Potential interventions directed at a correction of the observed abnormalities are discussed. PMID:16571116

  4. Novel Mechanisms of Herbal Therapies for Inhibiting HMGB1 Secretion or Action

    PubMed Central

    Wu, Andrew H.; He, Li; Long, Wei; Zhou, Qiuping; Zhu, Shu; Wang, Ping; Fan, Saijun; Wang, Haichao

    2015-01-01

    High mobility group box 1 (HMGB1) is an evolutionarily conserved protein and is constitutively expressed in virtually all types of cells. In response to microbial infections, HMGB1 is secreted from activated immune cells to orchestrate rigorous inflammatory responses. Here we review the distinct mechanisms by which several herbal components inhibit HMGB1 action or secretion, such as by modulating inflammasome activation, autophagic degradation, or endocytic uptake. In light of the reciprocal interactions between these cellular processes, it is possible to develop more effective combinational herbal therapies for the clinical management of inflammatory diseases. PMID:25821489

  5. Regulation of inflammation and redox signaling by dietary polyphenols.

    PubMed

    Rahman, Irfan; Biswas, Saibal K; Kirkham, Paul A

    2006-11-30

    Reactive oxygen species (ROS) play a key role in enhancing the inflammation through the activation of NF-kappaB and AP-1 transcription factors, and nuclear histone acetylation and deacetylation in various inflammatory diseases. Such undesired effects of oxidative stress have been found to be controlled by the antioxidant and/or anti-inflammatory effects of dietary polyphenols such as curcumin (diferuloylmethane, a principal component of turmeric) and resveratrol (a flavonoid found in red wine). The phenolic compounds in fruits, vegetables, tea and wine are mostly derivatives, and/or isomers of flavones, isoflavones, flavonols, catechins, tocopherols, and phenolic acids. Polyphenols modulate important cellular signaling processes such as cellular growth, differentiation and host of other cellular features. In addition, they modulate NF-kappaB activation, chromatin structure, glutathione biosynthesis, nuclear redox factor (Nrf2) activation, scavenge effect of ROS directly or via glutathione peroxidase activity and as a consequence regulate inflammatory genes in macrophages and lung epithelial cells. However, recent data suggest that dietary polyphenols can work as modifiers of signal transduction pathways to elicit their beneficial effects. The effects of polyphenols however, have been reported to be more pronounced in vitro using high concentrations which are not physiological in vivo. This commentary discusses the recent data on dietary polyphenols in the control of signaling and inflammation particularly during oxidative stress, their metabolism and bioavailability.

  6. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction.

    PubMed

    Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi

    2017-04-19

    A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.

  7. Proliferating Myositis: An Inflammatory Lesion often Misdiagnosed as A Malignant Tumor.

    PubMed

    Binesh, Fariba; Sobhanardekani, Mohammad; Zabihi, Somayeh; Behniafard, Nasim

    2016-12-01

    Proliferative myositis (PM) is a rare inflammatory disease. Most commonly, the lesion occurs in the extremities. Regarding its fast growth and bizarre shape of the cellular components this entity commonly misdiagnosed and the patients undergo improper therapeutic approaches. In other words, it is often misdiagnosed as sarcoma. The diagnosis can only be made by the microscopic examination, so biopsy is mandatory. Here the authors report a patient with PM who was initially misdiagnosed as pleomorphic sarcoma of the lower extremity and explain this rare entity. Proliferative myositis should be taken into account if a fast growing, intramuscular mass occurs in the extremities.

  8. Antioxidant, anti-inflammatory, anti-apoptotic, and skin regenerative properties of an Aloe vera-based extract of Nerium oleander leaves (nae-8(®)).

    PubMed

    Benson, Kathleen F; Newman, Robert A; Jensen, Gitte S

    2015-01-01

    The goal for this study was to evaluate the effects of an Aloe vera-based Nerium oleander extract (NAE-8(®)), compared to an extract of A. vera gel alone (ALOE), and to an aqueous extract of N. oleander (AQ-NOE) in bioassays pertaining to dermatologic potential with respect to antioxidant protection, anti-inflammatory effects, and cytokine profiles in vitro. Cellular antioxidant protection was evaluated in three separate bioassays: The cellular antioxidant protection of erythrocytes (CAP-e) assay, protection of cellular viability and prevention of apoptosis, and protection of intracellular reduced glutathione levels, where the last two assays were performed using human primary dermal fibroblasts. Reduction of intracellular formation of reactive oxygen species (ROS) was tested using polymorphonuclear cells in the absence and presence of oxidative stress. Changes to cytokine and chemokine profiles when whole blood cells and human primary dermal fibroblasts were exposed to test products were determined using a 40-plex Luminex array as a method for exploring the potential cross-talk between circulating and skin-resident cells. The NAE-8(®) provided significantly better antioxidant protection in the CAP-e bioassay than AQ-NOE. NAE-8(®) and AQ-NOE both protected cellular viability and intracellular reduced glutathione, and reduced the ROS formation significantly when compared to control cells, both under inflamed and neutral culture conditions. ALOE showed minimal effect in these bioassays. In contrast to the NAE-8(®), the AQ-NOE showed induction of inflammation in the whole blood cultures, as evidenced by the high induction of CD69 expression and secretion of a number of inflammatory cytokines. The treatment of dermal fibroblasts with NAE-8(®) resulted in selective secretion of cytokines involved in collagen and hyaluronan production as well as re-epithelialization during wound healing. NAE-8(®), a novel component of a commercial cosmetic product, showed beneficial antioxidant protection in several cellular models, without the induction of leukocyte activation and secretion of inflammatory cytokines. The biological efficacy of NAE-8(®) was unique from both ALOE and AQ-NOE.

  9. Complement Activation in Inflammatory Skin Diseases

    PubMed Central

    Giang, Jenny; Seelen, Marc A. J.; van Doorn, Martijn B. A.; Rissmann, Robert; Prens, Errol P.; Damman, Jeffrey

    2018-01-01

    The complement system is a fundamental part of the innate immune system, playing a crucial role in host defense against various pathogens, such as bacteria, viruses, and fungi. Activation of complement results in production of several molecules mediating chemotaxis, opsonization, and mast cell degranulation, which can contribute to the elimination of pathogenic organisms and inflammation. Furthermore, the complement system also has regulating properties in inflammatory and immune responses. Complement activity in diseases is rather complex and may involve both aberrant expression of complement and genetic deficiencies of complement components or regulators. The skin represents an active immune organ with complex interactions between cellular components and various mediators. Complement involvement has been associated with several skin diseases, such as psoriasis, lupus erythematosus, cutaneous vasculitis, urticaria, and bullous dermatoses. Several triggers including auto-antibodies and micro-organisms can activate complement, while on the other hand complement deficiencies can contribute to impaired immune complex clearance, leading to disease. This review provides an overview of the role of complement in inflammatory skin diseases and discusses complement factors as potential new targets for therapeutic intervention. PMID:29713318

  10. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction

    PubMed Central

    Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi

    2017-01-01

    A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis. PMID:28422073

  11. Use of intranasal corticosteroids in adenotonsillar hypertrophy.

    PubMed

    Sakarya, E U; Bayar Muluk, N; Sakalar, E G; Senturk, M; Aricigil, M; Bafaqeeh, S A; Cingi, C

    2017-05-01

    This review examined the efficacy of intranasal corticosteroids for improving adenotonsillar hypertrophy. The related literature was searched using PubMed and Proquest Central databases. Adenotonsillar hypertrophy causes mouth breathing, nasal congestion, hyponasal speech, snoring, obstructive sleep apnoea, chronic sinusitis and recurrent otitis media. Adenoidal hypertrophy results in the obstruction of nasal passages and Eustachian tubes, and blocks the clearance of nasal mucus. Adenotonsillar hypertrophy and obstructive sleep apnoea are associated with increased expression of various mediators of inflammatory responses in the tonsils, and respond to anti-inflammatory agents such as corticosteroids. Topical nasal steroids most likely affect the anatomical component by decreasing inspiratory upper airway resistance at the nasal, adenoidal or tonsillar levels. Corticosteroids, by their lympholytic or anti-inflammatory effects, might reduce adenotonsillar hypertrophy. Intranasal corticosteroids reduce cellular proliferation and the production of pro-inflammatory cytokines in a tonsil and adenoid mixed-cell culture system. Intranasal corticosteroids have been used in adenoidal hypertrophy and adenotonsillar hypertrophy patients, decreasing rates of surgery for adenotonsillar hypertrophy.

  12. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    PubMed Central

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  13. Docosahexaenoic Acid Signalolipidomics in Nutrition: Significance in Aging, Neuroinflammation, Macular Degeneration, Alzheimer’s, and Other Neurodegenerative Diseases

    PubMed Central

    Bazan, Nicolas G.; Molina, Miguel F.; Gordon, William C.

    2012-01-01

    Essential polyunsaturated fatty acids (PUFAs) are critical nutritional lipids that must be obtained from the diet to sustain homeostasis. Omega-3 and -6 PUFAs are key components of biomembranes and play important roles in cell integrity, development, maintenance, and function. The essential omega-3 fatty acid family member docosahexaenoic acid (DHA) is avidly retained and uniquely concentrated in the nervous system, particularly in photoreceptors and synaptic membranes. DHA plays a key role in vision, neuroprotection, successful aging, memory, and other functions. In addition, DHA displays anti-inflammatory and inflammatory resolving properties in contrast to the proinflammatory actions of several members of the omega-6 PUFAs family. This review discusses DHA signalolipidomics, comprising the cellular/tissue organization of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains rich in DHA-containing phospholipids, and the cellular and molecular events revealed by the uncovering of signaling pathways regulated by DHA and docosanoids, the DHA-derived bioactive lipids, which include neuroprotectin D1 (NPD1), a novel DHA-derived stereoselective mediator. NPD1 synthesis agonists include neurotrophins and oxidative stress; NPD1 elicits potent anti-inflammatory actions and prohomeostatic bioactivity, is anti-angiogenic, promotes corneal nerve regeneration, and induces cell survival. In the context of DHA signalolipidomics, this review highlights aging and the evolving studies on the significance of DHA in Alzheimer’s disease, macular degeneration, Parkinson’s disease, and other brain disorders. DHA signalolipidomics in the nervous system offers emerging targets for pharmaceutical intervention and clinical translation. PMID:21756134

  14. Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics

    PubMed Central

    Jope, Richard S.; Yuskaitis, Christopher J.; Beurel, Eléonore

    2007-01-01

    Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer’s disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions. PMID:16944320

  15. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation.

    PubMed

    Keisari, Yona

    2017-01-01

    Tumor ablation by thermal, chemical and radiological sources has received substantial attention for the treatment of many localized malignancies. The primary goal of most ablation procedures is to eradicate all viable malignant cells within a designated target volume through the application of energy or chemicals. Methods such as radiotherapy, chemical and biological ablation, photodynamic therapy, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and electric-based ablation have been developed for focal malignancies. In recent years a large volume of data emerged on the effect of in situ tumor destruction (ablation) on inflammatory and immune components resulting in systemic anti-tumor reactions. It is evident that in situ tumor ablation can involve tumor antigen release, cross presentation and the release of DAMPS and make the tumor its own cellular vaccine. Tumor tissue destruction by in situ ablation may stimulate antigen-specific cellular immunity engendered by an inflammatory milieu. Dendritic cells (DCs) attracted to this microenvironment, will undergo maturation after internalizing cellular debris containing tumor antigens and will be exposed to damage associated molecular pattern (DAMP). Mature DCs can mediate antigen-specific cellular immunity via presentation of processed antigens to T cells. The immunomodulatory properties, exhibited by in situ ablation could portend a future collaboration with immunotherapeutic measures. In this review are summarized and discuss the preclinical and clinical studies pertinent to the phenomena of stimulation of specific anti-tumor immunity by various ablation modalities and the immunology related measures used to boost this response.

  16. Clinical, Cellular, and Molecular Aspects in the Pathophysiology of Rosacea

    PubMed Central

    Steinhoff, Martin; Buddenkotte, Jörg; Aubert, Jerome; Sulk, Mathias; Novak, Pawel; Schwab, Verena D.; Mess, Christian; Cevikbas, Ferda; Rivier, Michel; Carlavan, Isabelle; Déret, Sophie; Rosignoli, Carine; Metze, Dieter; Luger, Thomas A.; Voegel, Johannes J.

    2013-01-01

    Rosacea is a chronic inflammatory skin disease of unknown etiology. Although described centuries ago, the pathophysiology of this disease is still poorly understood. Epidemiological studies indicate a genetic component, but a rosacea gene has not been identified yet. Four subtypes and several variants of rosacea have been described. It is still unclear whether these subtypes represent a “developmental march” of different stages or are merely part of a syndrome that develops independently but overlaps clinically. Clinical and histopathological characteristics of rosacea make it a fascinating “human disease model” for learning about the connection between the cutaneous vascular, nervous, and immune systems. Innate immune mechanisms and dysregulation of the neurovascular system are involved in rosacea initiation and perpetuation, although the complex network of primary induction and secondary reaction of neuroimmune communication is still unclear. Later, rosacea may result in fibrotic facial changes, suggesting a strong connection between chronic inflammatory processes and skin fibrosis development. This review highlights recent molecular (gene array) and cellular findings and aims to integrate the different body defense mechanisms into a modern concept of rosacea pathophysiology. PMID:22076321

  17. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil.

    PubMed

    Ehrenfeld, Pamela; Bhoola, Kanti D; Matus, Carola E; Figueroa, Carlos D

    2018-06-19

    In the human neutrophil, kallikrein-related peptidases (KLKs) have a significant functional relationship with the classical kinin system as a kinin B1 receptor agonist induces secretion of KLK1, KLK6, KLK10, KLK13 and KLK14 into the medium. Secretion of KLK1, the kinin-forming enzyme, may perpetuate formation of kinin in the inflammatory milieu by hydrolyzing extravasated kininogens present in tissue edema. Secretion of KLKs into the inflammatory milieu, induced by kinins or other proinflammatory mediators, provides the human neutrophil with a wide range of molecular interactions to hydrolyze different cellular and extracellular matrix components, which may be of critical relevance in different mechanisms involving inflammation.

  18. Raman mapping of oral buccal mucosa: a spectral histopathology approach

    NASA Astrophysics Data System (ADS)

    Behl, Isha; Kukreja, Lekha; Deshmukh, Atul; Singh, S. P.; Mamgain, Hitesh; Hole, Arti R.; Krishna, C. Murali

    2014-12-01

    Oral cancer is one of the most common cancers worldwide. One-fifth of the world's oral cancer subjects are from India and other South Asian countries. The present Raman mapping study was carried out to understand biochemical variations in normal and malignant oral buccal mucosa. Data were acquired using WITec alpha 300R instrument from 10 normal and 10 tumors unstained tissue sections. Raman maps of normal sections could resolve the layers of epithelium, i.e. basal, intermediate, and superficial. Inflammatory, tumor, and stromal regions are distinctly depicted on Raman maps of tumor sections. Mean and difference spectra of basal and inflammatory cells suggest abundance of DNA and carotenoids features. Strong cytochrome bands are observed in intermediate layers of normal and stromal regions of tumor. Epithelium and stromal regions of normal cells are classified by principal component analysis. Classification among cellular components of normal and tumor sections is also observed. Thus, the findings of the study further support the applicability of Raman mapping for providing molecular level insights in normal and malignant conditions.

  19. Expanding the B Cell Centric View of Systemic Lupus Erythematosus

    PubMed Central

    Morawski, Peter A.; Bolland, Silvia

    2017-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this Review, we consider recent advances regarding both pathogenic and regulatory roles of lymphocytes in SLE, beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel targeted therapeutics. PMID:28274696

  20. Translational research in pediatrics III: bronchoalveolar lavage.

    PubMed

    Radhakrishnan, Dhenuka; Yamashita, Cory; Gillio-Meina, Carolina; Fraser, Douglas D

    2014-07-01

    The role of flexible bronchoscopy and bronchoalveolar lavage (BAL) for the care of children with airway and pulmonary diseases is well established, with collected BAL fluid most often used clinically for microbiologic pathogen identification and cellular analyses. More recently, powerful analytic research methods have been used to investigate BAL samples to better understand the pathophysiological basis of pediatric respiratory disease. Investigations have focused on the cellular components contained in BAL fluid, such as macrophages, lymphocytes, neutrophils, eosinophils, and mast cells, as well as the noncellular components such as serum molecules, inflammatory proteins, and surfactant. Molecular techniques are frequently used to investigate BAL fluid for the presence of infectious pathologies and for cellular gene expression. Recent advances in proteomics allow identification of multiple protein expression patterns linked to specific respiratory diseases, whereas newer analytic techniques allow for investigations on surfactant quantification and function. These translational research studies on BAL fluid have aided our understanding of pulmonary inflammation and the injury/repair responses in children. We review the ethics and practices for the execution of BAL in children for translational research purposes, with an emphasis on the optimal handling and processing of BAL samples. Copyright © 2014 by the American Academy of Pediatrics.

  1. Expression of the autoantigen TRIM33/TIF1γ in skin and muscle of patients with dermatomyositis is upregulated, together with markers of cellular stress.

    PubMed

    Scholtissek, B; Ferring-Schmitt, S; Maier, J; Wenzel, J

    2017-08-01

    Dermatomyositis (DM) is an autoimmune disorder associated with a dysregulation of immune homeostasis of both the innate and adaptive immune system. Earlier data suggested that these two arms of the immune system interconnect in DM. In the current study, we analysed the association of autoantigen expression [adaptive system components: Mi2, transcriptional intermediary factor (TIF)1γ, small ubiquitin-like modifier 1 activating enzyme subunit (SAE)1, melanoma differentiation-associated protein (MDA)5] with markers of cellular stress (innate system components: MxA, p53) in skin and muscle (immunohistology and gene expression data, respectively). We found that distinctive self-antigens of DM were elevated in both skin and muscle tissue. In particular, TIF1γ expression was seen in autoimmune diseases including DM, but not in other inflammatory skin disorders. This upregulation was closely associated with p53 expression and type I interferon-regulated inflammation, suggesting that upregulation of autoantigens in the skin and muscle of patients with DM might be driven by cellular stress. Better understanding of these mechanisms could pave the way for new therapeutic concepts focusing on stress reduction. © 2017 British Association of Dermatologists.

  2. [HLA-B27 Positive Acute Anterior Uveitis - A Translational Perspective].

    PubMed

    Heiligenhaus, Arnd; Kasper, Maren; Grajewski, Rafael

    2017-05-01

    Background HLA-B27 positive acute anterior uveitis is the most common type of uveitis, and it is an autoimmune disease that can be triggered by infections. The precise mechanism of the interaction between involved microbes (mostly gram negative bacteria) and the host immune system is not clear. The disease probably results from an imbalance between pro- and anti-inflammatory components. Project description This article gives a compact overview about the current knowledge of the clinic and the etiopathogenesis of acute anterior uveitis as a basis for future research approaches. The goal of the current research is to classify the cellular and molecular pathogenetic factors in acute anterior uveitis. In this regard, a project on uveitis within the clinical research unit FOR 2240 "(Lymph)Angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", examines the hypothesis that dysregulation of regulatory cell populations and anti-inflammatory cytokines, such as interleukin-10 (IL-10), might contribute to the development of ocular autoimmunity following infections. The goal is to establish new markers for individual susceptibility in the risk group of the HLA-B27 positive population, because only about 1% of the HLA-B27 positive population will eventually develop acute anterior uveitis. Conclusions Translational research approaches to identify predisposed risk groups from the HLA-B27 population could improve patient care both on a prophylactic and a therapeutic level. Georg Thieme Verlag KG Stuttgart · New York.

  3. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  4. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity.

    PubMed

    Kriete, Andres; Mayo, Kelli L; Yalamanchili, Nirupama; Beggs, William; Bender, Patrick; Kari, Csaba; Rodeck, Ulrich

    2008-07-16

    Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-kappaB DNA binding activity in a subset of strains, and the NF-kappaB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the in vivo context. Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

  5. Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway.

    PubMed

    Yang, Nan; Dong, Zibo; Tian, Gang; Zhu, Maomao; Li, Chao; Bu, Weiquan; Chen, Juan; Hou, Xuefeng; Liu, Ying; Wang, Gang; Jia, Xiaobin; Di, Liuqing; Feng, Liang

    2016-12-24

    TMHM is a type of Chinese medicine commonly used in medical practice and has multiple functions, including clearing heat, detoxification, reducing swelling, and tumor therapy. Previous research has demonstrated that the OAC of TMHM (TMHM-OAC) displays advantageous therapeutic action against respiratory inflammation. However, the effect of TMHM-OAC on inflammatory injury and its anti-inflammatory role requires further clarification. An in vitro inflammation damage model was employed using NHBE cells and 100ng/ml of (LPS). HPLC-DAD was conducted to analyze the components of TMHM-OAC. An ELISA was conducted to determine IL-1β, IL-6, TNF-α, and NO expression. An MTT assay was conducted to determine the cytotoxicity of TMHM-OAC. The levels of IL-1β, IL-6, TNF-α, caspase-3, caspase-8, iNOS, TLR4p-nuclear factor kappa-B kinase (p-IκκB), and p-NF-κB p65 in cellular protein, as well as the mRNA levels, were determined using WB, IF testing, and Q-PCR. TMHM-OAC significantly reduced LPS-induced NHBE cell inflammation, which was reflected in the reduced expression of relevant cytokines such as TNF-α, IL-1β, IL-6 and NO, caspase-3, and caspase-8. In addition, this component suppressed TLR4, p-IKKβ, and p-NF-κB p65 levels in both mRNA and cellular protein. TMHM-OAC can reduce LPS-induced inflammation in NHBE cells and this function could be linked to the regulation of the TLR4/IKK/NF-kB pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Morin Hydrate Mitigates Cisplatin-Induced Renal and Hepatic Injury by Impeding Oxidative/Nitrosative Stress and Inflammation in Mice.

    PubMed

    K V, Athira; Madhana, Rajaram Mohanrao; Kasala, Eshvendar Reddy; Samudrala, Pavan Kumar; Lahkar, Mangala; Gogoi, Ranadeep

    2016-12-01

    Cisplatin is a widely used chemotherapeutic drug; however, it induces damage on kidney and liver at clinically effective higher doses. Morin hydrate possesses antioxidant, anti-inflammatory, and anticancer properties. Therefore, we aimed to investigate the effects of morin hydrate (50 and 100 mg/kg, orally) against the renohepatic toxicity induced by a high dose of cisplatin (20 mg/kg, intraperitoneally). Renal and hepatic function, oxidative/nitrosative stress, and inflammatory markers along with histopathology were evaluated. Morin hydrate ameliorated cisplatin-induced renohepatic toxicity significantly at 100 mg/kg as evidenced from the significant reversal of cisplatin-induced body weight loss, mortality, functional and structural alterations of kidney, and liver. The protective role offered by morin hydrate against cisplatin-induced renohepatic toxicity is by virtue of its free radical scavenging property, thereby abating the depletion of cellular antioxidant defense components and through modulation of inflammatory cytokines. We speculate morin hydrate as a protective candidate against renohepatic toxicity of cisplatin. © 2016 Wiley Periodicals, Inc.

  7. Expanding the B Cell-Centric View of Systemic Lupus Erythematosus.

    PubMed

    Morawski, Peter A; Bolland, Silvia

    2017-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by a breakdown of self-tolerance in B cells and the production of antibodies against nuclear self-antigens. Increasing evidence supports the notion that additional cellular contributors beyond B cells are important for lupus pathogenesis. In this review we consider recent advances regarding both the pathogenic and the regulatory role of lymphocytes in SLE beyond the production of IgG autoantibodies. We also discuss various inflammatory effector cell types involved in cytokine production, removal of self-antigens, and responses to autoreactive IgE antibodies. We aim to integrate these ideas to expand the current understanding of the cellular components that contribute to disease progression and ultimately help in the design of novel, targeted therapeutics. Published by Elsevier Ltd.

  8. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond

    PubMed Central

    de Almeida, Cecília Jacques Gonçalves

    2017-01-01

    Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation. PMID:29250058

  9. Analysis of cellular and protein content of broncho-alveolar lavage fluid from patients with idiopathic pulmonary fibrosis and chronic hypersensitivity pneumonitis.

    PubMed Central

    Reynolds, H Y; Fulmer, J D; Kazmierowski, J A; Roberts, W C; Frank, M M; Crystal, R G

    1977-01-01

    To evaluate cellular and protein components in the lower respiratory tract of patients with idiopathic pulmonary fibrosis (IPF) and chronic hypersensitivity pneumonitis (CHP), limited broncho-alveolar lavage was done in 58 patients (19 IPF, 7 CHP, and 32 controls). Analysis of the cells and protein in the lavage fluids from patients with IPF revealed an inflammatory and eosinophilic response and a significant elevation of IgG in the lungs. With corticosteroid therapy, inflammation diminished but eosinophils remained. Lavage fluid from patients with CHP also had eosinophils and elevated levels of IgG. However, in contrast to IPF, lavage fluid from CHP patients contained IgM, fewer inflammatory cells, and a strikingly increased number (38-74%) of lymphocytes. Identification of lavage lymphocytes in CHP showed that T lymphocytes were significantly elevated and B lymphocytes were decreased compared to peripheral blood. These studies suggest nthat the lung in IPF and CHP may function as a relatively independent immune organ, and that analysis of cells and proteins in broncho-alveolar lavage fluid may be of diagnostic, therapeutic, and investigative value in evaluating patients with fibrotic lung disease. PMID:830661

  10. Micro124-mediated AHR expression regulates the inflammatory response of chronic rhinosinusitis (CRS) with nasal polyps.

    PubMed

    Liu, C C; Xia, M; Zhang, Y J; Jin, P; Zhao, L; Zhang, J; Li, T; Zhou, X M; Tu, Y Y; Kong, F; Sun, C; Shi, L; Zhao, M Q

    2018-06-02

    MicroRNAs represent a component of the innate immune responses that can restrain inflammatory signaling, miR124 is an important member of inflammation-associated miRNAs, and abnormal miR124 expression is observed in many inflammatory diseases and immune disorders. However, the role and signaling pathways of miR124 in chronic rhinosinusitis with nasal polyps (CRSwNPs) have not been studied in detail. The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that is highly conserved in evolution and plays important roles in the inflammatory response process. In our study, we describe the role of miR124 in the inflammatory response of CRS with nasal polyps. We found that the expression of miR124 was decreased in nasal polyps, and negatively correlated with the expression of AHR. MiR124 can inhibit AHR expression by directly target 3' untranslated region (3'-UTR) of AHR. To further investigate the relationship between miR124, AHR and CRS inflammatory response, we transfect HNEpC cells with miR124 mimic, miR124 inhibitors or siRNA of AHR, then all the results showed that miR124 could regulates cellular inflammatory response through negatively regulating AHR expression. This study demonstrated that the regulation of AHR expression by miR124 is critical to the development of inflammatory response in CRSwNPs. Copyright © 2018. Published by Elsevier Inc.

  11. Mouse lung inflammation after instillation of particulate matter collected from a working dairy barn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegesser, Teresa C.; Last, Jerold A.

    Coarse and fine particulate matter (PM{sub 2.5-10} and PM{sub 2.5}, respectively) are regulated ambient air pollutants thought to have major adverse health effects in exposed humans. The role of endotoxin and other bioaerosol components in the toxicity of PM from ambient air is controversial. This study evaluated the inflammatory lung response in mice instilled intratracheally with PM{sub 2.5-10} and PM{sub 2.5} emitted from a working dairy barn, a source presumed to have elevated concentrations of endotoxin. PM{sub 2.5-10} was more pro-inflammatory on an equal weight basis than was PM{sub 2.5}; both fractions elicited a predominantly neutrophilic response. The inflammatory responsemore » was reversible, with a peak response to PM{sub 2.5-10} observed at 24 h after instillation, and a return to control values by 72 h after instillation. The major active pro-inflammatory component in whole PM{sub 2.5-10}, but not in whole PM{sub 2.5}, is heat-labile, consistent with it being endotoxin. A heat treatment protocol for the gradual inactivation of biological materials in the PM fractions over a measurable time course was developed and optimized in this study using pure lipopolysaccharide (LPS) as a model system. The time course of heat inactivation of pure LPS and of endotoxin activity in PM{sub 2.5-10} as measured by Limulus bioassay is identical. The active material in both PM{sub 2.5-10} and PM{sub 2.5} remained in the insoluble fraction when the whole PM samples were extracted with physiological saline solution. Histological analysis of lung sections from mice instilled with PM{sub 2.5-10} or PM{sub 2.5} showed evidence of inflammation consistent with the cellular responses observed in lung lavage fluid. The major pro-inflammatory components present in endotoxin-rich PM were found in the insoluble fraction of PM{sub 2.5-10}; however, in contrast with PM{sub 2.5-10} isolated from ambient air in the Central Valley of California, the active components in the insoluble fraction were heat-labile.« less

  12. Targeting Tumor Microenvironment with Silibinin: Promise and Potential for a Translational Cancer Chemopreventive Strategy

    PubMed Central

    Deep, Gagan; Agarwal, Rajesh

    2014-01-01

    Tumor microenvironment (TME) refers to the dynamic cellular and extra-cellular components surrounding tumor cells at each stage of the carcinogenesis. TME has now emerged as an integral and inseparable part of the carcinogenesis that plays a critical role in tumor growth, angiogenesis, epithelial to mesenchymal transition (EMT), invasion, migration and metastasis. Besides its vital role in carcinogenesis, TME is also a better drug target because of its relative genetic stability with lesser probability for the development of drug-resistance. Several drugs targeting the TME (endothelial cells, macrophages, cancer-associated fibroblasts, or extra-cellular matrix) have either been approved or are in clinical trials. Recently, non-steroidal anti-inflammatory drugs targeting inflammation were reported to also prevent several cancers. These exciting developments suggest that cancer chemopreventive strategies targeting both tumor and TME would be better and effective towards preventing, retarding or reversing the process of carcinogenesis. Here, we have reviewed the effect of a well established hepatoprotective and chemopreventive agent silibinin on cellular (endothelial, fibroblast and immune cells) and non-cellular components (cytokines, growth factors, proteinases etc.) of the TME. Silibinin targets TME constituents as well as their interaction with cancer cells, thereby inhibiting tumor growth, angiogenesis, inflammation, EMT, and metastasis. Silibinin is already in clinical trials, and based upon completed studies we suggest that its chemopreventive effectiveness should be verified through its effect on biological end points in both tumor and TME. Overall, we believe that the chemopreventive strategies targeting both tumor and TME have practical and translational utility in lowering the cancer burden. PMID:23617249

  13. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress.

    PubMed

    Bartolini, Desirée; Galli, Francesco

    2016-04-15

    Glutathione S-transferase P (GSTP), and possibly other members of the subfamily of cytosolic GSTs, are increasingly proposed to have roles far beyond the classical GSH-dependent enzymatic detoxification of electrophilic metabolites and xenobiotics. Emerging evidence suggests that these are essential components of the redox sensing and signaling platform of cells. GSTP monomers physically interact with cellular proteins, such as other cytosolic GSTs, signaling kinases and the membrane peroxidase peroxiredoxin 6. Other interactions reported in literature include that with regulatory proteins such as Fanconi anemia complementation group C protein, transglutaminase 2 and several members of the keratin family of genes. Transcription factors downstream of inflammatory and oxidative stress pathways, namely STAT3 and Nrf2, were recently identified to be further components of this interactome. Together these pieces of evidence suggest the existence of a regulatory biomolecular network in which GSTP represents a node of functional convergence and coordination of signaling and transcription proteins, namely the "GSTP interactome", associated with key cellular processes such as cell cycle regulation and the stress response. These aspects and the methodological approach to explore the cellular interactome(s) are discussed in this review paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mechanisms regulating skin immunity and inflammation.

    PubMed

    Pasparakis, Manolis; Haase, Ingo; Nestle, Frank O

    2014-05-01

    Immune responses in the skin are important for host defence against pathogenic microorganisms. However, dysregulated immune reactions can cause chronic inflammatory skin diseases. Extensive crosstalk between the different cellular and microbial components of the skin regulates local immune responses to ensure efficient host defence, to maintain and restore homeostasis, and to prevent chronic disease. In this Review, we discuss recent findings that highlight the complex regulatory networks that control skin immunity, and we provide new paradigms for the mechanisms that regulate skin immune responses in host defence and in chronic inflammation.

  15. Roles of microRNA in the immature immune system of neonates.

    PubMed

    Yu, Hong-Ren; Huang, Lien-Hung; Li, Sung-Chou

    2018-06-13

    Neonates have an immature immune system; therefore, their immune activities are different from the activities of adult immune systems. Such differences between neonates and adults are reflected by cell population constitutions, immune responses, cytokine production, and the expression of cellular/humoral molecules, which contribute to the specific neonatal microbial susceptibility and atopic properties. MicroRNAs (miRNAs) have been discovered to modulate many aspects of immune responses. Herein, we summarize the distinct manifestations of the neonatal immune system, including cellular and non-cellular components. We also review the current findings on the modulatory effects of miRNAs on the neonatal immune system. These findings suggest that miRNAs have the potential to be useful therapeutic targets for certain infection or inflammatory conditions by modulating the neonatal immune system. In the future, we need a more comprehensive understanding in regard to miRNAs and how they modulate specific immune cells in neonates. Copyright © 2018. Published by Elsevier B.V.

  16. Platelets Guide Leukocytes to Their Sites of Extravasation

    PubMed Central

    Puhr-Westerheide, Daniel; Pörnbacher, Michaela; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph Andreas

    2016-01-01

    Effective immune responses require the directed migration of leukocytes from the vasculature to the site of injury or infection. How immune cells “find” their site of extravasation remains largely obscure. Here, we identified a previously unrecognized role of platelets as pathfinders guiding leukocytes to their exit points in the microvasculature: upon onset of inflammation, circulating platelets were found to immediately adhere at distinct sites in venular microvessels enabling these cellular blood components to capture neutrophils and, in turn, inflammatory monocytes via CD40-CD40L-dependent interactions. In this cellular crosstalk, ligation of PSGL-1 by P-selectin leads to ERK1/2 MAPK-dependent conformational changes of leukocyte integrins, which promote the successive extravasation of neutrophils and monocytes to the perivascular tissue. Conversely, blockade of this cellular partnership resulted in misguided, inefficient leukocyte responses. Our experimental data uncover a platelet-directed, spatiotemporally organized, multicellular crosstalk that is essential for effective trafficking of leukocytes to the site of inflammation. PMID:27152726

  17. Stimulation of complement component C3 synthesis in macrophagelike cell lines by group B streptococci.

    PubMed Central

    Goodrum, K J

    1987-01-01

    Complement levels and complement activation are key determinants in streptococcus-induced inflammatory responses. Activation of macrophage functions, such as complement synthesis, by group B streptococci (GBS) was examined as a possible component of GBS-induced chronic inflammation. Using an enzyme-linked immunosorbent assay, secreted C3 from mouse macrophagelike cell lines (PU5-1.8 and J774A.1) was monitored after cultivation with GBS. Whole, heat-killed GBS (1 to 10 CFU per macrophage) of both type Ia and III strains induced 25 to 300% increases in secreted C3 in both cell lines after a 24-h cultivation. GBS-treated cell lines exhibited increases in secreted lysozyme (10%) and in cellular protein (25 to 50%). Inhibition of macrophage phagocytosis by cytochalasin B inhibited GBS stimulation of C3. Purified cell walls of GBS type III strain 603-79 (1 to 10 micrograms/ml) also enhanced C3 synthesis. Local enhancement of macrophage C3 production by ingested streptococci or by persistent cell wall antigens may serve to promote chronic inflammatory responses. PMID:3552987

  18. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.

  19. Basal autophagy prevents autoactivation or enhancement of inflammatory signals by targeting monomeric MyD88.

    PubMed

    Into, Takeshi; Horie, Toshi; Inomata, Megumi; Gohda, Jin; Inoue, Jun-Ichiro; Murakami, Yukitaka; Niida, Shumpei

    2017-04-21

    Autophagy, the processes of delivery of intracellular components to lysosomes, regulates induction of inflammation. Inducible macroautophagy degrades inflammasomes and dysfunctional mitochondria to downregulate inflammatory signals. Nonetheless, the effects of constitutive basal autophagy on inflammatory signals are largely unknown. Here, we report a previously unknown effect of basal autophagy. Lysosomal inhibition induced weak inflammatory signals in the absence of a cellular stimulus and in the presence of a nutrient supply, and their induction was impaired by MyD88 deficiency. During lysosomal inhibition, MyD88 was accumulated, and overabundant MyD88 autoactivated downstream signaling or enhanced TLR/IL-1R-mediated signaling. MyD88 is probably degraded via basal microautophagy because macroautophagy inhibitors, ATG5 deficiency, and an activator of chaperone-mediated autophagy did not affect MyD88. Analysis using a chimeric protein whose monomerization/dimerization can be switched revealed that monomeric MyD88 is susceptible to degradation. Immunoprecipitation of monomeric MyD88 revealed its interaction with TRAF6. In TRAF6-deficient cells, degradation of basal MyD88 was enhanced, suggesting that TRAF6 participates in protection from basal autophagy. Thus, basal autophagy lowers monomeric MyD88 expression, and thereby autoactivation of inflammatory signals is prevented. Given that impairment of lysosomes occurs in various settings, our results provide novel insights into the etiology of inflammatory signals that affect consequences of inflammation.

  20. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment.

    PubMed

    Basnet, Purusotam; Skalko-Basnet, Natasa

    2011-06-03

    Oxidative damage and inflammation have been pointed out in preclinical studies as the root cause of cancer and other chronic diseases such as diabetes, hypertension, Alzheimer's disease, etc. Epidemiological and clinical studies have suggested that cancer could be prevented or significantly reduced by treatment with anti-oxidant and anti-inflammatory drugs, therefore, curcumin, a principal component of turmeric (a curry spice) showing strong anti-oxidant and anti-inflammatory activities, might be a potential candidate for the prevention and/or treatment of cancer and other chronic diseases. However, curcumin, a highly pleiotropic molecule with an excellent safety profile targeting multiple diseases with strong evidence on the molecular level, could not achieve its optimum therapeutic outcome in past clinical trials, largely due to its low solubility and poor bioavailability. Curcumin can be developed as a therapeutic drug through improvement in formulation properties or delivery systems, enabling its enhanced absorption and cellular uptake. This review mainly focuses on the anti-inflammatory potential of curcumin and recent developments in dosage form and nanoparticulate delivery systems with the possibilities of therapeutic application of curcumin for the prevention and/or treatment of cancer.

  1. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Akeem O.; Zhang, Min; Dittmar, Michael

    Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4 h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNAmore » or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25 μg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM. - Highlights: • We examined the role of HO-1 expression on diesel exhaust particle (DEP) in endothelial cells. • DEPs exert cytotoxic and inflammatory effects on human microvascular endothelial cells (HMECs). • DEPs induce HO-1 expression in HMECs. • HO-1 protects against the oxidative stress induced by DEps. • HO-1 attenuates the proinflammatory effects induced by DEPs.« less

  2. A review on interleukins: The key manipulators in rheumatoid arthritis.

    PubMed

    Sharma, Jatin; Bhar, Sutonuka; Devi, C Subathra

    2017-09-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease associated with weakening of bones and joint pain. It primarily involves autoimmunity, matrix destruction, osteoclastogenesis, inflammation, and angiogenesis. Numerous cellular and humoral components of the immune system are involved in the etiology of diseases; however, the cardinal part is played by the inter-cellular signaling messengers called cytokines. Interleukins is a vaguely defined sub-class of cytokines that are abundantly found in the RA patients. The multifariousness and diversity in the function of the interleukins make them very likely to be associated with the pathogenesis in multiple ways. Nonetheless, the variety in opinions of researchers globally has led to contentious inferences. Ergo, in this review we have amalgamated the views of researchers from the past two decades till date to provide a comprehensive report about the role of interleukins in rheumatoid arthritis.

  3. Identification of signaling components required for the prediction of cytokine release in RAW 264.7 macrophages

    PubMed Central

    Pradervand, Sylvain; Maurya, Mano R; Subramaniam, Shankar

    2006-01-01

    Background Release of immuno-regulatory cytokines and chemokines during inflammatory response is mediated by a complex signaling network. Multiple stimuli produce different signals that generate different cytokine responses. Current knowledge does not provide a complete picture of these signaling pathways. However, using specific markers of signaling pathways, such as signaling proteins, it is possible to develop a 'coarse-grained network' map that can help understand common regulatory modules for various cytokine responses and help differentiate between the causes of their release. Results Using a systematic profiling of signaling responses and cytokine release in RAW 264.7 macrophages made available by the Alliance for Cellular Signaling, an analysis strategy is presented that integrates principal component regression and exhaustive search-based model reduction to identify required signaling factors necessary and sufficient to predict the release of seven cytokines (G-CSF, IL-1α, IL-6, IL-10, MIP-1α, RANTES, and TNFα) in response to selected ligands. This study provides a model-based quantitative estimate of cytokine release and identifies ten signaling components involved in cytokine production. The models identified capture many of the known signaling pathways involved in cytokine release and predict potentially important novel signaling components, like p38 MAPK for G-CSF release, IFNγ- and IL-4-specific pathways for IL-1a release, and an M-CSF-specific pathway for TNFα release. Conclusion Using an integrative approach, we have identified the pathways responsible for the differential regulation of cytokine release in RAW 264.7 macrophages. Our results demonstrate the power of using heterogeneous cellular data to qualitatively and quantitatively map intermediate cellular phenotypes. PMID:16507166

  4. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    PubMed

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p < 0.001). Grayscale confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  5. An in vitro evaluation of the anti-inflammatory effects of platelet-rich plasma, ketorolac, and methylprednisolone.

    PubMed

    Mazzocca, Augustus D; McCarthy, Mary Beth R; Intravia, Jessica; Beitzel, Knut; Apostolakos, John; Cote, Mark P; Bradley, James; Arciero, Robert A

    2013-04-01

    The purpose of this study was to quantify the extent of the anti-inflammatory effect of platelet-rich plasma (PRP) in a controlled in vitro environment. Through the stimulation of human umbilical vein endothelial cells with inflammatory cytokines (tumor necrosis factor α and interferon γ), cell adhesion molecule expression (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) and PRP's anti-inflammatory effect can be measured. PRP was produced from 3 individuals using a single-spin (PRPLP) process. Treatment groups include negative (unstimulated) controls, positive (stimulated) controls, ketorolac tromethamine, methylprednisolone, PRP, ketorolac-PRP, and methylprednisolone-PRP. A fluorescence assay of the cellular inflammation markers was measured by the BioTek Synergy HT plate reader (BioTek Instruments, Winooski, VT) at 0, 1, 2, and 5 days. At days 2 and 5, methylprednisolone treatment showed a 2.1- to 5.8-fold reduction (P < .05) in inflammation markers over PRP. In addition, PRP and ketorolac showed a 1.4- to 2.5-fold reduction (P < .05) in cellular inflammation markers over the control. There was no statistically significant difference between ketorolac and PRP. Although PRP and ketorolac reduced cellular inflammation markers (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) compared with control, neither caused as great a reduction as methylprednisolone. Although PRP and ketorolac did not produce as significant a reduction in cellular inflammation markers as methylprednisolone, they reduced cellular inflammation compared with the control. These agents may have clinical application as injectable anti-inflammatory medications. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  6. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation.

    PubMed

    Piconese, Silvia; Gri, Giorgia; Tripodo, Claudio; Musio, Silvia; Gorzanelli, Andrea; Frossi, Barbara; Pedotti, Rosetta; Pucillo, Carlo E; Colombo, Mario P

    2009-09-24

    The development of inflammatory diseases implies inactivation of regulatory T (Treg) cells through mechanisms that still are largely unknown. Here we showed that mast cells (MCs), an early source of inflammatory mediators, are able to counteract Treg inhibition over effector T cells. To gain insight into the molecules involved in their interplay, we set up an in vitro system in which all 3 cellular components were put in contact. Reversal of Treg suppression required T cell-derived interleukin-6 (IL-6) and the OX40/OX40L axis. In the presence of activated MCs, concomitant abundance of IL-6 and paucity of Th1/Th2 cytokines skewed Tregs and effector T cells into IL-17-producing T cells (Th17). In vivo analysis of lymph nodes hosting T-cell priming in experimental autoimmune encephalomyelitis revealed activated MCs, Tregs, and Th17 cells displaying tight spatial interactions, further supporting the occurrence of an MC-mediated inhibition of Treg suppression in the establishment of Th17-mediated inflammatory responses.

  7. Blood-Brain Barrier Disruption Induced by Chronic Sleep Loss: Low-Grade Inflammation May Be the Link

    PubMed Central

    Velázquez-Moctezuma, J.

    2016-01-01

    Sleep is a vital phenomenon related to immunomodulation at the central and peripheral level. Sleep deficient in duration and/or quality is a common problem in the modern society and is considered a risk factor to develop neurodegenerative diseases. Sleep loss in rodents induces blood-brain barrier disruption and the underlying mechanism is still unknown. Several reports indicate that sleep loss induces a systemic low-grade inflammation characterized by the release of several molecules, such as cytokines, chemokines, and acute-phase proteins; all of them may promote changes in cellular components of the blood-brain barrier, particularly on brain endothelial cells. In the present review we discuss the role of inflammatory mediators that increase during sleep loss and their association with general disturbances in peripheral endothelium and epithelium and how those inflammatory mediators may alter the blood-brain barrier. Finally, this manuscript proposes a hypothetical mechanism by which sleep loss may induce blood-brain barrier disruption, emphasizing the regulatory effect of inflammatory molecules on tight junction proteins. PMID:27738642

  8. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  9. Reactive Oxygen Species and Inhibitors of Inflammatory Enzymes, NADPH Oxidase, and iNOS in Experimental Models of Parkinson's Disease

    PubMed Central

    Koppula, Sushruta; Kumar, Hemant; Kim, In Su; Choi, Dong-Kug

    2012-01-01

    Reactive oxygen species (ROSs) are emerging as important players in the etiology of neurodegenerative disorders including Parkinson's disease (PD). Out of several ROS-generating systems, the inflammatory enzymes nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) were believed to play major roles. Mounting evidence suggests that activation of NADPH oxidase and the expression of iNOS are directly linked to the generation of highly reactive ROS which affects various cellular components and preferentially damage midbrain dopaminergic neurons in PD. Therefore, appropriate management or inhibition of ROS generated by these enzymes may represent a therapeutic target to reduce neuronal degeneration seen in PD. Here, we have summarized recently developed agents and patents claimed as inhibitors of NADPH oxidase and iNOS enzymes in experimental models of PD. PMID:22577256

  10. The digestive tract as the origin of systemic inflammation.

    PubMed

    de Jong, Petrus R; González-Navajas, José M; Jansen, Nicolaas J G

    2016-10-18

    Failure of gut homeostasis is an important factor in the pathogenesis and progression of systemic inflammation, which can culminate in multiple organ failure and fatality. Pathogenic events in critically ill patients include mesenteric hypoperfusion, dysregulation of gut motility, and failure of the gut barrier with resultant translocation of luminal substrates. This is followed by the exacerbation of local and systemic immune responses. All these events can contribute to pathogenic crosstalk between the gut, circulating cells, and other organs like the liver, pancreas, and lungs. Here we review recent insights into the identity of the cellular and biochemical players from the gut that have key roles in the pathogenic turn of events in these organ systems that derange the systemic inflammatory homeostasis. In particular, we discuss the dangers from within the gastrointestinal tract, including metabolic products from the liver (bile acids), digestive enzymes produced by the pancreas, and inflammatory components of the mesenteric lymph.

  11. Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases.

    PubMed

    Tran, Thanh-Huyen; Mattheolabakis, George; Aldawsari, Hibah; Amiji, Mansoor

    2015-09-01

    Cell secreted exosomes (30-100nm vesicles) play a major role in intercellular communication due to their ability to transfer proteins and nucleic acids from one cell to another. Depending on the originating cell type and the cargo, exosomes can have immunosuppressive or immunostimulatory effects, which have potential application as immunotherapies for cancer and autoimmune diseases. Cellular components shed from tumor cells or antigen presenting cells (APCs), such as dendritic cells, macrophages and B cells, have been shown to be efficiently packaged in exosomes. In this review, we focus on the application of exosomes as nanocarriers and immunological agents for cancer and autoimmune immunotherapy. APC-derived exosomes demonstrate effective therapeutic efficacy for the treatment of cancer and experimental autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease, and multiple sclerosis. In addition to their intrinsic immunomodulating activity, exosomes have many advantages over conventional nanocarriers for drug and gene delivery. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  13. Autophagy in immunity and inflammation

    PubMed Central

    Levine, Beth; Mizushima, Noboru; Virgin, Herbert W.

    2011-01-01

    Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy — the ‘autophagy proteins’ — orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases. PMID:21248839

  14. Therapeutic strategies for allergic diseases

    NASA Astrophysics Data System (ADS)

    Barnes, Peter J.

    1999-11-01

    Many drugs are now in development for the treatment of atopic diseases, including asthma, allergic rhinitis and atopic dermatitis. These treatments are based on improvements in existing therapies or on a better understanding of the cellular and molecular mechanisms involved in atopic diseases. Although most attention has been focused on asthma, treatments that inhibit the atopic disease process would have application to all atopic diseases, as they often coincide. Most of the many new therapies in development are aimed at inhibiting components of the allergic inflammatory response, but in the future there are real possibilities for the development of preventative and even curative treatments.

  15. Inhibition by fenoterol of human eosinophil functions including beta2-adrenoceptor-independent actions.

    PubMed

    Tachibana, A; Kato, M; Kimura, H; Fujiu, T; Suzuki, M; Morikawa, A

    2002-12-01

    Agonists at beta2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed beta2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2-) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of beta2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2- was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2- generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2- generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2- generation was not reversed by ICI-118551, a selective beta2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2- generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via beta2 adrenoceptors.

  16. Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung.

    PubMed

    Fonceca, Angela M; Zosky, Graeme R; Bozanich, Elizabeth M; Sutanto, Erika N; Kicic, Anthony; McNamara, Paul S; Knight, Darryl A; Sly, Peter D; Turner, Debra J; Stick, Stephen M

    2018-01-22

    Accumulation mode particles (AMP) are formed from engine combustion and make up the inhalable vapour cloud of ambient particulate matter pollution. Their small size facilitates dispersal and subsequent exposure far from their original source, as well as the ability to penetrate alveolar spaces and capillary walls of the lung when inhaled. A significant immuno-stimulatory component of AMP is lipopolysaccharide (LPS), a product of Gram negative bacteria breakdown. As LPS is implicated in the onset and exacerbation of asthma, the presence or absence of LPS in ambient particulate matter (PM) may explain the onset of asthmatic exacerbations to PM exposure. This study aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airways disease by measuring airway inflammatory responses induced via activation of the LPS cellular receptor, Toll-like receptor 4 (TLR-4). The effects of nebulized AMP, LPS and AMP administered with LPS on lung function, cellular inflammatory infiltrate and cytokine responses were compared between wildtype mice and mice not expressing TLR-4. The presence of LPS administered with AMP appeared to drive elevated airway resistance and sensitivity via TLR-4. Augmented TLR4 driven eosinophilia and greater TNF-α responses observed in AMP-LPS treated mice independent of TLR-4 expression, suggests activation of allergic responses by TLR4 and non-TLR4 pathways larger than those induced by LPS administered alone. Treatment with AMP induced macrophage recruitment independent of TLR-4 expression. These findings suggest AMP-LPS as a stronger stimulus for allergic inflammation in the airways then LPS alone.

  17. Cellular and Molecular Players in Adipose Tissue Inflammation in the Development of Obesity-induced Insulin Resistance

    PubMed Central

    Lee, Byung-Cheol; Lee, Jongsoon

    2013-01-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515

  18. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component

    PubMed Central

    Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tan, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V.; Mathison, John C.; Moresco, Eva Marie Y.; Monson, Nancy L.; Ulevitch, Richard J.; Beutler, Bruce

    2015-01-01

    The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines including IL-1β and IL-18. We show that NLRP3 inflammasome activation is restricted to interphase of the cell cycle by NEK7, a serine/threonine kinase previously implicated in mitosis. NLRP3 inflammasome activation requires NEK7, which binds to the NLRP3 leucine-rich repeat domain in a kinase-independent manner downstream from the induction of mitochondrial ROS. This interaction is necessary for NLRP3-ASC complex formation, ASC oligomerization, and caspase-1 activation. NEK7 promotes the NLRP3-dependent cellular inflammatory response to intraperitoneal monosodium urate challenge, and the development of experimental autoimmune encephalitis in mice. Our findings suggest NEK7 serves as a cellular switch that enforces mutual exclusivity between the inflammasome response and cell division. PMID:26642356

  19. Mitochondria: An Organelle of Bacterial Origin Controlling Inflammation

    PubMed Central

    Meyer, Alain; Laverny, Gilles; Bernardi, Livio; Charles, Anne Laure; Alsaleh, Ghada; Pottecher, Julien; Sibilia, Jean; Geny, Bernard

    2018-01-01

    Inflammation is a cellular and molecular response to infection and/or tissues injury. While a suited inflammatory response in intensity and time allows for killing pathogens, clearing necrotic tissue, and healing injury; an excessive inflammatory response drives various diseases in which inflammation and tissues damages/stress self-sustain each other. Microbes have been poorly implied in non-resolving inflammation, emphasizing the importance of endogenous regulation of inflammation. Mitochondria have been historically identified as the main source of cellular energy, by coupling the oxidation of fatty acids and pyruvate with the production of high amount of adenosine triphosphate by the electron transport chain. Mitochondria are also the main source of reactive oxygen species. Interestingly, research in the last decade has highlighted that since its integration in eukaryote cells, this organelle of bacterial origin has not only been tolerated by immunity, but has also been placed as a central regulator of cell defense. In intact cells, mitochondria regulate cell responses to critical innate immune receptors engagement. Downstream intracellular signaling pathways interact with mitochondrial proteins and are tuned by mitochondrial functioning. Moreover, upon cell stress or damages, mitochondrial components are released into the cytoplasm or the extra cellular milieu, where they act as danger signals when recognized by innate immune receptors. Finally, by regulating the energetic state of immunological synapse between dendritic cells and lymphocytes, mitochondria regulate the inflammation fate toward immunotolerance or immunogenicity. As dysregulations of these processes have been recently involved in various diseases, the identification of the underlying mechanisms might open new avenues to modulate inflammation. PMID:29725325

  20. Wine consumption and intestinal redox homeostasis.

    PubMed

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.

  1. Wine consumption and intestinal redox homeostasis

    PubMed Central

    Biasi, Fiorella; Deiana, Monica; Guina, Tina; Gamba, Paola; Leonarduzzi, Gabriella; Poli, Giuseppe

    2014-01-01

    Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine׳s beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects. PMID:25009781

  2. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    NASA Astrophysics Data System (ADS)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the intrinsic antimicrobial attributes. The reported findings have key implications for the development and application of a new antimicrobial therapeutic platform for wound management.

  3. Davallialactone reduces inflammation and repairs dentinogenesis on glucose oxidase-induced stress in dental pulp cells.

    PubMed

    Lee, Young-Hee; Kim, Go-Eun; Song, Yong-Beom; Paudel, Usha; Lee, Nan-Hee; Yun, Bong-Sik; Yu, Mi-Kyung; Yi, Ho-Keun

    2013-11-01

    The chronic nature of diabetes mellitus (DM) raises the risk of oral complication diseases. In general, DM causes oxidative stress to organs. This study aimed to evaluate the cellular change of dental pulp cells against glucose oxidative stress by glucose oxidase with a high glucose state. The purpose of this study was to test the antioxidant character of davallialactone and to reduce the pathogenesis of dental pulp cells against glucose oxidative stress. The glucose oxidase with a high glucose concentration was tested for hydroxy peroxide (H2O2) production, cellular toxicity, reactive oxygen species (ROS) formation, induction of inflammatory molecules and disturbance of dentin mineralization in human dental pulp cells. The anti-oxidant effect of Davallilactone was investigated to restore dental pulp cells' vitality and dentin mineralization via reduction of H2O2 production, cellular toxicity, ROS formation and inflammatory molecules. The treatment of glucose oxidase with a high glucose concentration increased H2O2 production, cellular toxicity, and inflammatory molecules and disturbed dentin mineralization by reducing pulp cell activity. However, davallialactone reduced H2O2 production, cellular toxicity, ROS formation, inflammatory molecules, and dentin mineralization disturbances even with a long-term glucose oxidative stress state. The results of this study imply that the development of oral complications is related to the irreversible damage of dental pulp cells by DM-induced oxidative stress. Davallialactone, a natural antioxidant, may be useful to treat complicated oral disease, representing an improvement for pulp vital therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  5. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling.

    PubMed

    Lovelace, Erica S; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard P; Zink, Erika M; Kim, Young-Mo; Kyle, Jennifer E; Webb-Robertson, Bobbie-Jo M; Waters, Katrina M; Metz, Thomas O; Farin, Federico; Oberlies, Nicholas H; Polyak, Stephen J

    2015-08-28

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e., 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, whereas silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  6. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    PubMed Central

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Stephen J.

    2016-01-01

    Silymarin, a characterized extract of the seeds of milk thistle (Silybum marianum), suppresses cellular inflammation. To define how this occurs, transcriptional profiling, metabolomics, and signaling studies were performed in human liver and T cell lines. Cellular stress and metabolic pathways were modulated within 4 h of silymarin treatment: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed silymarin suppression of glycolytic, tricarboxylic acid (TCA) cycle, and amino acid metabolism. Anti-inflammatory effects arose with prolonged (i.e. 24 h) silymarin exposure, with suppression of multiple pro-inflammatory mRNAs and signaling pathways including nuclear factor kappa B (NF-κB) and forkhead box O (FOXO). Studies with murine knock out cells revealed that silymarin inhibition of both mTOR and NF-κB was partially AMPK dependent, while silymarin inhibition of mTOR required DDIT4. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Thus, natural products activate stress and repair responses that culminate in an anti-inflammatory cellular phenotype. Natural products like silymarin may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation. PMID:26186142

  7. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. © 2013.

  8. Laboratory models for central nervous system tumor stem cell research.

    PubMed

    Khan, Imad Saeed; Ehtesham, Moneeb

    2015-01-01

    Central nervous system (CNS) tumors are complex organ systems comprising of a neoplastic component with associated vasculature, inflammatory cells, and reactive cellular and extracellular components. Research has identified a subset of cells in CNS tumors that portray defining properties of neural stem cells, namely, that of self-renewal and multi-potency. Growing evidence suggests that these tumor stem cells (TSC) play an important role in the maintenance and growth of the tumor. Furthermore, these cells have also been shown to be refractory to conventional therapy and may be crucial for tumor recurrence and metastasis. Current investigations are focusing on isolating these TSC from CNS tumors to investigate their unique biological processes. This understanding will help identify and develop more effective and comprehensive treatment strategies. This chapter provides an overview of some of the most commonly used laboratory models for CNSTSC research.

  9. Caveolins and caveolae in ocular physiology and pathophysiology.

    PubMed

    Gu, Xiaowu; Reagan, Alaina M; McClellan, Mark E; Elliott, Michael H

    2017-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., "lipid rafts") have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signaling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Caveolins and caveolae in ocular physiology and pathophysiology

    PubMed Central

    Gu, Xiaowu; Reagan, Alaina M.; McClellan, Mark E.; Elliott, Michael H.

    2016-01-01

    Caveolae are specialized, invaginated plasma membrane domains that are defined morphologically and by the expression of signature proteins called, caveolins. Caveolae and caveolins are abundant in a variety of cell types including vascular endothelium, glia, and fibroblasts where they play critical roles in transcellular transport, endocytosis, mechanotransduction, cell proliferation, membrane lipid homeostasis, and signal transduction. Given these critical cellular functions, it is surprising that ablation of the caveolae organelle does not result in lethality suggesting instead that caveolae and caveolins play modulatory roles in cellular homeostasis. Caveolar components are also expressed in ocular cell types including retinal vascular cells, Müller glia, retinal pigment epithelium (RPE), conventional aqueous humor outflow cells, the corneal epithelium and endothelium, and the lens epithelium. In the eye, studies of caveolae and other membrane microdomains (i.e., “lipid rafts”) have lagged behind what is a substantial body of literature outside vision science. However, interest in caveolae and their molecular components has increased with accumulating evidence of important roles in vision-related functions such as blood-retinal barrier homeostasis, ocular inflammatory signalling, pathogen entry at the ocular surface, and aqueous humor drainage. The recent association of CAV1/2 gene loci with primary open angle glaucoma and intraocular pressure has further enhanced the need to better understand caveolar functions in the context of ocular physiology and disease. Herein, we provide the first comprehensive review of literature on caveolae, caveolins, and other membrane domains in the context of visual system function. This review highlights the importance of caveolae domains and their components in ocular physiology and pathophysiology and emphasizes the need to better understand these important modulators of cellular function. PMID:27664379

  11. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  12. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    PubMed

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  13. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines.

    PubMed

    Dou, Rongkun; Liu, Zongying; Yuan, Xue; Xiangfei, Danzhou; Bai, Ruixue; Bi, Zhenfei; Yang, Piao; Yang, Yalan; Dong, Yinsong; Su, Wei; Li, Diqiang; Mao, Canquan

    2017-01-01

    Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs) for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 μg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC), IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema) and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.

  14. Integrating microRNAs into a system biology approach to acute lung injury.

    PubMed

    Zhou, Tong; Garcia, Joe G N; Zhang, Wei

    2011-04-01

    Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells.

    PubMed

    Foresti, Roberta; Bains, Sandip K; Pitchumony, Tamil Selvi; de Castro Brás, Lisandra E; Drago, Filippo; Dubois-Randé, Jean-Luc; Bucolo, Claudio; Motterlini, Roberto

    2013-10-01

    The nuclear factor erythroid derived 2-related factor 2 (Nrf2) and the antioxidant protein heme oxygenase-1 (HO-1) are crucial components of the cellular stress response. These two systems work together to combat oxidative stress and inflammation and are attractive drug targets for counteracting different pathologies, including neuroinflammation. We aimed to identify the most effective Nrf2/HO-1 activators that modulate the inflammatory response in microglia cells. In the present study, we searched the literature and selected 56 compounds reported to activate Nrf2 or HO-1 and analyzed them for HO-1 induction at 6 and 24h and cytotoxicity in BV2 microglial cells in vitro. Approximately 20 compounds up-regulated HO-1 at the concentrations tested (5-20 μM) with carnosol, supercurcumin, cobalt protoporphyrin-IX and dimethyl fumarate exhibiting the best induction/low cytotoxicity profile. Up-regulation of HO-1 by some compounds resulted in increased cellular bilirubin levels but did not augment the expression of proteins involved in heme synthesis (ALAS 1) or biliverdin reductase. Bilirubin production by HO-1 inducers correlated with their potency in inhibiting nitrite production after challenge with interferon-γ (INF-γ) or lipopolysaccharide (LPS). The compounds down-regulated the inflammatory response (TNF-α, PGE2 and nitrite) more strongly in cells challenged with INF-γ than LPS, and silencing HO-1 or Nrf2 with shRNA differentially affected the levels of inflammatory markers. These findings indicate that some small activators of Nrf2/HO-1 are effective modulators of microglia inflammation and highlight the chemical scaffolds that can serve for the synthesis of potent new derivatives to counteract neuroinflammation and neurodegeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Quantitative genetic analysis of cellular adhesion molecules: the Fels Longitudinal Study.

    PubMed

    Lee, Miryoung; Czerwinski, Stefan A; Choh, Audrey C; Demerath, Ellen W; Sun, Shumei S; Chumlea, Wm C; Towne, Bradford; Siervogel, Roger M

    2006-03-01

    Circulating concentrations of inflammatory markers predict cardiovascular disease (CVD) risk and are closely associated with obesity. However, little is known concerning genetic influences on serum levels of inflammatory markers. In this study, we estimated the heritability (h2) of soluble cellular adhesion molecule (sCAM) concentrations and examined the correlational architecture between different sCAMs. The study population included 234 men and 270 women aged 18-76 years, belonging to 121 families participating in the Fels Longitudinal Study. Serum levels of soluble intercellular adhesion molecule-1 (sICAM-1), vascular cell adhesion molecule-1 (sVCAM-1), E-selectin (sESEL-1) and P-selectin (sPSEL-1) were assayed using commercially available kits. A variance components-based maximum likelihood method was used to estimate the h2 of the different serum inflammatory markers while simultaneously adjusting for the effects of known CVD risk factors, such as age and smoking. Additionally, we used bivariate extensions of these methods to estimate genetic and random environmental correlations among sCAMs. Levels of sCAMs were significantly heritable: h2=0.24+/-0.10 for sICAM-1, h2=0.22+/-0.10 for sVCAM-1, h2=0.50+/-0.11 for sESEL-1, and h2=0.46+/-0.10 for sPSEL-1. In addition, a significant genetic correlation (rho(G)=0.63) was found between sICAM-1 and sVCAM-1 indicating some degree of shared genetic control. In the Fels Longitudinal Study, the levels of four sCAMs are significantly influenced by genetic effects, and sICAM-1 shares a common genetic background with sVCAM-1.

  17. HSP90 Inhibition Suppresses Lipopolysaccharide-Induced Lung Inflammation In Vivo

    PubMed Central

    Lilja, Andrew; Weeden, Clare E.; McArthur, Kate; Nguyen, Thao; Donald, Alastair; Wong, Zi Xin; Dousha, Lovisa; Bozinovski, Steve; Vlahos, Ross; Burns, Christopher J.; Asselin-Labat, Marie-Liesse; Anderson, Gary P.

    2015-01-01

    Inflammation is an important component of cancer diathesis and treatment-refractory inflammation is a feature of many chronic degenerative lung diseases. HSP90 is a 90kDa protein which functions as an ATP-dependent molecular chaperone that regulates the signalling conformation and expression of multiple protein client proteins especially oncogenic mediators. HSP90 inhibitors are in clinical development as cancer therapies but the myeleosuppressive and neutropenic effect of first generation geldanamycin-class inhibitors has confounded studies on the effects on HSP90 inhibitors on inflammation. To address this we assessed the ability of Ganetespib, a non-geldanamycin HSP90 blocker, to suppress lipopolysaccharide (LPS)-induced cellular infiltrates, proteases and inflammatory mediator and transcriptional profiles. Ganetespib (10–100mg/kg, i.v.) did not directly cause myelosuppression, as assessed by video micrography and basal blood cell count, but it strongly and dose-dependently suppressed LPS-induced neutrophil mobilization into blood and neutrophil- and mononuclear cell-rich steroid-refractory lung inflammation. Ganetespib also suppressed B cell and NK cell accumulation, inflammatory cytokine and chemokine induction and MMP9 levels. These data identify non-myelosuppresssive HSP90 inhibitors as potential therapies for inflammatory diseases refractory to conventional therapy, in particular those of the lung. PMID:25615645

  18. Caffeine affects the biological responses of human hematopoietic cells of myeloid lineage via downregulation of the mTOR pathway and xanthine oxidase activity

    PubMed Central

    Abooali, Maryam; Yasinska, Inna M.; Casely-Hayford, Maxwell A.; Berger, Steffen M.; Fasler-Kan, Elizaveta; Sumbayev, Vadim V.

    2015-01-01

    Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells. PMID:26384306

  19. Effects of cordycepin on the microglia-overactivation-induced impairments of growth and development of hippocampal cultured neurons.

    PubMed

    Peng, Jie; Wang, Ping; Ge, Hongshan; Qu, Xianqin; Jin, Xingliang

    2015-01-01

    Microglial cells are normally activated in response to brain injury or immunological stimuli to protect central nervous system (CNS). However, over-activation of microglia conversely amplifies the inflammatory effects and mediates cellular degeneration, leading to the death of neurons. Recently, cordycepin, an active component found in Cordyceps militarisa known as a rare Chinese caterpillar fungus, has been reported as an effective drug for treating inflammatory diseases and cancer via unclear mechanisms. In this study, we attempted to identify the anti-inflammatory role of cordycepin and its protective effects on the impairments of neural growth and development induced by microglial over-activation. The results indicate that cordycepin could attenuate the lipopolysaccharide (LPS)-induced microglial activation, evidenced by the dramatically reduced release of TNF-α and IL-1β, as well as the down-regulation of mRNA levels of iNOS and COX-2 after cordycepin treatment. Besides, cordycepin reversed the LPS-induced activation of NF-κB pathway, resulting in anti-inflammatory effects. Furthermore, by employing the conditioned medium (CM), we found cordycepin was able to recover the impairments of neural growth and development in the primary hippocampal neurons cultured in LPS-CM, including cell viability, growth cone extension, neurite sprouting and outgrowth as well as spinogenesis. This study expands our knowledge of the anti-inflammatory function of cordycepin and paves the way for the biomedical applications of cordycepin in the therapies of neural injuries.

  20. Inhibition by fenoterol of human eosinophil functions including β2-adrenoceptor-independent actions

    PubMed Central

    TACHIBANA, A; KATO, M; KIMURA, H; FUJIU, T; SUZUKI, M; MORIKAWA, A

    2002-01-01

    Agonists at β2 adrenoceptors are used widely as bronchodilators in treating bronchial asthma. These agents also may have important anti-inflammatory effects on eosinophils in asthma. We examined whether widely prescribed β2-adrenoceptor agonists differ in ability to suppress stimulus-induced eosinophil effector functions such as superoxide anion (O2−) generation and degranulation. To examine involvement of cellular adhesion in such responses, we also investigated effects of β2 agonists on cellular adhesion and on CD11b expression by human eosinophils. O2− was measured using chemiluminescence. Eosinophil degranulation and adhesion were assessed by a radioimmunoassay for eosinophil protein X (EPX). CD11b expression was measured by flow cytometry. Fenoterol inhibited platelet-activating factor (PAF)-induced O2− generation by eosinophils significantly more than salbutamol or procaterol. Fenoterol partially inhibited PAF-induced degranulation by eosinophils similarly to salbutamol or procaterol. Fenoterol inhibited phorbol myristate acetate (PMA)-induced O2− generation and degranulation by eosinophils, while salbutamol or procaterol did not. Fenoterol inhibition of PMA-induced O2− generation was not reversed by ICI-118551, a selective β2-adrenoceptor antagonist. Fenoterol, but not salbutamol or procaterol, significantly inhibited PAF-induced eosinophil adhesion. Fenoterol inhibited O2− generation and degranulation more effectively than salbutamol or procaterol; these effects may include a component involving cellular adhesion. Inhibition also might include a component not mediated via β2 adrenoceptors. PMID:12452831

  1. AMP-activated protein kinase reduces inflammatory responses and cellular senescence in pulmonary emphysema.

    PubMed

    Cheng, Xiao-Yu; Li, Yang-Yang; Huang, Cheng; Li, Jun; Yao, Hong-Wei

    2017-04-04

    Current drug therapy fails to reduce lung destruction of chronic obstructive pulmonary disease (COPD). AMP-activated protein kinase (AMPK) has emerged as an important integrator of signals that control energy balance and lipid metabolism. However, there are no studies regarding the role of AMPK in reducing inflammatory responses and cellular senescence during the development of emphysema. Therefore, we hypothesize that AMPK reduces inflammatroy responses, senescence, and lung injury. To test this hypothesis, human bronchial epithelial cells (BEAS-2B) and small airway epithelial cells (SAECs) were treated with cigarette smoke extract (CSE) in the presence of a specific AMPK activator (AICAR, 1 mM) and inhibitor (Compound C, 5 μM). Elastase injection was performed to induce mouse emphysema, and these mice were treated with a specific AMPK activator metformin as well as Compound C. AICAR reduced, whereas Compound C increased CSE-induced increase in IL-8 and IL-6 release and expression of genes involved in cellular senescence. Knockdown of AMPKα1/α2 increased expression of pro-senescent genes (e.g., p16, p21, and p66shc) in BEAS-2B cells. Prophylactic administration of an AMPK activator metformin (50 and 250 mg/kg) reduced while Compound C (4 and 20 mg/kg) aggravated elastase-induced airspace enlargement, inflammatory responses and cellular senescence in mice. This is in agreement with therapeutic effect of metformin (50 mg/kg) on airspace enlargement. Furthermore, metformin prophylactically protected against but Compound C further reduced mitochondrial proteins SOD2 and SIRT3 in emphysematous lungs. In conclusion, AMPK reduces abnormal inflammatory responses and cellular senescence, which implicates as a potential therapeutic target for COPD/emphysema.

  2. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    PubMed

    McGinley, Emma Louise; Coleman, David C; Moran, Gary P; Fleming, Garry J P

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers. Discs of d.Sign®10 were cast, alumina particle air abraded and half were polished before surface roughness was determined by profilometry. Biocompatibility was assessed by placing the discs directly or indirectly (with immersion solutions) into contact with TR146 monolayers. Metal ion release was determined by ICP-MS. Cell viability was assessed by trypan blue dye exclusion, metabolic activity by XTT and cellular toxicity by LDH. Inflammatory cytokine analysis was performed using sandwich ELISAs. The mean polished Ra value was significantly reduced (P<0.001) compared with the alumina particle air abraded discs but metal ion release was significantly increased for the polished discs. Significant reductions in cell density of polished compared with alumina particle air abraded discs was observed following direct or indirect exposure. A significant reduction in metabolic activity, increase in cellular toxicity and an increase in the presence of inflammatory cytokine markers was highlighted for the polished relative to the alumina particle air abraded discs at 24h. Finishing condition of the Ni-Cr dental alloy investigated has important clinical implications. The approach of employing cell density and morphology, metabolic activity, cellular toxicity levels and inflammatory marker responses to TR146 epithelial cells combined with ICP-MS afforded the authors an increased insight into the complex processes dental alloys undergo in the oral environment. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Cellular cytotoxic response induced by highly purified multi-wall carbon nanotube in human lung cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao

    2011-06-01

    Carbon nanotubes, a promising nanomaterial with unique characteristics, have applications in a variety of fields. The cytotoxic effects of carbon nanotubes are partially due to the induction of oxidative stress; however, the detailed mechanisms of nanotube cytotoxicity and their interaction with cells remain unclear. In this study, the authors focus on the acute toxicity of vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) by high-temperature thermal treatment. The authors exposed human bronchial epithelial cells (BEAS-2B) to HTT2800 and measured the cellular uptake, mitochondrial function, cellular LDH release, apoptotic signaling, reactive oxygen species (ROS) generation and pro-inflammatory cytokine release. The HTT2800-exposed cells showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. However, the exposed cells showed no obvious intracellular ROS generation. These cellular and molecular findings suggest that HTT2800 could cause a potentially adverse inflammatory response in BEAS-2B cells.

  4. Inflammatory response and extracorporeal circulation.

    PubMed

    Kraft, Florian; Schmidt, Christoph; Van Aken, Hugo; Zarbock, Alexander

    2015-06-01

    Patients undergoing cardiac surgery with extracorporeal circulation (EC) frequently develop a systemic inflammatory response syndrome. Surgical trauma, ischaemia-reperfusion injury, endotoxaemia and blood contact to nonendothelial circuit compounds promote the activation of coagulation pathways, complement factors and a cellular immune response. This review discusses the multiple pathways leading to endothelial cell activation, neutrophil recruitment and production of reactive oxygen species and nitric oxide. All these factors may induce cellular damage and subsequent organ injury. Multiple organ dysfunction after cardiac surgery with EC is associated with an increased morbidity and mortality. In addition to the pathogenesis of organ dysfunction after EC, this review deals with different therapeutic interventions aiming to alleviate the inflammatory response and consequently multiple organ dysfunction after cardiac surgery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Microbiota-host interplay at the gut epithelial level, health and nutrition.

    PubMed

    Lallès, Jean-Paul

    2016-01-01

    Growing evidence suggests the implication of the gut microbiota in various facets of health and disease. In this review, the focus is put on microbiota-host molecular cross-talk at the gut epithelial level with special emphasis on two defense systems: intestinal alkaline phosphatase (IAP) and inducible heat shock proteins (iHSPs). Both IAP and iHSPs are induced by various microbial structural components (e.g. lipopolysaccharide, flagellin, CpG DNA motifs), metabolites (e.g. n-butyrate) or secreted signal molecules (e.g., toxins, various peptides, polyphosphate). IAP is produced in the small intestine and secreted into the lumen and in the interior milieu. It detoxifies microbial components by dephosphorylation and, therefore, down-regulates microbe-induced inflammation mainly by inhibiting NF-κB pro-inflammatory pathway in enterocytes. IAP gene expression and enzyme activity are influenced by the gut microbiota. Conversely, IAP controls gut microbiota composition both directly, and indirectly though the detoxification of pro-inflammatory free luminal adenosine triphosphate and inflammation inhibition. Inducible HSPs are expressed by gut epithelial cells in proportion to the microbial load along the gastro-intestinal tract. They are also induced by various microbial components, metabolites and secreted molecules. Whether iHSPs contribute to shape the gut microbiota is presently unknown. Both systems display strong anti-inflammatory and anti-oxidant properties that are protective to the gut and the host. Importantly, epithelial gene expressions and protein concentrations of IAP and iHSPs can be stimulated by probiotics, prebiotics and a large variety of dietary components, including macronutrients (protein and amino acids, especially L-glutamine, fat, fiber), and specific minerals (e.g. calcium) and vitamins (e.g. vitamins K1 and K2). Some food components (e.g. lectins, soybean proteins, various polyphenols) may inhibit or disturb these systems. The general cellular and molecular mechanisms involved in the microbiota-host epithelial crosstalk and subsequent gut protection through IAP and iHSPs are reviewed along with their nutritional modulation. Special emphasis is also given to the pig, an economically important species and valuable biomedical model.

  7. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    PubMed

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  8. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage.

    PubMed

    Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  9. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    PubMed Central

    Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029

  10. [Human milk, immune responses and health effects].

    PubMed

    Løland, Beate Fossum; Baerug, Anne B; Nylander, Gro

    2007-09-20

    Besides providing optimal nutrition to infants, human milk contains a multitude of immunological components. These components are important for protection against infections and also support the development and maturation of the infant's own immune system. This review focuses on the function of some classical immunocomponents of human milk. Relevant studies are presented that describe health benefits of human milk for the child and of lactation for the mother. Relevant articles were found mainly by searching PubMed. Humoral and cellular components of human milk confer protection against infections in the respiratory--, gastrointestinal--and urinary tract. Human milk also protects premature children from neonatal sepsis and necrotizing enterocolitis. There is evidence that human milk may confer long-term benefits such as lower risk of certain autoimmune diseases, inflammatory bowel disease and probably some malignancies. Human milk possibly affects components of the metabolic syndrome. Recent studies demonstrate long-term health benefits of lactation also for the mother. A reduced incidence of breast cancer is best documented. An increasing number of studies indicate protection against ovarian cancer, rheumatoid arthritis and type II diabetes.

  11. Effect of the dietary inclusion of soybean components on the innate immune system in zebrafish.

    PubMed

    Fuentes-Appelgren, Pamela; Opazo, Rafael; Barros, Luis; Feijoó, Carmen G; Urzúa, Victoria; Romero, Jaime

    2014-02-01

    Some components of plant-based meals, such as saponins and vegetal proteins, have been proposed as inducers of intestinal inflammation in some fish. However, the molecular and cellular bases for this phenomenon have not been reported. In this work, zebrafish were used as a model to evaluate the effects of individual soybean meal components, such as saponins and soy proteins. Zebrafish larvae fed a fish meal feed containing soy components were assessed according to low and high inclusion levels. The granulocytes associated with the digestive tract and the induction of genes related to the immune system were quantitated as markers of the effects of the dietary components. A significant increase in the number of granulocytes was observed after feeding fish diets containing high saponin or soy protein contents. These dietary components also induced the expression of genes related to the innate immune system, including myeloid-specific peroxidase, as well as the complement protein and cytokines. These results reveal the influence of dietary components on the stimulation of the immune system. These observations could be significant to understanding the contributions of saponin and soy protein to the onset of enteritis in aqua-cultured fish, and this knowledge may aid in defining the role of the innate immune system in other inflammatory diseases involving dietary components in mammals.

  12. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. © 2014 Wiley Periodicals, Inc.

  13. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  14. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component.

    PubMed

    Shi, Hexin; Wang, Ying; Li, Xiaohong; Zhan, Xiaoming; Tang, Miao; Fina, Maggy; Su, Lijing; Pratt, David; Bu, Chun Hui; Hildebrand, Sara; Lyon, Stephen; Scott, Lindsay; Quan, Jiexia; Sun, Qihua; Russell, Jamie; Arnett, Stephanie; Jurek, Peter; Chen, Ding; Kravchenko, Vladimir V; Mathison, John C; Moresco, Eva Marie Y; Monson, Nancy L; Ulevitch, Richard J; Beutler, Bruce

    2016-03-01

    The NLRP3 inflammasome responds to microbes and danger signals by processing and activating proinflammatory cytokines, including interleukin 1β (IL-1β) and IL-18. We found here that activation of the NLRP3 inflammasome was restricted to interphase of the cell cycle by NEK7, a serine-threonine kinase previously linked to mitosis. Activation of the NLRP3 inflammasome required NEK7, which bound to the leucine-rich repeat domain of NLRP3 in a kinase-independent manner downstream of the induction of mitochondrial reactive oxygen species (ROS). This interaction was necessary for the formation of a complex containing NLRP3 and the adaptor ASC, oligomerization of ASC and activation of caspase-1. NEK7 promoted the NLRP3-dependent cellular inflammatory response to intraperitoneal challenge with monosodium urate and the development of experimental autoimmune encephalitis in mice. Our findings suggest that NEK7 serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division.

  15. Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity.

    PubMed

    Szczepankiewicz, Bruce G; Kosogof, Christi; Nelson, Lissa T J; Liu, Gang; Liu, Bo; Zhao, Hongyu; Serby, Michael D; Xin, Zhili; Liu, Mei; Gum, Rebecca J; Haasch, Deanna L; Wang, Sanyi; Clampit, Jill E; Johnson, Eric F; Lubben, Thomas H; Stashko, Michael A; Olejniczak, Edward T; Sun, Chaohong; Dorwin, Sarah A; Haskins, Kristi; Abad-Zapatero, Cele; Fry, Elizabeth H; Hutchins, Charles W; Sham, Hing L; Rondinone, Cristina M; Trevillyan, James M

    2006-06-15

    The c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus. In this work, high-throughput screening identified a JNK inhibitor with an excellent kinase selectivity profile. Using X-ray crystallography and biochemical screening to guide our lead optimization, we prepared compounds with inhibitory potencies in the low-double-digit nanomolar range, activity in whole cells, and pharmacokinetics suitable for in vivo use. The new compounds were over 1,000-fold selective for JNK-1 and -2 over other MAP kinases including ERK2, p38alpha, and p38delta and showed little inhibitory activity against a panel of 74 kinases.

  16. Inflammasome and Autophagy Regulation: A Two-way Street

    PubMed Central

    Qian, Sun; Fan, Jie; Billiar, Timothy R; Scott, Melanie J

    2017-01-01

    Inflammation plays a significant role in protecting hosts against pathogens. Inflammation induced by noninfectious endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. The inflammasome is a major innate immune pathway that can be activated via both exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Inflammasome activation involves formation and oligomerization of a protein complex including a nucleotide oligomerization domain (NOD)-like receptor (NLR), an adaptor protein and pro-caspase-1. This then allows cleavage and activation of caspase-1, followed by downstream cleavage and release of proinflammatory cytokines interleukin (IL)-1β and IL-18 from innate immune cells. Hyperinflammation caused by unrestrained inflammasome activation is linked with multiple inflammatory diseases, including inflammatory bowel disease, Alzheimer’s disease and multiple sclerosis. So there is an understandable rush to understand mechanisms that regulate such potent inflammatory pathways. Autophagy has now been identified as a main regulator of inflammasomes. Autophagy is a vital intracellular process involved in cellular homeostasis, recycling and removal of damaged organelles (eg, mitochondria) and intracellular pathogens. Autophagy is regulated by proteins that are important in endosomal/phagosomal pathways, as well as by specific autophagy proteins coded for by autophagy-related genes. Cytosolic components are surrounded and contained by a double-membraned vesicle, which then fuses with lysosomes to enable degradation of the contents. Autophagic removal of intracellular DAMPs, inflammasome components or cytokines can reduce inflammasome activation. Similarly, inflammasomes can regulate the autophagic process, allowing for a two-way mutual regulation of inflammation that may hold the key for treatment of multiple diseases. PMID:28741645

  17. Nutrition and inflammatory events: highly unsaturated fatty acids (omega-3 vs omega-6) in surgical injury.

    PubMed

    Blackburn, G L

    1992-06-01

    Given the poor prognosis and high cost of care for patients with acute inflammatory responses (often leading to organ failure and/or allograft rejection), immunomodulation of this hyperresponse represents an important priority for research in nutritional medicine. The primary goal of nutritional support in inflammatory disease is to provide adequate energy, particularly through use of novel lipids (to alter eicosanoid pathway toward a more regulated inflammatory state), and protein to meet endogenous requirements for tissue repair IL-1 production, and restored cellular function, thus preventing secondary infection (52). Manipulation of macrophage eicosanoid production by use of omega-3 PUFA may reduce the cellular immune response (by competing with arachidonic acid, which produces inflammatory eicosanoids of the 2- and 4-series), whereas inclusion of MCT found in coconut oil may lower the arachidonic acid content of membrane phospholipids. As more data are obtained on the use of such tailored therapies in critically ill patients, a new generation of parenteral and enteral diets will be developed to reduce inflammation and immune dysfunction.

  18. Role of Antioxidants and Natural Products in Inflammation

    PubMed Central

    Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh

    2016-01-01

    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762

  19. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity

    PubMed Central

    Irwin, Michael R; Opp, Mark R

    2017-01-01

    Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health. PMID:27510422

  20. Polyubiquitination events mediate polymethylmethacrylate (PMMA) particle activation of NF-kappaB pathway.

    PubMed

    Yamanaka, Yasuhiro; Karuppaiah, Kannan; Abu-Amer, Yousef

    2011-07-08

    The pathologic response to implant wear-debris constitutes a major component of inflammatory osteolysis and remains under intense investigation. Polymethylmethacrylate (PMMA) particles, which are released during implant wear and loosening, constitute a major culprit by virtue of inducing inflammatory and osteolytic responses by macrophages and osteoclasts, respectively. Recent work by several groups has identified important cellular entities and secreted factors that contribute to inflammatory osteolysis. In previous work, we have shown that PMMA particles contribute to inflammatory osteolysis through stimulation of major pathways in monocytes/macrophages, primarily NF-κB and MAP kinases. The former pathway requires assembly of large IKK complex encompassing IKK1, IKK2, and IKKγ/NEMO. We have shown recently that interfering with the NF-κB and MAPK activation pathways, through introduction of inhibitors and decoy molecules, impedes PMMA-induced inflammation and osteolysis in mouse models of experimental calvarial osteolysis and inflammatory arthritis. In this study, we report that PMMA particles activate the upstream transforming growth factor β-activated kinase-1 (TAK1), which is a key regulator of signal transduction cascades leading to activation of NF-κB and AP-1 factors. More importantly, we found that PMMA particles induce TAK1 binding to NEMO and UBC13. In addition, we show that PMMA particles induce TRAF6 and UBC13 binding to NEMO and that lack of TRAF6 significantly attenuates NEMO ubiquitination. Altogether, these observations suggest that PMMA particles induce ubiquitination of NEMO, an event likely mediated by TRAF6, TAK1, and UBC13. Our findings provide important information for better understanding of the mechanisms underlying PMMA particle-induced inflammatory responses.

  1. Development of an ex vivo cellular model of rheumatoid arthritis: critical role of CD14-positive monocyte/macrophages in the development of pannus tissue.

    PubMed

    Nozaki, Toshiko; Takahashi, Kyoko; Ishii, Osamu; Endo, Sachio; Hioki, Kyoji; Mori, Toshihito; Kikukawa, Tadahiro; Boumpas, Dimitrios T; Ozaki, Shoichi; Yamada, Hidehiro

    2007-09-01

    To establish an ex vivo cellular model of pannus, the aberrant overgrowth of human synovial tissue (ST). Inflammatory cells that infiltrated pannus tissue from patients with rheumatoid arthritis (RA) were collected without enzyme digestion, and designated as ST-derived inflammatory cells. Single-cell suspensions of ST-derived inflammatory cells were cultured in medium alone. Levels of cytokines produced in culture supernatants were measured using enzyme-linked immunosorbent assay kits. ST-derived inflammatory cells were transferred into the joints of immunodeficient mice to explore whether these cells could develop pannus. CD14 and CD2 cells were depleted by negative selection. Culture of ST-derived inflammatory cells from 92 of 111 patients with RA resulted in spontaneous reconstruction of inflammatory tissue in vitro within 4 weeks. Ex vivo tissue contained fibroblasts, macrophages, T cells, and tartrate-resistant acid phosphatase-positive multinucleated cells. On calcium phosphate-coated slides, ST-derived inflammatory cell cultures showed numerous resorption pits. ST-derived inflammatory cell cultures continuously produced matrix metalloproteinase 9 and proinflammatory cytokines associated with osteoclastogenesis, such as tumor necrosis factor alpha, interleukin-8, and macrophage colony-stimulating factor. More importantly, transferring ST-derived inflammatory cells into the joints of immunodeficient mice resulted in the development of pannus tissue and erosive joint lesions. Both in vitro development and in vivo development of pannus tissue by ST-derived inflammatory cells were inhibited by depleting CD14-positive, but not CD2-positive, cells from ST-derived inflammatory cells. These findings suggest that overgrowth of inflammatory cells from human rheumatoid synovium simulates the development of pannus. This may prove informative in the screening of potential antirheumatic drugs.

  2. Cellular damage in bacterial meningitis: an interplay of bacterial and host driven toxicity.

    PubMed

    Weber, Joerg R; Tuomanen, Elaine I

    2007-03-01

    Bacterial meningitis is still an important infectious disease causing death and disability. Invasive bacterial infections of the CNS generate some of the most powerful inflammatory responses known in medicine. Although the components of bacterial cell surfaces are now chemically defined in exquisite detail and the interaction with several receptor pathways has been discovered, it is only very recently that studies combining these advanced biochemical and cell biological tools have been done. Additional to the immunological response direct bacterial toxicity has been identified as an important contributor to neuronal damage. A detailed understanding of the complex interaction of bacterial toxicity and host response may generate opportunities for innovative and specific neuroprotective therapies.

  3. Laboratory evaluation and interpretation of synovial fluid.

    PubMed

    MacWilliams, Peter S; Friedrichs, Kristen R

    2003-01-01

    Canine and feline joint disease can be a primary disorder limited to joints or a manifestation of multisystemic disease. Collection and analysis of joint fluid provides valuable information for the diagnosis, prognosis, and treatment of diseases that affect the joint space. The cytologic recognition of the cellular components and infectious agents in synovial fluid categorizes the cell response and differentiates inflammatory and noninflammatory joint disorders. This information is supported by the cell counts, protein content, mucin clot test, bacterial culture, and serologic tests for infectious or immune-mediated disease. These results are integrated with the clinical history, physical examination, radiographic findings, and ancillary test results to arrive at a diagnosis and treatment plan.

  4. Cutaneous immunology: basics and new concepts.

    PubMed

    Yazdi, Amir S; Röcken, Martin; Ghoreschi, Kamran

    2016-01-01

    As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.

  5. Histological evaluations and inflammatory responses of different dental implant abutment materials: A human histology pilot study.

    PubMed

    Sampatanukul, Teeratida; Serichetaphongse, Pravej; Pimkhaokham, Atiphan

    2018-04-01

    Improvements of soft tissue to the abutment surface results in more stable peri-implant conditions, however, few human histological studies have compared soft tissue responses around different abutment materials. To describe the peri-implant tissue around 3 abutment materials; titanium, zirconia, and gold alloy, over an 8-week healing period. Fifteen edentulous sites were treated with implants. Eight weeks later, peri-implant tissue was harvested and processed using a nonseparation resin embedded technique. The tissue attachment characteristics were assessed at clinical stages using the gingival index (GI) score, surgical stage (surgical score), and histological stage (histological attachment percentage). Additionally, the inflammatory responses were evaluated using inflammatory extent and inflammatory cellularity grades. Nonparametrical statistics were used to describe the GI and surgical scores, and analytical statistics were used to analyze the histological attachment percentages as well as the inflammatory extent and cellularity grades amongst the 3 groups. There were no statistically significant differences among the groups for GI score (P = .071) and surgical score (P = .262). Titanium and zirconia exhibited nearly similar mean histological attachment percentages while gold alloy had a significantly lower percentage (P = .004). For the inflammatory extent and cellularity grades, the odds of being one grade higher for gold alloy abutment was 5.18 and 17.8 times that of titanium abutment, respectively. However, for the zirconia abutment, the odds were 0.87 and 7.5 times higher than the titanium group. The tissue around the gold alloy abutments resulted in worse attachment conditions compared with the titanium and zirconia abutments. Inflammation tended to be higher in the tissue around the gold alloy abutments than the titanium and zirconia abutments. © 2017 Wiley Periodicals, Inc.

  6. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies.

    PubMed

    Rath, Eva; Haller, Dirk

    2011-06-01

    Multiple cellular stress responses have been implicated in chronic diseases such as obesity, diabetes, cardiovascular, and inflammatory bowel diseases. Even though phenotypically different, chronic diseases share cellular stress signaling pathways, in particular endoplasmic reticulum (ER) unfolded protein response (UPR). The purpose of the ER UPR is to restore ER homeostasis after challenges of the ER function. Among the triggers of ER UPR are changes in the redox status, elevated protein synthesis, accumulation of unfolded or misfolded proteins, energy deficiency and glucose deprivation, cholesterol depletion, and microbial signals. Numerous mouse models have been used to characterize the contribution of ER UPR to several pathologies, and ER UPR-associated signaling has also been demonstrated to be relevant in humans. Additionally, recent evidence suggests that the ER UPR is interrelated with metabolic and inflammatory pathways, autophagy, apoptosis, and mitochondrial stress signaling. Furthermore, microbial as well as nutrient sensing is integrated into the ER-associated signaling network. The data discussed in the present review highlight the interaction of ER UPR with inflammatory pathways, metabolic processes and mitochondrial function, and their interrelation in the context of chronic diseases.

  7. New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment.

    PubMed

    Li, Mengshuang; Xin, Meng; Guo, Chuanlong; Lin, Guiming; Wu, Xianggen

    2017-11-01

    A stable topical ophthalmic curcumin formulation with high solubility, stability, and efficacy is needed for pharmaceutical use in clinics. The objective of this article was to describe a novel curcumin containing a nanomicelle formulation using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer. Nanomicelle curcumin was formulated and optimized and then further evaluated for in vitro cytotoxicity/in vivo ocular irritation, in vitro cellular uptake/in vivo corneal permeation, and in vitro antioxidant activity/in vivo anti-inflammatory efficacy. The solubility, chemical stability, and antioxidant activity were greatly improved after the encapsulation of the PVCL-PVA-PEG nanomicelles. The nanomicelle curcumin ophthalmic solution was simple to prepare and the nanomicelles are stable to the storage conditions, and it had good cellular tolerance. Nanomicelle curcumin also had excellent ocular tolerance in rabbits. The use of nanomicelles significantly improved in vitro cellular uptake and in vivo corneal permeation as well as improved anti-inflammatory efficacy when compared with a free curcumin solution. These findings indicate that nanomicelles could be promising topical delivery systems for the ocular administration of curcumin.

  8. Dicarbonyls stimulate cellular protection systems in primary rat hepatocytes and show anti-inflammatory properties.

    PubMed

    Buetler, Timo M; Latado, Hélia; Baumeyer, Alexandra; Delatour, Thierry

    2008-04-01

    Advanced glycation endproducts (AGEs) and their precursor dicarbonyls are generally perceived as having adverse health effects. They are also considered to be initiators and promoters of disease and aging. However, proof for a causal relationship is lacking. On the other hand, it is known that AGEs and melanoidins possess beneficial properties, such as antioxidant and metal-chelating activities. Furthermore, some AGEs may stimulate the cellular detoxification system, generally known as the phase II drug metabolizing system. We show here that several reactive dicarbonyl intermediates have the capability to stimulate the cellular phase II detoxification systems in both a reporter cell line and primary rat hepatocytes. In addition, we demonstrate that dicarbonyls can attenuate the inflammatory signaling induced by tumor necrosis factor-alpha in a reporter cell system.

  9. A gene expression inflammatory signature specifically predicts multiple myeloma evolution and patients survival.

    PubMed

    Botta, C; Di Martino, M T; Ciliberto, D; Cucè, M; Correale, P; Rossi, M; Tagliaferri, P; Tassone, P

    2016-12-16

    Multiple myeloma (MM) is closely dependent on cross-talk between malignant plasma cells and cellular components of the inflammatory/immunosuppressive bone marrow milieu, which promotes disease progression, drug resistance, neo-angiogenesis, bone destruction and immune-impairment. We investigated the relevance of inflammatory genes in predicting disease evolution and patient survival. A bioinformatics study by Ingenuity Pathway Analysis on gene expression profiling dataset of monoclonal gammopathy of undetermined significance, smoldering and symptomatic-MM, identified inflammatory and cytokine/chemokine pathways as the most progressively affected during disease evolution. We then selected 20 candidate genes involved in B-cell inflammation and we investigated their role in predicting clinical outcome, through univariate and multivariate analyses (log-rank test, logistic regression and Cox-regression model). We defined an 8-genes signature (IL8, IL10, IL17A, CCL3, CCL5, VEGFA, EBI3 and NOS2) identifying each condition (MGUS/smoldering/symptomatic-MM) with 84% accuracy. Moreover, six genes (IFNG, IL2, LTA, CCL2, VEGFA, CCL3) were found independently correlated with patients' survival. Patients whose MM cells expressed high levels of Th1 cytokines (IFNG/LTA/IL2/CCL2) and low levels of CCL3 and VEGFA, experienced the longest survival. On these six genes, we built a prognostic risk score that was validated in three additional independent datasets. In this study, we provide proof-of-concept that inflammation has a critical role in MM patient progression and survival. The inflammatory-gene prognostic signature validated in different datasets clearly indicates novel opportunities for personalized anti-MM treatment.

  10. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. Copyright 2010 Elsevier B.V. All rights reserved.

  11. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity

    PubMed Central

    Henegar, Corneliu; Tordjman, Joan; Achard, Vincent; Lacasa, Danièle; Cremer, Isabelle; Guerre-Millo, Michèle; Poitou, Christine; Basdevant, Arnaud; Stich, Vladimir; Viguerie, Nathalie; Langin, Dominique; Bedossa, Pierre; Zucker, Jean-Daniel; Clement, Karine

    2008-01-01

    Background Investigations performed in mice and humans have acknowledged obesity as a low-grade inflammatory disease. Several molecular mechanisms have been convincingly shown to be involved in activating inflammatory processes and altering cell composition in white adipose tissue (WAT). However, the overall importance of these alterations, and their long-term impact on the metabolic functions of the WAT and on its morphology, remain unclear. Results Here, we analyzed the transcriptomic signature of the subcutaneous WAT in obese human subjects, in stable weight conditions and after weight loss following bariatric surgery. An original integrative functional genomics approach was applied to quantify relations between relevant structural and functional themes annotating differentially expressed genes in order to construct a comprehensive map of transcriptional interactions defining the obese WAT. These analyses highlighted a significant up-regulation of genes and biological themes related to extracellular matrix (ECM) constituents, including members of the integrin family, and suggested that these elements could play a major mediating role in a chain of interactions that connect local inflammatory phenomena to the alteration of WAT metabolic functions in obese subjects. Tissue and cellular investigations, driven by the analysis of transcriptional interactions, revealed an increased amount of interstitial fibrosis in obese WAT, associated with an infiltration of different types of inflammatory cells, and suggest that phenotypic alterations of human pre-adipocytes, induced by a pro-inflammatory environment, may lead to an excessive synthesis of ECM components. Conclusion This study opens new perspectives in understanding the biology of human WAT and its pathologic changes indicative of tissue deterioration associated with the development of obesity. PMID:18208606

  12. Post-inflammatory fatigue in sarcoidosis: personality profiles, psychological symptoms and stress hormones.

    PubMed

    Korenromp, Ingrid H E; Grutters, Jan C; van den Bosch, Jules M M; Heijnen, Cobi J

    2012-02-01

    Chronic fatigue following inflammatory diseases has been well documented. However, little is known about possible risk factors of chronic post-inflammatory fatigue. The aim of this study was to investigate whether chronic post-inflammatory fatigue after clinical remission of the disease sarcoidosis is associated with specific dimensions of personality, psychological symptoms and baseline levels of stress hormones. Thirty-seven non-fatigued and 33 fatigued patients in clinical remission of sarcoidosis were evaluated with the Temperament and Character Inventory-short form (TCI); the Symptom CheckList-90 (SCL), and the Checklist Individual Strength (CIS). Baseline levels of ACTH and cortisol were measured in plasma. Principal component analysis with orthogonal rotation (varimax) was conducted on all personality, psychological and stress hormone data in order to obtain a smaller set of components. Logistic regression was performed to associate these components with chronic post-inflammatory fatigue. Principal component analyses identified 5 components, of which two components were significantly associated with chronic post-inflammatory fatigue. The first component comprised the personality trait Harm Avoidance and all SCL-subscales except Sleep. The second component consisted of baseline levels ACTH and cortisol, and showed an inverse association with chronic post-inflammatory fatigue. The 3 other components, consisting of respectively SCL-Sleep, TCI-Novelty Seeking-Reward Dependence-Self Transcendence, and TCI-Persistence, were not significantly associated with chronic fatigue. Chronic post-inflammatory fatigue after clinical remission of sarcoidosis is associated with a triad of risk factors: a specific personality profile with profound neurotic characteristics in combination with high levels of psychological distress, and decreased baseline ACTH/cortisol levels. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. The role of dietary polyphenols in the management of inflammatory bowel disease.

    PubMed

    Farzaei, Mohammad H; Rahimi, Roja; Abdollahi, Mohammad

    2015-01-01

    Inflammatory bowel disease (IBD) is an idiopathic chronic, relapsing inflammation of the bowel which is caused by dysregulation of the mucosal immune system. Polyphenols as the secondary plant metabolites universally present in vegetables and fruits and are the most abundant antioxidants in the human diet. There is evidence demonstrating the beneficial health effects of dietary polyphenols. This review criticizes the potential of commonly used polyphenols including apple polyphenol, bilberry anthocyanin, curcumin, epigallocatechin-3-gallate (EGCG) and green tea polyphenols, naringenin, olive oil polyphenols, pomegranate polyphenols and ellagic acid, quercetin, as well as resveratrol specifically in IBD with an emphasis on cellular mechanisms and pharmaceutical aspects. Scientific research confirmed that dietary polyphenols possess both protective and therapeutic effects in the management of IBD mediated via down-regulation of inflammatory cytokines and enzymes, enhancing antioxidant defense, and suppressing inflammatory pathways and their cellular signaling mechanisms. Further preclinical and clinical studies are needed in order to understand safety, bioavailability and bioefficacy of dietary polyphenols in IBD patients.

  14. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma.

    PubMed

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-11-07

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future.

  15. Anti-inflammatory effects of the extract of indigo naturalis in human neutrophils.

    PubMed

    Lin, Yin-Ku; Leu, Yann-Lii; Huang, Tse-Hung; Wu, Yi-Hsiu; Chung, Pei-Jen; Su Pang, Jong-Hwei; Hwang, Tsong-Long

    2009-08-17

    Indigo naturalis is used by traditional Chinese medicine to treat various inflammatory diseases. Topical indigo naturalis ointment showed efficacy in treating psoriasis in our previous clinical studies. In this study, we investigated the anti-inflammatory effects of the extract of indigo naturalis (QD) and its main components indirubin, indigo, and tryptanthrin in human neutrophils. Superoxide anion (O2(.-)) generation and elastase release were measured by spectrophotometry. Some important signals including mitogen-activated protein kinase (MAPK), cAMP, and calcium were studied by Western blot analysis, an enzyme immunoassay, and spectrofluorometry. QD significantly inhibited O2(.-) generation and elastase release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils in a concentration-dependent fashion, while neither indirubin, indigo, nor tryptanthrin produced a comparable result. QD attenuated the FMLP-induced phosphorylation of extracellular regulated kinase, p38 MAPK, and c-Jun N-terminal kinase. Furthermore, QD inhibited calcium mobilization caused by FMLP. However, QD did not affect cellular cAMP levels. On the other hand, neither indirubin, indigo, nor tryptanthrin produced similar changes in human neutrophils. Taken collectively, these findings indicate that QD, but not indirubin, indigo, or tryptanthrin, inhibited O2(.-) generation and elastase release in FMLP-induced human neutrophils, which was at least partially mediated by the inhibition of MAPK activation and regulation of calcium mobilization.

  16. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    PubMed Central

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  17. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches.

    PubMed

    Morales, Inelia; Guzmán-Martínez, Leonardo; Cerda-Troncoso, Cristóbal; Farías, Gonzalo A; Maccioni, Ricardo B

    2014-01-01

    Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments.

  18. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches

    PubMed Central

    Morales, Inelia; Guzmán-Martínez, Leonardo; Cerda-Troncoso, Cristóbal; Farías, Gonzalo A.; Maccioni, Ricardo B.

    2014-01-01

    Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments. PMID:24795567

  19. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines

    PubMed Central

    2011-01-01

    Background Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. Methods The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. Results The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. Conclusions These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients. PMID:21496221

  20. Bergamot (Citrus bergamia Risso) fruit extracts and identified components alter expression of interleukin 8 gene in cystic fibrosis bronchial epithelial cell lines.

    PubMed

    Borgatti, Monica; Mancini, Irene; Bianchi, Nicoletta; Guerrini, Alessandra; Lampronti, Ilaria; Rossi, Damiano; Sacchetti, Gianni; Gambari, Roberto

    2011-04-15

    Cystic fibrosis (CF) airway pathology is a fatal, autosomal, recessive genetic disease characterized by extensive lung inflammation. After induction by TNF-α, elevated concentrations of several pro-inflammatory cytokines (i.e. IL-6, IL-1β) and chemokines (i.e. IL-8) are released from airway epithelial cells. In order to reduce the excessive inflammatory response in the airways of CF patients, new therapies have been developed and in this respect, medicinal plant extracts have been studied. In this article we have investigated the possible use of bergamot extracts (Citrus bergamia Risso) and their identified components to alter the expression of IL-8 associated with the cystic fibrosis airway pathology. The extracts were chemically characterized by 1H-NMR (nuclear magnetic resonance), GC-FID (gas chromatography-flame ionization detector), GC-MS (gas chromatography-mass spectrometry) and HPLC (high pressure liquid chromatography). Both bergamot extracts and main detected chemical constituents were assayed for their biological activity measuring (a) cytokines and chemokines in culture supernatants released from cystic fibrosis IB3-1 cells treated with TNF-α by Bio-Plex cytokine assay; (b) accumulation of IL-8 mRNA by real-time PCR. The extracts obtained from bergamot (Citrus bergamia Risso) epicarps contain components displaying an inhibitory activity on IL-8. Particularly, the most active molecules were bergapten and citropten. These effects have been confirmed by analyzing mRNA levels and protein release in the CF cellular models IB3-1 and CuFi-1 induced with TNF-α or exposed to heat-inactivated Pseudomonas aeruginosa. These obtained results clearly indicate that bergapten and citropten are strong inhibitors of IL-8 expression and could be proposed for further studies to verify possible anti-inflammatory properties to reduce lung inflammation in CF patients.

  1. Hevin Plays a Pivotal Role in Corneal Wound Healing

    PubMed Central

    Chaurasia, Shyam S.; Perera, Promoda R.; Poh, Rebekah; Lim, Rayne R.; Wong, Tina T.; Mehta, Jodhbir S.

    2013-01-01

    Background Hevin is a matricellular protein involved in tissue repair and remodeling via interaction with the surrounding extracellular matrix (ECM) proteins. In this study, we examined the functional role of hevin using a corneal stromal wound healing model achieved by an excimer laser-induced irregular phototherapeutic keratectomy (IrrPTK) in hevin-null (hevin-/-) mice. We also investigated the effects of exogenous supplementation of recombinant human hevin (rhHevin) to rescue the stromal cellular components damaged by the excimer laser. Methodology/Principal Findings Wild type (WT) and hevin -/- mice were divided into three groups at 4 time points- 1, 2, 3 and 4 weeks. Group I served as naïve without any treatment. Group II received epithelial debridement and underwent IrrPTK using excimer laser. Group III received topical application of rhHevin after IrrPTK surgery for 3 days. Eyes were analyzed for corneal haze and matrix remodeling components using slit lamp biomicroscopy, in vivo confocal microscopy, light microscopy (LM), transmission electron microscopy (TEM), immunohistochemistry (IHC) and western blotting (WB). IHC showed upregulation of hevin in IrrPTK-injured WT mice. Hevin -/- mice developed corneal haze as early as 1-2 weeks post IrrPTK-treatment compared to the WT group, which peaked at 3-4 weeks. They also exhibited accumulation of inflammatory cells, fibrotic components of ECM proteins and vascularized corneas as seen by IHC and WB. LM and TEM showed activated keratocytes (myofibroblasts), inflammatory debris and vascular tissues in the stroma. Exogenous application of rhHevin for 3 days reinstated inflammatory index of the corneal stroma similar to WT mice. Conclusions/Significance Hevin is transiently expressed in the IrrPTK-injured corneas and loss of hevin predisposes them to aberrant wound healing. Hevin -/- mice develop early corneal haze characterized by severe chronic inflammation and stromal fibrosis that can be rescued with exogenous administration of rhHevin. Thus, hevin plays a pivotal role in the corneal wound healing. PMID:24303054

  2. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of the organophosphate insecticides phosmet and chlorpyrifos on trophoblast JEG-3 cell death, proliferation and inflammatory molecule production.

    PubMed

    Guiñazú, Natalia; Rena, Viviana; Genti-Raimondi, Susana; Rivero, Virginia; Magnarelli, Gladis

    2012-04-01

    Epidemiological data have associated environmental organophosphate insecticide (OP) exposure during pregnancy with fetal growth deficits. To better understand OP injury that may adversely affect pregnancy, we used the JEG-3 choriocarcinoma cell line, which provide a recognized in vitro model to study placental function. The effects of the OP phosmet (Pm) and chlorpyrifos (Cp) on JEG-3 cells viability, proliferation, cell cycle and inflammatory molecule production were evaluated. Both insecticides affected cellular viability in a concentration- and time-dependent manner, inducing apoptosis and decreasing [(3)H]-thymidine incorporation. However, only Pm reduced DNA synthesis independently of cellular death and decreased the cell percentage at the S-phase. Unlike apoptosis, TNFα production varied with the concentration tested, suggesting that other TNFα independent mechanisms might trigger cell death. No induction of the inflammatory molecule nitric oxide was detected. The mRNA levels of pro-inflammatory IL-6, IL-17 and the anti-inflammatory IL-13 cytokines were differentially modulated. These findings show that Pm and Cp generate a specific toxicity signature, altering cell viability and inducing an inflammatory cytokine profile, suggesting that trophoblasts may represent a possible target for OP adverse effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Temporal Phenotypic Features Distinguish Polarized Macrophages In Vitro

    PubMed Central

    Melton, David W.; McManus, Linda M.; Gelfond, Jonathan A.L.; Shireman, Paula K.

    2015-01-01

    Macrophages are important in vascular inflammation and environmental factors influence macrophage plasticity. Macrophage transitions into pro-inflammatory (M1) or anti-inflammatory (M2) states have been defined predominately by measuring cytokines in culture media (CM). However, temporal relationships between cellular and secreted cytokines have not been established. We measured phenotypic markers and cytokines in cellular and CM of murine bone marrow-derived macrophages at multiple time points following stimulation with IFN-γ+LPS (M1), IL-4 (M2a), or IL-10 (M2c). Cytokines/proteins in M1-polarized macrophages exhibited two distinct temporal patterns; an early (0.5–3 hr), transient increase in cellular cytokines (GM-CSF, KC-GRO, MIP-2, IP-10 and MIP-1β) and a delayed (3–6 hrs) response that was more sustained [IL-3, regulated on activation normal T cell expressed and secreted (RANTES), and tissue inhibitor of metalloproteinases 1 (TIMP-1)]. M2a-related cytokine/cell markers (IGF-1, Fizz1, and Ym1) were progressively (3–24 hrs) increased post-stimulation. Additionally, novel patterns were observed. First, and unexpectedly, cellular pro-inflammatory chemokines, MCP-1 and MCP-3 but not MCP-5, were comparably increased in M1 and M2a macrophages. Second, Vegfr1 mRNA was decreased in M1 and increased in M2a macrophages. Finally, VEGF-A was increased in the CM of M1 cultures and strikingly reduced in M2a coinciding with increased Vegfr1 expression, suggesting decreased VEGF-A in M2a CM was secondary to increased soluble VEGFR1. In conclusion, macrophage cytokine production and marker expression were temporally regulated and relative levels compared across polarizing conditions were highly dependent upon the timing and location (cellular vs. CM) of the sample collection. For most cytokines, cellular production preceded increases in the CM suggesting that cellular regulatory pathways should be studied within 6 hours of stimulation. The divergent polarization-dependent expression of Vegfr1 may be essential to controlling VEGF potentially regulating angiogenesis and inflammatory cell infiltration in the vascular niche. The current study expands the repertoire of cytokines produced by polarized macrophages and provides insights into the dynamic regulation of macrophage polarization and resulting cytokines, proteins, and gene expression that influence vascular inflammation. PMID:25826285

  5. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle.

    PubMed

    Lee, Yang; Fluckey, James D; Chakraborty, Sanjukta; Muthuchamy, Mariappan

    2017-07-01

    Insulin resistance is a well-known risk factor for obesity, metabolic syndrome (MetSyn) and associated cardiovascular diseases, but its mechanisms are undefined in the lymphatics. Mesenteric lymphatic vessels from MetSyn or LPS-injected rats exhibited impaired intrinsic contractile activity and associated inflammatory changes. Hence, we hypothesized that insulin resistance in lymphatic muscle cells (LMCs) affects cell bioenergetics and signaling pathways that consequently alter contractility. LMCs were treated with different concentrations of insulin or glucose or both at various time points to determine insulin resistance. Onset of insulin resistance significantly impaired glucose uptake, mitochondrial function, oxygen consumption rates, glycolysis, lactic acid, and ATP production in LMCs. Hyperglycemia and hyperinsulinemia also impaired the PI3K/Akt while enhancing the ERK/p38MAPK/JNK pathways in LMCs. Increased NF-κB nuclear translocation and macrophage chemoattractant protein-1 and VCAM-1 levels in insulin-resistant LMCs indicated activation of inflammatory mechanisms. In addition, increased phosphorylation of myosin light chain-20, a key regulator of lymphatic muscle contraction, was observed in insulin-resistant LMCs. Therefore, our data elucidate the mechanisms of insulin resistance in LMCs and provide the first evidence that hyperglycemia and hyperinsulinemia promote insulin resistance and impair lymphatic contractile status by reducing glucose uptake, altering cellular metabolic pathways, and activating inflammatory signaling cascades.-Lee, Y., Fluckey, J. D., Chakraborty, S., Muthuchamy, M. Hyperglycemia- and hyperinsulinemia-induced insulin resistance causes alterations in cellular bioenergetics and activation of inflammatory signaling in lymphatic muscle. © FASEB.

  6. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    PubMed

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

  7. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses.

    PubMed

    Cherry, Anne D; Piantadosi, Claude A

    2015-04-20

    Mitochondria play a vital role in cellular homeostasis and are susceptible to damage from inflammatory mediators released by the host defense. Cellular recovery depends, in part, on mitochondrial quality control programs, including mitochondrial biogenesis. Early-phase inflammatory mediator proteins interact with PRRs to activate NF-κB-, MAPK-, and PKB/Akt-dependent pathways, resulting in increased expression or activity of coactivators and transcription factors (e.g., PGC-1α, NRF-1, NRF-2, and Nfe2l2) that regulate mitochondrial biogenesis. Inflammatory upregulation of NOS2-induced NO causes mitochondrial dysfunction, but NO is also a signaling molecule upregulating mitochondrial biogenesis via PGC-1α, participating in Nfe2l2-mediated antioxidant gene expression and modulating inflammation. NO and reactive oxygen species generated by the host inflammatory response induce the redox-sensitive HO-1/CO system, causing simultaneous induction of mitochondrial biogenesis and antioxidant gene expression. Recent evidence suggests that mitochondrial biogenesis and mitophagy are coupled through redox pathways; for instance, parkin, which regulates mitophagy in chronic inflammation, may also modulate mitochondrial biogenesis and is upregulated through NF-κB. Further research on parkin in acute inflammation is ongoing. This highlights certain common features of the host response to acute and chronic inflammation, but caution is warranted in extrapolating findings across inflammatory conditions. Inflammatory mitochondrial dysfunction and oxidative stress initiate further inflammatory responses through DAMP/PRR interactions and by inflammasome activation, stimulating mitophagy. A deeper understanding of mitochondrial quality control programs' impact on intracellular inflammatory signaling will improve our approach to the restoration of mitochondrial homeostasis in the resolution of acute inflammation.

  8. Enhanced Insight into the Autoimmune Component of Glaucoma: IgG Autoantibody Accumulation and Pro-Inflammatory Conditions in Human Glaucomatous Retina

    PubMed Central

    Gramlich, Oliver W.; Beck, Sabine; von Thun und Hohenstein-Blaul, Nadine; Boehm, Nils; Ziegler, Anika; Vetter, Jan M.; Pfeiffer, Norbert; Grus, Franz H.

    2013-01-01

    Background There is accumulating evidence that autoimmune components, such as autoantibodies and autoantibody depositions, play a role in the pathogenesis of neurodegenerative diseases like Alzheimeŕs disease or Multiple Sclerosis. Due to alterations of autoantibody patterns in sera and aqueous humor, an autoimmune component is also assumed in the pathogenesis of glaucoma, a common reason for irreversible blindness worldwide. So far there has been no convincing evidence that autoantibodies are accumulated in the retina of glaucoma patients and that the local immune homeostasis might be affected. Methods and Results Six human glaucomatous donor eyes and nine samples from donors with no recorded ocular disease were included. Antibody microarrays were used to examine the patterns of pro-inflammatory proteins and complement proteins. Analysis of TNF-α and interleukin levels revealed a slight up-regulation exclusively in the glaucomatous group, while complement protein levels were not altered. IgG autoantibody accumulations and/or cellular components were determined by immunohistology (n = 4 per group). A significantly reduced number of retinal ganglion cells was found in the glaucomatous group (healthy: 104±7 nuclei/mm, glaucoma: 67±9 nuclei/mm; p = 0.0007). Cell loss was accompanied by strong retinal IgG autoantibody accumulations, which were at least twice as high as in healthy subjects (healthy: 5.0±0.5 IgG deposits/100 cells, glaucoma: 9.4±1.9 IgG deposits/100 cells; p = 0.004). CD27+ cells and CD27+/IgG+ plasma cells were observed in all glaucomatous subjects, but not in controls. Conclusion This work provides serious evidence for the occurrence of IgG antibody deposition and plasma cells in human glaucomatous retina. Moreover, the results suggest that these IgG deposits occurred in a pro-inflammatory environment which seems to be maintained locally by immune-competent cells like microglia. Thereby, glaucoma features an immunological involvement comparable to other neurodegenerative diseases, but also shows a multifactorial pathomechanism, which diverges and might be linked to the specific nature of both eye and retina. PMID:23451242

  9. Implications of lipid raft disintegration: enhanced anti-inflammatory macrophage phenotype.

    PubMed

    Cuschieri, Joseph

    2004-08-01

    Lipid rafts are membrane microdomains characterized by an enriched cholesterol environment and appear to serve as a platform for signaling. Their role within the macrophage during endotoxin exposure is unknown. THP-1 cells were subjected to lipopolysaccharide stimulation with or without methyl-beta-cyclodextrin (MbetaCD) pretreatment, a cholesterol depleting agent. Cell surface expression of toll-like receptor-4 (TLR4) and platelet-activating factor receptor (PAFr) was determined by flow cytometry. Membrane receptor components and activation of the mitogen-activated protein kinases (MAPK) was determined from lipid raft and cellular protein by immunoblot. Inflammatory mediator production was determined from harvested supernatants by enzyme-linked immunosorbent assay. Surface expression of TLR4 and PAFr was not affected by MbetaCD. Lipopolysaccharide stimulation led to TLR4 mobilization to lipid rafts, MAPK activation, and inflammatory mediator production. Pretreatment with MbetaCD did not affect TLR4 mobilization to lipid rafts, but did result in lost lipid raft expression of the PAFr coupled G-protein, Galpha1. MbetaCD treatment led to selective attenuation of MAPK activation through ERK 1/2. This dysregulated signaling was associated with attenuated production of tumor necrosis factor-alpha, but increased production of interleukin-10. Lipid raft disintegration results in lost expression of Galpha1, dysregulated MAPK signaling, and selective anti-inflammatory mediator production. Therefore, modulation of lipid raft cholesterol content may represent a potential mechanism for regulation of macrophage phenotypic differentiation. Copyright 2004 Elsevier Inc.

  10. Butyric acid stimulates bovine neutrophil functions and potentiates the effect of platelet activating factor.

    PubMed

    Carretta, M D; Hidalgo, A I; Burgos, J; Opazo, L; Castro, L; Hidalgo, M A; Figueroa, C D; Taubert, A; Hermosilla, C; Burgos, R A

    2016-08-01

    Increased short-chain fatty acid (SCFA) production is associated with subacute ruminal acidosis (SARA) and activation of inflammatory processes. In humans and rodents, SCFAs modulate inflammatory responses in the gut via free fatty acid receptor 2 (FFA2). In bovines, butyric acid is one of the most potent FFA2 agonists. Its expression in bovine neutrophils has recently been demonstrated, suggesting a role in innate immune response in cattle. This study aimed to evaluate if butyric acid modulates oxidative and non-oxidative functions or if it can potentiate other inflammatory mediators in bovine neutrophils. Our results showed that butyric acid can activate bovine neutrophils, inducing calcium (Ca(2+)) influx and mitogen-activated protein kinase (MAPK) phosphorylation, two second messengers involved in FFA2 activation. Ca(2+) influx induced by butyric acid was dependent on the extracellular and intracellular Ca(2+) source and phospholipase C (PLC) activation. Butyric acid alone had no significant effect on reactive oxygen species (ROS) production and chemotaxis; however, a priming effect on platelet-activating factor (PAF), a potent inflammatory mediator, was observed. Butyric acid increased CD63 expression and induced the release of neutrophil granule markers matrix metalloproteinase-9 (MMP-9) and lactoferrin. Finally, we observed that butyric acid induced neutrophil extracellular trap (NET) formation without affecting cellular viability. These findings suggest that butyric acid, a component of the ruminal fermentative process, can modulate the innate immune response of ruminants. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Chemical Characterization, Free Radical Scavenging, and Cellular Antioxidant and Anti-Inflammatory Properties of a Stilbenoid-Rich Root Extract of Vitis vinifera

    PubMed Central

    Esatbeyoglu, Tuba; Ewald, Philipp; Yasui, Yoshiaki; Yokokawa, Haruka; Wagner, Anika E.; Matsugo, Seiichi; Winterhalter, Peter; Rimbach, Gerald

    2016-01-01

    Dietary stilbenoids are receiving increasing attention due to their potential health benefits. However, most studies concerning the bioactivity of stilbenoids were conducted with pure compounds, for example, resveratrol. The aim of this study was to characterize a complex root extract of Vitis vinifera in terms of its free radical scavenging and cellular antioxidant and anti-inflammatory properties. HPLC-ESI-MS/MS analyses of the root extract of Vitis vinifera identified seven stilbenoids including two monomeric (resveratrol and piceatannol), two dimeric (trans-ɛ-viniferin and ampelopsin A), one trimeric (miyabenol C), and two tetrameric (r-2-viniferin = vitisin A and r-viniferin = vitisin B) compounds which may mediate its biological activity. Electron spin resonance and spin trapping experiments indicate that the root extract scavenged 2,2-diphenyl-1-picrylhydrazyl, hydroxyl, galvinoxyl, and superoxide free radicals. On a cellular level it was observed that the root extract of Vitis vinifera protects against hydrogen peroxide-induced DNA damage and induces Nrf2 and its target genes heme oxygenase-1 and γ-glutamylcysteine synthetase. Furthermore, the root extract could induce the antiatherogenic hepatic enzyme paraoxonase 1 and downregulate proinflammatory gene expression (interleukin 1β, inducible nitric oxide synthase) in macrophages. Collectively our data suggest that the root extract of Vitis vinifera exhibits free radical scavenging as well as cellular antioxidant and anti-inflammatory properties. PMID:26788254

  12. TNFA gene variants related to the inflammatory status and its association with cellular aging: From the CORDIOPREV study

    USDA-ARS?s Scientific Manuscript database

    Background: Several single nucleotide polymorphisms have been proposed as potential predictors of the development of age-related diseases. Objective: To explore whether Tumor Necrosis Factor Alpha (TNFA) gene variants were associated with inflammatory status, thus facilitating the rate of telomere s...

  13. Development of a discriminatory biocompatibility testing model for non-precious dental casting alloys.

    PubMed

    McGinley, Emma Louise; Fleming, Garry J P; Moran, Gary P

    2011-12-01

    To develop an enhanced, reproducible and discriminatory biocompatibility testing model for non-precious dental casting alloys, prepared to a clinically relevant surface finishing condition, using TR146 oral keratinocyte cells. Comparative biocompatibility was determined following direct and indirect exposure of TR146 cells to two nickel-chromium (Ni-Cr) and a cobalt-chromium (Co-Cr) alloy-discs. The surface roughness of the discs was determined using a contact stylus profilometer and the elemental ion release by inductively coupled plasma mass spectrometry (ICP-MS). Subsequent biocompatibility analysis included cell morphology, cell density measurements with Trypan blue exclusion assay, inflammatory cytokine expression with ELISAs, cellular metabolic activity using XTT and cellular toxicity using lactate dehydrogenase (LDH) release assay. TR146 cell morphology was altered following direct and indirect exposure to the Ni-Cr alloys but not the Co-Cr alloy. Significant reductions (all P<0.001) in viable cell density measurements, cellular metabolic activity, significant increases inflammatory cytokine expression and cellular toxicity were observed when TR146 cells were exposed to the Ni-Cr alloys. Significant decreases in cell density measurements, cellular metabolic activity, significant increases inflammatory cytokine expression and cellular toxicity for the Ni-Cr d.Sign(®)15 alloy compared with d.Sign(®)10 alloy were identifiable (all P<0.001). Cellular toxicity was attributed to nickel ion release levels in solution detected by ICP-MS analysis. Nickel ions from the Ni-Cr alloys permeated the epithelial cells and activated a proinflammatory response, namely IL-1a, IL-8 and PGE2 expression. Further evidence of nickel ioninduced cell death was supported by the decreased biocompatibility of the highest nickel ion releasing alloy (d.Sign(®)15 compared with d.Sign(®)10) and the increased biocompatibility of the Co-Cr (d.Sign(®)30) alloy where nickel ions were absent. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. PLA2 mediated arachidonate free radicals: PLA2 inhibition and neutralization of free radicals by anti-oxidants--a new role as anti-inflammatory molecule.

    PubMed

    Nanda, B L; Nataraju, A; Rajesh, R; Rangappa, K S; Shekar, M A; Vishwanath, B S

    2007-01-01

    PLA2 enzyme catalyses the hydrolysis of cellular phospholipids at the sn-2 position to liberate arachidonic acid and lysophospholipid to generate a family of pro-inflammatory eicosanoids and platelet activating factor. The generation of pro-inflammatory eicosanoids involves a series of free radical intermediates with simultaneous release of reactive oxygen species (superoxide and hydroxyl radicals). Reactive oxygen species formed during arachidonic acid metabolism generates lipid peroxides and the cytotoxic products such as 4-hydroxy nonenal and acrolein, which induces cellular damage. Thus PLA2 catalyzes the rate-limiting step in the production of pro-inflammatory eicosanoids and free radicals. These peroxides and reactive oxygen species in turn activates PLA2 enzyme and further attenuates the inflammatory process. Therefore scavenging these free radicals and inhibition of PLA2 enzyme simultaneously by a single molecule such as antioxidants is of great therapeutic relevance for the development of anti-inflammatory molecules. PLA2 enzymes have been classified into calcium dependent cPLA2 and sPLA2 and calcium independent iPLA2 forms. In several inflammatory diseases sPLA2 group IIA is the most abundant isoform identified. This isoform is therefore targeted for the development of anti-inflammatory molecules. Many secondary metabolites from plants and marine sponges exhibit both anti-inflammatory and antioxidant properties. Some of them include flavonoids, terpenes and alkaloids. But in terms of PLA2 inhibition and antioxidant activity, the structural aspects of flavonoids are well studied rather than terpenes and alkaloids. In this line, molecules having both anti-oxidant and PLA2 inhibitions are reviewed. A single molecule with dual activities may prove to be a powerful anti-inflammatory drug.

  15. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets.

    PubMed

    Götz, Alexander A; Rozman, Jan; Rödel, Heiko G; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabě de Angelis, Martin; Klingenspor, Martin; Stoeger, Tobias

    2011-09-27

    Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested.In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors in HF mice, clearly show diet-specific effects, pointing towards augmented systemic inflammatory conditions. Our data suggest that extended feeding periods, leading to manifest obesity, are necessary to generate an increased susceptibility to particle-induced lung inflammation; although the diet-challenge already was efficient in driving pro-inflammatory systemic events.

  16. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components.

    PubMed

    Rhoades, Elizabeth R; Geisel, Rachel E; Butcher, Barbara A; McDonough, Sean; Russell, David G

    2005-05-01

    The chronic inflammatory response to Mycobacterium generates complex granulomatous lesions that balance containment with destruction of infected tissues. To study the contributing factors from host and pathogen, we developed a model wherein defined mycobacterial components and leukocytes are delivered in a gel, eliciting a localized response that can be retrieved and analysed. We validated the model by comparing responses to the cell wall lipids from Mycobacterium bovis bacillus Calmette-Guerin (BCG) to reported activities in other models. BCG lipid-coated beads and bone marrow-derived macrophages (input macrophages) were injected intraperitoneally into BALB/c mice. Input macrophages and recruited peritoneal exudate cells took up fluorescently tagged BCG lipids, and matrix-associated macrophages and neutrophils produced tumor necrosis factor, interleukin-1alpha, and interleukin-6. Leukocyte numbers and cytokine levels were greater in BCG lipid-bearing matrices than matrices containing non-coated or phosphatidylglycerol-coated beads. Leukocytes arrived in successive waves of neutrophils, macrophages and eosinophils, followed by NK and T cells (CD4(+), CD8(+), or gammadelta) at 7 days and B cells within 12 days. BCG lipids also predisposed matrices for adherence and vascularization, enhancing cellular recruitment. We submit that the matrix model presents pertinent features of the murine granulomatous response that will prove to be an adaptable method for study of this complex response.

  17. Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation

    PubMed Central

    Peverill, William; Powell, Lawrie W.; Skoien, Richard

    2014-01-01

    Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future. PMID:24830559

  18. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.

    PubMed

    Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B

    2004-01-01

    Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.

  19. Current knowledge on psoriasis and autoimmune diseases

    PubMed Central

    Ayala-Fontánez, Nilmarie; Soler, David C; McCormick, Thomas S

    2016-01-01

    Psoriasis is a prevalent, chronic inflammatory disease of the skin, mediated by crosstalk between epidermal keratinocytes, dermal vascular cells, and immunocytes such as antigen presenting cells (APCs) and T cells. Exclusive cellular “responsibility” for the induction and maintenance of psoriatic plaques has not been clearly defined. Increased proliferation of keratinocytes and endothelial cells in conjunction with APC/T cell/monocyte/macrophage inflammation leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Despite the identification of numerous susceptibility loci, no single genetic determinant has been identified as responsible for the induction of psoriasis. Thus, numerous other triggers of disease, such as environmental, microbial and complex cellular interactions must also be considered as participants in the development of this multifactorial disease. Recent advances in therapeutics, especially systemic so-called “biologics” have provided new hope for identifying the critical cellular targets that drive psoriasis pathogenesis. Recent recognition of the numerous co-morbidities and other autoimmune disorders associated with psoriasis, including inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus suggest common signaling elements and cellular mediators may direct disease pathogenesis. In this review, we discuss common cellular pathways and participants that mediate psoriasis and other autoimmune disorders that share these cellular signaling pathways. PMID:29387591

  20. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    PubMed

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the highest anti-inflammatory activity on the tumor cell line. Controversially, rosemary extract dispersed on DMSO induced a more significant IL-1 and TNF-α reduction than ginger extract in primary macrophages. Amongst the tested delivery vehicles, DMSO was the most suitable, presenting reduced cytotoxicity, followed by Pluronic F-68 and liposomes, provably due to differences in their form of absorption, distribution and cellular metabolism. Co-administration of liposomes and plant extracts may cause death of macrophages cells and induction of NO production. It can be concluded that some of the beneficial effects attributed to extracts of ginger and rosemary may be associated with the inhibition of inflammatory mediators due to their high antioxidant activity. However, these effects were influenced by the type of delivery vehicle.

  1. Mind and body: how the health of the body impacts on neuropsychiatry

    PubMed Central

    Renoir, Thibault; Hasebe, Kyoko; Gray, Laura

    2013-01-01

    It has long been established in traditional forms of medicine and in anecdotal knowledge that the health of the body and the mind are inextricably linked. Strong and continually developing evidence now suggests a link between disorders which involve Hypothalamic-Pituitary-Adrenal axis (HPA) dysregulation and the risk of developing psychiatric disease. For instance, adverse or excessive responses to stressful experiences are built into the diagnostic criteria for several psychiatric disorders, including depression and anxiety disorders. Interestingly, peripheral disorders such as metabolic disorders and cardiovascular diseases are also associated with HPA changes. Furthermore, many other systemic disorders associated with a higher incidence of psychiatric disease involve a significant inflammatory component. In fact, inflammatory and endocrine pathways seem to interact in both the periphery and the central nervous system (CNS) to potentiate states of psychiatric dysfunction. This review synthesizes clinical and animal data looking at interactions between peripheral and central factors, developing an understanding at the molecular and cellular level of how processes in the entire body can impact on mental state and psychiatric health. PMID:24385966

  2. Mineral trioxide aggregate-based sealer: analysis of tissue reactions to a new endodontic material.

    PubMed

    Scarparo, Roberta Kochenborger; Haddad, Daniel; Acasigua, Gerson Arison Xavier; Fossati, Anna Cristina Medeiros; Fachin, Elaine Vianna Freitas; Grecca, Fabiana Soares

    2010-07-01

    The aim of this study was to evaluate the subcutaneous connective tissue reaction to mineral trioxide aggregate (MTA)-based sealer (Endo CPM Sealer; CPM Sealer; EGEO SRL, Buenos Aires, Argentina), MTA, and an epoxy resin-based sealer (AH Plus; Dentsply HERO Indústria e Comércio Ltda, Petrópolis, RJ, Brazil). Polyethylene tubes containing the test materials and empty tubes (control group) were implanted in the subcutaneous tissue of 18 rats. After 7, 30, and 60 days, observations were made for cellular inflammatory components, fibrous condensation, and abscess formation. Comparisons between groups and periods of time were made using the Friedman test and the Kruskall-Wallis test. Lymphocytes and plasmacytes were more intensely observed in the reaction to AH Plus sealer after 30 days (p < 0.05). MTA and the Endo CPM Sealer presented a behavior similar to that of the control group throughout the whole experiment. The Endo CPM Sealer presented biological potential. Characteristics of the inflammatory reaction were equivalent to those produced by MTA. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. The Role of TLR and Chemokine in Wear Particle-Induced Aseptic Loosening

    PubMed Central

    Gu, Qiaoli; Shi, Qin; Yang, Huilin

    2012-01-01

    Wear particle-induced periprosthetic osteolysis remains the principal cause of aseptic loosening of orthopaedic implants. Monocytes/macrophages phagocytose wear particles and release cytokines that induce inflammatory response. This response promotes osteoclast differentiation and osteolysis. The precise mechanisms by which wear particles are recognized and induce the accumulation of inflammatory cells in the periprosthetic tissue have not been fully elucidated. Recent studies have shown that toll-like receptors (TLRs) contribute to the cellular interaction with wear particles. Wear particles are recognized by monocytes/macrophages through TLRs coupled with the adaptor protein MyD88. After the initial interaction, wear particles induce both local and systemic migration of monocytes/macrophages to the periprosthetic region. The cellular migration is mediated through chemokines including interleukin-8, macrophage chemotactic protein-1, and macrophage inhibitory protein-1 in the periprosthetic tissues. Interfering with chemokine-receptor axis can inhibit cellular migration and inflammatory response. This paper highlights recent advances in TLR, and chemokine participated in the pathogenesis of aseptic loosening. A comprehensive understanding of the recognition and migration mechanism is critical to the development of measures that prevent wear particle-induced aseptic loosening of orthopaedic implants. PMID:23193363

  4. Abdominal aortic aneurysms: an autoimmune disease?

    PubMed

    Jagadesham, Vamshi P; Scott, D Julian A; Carding, Simon R

    2008-12-01

    Abdominal aortic aneurysms (AAAs) are a multifactorial degenerative vascular disorder. One of the defining features of the pathophysiology of aneurysmal disease is inflammation. Recent developments in vascular and molecular cell biology have increased our knowledge on the role of the adaptive and innate immune systems in the initiation and propagation of the inflammatory response in aortic tissue. AAAs share many features of autoimmune disease, including genetic predisposition, organ specificity and chronic inflammation. Here, this evidence is used to propose that the chronic inflammation observed in AAAs is a consequence of a dysregulated autoimmune response against autologous components of the aortic wall that persists inappropriately. Identification of the molecular and cellular targets involved in AAA formation will allow the development of therapeutic agents for the treatment of AAA.

  5. Immune Dysregulation and Chronic Stress Among Older Adults: A Review

    PubMed Central

    Gouin, Jean-Philippe; Hantsoo, Liisa; Kiecolt-Glaser, Janice K.

    2009-01-01

    Aging is associated with a natural dysregulation in immune functioning which may be amplified when it occurs in the context of chronic stress. Family dementia caregiving provides an excellent model to study the impact of chronic stress on immune functioning among older individuals. Empirical data suggest that the stress of caregiving dysregulate multiple components of innate and adaptive immunity. Elderly caregivers have poorer responses to vaccines, impaired control of latent viruses, exaggerated production of inflammatory mediators, and accelerated cellular aging, compared to noncaregiving older adults. The chronic stress-induced immune dysregulation observed among older caregivers appear to be of sufficient magnitude to impact health. Furthermore, evidence suggests that chronic stress lead to premature aging of the immune system. PMID:19047802

  6. Natural Products for Antithrombosis

    PubMed Central

    Chen, Cen; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Xia, Zhi-Ning

    2015-01-01

    Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively. PMID:26075003

  7. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    PubMed

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  8. Chitosan-triclosan particles modulate inflammatory signaling in gingival fibroblasts.

    PubMed

    Pavez, L; Tobar, N; Chacón, C; Arancibia, R; Martínez, C; Tapia, C; Pastor, A; González, M; Martínez, J; Smith, P C

    2018-04-01

    An important goal of periodontal therapy is the modulation of the inflammatory response. To this end, several pharmacological agents have been evaluated. Triclosan corresponds to an antibacterial and anti-inflammatory agent currently used in periodontal therapy. Chitosan is a natural polymer that may act as a drug delivery agent and exerts antibacterial and anti-inflammatory activities. Therefore, an association between both molecules might be useful to prevent inflammation and tissue destruction in periodontal tissues. In the present study, we have generated chitosan-triclosan particles and evaluated their morphology, charge, biocompatibility and gene expression analysis in human gingival fibroblasts. The chitosan-triclosan particles size and Z potential were 129 ± 47 nm and 51 ± 17 mV respectively. Human gingival fibroblast viability was not affected by chitosan-triclosan. A total of 1533 genes were upregulated by interleukin (IL)-1β. On the other hand, 943 were downregulated in fibroblasts stimulated with IL-1β plus chitosan-triclosan particles. Fifty-one genes were identified as molecular targets upregulated by IL-1 β and downregulated by the chitosan-triclosan particles. The gene ontology analysis revealed that these genes were enriched in categories related to biological processes, molecular function and cellular components. Furthermore, using real-time reverse transcription-polymerase chain reaction beta-actin, fibronectin, interleukin-6 and IL-1b genes were confirmed as targets upregulated by IL-1β and downregulated by chitosan-triclosan particles. Our results show that chitosan-triclosan particles are able to modulate the inflammatory response in gingival fibroblasts. This effect might be useful in the prevention and/or treatment of inflammation in periodontal diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hye Young; Department of Pharmacy, Pusan National University, Busan 609-735; Kim, Nam Deuk

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) andmore » cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.« less

  10. Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds

    PubMed Central

    Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan

    2014-01-01

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558

  11. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    PubMed

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  12. Necroptosis increases with age and is reduced by dietary restriction.

    PubMed

    Deepa, Sathyaseelan S; Unnikrishnan, Archana; Matyi, Stephanie; Hadad, Niran; Richardson, Arlan

    2018-04-25

    Necroptosis is a newly identified programmed cell death pathway that is highly proinflammatory due to the release of cellular components that promote inflammation. To determine whether necroptosis might play a role in inflammaging, we studied the effect of age and dietary restriction (DR) on necroptosis in the epididymal white adipose tissue (eWAT), a major source of proinflammatory cytokines. Phosphorylated MLKL and RIPK3, markers of necroptosis, were increased 2.7- and 1.9-fold, respectively, in eWAT of old mice compared to adult mice, and DR reduced P-MLKL and P-RIPK3 to levels similar to adult mice. An increase in the expression of RIPK1 (1.6-fold) and MLKL (2.7-fold), not RIPK3, was also observed in eWAT of old mice, which was reduced by DR in old mice. The increase in necroptosis was paralleled by an increase in 14 inflammatory cytokines, including the pro-inflammatory cytokines IL-6 (3.9-fold), TNF-α (4.7-fold), and IL-1β (5.1-fold)], and 11 chemokines in old mice. DR attenuated the expression of IL-6, TNF-α, and IL-1β as well as 85% of the other cytokines/chemokines induced with age. In contrast, inguinal WAT (iWAT), which is less inflammatory, did not show any significant increase with age in the levels of P-MLKL and MLKL or inflammatory cytokines/chemokines. Because the changes in biomarkers of necroptosis in eWAT with age and DR paralleled the changes in the expression of pro-inflammatory cytokines, our data support the possibility that necroptosis might play a role in increased chronic inflammation observed with age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease.

    PubMed

    Alvarado, Raquel; O'Brien, Bronwyn; Tanaka, Akane; Dalton, John P; Donnelly, Sheila

    2015-02-01

    Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  14. Long-chain acylcarnitines activate cell stress and myokine release in C2C12 myotubes: calcium-dependent and independent effects

    USDA-ARS?s Scientific Manuscript database

    Acylcarnitines, important lipid biomarkers reflective of acyl-CoA status, are metabolites that possess bioactive and inflammatory properties. This study examined the potential for long-chain acylcarnitines to activate cellular inflammatory, stress and death pathways in a skeletal muscle model. Diffe...

  15. Efficacy ranking of triterpenoids as inducers of a cytoprotective enzyme and as inhibitors of a cellular inflammatory response via their electron affinity and their electrophilicity index

    PubMed Central

    Bensasson, René V.; Zoete, Vincent; Berthier, Gaston; Talalay, Paul; Dinkova-Kostova, Albena T.

    2010-01-01

    Electron affinity (EA) and electrophilicity index (ω) of 16 synthetic triterpenoids (TP), previously identified as inducers of cytoprotective enzymes and as inhibitors of cellular inflammatory responses, have been calculated by the molecular orbital method. Linear correlations were obtained by plotting the values of EA, as well as those of ω versus (i) the potencies of induction of NAD(P)H quinone reductase (NQO1, EC 1.6.99.2), a cytoprotective enzyme, expressed via the concentration of TP required to double the specific activity of NQO1 (CD value) and (ii) the values of their anti-inflammatory activity expressed via the IC-50 of TP for suppression of upregulation of inducible nitric oxide synthase (iNOS, EC 1.14.13.39), both previously experimentally determined. The observed correlations demonstrate quantitatively for a series of triterpenoids that their electrophilicity is a major factor determining their potency as inducers of the cytoprotective phase 2 response and as inhibitors of inflammatory processes. PMID:20433811

  16. Antibacterial and Anti-inflammatory Activities of Ppc-1, Active Principle of the Cellular Slime Mold Polysphondylium pseudo-candidum.

    PubMed

    Azelmat, Jabrane; Fiorito, Serena; Genovese, Salvatore; Epifano, Francesco; Grenier, Daniel

    2015-01-01

    The diisopentenyloxy quinolobactin derivative 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy] quinoline-2-carboxylate, also named as Ppc-1, has been initially isolated from the fruiting bodies of the cellular slime mold Polysphondylium pseudo-candidum. Given that few data are available in the literature concerning the biological properties of this compound, this study was undertaken to evaluate its antibacterial and anti-inflammatory properties. Ppc-1 exerted antibacterial activity on the Gram negative periodontopathogen Porphyromonas gingivalis, while it had no such effect on the other bacterial species tested. The antibacterial activity of Ppc-1 appeared to result from its ability to permeate the cell membrane. Using the U937-3xκB-LUC human monocytic cell line, Ppc-1 was found to dose-dependently inhibit the lipopolysaccharide-induced NF-κB activation, a signaling pathway that has been associated with inflammatory mediator secretion. In conclusion, Ppc-1, by exhibiting a dual mode of action including antibacterial and anti-inflammatory activities, may represent a promising targeted therapeutic agent for periodontal diseases.

  17. Fetal Membranes-Derived Stem Cells Microenvironment.

    PubMed

    Favaron, Phelipe Oliveira; Miglino, Maria Angelica

    2017-01-01

    Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.

  18. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer.

    PubMed

    Paul, Sourav; Lal, Girdhari

    2016-09-01

    γδ T cells are an important innate immune component of the tumor microenvironment and are known to affect the immune response in a wide variety of tumors. Unlike αβ T cells, γδ T cells are capable of spontaneous secretion of IL-17A and IFN-γ without undergoing clonal expansion. Although γδ T cells do not require self-MHC-restricted priming, they can distinguish "foreign" or transformed cells from healthy self-cells by using activating and inhibitory killer Ig-like receptors. γδ T cells were used in several clinical trials to treat cancer patient due to their MHC-unrestricted cytotoxicity, ability to distinguish transformed cells from normal cells, the capacity to secrete inflammatory cytokines and also their ability to enhance the generation of antigen-specific CD8(+) and CD4(+) T cell response. In this review, we discuss the effector and regulatory function of γδ T cells in the tumor microenvironment with special emphasis on the potential for their use in adoptive cellular immunotherapy. © 2016 UICC.

  19. Whole-mount Confocal Microscopy for Adult Ear Skin: A Model System to Study Neuro-vascular Branching Morphogenesis and Immune Cell Distribution.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Mukouyama, Yoh-Suke

    2018-03-29

    Here, we present a protocol of a whole-mount adult ear skin imaging technique to study comprehensive three-dimensional neuro-vascular branching morphogenesis and patterning, as well as immune cell distribution at a cellular level. The analysis of peripheral nerve and blood vessel anatomical structures in adult tissues provides some insights into the understanding of functional neuro-vascular wiring and neuro-vascular degeneration in pathological conditions such as wound healing. As a highly informative model system, we have focused our studies on adult ear skin, which is readily accessible for dissection. Our simple and reproducible protocol provides an accurate depiction of the cellular components in the entire skin, such as peripheral nerves (sensory axons, sympathetic axons, and Schwann cells), blood vessels (endothelial cells and vascular smooth muscle cells), and inflammatory cells. We believe this protocol will pave the way to investigate morphological abnormalities in peripheral nerves and blood vessels as well as the inflammation in the adult ear skin under different pathological conditions.

  20. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice.

    PubMed

    Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.

  1. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  2. Metabolic Profiling as Well as Stable Isotope Assisted Metabolic and Proteomic Analysis of RAW 264.7 Macrophages Exposed to Ship Engine Aerosol Emissions: Different Effects of Heavy Fuel Oil and Refined Diesel Fuel

    PubMed Central

    Sapcariu, Sean C.; Kanashova, Tamara; Dilger, Marco; Diabaté, Silvia; Oeder, Sebastian; Passig, Johannes; Radischat, Christian; Buters, Jeroen; Sippula, Olli; Streibel, Thorsten; Paur, Hanns-Rudolf; Schlager, Christoph; Mülhopt, Sonja; Stengel, Benjamin; Rabe, Rom; Harndorf, Horst; Krebs, Tobias; Karg, Erwin; Gröger, Thomas; Weiss, Carsten; Dittmar, Gunnar; Hiller, Karsten; Zimmermann, Ralf

    2016-01-01

    Exposure to air pollution resulting from fossil fuel combustion has been linked to multiple short-term and long term health effects. In a previous study, exposure of lung epithelial cells to engine exhaust from heavy fuel oil (HFO) and diesel fuel (DF), two of the main fuels used in marine engines, led to an increased regulation of several pathways associated with adverse cellular effects, including pro-inflammatory pathways. In addition, DF exhaust exposure was shown to have a wider response on multiple cellular regulatory levels compared to HFO emissions, suggesting a potentially higher toxicity of DF emissions over HFO. In order to further understand these effects, as well as to validate these findings in another cell line, we investigated macrophages under the same conditions as a more inflammation-relevant model. An air-liquid interface aerosol exposure system was used to provide a more biologically relevant exposure system compared to submerged experiments, with cells exposed to either the complete aerosol (particle and gas phase), or the gas phase only (with particles filtered out). Data from cytotoxicity assays were integrated with metabolomics and proteomics analyses, including stable isotope-assisted metabolomics, in order to uncover pathways affected by combustion aerosol exposure in macrophages. Through this approach, we determined differing phenotypic effects associated with the different components of aerosol. The particle phase of diluted combustion aerosols was found to induce increased cell death in macrophages, while the gas phase was found more to affect the metabolic profile. In particular, a higher cytotoxicity of DF aerosol emission was observed in relation to the HFO aerosol. Furthermore, macrophage exposure to the gas phase of HFO leads to an induction of a pro-inflammatory metabolic and proteomic phenotype. These results validate the effects found in lung epithelial cells, confirming the role of inflammation and cellular stress in the response to combustion aerosols. PMID:27348622

  3. New Insights into the Pathogenesis of Celiac Disease

    PubMed Central

    De Re, Valli; Magris, Raffaella; Cannizzaro, Renato

    2017-01-01

    Celiac disease (CD) is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota. PMID:28913337

  4. New Insights into the Pathogenesis of Celiac Disease.

    PubMed

    De Re, Valli; Magris, Raffaella; Cannizzaro, Renato

    2017-01-01

    Celiac disease (CD) is an autoimmune and multisystem gluten-related disorder that causes symptoms involving the gastrointestinal tract and other organs. Pathogenesis of CD is only partially known. It had been established that ingestion of gluten proteins present in wheat and other cereals are necessary for the disease and develops in individuals genetically predisposed carrying the DQ2 or DQ8 human leukocyte antigen haplotypes. In this review, we had pay specific attention on the last discoveries regarding the three cellular components mainly involved in the development and maintenance of CD: T-cells, B-cells, and microbioma. All of them had been showed critical for the interaction between inflammatory immune response and gluten peptides. Although the mechanisms of interaction among overall these components are not yet fully understood, recent proteomics and molecular studies had shed some lights in the pathogenic role of tissue transglutaminase 2 in CD and in the alteration of the intestinal barrier function induced by host microbiota.

  5. In vitro anti-MRSA activity of Couroupita guianensis extract and its component Tryptanthrin.

    PubMed

    Costa, Danielle Cristina Machado; Azevedo, Mariana Maria Barros de; Silva, Davi Oliveira E; Romanos, Maria Teresa Villela; Souto-Padrón, Thais Cristina Baeta Soares; Alviano, Celuta Sales; Alviano, Daniela Sales

    2017-09-01

    Couroupita guianensis is known in Brazil as 'Abricó-de-Macaco' and it has some attributes such as: antihypertensive, analgesic and anti-inflammatory activities. This study evaluated the antimicrobial activity of ethanolic extract and fractions of C. guianensis flowers and isolation of bioactive component. These extracts and fractions were subjected to agar diffusion, MIC, TLC and bioautography to bacteria, filamentous fungi and yeasts. Among the fractions of EtOH extract, the DCM fraction was the most active, particularly against Methicillin-resistant Staphylococcus aureus (MRSA) with MIC of 156 μg/mL. The active compound in this fraction was identified as Tryptanthrin, which showed promising antibacterial activity for MRSA showing MIC of 62.5 μg/mL. Ultrastructural analysis of MRSA incubated in the presence of Tryptanthrin by transmission electron microscope showed significant alterations in the cellular structure. Cytotoxicity tests demonstrated that DCM fraction and Tryptanthrin showed low toxicity, which makes it a promising candidate for alternative therapies to control and combat diseases.

  6. Variation in the Composition and In Vitro Proinflammatory Effect of Urban Particulate Matter from Different Sites

    PubMed Central

    Manzano-León, Natalia; Quintana, Raúl; Sánchez, Brisa; Serrano, Jesús; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Tania; O’Neill, Marie S.; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Rosas, Irma

    2015-01-01

    Spatial variation in particulate matter–related health and toxicological outcomes is partly due to its composition. We studied spatial variability in particle composition and induced cellular responses in Mexico City to complement an ongoing epidemiologic study. We measured elements, endotoxins, and polycyclic aromatic hydrocarbons in two particle size fractions collected in five sites. We compared the in vitro proinflammatory response of J774A.1 and THP-1 cells after exposure to particles, measuring subsequent TNFα and IL-6 secretion. Particle composition varied by site and size. Particle constituents were subjected to principal component analysis, identifying three components: C1 (Si, Sr, Mg, Ca, Al, Fe, Mn, endotoxin), C2 (polycyclic aromatic hydrocarbons), and C3 (Zn, S, Sb, Ni, Cu, Pb). Induced TNFα levels were higher and more heterogeneous than IL-6 levels. Cytokines produced by both cell lines only correlated with C1, suggesting that constituents associated with soil induced the inflammatory response and explain observed spatial differences. PMID:23335408

  7. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer.

    PubMed

    Fang, Wei; Wang, Guizhen; Tang, Luyan; Su, Huilin; Chen, Huyan; Liao, Wanqing; Xu, Jinhua

    2018-06-19

    Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H 2 ) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H 2 inhalation on pressure ulcer and the underlying mechanisms. H 2 inhalation significantly reduced wound area, 8-oxo-dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H 2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up-regulating expression of Nrf2 and its downstream components in wound tissue and/or H 2 O 2 -treated endothelia. Meanwhile, H 2 inhibited the overexpression of MCP-1, E-selectin, P-selectin and ICAM-1 in oxidant-induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF-α, IL-1, IL-6 and IL-8) production in the wound. Furthermore, H 2 promoted the expression of pro-healing factors (IL-22, TGF-β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H 2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti-inflammatory, pro-healing actions. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Olmstead, Richard; Irwin, Michael R; Cole, Steve W

    2007-03-01

    Fatigue is a common problem following cancer treatment and our previous studies suggest that a chronic inflammatory process might contribute to cancer-related fatigue. However, immune responses to challenge have not yet been evaluated among individuals with cancer-related fatigue, and it is not known what mechanisms drive increased levels of inflammatory markers in fatigued cancer survivors. We have previously reported that fatigued breast cancer survivors show a blunted cortisol response to an experimental psychological stressor. In this report, we focus on inflammatory responses to this stressor and their relationship to circulating glucocorticoids and cellular sensitivity to glucocorticoid inhibition. Relative to non-fatigued control survivors, participants experiencing persistent fatigue showed significantly greater increases in LPS-stimulated production of IL-1beta and IL-6 following the stressor (Group x Time interaction: p<.05). Fatigued participants did not show any difference in cellular sensitivity to cortisol inhibition of cytokine production, but they did show significantly less salivary cortisol increase in the aftermath of the stressor. Moreover, blunted cortisol responses were associated with significantly increased production of IL-6 in response to LPS stimulation (p<.05). These data provide further evidence of enhanced inflammatory processes in fatigued breast cancer survivors and suggest that these processes may stem in part from decreased glucocorticoid response to stress.

  9. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  10. Industrial grade 2D molybdenum disulphide (MoS2): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation

    NASA Astrophysics Data System (ADS)

    Moore, Caroline; Movia, Dania; Smith, Ronan J.; Hanlon, Damien; Lebre, Filipa; Lavelle, Ed C.; Byrne, Hugh J.; Coleman, Jonathan N.; Volkov, Yuri; McIntyre, Jennifer

    2017-06-01

    The recent surge in graphene research, since its liquid phase monolayer isolation and characterization in 2004, has led to advancements which are accelerating the exploration of alternative 2D materials such as molybdenum disulphide (MoS2), whose unique physico-chemical properties can be exploited in applications ranging from cutting edge electronic devices to nanomedicine. However, to assess any potential impact on human health and the environment, the need to understand the bio-interaction of MoS2 at a cellular and sub-cellular level is critical. Notably, it is important to assess such potential impacts of materials which are produced by large scale production techniques, rather than research grade materials. The aim of this study was to explore cytotoxicity, cellular uptake and inflammatory responses in established cell-lines that mimic different potential exposure routes (inhalation, A549; ingestion, AGS; monocyte, THP-1) following incubation with MoS2 flakes of varying sizes (50 nm, 117 nm and 177 nm), produced by liquid phase exfoliation. Using high content screening (HCS) and Live/Dead assays, it was established that 1 µg ml-1 (for the three different MoS2 sizes) did not induce toxic effects on any of the cell-lines. Confocal microscopy images revealed a normal cellular morphology in all cases. Transmission electron microscopy (TEM) confirmed the uptake of all MoS2 nanomaterials in all the cell-lines, the MoS2 ultimately locating in single membrane vesicles. At such sub-lethal doses, inflammatory responses are observed, however, associated, at least partially, with the presence of lipopolysaccharide endotoxin in nanomaterial suspensions and surfactant samples. Therefore, the inflammatory response of the cells to the MoS2 or endotoxin contamination was interrogated using a 10-plex ELISA which illustrates cytokine production. The experiments carried out using wild-type and endotoxin hyporesponsive bone marrow derived dendritic cells confirmed that the inflammatory responses result from a combination of endotoxin contamination, the MoS2 nanomaterials themselves, and the stabilizing surfactant.

  11. Trichomoniasis

    DTIC Science & Technology

    2011-06-01

    was efficacious.18 Epidemiology In 1995 the World Health Organization estimated that there were 170 million cases of trichomoniasis worldwide...carcinoma (Figs 7.11 & 7.12). A “dirty” slide background, increased cellular maturation or eosinophilia , aggregates of inflammatory cells, and...1990;74:1573-1602. 21. Sardana S, Sodhani P, Agarwal SS, et al. Epidemiologic analysis of Trichomonas vaginalis infection in inflammatory smears

  12. Linker phosphorylation of Smad3 promotes fibro-carcinogenesis in chronic viral hepatitis of hepatocellular carcinoma

    PubMed Central

    Murata, Miki; Yoshida, Katsunori; Yamaguchi, Takashi; Matsuzaki, Koichi

    2014-01-01

    Epidemiological and clinical data point to a close association between chronic hepatitis B virus infection or chronic hepatitis C virus infection and development of hepatocellular carcinoma (HCC). HCC develops over several decades and is associated with fibrosis. This sequence suggests that persistent viral infection and chronic inflammation can synergistically induce liver fibrosis and hepatocarcinogenesis. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in diverse cellular processes and contributes to hepatic fibro-carcinogenesis under inflammatory microenvironments during chronic liver diseases. The biological activities of TGF-β are initiated by the binding of the ligand to TGF-β receptors, which phosphorylate Smad proteins. TGF-β type I receptor activates Smad3 to create COOH-terminally phosphorylated Smad3 (pSmad3C), while pro-inflammatory cytokine-activated kinases phosphorylates Smad3 to create the linker phosphorylated Smad3 (pSmad3L). During chronic liver disease progression, virus components, together with pro-inflammatory cytokines and somatic mutations, convert the Smad3 signal from tumor-suppressive pSmad3C to fibro-carcinogenic pSmad3L pathways, accelerating liver fibrosis and increasing the risk of HCC. The understanding of Smad3 phosphorylation profiles may provide new opportunities for effective chemoprevention and personalized therapy for patients with hepatitis virus-related HCC in the future. PMID:25386050

  13. Biofeedback in the treatment of heart failure.

    PubMed

    McKee, Michael G; Moravec, Christine S

    2010-07-01

    Biofeedback training can be used to reduce activation of the sympathetic nervous system (SNS) and increase activation of the parasympathetic nervous system (PNS). It is well established that hyperactivation of the SNS contributes to disease progression in chronic heart failure. It has been postulated that underactivation of the PNS may also play a role in heart failure pathophysiology. In addition to autonomic imbalance, a chronic inflammatory process is now recognized as being involved in heart failure progression, and recent work has established that activation of the inflammatory process may be attenuated by vagal nerve stimulation. By interfering with both autonomic imbalance and the inflammatory process, biofeedback-assisted stress management may be an effective treatment for patients with heart failure by improving clinical status and quality of life. Recent studies have suggested that biofeedback and stress management have a positive impact in patients with chronic heart failure, and patients with higher perceived control over their disease have been shown to have better quality of life. Our ongoing study of biofeedback-assisted stress management in the treatment of end-stage heart failure will also examine biologic end points in treated patients at the time of heart transplant, in order to assess the effects of biofeedback training on the cellular and molecular components of the failing heart. We hypothesize that the effects of biofeedback training will extend to remodeling the failing human heart, in addition to improving quality of life.

  14. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Müller, Loretta L.; Heeb, Norbert V.; Mayer, Andreas; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Increasingly stringent regulation of particulate matter emissions from diesel vehicles has led to the widespread use of diesel particle filters (DPFs), the effect of which on exhaust toxicity is so far poorly understood. We exposed a cellular model of the human respiratory epithelium at the air-liquid interface to non-catalyzed wall-flow DPF-filtered diesel exhaust and compared the resulting biological responses to the ones observed upon exposure to unfiltered exhaust. Filtered diesel exhaust acted highly oxidative, even though to a lesser extent than unfiltered exhaust (quantification of total reduced glutathione), and both exhaust types triggered comparable responses to oxidative stress (measurement of heme-oxygenase 1 (HMOX1) and superoxide-dismutase (SOD1) gene expression). Further, diesel exhaust filtration significantly reduced pro-inflammatory responses (measurement of tumor necrosis factor (TNF) and interleukin-8 (IL-8) gene expression and quantification of the secretion of their gene products TNF-α and IL-8). Because inflammatory processes are central to the onset of adverse respiratory health effects caused by diesel exhaust inhalation, our results imply that DPFs may make a valuable contribution to the detoxification of diesel vehicle emissions. The induction of significant oxidative stress by filtered diesel exhaust however, also implies that the non-particulate exhaust components also need to be considered for lung cell risk assessment.

  15. The Inflammasome and Danger Molecule Signaling: At the Crossroads of Inflammation and Pathogen Persistence in the Oral Cavity

    PubMed Central

    Yilmaz, Özlem; Lee, Kyu Lim

    2014-01-01

    Inflammasomes are an oligomeric assembly of multiprotein complexes that activate the caspase-1-dependent maturation and the subsequent secretion of inflammatory interleukin-1β and interleukin-18 cytokines in response to a ‘danger signal’ in vertebrates. The assessment of their significance continues to grow rapidly as the complex biology of various chronic inflammatory conditions are better dissected. Increasing evidence links inflammasomes and host-derived small ‘danger molecule ATP’-signaling strongly with the modulation of the host immune response by microbial colonizers as well as potential altering of the microbiome structure and inter-microbial interactions in host. All of these factors eventually lead to the destructive chronic inflammatory disease state. In the oral cavity, a highly dynamic and multifaceted interplay takes place between the endogenous danger molecule signaling and colonizing microbes on the mucosal surfaces. This interaction may redirect the local microenvironment to favor the conversion of the resident microbiome towards pathogenicity. This review outlines the major components of the known inflammasome complexes/mechanisms and highlights their regulation, in particular, by oral microorganisms in relation to the periodontal disease pathology. Better characterizations of the cellular and molecular biology of the inflammasome will likely present important potential therapeutic targets in the treatment and prevention of periodontal disease as well as other debilitating chronic diseases. PMID:26252403

  16. A Chemokine Receptor CXCR2 Macromolecular Complex Regulates Neutrophil Functions in Inflammatory Diseases*

    PubMed Central

    Wu, Yanning; Wang, Shuo; Farooq, Shukkur M.; Castelvetere, Marcello P.; Hou, Yuning; Gao, Ji-Liang; Navarro, Javier V.; Oupicky, David; Sun, Fei; Li, Chunying

    2012-01-01

    Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases. PMID:22203670

  17. Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines.

    PubMed

    Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V

    2016-05-01

    Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P < 0.05) in the presence of MCP1 or TNFα. Unlike Ad36, E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and obesity. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization.

    PubMed

    Ji, Jie; Upadhyay, Swapna; Xiong, Xiaomiao; Malmlöf, Maria; Sandström, Thomas; Gerde, Per; Palmberg, Lena

    2018-05-02

    Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm 2 aerosolized DEP using XposeALI ® . Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell-cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems.

  19. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes

    PubMed Central

    Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan

    2017-01-01

    Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548

  20. Comparison of particle-exposure triggered pulmonary and systemic inflammation in mice fed with three different diets

    PubMed Central

    2011-01-01

    Background Obesity can be linked to disease risks such as diabetes and cardiovascular disorders, but recently, the adipose tissue (AT) macrophage also emerges as actively participating in inflammation and immune function, producing pro- and anti-inflammatory factors. Connections between the AT and chronic lung diseases, like emphysema and asthma and a protective role of adipocyte-derived proteins against acute lung injury were suggested. In this study we addressed the question, whether a diet challenge increases the inflammatory response in the alveolar and the blood compartment in response to carbon nanoparticles (CNP), as a surrogate for ambient/urban particulate air pollutants. Methods Mice were fed a high caloric carbohydrate-rich (CA) or a fat-rich (HF) diet for six weeks and were compared to mice kept on a purified low fat (LF) diet, respectively. Bronchoalveolar lavage (BAL) and blood samples were taken 24 h after intratracheal CNP instillation and checked for cellular and molecular markers of inflammation. Results and discussion The high caloric diets resulted in distinct effects when compared with LF mice, respectively: CA resulted in increased body and fat mass without affecting blood cellular immunity. Conversely, HF activated the blood system, increasing lymphocyte and neutrophil counts, and resulted in slightly increased body fat content. In contrast to higher pro-inflammatory BAL Leptin in CA and HF mice, on a cellular level, both diets did not lead to an increased pro-inflammatory basal status in the alveolar compartment per se, nor did result in differences in the particle-triggered response. However both diets resulted in a disturbance of the alveolar capillary barrier as indicated by enhanced BAL protein and lactate-dehydrogenase concentrations. Systemically, reduced serum Adiponectin in HF mice might be related to the observed white blood cell increase. Conclusion The increase in BAL pro-inflammatory factors in high caloric groups and reductions in serum concentrations of anti-inflammatory factors in HF mice, clearly show diet-specific effects, pointing towards augmented systemic inflammatory conditions. Our data suggest that extended feeding periods, leading to manifest obesity, are necessary to generate an increased susceptibility to particle-induced lung inflammation; although the diet-challenge already was efficient in driving pro-inflammatory systemic events. PMID:21951864

  1. Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture.

    PubMed

    Bielecka, A M; Paul-Samojedny, M; Obuchowicz, E

    2010-12-01

    An increasing body of evidence indicates that glial activation and neuroinflammation play an important role in the pathogenesis of psychiatric and neurodegenerative diseases. Activated glial cells secrete various cytokines that influence neurotransmission, hypothalamus-pituitary-adrenal axis activity, neuronal plasticity and neurogenesis. It has been suggested that alterations in cytokine networks are involved in the mechanism of action of antidepressant drugs. Until now, only a few studies demonstrated that some tricyclic antidepressants and selective serotonin reuptake inhibitors reduced production of pro-inflammatory cytokines in brain glia cells. We have investigated for the first time whether the antidepressant, moclobemide (a reversible selective inhibitor of monoamine oxidase-A) has an influence on pro-inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory cytokine (IL-10) in primary rat mixed glial cell cultures stimulated by lipopolysaccharide (LPS). Our results showed that moclobemide used in a wide range of concentrations diminished LPS-stimulated IL-1β and TNF-α mRNAs expression in cellular extracts and remarkably reduced the levels of both pro-inflammatory cytokines in culture medium. In opposite to this, the drug had no influence on IL-10 mRNA and slightly reduced IL-10 concentration. Moreover, moclobemide decreased LPS-stimulated translocation of NFκB p65 subunit into cellular nuclei. These results suggest that moclobemide exerts anti-inflammatory effect in the central nervous system because it affects the balance between pro- and anti-inflammatory cytokines (IL-1β, TNF-α/IL-10) in primary mixed glial cell cultures.

  2. The quantification of cellular viability and inflammatory response to stainless steel alloys.

    PubMed

    Bailey, LeeAnn O; Lippiatt, Sherry; Biancanello, Frank S; Ridder, Stephen D; Washburn, Newell R

    2005-09-01

    The biocompatibility of metallic alloys is critical to the success of many orthopedic therapies. Corrosion resistance and the immune response of the body to wear debris products ultimately determine the performance of these devices. The establishment of quantitative tests of biocompatibility is an important issue for biomaterials development. We have developed an in vitro model to measure the pro-inflammatory cytokine production and in this study investigated the cellular responses induced by nitrogenated and 316L stainless steel alloys in both particulate and solid form. We utilized a murine macrophage cell line, RAW 264.7, to characterize and compare the mRNA profiles of TNF-alpha and IL-1beta in these cells using real time-polymerase chain reaction (RT-PCR). Fluorescence microscopy and flow cytometry were used to probe the viability of the population and to examine the apoptotic pathway. The goals of this work were to develop improved measurement methods for the quantification of cellular inflammatory responses to biomaterials and to obtain data that leads to an enhanced understanding of the ways in which the body responds to biomaterials. Using these techniques, we observed evidence for an association between the upregulation of IL-1beta and reversible apoptosis, and the upregulation of TNF-alpha and irreversible apoptosis.

  3. Effect of heated naringenin on immunomodulatory properties and cellular antioxidant activity.

    PubMed

    Maatouk, Mouna; Elgueder, Dorra; Mustapha, Nadia; Chaaban, Hind; Bzéouich, Imen Mokdad; Loannou, Irina; Kilani, Soumaya; Ghoul, Mohamed; Ghedira, Kamel; Chekir-Ghedira, Leila

    2016-11-01

    Naringenin is one of the most popular flavonoids derived from citrus. It has been reported to be an effective anti-inflammatory compound. Citrus fruit may be used raw, cooked, stewed, or boiled. The present study was conducted to investigate the effect of thermal processes on naringenin in its immunomodulatory and cellular antioxidant activities. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. The amount of nitric oxide production and the lysosomal enzyme activity were evaluated in vitro on mouse peritoneal macrophages. Cellular antioxidant activity in splenocytes and macrophages was determined by measuring the fluorescence of the dichlorofluorescin (DCF). Our findings revealed that naringenin induces B cell proliferation and enhances NK activity. The highest concentration of native naringenin exhibits a significant proliferation of T cells, induces CTL activity, and inhibits cellular oxidation in macrophages. Conversely, it was observed that when heat-processed, naringenin improves the cellular antioxidant activity in splenocytes, increases the cytotoxic activity of NK cells, and suppresses the cytotoxicity of T cells. However, heat treatment maintains the anti-inflammatory potency of naringenin.

  4. Bioactive Food Components, Inflammatory Targets, and Cancer Prevention

    PubMed Central

    Kim, Young S.; Young, Matthew R.; Bobe, Gerd; Colburn, Nancy H.; Milner, John A.

    2012-01-01

    Various dietary components may modify chronic inflammatory processes at the stage of cytokine production, amplification of nuclear factor-κB–mediated inflammatory gene expression, and the release of anti-inflammatory cytokine, transforming growth factor-β. This review provides a synopsis of the strengths and weaknesses of the evidence that specific bioactive food components influence inflammation-related targets linked to cancer. A target repeatedly surfacing as a site of action for several dietary components is transforming growth factor β. Whereas the use of dietary intervention strategies offers intriguing possibilities for maintaining normal cell function by modifying a process that is essential for cancer development and progression, more information is needed to characterize the minimum quantity of the bioactive food components required to bring about a change in inflammation-mediated cancer, the ideal time for intervention, and the importance of genetics in determining the response. Unquestionably, the societal benefits of using foods and their components to prevent chronic inflammation and associated complications, including cancer, are enormous. PMID:19258539

  5. Anti-inflammatory effects of Simvastatin in patients with acute intracerebral hemorrhage in an intensive care unit

    PubMed Central

    Zhou, Xiurong; Chen, Jiafeng; Wang, Chengdong; Wu, Lili

    2017-01-01

    Intracerebral hemorrhage is one of the most common types of cerebrovascular disease in humans and often causes paralysis, a vegetative state and even death. Patients with acute intracerebral hemorrhage are frequently monitored in intensive care units (ICUs). Spontaneous intracerebral hemorrhage is associated with a higher rate of mortality and morbidity than other intracephalic diseases. The expression levels of inflammatory factors have important roles in inflammatory responses indicative of changes in a patient's condition and are therefore important in the monitoring and treatment of affected patients at the ICU as well as the development of therapeutic strategies for acute cerebral hemorrhage. The present study investigated the anti-inflammatory effects of Simvastatin in patients with acute intracerebral hemorrhage at an ICU, and inflammatory factors and cellular changes were systematically analyzed. The plasma concentrations of inflammatory factors, including interleukin (IL)-4, IL-6, IL-8 and IL-10, were evaluated by ELISAs. The plasma concentrations of inflammatory cellular changes were detected by using flow cytometry. The results demonstrated that after Simvastatin treatment of patients with acute cerebral hemorrhage at the ICU, the plasma concentrations of IL-4, IL-6, IL-8 and IL-10 were downregulated compared with those in placebo-treated controls. In addition, Simvastatin treatment at the ICU decreased lymphocytes, granulocytes and mononuclear cells in patients with acute cerebral hemorrhage. The levels of inflammatory factors were associated with brain edema in patients with acute cerebral hemorrhage treated at the ICU. In addition, the amount of bleeding was reduced in parallel with the inflammatory cell plasma concentration of lymphocytes, granulocytes and mononuclear cells. Importantly, Simvastatin treatment produced beneficial outcomes by improving brain edema and reducing the amount of bleeding. In conclusion, the present study demonstrated the efficacy of Simvastatin in treating acute intracerebral hemorrhage and evidenced the association between inflammatory responses and the progress of affected patients at the ICU, thereby providing insight for applying effective therapies for patients with acute intracerebral hemorrhage. PMID:29285177

  6. Apolipoprotein E Enhances microRNA-146a in Monocytes and Macrophages to Suppress Nuclear Factor-κB–Driven Inflammation and Atherosclerosis

    PubMed Central

    Li, Kang; Ching, Daniel; Luk, Fu Sang; Raffai, Robert L.

    2015-01-01

    Rationale Apolipoprotein E (apoE) exerts anti-inflammatory properties that protect against atherosclerosis and other inflammatory diseases. However, mechanisms by which apoE suppresses the cellular activation of leukocytes commonly associated with atherosclerosis remain incompletely understood. Objective To test the hypothesis that apoE suppresses inflammation and atherosclerosis by regulating cellular microRNA levels in these leukocytes. Methods and Results An assessment of apoE expression among such leukocyte subsets in wild-type mice revealed that only macrophages and monocytes express apoE abundantly. An absence of apoE expression in macrophages and monocytes resulted in enhanced nuclear factor-κB (NF-κB) signaling and an exaggerated inflammatory response upon stimulation with lipopolysaccharide. This correlated with reduced levels of microRNA-146a, a critical negative regulator of NF-κB signaling. Ectopic apoE expression in Apoe−/− macrophages and monocytes raised miR-146a levels, while its silencing in wild-type cells had an opposite effect. Mechanistically, apoE increased the expression of transcription factor PU.1, which raised levels of pri-miR-146 transcripts, demonstrating that apoE exerts transcriptional control over miR-146a. In vivo, even a small amount of apoE expression in macrophages and monocytes of hypomorphic apoE mice led to increased miR-146a levels, and inhibited macrophage pro-inflammatory responses, Ly-6Chigh monocytosis, and atherosclerosis in the settings of hyperlipidemia. Accordingly, cellular enrichment of miR-146a through the systemic delivery of miR-146a mimetics in Apoe−/−Ldlr−/− and Ldlr−/− mice attenuated monocyte/macrophage activation and atherosclerosis in the absence of plasma lipid reduction. Conclusions Our data demonstrate that cellular apoE expression suppresses NF-κB–mediated inflammation and atherosclerosis by enhancing miR-146a levels in monocytes and macrophages. PMID:25904598

  7. Txnip ablation reduces vascular smooth muscle cell inflammation and ameliorates atherosclerosis in apolipoprotein E knockout mice.

    PubMed

    Byon, Chang Hyun; Han, Tieyan; Wu, Judy; Hui, Simon T

    2015-08-01

    Inflammation of vascular smooth muscle cells (VSMC) is intimately linked to atherosclerosis and other vascular inflammatory disease. Thioredoxin interacting protein (Txnip) is a key regulator of cellular sulfhydryl redox and a mediator of inflammasome activation. The goals of the present study were to examine the impact of Txnip ablation on inflammatory response to oxidative stress in VSMC and to determine the effect of Txnip ablation on atherosclerosis in vivo. Using cultured VSMC, we showed that ablation of Txnip reduced cellular oxidative stress and increased protection from oxidative stress when challenged with oxidized phospholipids and hydrogen peroxide. Correspondingly, expression of inflammatory markers and adhesion molecules were diminished in both VSMC and macrophages from Txnip knockout mice. The blunted inflammatory response was associated with a decrease in NF-ĸB nuclear translocation. Loss of Txnip in VSMC also led to a dramatic reduction in macrophage adhesion to VSMC. In vivo data from Txnip-ApoE double knockout mice showed that Txnip ablation led to 49% reduction in atherosclerotic lesion in the aortic root and 71% reduction in the abdominal aorta, compared to control ApoE knockout mice. Our data show that Txnip plays an important role in oxidative inflammatory response and atherosclerotic lesion development in mice. The atheroprotective effect of Txnip ablation implicates that modulation of Txnip expression may serve as a potential target for intervention of atherosclerosis and inflammatory vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis.

    PubMed

    Nooh, Hanaa Z; Nour-Eldien, Nermeen M

    2016-07-01

    A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Hydrogen sulfide releasing naproxen offers better anti-inflammatory and chondroprotective effect relative to naproxen in a rat model of zymosan induced arthritis.

    PubMed

    Dief, A E; Mostafa, D K; Sharara, G M; Zeitoun, T H

    2015-04-01

    Hydrogen sulfide (H2S) is rapidly gaining ground as a physiological mediator of inflammation, but there is no clear consensus as to its precise role in inflammation. Therefore, this study was undertaken to evaluate the effects of ATB-346 as a novel H2S-releasing naproxen compared to naproxen, as a traditional non-steroidal anti-inflammatory drug on zymosan induced mono-arthritis in rats. Male Wistar rats (n=48) were randomly assigned to four main groups: normal control, untreated arthritis, Naproxen and ATB-346 treated groups. Mono-arthritis was induced by intra-articular injection of zymosan into the knee joints. Mechanical hypernociception and joint swelling were evaluated at 6 hours and 5 days. Inflammatory cellular recruitment and adherence, tumor necrosis factor alpha, nuclear factor kappa β, total sulfide levels, and histological changes were evaluated in knee lavages, blood or joint tissues at selected time points. Zymosan injection evoked knee inflammation and pain as characterized by mechanical hypernociception, impaired gait, joint swelling with inflammatory exudation and histological changes. Treatment with ATB-346 attenuated nociceptive responses, inflammatory cellular and biochemical changes in comparison to naproxen. Only ATB-346 was able to suppress neutrophil adherence and to preserve normal articular structure. H2S releasing naproxen represents an advancement over the parent drug, naproxen. Apart from the superior anti-inflammatory and anti-noceiceptive activity, ATB-346 offered a distinguished chondroprotective effect and is almost devoid from naproxen deleterious effects on articular cartilage.

  10. Oxidation of glycosaminoglycans by free radicals and reactive oxidative species: A review of investigative methods.

    PubMed

    Parsons, B J

    2015-05-01

    Glycosaminoglycans, in particular hyaluronan (HA), and proteoglycans are components of the extracellular matrix (ECM). The ECM plays a key role in the regulation of cellular behaviour and alterations to it can modulate both the development of human diseases as well as controlling normal biochemical processes such as cell signalling and pro-inflammatory responses. For these reasons, in vitro fragmentation studies of glycosaminoglycans by free radicals and oxidative species are seen to be relevant to the understanding of in vivo studies of damage to the ECM. A wide range of investigative techniques have therefore been applied to gain insights into the relative fragmentation effects of several reactive oxidative species with the ultimate goal of determining mechanisms of fragmentation at the molecular level. These methods are reviewed here.

  11. The choreography of neuroinflammation in Huntington’s disease

    PubMed Central

    Crotti, Andrea; Glass, Christopher K.

    2016-01-01

    Currently, the concept of ‘neuroinflammation’ includes inflammation associated with neurodegenerative diseases, in which there is little or no infiltration of blood-derived immune cells into the brain. The roles of brain-resident and peripheral immune cells in these inflammatory settings are poorly understood, and it is unclear whether neuroinflammation results from immune reaction to neuronal dysfunction/degeneration, and/or represents cell-autonomous phenotypes of dysfunctional immune cells. Here, we review recent studies examining these questions in the context of Huntington’s disease (HD), where mutant Huntingtin (HTT) is expressed in both neurons and glia. Insights into the cellular and molecular mechanisms underlying neuroinflammation in HD may provide a better understanding of inflammation in more complex neurodegenerative disorders, and of the contribution of the neuroinflammatory component to neurodegenerative disease pathogenesis. PMID:26001312

  12. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    PubMed

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  13. Reactive Oxygen Species in Metabolic and Inflammatory Signaling.

    PubMed

    Forrester, Steven J; Kikuchi, Daniel S; Hernandes, Marina S; Xu, Qian; Griendling, Kathy K

    2018-03-16

    Reactive oxygen species (ROS) are well known for their role in mediating both physiological and pathophysiological signal transduction. Enzymes and subcellular compartments that typically produce ROS are associated with metabolic regulation, and diseases associated with metabolic dysfunction may be influenced by changes in redox balance. In this review, we summarize the current literature surrounding ROS and their role in metabolic and inflammatory regulation, focusing on ROS signal transduction and its relationship to disease progression. In particular, we examine ROS production in compartments such as the cytoplasm, mitochondria, peroxisome, and endoplasmic reticulum and discuss how ROS influence metabolic processes such as proteasome function, autophagy, and general inflammatory signaling. We also summarize and highlight the role of ROS in the regulation metabolic/inflammatory diseases including atherosclerosis, diabetes mellitus, and stroke. In order to develop therapies that target oxidative signaling, it is vital to understand the balance ROS signaling plays in both physiology and pathophysiology, and how manipulation of this balance and the identity of the ROS may influence cellular and tissue homeostasis. An increased understanding of specific sources of ROS production and an appreciation for how ROS influence cellular metabolism may help guide us in the effort to treat cardiovascular diseases. © 2018 American Heart Association, Inc.

  14. Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications

    PubMed Central

    Giza, Dana Elena; Fuentes-Mattei, Enrique; Bullock, Marc David; Tudor, Stefan; Goblirsch, Matthew Joseph; Fabbri, Muller; Lupu, Florea; Yeung, Sai-Ching Jim; Vasilescu, Catalin; Calin, George Adrian

    2016-01-01

    Regardless of its etiology, once septic shock is established, survival rates drop by 7.6% for every hour antibiotic therapy is delayed. The early identification of the cause of infection and prognostic stratification of patients with sepsis are therefore important clinical priorities. Biomarkers are potentially valuable clinical tools in this context, but to date, no single biomarker has been shown to perform adequately. Hence, in an effort to discover novel diagnostic and prognostic markers in sepsis, new genomic approaches have been employed. As a result, a number of small regulatory molecules called microRNAs (miRNAs) have been identified as key regulators of the inflammatory response. Although deregulated miRNA expression is increasingly well described, the pathophysiological roles of these molecules in sepsis have yet to be fully defined. Moreover, non-human miRNAs, including two Kaposi Sarcoma herpesvirus-encoded miRNAs, are implicated in sepsis and may drive enhanced secretion of pro-inflammatory and anti-inflammatory cytokines exacerbating sepsis. A better understanding of the mechanism of action of both cellular and viral miRNAs, and their interactions with immune and inflammatory cascades, may therefore identify novel therapeutic targets in sepsis and make biomarker-guided therapy a realistic prospect. PMID:27740627

  15. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  16. Chemopreventive effects of a curcumin-like diarylpentanoid [2,6-bis(2,5-dimethoxybenzylidene)cyclohexanone] in cellular targets of rheumatoid arthritis in vitro.

    PubMed

    Lee, Ka-Heng; Abas, Faridah; Mohamed Alitheen, Noorjahan Banu; Shaari, Khozirah; Lajis, Nordin Haji; Israf, Daud Ahmad; Syahida, Ahmad

    2015-07-01

    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro. Synovial fibroblast cells (HIG-82) were cultured in vitro and induced by phorbol-12-myristate acetate (PMA) to stimulate the expression of matrix metalloproteinase (MMPs) and pro-inflammatory cytokines. The protective effects of BDMC33 were evaluated toward MMP activities, pro-inflammatory cytokine expression and nuclear factor kappa-B (NF-κB) activation by using various bioassay methods, including zymography, Western blotting, reverse transcription polymerase chain reaction, immunofluorescense microscopy and electrophoretic mobility shift assay. The results showed that BDMC33 significantly inhibited the pro-gelatinase B (pro-MMP-9) and collagenase activities via suppression of MMP-1 in activated SF. In addition, BDMC33 strongly suppressed MMP-3 gene expression as well as inhibited COX-2 and IL-6 pro-inflammatory gene expression. We also demonstrated that BDMC33 abolished the p65 NF-κB nuclear translocation and NF-κB DNA binding activity in PMA-stimulated SF. BDMC33 represents an effective chemopreventive agent and could be used as a promising lead compound for further development of rheumatoid arthritis therapeutic intervention. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  17. The cellular mechanisms of dry eye: from pathogenesis to treatment.

    PubMed

    Mantelli, Flavio; Massaro-Giordano, Mina; Macchi, Ilaria; Lambiase, Alessandro; Bonini, Stefano

    2013-12-01

    Dry eye is a complex disease characterized by changes in the ocular surface epithelia related to reduced quality and/or quantity of tears, inflammatory reaction, and impairment of ocular surface sensitivity. It has recently been proposed that increased tear osmolarity represents a main trigger to the altered cellular mechanisms leading to epithelial damage in dry eye. However, dry eye pathogenesis is multifactorial, with cytotoxic inflammatory mediators, altered lacrimal gland secretion and nerve function, squamous metaplasia of the conjunctival epithelium and decrease of goblet cells density, all playing a role in a detrimental loop that perpetuates and worsens damage to the corneal and conjunctival epithelia. Current topical treatments for dry eye patients include the use of lubricants and anti-inflammatory drugs. However, lubricants only improve symptoms temporarily, and chronic use of topical steroids is associated to severe ocular side effects such as cataract and glaucoma. The deeper understanding of the cellular mechanisms that are altered in dry eye is opening novel perspectives for patients and physicians, who are seeking treatments capable not only of improving symptoms but also of restoring the homeostasis of the ocular surface. In this review, we will focus on novel anti-inflammatory agents and on nerve growth factor, a neurotrophin that is altered in dry eye and has been suggested as a main player in the neuroimmune cross-talk of the ocular surface as well as in the stimulation of corneal sensitivity, epithelial proliferation and differentiation, and stimulation of mucin production by goblet cells. J. Cell. Physiol. 228: 2253-2256, 2013. © 2013 Wiley Periodicals, Inc. Copyright © 2013 Wiley Periodicals, Inc.

  18. Diagnostic value of inflammatory cell infiltrates, tumor stroma percentage and disease-free survival in patients with colorectal cancer

    PubMed Central

    Jakubowska, Katarzyna; Kisielewski, Wojciech; Kańczuga-Koda, Luiza; Koda, Mariusz; Famulski, Waldemar

    2017-01-01

    The anticancer immune defense mechanism involves humoral and cellular responses. The main effector mechanisms of antitumor responses involve the following: the activity of cytotoxic T cells; the activation of macrophages and neutrophils; the activity of cytokines secreted by T cells; and natural killer cell activity. Selected cell populations are responsible for the stimulation or suppression of the immune system against tumor cells. Therefore, the aim of the present study was to evaluate the location, extent and composition of the cellular inflammatory infiltration of tumors in patients with colorectal cancer (CRC). In addition, the correlation between cellular inflammatory infiltration, and anatomoclinical and histopathological features of patients was evaluated. The study involved 160 patients diagnosed with primary operable CRC. The local inflammatory infiltrate was assessed in the invasive front and center of the tumor using light microscopy with hematoxylin and eosin (H&E) staining, according to the Klintrup-Makinen criteria, tumor stroma percentage, and Glasgow microenvironment score. The inflammatory infiltrate in the invasive front of the tumor was correlated with gender (P=0.018), the invasion of blood vessels (P=0.020) and lymph vessels (P=0.038), the presence of tumor-infiltrating lymphocytes in the invasive front (P=0.033) and center (P<0.001) of the tumor, fibrosis (P<0.001), and the degree of desmoplasmic stroma (P=0.004). In contrast, inflammatory infiltration in the center of the tumor was associated with the tumor node metastasis stage (P=0.012), Dukes' stage (P=0.009), primary tumor stage (P=0.036), lymph node status (P=0.005), number of lymph nodes (P=0.006), invasion of lymph node pouches (P=0.021), size of lymph node metastasis (P=0.025) and the degree of desmoplasmic stroma (P=0.002). The low-group, who demonstrated an absent or weak inflammatory cell infiltrate in the invasive front of the tumor, had a statistically significant shorter disease-free survival (DFS) time (P=0.004). Inflammatory cell infiltrate in the invasive front was identified as an independent predictive factor in CRC (P=0.041). In conclusion, the degree of inflammatory cell infiltration in the invasive front of the primary tumor significantly affects various variables that determine disease progression and DFS rates of patients with CRC. Furthermore, the routine histopathological assessment of this parameter in tissue stained with H&E may have potential prognostic value. PMID:28927159

  19. Immune response

    MedlinePlus

    Innate immunity; Humoral immunity; Cellular immunity; Immunity; Inflammatory response; Acquired (adaptive) immunity ... normal and usually does not react against them. INNATE IMMUNITY Innate, or nonspecific, immunity is the defense ...

  20. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles.

    PubMed

    Li, Yang; Monteiro-Riviere, Nancy A

    2016-12-01

    To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.

  1. In vitro toxicology of ambient particulate matter: correlation of cellular effects with particle size and components.

    PubMed

    Kroll, Alexandra; Gietl, Johanna K; Wiesmüller, Gerhard A; Günsel, Andreas; Wohlleben, Wendel; Schnekenburger, Jürgen; Klemm, Otto

    2013-02-01

    High concentrations of airborne particulate matter (PM) have been associated with increased rates of morbidity and mortality among exposed populations. Although certain components of PM were suggested to influence these effects, no clear-cut correlation was determined thus far. One of the possible modes of action is the induction of oxidative stress by inhaled PM triggering inflammatory responses. Therefore, the in vitro formation of reactive oxygen species (ROS) in three cell lines in the presence of five subfractions of PM(10), collected in Münster, Germany was investigated. The PM components chloride, nitrate, ammonium, sulfate, 68 chemical elements, and endotoxin were quantified. The highest concentration of endotoxin was found in particles of 0.42-1.2 μm aerodynamic diameters, and therefore probably subject to long-range transport. Intracellular ROS formation in three well established mammalian cell lines (CaCo2, human; MDCK, canine; RAW264.7, mouse) only correlated positively with particle size. The two smallest PM size fractions provoked the highest rise in ROS. However, the latter did not correlate with the concentration of any PM components investigated. The smallest PM size fractions significantly dominated the number of particles. Therefore, the particle number may be most effective in inducing oxidative stress in vitro. Copyright © 2011 Wiley Periodicals, Inc.

  2. [Mechanism of action and effects of corticoids in asthma].

    PubMed

    Lacronique, J; Russo-Marie, F; Marsac, J

    1989-01-01

    The value of oral or inhaled glucocorticoids (GCS) in asthma is well recognized. Their use has remained empirical for a long time. However, some progress has been achieved recently in the understanding of their general mode of action and of their bronchial effects suggesting that in the near future ther may be some new therapeutic perspectives. The fundamental action of GCS involves a close intracellular interaction between the specific glucocorticoid hormone receptor and the cellular genome which results in the activation of the genes coding the proteins responsible for the phenotypic response of the cell and thus for their biological action. The place of the extra-genomic mechanisms remains ill understood. The immunomodulating action of GCS is difficult to dissociate from their anti-inflammatory and anti-allergic effects which seem to predominate in asthma. They inhibit all stages of the inflammatory reaction in acting on the key mediators of the inflammatory response, the pharmacologically active lipids (LPA: prostaglandins, leukotrienes, PAF-acether) which are a result of the catabolism of arachidonic acid which occurs during the course of membrane activation. The phospholipid A2 (PLA2), a membrane enzyme responsible for the splitting of the phospholipids in the presence of calcium and leading to the liberation of LPA is the driving force of the reaction in such a way that the products of the nuclear activation subsequently reactivated. GCS is considered as a natural modulator of inflammation, inducing the synthesis of lipocortin, an inhibitory protein of PLA2, which explains the blockage in the generation of LPA and thus the inflammatory reaction. The regulation of the activity of these or of the lipocortin seems to lead to the intervention of the phosphorylation. But numerous questions remain concerning the precise action of PLO2, the existence of endogenous lipocortin, their secretion and their extra-cellular action. In spite of these unknown facts it is not impossible to envisage a clinical potential for lipocortin, once sequenced and produced, when the pharmacological and immunological problems have been surmounted. In asthma the effect of GCS essentially involve: the inhibition of all the bronchial components of inflammation: the synthesis, liberation and peripheral action of the mediators; the oedema and mucous congestion.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Temporal analysis of oxidative effects on the pulmonary inflammatory response in mice exposed to cigarette smoke.

    PubMed

    Campos, Keila Karine Duarte; Manso, Rafaela Gontijo; Gonçalves, Evandro Guedes; Silva, Marcelo Eustáquio; de Lima, Wanderson Geraldo; Menezes, Cristiane Alves Silva; Bezerra, Frank Silva

    2013-01-01

    The most common factor related to the chronic obstructive pulmonary disease (COPD) development is the chronic smoking habit. Our study describes the temporal kinesis of pulmonary cellular influx through BALF analyses of mice acutely exposed to cigarette smoke (CS), the oxidative damage and antioxidative enzyme activities. Thirty-six mice (C57BL/6, 8weeks old, male) were divided in 6 groups: the control group (CG), exposed to ambient air, and the other 30 mice were exposed to CS. Mice exposed to CS presented, especially after the third day of exposure, different cellular subpopulations in BALF. The oxidative damage was significantly higher in CS exposed groups compared to CG. Our data showed that the evaluated inflammatory cells, observed after three days of CS exposure, indicate that this time point could be relevant to studies focusing on these cellular subpopulation activities and confirm the oxidative stress even in a short term CS exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. mTOR Regulates Cellular Iron Homeostasis through Tristetraprolin

    PubMed Central

    Bayeva, Marina; Khechaduri, Arineh; Puig, Sergi; Chang, Hsiang-Chun; Patial, Sonika; Blackshear, Perry J.; Ardehali, Hossein

    2013-01-01

    SUMMARY Iron is an essential cofactor with unique redox properties. Iron regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux. Mechanistic studies identify tristetraprolin (TTP), a protein involved in anti-inflammatory response, as the downstream target of mTOR that binds to and enhances degradation of TfR1 mRNA. We also show that TTP is strongly induced by iron chelation, promotes downregulation of iron-requiring genes in both mammalian and yeast cells, and modulates survival in low-iron states. Taken together, our data uncover a link between metabolic, inflammatory, and iron regulatory pathways, and point towards the existence of a yeast-like TTP-mediated iron conservation program in mammals. PMID:23102618

  5. Specialized Proresolving Mediators in Innate and Adaptive Immune Responses in Airway Diseases.

    PubMed

    Krishnamoorthy, Nandini; Abdulnour, Raja-Elie E; Walker, Katherine H; Engstrom, Braden D; Levy, Bruce D

    2018-07-01

    Airborne pathogens and environmental stimuli evoke immune responses in the lung. It is critical to health that these responses be controlled to prevent tissue damage and the compromise of organ function. Resolution of inflammation is a dynamic process that is coordinated by biochemical and cellular mechanisms. Recently, specialized proresolving mediators (SPMs) have been identified in resolution exudates. These molecules orchestrate anti-inflammatory and proresolving actions that are cell type specific. In this review, we highlight SPM biosynthesis, the influence of SPMs on the innate and adaptive immune responses in the lung, as well as recent insights from SPMs on inflammatory disease pathophysiology. Uncovering these mediators and cellular mechanisms for resolution is providing new windows into physiology and disease pathogenesis.

  6. Trehalose supplementation reduces hepatic endoplasmic reticulum stress and inflammatory signaling in old mice.

    PubMed

    Pagliassotti, Michael J; Estrada, Andrea L; Hudson, William M; Wei, Yuren; Wang, Dong; Seals, Douglas R; Zigler, Melanie L; LaRocca, Thomas J

    2017-07-01

    The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging and cellular damage. Quality control systems, such as the unfolded protein response (UPR), inflammatory signaling and protein degradation, mitigate the residence time of damaged proteins. In the present study, we have examined the UPR and inflammatory signaling in the liver of young (~6 months) and old (~28 months) mice (n=8/group), and the ability of trehalose, a compound linked to increased protein stability and autophagy, to counteract age-induced effects on these systems. When used, trehalose was provided for 4 weeks in the drinking water immediately prior to sacrifice (n=7/group). Livers from old mice were characterized by activation of the UPR, increased inflammatory signaling and indices of liver injury. Trehalose treatment reduced the activation of the UPR and inflammatory signaling, and reduced liver injury. Reductions in proteins involved in autophagy and proteasome activity observed in old mice were restored following trehalose treatment. The autophagy marker, LC3B-II, was increased in old mice treated with trehalose. Metabolomics analyses demonstrated that reductions in hexosamine biosynthetic pathway metabolites and nicotinamide in old mice were restored following trehalose treatment. Trehalose appears to be an effective intervention to reduce age-associated liver injury and mitigate the need for activation of quality control systems that respond to disruption of proteostasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Control of cellular influx in lung and its role in pulmonary toxicology.

    PubMed Central

    Lynn, W S

    1984-01-01

    The pulmonary influx of cytotoxic inflammatory cells, normally, in response to external toxins, is now thought to be etiologic in many of the disease syndromes of man, such as bronchitis and emphysema. Many types of effector inflammatory cells are involved, e.g., eosinophils, neutrophils, T-lymphocytes, monocytes. The diseases are characterized either by tissue destruction or by tissue hyperplasia. Agents which initiate the influx and cytotoxic secretions by these cells are legion and in general are not cell-specific. They include agents, such as phorbol esters, formyl peptides-complement fragments, elastin fragments, fatty acids (leukotrienes) as well as many uncharacterized excretions of inflammatory cells themselves, which react with specific receptors on the inflammatory cells, and secreted proteins such as fibronectin. Other agents, such as linoleic acid, digitonin and hydroxy fatty acids which are not bound by specific receptors also activate motility of inflammatory cells. The precise role of the above multiple cytotoxins in specific cellular fluxes in most pulmonary disease remains undefined. Similarly, the mechanism of cytotoxicity used by specific invading cells in specific pulmonary syndromes remains unclear. In general, macrophages are thought to destroy using specific proteases, neutrophils use oxidant radicals and proteases and eosinophils use basic surface active peptides. T-cells kill by unknown mechanisms. However, in specific clinical syndromes, it is usually not clear which cell is the cytotoxic culprit, nor is the mechanism of destruction usually known. PMID:6376103

  8. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    PubMed

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Carbon monoxide: present and future indications for a medical gas

    PubMed Central

    Choi, Augustine M. K.

    2013-01-01

    Gaseous molecules continue to hold new promise in molecular medicine as experimental and clinical therapeutics. The low molecular weight gas carbon monoxide (CO), and similar gaseous molecules (e.g., H2S, nitric oxide) have been implicated as potential inhalation therapies in inflammatory diseases. At high concentration, CO represents a toxic inhalation hazard, and is a common component of air pollution. CO is also produced endogenously as a product of heme degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemoglobin, causing hypoxemia and decreased oxygen delivery to tissues at high concentrations. At physiological concentrations, CO may have endogenous roles as a signal transduction molecule in the regulation of neural and vascular function and cellular homeostasis. CO has been demonstrated to act as an effective anti-inflammatory agent in preclinical animal models of inflammation, acute lung injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional experimental indications for this gas include pulmonary fibrosis, pulmonary hypertension, metabolic diseases, and preeclampsia. The development of chemical CO releasing compounds constitutes a novel pharmaceutical approach to CO delivery with demonstrated effectiveness in sepsis models. Current and pending clinical evaluation will determine the usefulness of this gas as a therapeutic in human disease. PMID:23525151

  10. Understanding the origin of non-immune cell-mediated weakness in the idiopathic inflammatory myopathies - potential role of ER stress pathways.

    PubMed

    Lightfoot, Adam P; Nagaraju, Kanneboyina; McArdle, Anne; Cooper, Robert G

    2015-11-01

    Discussion of endoplasmic reticulum (ER) stress pathway activation in idiopathic inflammatory myopathies (IIM), and downstream mechanisms causative of muscle weakness. In IIM, ER stress is an important pathogenic process, but how it causes muscle dysfunction is unknown. We discuss relevant pathways modified in response to ER stress in IIM: reactive oxygen species (ROS) generation and mitochondrial dysfunction, and muscle cytokine (myokine) generation. First, ER stress pathway activation can induce changes in mitochondrial bioenergetics and ROS production. ROS can oxidize cellular components, causing muscle contractile dysfunction and energy deficits. Novel compounds targeting ROS generation and/or mitochondrial dysfunction can improve muscle function in several myopathologies. Second, recent research has demonstrated that skeletal muscle produces multiple myokines. It is suggested that these play a role in causing muscle weakness. Myokines are capable of immune cell recruitment, thus contributing to perturbed muscle function. A characterization of myokines in IIM would clarify their pathogenic role, and so identify new therapeutic targets. ER stress pathway activation is clearly of etiological relevance in IIM. Research to better understand mechanisms of weakness downstream of ER stress is now required, and which may discover new therapeutic targets for nonimmune cell-mediated weakness.

  11. Noncoding RNAs: New Players in Pulmonary Medicine and Sarcoidosis.

    PubMed

    Salamo, Oriana; Mortaz, Esmaeil; Mirsaeidi, Mehdi

    2018-02-01

    Noncoding RNAs (ncRNAs) are coded by 98% of human genomic DNA. They are grouped into two major classes according to length: small ncRNAs and long ncRNAs. They regulate genome organization, stability, and physiological processes that maintain cellular homeostasis. Recently, great interest has emerged in ncRNAs because of their significant roles in the development of inflammatory diseases, including sarcoidosis. Some have been introduced as novel markers for disease activity, such as increased levels of microRNA-34a in peripheral blood mononuclear cells of patients with sarcoidosis, re-emphasizing the inflammatory component in sarcoidosis. They are also important factors in the outcome of sarcoidosis. Dysregulation of microRNA-let7f leads to overexpression of profibrotic factors and could be related to the pathogenesis of pulmonary fibrosis in patients with sarcoidosis, owing to their stimulatory effect on collagen expression and deposition. However, many unanswered questions remain about the association of ncRNAs and sarcoidosis. By understanding the functions of ncRNAs in T-helper cell type 1 and T-helper cell type 17, we may uncover the mechanism of action of those cells in sarcoidosis. Further translational research is needed to define the RNA gene fingerprint of different sarcoidosis stages.

  12. Evaluation of human serum of severe rheumatoid arthritis by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, C. S.; Raniero, L.; Santo, A. M. E.; Pinheiro, M. M.; Andrade, L. E. C.; Cardoso, M. A. G.; Junior, J. S.; Martin, A. A.

    2010-02-01

    Rheumatoid Arthritis is a systemic chronic inflammatory disease, recurrent and systemic, initiated by autoantibodies and maintained by inflammatory mechanisms cellular applicants. The evaluation of this disease to promote early diagnosis, need an associations of many tools, such as clinical, physical examination and thorough medical history. However, there is no satisfactory consensus due to its complexity. In the present work, confocal Raman spectroscopy was used to evaluate the biochemical composition of human serum of 40 volunteers, 24 patients with rheumatoid arthritis presenting clinical signs and symptoms, and 16 healthy donors. The technique of latex agglutination for the polystyrene covered with human immunoglobulin G and PCR (protein c-reactive) was performed for confirmation of possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique. This study aimed to verify the changes for the characteristics Raman peaks of biomolecules such as immunoglobulins amides and protein. The results were highly significant with a good separation between groups mentioned. The discriminant analysis was performed through the principal components and correctly identified 92% of the donors. Based on these results, we observed the behavior of arthritis autoimmune, evident in certain spectral regions that characterize the serological differences between the groups.

  13. A Comprehensive Review of Punica granatum (Pomegranate) Properties in Toxicological, Pharmacological, Cellular and Molecular Biology Researches

    PubMed Central

    Rahimi, Hamid Reza; Arastoo, Mohammad; Ostad, Seyed Nasser

    2012-01-01

    Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms. PMID:24250463

  14. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines.

    PubMed

    Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo

    2013-08-06

    MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.

  15. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines

    PubMed Central

    2013-01-01

    Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease. PMID:23915129

  16. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research.

    PubMed

    Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael

    2016-07-01

    Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.

  17. Gene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes

    PubMed Central

    Loose, David S.; Gottipati, Koteswara R.; Natarajan, Kartiga; Mitchell, Courtney T.

    2016-01-01

    The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung health. To better understand the effects of organic dust on lung inflammatory responses, we characterized the gene expression profiles of A549 alveolar and Beas2B bronchial epithelial and THP-1 monocytic cells influenced by exposure to poultry dust extract by DNA microarray analysis using Illumina Human HT-12 v4 Expression BeadChip. We found that A549 alveolar and Beas2B bronchial epithelial and THP-1 cells responded with unique changes in the gene expression profiles with regulation of genes encoding inflammatory cytokines, chemokines, and other inflammatory proteins being common to all the three cells. Significantly induced genes included IL-8, IL-6, IL-1β, ICAM-1, CCL2, CCL5, TLR4, and PTGS2. Validation by real-time qRT-PCR, ELISA, Western immunoblotting, and immunohistochemical staining of lung sections from mice exposed to dust extract validated DNA microarray results. Pathway analysis indicated that dust extract induced changes in gene expression influenced functions related to cellular growth and proliferation, cell death and survival, and cellular development. These data show that a broad range of inflammatory mediators produced in response to poultry dust exposure can modulate lung immune and inflammatory responses. This is the first report on organic dust induced changes in expression profiles in lung epithelial and THP-1 monocytic cells. PMID:26884459

  18. Identification and evaluation of anti-inflammatory properties of aqueous components extracted from sesame (Sesamum indicum) oil.

    PubMed

    Deme, Pragney; Narasimhulu, Chandrakala Aluganti; Parthasarathy, Sampath

    2018-06-15

    We previously reported that sesame oil (SO) has anti-inflammatory, anti-atherosclerotic and lipid lowering properties in vivo. Our recent studies have shown that, an aqueous extract of sesame oil (SOAE) has also anti-inflammatory and anti-atherosclerotic properties but with no lipid lowering effects. The extent of reduction in atherosclerosis led us to identify components of SOAE and evaluate their anti-inflammatory properties in vitro. Liquid chromatography mass spectrometric method was used to detect and identify components of SOAE. Methoxyphenol derivatives, short and long chain carboxylic acids, dicarboxylic acids, hydroxy and oxo- carboxylic acids were detected. To our surprise, sesamol and its derivatives (lignans), were not present in the SOAE. Among the identified, a combination of methoxy phenol compounds were selected and tested their ability to reduce LPS induced inflammatory gene expression. Monocyte derived macrophages/RAW 264.7 macrophages were pre-treated with these compounds for 2 h, followed by LPS stimulation for 24 h and pro-inflammatory gene expressions were analyzed. These methoxyphenol derivatives showed potent anti-inflammatory properties. In conclusion, the anti-inflammatory molecules associated with SO may contribute the anti-inflammatory and anti-atherosclerotic properties. Also, our results shed light for the development of SOAE based non-pharmacological therapeutics, nutritional supplements and health products for various inflammatory diseases in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro.

    PubMed

    Sekhejane, Palesa R; Houreld, Nicolette N; Abrahamse, Heidi

    2011-08-01

    This study investigated the effect of low-intensity laser irradiation (LILI) on pro-inflammatory cytokines involved in wound healing processes in diabetes and hypoxia. Diabetes is associated with impaired wound healing and a prolonged inflammatory phase. Pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 are elevated in diabetes. LILI has been reported to accelerate wound healing and decrease inflammatory cytokines. A human skin fibroblast cell line (WS1) was used in vitro. Cells were exposed to various insults, namely, wounding, and a diabetic or hypoxic environment. Experimental cells were exposed to an energy density of 5  J/cm(2) using a continuous wave 636-nm diode laser at an average power of 95  mW, an illuminated area of 9.05  cm(2), and an irradiance of 11 mW/cm(2) (irradiation time, 476  sec). The effect of laser irradiation on cytokine expression was examined at 1 or 24  h post-irradiation. Cellular morphology, viability, proliferation, and cytokine expression (IL-1β, IL-6, and TNF-α) were investigated. Translocation of nuclear factor-kappa B (NF-κB) was also determined. There was a higher rate of migration in irradiated wounded cultures, and irradiated hypoxic cells showed an improvement in cellular morphology. All cell models showed an increase in proliferation. Normal wounded cells showed a decrease in apoptosis, TNF-α, and IL-1β. Diabetic wounded cells showed an increase in viability and a decrease in apoptosis and IL-1β, whereas hypoxic cells showed an increase in viability and IL-6, and a decrease in apoptosis and TNF-α. NF-κB was translocated into the nucleus post-irradiation. Phototherapy resulted in hastened wound closure, increased proliferation, and normalization of cellular function. The decrease in the different pro-inflammatory cytokines and NF-κB translocation was model and time dependent. Overall, laser irradiation resulted in a reduction in inflammatory cytokines and directed cells into the cell survival pathway.

  20. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Structure and content components of self-management interventions that improve health-related quality of life in people with inflammatory bowel disease: a systematic review, meta-analysis and meta-regression.

    PubMed

    Tu, Wenjing; Xu, Guihua; Du, Shizheng

    2015-10-01

    The purpose of this review was to identify and categorise the components of the content and structure of effective self-management interventions for patients with inflammatory bowel disease. Inflammatory bowel diseases are chronic gastrointestinal disorders impacting health-related quality of life. Although the efficacy of self-management interventions has been demonstrated in previous studies, the most effective components of the content and structure of these interventions remain unknown. A systematic review, meta-analysis and meta-regression of randomised controlled trials was used. A systematic search of six electronic databases, including Pubmed, Embase, Cochrane central register of controlled trials, Web of Science, Cumulative Index of Nursing and Allied Health Literature and Chinese Biomedical Literature Database, was conducted. Content analysis was used to categorise the components of the content and structure of effective self-management interventions for inflammatory bowel disease. Clinically important and statistically significant beneficial effects on health-related quality of life were explored, by comparing the association between effect sizes and various components of self-management interventions such as the presence or absence of specific content and different delivery methods. Fifteen randomised controlled trials were included in this review. Distance or remote self-management interventions demonstrated a larger effect size. However, there is no evidence for a positive effect associated with specific content component of self-management interventions in adult patients with inflammatory bowel disease in general. The results showed that self-management interventions have positive effects on health-related quality of life in patients with inflammatory bowel disease, and distance or remote self-management programmes had better outcomes than other types of interventions. This review provides useful information to clinician and researchers when determining components of effective self-management programmes for patients with inflammatory bowel disease. More high-quality randomised controlled trials are needed to test the results. © 2015 John Wiley & Sons Ltd.

  2. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes

    PubMed Central

    Moreno-Moral, Aida

    2016-01-01

    ABSTRACT Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. PMID:27736746

  3. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment

    PubMed Central

    Singhal, Gaurav; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods. PMID:24772064

  4. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes.

    PubMed

    Moreno-Moral, Aida; Petretto, Enrico

    2016-10-01

    Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. © 2016. Published by The Company of Biologists Ltd.

  5. Nrf2 protects against airway disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Hye-Youn, E-mail: cho2@niehs.nih.go; Kleeberger, Steven R.

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver,more » gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.« less

  6. Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems

    NASA Astrophysics Data System (ADS)

    Frombach, Janna; Lohan, Silke B.; Lemm, Davina; Gruner, Paul; Hasler, Julia; Ahlberg, Sebastian; Blume-Peytavi, Ulrike; Unbehauen, Michael; Haag, Rainer; Meinke, Martina C.; Vogt, Annika

    2018-05-01

    Refined encapsulation approaches in dermatotherapy gain increased interest. There is need of reproducible in vitro systems representing disease features to screen drug delivery systems for preclinical assessment. Inflammatory human skin diseases are commonly accompanied by abnormal epidermal differentiation and barrier impairment. Serine proteases (SPs) and their inhibitors play a critical role in such dysfunctional differentiation. SPs also initiate cellular pathways via activation of protease-activated receptors, which contribute to inflammation. Thus, function and activity of SPs should be considered for the design of new therapies of such disorders. Herein, we established a novel simplified cell culture model, based on SP-mediated inflammation suitable to assess nanocarriers loaded with anti-inflammatory drugs. SP-mediated inflammation and the regulatory effect of free or encapsulated dexamethasone were determined by measuring interleukin-6 and interleukin-8 in culture medium of HaCaT (human adult low calcium temperature)-keratinocytes. Additionally, radical formation was analyzed by electron paramagnetic resonance spectroscopy. Cellular uptake of core-multishell nanocarriers was investigated by fluorescence microscopy. Cytotoxicity of all additives was determined by a viability assay. SP-Stimulation of keratinocytes resulted in increased radical production and release of inflammatory cytokines without affecting cell viability. Induced inflammation was successfully downregulated by addition of free or encapsulated dexamethasone. SP-addition can be used as inflammatory stimulus in cell culture to mimic effects of aberrant enzymatic activities found in skin of atopic dermatitis patients. The set-up is appropriate as a preliminary test to examine the effectiveness of new molecules or delivery-systems to counteract serine protease-mediated inflammatory processes prior to skin studies.

  7. Antimelanogenesis and Anti-Inflammatory Activity of Selected Culinary-Medicinal Mushrooms.

    PubMed

    Saad, Hazwani Mat; Sim, Kae Shin; Tan, Yee Shin

    2018-01-01

    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.

  8. Pseudolaric acid B attenuates atherosclerosis progression and inflammation by suppressing PPARγ-mediated NF-κB activation.

    PubMed

    Li, Tan; Wang, Wei; Li, Yu-Xiu; Li, Xiao; Ji, Wen-Jie; Ma, Yong-Qiang; Chen, Hong; Zhao, Ji-Hong; Zhou, Xin

    2018-06-01

    Atherosclerosis is a progressive disease of large arteries characterized with chronic inflammation and aberrant immune response. Pseudolaric acid B (PB) has been found to exert multiple effects by inhibiting inflammatory response. However, there is no comprehensive assessment of the effects of PB on atherosclerosis using relevant in vivo and in vitro models. Male ApoE -/- mice were treated with PB orally with a high fat diet (HFD) to clarify its anti-atherosclerotic activities. RAW264.7 macrophage line, a well-accepted cell model of atherosclerosis, was used to investigate anti-inflammatory effects and molecular mechanisms of PB. PB significantly attenuated atherosclerotic lesions by modulating plasma lipid profiles as well as inhibiting inflammatory responses in macrophages of atherosclerotic mice. Meanwhile, PB markedly suppressed the expression of pro-inflammatory cytokines, and regulated cholesterol efflux related genes in oxidative low density lipoprotein (ox-LDL)-loaded macrophages. The cellular uptake of Dil-labeled ox-LDL was significantly inhibited by PB either. Moreover, the ability of PB to suppress nuclear factor kappa B (NF-κB) and activate peroxisome proliferator-activated receptor gamma (PPARγ) was confirmed using luciferase reporter assays. Conversely, the selective PPARγ antagonist GW9662 reversed the influence of PB in macrophages. Together, these findings indicate that PB exerts its protective effects on atherosclerosis by inhibiting macrophage-mediated inflammatory response and cellular ox-LDL uptake, and promoting cholesterol efflux by suppressing NF-κB activation PPARγ-dependently. Therefore, PB may be a promising agent for inflammatory and atherosclerotic diseases. Copyright © 2018. Published by Elsevier B.V.

  9. Exosome platform for diagnosis and monitoring of traumatic brain injury

    PubMed Central

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2014-01-01

    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. PMID:25135964

  10. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.

    PubMed

    Martinet, Wim; De Meyer, Guido R Y

    2009-02-13

    Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.

  11. Non-invasive monitoring of cytokine-based regenerative treatment of cartilage by hyperspectral unmixing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mahbub, Saabah B.; Succer, Peter; Gosnell, Martin E.; Anwaer, Ayad G.; Herbert, Benjamin; Vesey, Graham; Goldys, Ewa M.

    2016-03-01

    Extracting biochemical information from tissue autofluorescence is a promising approach to non-invasively monitor disease treatments at a cellular level, without using any external biomarkers. Our recently developed unsupervised hyperspectral unmixing by Dependent Component Analysis (DECA) provides robust and detailed metabolic information with proper account of intrinsic cellular heterogeneity. Moreover this method is compatible with established methods of fluorescent biomarker labelling. Recently adipose-derived stem cell (ADSC) - based therapies have been introduced for treating different diseases in animals and humans. ADSC have been shown promise in regenerative treatments for osteoarthritis and other bone and joint disorders. One of the mechanism of their action is their anti-inflammatory effects within osteoarthritic joints which aid the regeneration of cartilage. These therapeutic effects are known to be driven by secretions of different cytokines from the ADSCs. We have been using the hyperspectral unmixing techniques to study in-vitro the effects of ADSC-derived cytokine-rich secretions with the cartilage chip in both human and bovine samples. The study of metabolic effects of different cytokine treatment on different cartilage layers makes it possible to compare the merits of those treatments for repairing cartilage.

  12. Correlating cellular and molecular signatures of mucosal immunity that distinguish HIV controllers from noncontrollers.

    PubMed

    Loke, P'ng; Favre, David; Hunt, Peter W; Leung, Jacqueline M; Kanwar, Bittoo; Martin, Jeffrey N; Deeks, Steven G; McCune, Joseph M

    2010-04-15

    HIV "controllers" are persons infected with human immunodeficiency virus, type I (HIV) who maintain long-term control of viremia without antiviral therapy and who usually do not develop the acquired immune deficiency syndrome (AIDS). In this study, we have correlated results from polychromatic flow cytometry and oligonucleotide expression arrays to characterize the mucosal immune responses of these subjects in relation to untreated HIV(+) persons with high viral loads and progressive disease ("noncontrollers"). Paired peripheral blood and rectosigmoid biopsies were analyzed from 9 controllers and 11 noncontrollers. Several cellular immune parameters were found to be concordant between the 2 compartments. Compared with noncontrollers, the mucosal tissues of controllers had similar levels of effector T cells and fewer regulatory T cells (Tregs). Using principal component analysis to correlate immunologic parameters with gene expression profiles, transcripts were identified that accurately distinguished between controllers and noncontrollers. Direct 2-way comparison also revealed genes that are significantly different in their expression between controllers and noncontrollers, all of which had reduced expression in controllers. In addition to providing an approach that integrates flow cytometry datasets with transcriptional profiling analysis, these results underscore the importance of the sustained inflammatory response that attends progressive HIV disease.

  13. Galectin-3 in autoimmunity and autoimmune diseases

    PubMed Central

    de Oliveira, Felipe L; Gatto, Mariele; Bassi, Nicola; Luisetto, Roberto; Ghirardello, Anna; Punzi, Leonardo

    2015-01-01

    Galectin-3 (gal-3) is a β-galactoside-binding lectin, which regulates cell–cell and extracellular interactions during self/non-self-antigen recognition and cellular activation, proliferation, differentiation, migration and apoptosis. It plays a significant role in cellular and tissue pathophysiology by organizing niches that drive inflammation and immune responses. Gal-3 has some therapeutic potential in several diseases, including chronic inflammatory disorders, cancer and autoimmune diseases. Gal-3 exerts a broad spectrum of functions which differs according to its intra- or extracellular localization. Recombinant gal-3 strategy has been used to identify potential mode of action of gal-3; however, exogenous gal-3 may not reproduce the functions of the endogenous gal-3. Notably, gal-3 induces monocyte–macrophage differentiation, interferes with dendritic cell fate decision, regulates apoptosis on T lymphocytes and inhibits B-lymphocyte differentiation into immunoglobulin secreting plasma cells. Considering the influence of these cell populations in the pathogenesis of several autoimmune diseases, gal-3 seems to play a role in development of autoimmunity. Gal-3 has been suggested as a potential therapeutic agent in patients affected with some autoimmune disorders. However, the precise role of gal-3 in driving the inflammatory process in autoimmune or immune-mediated disorders remains elusive. Here, we reviewed the involvement of gal-3 in cellular and tissue events during autoimmune and immune-mediated inflammatory diseases. PMID:26142116

  14. REDOX REGULATION OF SIRT1 IN INFLAMMATION AND CELLULAR SENESCENCE

    PubMed Central

    Hwang, Jae-woong; Yao, Hongwei; Caito, Samuel; Sundar, Isaac K.; Rahman, Irfan

    2013-01-01

    Sirtuin1 (SIRT1) regulates inflammation, aging (lifespan and healthspan), calorie restriction/energetics, mitochondrial biogenesis, stress resistance, cellular senescence, endothelial functions, apoptosis/autophagy, and circadian rhythms through deacetylation of transcription factors and histones. SIRT1 level and activity are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. SIRT1 is regulated by a NAD+-dependent DNA repair enzyme poly(ADP-ribose)-polymerase-1 (PARP-1), and subsequent NAD+ depletion by oxidative stresses may have consequent effects on inflammatory and stress responses as well as cellular senescence. SIRT1 has been shown to undergo covalent oxidative modifications by cigarette smoke-derived oxidants/aldehydes, leading to post-translational modifications, inactivation, and protein degradation. Furthermore, oxidant/carbonyl stress-mediated reduction of SIRT1 leads to the loss of its control on acetylation of target proteins including p53, RelA/p65 and FOXO3, thereby enhancing the inflammatory, pro-senescent and apoptotic responses, as well as endothelial dysfunction. In this review, the mechanisms of cigarette smoke/oxidant-mediated redox post-translational modifications of SIRT1 and its role in PARP1, NF-κB activation, FOXO3 and eNOS regulation, as well as chromatin remodeling/histone modifications during inflammaging are discussed. Furthermore, we also discussed various novel ways to activate SIRT1 either directly or indirectly, which may have therapeutic potential in attenuating inflammation and premature senescence involved in chronic lung diseases. PMID:23542362

  15. Anti-inflammatory effects of Chinese medicinal herbs on cerebral ischemia.

    PubMed

    Su, Shan-Yu; Hsieh, Ching-Liang

    2011-07-09

    Recent studies have demonstrated the importance of anti-inflammation, including cellular immunity, inflammatory mediators, reactive oxygen species, nitric oxide and several transcriptional factors, in the treatment of cerebral ischemia. This article reviews the roles of Chinese medicinal herbs as well as their ingredients in the inflammatory cascade induced by cerebral ischemia. Chinese medicinal herbs exert neuroprotective effects on cerebral ischemia. The effects include inhibiting the activation of microglia, decreasing levels of adhesion molecules such as intracellular adhesion molecule-1, attenuating expression of pro-inflammatory cytokines such as interleukin-1β and tumor necrosis factor-α, reducing inducible nitric oxide synthase and reactive oxygen species, and regulating transcription factors such as nuclear factor-κB.

  16. Inflammatory responses to secondary organic aerosols (SOA) generated from biogenic and anthropogenic precursors

    NASA Astrophysics Data System (ADS)

    Tuet, Wing Y.; Chen, Yunle; Fok, Shierly; Champion, Julie A.; Ng, Nga L.

    2017-09-01

    Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.

  17. Etiopathogenesis, clinical diagnosis and treatment of thromboangiitis obliterans – current practices

    PubMed Central

    Joviliano, Edwaldo Edner; Dellalibera-Joviliano, Renata; Dalio, Marcelo; Évora, Paulo RB; Piccinato, Carlos E

    2009-01-01

    Thromboangiitis obliterans (TAO) is a segmental inflammatory occlusive disorder that affects small- and medium-sized arteries, and arm and leg veins of young smokers. Several different diagnostic criteria have been offered for the diagnosis of TAO. Clinically, it manifests as migratory thrombophlebitis or signs of arterial insufficiency in the extremities. It is characterized by highly cellular and inflammatory occlusive thrombi, primarily of the distal extremities. Thromboses are often occlusive and sometimes display moderate, nonspecific inflammatory infiltrate, consisting mostly of polymorphonuclear leukocytes, mononuclear cells and rare multinuclear giant cells. The immune system appears to play a critical role in the etiology of TAO. However, knowledge about immunological aspects involved in the progression of vascular tissue inflammation, and consequently, the evolution of this disease, is still limited. There are several studies that suggest the involvement of genetic factors and results have shown increasing levels of antiendothelial cell antibodies in patients with active disease. Vasodilation is impaired in patients with TAO. TAO disorder may actually be an autoimmune disorder, probably initiated by an unknown antigen in the vascular endothelium, possibly a component of nicotine. There are various therapies available for treatment of TAO, but the major and indispensable measure is smoking cessation. Except for discontinuation of tobacco use, no forms of therapy are definitive. Sympathectomy, cilostazol and prostaglandin analogues (prostacyclin or prostaglandin E) have been used in specific conditions. Recently, therapeutic angiogenesis with autologous transplantation of bone marrow mononuclear cells has been studied in patients with critical limb ischemia. PMID:22477511

  18. Evidence for Proinflammatory β-1,6 Glucans in the Pneumocystis carinii Cell Wall

    PubMed Central

    Kottom, Theodore J.; Hebrink, Deanne M.; Jenson, Paige E.; Gudmundsson, Gunnar

    2015-01-01

    Inflammation is a major cause of respiratory impairment during Pneumocystis pneumonia. Studies support a significant role for cell wall β-glucans in stimulating inflammatory responses. Fungal β-glucans are comprised of d-glucose homopolymers containing β-1,3-linked glucose backbones with β-1,6-linked glucose side chains. Prior studies in Pneumocystis carinii have characterized β-1,3 glucan components of the organism. However, recent investigations in other organisms support important roles for β-1,6 glucans, predominantly in mediating host cellular activation. Accordingly, we sought to characterize β-1,6 glucans in the cell wall of Pneumocystis and to establish their activity in lung cell inflammation. Immune staining revealed specific β-1,6 localization in P. carinii cyst walls. Homology-based cloning facilitated characterization of a functional P. carinii kre6 (Pckre6) β-1,6 glucan synthase in Pneumocystis that, when expressed in kre6-deficient Saccharomyces cerevisiae, restored cell wall stability. Recently synthesized β-1,6 glucan synthase inhibitors decreased the ability of isolated P. carinii preparations to generate β-1,6 carbohydrate. In addition, isolated β-1,6 glucan fractions from Pneumocystis elicited vigorous tumor necrosis factor alpha (TNF-α) responses from macrophages. These inflammatory responses were significantly dampened by inhibition of host cell plasma membrane microdomain function. Together, these studies indicate that β-1,6 glucans are present in the P. carinii cell wall and contribute to lung cell inflammatory activation during infection. PMID:25916991

  19. Proinflammatory activation of macrophages by bisphenol A-glycidyl-methacrylate involved NFκB activation via PI3K/Akt pathway.

    PubMed

    Kuan, Yu-Hsiang; Huang, Fu-Mei; Li, Yi-Ching; Chang, Yu-Chao

    2012-11-01

    Bisphenol A-glycidyl-methacrylate (BisGMA), a dental composite resin and dentin bonding agent, might prompt inflammatory effects to adjacent tissues. Macrophages are a major cellular component of the inflammatory sites. Little is known about the mechanisms of BisGMA on macrophages activation. The aim of this study was to evaluate BisGMA on proinflammatory mediators generation of murine macrophage RAW264.7 cells. IL-1β and IL-6 were analyzed by enzyme-linked immunosorbent assay. Nitric oxide, extracellular superoxide anion, and intracellular reaction oxygen species were measured by Griess assay, ferricytochrome c, and 2',7'-dichlorofluorescein assay, respectively. Expression of iNOS, p-p65, IκB, and p-Akt was analyzed by Western blotting. BisGMA augmented the generation of IL-1β, IL-6, nitric oxide and the expression of iNOS in a time- and dose-dependent manner (p<0.05). BisGMA enhanced the generation of intracellular and extracellular ROS in a dose-dependent manner (p<0.05). The levels of p65 phosphorylation, IκB degradation, and Akt phosphorylation were found to be increased in a time- and dose-dependent manner (p<0.05). These results indicate that BisGMA could induce nitric oxide, ROS, and inflammatory cytokines in macrophages. In addition, BisGMA may active macrophage via NF-κB activation, IκB degradation, and p-Akt activation. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. The Effects of Extracellular Matrix Proteins on Neutrophil-Endothelial Interaction ― A Roadway To Multiple Therapeutic Opportunities

    PubMed Central

    Padmanabhan, Jagannath; Gonzalez, Anjelica L.

    2012-01-01

    Polymorphoneuclear leukocytes or neutrophils, a major component of white blood cells, contribute to the innate immune response in humans. Upon sensing changes in the microenvironment, neutrophils adhere to the vascular wall, migrate through the endothelial cell (EC)-pericyte bilayer, and subsequently through the extracellular matrix to reach the site of inflammation. These cells are capable of destroying microbes, cell debris, and foreign proteins by oxidative and non-oxidative processes. While primarily mediators of tissue homeostasis, there are an increasing number of studies indicating that neutrophil recruitment and transmigration can also lead to host-tissue injury and subsequently inflammation-related diseases. Neutrophil-induced tissue injury is highly regulated by the microenvironment of the infiltrated tissue, which includes cytokines, chemokines, and the provisional extracellular matrix, remodeled through increased vascular permeability and other cellular infiltrates. Thus, investigation of the effects of matrix proteins on neutrophil-EC interaction and neutrophil transmigration may help identify the proteins that induce pro- or anti-inflammatory responses. This area of research presents an opportunity to identify therapeutic targets in inflammation-related diseases. This review will summarize recent literature on the role of neutrophils and the effects of matrix proteins on neutrophil-EC interactions, with focus on three different disease models: 1) atherosclerosis, 2) COPD, and 3) tumor growth and progression. For each disease model, inflammatory molecules released by neutrophils, important regulatory matrix proteins, current anti-inflammatory treatments, and the scope for further research will be summarized. PMID:22737047

  1. FOREIGN BODY REACTION TO BIOMATERIALS

    PubMed Central

    Anderson, James M.; Rodriguez, Analiz; Chang, David T.

    2008-01-01

    The foreign body reaction composed of macrophages and foreign body giant cells is the end-stage response of the inflammatory and wound healing responses following implantation of a medical device, prosthesis, or biomaterial. A brief, focused overview of events leading to the foreign body reaction is presented. The major focus of this review is on factors that modulate the interaction of macrophages and foreign body giant cells on synthetic surfaces where the chemical, physical, and morphological characteristics of the synthetic surface are considered to play a role in modulating cellular events. These events in the foreign body reaction include protein adsorption, monocyte/macrophage adhesion, macrophage fusion to form foreign body giant cells, consequences of the foreign body response on biomaterials, and cross-talk between macrophages/foreign body giant cells and inflammatory/wound healing cells. Biomaterial surface properties play an important role in modulating the foreign body reaction in the first two to four weeks following implantation of a medical device, even though the foreign body reaction at the tissue/material interface is present for the in vivo lifetime of the medical device. An understanding of the foreign body reaction is important as the foreign body reaction may impact the biocompatibility (safety) of the medical device, prosthesis, or implanted biomaterial and may significantly impact short- and long-term tissue responses with tissue-engineered constructs containing proteins, cells, and other biological components for use in tissue engineering and regenerative medicine. Our perspective has been on the inflammatory and wound healing response to implanted materials, devices, and tissue-engineered constructs. The incorporation of biological components of allogeneic or xenogeneic origin as well as stem cells into tissue-engineered or regenerative approaches opens up a myriad of other challenges. An in depth understanding of how the immune system interacts with these cells and how biomaterials or tissue-engineered constructs influences these interactions may prove pivotal to the safety, biocompatibility, and function of the device or system under consideration. PMID:18162407

  2. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  3. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Review article: mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases.

    PubMed

    Waetzig, G H; Schreiber, S

    2003-07-01

    Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.

  5. Polyhydroxylated fatty alcohols derived from avocado suppress inflammatory response and provide non-sunscreen protection against UV-induced damage in skin cells.

    PubMed

    Rosenblat, Gennady; Meretski, Shai; Segal, Joseph; Tarshis, Mark; Schroeder, Avi; Zanin-Zhorov, Alexandra; Lion, Gilead; Ingber, Arieh; Hochberg, Malka

    2011-05-01

    Exposing skin to ultraviolet (UV) radiation contributes to photoaging and to the development of skin cancer by DNA lesions and triggering inflammatory and other harmful cellular cascades. The present study tested the ability of unique lipid molecules, polyhydroxylated fatty alcohols (PFA), extracted from avocado, to reduce UVB-induced damage and inflammation in skin. Introducing PFA to keratinocytes prior to their exposure to UVB exerted a protective effect, increasing cell viability, decreasing the secretion of IL-6 and PGE(2), and enhancing DNA repair. In human skin explants, treating with PFA reduced significantly UV-induced cellular damage. These results support the idea that PFA can play an important role as a photo-protective agent in UV-induced skin damage.

  6. The Role of Mitophagy in Innate Immunity

    PubMed Central

    Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios

    2018-01-01

    Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.

  7. Multiplexed Nanoplasmonic Temporal Profiling of T-Cell Response under Immunomodulatory Agent Exposure

    PubMed Central

    2016-01-01

    Immunomodulatory drugs—agents regulating the immune response—are commonly used for treating immune system disorders and minimizing graft versus host disease in persons receiving organ transplants. At the cellular level, immunosuppressant drugs are used to inhibit pro-inflammatory or tissue-damaging responses of cells. However, few studies have so far precisely characterized the cellular-level effect of immunomodulatory treatment. The primary challenge arises due to the rapid and transient nature of T-cell immune responses to such treatment. T-cell responses involve a highly interactive network of different types of cytokines, which makes precise monitoring of drug-modulated T-cell response difficult. Here, we present a nanoplasmonic biosensing approach to quantitatively characterize cytokine secretion behaviors of T cells with a fine time-resolution (every 10 min) that are altered by an immunosuppressive drug used in the treatment of T-cell-mediated diseases. With a microfluidic platform integrating antibody-conjugated gold nanorod (AuNR) arrays, the technique enables simultaneous multi-time-point measurements of pro-inflammatory (IL-2, IFN-γ, and TNF-α) and anti-inflammatory (IL-10) cytokines secreted by T cells. The integrated nanoplasmonic biosensors achieve precise measurements with low operating sample volume (1 μL), short assay time (∼30 min), heightened sensitivity (∼20–30 pg/mL), and negligible sensor crosstalk. Data obtained from the multicytokine secretion profiles with high practicality resulting from all of these sensing capabilities provide a comprehensive picture of the time-varying cellular functional state during pharmacologic immunosuppression. The capability to monitor cellular functional response demonstrated in this study has great potential to ultimately permit personalized immunomodulatory treatment. PMID:27478873

  8. Histomorphometric analysis of collagen architecture of auricular keloids in an Asian population.

    PubMed

    Chong, Yosep; Park, Tae Hwan; Seo, Sang won; Chang, Choong Hyun

    2015-03-01

    Keloids are a pathologic condition of the reparative process, which present as excessive scar formation that involves various cells and cytokines. Many studies focusing on the histologic feature of keloids, however, have shown discordant results without consideration of architectural aspect of collagen structure. The purpose of this study was to demonstrate a schematic illustration of collagen architecture of keloids, specifically auricular keloids, and to analyze each part on the histomorphologic and morphometric basis. Thirty-nine surgically excised auricular keloids were retrieved from the file of Kangbuk Samsung Hospital. After exhaustive histomorphologic analysis, 3 distinctive structural parts, keloidal collagen, organizing collagen, and proliferating core collagen, were identified and mapped in every case. Cellularity of fibroblasts, blood vessel density, degree of inflammatory cell infiltration, and mast cells counts using Masson trichrome stain, Van Gieson stain, toluidine blue stain, and immunohistochemical stains for CD31 and smooth muscle actin were analyzed in each part of each case. Morphometric analysis on these parameters using ImageJ software was performed using 3 representative images of each part. Three parts were histomorphologically distinct by shape and array of collagen bundles, fibroblasts cellularity, blood vessel density, degree of inflammatory cells, and mast cell infiltration. Morphometric analysis revealed statistically significant difference between each part in fibroblasts cellularity, blood vessel density, degree of inflammatory cell infiltration, and mast cells count. All parameters were exceedingly high in whorling hypercellular fibrous nodules in proliferating core collagen showing simultaneous changes in other parts. Morphologically and morphometrically, 3 distinctive parts were identified in auricular keloids. Mast cell infiltrations, blood vessel density, and fibroblast cellularity are simultaneously increased or decreased according to these parts. Proliferating core collagen might serve as a proliferating center of keloids and might be a key portion for tumor growth and recurrence.

  9. Characterization of cellular immune response and innate immune signaling in human and nonhuman primate primary mononuclear cells exposed to Burkholderia mallei.

    PubMed

    Alam, Shahabuddin; Amemiya, Kei; Bernhards, Robert C; Ulrich, Robert G; Waag, David M; Saikh, Kamal U

    2015-01-01

    Burkholderia pseudomallei infection causes melioidosis and is often characterized by severe sepsis. Although rare in humans, Burkholderia mallei has caused infections in laboratory workers, and the early innate cellular response to B. mallei in human and nonhuman primates has not been characterized. In this study, we examined the primary cellular immune response to B. mallei in PBMC cultures of non-human primates (NHPs), Chlorocebus aethiops (African Green Monkeys), Macaca fascicularis (Cynomolgus macaque), and Macaca mulatta (Rhesus macaque) and humans. Our results demonstrated that B. mallei elicited strong primary pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, and IL-6) equivalent to the levels of B. pseudomallei in primary PBMC cultures of NHPs and humans. When we examined IL-1β and other cytokine responses by comparison to Escherichia coli LPS, African Green Monkeys appears to be most responsive to B. mallei than Cynomolgus or Rhesus. Characterization of the immune signaling mechanism for cellular response was conducted by using a ligand induced cell-based reporter assay, and our results demonstrated that MyD88 mediated signaling contributed to the B. mallei and B. pseudomallei induced pro-inflammatory responses. Notably, the induced reporter activity with B. mallei, B. pseudomallei, or purified LPS from these pathogens was inhibited and cytokine production was attenuated by a MyD88 inhibitor. Together, these results show that in the scenario of severe hyper-inflammatory responses to B. mallei infection, MyD88 targeted therapeutic intervention may be a successful strategy for therapy. Published by Elsevier Ltd.

  10. AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia.

    PubMed

    Velagapudi, Ravikanth; El-Bakoush, Abdelmeneim; Lepiarz, Izabela; Ogunrinade, Folashade; Olajide, Olumayokun A

    2017-11-01

    Thymoquinone is a known inhibitor of neuroinflammation. However, the mechanism(s) involved in its action remain largely unknown. In this study, we investigated the roles of cellular reactive oxygen species (ROS), 5' AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) in the anti-neuroinflammatory activity of thymoquinone. We investigated effects of the compound on ROS generation in LPS-activated microglia using the fluorescent 2',7'-dichlorofluorescin diacetate (DCFDA)-cellular ROS detection. Immunoblotting was used to detect protein levels of p40 phox , gp91 phox , AMPK, LKB1 and SIRT1. Additionally, ELISA and immunofluorescence were used to detect nuclear accumulation of SIRT1. NAD + /NADH assay was also performed. The roles of AMPK and SIRT1 in anti-inflammatory activity of thymoquinone were investigated using RNAi and pharmacological inhibition. Our results show that thymoquinone reduced cellular ROS generation, possibly through inhibition of p40 phox and gp91 phox protein. Treatment of BV2 microglia with thymoquinone also resulted in elevation in the levels of LKB1 and phospho-AMPK proteins. We further observed that thymoquinone reduced cytoplasmic levels and increased nuclear accumulation of SIRT1 protein and increased levels of NAD + . Results also show that the anti-inflammatory activity of thymoquinone was abolished when the expressions of AMPK and SIRT1 were suppressed by RNAi or pharmacological antagonists. Pharmacological antagonism of AMPK reversed thymoquinone-induced increase in SIRT1. Taken together, we propose that thymoquinone inhibits cellular ROS generation in LPS-activated BV2 microglia. It is also suggested that activation of both AMPK and NAD + /SIRT1 may contribute to the anti-inflammatory, but not antioxidant activity of the compound in BV2 microglia.

  11. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  12. Platelets as Cellular Effectors of Inflammation in Vascular Diseases

    PubMed Central

    Rondina, Matthew T.; Weyrich, Andrew S.; Zimmerman, Guy A.

    2013-01-01

    Platelets are chief effector cells in hemostasis. In addition, they are multifaceted inflammatory cells with functions that span the continuum from innate immune responses to adaptive immunity. Activated platelets have key “thromboinflammatory” activities in a variety of vascular disorders and vasculopathies. Recently-identified inflammatory and immune activities provide insights into the biology of these versatile blood cells that are directly relevant to human vascular diseases. PMID:23704217

  13. The effect of differentiation agents on inflammatory and oxidative responses of the human neuroblastoma cell line SK-N-SH.

    PubMed

    Niewiarowska-Sendo, Anna; Patrzalek, Katarzyna; Kozik, Andrzej; Guevara-Lora, Ibeth

    2015-01-01

    Obtaining a suitable experimental cellular model is a major problem for neuroscience studies. Neuroblastoma cell lines have been often applied in studies related to pathological disorders of nervous system. However, in the search for an ideal model, these cells must be differentiated to cancel their tumor character. The subsequent reactions that are caused by differentiation are not always indifferent to the same model. We evaluated the effect of two well known substances, used for SH-N-SK cell line differentiation, retinoic acid (RA) and phorbol-12-myristate-13-acetate (PMA), on the induction of pro-inflammatory and pro-oxidative reactions in these cells. Cells differentiated with PMA were able to produce significantly higher amounts of pro-inflammatory cytokines whereas the release of nitric oxide radicals was similar to that in undifferentiated cells. On the contrary, in RA-differentiated cells no significant changes in cytokine production were observed and the nitric oxide release was decreased. Additionally, the RA-differentiated neuronal model was more sensible to lipopolysaccharide stimulation, producing pro-inflammatory cytokines abundantly. These results suggest that RA-differentiated SH-N-SK cells provide a more suitable experimental model for the study of molecular and cellular mechanisms of the inflammation and oxidative stress in neuronal cells.

  14. Anti-Inflammatory Activity of Marine Ovothiol A in an In Vitro Model of Endothelial Dysfunction Induced by Hyperglycemia.

    PubMed

    Castellano, Immacolata; Di Tomo, Pamela; Di Pietro, Natalia; Mandatori, Domitilla; Pipino, Caterina; Formoso, Gloria; Napolitano, Alessandra; Palumbo, Anna; Pandolfi, Assunta

    2018-01-01

    Chronic hyperglycemia is associated with oxidative stress and vascular inflammation, both leading to endothelial dysfunction and cardiovascular disease that can be weakened by antioxidant/anti-inflammatory molecules in both healthy and diabetic subjects. Among natural molecules, ovothiol A, produced in sea urchin eggs to protect eggs/embryos from the oxidative burst at fertilization and during development, has been receiving increasing interest for its use as an antioxidant. Here, we evaluated the potential antioxidative/anti-inflammatory effect of purified ovothiol A in an in vitro cellular model of hyperglycemia-induced endothelial dysfunction employing human umbilical vein endothelial cells (HUVECs) from women affected by gestational diabetes (GD) and from healthy mothers. Ovothiol A was rapidly taken up by both cellular systems, resulting in increased glutathione values in GD-HUVECs, likely due to the formation of reduced ovothiol A. In tumor necrosis factor- α -stimulated cells, ovothiol A induced a downregulation of adhesion molecule expression and decrease in monocyte-HUVEC interaction. This was associated with a reduction in reactive oxygen and nitrogen species and an increase in nitric oxide bioavailability. These results point to the potential antiatherogenic properties of the natural antioxidant ovothiol A and support its therapeutic potential in pathologies related to cardiovascular diseases associated with oxidative/inflammatory stress and endothelial dysfunction.

  15. Cellular Antioxidant and Anti-Inflammatory Effects of Coffee Extracts with Different Roasting Levels.

    PubMed

    Jung, Soohan; Kim, Min Hyung; Park, Jae Hee; Jeong, Yoonhwa; Ko, Kwang Suk

    2017-06-01

    During roasting, major changes occur in the composition and physiological effects of coffee beans. In this study, in vitro antioxidant effects and anti-inflammatory effects of Coffea arabica green coffee extracts were investigated at different roasting levels corresponding to Light, Medium, City, and French roast. Total caffeine did not show huge difference according to roasting level, but total chlorogenic acid contents were higher in light roasted coffee extract than other roasted groups. In addition, light roasted coffee extract had the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. To determine the in vitro antioxidant property, coffee extracts were used to treat AML-12 cells. Intracellular glutathione (GSH) concentration and mRNA expression levels of genes related to GSH synthesis were negatively related to roasting levels. The anti-inflammatory effects of coffee extracts were investigated in lipopolysaccharide-treated RAW 264.7 macrophage cells. The cellular antioxidant activity of coffee extracts exhibited similar patterns as the AML-12 cells. The expression of mRNA for tumor necrosis factor-alpha and interleukin-6 was decreased in cells treated with the coffee extracts and the expression decreased with increasing roasting levels. These data suggest that coffee has physiological antioxidant and anti-inflammatory activities and these effects are negatively correlated with roasting levels in the cell models.

  16. Simulated microgravity induces an inflammatory response in the common carotid artery of rats.

    PubMed

    Liu, Huan; Wang, Zhong-Chao; Yue, Yuan; Yu, Jin-Wen; Cai, Yue; Bai, Yun-Gang; Zhang, Hai-Jun; Bao, Jun-Xiang; Ren, Xin-Ling; Xie, Man-Jiang; Ma, Jin

    2014-08-01

    Post-spaceflight orthostatic intolerance is one of the most important adverse effects after exposure to space microgravity, and there are still no effective countermeasures. It has been considered that arterial remodeling may play an important role in the occurrence of post-spaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. In this study, we investigated whether an inflammatory response exists in the common carotid artery of rats exposed to simulated microgravity. For this, Sprague-Dawley rats were subjected to 4 weeks of hindlimb unweighting to simulate microgravity. The expression levels of the adhesion molecules E-selectin and vascular cell adhesion molecule-1 (VCAM-1), and the cytokine monocyte chemoattractant protein-1 (MCP-1) in the common carotid artery of simulated microgravity rats were evaluated by immunohistochemical staining, quantitative RT-PCR, and Western blot analyses. The recruitment of monocytes in the common carotid artery of rats exposed to simulated microgravity was investigated by en face immunofluorescence staining and monocyte binding assays. Our results provided convincing evidence that there is an inflammatory response in the common carotid artery of rats exposed to simulated microgravity. Our work suggests that the inflammatory response may be a novel cellular mechanism that is responsible for the arterial remodeling that occurs during exposure to microgravity.

  17. Immunological and Toxinological Responses to Jellyfish Stings

    PubMed Central

    Tibballs, James; Yanagihara, Angel A.; Turner, Helen C.; Winkel, Ken

    2013-01-01

    Just over a century ago, animal responses to injections of jellyfish extracts unveiled the phenomenon of anaphylaxis. Yet, until very recently, understanding of jellyfish sting toxicity has remained limited. Upon contact, jellyfish stinging cells discharge complex venoms, through thousands of barbed tubules, into the skin resulting in painful and, potentially, lethal envenomations. This review examines the immunological and toxinological responses to stings by prominent species of jellyfish including Physalia sp. (Portuguese Man-o-War, Blue-bottle), Cubozoan jellyfish including Chironex fleckeri, several Carybdeids including Carybdea arborifera and Alatina moseri, Linuche unguiculta (Thimble jellyfish), a jellyfish responsible for Irukandji syndrome (Carukia barnesi) and Pelagia noctiluca. Jellyfish venoms are composed of potent proteinaceous porins (cellular membrane pore-forming toxins), neurotoxic peptides, bioactive lipids and other small molecules whilst the tubules contain ancient collagens and chitins. We postulate that immunologically, both tubular structural and functional biopolymers as well as venom components can initiate innate, adaptive, as well as immediate and delayed hypersensitivity reactions that may be amenable to topical anti-inflammatory-immunomodifier therapy. The current challenge for immunotoxinologists is to deconstruct the actions of venom components to target therapeutic modalities for sting treatment. PMID:21824077

  18. SUMOylation pathway alteration coupled with downregulation of SUMO E2 enzyme at mucosal epithelium modulates inflammation in inflammatory bowel disease

    PubMed Central

    Mustfa, Salman Ahmad; Singh, Mukesh; Suhail, Aamir; Mohapatra, Gayatree; Verma, Smriti; Chakravorty, Debangana; Rana, Sarika; Rampal, Ritika; Dhar, Atika; Saha, Sudipto; Ahuja, Vineet

    2017-01-01

    Post-translational modification pathways such as SUMOylation are integral to all cellular processes and tissue homeostasis. We investigated the possible involvement of SUMOylation in the epithelial signalling in Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel disease (IBD). Initially in a murine model of IBD, induced by dextran–sulfate–sodium (DSS mice), we observed inflammation accompanied by a lowering of global SUMOylation of colonic epithelium. The observed SUMOylation alteration was due to a decrease in the sole SUMO E2 enzyme (Ubc9). Mass-spectrometric analysis revealed the existence of a distinct SUMOylome (SUMO-conjugated proteome) in DSS mice with alteration of key cellular regulators, including master kinase Akt1. Knocking-down of Ubc9 in epithelial cells resulted in dramatic activation of inflammatory gene expression, a phenomenon that acted via reduction in Akt1 and its SUMOylated form. Importantly, a strong decrease in Ubc9 and Akt1 was also seen in endoscopic biopsy samples (N = 66) of human CD and UC patients. Furthermore, patients with maximum disease indices were always accompanied by severely lowered Ubc9 or SUMOylated-Akt1. Mucosal tissues with severely compromised Ubc9 function displayed higher levels of pro-inflammatory cytokines and compromised wound-healing markers. Thus, our results reveal an important and previously undescribed role for the SUMOylation pathway involving Ubc9 and Akt1 in modulation of epithelial inflammatory signalling in IBD. PMID:28659381

  19. From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    PubMed Central

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-01-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy. PMID:27004454

  20. TNF{alpha} release from peripheral blood leukocytes depends on a CRM1-mediated nuclear export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miskolci, Veronika; Department of Pediatrics, Feinstein Institute for Medical Research at the North Shore-Long Island Jewish Health System, New Hyde Park, NY 11040; Ghosh, Chandra C.

    2006-12-15

    Tumor necrosis factor-{alpha} (TNF{alpha}) is a potent pro-inflammatory cytokine that plays a major role in the pathogenesis of acute and chronic inflammatory disorders such as septic shock and arthritis, respectively. Leukocytes stimulated with inflammatory signals such as lipopolysaccharide (LPS) are the predominant producers of TNF{alpha}, and thus control of TNF{alpha} release from stimulated leukocytes represents a potential therapeutic target. Here, we report that leptomycin B (LMB), a specific inhibitor of CRM1-dependent nuclear protein export, inhibits TNF{alpha} release from LPS-stimulated human peripheral blood neutrophils and mononuclear cells. In addition, immunofluorescence confocal microscopy and immunoblotting analysis indicate that TNF{alpha} is localized inmore » the nucleus of human neutrophils and mononuclear cells. This study demonstrates that the cellular release of TNF{alpha} from stimulated leukocytes is mediated by the CRM1-dependent nuclear export mechanism. Inhibition of CRM1-dependent cellular release of TNF{alpha} could thus provide a novel therapeutic approach for disorders involving excessive TNF{alpha} release.« less

  1. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-κB suppression.

    PubMed

    Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B

    2014-04-01

    Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.

  2. From morphology to biochemical state - intravital multiphoton fluorescence lifetime imaging of inflamed human skin

    NASA Astrophysics Data System (ADS)

    Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Getova, Valentina; Niemeyer, Verena; Zens, Katharina; Unnerstall, Tim R.; Feger, Julia S.; Fallah, Mohammad A.; Metze, Dieter; Ständer, Sonja; Luger, Thomas A.; Koenig, Karsten; Mess, Christian; Schneider, Stefan W.

    2016-03-01

    The application of multiphoton microscopy in the field of biomedical research and advanced diagnostics promises unique insights into the pathophysiology of inflammatory skin diseases. In the present study, we combined multiphoton-based intravital tomography (MPT) and fluorescence lifetime imaging (MPT-FLIM) within the scope of a clinical trial of atopic dermatitis with the aim of providing personalised data on the aetiopathology of inflammation in a non-invasive manner at patients’ bedsides. These ‘optical biopsies’ generated via MPT were morphologically analysed and aligned with classical skin histology. Because of its subcellular resolution, MPT provided evidence of a redistribution of mitochondria in keratinocytes, indicating an altered cellular metabolism. Two independent morphometric algorithms reliably showed an even distribution in healthy skin and a perinuclear accumulation in inflamed skin. Moreover, using MPT-FLIM, detection of the onset and progression of inflammatory processes could be achieved. In conclusion, the change in the distribution of mitochondria upon inflammation and the verification of an altered cellular metabolism facilitate a better understanding of inflammatory skin diseases and may permit early diagnosis and therapy.

  3. Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model

    NASA Astrophysics Data System (ADS)

    Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.

    2018-06-01

    Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5), which can reach deep in the lung and cause injuries. Currently, there is little information about the health effects of wood and coal combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.

  4. Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties

    PubMed Central

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Padilla, Sabino; Orive, Gorka

    2015-01-01

    One of the main differences among platelet-rich plasma (PRP) products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF) and leukocyte-platelet rich plasma (L-PRP) scaffolds was determined by enzyme-linked immunosorbent assay (ELISA) and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions. PMID:25823008

  5. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research.

  6. Dynamics of the Major Histocompatibility Complex Class I Processing and Presentation Pathway in the Course of Malaria Parasite Development in Human Hepatocytes: Implications for Vaccine Development

    PubMed Central

    Ma, Jinxia; Trop, Stefanie; Baer, Samantha; Rakhmanaliev, Elian; Arany, Zita; Dumoulin, Peter; Zhang, Hao; Romano, Julia; Coppens, Isabelle; Levitsky, Victor; Levitskaya, Jelena

    2013-01-01

    Control of parasite replication exerted by MHC class I restricted CD8+ T-cells in the liver is critical for vaccination-induced protection against malaria. While many intracellular pathogens subvert the MHC class I presentation machinery, its functionality in the course of malaria replication in hepatocytes has not been characterized. Using experimental systems based on specific identification, isolation and analysis of human hepatocytes infected with P. berghei ANKA GFP or P. falciparum 3D7 GFP sporozoites we demonstrated that molecular components of the MHC class I pathway exhibit largely unaltered expression in malaria-infected hepatocytes until very late stages of parasite development. Furthermore, infected cells showed no obvious defects in their capacity to upregulate expression of different molecular components of the MHC class I machinery in response to pro-inflammatory lymphokines or trigger direct activation of allo-specific or peptide-specific human CD8+ T-cells. We further demonstrate that ectopic expression of circumsporozoite protein does not alter expression of critical genes of the MHC class I pathway and its response to pro-inflammatory cytokines. In addition, we identified supra-cellular structures, which arose at late stages of parasite replication, possessed the characteristic morphology of merosomes and exhibited nearly complete loss of surface MHC class I expression. These data have multiple implications for our understanding of natural T-cell immunity against malaria and may promote development of novel, efficient anti-malaria vaccines overcoming immune escape of the parasite in the liver. PMID:24086507

  7. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation

    PubMed Central

    Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH

    2016-01-01

    Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527

  8. NSAID-activated gene 1 and its implications for mucosal integrity and intervention beyond NSAIDs.

    PubMed

    Moon, Yuseok

    2017-07-01

    In spite of the beneficial actions of non-steroid anti-inflammatory drugs (NSAIDs) in epithelial inflammation and cancers, their use is limited because of their cyclooxygenase-dependent or independent gastrointestinal toxicity. As an eicosanoid-independent mediator, NSAID-activated gene 1 (NAG-1) has been assessed for its involvement in cellular integrity and pathogenesis in mucosal inflammation and carcinogenesis. At the cellular levels, NAG-1 is involved in the cell growth regulation (cell death, cell cycle arrest, or proliferation) in epithelial and mesenchymal tissues. Moreover, NAG-1 can modulate inflammatory responses in either direct or indirect manner, which ultimately affects fibrogenic and tumorigenic processes in various disease states. Finally, NAG-1 has been assessed for its contribution to cellular behavior, such as the mobility of epithelial and malignant cells in response to the external insults or oncogenic stimulation in the mucosa. This review on the "Yin-Yang" nature of NAG-1-mediated responses provides comprehensive insights into therapeutic and diagnostic interventions for mucosal health and integrity in the human body. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV

    PubMed Central

    Carbone, Javier

    2016-01-01

    Abstract The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection. PMID:26900990

  10. [Peripheral neuropathy and blood-nerve barrier].

    PubMed

    Kanda, Takashi

    2009-11-01

    It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.

  11. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV.

    PubMed

    Carbone, Javier

    2016-03-01

    The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.

  12. Antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of Psidium guineense Sw. and spathulenol.

    PubMed

    do Nascimento, Kamilla Felipe; Moreira, Flora Martinez Figueira; Alencar Santos, Joyce; Kassuya, Candida Aparecida Leite; Croda, Julio Henrique Rosa; Cardoso, Claudia Andrea Lima; Vieira, Maria do Carmo; Góis Ruiz, Ana Lúcia Tasca; Ann Foglio, Mary; de Carvalho, João Ernesto; Formagio, Anelise Samara Nazari

    2018-01-10

    Leaves from Psidium guineense Sw. are used in popular medicine for the treatment of inflammatory disease. However, there is no scientific evidence demonstrating this activity. To evaluate the antioxidant, anti-inflammatory, antiproliferative and antimycobacterial activities of the essential oil of P. guineense and spathulenol (a major constituent). The study was conducted in part to provide evidence supporting the ethnobotanical use of the leaves of this species. The essential oil (EOPG) was extracted from the leaves of P. guineense by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). The major compound, spathulenol (PG-1), was isolated in a chromatographic column and characterized by nuclear magnetic resonance (NMR). EOPG and PG-1 were evaluated in vitro for antioxidant activity by DPPH, ABTS and MDA methods; anti-inflammatory potential was assessed using two models, including pleurisy and oedema, in mice. The impact of EOPG and PG-1 on cell proliferation was determined via spectrophotometric quantification of the cellular protein content using a sulforhodamine B assay, and anti-Mycobacterium tuberculosis activity was determined using the REMA method. A total of 38 components were identified from the EOPG, with the sesquiterpenic alcohol spathulenol (PG-1) (80.7%) being the major constituent. EOPG and PG-1 exhibited the highest antioxidant activities in the DPPH and MDA system compared with reference standard, with IC 50 values ranging from 26.13 to 85.60μg/mL. Oral administration of EOPG and PG-1 showed significant inhibition in the Cg-induced mice paw oedema and pleurisy model. The EOPG (GI 50 = 0.89μg/mL) and PG-1 (GI 50 = 49.30μg/mL) were particularly effective against the ovarian cancer cell line. Both showed moderate antimycobacterial activity. For the first time, this study demonstrated the antioxidant, anti-inflammatory, antiproliferative and antimycobacterial properties of the essential oil of P. guineense (leaves were collected in Dourados-MS) and spathulenol, collaborating the etnhopharmacologycal use of this plant due to its an anti-inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed thatmore » the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to produce pro-inflammatory mediators. • IL-24 activates STAT3 and MAPK signaling pathways in human keratinocytes.« less

  14. Cannabinoids and Viral Infections

    PubMed Central

    Reiss, Carol Shoshkes

    2010-01-01

    Exogenous cannabinoids or receptor antagonists may influence many cellular and systemic host responses. The anti-inflammatory activity of cannabinoids may compromise host inflammatory responses to acute viral infections, but may be beneficial in persistent infections. In neurons, where innate antiviral/pro-resolution responses include the activation of NOS-1, inhibition of Ca2+ activity by cannabinoids, increased viral replication and disease. This review examines the effect(s) of cannabinoids and their antagonists in viral infections. PMID:20634917

  15. Interventional Vitamin C-A Strategy for Attenuation of Coagulopathy and Inflammation in Hemorrhagic Trauma and Shock

    DTIC Science & Technology

    2017-10-01

    edema, protein leak and exuberant infiltration of inflammatory cells. Significant hemorrhage and cellular damage were also evident in liver and kidney ...Treatment with VitC also reduced the expression of pro-inflammatory mediators in lungs, liver and kidneys . Preliminary lipidomic analysis showed that VitC at...Histological changes to lung, liver and kidney f. Proteomic analysis of plasma for identification of novel circulating proteins, and g. Lipidomic

  16. Glucose consumption of inflammatory cells masks metabolic deficits in the brain

    PubMed Central

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A.; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R.; Schroeter, Michael; Graf, Rudolf

    2016-01-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. PMID:26747749

  17. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  18. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion.

    PubMed

    Hain, Elisabeth G; Sparenberg, Maria; Rasińska, Justyna; Klein, Charlotte; Akyüz, Levent; Steiner, Barbara

    2018-05-26

    Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.

  19. Ecklonia cava Extract and Dieckol Attenuate Cellular Lipid Peroxidation in Keratinocytes Exposed to PM10.

    PubMed

    Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10  μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.

  20. The cellular and humoral immunity assay in patients with complicated urolithiasis.

    PubMed

    Ceban, E; Banov, P; Galescu, A; Tanase, D

    2017-01-01

    Especially complicated, renal lithiasis contributes to the general inflammatory syndrome development that interferes with nonspecific, humoral and cellular immune system. The surgical treatment of nephrolithiasis is closely related to drug therapy of urinary infection, one of the reasons being the reduction of the immune status. The work is performed by evaluating the immunological status preoperatively in 58 patients with complicated lithiasis. The analysis of the status in these patients demonstrated that complicated urolithiasis results in significant changes in the immune system, these changes being expressed at the cellular and humoral level of immunity.

  1. Phloretin attenuates hyperuricemia-induced endothelial dysfunction through co-inhibiting inflammation and GLUT9-mediated uric acid uptake.

    PubMed

    Liu, Shuyun; Yuan, Yujia; Zhou, Yijie; Zhao, Meng; Chen, Younan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2017-10-01

    Hyperuricemia is an important risk factor for cardiovascular and renal diseases. Phloretin had shown antioxidant and anti-inflammatory properties, but its role in endothelial injury is rarely reported. In this study, we aimed to investigate the protective effect of phloretin on UA-induced injury in human umbilical vein endothelial cells. The effects of UA and phloretin on cell viability, inflammation, THP-1 monocyte adhesion, endothelial cell tube formation, GLUT9 expression and UA uptake in human umbilical vein endothelial cells were evaluated. The changes of nuclear factor-kappa B/extracellular regulated protein kinases signalling were also analysed. Our results showed that UA reduced cell viability and tube formation, and increased inflammation and monocytes adhesion in human umbilical vein endothelial cells in a dose-dependent manner. In contrast, phloretin significantly attenuated pro-inflammatory factors expression and endothelial injury induced by UA. Phloretin inhibited the activation of extracellular regulated protein kinases/nuclear factor-kappa B pathway, and reduced GLUT9 and it mediated UA uptake in human umbilical vein endothelial cells. These results indicated that phloretin attenuated UA-induced endothelial injury via a synergic mechanism including direct anti-inflammatory effect and lowering cellular UA uptake. Our study suggested that phloretin might be a promising therapy for hyperuricemia-related cardiovascular diseases. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  2. Profiling cellular and inflammatory changes in the airway wall of mild to moderate COPD.

    PubMed

    Eapen, Mathew S; McAlinden, Kielan; Tan, Daniel; Weston, Steven; Ward, Chris; Muller, Hans K; Walters, Eugene H; Sohal, Sukhwinder S

    2017-08-01

    The objective of this study was to enumerate total cells and the number of inflammatory cell differentials in large airways (LAs) versus small airways (SAs) of mild-moderate COPD, and against appropriate controls. For LA, we used endobronchial biopsies and for SA resected lung tissues. Immunostaining was enumerated (cells per mm 2 ) for macrophages, neutrophils, CD4 and CD8 T cells in the lamina propria (LP) up to 150 µM deep for LA and full wall thickness for SA. We confirmed hypocellularity in the LA and in the SA wall in smokers and COPD (P < 0.001). LA cellularity was least in current smokers with COPD (COPD-CS) (P < 0.01), while SA cellularity was similar across smoker/COPD groups. LA neutrophils were decreased in COPD-CS (P < 0.01), while SA neutrophil counts were unchanged. Compared with controls, LA macrophage numbers in COPD were significantly lower (P < 0.05), with SA macrophage numbers unchanged. A significant increase was observed in SA CD8+ cells in both normal smokers (P < 0.01) and COPD-CS (P < 0.001) but not in LA. These unique data indicate that the current model for airway wall inflammation in COPD is oversimplified, and contrast with innate inflammatory activation in the lumen, at least in mild-moderate disease. Any abnormalities in airway wall cell differentials are small, although exaggerated in percentage terms. © 2017 Asian Pacific Society of Respirology.

  3. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  4. Psoriasis and Comorbid Diseases Part I. Epidemiology

    PubMed Central

    Takeshita, Junko; Grewal, Sungat; Langan, Sinéad M.; Mehta, Nehal N.; Ogdie, Alexis; Van Voorhees, Abby S.; Gelfand, Joel M.

    2017-01-01

    Psoriasis is a common chronic inflammatory disease of the skin that is increasingly being recognized as a systemic inflammatory disorder. Psoriatic arthritis is a well-known comorbidity of psoriasis. A rapidly expanding body of literature in various populations and settings supports additional associations between psoriasis and cardiometabolic disease, gastrointestinal disease, kidney disease, malignancies, infections, and mood disorders. The pathogenesis of comorbid disease in psoriasis patients remains unknown; however, shared inflammatory pathways, cellular mediators, genetic susceptibility, and common risk factors are hypothesized to be contributing elements. As additional psoriasis comorbidities continue to emerge, education of healthcare providers is essential to ensuring comprehensive medical care for patients with psoriasis. PMID:28212759

  5. Linking the microbiota, chronic disease and the immune system

    PubMed Central

    Hand, Timothy W.; Vujkovic-Cvijin, Ivan; Ridaura, Vanessa K.; Belkaid, Yasmine

    2016-01-01

    Chronic inflammatory diseases are the most important causes of mortality in the world today and are on the rise. We now know that immune-driven inflammation is critical in the etiology of these diseases, though the environmental triggers and cellular mechanisms that lead to their development are still mysterious. Many chronic inflammatory diseases are associated with significant shifts in the microbiota towards inflammatory configurations, which can affect the host both by inducing local and systemic inflammation and by alterations in microbiota-derived metabolites. This review discusses recent findings suggesting that shifts in the microbiota may contribute to chronic disease via effects on the immune system. PMID:27623245

  6. Involvement of glycosphingolipid-enriched lipid rafts in inflammatory responses.

    PubMed

    Iwabuchi, Kazuhisa

    2015-01-01

    Glycosphingolipids (GSLs) are membrane components consisting of hydrophobic ceramide and hydrophilic sugar moieties. GSLs cluster with cholesterol in cell membranes to form GSL-enriched lipid rafts. Biochemical analyses have demonstrated that GSL-enriched lipid rafts contain several kinds of transducer molecules, including Src family kinases. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms, is highly expressed on the plasma membranes of human phagocytes, and forms lipid rafts containing the Src family tyrosine kinase Lyn. LacCer-enriched lipid rafts mediate immunological and inflammatory reactions, including superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. LacCer also serves as a signal transduction molecule for functions mediated by CD11b/CD18-integrin (αM/β2-integrin, CR3, Mac-1), as well as being associated with several key cellular processes. LacCer recruits PCKα/ε and phospholipase A2 to stimulate PECAM-1 expression in human monocytes and their adhesion to endothelial cells, as well as regulating β1-integrin clustering and endocytosis on cell surfaces. This review describes the organizational and inflammation-related functions of LacCer-enriched lipid rafts.

  7. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination

    PubMed Central

    Furman, David; Hejblum, Boris P.; Simon, Noah; Jojic, Vladimir; Dekker, Cornelia L.; Thiébaut, Rodolphe; Tibshirani, Robert J.; Davis, Mark M.

    2014-01-01

    Females have generally more robust immune responses than males for reasons that are not well-understood. Here we used a systems analysis to investigate these differences by analyzing the neutralizing antibody response to a trivalent inactivated seasonal influenza vaccine (TIV) and a large number of immune system components, including serum cytokines and chemokines, blood cell subset frequencies, genome-wide gene expression, and cellular responses to diverse in vitro stimuli, in 53 females and 34 males of different ages. We found elevated antibody responses to TIV and expression of inflammatory cytokines in the serum of females compared with males regardless of age. This inflammatory profile correlated with the levels of phosphorylated STAT3 proteins in monocytes but not with the serological response to the vaccine. In contrast, using a machine learning approach, we identified a cluster of genes involved in lipid biosynthesis and previously shown to be up-regulated by testosterone that correlated with poor virus-neutralizing activity in men. Moreover, men with elevated serum testosterone levels and associated gene signatures exhibited the lowest antibody responses to TIV. These results demonstrate a strong association between androgens and genes involved in lipid metabolism, suggesting that these could be important drivers of the differences in immune responses between males and females. PMID:24367114

  8. The Autoimmune Skin Disease Bullous Pemphigoid: The Role of Mast Cells in Autoantibody-Induced Tissue Injury

    PubMed Central

    Fang, Hui; Zhang, Yang; Li, Ning; Wang, Gang; Liu, Zhi

    2018-01-01

    Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future. PMID:29545809

  9. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer's disease: Acting separately or synergistically?

    PubMed

    Song, Cai; Shieh, Chu-Hsin; Wu, Yi-Shyuan; Kalueff, Allan; Gaikwad, Siddharth; Su, Kuan-Pin

    2016-04-01

    Omega-3 polyunsaturated fatty acids (n-3-PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may improve or prevent some psychiatric and neurodegenerative diseases in both experimental and clinical studies. As important membrane components, these PUFAs benefit brain health by modulating neuroimmune and apoptotic pathways, changing membrane function and/or competing with n-6 PUFAs, the precursors of inflammatory mediators. However, the exact role of each fatty acid in neuroimmune modulation and neurogenesis, the interaction between EPA and DHA, and the best EPA:DHA ratios for improving brain disorders, remain unclear. It is also unknown whether EPA, as a DHA precursor, acts directly or via DHA. Here, we discuss recent evidence of EPA and DHA effects in the treatment of major depression and Alzheimer's disease, as well as their potential synergistic action on anti-inflammatory, antioxidant and neurotrophic processes in the brain. We further analyze the cellular and molecular mechanisms by which EPA, DHA or their combination may benefit these diseases. We also outline the limitations of current studies and suggest new genetic models and novel approaches to overcome these limitations. Finally, we summarize future strategies for translational research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis.

    PubMed

    Hergott, Christopher B; Roche, Aoife M; Tamashiro, Edwin; Clarke, Thomas B; Bailey, Aubrey G; Laughlin, Alice; Bushman, Frederic D; Weiser, Jeffrey N

    2016-05-19

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. © 2016 by The American Society of Hematology.

  11. Peptidoglycan from the gut microbiota governs the lifespan of circulating phagocytes at homeostasis

    PubMed Central

    Hergott, Christopher B.; Roche, Aoife M.; Tamashiro, Edwin; Clarke, Thomas B.; Bailey, Aubrey G.; Laughlin, Alice; Bushman, Frederic D.

    2016-01-01

    Maintenance of myeloid cell homeostasis requires continuous turnover of phagocytes from the bloodstream, yet whether environmental signals influence phagocyte longevity in the absence of inflammation remains unknown. Here, we show that the gut microbiota regulates the steady-state cellular lifespan of neutrophils and inflammatory monocytes, the 2 most abundant circulating myeloid cells and key contributors to inflammatory responses. Treatment of mice with broad-spectrum antibiotics, or with the gut-restricted aminoglycoside neomycin alone, accelerated phagocyte turnover and increased the rates of their spontaneous apoptosis. Metagenomic analyses revealed that neomycin altered the abundance of intestinal bacteria bearing γ-d-glutamyl-meso-diaminopimelic acid, a ligand for the intracellular peptidoglycan sensor Nod1. Accordingly, signaling through Nod1 was both necessary and sufficient to mediate the stimulatory influence of the flora on myeloid cell longevity. Stimulation of Nod1 signaling increased the frequency of lymphocytes in the murine intestine producing the proinflammatory cytokine interleukin 17A (IL-17A), and liberation of IL-17A was required for transmission of Nod1-dependent signals to circulating phagocytes. Together, these results define a mechanism through which intestinal microbes govern a central component of myeloid homeostasis and suggest perturbations of commensal communities can influence steady-state regulation of cell fate. PMID:26989200

  12. Anti-inflammatory activity of nanoemulsions of essential oil from Rosmarinus officinalis L.: in vitro and in zebrafish studies.

    PubMed

    Borges, Raphaelle Sousa; Keita, Hady; Ortiz, Brenda Lorena Sánchez; Dos Santos Sampaio, Tafnis Ingret; Ferreira, Irlon Maciel; Lima, Emerson Silva; de Jesus Amazonas da Silva, Márcia; Fernandes, Caio Pinho; de Faria Mota Oliveira, Anna Eliza Maciel; da Conceição, Edemilson Cardoso; Rodrigues, Alex Bruno Lobato; Filho, Arlindo César Matias Pereira; Castro, Andrés Navarrete; Carvalho, José Carlos Tavares

    2018-02-05

    The essential oil from Rosmarinus officinalis L. (OERO) has bioactive compounds with anti-inflammatory activity. The objective of this study was to evaluate the anti-inflammatory potency of nanoemulsions containing essential oil of Rosmarinus officinalis L. (NOERO, NECHA, NECULT, and NECOM) in vitro and in vivo. This study was accomplished in a quantitative format through tests with diphenyl picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), cellular antioxidant activity (CCA), determination of nitric oxide production, cellular viability and anti-inflammatory activity in zebrafish. OERO's were submitted to the analysis-coupled gas chromatography-mass spectrometry (GC-MS), which highlighted 1,8-cineol and camphor as major compounds. NOEROs were obtained by a low-energy method and presenting the medium size smaller than 200 nm. The efficiency of encapsulation by spectrometry and gas chromatographic analysis was 67.61 and 75.38%, respectively. In the CCA assay, all of the samples presented percentage values of inhibition similar to the quercetin pattern, indicating antioxidant activity. In the test for determination of NO·, all of the samples inhibited the production of NO· when compared to LPS, and NOEROS were more effective than OEROS to 5 µg/mL. In the cell viability assay, the cells remained viable after contact with the samples, demonstrating an absence of cytotoxicity. This study showed that all nanoemulsions (NECHA, NECULT, and NECOM) showed no toxicity to macrophages, besides demonstrating antioxidant activity and potentiation of the essential oil effect in the proliferation of viable fibroblasts. Nanoemulsions has also shown the ability to potentiate the anti-inflammatory action of essential oils by exerting immunomodulatory activity by inhibiting the production of the pro-inflammatory mediator nitric oxide. The results obtained with NECHA in zebrafish confirm the hypothesis that prominent terpenic compounds, alpha-pinene, 1,8-cineole, and camphor, became more available at the target sites, inhibiting the inflammatory process in this animal species.

  13. Murine CD103+ dendritic cells protect against steatosis progression towards steatohepatitis.

    PubMed

    Heier, Eva-Carina; Meier, Anna; Julich-Haertel, Henrike; Djudjaj, Sonja; Rau, Monica; Tschernig, Thomas; Geier, Andreas; Boor, Peter; Lammert, Frank; Lukacs-Kornek, Veronika

    2017-06-01

    Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can progress to non-alcoholic steatohepatitis (NASH). The identification of molecular and cellular factors that determine the progression of NASH and lead to irreversible hepatocellular damage are crucial. Dendritic cells (DCs) represent a heterogeneous cell population among which CD103 + DCs play a significant role in immunity and tolerance. We aimed to clarify the role of this DC subset in the pathomechanism of NASH. Steatosis progression towards steatohepatitis was analysed using multicolor FACS analyses, cytokine and qPCR array in high sucrose diet (HSD) and methionine and choline deficient diet (MCD) fed wild-type and basic leucine zipper transcription factor, ATF-Like-3 (Batf3) deficient animals, which lack CD103 + DCs (classical type-1 DC, cDC1s). Metabolic challenge of Batf3 -/- animals resulted in the progression of steatosis towards steatohepatitis, manifesting by an increased influx of inflammatory cells into the liver and elevated inflammatory cytokine production of myeloid cells upon innate stimuli. However, the lack of cDC1s did not affect cellular apoptosis and fibrosis progression but altered genes involved in lipid metabolism. The adoptive transfer of CD103 + cDC1s to Batf3 deficient animals reversed these observed changes and more importantly could attenuate cellular damage and inflammation in established murine steatohepatitis. Here, we have identified the murine CD103 + cDC1s as a protective DC subtype that influences the pro-anti-inflammatory balance and protects the liver from metabolic damage. As guardians of liver integrity, they play a key role in the inflammatory process during the development of steatohepatitis in mice. Non-alcoholic fatty liver (NAFL) is the hepatic consequence of metabolic syndrome and can lead to non-alcoholic steatohepatitis (NASH). The current study demonstrated that a specific murine dendritic cell subtype possesses a potent regulatory role to influence the inflammatory milieu of the liver in this process. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  14. Curcumin longa extract-loaded nanoemulsion improves the survival of endotoxemic mice by inhibiting nitric oxide-dependent HMGB1 release.

    PubMed

    Ahn, Min Young; Hwang, Jung Seok; Lee, Su Bi; Ham, Sun Ah; Hur, Jinwoo; Kim, Jun Tae; Seo, Han Geuk

    2017-01-01

    High mobility group box 1 (HMGB1) is a well-known damage-related alarmin that participates in cellular inflammatory responses. However, the mechanisms leading to HMGB1 release in inflammatory conditions and the therapeutic agents that could prevent it remain poorly understood. This study attempted to examine whether the Curcumin longa herb, which is known to have anti-inflammatory property, can modulate cellular inflammatory responses by regulating HMGB1 release. The murine macrophage RAW264.7 cells were treated with lipopolysaccharide (LPS) and/or a C. longa extract-loaded nanoemulsion (CLEN). The levels of released HMGB1, nitric oxide (NO) production, inducible NO synthase (iNOS) expression, and phosphorylation of mitogen-activated protein kinases were analyzed in RAW264.7 macrophages. The effects of CLEN on survival of endotoxemic model mice, circulating HMGB1 levels, and tissue iNOS expression were also evaluated. We have shown that a nanoemulsion loaded with an extract from the C. longa rhizome regulates cellular inflammatory responses and LPS-induced systemic inflammation by suppressing the release of HMGB1 by macrophages. First, treatment of RAW264.7 macrophages with the nanoemulsion significantly attenuated their LPS-induced release of HMGB1: this effect was mediated by inhibiting c-Jun N-terminal kinase activation, which in turn suppressed the NO production and iNOS expression of the cells. The nanoemulsion did not affect LPS-induced p38 or extracellular signal-regulated kinase activation. Second, intraperitoneal administration of the nanoemulsion improved the survival rate of LPS-injected endotoxemic mice. This associated with marked reductions in circulating HMGB1 levels and tissue iNOS expression. The present study shows for the first time the mechanism by which C. longa ameliorates sepsis, namely, by suppressing NO signaling and thereby inhibiting the release of the proinflammatory cytokine HMGB1. These observations suggest that identification of agents, including those in the herb C. longa , that can inhibit HMGB1 production and/or activity may aid the treatment of endotoxemia.

  15. Chronic kidney disease alters lipid trafficking and inflammatory responses in macrophages: effects of liver X receptor agonism.

    PubMed

    Kaseda, Ryohei; Tsuchida, Yohei; Yang, Hai-Chun; Yancey, Patricia G; Zhong, Jianyong; Tao, Huan; Bian, Aihua; Fogo, Agnes B; Linton, Mac Rae F; Fazio, Sergio; Ikizler, Talat Alp; Kon, Valentina

    2018-01-27

    Our aim was to evaluate lipid trafficking and inflammatory response of macrophages exposed to lipoproteins from subjects with moderate to severe chronic kidney disease (CKD), and to investigate the potential benefits of activating cellular cholesterol transporters via liver X receptor (LXR) agonism. LDL and HDL were isolated by sequential density gradient ultracentrifugation of plasma from patients with stage 3-4 CKD and individuals without kidney disease (HDL CKD and HDL Cont , respectively). Uptake of LDL, cholesterol efflux to HDL, and cellular inflammatory responses were assessed in human THP-1 cells. HDL effects on inflammatory markers (MCP-1, TNF-α, IL-1β), Toll-like receptors-2 (TLR-2) and - 4 (TLR-4), ATP-binding cassette class A transporter (ABCA1), NF-κB, extracellular signal regulated protein kinases 1/2 (ERK1/2) were assessed by RT-PCR and western blot before and after in vitro treatment with an LXR agonist. There was no difference in macrophage uptake of LDL isolated from CKD versus controls. By contrast, HD CKD was significantly less effective than HDL Cont in accepting cholesterol from cholesterol-enriched macrophages (median 20.8% [IQR 16.1-23.7] vs control (26.5% [IQR 19.6-28.5]; p = 0.008). LXR agonist upregulated ABCA1 expression and increased cholesterol efflux to HDL of both normal and CKD subjects, although the latter continued to show lower efflux capacity. HDL CKD increased macrophage cytokine response (TNF-α, MCP-1, IL-1β, and NF-κB) versus HDL Cont . The heightened cytokine response to HDL CKD was further amplified in cells treated with LXR agonist. The LXR-augmentation of inflammation was associated with increased TLR-2 and TLR-4 and ERK1/2. Moderate to severe impairment in kidney function promotes foam cell formation that reflects impairment in cholesterol acceptor function of HDL CKD . Activation of cellular cholesterol transporters by LXR agonism improves but does not normalize efflux to HDL CKD . However, LXR agonism actually increases the pro-inflammatory effects of HDL CKD through activation of TLRs and ERK1/2 pathways.

  16. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Systematic Analysis of Absorbed Anti-Inflammatory Constituents and Metabolites of Sarcandra glabra in Rat Plasma Using Ultra-High-Pressure Liquid Chromatography Coupled with Linear Trap Quadrupole Orbitrap Mass Spectrometry

    PubMed Central

    Li, Xiong; Zhao, Jin; Liu, Jianxing; Li, Geng; Zhao, Ya; Zeng, Xing

    2016-01-01

    Ultra-high-pressure liquid chromatography (UHPLC) was coupled with linear ion trap quadrupole Orbitrap mass spectrometry (LTQ-Orbitrap) and was used for the first time to systematically analyze the absorbed components and metabolites in rat plasma after oral administration of the water extract of Sarcandra glabra. This extract is a well-known Chinese herbal medicine for the treatment of inflammation and immunity related diseases. The anti-inflammatory activities of the absorbed components were evaluated by measuring nitric oxide (NO) production and proinflammatory genes expression in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. As a result, 54 components in Sarcandra glabra were detected in dosed rat plasma, and 36 of them were positively identified. Moreover, 23 metabolites were characterized and their originations were traced. Furthermore, 20 of the 24 studied components showed anti-inflammatory activities. These results provide evidence that this method efficiency detected constituents in plasma based on the anti-inflammatory mechanism of multiple components and would be a useful technique for screening multiple targets for natural medicine research. PMID:26974321

  18. CHANGES IN LUNG PARENCHYMA WITH PREOPERATIVE Co$sup 60$-IRRADIATION OF BRONCHIAL CARCINOMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widow, W.

    1959-01-01

    Histologic studies were made of resected lung tissue of 24 patients subjected to radiotherapy. Radiation pneumonitis with incipient fibrosis was observed in 14 cases. In only five of these cases could the histologic findings be confirmed radiologically. The histologic changes included swelling of alveolar septa, interstitial edema, increase of connective tissue components, giant cell formation, exfoliation of alveolar cells, intra-alveolar edema, depositio of cellular debris in small bronchi with apparent injury to the ciliated epithelial and mucous cells, and swelling of the peribronchial and perivascular tissue and pleura. Only a sparse inflammatory cell infiltrate was noted. These responses could notmore » be closely correlated with the radiation dose. The radiation reaction was most marked in the vicinity of old tuberculous lesions. No permanent impairment of pulmonary function would be expected from the observed histologic changes. (H.H.D.)« less

  19. Widespread seasonal gene expression reveals annual differences in human immunity and physiology

    PubMed Central

    Dopico, Xaquin Castro; Evangelou, Marina; Ferreira, Ricardo C.; Guo, Hui; Pekalski, Marcin L.; Smyth, Deborah J.; Cooper, Nicholas; Burren, Oliver S.; Fulford, Anthony J.; Hennig, Branwen J.; Prentice, Andrew M.; Ziegler, Anette-G.; Bonifacio, Ezio; Wallace, Chris; Todd, John A.

    2015-01-01

    Seasonal variations are rarely considered a contributing component to human tissue function or health, although many diseases and physiological process display annual periodicities. Here we find more than 4,000 protein-coding mRNAs in white blood cells and adipose tissue to have seasonal expression profiles, with inverted patterns observed between Europe and Oceania. We also find the cellular composition of blood to vary by season, and these changes, which differ between the United Kingdom and The Gambia, could explain the gene expression periodicity. With regards to tissue function, the immune system has a profound pro-inflammatory transcriptomic profile during European winter, with increased levels of soluble IL-6 receptor and C-reactive protein, risk biomarkers for cardiovascular, psychiatric and autoimmune diseases that have peak incidences in winter. Circannual rhythms thus require further exploration as contributors to various aspects of human physiology and disease. PMID:25965853

  20. Progress and future opportunities in the development of vaccines against atherosclerosis.

    PubMed

    Govea-Alonso, Dania O; Beltrán-López, Josué; Salazar-González, Jorge A; Vargas-Morales, Juan; Rosales-Mendoza, Sergio

    2017-04-01

    Atherosclerosis represents a serious global health problem that demands new therapeutic and prophylactic interventions. Considering that atherosclerosis has autoimmune and inflammatory components, immunotherapy is a possible focus to treat this disease. Areas covered: Based on the analysis of the current biomedical literature, this review describes the status on the development of vaccines against atherosclerosis. Several targets have been identified including sequences of apolipoprotein B100 (ApoB100), cholesteryl ester transfer protein (CETP), heat shock proteins (HSP), extracellular matrix proteins, T cell receptor β chain variable region 31 (TRBV31), the major outer membrane protein (MOMP), and the outer membrane protein 5 (Pomp5) from Chlamydia pneumoniae. Humoral and cellular immunities to these targets have been associated with therapeutic effects in murine models and humans. The evaluation of some candidates in clinical trials is ongoing. Expert commentary: New research paths based on the use of next generation vaccine production platforms are envisioned.

  1. HTLV-I Tax protein binds to MEKK1 to stimulate IkappaB kinase activity and NF-kappaB activation.

    PubMed

    Yin, M J; Christerson, L B; Yamamoto, Y; Kwak, Y T; Xu, S; Mercurio, F; Barbosa, M; Cobb, M H; Gaynor, R B

    1998-05-29

    NF-kappaB, a key regulator of the cellular inflammatory and immune response, is activated by the HTLV-I transforming and transactivating protein Tax. We show that Tax binds to the amino terminus of the protein kinase MEKK1, a component of an IkappaB kinase complex, and stimulates MEKK1 kinase activity. Tax expression increases the activity of IkappaB kinase beta (IKKbeta) to enhance phosphorylation of serine residues in IkappaB alpha that lead to its degradation. Dominant negative mutants of both IKKbeta and MEKK1 prevent Tax activation of the NF-kappaB pathway. Furthermore, recombinant MEKK1 stimulates IKKbeta phosphorylation of IkappaB alpha. Thus, Tax-mediated increases in NF-kappaB nuclear translocation result from direct interactions of Tax and MEKK1 leading to enhanced IKKbeta phosphorylation of IkappaB alpha.

  2. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  3. The thymoprotective function of leptin is indirectly mediated via suppression of obesity.

    PubMed

    Sreenivasan, Jayasree; Schlenner, Susan; Franckaert, Dean; Dooley, James; Liston, Adrian

    2015-09-01

    Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus. © 2015 John Wiley & Sons Ltd.

  4. Neither Lys- and DAP-type peptidoglycans stimulate mouse or human innate immune cells via Toll-like receptor 2

    PubMed Central

    Langer, Marybeth; Girton, Alanson W.; Popescu, Narcis I.; Burgett, Tarea; Metcalf, Jordan P.

    2018-01-01

    Peptidoglycan (PGN), a major component of bacterial cell walls, is a pathogen-associated molecular pattern (PAMP) that causes innate immune cells to produce inflammatory cytokines that escalate the host response during infection. In order to better understand the role of PGN in infection, we wanted to gain insight into the cellular receptor for PGN. Although the receptor was initially identified as Toll-like receptor 2 (TLR2), this receptor has remained controversial and other PGN receptors have been reported. We produced PGN from live cultures of Bacillus anthracis and Staphylococcus aureus and tested samples of PGN isolated during the purification process to determine at what point TLR2 activity was removed, if at all. Our results indicate that although live B. anthracis and S. aureus express abundant TLR2 ligands, highly-purified PGN from either bacterial source is not recognized by TLR2. PMID:29474374

  5. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis

    PubMed Central

    Leppkes, Moritz; Maueröder, Christian; Hirth, Sebastian; Nowecki, Stefanie; Günther, Claudia; Billmeier, Ulrike; Paulus, Susanne; Biermann, Mona; Munoz, Luis E.; Hoffmann, Markus; Wildner, Dane; Croxford, Andrew L.; Waisman, Ari; Mowen, Kerri; Jenne, Dieter E.; Krenn, Veit; Mayerle, Julia; Lerch, Markus M.; Schett, Georg; Wirtz, Stefan; Neurath, Markus F.; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Ductal occlusion has been postulated to precipitate focal pancreatic inflammation, while the nature of the primary occluding agents has remained elusive. Neutrophils make use of histone citrullination by peptidyl arginine deiminase-4 (PADI4) in contact to particulate agents to extrude decondensed chromatin as neutrophil extracellular traps (NETs). In high cellular density, NETs form macroscopically visible aggregates. Here we show that such aggregates form inside pancreatic ducts in humans and mice occluding pancreatic ducts and thereby driving pancreatic inflammation. Experimental models indicate that PADI4 is critical for intraductal aggregate formation and that PADI4-deficiency abrogates disease progression. Mechanistically, we identify the pancreatic juice as a strong instigator of neutrophil chromatin extrusion. Characteristic single components of pancreatic juice, such as bicarbonate ions and calcium carbonate crystals, induce aggregated NET formation. Ductal occlusion by aggregated NETs emerges as a pathomechanism with relevance in a plethora of inflammatory conditions involving secretory ducts. PMID:26964500

  6. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    PubMed

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  7. Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects LPS-induced acute lung injury.

    PubMed

    Zhang, Yali; Xu, Tingting; Wu, Beibei; Chen, Hongjin; Pan, Zheer; Huang, Yi; Mei, Liqin; Dai, Yuanrong; Liu, Xing; Shan, Xiaoou; Liang, Guang

    2017-04-01

    Acute inflammatory diseases are the leading causes of mortality in intensive care units. Myeloid differentiation 2 (MD-2) is required for recognizing lipopolysaccharide (LPS) by toll-like receptor 4 (TLR4), and represents an attractive therapeutic target for LPS-induced inflammatory diseases. In this study, we report a chalcone derivative, L2H21, as a new MD2 inhibitor, which could inhibit LPS-induced inflammation both in vitro and in vivo. We identify that L2H21 as a direct inhibitor of MD-2 by binding to Arg 90 and Tyr 102 residues in MD-2 hydrophobic pocket using a series of biochemical experiments, including surface plasmon response, molecular docking and amino acid mutation. L2H21 dose dependently inhibited LPS-induced inflammatory cytokine expression in primary macrophages. In mice with LPS intratracheal instillation, L2H21 significantly decreased LPS-induced pulmonary oedema, pathological changes in lung tissue, protein concentration increase in bronchoalveolar lavage fluid, inflammatory cells infiltration and inflammatory gene expression, accompanied with the decrease in pulmonary TLR4/MD-2 complex. Meanwhile, administration with L2H21 protects mice from LPS-induced mortality at a degree of 100%. Taken together, this study identifies a new MD2 inhibitor L2H21 as a promising candidate for the treatment of acute lung injury (ALI) and sepsis, and validates that inhibition of MD-2 is a potential therapeutic strategy for ALI. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Quantitative evaluation of the in vitro effect and interactions of active fractions in Yaotongning-based formulae on prostaglandin E₂ production.

    PubMed

    Ni, Li-Jun; Xu, Xiao-Ling; Zhang, Li-Guo; Shi, Wan-Zhong

    2014-07-03

    Traditional Chinese medicine (TCM) formula of Yaotongning Capsules (YTNC) is a common remedy to treat rheumatism (RA) in China and possesses diverse biological activities including anti-inflammation. However the effects of component material medicines (CMMs) in YTNC and different combinations of the CMMs on the efficacy of YTNC and the interactions of these CMMs have been being unclear due to ten CMMs and too many compounds involved in YTNC. Moreover, many TCM formulae are available for treating RA according to TCM theory. It is unknown if the YTNC prescription is better than other TCM formulae for treating RA or better efficacy could be obtained when some CMMs in YTNC are replaced by other herbs. Quantitatively investigate the in vitro effect of active fractions from the CMMs of YTNC and other eight herbs commonly used in the TCM formulae for RA treatment on anti-inflammatory activity of different combinations of the active fractions, the interactions of the active fractions to evaluate the reasonability, advantage (or disadvantage) of the YTNC prescription and to see if the prescription could be improved from the point of anti-inflammation. Twenty-six active fractions, which were categorized as alkaloids, flavonoids, saponins, volatile oils/aqueous extracts and polysaccharides were prepared to design TCM samples by combining some of the active fractions, based on the YTNC formulating principle, combination chemistry concept and the importance of the active fractions in YTNC. The anti-inflammatory activities of the samples were evaluated by their half-maximal inhibitory concentration (IC50) values that inhibiting the production of prostaglandin E2 (PGE2) in ANA-1 murine macrophages (ANA-1 cells). The cells plated in 96-well plates were classified into blank group and test sample group. Each group was stimulated with lipopolysaccharides (LPS, 1 mg/mL) for 2h. ANA-1 cells were pretreated with different concentrations of test samples prior to the addition of arachidonic acid (10 μmol/L). The supernatants were collected and measured using PGE2 ELISA Kit, and the cytotoxicity was assayed by cell counting Kit-8 (CCK8)-based test. The interactions of the active fractions in YTNC were evaluated by comparing the experimental IC50 values of the samples derived from YTNC to their corresponding additive IC50 values. The effect of each active fraction on cellular anti-inflammation-PGE2 secretion inhibition activity, and the reasonability, advantages (or disadvantages) of YTNC were evaluated based on the comparison of IC50 values of the samples. The disassembled formulae consisted of some active fractions of YTNC and the whole prescription of YTNC consisted of the all active fractions from YTNC all demonstrate cellular anti-inflammatory activity, and there were no significant differences between these formulae. The vehicle of YTNC Chinese rice wine exhibits the ability to enhance the cellular anti-inflammation of YTNC. Synergistic effect exerts in the combination of alkaloids, flavonoids and saponins of YTNC, antagonistic or additive effects occur in the other combinations of active fractions from YTNC. The anti-inflammatory activities of some TCM samples which include some active fractions from the eight selected herbs are significantly higher than the samples derived from YTNC. The flavonoids of Carthamus tinctorius, the volatile oils of Cinnamomum cassia and Angelica pubescens perform better in cellular anti-inflammation than the flavonoids and volatile oils in YTNC. The prescription of YTNC is reasonable in the view of anti-inflammation. The saponins and polysaccharides from the CMMs of YTNC have better anti-inflammatory activities than the saponins and polysaccharides from the other eight herbs. Reducing the varieties of YTNC CMMs and replacing the flavonoids and volatile oils of YTNC with the flavonoids of Carthamus tinctorius and the volatile oils of Cinnamomum cassia (or Angelica pubescens) would improve the safety and anti-inflammatory activity of YTNC. Synthetically evaluating various pharmacological activities of TCM formulae designed in the present work may lead to develop more effective and safer TCM using YTNC as prototypes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions

    NASA Astrophysics Data System (ADS)

    Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano

    2005-02-01

    Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-α or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.

  10. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferationmore » and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. - Highlights: • Inflammatory BMEs affect the properties of BMFs during mastitis. • BMEs inhibited the proliferation and promoted the migration of BMFs. • BMEs enhanced secretion of inflammatory mediators and deposition of ECM in BMFs. • Changes of the properties of BMFs were mediated by specific signal molecules.« less

  11. Cardiopulmonary Arrest and Resuscitation Disrupts Cholinergic Anti-Inflammatory Processes: A Role for Cholinergic α7 Nicotinic Receptors

    PubMed Central

    Morris, John S.; Karelina, Kate; Weil, Zachary M.; Zhang, Ning; Al-Abed, Yousef; Brothers, Holly M.; Wenk, Gary L.; Pavlov, Valentin A.; Tracey, Kevin J.; DeVries, A. Courtney

    2011-01-01

    Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1β, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame. PMID:21368056

  12. A multiplexed analysis approach identifies new association of inflammatory proteins in patients with overactive bladder

    PubMed Central

    Ma, Emily; Vetter, Joel; Bliss, Laura; Lai, H. Henry; Mysorekar, Indira U.

    2016-01-01

    Overactive bladder (OAB) is a common debilitating bladder condition with unknown etiology and limited diagnostic modalities. Here, we explored a novel high-throughput and unbiased multiplex approach with cellular and molecular components in a well-characterized patient cohort to identify biomarkers that could be reliably used to distinguish OAB from controls or provide insights into underlying etiology. As a secondary analysis, we determined whether this method could discriminate between OAB and other chronic bladder conditions. We analyzed plasma samples from healthy volunteers (n = 19) and patients diagnosed with OAB, interstitial cystitis/bladder pain syndrome (IC/BPS), or urinary tract infections (UTI; n = 51) for proinflammatory, chemokine, cytokine, angiogenesis, and vascular injury factors using Meso Scale Discovery (MSD) analysis and urinary cytological analysis. Wilcoxon rank-sum tests were used to perform univariate and multivariate comparisons between patient groups (controls, OAB, IC/BPS, and UTI). Multivariate logistic regression models were fit for each MSD analyte on 1) OAB patients and controls, 2) OAB and IC/BPS patients, and 3) OAB and UTI patients. Age, race, and sex were included as independent variables in all multivariate analysis. Receiver operating characteristic (ROC) curves were generated to determine the diagnostic potential of a given analyte. Our findings demonstrate that five analytes, i.e., interleukin 4, TNF-α, macrophage inflammatory protein-1β, serum amyloid A, and Tie2 can reliably differentiate OAB relative to controls and can be used to distinguish OAB from the other conditions. Together, our pilot study suggests a molecular imbalance in inflammatory proteins may contribute to OAB pathogenesis. PMID:27029431

  13. Effect of aerobic exercise and fish oil supplements on plasma levels of inflammatory indexes in mice.

    PubMed

    Alizadeh, Hamid; Bazgir, Behzad; Daryanoosh, Farhad; Koushki, Maryam; Sobhani, Vahid

    2014-01-01

    Exercise has positive and negative effects on immune system. Herein, we would like to investigate the effects of incremental aerobic training and fish oil supplementation on the plasma levels of CRP, CPK and IL-17 in trained mice. One of the major roles of immune system is to produce soluble or cellular components that provide the immunity against inflammatory agent. The purpose of this study is to investigate distinct and combine effects of incremental aerobic training and fish oil supplement on plasma levels of IL-17, CPK and CRP in trained male mice. Totally, 54 healthy male mice (2 months old, weight= 34±1 grams) were selected. At first 10 mice were killed to determine base line values, the rest of them were randomly divided into four groups, control group (C, n=11), supplement group (S, n=11), training group (T, n=11) and supplement-training group (ST, n=11).The supplement and supplement-training groups were fed with 0.2cc/day fish oil for 8 weeks. Training and supplement-training groups underwent exercise for 5 sessions per week for a period of 8 weeks on animal treadmill. SPSS 16.0 software and multivariate analysis of variance were used for statistical analysis of data Exercise and fish oil supplement lead to a decrease in CRP levels and subsequently causing a reduction in plasma levels of IL-17 and CK in mice (p<0.05). Combination of exercise and fish oil can reduce regulate inflammatory response caused by incremental exercise.

  14. A mathematical model of atherogenesis as an inflammatory response.

    PubMed

    Ibragimov, A I; McNeal, C J; Ritter, L R; Walton, J R

    2005-12-01

    We construct a mathematical model of the early formation of an atherosclerotic lesion based on a simplification of Russell Ross' paradigm of atherosclerosis as a chronic inflammatory response. Atherosclerosis is a disease characterized by the accumulation of lipid-laden cells in the arterial wall. This disease results in lesions within the artery that may grow into the lumen restricting blood flow and, in critical cases, can rupture causing complete, sudden occlusion of the artery resulting in heart attack, stroke and possibly death. It is now understood that when chemically modified low-density lipoproteins (LDL cholesterol) enter into the wall of the human artery, they can trigger an immune response mediated by biochemical signals sent and received by immune and other cells indigenous to the vasculature. The presence of modified LDL can also corrupt the normal immune function triggering further immune response and ultimately chronic inflammation. In the construction of our mathematical model, we focus on the inflammatory component of the pathogenesis of cardiovascular disease (CVD). Because this study centres on the interplay between chemical and cellular species in the human artery and bloodstream, we employ a model of chemotaxis first given by E. F. Keller and Lee Segel in 1970 and present our model as a coupled system of non-linear reaction diffusion equations describing the state of the various species involved in the disease process. We perform numerical simulations demonstrating that our model captures certain observed features of CVD such as the localization of immune cells, the build-up of lipids and debris and the isolation of a lesion by smooth muscle cells.

  15. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines

    PubMed Central

    2012-01-01

    Background Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles’ physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. Results WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. Conclusion The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs. PMID:23176191

  16. Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes.

    PubMed

    Rajasekhar, Pradeep; Poole, Daniel P; Veldhuis, Nicholas A

    2017-01-01

    Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein. © 2017 Elsevier Inc. All rights reserved.

  17. The systemic inflammatory response syndrome.

    PubMed

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  18. Functional components in Scutellaria barbata D. Don with anti-inflammatory activity on RAW 264.7 cells.

    PubMed

    Liu, Hsin-Lan; Kao, Tsai-Hua; Shiau, Chyuan-Yuan; Chen, Bing-Huei

    2018-01-01

    The objectives of this study were to determine the variety and amount of various functional components in Scutellaria barbata D. Don as well as study their anti-inflammatory activity on RAW 264.7 cells. Both ethanol and ethyl acetate extracts were shown to contain the functional components including phenolics, flavonoids, chlorophylls, and carotenoids, with the former mainly composed of phenolics and flavonoids, and the latter of carotenoids and chlorophylls. Both extracts could significantly inhibit (p < 0.05) the production of lipopolysaccharide-induced nitric oxide, prostaglandin E 2 , interlukin-6, and interlukin-1β, as well as the expressions of phosphor extracellular signal-regulated kinase and phosphor-c-Jun N-terminal kinase (p-JNK), but failed to retard tumor necrosis factor-α expression. Both ethanol and ethyl acetate extracts had a dose-dependent anti-inflammatory activity on RAW 264.7 cells. Furthermore, the anti-inflammatory efficiency can be varied for both ethanol and ethyl acetate extracts, which can be attributed to the presence of different varieties and amounts of functional components, as mentioned above. This finding suggested that S. Barbata extract may be used as an anti-inflammatory agent for possible future biomedical application. Copyright © 2017. Published by Elsevier B.V.

  19. East Indian Sandalwood Oil Is a Phosphodiesterase Inhibitor: A New Therapeutic Option in the Treatment of Inflammatory Skin Disease.

    PubMed

    Sharma, Manju; Levenson, Corey; Browning, John C; Becker, Emily M; Clements, Ian; Castella, Paul; Cox, Michael E

    2018-01-01

    Cyclic adenosine monophosphate phosphodiesterases (PDEs) regulate pro-inflammatory cytokine production. One isoform, PDE4, is overactive in chronic relapsing inflammatory skin diseases: psoriasis and eczema/atopic dermatitis, and in several cancers. East Indian sandalwood oil (EISO) has significant anti-inflammatory properties. Here, we report that 75% of pediatric eczema/atopic dermatitis patients treated with topical EISO formulations achieved a >50% reduction in their Eczema Area and Severity Index score. EISO treatment of a psoriasis model reduced PDE4 expression and reversed histopathology. EISO directly inhibited PDE enzymatic activity in vitro . In lipopolysaccharide-stimulated human dermal fibroblast, BEAS-2B, A549, and THP-1 cells, EISO suppressed total cellular PDE activity, PDE4, and 7 transcript levels, nuclear factor kappa B (NF-κB) activation, and pro-inflammatory cytokines/chemokine production. These results suggest that EISO anti-inflammatory activity is mediated through suppressing PDE activity, thus facilitating cAMP-regulated inhibition of NF-κB and indicate EISO as an attractive natural therapeutic for chronic and acute inflammatory disorders.

  20. East Indian Sandalwood Oil Is a Phosphodiesterase Inhibitor: A New Therapeutic Option in the Treatment of Inflammatory Skin Disease

    PubMed Central

    Sharma, Manju; Levenson, Corey; Browning, John C.; Becker, Emily M.; Clements, Ian; Castella, Paul; Cox, Michael E.

    2018-01-01

    Cyclic adenosine monophosphate phosphodiesterases (PDEs) regulate pro-inflammatory cytokine production. One isoform, PDE4, is overactive in chronic relapsing inflammatory skin diseases: psoriasis and eczema/atopic dermatitis, and in several cancers. East Indian sandalwood oil (EISO) has significant anti-inflammatory properties. Here, we report that 75% of pediatric eczema/atopic dermatitis patients treated with topical EISO formulations achieved a >50% reduction in their Eczema Area and Severity Index score. EISO treatment of a psoriasis model reduced PDE4 expression and reversed histopathology. EISO directly inhibited PDE enzymatic activity in vitro. In lipopolysaccharide-stimulated human dermal fibroblast, BEAS-2B, A549, and THP-1 cells, EISO suppressed total cellular PDE activity, PDE4, and 7 transcript levels, nuclear factor kappa B (NF-κB) activation, and pro-inflammatory cytokines/chemokine production. These results suggest that EISO anti-inflammatory activity is mediated through suppressing PDE activity, thus facilitating cAMP-regulated inhibition of NF-κB and indicate EISO as an attractive natural therapeutic for chronic and acute inflammatory disorders. PMID:29593534

  1. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”

    PubMed Central

    Goodridge, Helen S.; Reyes, Christopher N.; Becker, Courtney A.; Katsumoto, Tamiko R.; Ma, Jun; Wolf, Andrea J.; Bose, Nandita; Chan, Anissa S. H.; Magee, Andrew S.; Danielson, Michael E.; Weiss, Arthur; Vasilakos, John P.; Underhill, David M.

    2011-01-01

    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 is a pattern recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular anti-microbial activity, including phagocytosis and production of reactive oxygen species1, 2. In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 are excluded (Supplementary Figure 1). The “phagocytic synapse” now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular anti-microbial responses only when they are required. PMID:21525931

  2. Olives and Bone: A Green Osteoporosis Prevention Option

    PubMed Central

    Chin, Kok-Yong; Ima-Nirwana, Soelaiman

    2016-01-01

    Skeletal degeneration due to aging, also known as osteoporosis, is a major health problem worldwide. Certain dietary components confer protection to our skeletal system against osteoporosis. Consumption of olives, olive oil and olive polyphenols has been shown to improve bone health. This review aims to summarize the current evidence from cellular, animal and human studies on the skeletal protective effects of olives, olive oil and olive polyphenols. Animal studies showed that supplementation of olives, olive oil or olive polyphenols could improve skeletal health assessed via bone mineral density, bone biomechanical strength and bone turnover markers in ovariectomized rats, especially those with inflammation. The beneficial effects of olive oil and olive polyphenols could be attributed to their ability to reduce oxidative stress and inflammation. However, variations in the bone protective, antioxidant and anti-inflammatory effects between studies were noted. Cellular studies demonstrated that olive polyphenols enhanced proliferation of pre-osteoblasts, differentiation of osteoblasts and decreased the formation of osteoclast-like cells. However, the exact molecular pathways for its bone health promoting effects are yet to be clearly elucidated. Human studies revealed that daily consumption of olive oil could prevent the decline in bone mineral density and improve bone turnover markers. As a conclusion, olives, olive oil and its polyphenols are potential dietary interventions to prevent osteoporosis among the elderly. PMID:27472350

  3. Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways

    PubMed Central

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-01-01

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. PMID:25589789

  4. Of Mice and Dogs

    PubMed Central

    Dewald, Oliver; Ren, Guofeng; Duerr, Georg D.; Zoerlein, Martin; Klemm, Christina; Gersch, Christine; Tincey, Sophia; Michael, Lloyd H.; Entman, Mark L.; Frangogiannis, Nikolaos G.

    2004-01-01

    Large animal models have provided much of the descriptive data regarding the cellular and molecular events in myocardial infarction and repair. The availability of genetically altered mice may provide a valuable tool for specific cellular and molecular dissection of these processes. In this report we compare closed chest models of canine and mouse infarction/reperfusion qualitatively and quantitatively for temporal, cellular, and spatial differences. Much like the canine model, reperfused mouse hearts are associated with marked induction of endothelial adhesion molecules, cytokines, and chemokines. Reperfused mouse infarcts show accelerated replacement of cardiomyocytes by granulation tissue leading to a thin mature scar at 14 days, when the canine infarction is still cellular and evolving. Infarcted mouse hearts demonstrate a robust but transient postreperfusion inflammatory reaction, associated with a rapid up-regulation of interleukin-10 and transforming growth factor-β. Unlike canine infarcts, infarcted mouse hearts show only transient macrophage infiltration and no significant mast cell accumulation. In correlation, the growth factor for macrophages, M-CSF, shows modest and transient up-regulation in the early days of reperfusion; and the obligate growth factor for mast cells, stem cell factor, SCF, is not induced. In summary, the postinfarction inflammatory response and resultant repair in the mouse heart shares many common characteristics with large mammalian species, but has distinct temporal and qualitative features. These important species-specific differences should be considered when interpreting findings derived from studies using genetically altered mice. PMID:14742270

  5. Reduction of Acute Rejection by Bone Marrow Mesenchymal Stem Cells during Rat Small Bowel Transplantation

    PubMed Central

    Zhang, Wen; Wu, Ben-Juan; Fu, Nan-Nan; Zheng, Wei-Ping; Don, Chong; Shen, Zhong-Yang

    2014-01-01

    Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation. PMID:25500836

  6. Glucose consumption of inflammatory cells masks metabolic deficits in the brain.

    PubMed

    Backes, Heiko; Walberer, Maureen; Ladwig, Anne; Rueger, Maria A; Neumaier, Bernd; Endepols, Heike; Hoehn, Mathias; Fink, Gereon R; Schroeter, Michael; Graf, Rudolf

    2016-03-01

    Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years.

    PubMed

    Federico, Alessandro; Dallio, Marcello; Loguercio, Carmelina

    2017-01-24

    Silymarin is the extract of Silybum marianum , or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.

  8. A Negative Feedback Loop Between Autophagy and Immune Responses in Mycobacterium leprae Infection.

    PubMed

    Ma, Yuelong; Zhang, Li; Lu, Jie; Shui, Tiejun; Chen, Jia; Yang, Jun; Yuan, Joanna; Liu, Yeqiang; Yang, Degang

    2017-01-01

    The obligate intracellular bacterium Mycobacterium leprae is the causative agent of leprosy and primarily infects macrophages, leading to irreversible nerve damage and deformities. So far, the underlying reasons allowing M. leprae to persist and propagate in macrophages, despite the presence of cellular immunity, are still a mystery. Here, we investigated the role of autophagy, a cellular process that degrades cytosolic materials and intracellular pathogens, in M. leprae infection. We found that live M. leprae infection of macrophages resulted in significantly elevated autophagy level. However, macrophages with high autophagy levels preferentially expressed lower levels of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-12, and tumor necrosis factor-α, and preferentially primed anti-inflammatory T cells responses, characterized by high IL-10 and low interferon-γ, granzyme B, and perforin responses. These anti-inflammatory T cells could suppress further induction of autophagy, leading to improved survival of intracellular M. leprae in infected macrophages. Therefore, these data demonstrated that although autophagy had a role in eliminating intracellular pathogens, the induction of autophagy resulted in anti-inflammatory immune responses, which suppressed autophagy in a negative feedback loop and allowed the persistence of M. leprae.

  9. Noisy transcription factor NF-κB oscillations stabilize and sensitize cytokine signaling in space

    NASA Astrophysics Data System (ADS)

    Gangstad, Sirin W.; Feldager, Cilie W.; Juul, Jeppe; Trusina, Ala

    2013-02-01

    NF-κB is a major transcription factor mediating inflammatory response. In response to a pro-inflammatory stimulus, it exhibits a characteristic response—a pulse followed by noisy oscillations in concentrations of considerably smaller amplitude. NF-κB is an important mediator of cellular communication, as it is both activated by and upregulates production of cytokines, signals used by white blood cells to find the source of inflammation. While the oscillatory dynamics of NF-κB has been extensively investigated both experimentally and theoretically, the role of the noise and the lower secondary amplitude has not been addressed. We use a cellular automaton model to address these issues in the context of spatially distributed communicating cells. We find that noisy secondary oscillations stabilize concentric wave patterns, thus improving signal quality. Furthermore, both lower secondary amplitude as well as noise in the oscillation period might be working against chronic inflammation, the state of self-sustained and stimulus-independent excitations. Our findings suggest that the characteristic irregular secondary oscillations of lower amplitude are not accidental. On the contrary, they might have evolved to increase robustness of the inflammatory response and the system's ability to return to a pre-stimulated state.

  10. Recent advancement of molecular mechanisms of liver fibrosis.

    PubMed

    Seki, Ekihiro; Brenner, David A

    2015-07-01

    Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis. © 2015 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Toxicology and cellular effect of manufactured nanomaterials

    DOEpatents

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  12. In vivo modulation of foreign body response on polyurethane by surface entrapment technique.

    PubMed

    Khandwekar, Anand P; Patil, Deepak P; Hardikar, Anand A; Shouche, Yogesh S; Doble, Mukesh

    2010-11-01

    Implanted polymeric materials, such as medical devices, provoke the body to initiate an inflammatory reaction, known as the foreign body response (FBR), which causes several complications. In this study, polyurethane (Tecoflex®, PU) surface modified with the nonionic surfactant Tween80® (PU/T80) and the cell adhesive PLL-RGD peptide (PU/PLL-RGD) by a previously described entrapment technique were implanted in the peritoneal cavity of Wistar rats for 30 days. Implants were retrieved and examined for tissue reactivity and cellular adherence by various microscopic and analytical techniques. Surface-induced inflammatory response was assessed by real-time PCR based quantification of proinflammatory cytokine transcripts, namely, TNF-α and IL-1β, normalized to housekeeping gene GAPDH. Cellular adherence and their distribution profile were assessed by microscopic examination of H&E stained implant sections. It was observed that PU/PLL-RGD followed by the bare PU surface exhibited severe inflammatory and fibrotic response with an average mean thickness of 19 and 12 μm, respectively, in 30 days. In contrast, PU/T80 surface showed only a cellular monolayer of 2-3 μm in thickness, with a mild inflammatory response and no fibrotic encapsulation. The PU/PLL-RGD peptide-modified substrate promoted an enhanced rate of macrophage cell fusion to form foreign body giant cell (FBGCs), whereas FBGCs were rarely observed on Tween80®-modified substrate. The expression levels of proinflammatory cytokines (TNF-α and IL-1β) were upregulated on PU/PLL-RGD surface followed by bare PU, whereas the cytokine expressions were significantly suppressed on PU/T80 surface. Thus, our study highlights modulation of foreign body response on polyurethane surfaces through surface entrapment technique in the form of differential responses observed on PLL-RGD and Tween80® modified surfaces with the former effective in triggering tissue cell adhesion thereby fibrous encapsulation, while the later being mostly resistant to this phenomenon.

  13. Peripheral Organs of Dengue Fatal Cases Present Strong Pro-Inflammatory Response with Participation of IFN-Gamma-, TNF-Alpha- and RANTES-Producing Cells.

    PubMed

    Póvoa, Tiago F; Oliveira, Edson R A; Basílio-de-Oliveira, Carlos A; Nuovo, Gerard J; Chagas, Vera L A; Salomão, Natália G; Mota, Ester M; Paes, Marciano V

    2016-01-01

    Dengue disease is an acute viral illness caused by dengue virus (DENV) that can progress to hemorrhagic stages leading to about 20000 deaths every year worldwide. Despite many clinical investigations regarding dengue, the immunopathogenic process by which infected patients evolve to the severe forms is not fully understood. Apart from differences in virulence and the antibody cross reactivity that can potentially augment virus replication, imbalanced cellular immunity is also seen as a major concern in the establishment of severe dengue. In this context, the investigation of cellular immunity and its products in dengue fatal cases may provide valuable data to help revealing dengue immunopathogenesis. Here, based in four dengue fatal cases infected by the serotype 3 in Brazil, different peripheral organs (livers, lungs and kidneys) were studied to evaluate the presence of cell infiltrates and the patterns of local cytokine response. The overall scenario of the studied cases revealed a considerable systemic involvement of infection with mononuclear cells targeted to all of the evaluated organs, as measured by immunohistochemistry (IHC). Quantification of cytokine-expressing cells in peripheral tissues was also performed to characterize the ongoing inflammatory process by the severe stage of the disease. Increased levels of IFN-γ- and TNF-α-expressing cells in liver, lung and kidney samples of post-mortem subjects evidenced a strong pro-inflammatory induction in these tissues. The presence of increased RANTES-producing cell numbers in all analyzed organs suggested a possible link between the clinical status and altered vascular permeability. Co-staining of DENV RNA and IFN-γ or TNF-α using in situ hibridization and IHC confirmed the virus-specific trigger of the pro-inflammatory response. Taken together, this work provided additional evidences that corroborated with the traditional theories regarding the "cytokine storm" and the occurrence of uneven cellular immunity in response to DENV as major reasons for progress to severe disease.

  14. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  15. Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications.

    PubMed

    Domanski, Dominik; Zegrocka-Stendel, Oliwia; Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna

    2016-01-01

    β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α-induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications.

  16. Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications

    PubMed Central

    Perzanowska, Anna; Dutkiewicz, Malgorzata; Kowalewska, Magdalena; Grabowska, Iwona; Maciejko, Dorota; Fogtman, Anna; Dadlez, Michal; Koziak, Katarzyna

    2016-01-01

    β-escin is a mixture of triterpene saponins isolated from the horse chestnut seeds (Aesculus hippocastanum L.). The anti-edematous, anti-inflammatory and venotonic properties of β-escin have been the most extensively clinically investigated effects of this plant-based drug and randomized controlled trials have proved the efficacy of β-escin for the treatment of chronic venous insufficiency. However, despite the clinical recognition of the drug its pharmacological mechanism of action still remains largely elusive. To determine the cellular and molecular basis for the therapeutic effectiveness of β-escin we performed discovery and targeted proteomic analyses and in vitro evaluation of cellular and molecular responses in human endothelial cells under inflammatory conditions. Our results demonstrate that in endothelial cells β-escin potently induces cholesterol synthesis which is rapidly followed with marked fall in actin cytoskeleton integrity. The concomitant changes in cell functioning result in a significantly diminished responses to TNF-α stimulation. These include reduced migration, alleviated endothelial monolayer permeability, and inhibition of NFκB signal transduction leading to down-expression of TNF-α—induced effector proteins. Moreover, the study provides evidence for novel therapeutic potential of β-escin beyond the current vascular indications. PMID:27727329

  17. New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity

    PubMed Central

    Oh, Gi-Su; Kim, Hyung-Jin; Shen, AiHua; Lee, Su-Bin; Yang, Sei-Hoon; Shim, Hyeok; Cho, Eun-Young; Kwon, Kang-Beom; Kwak, Tae Hwan; So, Hong-Seob

    2016-01-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways. PMID:26881219

  18. A portable system for processing donated whole blood into high quality components without centrifugation.

    PubMed

    Gifford, Sean C; Strachan, Briony C; Xia, Hui; Vörös, Eszter; Torabian, Kian; Tomasino, Taylor A; Griffin, Gary D; Lichtiger, Benjamin; Aung, Fleur M; Shevkoplyas, Sergey S

    2018-01-01

    The use of centrifugation-based approaches for processing donated blood into components is routine in the industrialized world, as disparate storage conditions require the rapid separation of 'whole blood' into distinct red blood cell (RBC), platelet, and plasma products. However, the logistical complications and potential cellular damage associated with centrifugation/apheresis manufacturing of blood products are well documented. The objective of this study was to evaluate a proof-of-concept system for whole blood processing, which does not employ electromechanical parts, is easily portable, and can be operated immediately after donation with minimal human labor. In a split-unit study (n = 6), full (~500mL) units of freshly-donated whole blood were divided, with one half processed by conventional centrifugation techniques and the other with the new blood separation system. Each of these processes took 2-3 hours to complete and were performed in parallel. Blood products generated by the two approaches were compared using an extensive panel of cellular and plasma quality metrics. Comparison of nearly all RBC parameters showed no significant differences between the two approaches, although the portable system generated RBC units with a slight but statistically significant improvement in 2,3-diphosphoglyceric acid concentration (p < 0.05). More notably, several markers of platelet damage were significantly and meaningfully higher in products generated with conventional centrifugation: the increase in platelet activation (assessed via P-selectin expression in platelets before and after blood processing) was nearly 4-fold higher for platelet units produced via centrifugation, and the release of pro-inflammatory mediators (soluble CD40-ligand, thromboxane B2) was significantly higher for centrifuged platelets as well (p < 0.01). This study demonstrated that a simple, passive system for separating donated blood into components may be a viable alternative to centrifugation-particularly for applications in remote or resource-limited settings, or for patients requiring highly functional platelet product.

  19. Radiation induced pulmonary fibrosis as a model of progressive fibrosis: Contributions of DNA damage, inflammatory response and cellular senescence genes.

    PubMed

    Beach, Tyler A; Johnston, Carl J; Groves, Angela M; Williams, Jacqueline P; Finkelstein, Jacob N

    2017-04-01

    Purpose/Aim of Study: Studies of pulmonary fibrosis (PF) have resulted in DNA damage, inflammatory response, and cellular senescence being widely hypothesized to play a role in the progression of the disease. Utilizing these aforementioned terms, genomics databases were interrogated along with the term, "pulmonary fibrosis," to identify genes common among all 4 search terms. Findings were compared to data derived from a model of radiation-induced progressive pulmonary fibrosis (RIPF) to verify that these genes are similarly expressed, supporting the use of radiation as a model for diseases involving PF, such as human idiopathic pulmonary fibrosis (IPF). In an established model of RIPF, C57BL/6J mice were exposed to 12.5 Gy thorax irradiation and sacrificed at 24 hours, 1, 4, 12, and 32 weeks following exposure, and lung tissue was compared to age-matched controls by RNA sequencing. Of 176 PF associated gene transcripts identified by database interrogation, 146 (>82%) were present in our experimental model, throughout the progression of RIPF. Analysis revealed that nearly 85% of PF gene transcripts were associated with at least 1 other search term. Furthermore, of 22 genes common to all four terms, 16 were present experimentally in RIPF. This illustrates the validity of RIPF as a model of progressive PF/IPF based on the numbers of transcripts reported in both literature and observed experimentally. Well characterized genes and proteins are implicated in this model, supporting the hypotheses that DNA damage, inflammatory response and cellular senescence are associated with the pathogenesis of PF.

  20. Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in Paneth cells of rat intestine.

    PubMed

    Eltahawy, N A; Elsonbaty, S M; Abunour, S; Zahran, W E

    2017-03-01

    Environmental and occupational exposure to aluminum along with ionizing radiation results in serious health problems. This study was planned to investigate the impact of oxidative stress provoked by exposure to ionizing radiation with aluminum administration upon cellular ultra structure and apoptotic changes in Paneth cells of rat small intestine . Animals received daily aluminum chloride by gastric gavage at a dose 0.5 mg/Kg BW for 4 weeks. Whole body gamma irradiation was applied at a dose 2 Gy/week up to 8 Gy. Ileum malondialdehyde, advanced oxidative protein products, protein carbonyl and tumor necrosis factor-alpha were assessed as biomarkers of lipid peroxidation, protein oxidation and inflammation respectively along with superoxide dismutase, catalase, and glutathione peroxidase activities as enzymatic antioxidants. Moreover, analyses of cell cycle division and apoptotic changes were evaluated by flow cytometry. Intestinal cellular ultra structure was investigated using transmission electron microscope.Oxidative and inflammatory stresses assessment in the ileum of rats revealed that aluminum and ionizing radiation exposures exhibited a significant effect upon the increase in oxidative stress biomarkers along with the inflammatory marker tumor necrosis factor-α accompanied by a significant decreases in the antioxidant enzyme activities. Flow cytometric analyses showed significant alterations in the percentage of cells during cell cycle division phases along with significant increase in apoptotic cells. Ultra structurally, intestinal cellular alterations with marked injury in Paneth cells at the sites of bacterial translocation in the crypt of lumens were recorded. The results of this study have clearly showed that aluminum and ionizing radiation exposures induced apoptosis with oxidative and inflammatory disturbance in the Paneth cells of rat intestine, which appeared to play a major role in the pathogenesis of cellular damage. Furthermore, the interaction of these two intestinal toxic routes was found to be synergistic.

  1. Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress

    PubMed Central

    2011-01-01

    Background Gum of Chios mastic (Pistacia lentiscus var. chia) is a natural antimicrobial agent that has found extensive use in pharmaceutical products and as a nutritional supplement. The molecular mechanisms of its anti-inflammatory activity, however, are not clear. In this work, the potential role of antioxidant activity of Chios mastic gum has been evaluated. Methods Scavenging of superoxide radical was investigated by electron spin resonance and spin trapping technique using EMPO spin trap in xanthine oxidase system. Superoxide production in endothelial and smooth muscle cells stimulated with TNF-α or angiotensin II and treated with vehicle (DMSO) or mastic gum (0.1-10 μg/ml) was measured by DHE and HPLC. Cellular H2O2 was measured by Amplex Red. Inhibition of protein kinase C (PKC) with mastic gum was determined by the decrease of purified PKC activity, by inhibition of PKC activity in cellular homogenate and by attenuation of superoxide production in cells treated with PKC activator phorbol 12-myristate 13-acetate (PMA). Results Spin trapping study did not show significant scavenging of superoxide by mastic gum itself. However, mastic gum inhibited cellular production of superoxide and H2O2 in dose dependent manner in TNF-α treated rat aortic smooth muscle cells but did not affect unstimulated cells. TNF-α significantly increased the cellular superoxide production by NADPH oxidase, while mastic gum completely abolished this stimulation. Mastic gum inhibited the activity of purified PKC, decreased PKC activity in cell homogenate, and attenuated superoxide production in cells stimulated with PKC activator PMA and PKC-dependent angiotensin II in endothelial cells. Conclusion We suggest that mastic gum inhibits PKC which attenuates production of superoxide and H2O2 by NADPH oxidases. This antioxidant property may have direct implication to the anti-inflammatory activity of the Chios mastic gum. PMID:21645369

  2. Commensal communism and the oral cavity.

    PubMed

    Henderson, B; Wilson, M

    1998-09-01

    The world we live in contains unimaginable numbers of bacteria, and these and other single-celled creatures represent the major diversity of life on our planet. During the last decade or so, the complexity and intimacy of the interactions which occur between bacteria and host eukaryotic cells during the process of infection have begun to emerge. The study of such interactions is the subject of the new discipline of cellular microbiology. This intimacy of bacteria/host interactions creates a major paradox. The average human being is 90% bacteria in terms of cell numbers. These bacteria constitute the commensal or normal microflora and populate the mucosal surfaces of the oral cavity, gastrointestinal tract, urogenital tract, and the surface of the skin. In bacterial infections, much of the pathology is due to the release of a range of bacterial components (e.g., modulins such as lipopolysaccharide, peptidoglycan, DNA, molecular chaperones), which induce the synthesis of the local hormone-like molecules known as pro-inflammatory cytokines. However, such components must also be constantly released by the vast numbers of bacteria constituting the normal microflora and, as a consequence, our mucosae should constantly be in a state of inflammation. This is patently not the case, and a hypothesis is forwarded to account for this "commensal paradox", namely, that our commensal bacteria and mucosal surfaces exist in a state of bio-communism, forming a unified "tissue" in which interactions between bacteria and epithelia are finely balanced to ensure bacterial survival and prevent the induction of damaging inflammation. Evidence is emerging that bacteria can produce a variety of proteins which can inhibit the synthesis/release of inflammatory cytokines. The authors predict that such proteins are simply one part of an extensive signaling system which occurs between bacteria and epithelial cells at mucosal surfaces such as those found in the oral cavity.

  3. Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.

    PubMed

    Moore, Darcie L; Jessberger, Sebastian

    2017-01-01

    Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The effect of a collagen-elastin matrix on adhesion formation after flexor tendon repair in a rabbit model.

    PubMed

    Wichelhaus, Dagmar Alice; Beyersdoerfer, Sascha Tobias; Gierer, Philip; Vollmar, Brigitte; Mittlmeier, Th

    2016-07-01

    The outcome of flexor tendon surgery is negatively affected by the formation of adhesions which can occur during the healing of the tendon repair. In this experimental study, we sought to prevent adhesion formation by wrapping a collagen-elastin scaffold around the repaired tendon segment. In 28 rabbit hind legs, the flexor tendons of the third and fourth digits were cut and then repaired using a two-strand suture technique on the fourth digit and a four-strand technique on the third digit. Rabbits were randomly assigned to study and control groups. In the control group, the operation ended by closing the tendon sheath and the skin. In the study group, a collagen-elastin scaffold was wrapped around the repaired tendon segment in both digits. After 3 and 8 weeks, the tendons were harvested and processed histologically. The range of motion of the digits and the gap formation between the repaired tendon ends were measured. The formation of adhesions, infiltration of leucocytes and extracellular inflammatory response were quantified. At the time of tendon harvesting, all joints of the operated toes showed free range of motion. Four-strand core sutures lead to significantly less diastasis between the repaired tendon ends than two-strand core suture repairs. The collagen-elastin scaffold leads to greater gapping after 3 weeks compared to the controls treated without the matrix. Within the tendons treated with the collagen-elastin matrix, a significant boost of cellular and extracellular inflammation could be stated after 3 weeks which was reflected by a higher level of CAE positive cells and more formation of myofibroblasts in the αSMA stain in the study group. The inflammatory response subsided gradually and significantly until the late stage of the study. Both the cellular and extracellular inflammatory response was emphasized with the amount of material used for the repair. The use of a collagen-elastin matrix cannot be advised for the prevention of adhesion formation in flexor tendon surgery, because it enhances both cellular and extracellular inflammation. Four-strand core sutures lead to less gapping than two-strand core sutures, but at the same time, the cellular and extracellular inflammatory response is more pronounced.

  5. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  6. The Vitamin Nicotinamide: Translating Nutrition into Clinical Care

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2009-01-01

    Nicotinamide, the amide form of vitamin B3 (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyl-transferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs. PMID:19783937

  7. Antioxidant and Anti-Inflammatory Effects of Selected Natural Compounds Contained in a Dietary Supplement on Two Human Immortalized Keratinocyte Lines

    PubMed Central

    Serini, Simona; Mondella, Nadia; Celleno, Leonardo; Lanza, Paola; Calviello, Gabriella

    2014-01-01

    Several advantages may derive from the use of dietary supplements containing multiple natural antioxidants and/or anti-inflammatory agents. At present, however, there is scarce information on the properties and potential of combined supplements. To fill the gap, the antioxidant and anti-inflammatory activities exerted by a combination of seven natural components (coenzyme Q10, krill oil, lipoic acid, resveratrol, grape seed oil, α-tocopherol, and selenium) contained in a dietary supplement used for the prevention of skin disorders were investigated in vitro. Each component was administered, alone or in combination, to human keratinocytes, and the inhibition of Reactive Oxygen Species production and lipid peroxidation as well as the ability to reduce inflammatory cytokine secretion and to modulate Nuclear Factor-κB pathway was evaluated. The combination exhibited high antioxidant activity and in specific conditions the combination's efficiency was higher than that of the most powerful components administered individually. Moreover, the combination showed remarkable anti-inflammatory properties. It reduced more efficiently than each component the secretion of Monocyte Chemoattractant Protein-1, a crucial cytokine for the development of chronic inflammation in skin, and inhibited Nuclear Factor-κB molecular pathway. Overall, our findings suggest that the combined formulation may have the potential to powerfully inhibit oxidative stress and inflammation at skin level. PMID:25197638

  8. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts

    PubMed Central

    Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien

    2016-01-01

    The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases. PMID:27790620

  9. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts.

    PubMed

    Zlatanova, Ivana; Pinto, Cristina; Silvestre, Jean-Sébastien

    2016-01-01

    The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.

  10. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis.

    PubMed

    Moore, Wendy C; Hastie, Annette T; Li, Xingnan; Li, Huashi; Busse, William W; Jarjour, Nizar N; Wenzel, Sally E; Peters, Stephen P; Meyers, Deborah A; Bleecker, Eugene R

    2014-06-01

    Clinical cluster analysis from the Severe Asthma Research Program (SARP) identified 5 asthma subphenotypes that represent the severity spectrum of early-onset allergic asthma, late-onset severe asthma, and severe asthma with chronic obstructive pulmonary disease characteristics. Analysis of induced sputum from a subset of SARP subjects showed 4 sputum inflammatory cellular patterns. Subjects with concurrent increases in eosinophil (≥2%) and neutrophil (≥40%) percentages had characteristics of very severe asthma. To better understand interactions between inflammation and clinical subphenotypes, we integrated inflammatory cellular measures and clinical variables in a new cluster analysis. Participants in SARP who underwent sputum induction at 3 clinical sites were included in this analysis (n = 423). Fifteen variables, including clinical characteristics and blood and sputum inflammatory cell assessments, were selected using factor analysis for unsupervised cluster analysis. Four phenotypic clusters were identified. Cluster A (n = 132) and B (n = 127) subjects had mild-to-moderate early-onset allergic asthma with paucigranulocytic or eosinophilic sputum inflammatory cell patterns. In contrast, these inflammatory patterns were present in only 7% of cluster C (n = 117) and D (n = 47) subjects who had moderate-to-severe asthma with frequent health care use despite treatment with high doses of inhaled or oral corticosteroids and, in cluster D, reduced lung function. The majority of these subjects (>83%) had sputum neutrophilia either alone or with concurrent sputum eosinophilia. Baseline lung function and sputum neutrophil percentages were the most important variables determining cluster assignment. This multivariate approach identified 4 asthma subphenotypes representing the severity spectrum from mild-to-moderate allergic asthma with minimal or eosinophil-predominant sputum inflammation to moderate-to-severe asthma with neutrophil-predominant or mixed granulocytic inflammation. Published by Mosby, Inc.

  11. Sputum neutrophils are associated with more severe asthma phenotypes using cluster analysis

    PubMed Central

    Moore, Wendy C.; Hastie, Annette T.; Li, Xingnan; Li, Huashi; Busse, William W.; Jarjour, Nizar N.; Wenzel, Sally E.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.

    2013-01-01

    Background Clinical cluster analysis from the Severe Asthma Research Program (SARP) identified five asthma subphenotypes that represent the severity spectrum of early onset allergic asthma, late onset severe asthma and severe asthma with COPD characteristics. Analysis of induced sputum from a subset of SARP subjects showed four sputum inflammatory cellular patterns. Subjects with concurrent increases in eosinophils (≥2%) and neutrophils (≥40%) had characteristics of very severe asthma. Objective To better understand interactions between inflammation and clinical subphenotypes we integrated inflammatory cellular measures and clinical variables in a new cluster analysis. Methods Participants in SARP at three clinical sites who underwent sputum induction were included in this analysis (n=423). Fifteen variables including clinical characteristics and blood and sputum inflammatory cell assessments were selected by factor analysis for unsupervised cluster analysis. Results Four phenotypic clusters were identified. Cluster A (n=132) and B (n=127) subjects had mild-moderate early onset allergic asthma with paucigranulocytic or eosinophilic sputum inflammatory cell patterns. In contrast, these inflammatory patterns were present in only 7% of Cluster C (n=117) and D (n=47) subjects who had moderate-severe asthma with frequent health care utilization despite treatment with high doses of inhaled or oral corticosteroids, and in Cluster D, reduced lung function. The majority these subjects (>83%) had sputum neutrophilia either alone or with concurrent sputum eosinophilia. Baseline lung function and sputum neutrophils were the most important variables determining cluster assignment. Conclusion This multivariate approach identified four asthma subphenotypes representing the severity spectrum from mild-moderate allergic asthma with minimal or eosinophilic predominant sputum inflammation to moderate-severe asthma with neutrophilic predominant or mixed granulocytic inflammation. PMID:24332216

  12. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water.

    PubMed

    Wedler, Jonas; Weston, Anna; Rausenberger, Julia; Butterweck, Veronika

    2016-10-01

    Classical production of rose oil is based on water steam distillation from the flowers of Rosa damascena. During this process, large quantities of waste water accrue which are discharged to the environment, causing severe pollution of both, groundwater and surface water due to a high content of polyphenols. We recently developed a strategy to purify the waste water into a polyphenol-depleted and a polyphenol-enriched fraction RF20-(SP-207). RF20-(SP-207) and sub-fraction F(IV) significantly inhibited cell proliferation and migration of HaCaT cells. Since there is a close interplay between these actions and inflammatory processes, here we focused on the fractions' influence on pro-inflammatory biomarkers. HaCaT keratinocytes were treated with RF20-(SP-207), F(IV) (both at 50μg/mL) and ellagic acid (10μM) for 24h under TNF-α (20ng/mL) stimulated and non-stimulated conditions. Gene expression of IL-1β, IL-6, IL-8, RANTES and MCP-1 was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and cellular protein secretion of IL-8, RANTES and MCP-1 was determined by ELISA based assays. RF20-(SP-207) and F(IV) significantly decreased the expression and cellular protein secretion of IL-1β, IL-6, IL-8, RANTES and MCP-1. The diminishing effects on inflammatory target gene expression were slightly less pronounced under TNF-α stimulated conditions. In conclusion, the recovered polyphenol fraction RF20-(SP-207) from rose oil distillation waste water markedly modified inflammatory target gene expression in vitro, and, therefore, could be further developed as alternative treatment of acute and chronic inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure.

    PubMed

    Iskandar, Reinard; Liu, Shengchen; Xiang, Fei; Chen, Wen; Li, Liangpeng; Qin, Wei; Huang, Fuhua; Chen, Xin

    2017-05-01

    Pericardial fluid, as a biochemical indicator of heart status, directly indicates pathological alteration to the heart. The accumulation of pericardial fluid can be attributed to an underlying systemic or local inflammatory process. However, the pericardial fluid expression of cellular surface markers, as well as several cytokines in chronic heart failure (CHF), remain unclear. In order to evaluate these issues further the pericardial fluid expression of several cytokines and the surface expression of activity markers between CHF patients and non-heart failure (NHF) patients were analyzed. The pericardial fluid expression of cytokines was measured by immunofluorescence and biomarker of plasma N-terminal propeptide of B-type natriuretic peptide (NT-proBNP), while pericardial fluid levels of soluble glycoprotein 130 (sgp130) were analyzed by ELISA in 50 CHF and 24 NHF patients. In addition, the surface expression of activation markers for T-cells was measured by immunohistochemistry. Patients with CHF demonstrated increased levels of plasma NT-proBNP and pericardial fluid sgp130. Surface expression of cellular activation markers CD25 and Foxp3 in the pericardial fluid was increased in patients with CHF. Moreover, the pro- and anti-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-6 and IL-10 in patients with CHF also demonstrated an increased expression within its pericardial fluid. In addition, there was infiltration of inflammatory cells and enhanced expression of inflammatory cytokines in the pericardial fluid of patients with CHF, which may reflect T cell activation, suggesting that systemic inflammation is important in the progression of CHF. This evidence could indicate a possible novel target for future therapeutics and prevention of CHF.

  14. beta-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes.

    PubMed

    Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T; Luttrell, Lou M; Tempel, George E; Halushka, Perry V; Cook, James A

    2008-01-01

    Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). beta-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. beta-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that beta-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of beta-arrestin 2 in LPS-induced cellular activation, we studied homozygous beta-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFalpha and IL-6 production in the beta-arrestin 2 (-/-) compared to both beta-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFalpha production in the beta-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the beta-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the beta-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). beta-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, beta-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the beta-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that beta-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis.

  15. β-Arrestin 2: a Negative Regulator of Inflammatory Responses in Polymorphonuclear Leukocytes

    PubMed Central

    Basher, Fahmin; Fan, Hongkuan; Zingarelli, Basilia; Borg, Keith T.; Luttrell, Lou M.; Tempel, George E.; Halushka, Perry V.; Cook, James A.

    2008-01-01

    Heterotrimeric Gi proteins have been previously implicated in signaling leading to inflammatory mediator production induced by bacterial lipopolysaccharide (LPS). β-arrestins are ubiquitously expressed proteins that alter G-protein-coupled receptors signaling. β-arrestin 2 plays a multifaceted role as a scaffold protein in regulating cellular inflammatory responses. Polymorphonuclear leukocytes (PMNs) activated by LPS induce inflammatory responses resulting in organ injury during sepsis. We hypothesized that β-arrestin 2 is a critical modulator of inflammatory responses in PMNs. To examine the potential role of β-arrestin 2 in LPS-induced cellular activation, we studied homozygous β-arrestin 2 (-/-), heterozygous (+/-), and wildtype (+/+) mice. PMNs were stimulated with LPS for 16h. There was increased basal TNFα and IL-6 production in the β-arrestin 2 (-/-) compared to both β-arrestin 2 (+/-) and (+/+) cells. LPS failed to stimulate TNFα production in the β-arrestin 2 (-/-) PMNs. However, LPS stimulated IL-6 production was increased in the β-arrestin 2 (-/-) cells compared to (+/+) cells. In subsequent studies, peritoneal PMN recruitment was increased 81% in the β-arrestin 2 (-/-) mice compared to (+/+) mice (p<0.05). β-arrestin 2 deficiency resulted in an augmented expression of CD18 and CD62L (p<0.05). In subsequent studies, β-arrestin 2 (-/-) and (+/+) mice were subjected to cecal ligation and puncture (CLP) and lung was collected and analyzed for myeloperoxidase activity (MPO) as index of PMNs infiltrate. CLP-induced MPO activity was significantly increased (p<0.05) in the β-arrestin 2 (-/-) compared to (+/+) mice. These studies demonstrate that β-arrestin 2 is a negative regulator of PMN activation and pulmomary leukosequestration in response to polymicrobial sepsis. PMID:19079685

  16. miR-155 deficiency protects mice from experimental colitis by reducing T helper type 1/type 17 responses

    PubMed Central

    Singh, Udai P; Murphy, Angela E; Enos, Reilly T; Shamran, Haidar A; Singh, Narendra P; Guan, Honbing; Hegde, Venkatesh L; Fan, Daping; Price, Robert L; Taub, Dennis D; Mishra, Manoj K; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    Inflammatory bowel disease (IBD), a chronic intestinal inflammatory condition that affects millions of people worldwide, results in high morbidity and exorbitant health-care costs. The critical features of both innate and adaptive immunity are to control inflammation and dysfunction in this equilibrium is believed to be the reason for the development of IBD. miR-155, a microRNA, is up-regulated in various inflammatory disease states, including IBD, and is a positive regulator of T-cell responses. To date, no reports have defined a function for miR-155 with regard to cellular responses in IBD. Using an acute experimental colitis model, we found that miR-155−/− mice, as compared to wild-type control mice, have decreased clinical scores, a reversal of colitis-associated pathogenesis, and reduced systemic and mucosal inflammatory cytokines. The increased frequency of CD4+ lymphocytes in the spleen and lamina propria with dextran sodium sulphate induction was decreased in miR-155−/− mice. Similarly, miR-155 deficiency abrogated the increased numbers of interferon-γ expressing CD4+ T cells typically observed in wild-type mice in this model. The frequency of systemic and mucosal T helper type 17-, CCR9-expressing CD4+ T cells was also reduced in miR-155−/− mice compared with control mice. These findings strongly support a role for miR-155 in facilitating pro-inflammatory cellular responses in this model of IBD. Loss of miR-155 also results in decreases in T helper type 1/type 17, CD11b+, and CD11c+ cells, which correlated with reduced clinical scores and severity of disease. miR-155 may serve as a potential therapeutic target for the treatment of IBD. PMID:24891206

  17. [Effects of several inhibitors of intracellular signaling on production of cytokines and signal proteins in RAW 264.7 cells cultivated with low dose ammonium].

    PubMed

    Novoselova, E G; Parfeniuk, S B; Glushkova, O V; Khrenov, M O; Novoselova, T V; Lunin, S M; Fesenko, E E

    2012-01-01

    Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.

  18. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus

    PubMed Central

    Serhan, C N; Chiang, N

    2008-01-01

    Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress. PMID:17965751

  19. Distinct inflammatory and cytopathic characteristics of Escherichia coli isolates from inflammatory bowel disease patients.

    PubMed

    Jensen, Stina Rikke; Mirsepasi-Lauridsen, Hengameh Chloé; Thysen, Anna Hammerich; Brynskov, Jørn; Krogfelt, Karen A; Petersen, Andreas Munk; Pedersen, Anders Elm; Brix, Susanne

    2015-12-01

    Escherichia coli (E. coli) may be implicated in the pathogenesis of inflammatory bowel disease (IBD), as implied from a higher prevalence of mucosa-associated E. coli in the gut of IBD-affected individuals. However, it is unclear whether different non-diarrheagenic E. coli spp. segregate from each other in their ability to promote intestinal inflammation. Herein we compared the inflammation-inducing properties of non-diarrheagenic LF82, 691-04A, E. coli Nissle 1917 (ECN) and eleven new intestinal isolates from different locations in five IBD patients and one healthy control. Viable E. coli were cultured with human monocyte-derived dendritic cells (moDCs) and monolayers of intestinal epithelial cells (IECs), followed by analysis of secreted cytokines, intracellular levels of reactive oxygen species and cellular death. The IBD-associated E. coli LF82 induced the same dose-dependent inflammatory cytokine profile as ECN and ten of the new E. coli isolates displayed as high level IL-12p70, IL-1β, IL-23 and TNF-α from moDCs irrespective of their site of isolation (ileum/colon/faeces), disease origin (diseased/non-diseased) or known virulence factors. Contrarily, 691-04A and one new IBD E. coli isolate induced a different cellular phenotype with enhanced killing of moDCs and IECs, coupled to elevated IL-18. The cytopathic nature of 691-04A and one other IBD E. coli isolate suggests that colonization with specific non-diarrheagenic E. coli could promote intestinal barrier leakage and profound intestinal inflammation, while LF82, ECN and the remaining non-diarrheagenic E. coli isolates hold notorious pro-inflammatory characteristics that can progress inflammation in case of intestinal barrier leakage. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia.

    PubMed

    Hao, Yuan; Chow, Alison W; Yip, Wallace C; Li, Chi H; Wan, Tai F; Tong, Benjamin C; Cheung, King H; Chan, Wood Y; Chen, Yangchao; Cheng, Christopher H; Ko, Wing H

    2016-08-01

    P2Y receptor activation causes the release of inflammatory cytokines in the bronchial epithelium, whereas G protein-coupled estrogen receptor (GPER), a novel estrogen (E2) receptor, may play an anti-inflammatory role in this process. We investigated the cellular mechanisms underlying the inhibitory effect of GPER activation on the P2Y receptor-mediated Ca(2+) signaling pathway and cytokine production in airway epithelia. Expression of GPER in primary human bronchial epithelial (HBE) or 16HBE14o- cells was confirmed on both the mRNA and protein levels. Stimulation of HBE or 16HBE14o- cells with E2 or G1, a specific agonist of GPER, attenuated the nucleotide-evoked increases in [Ca(2+)]i, whereas this effect was reversed by G15, a GPER-specific antagonist. G1 inhibited the secretion of two proinflammatory cytokines, interleukin (IL)-6 and IL-8, in cells stimulated by adenosine 5'-(γ-thio)triphosphate (ATPγS). G1 stimulated a real-time increase in cAMP levels in 16HBE14o- cells, which could be inhibited by adenylyl cyclase inhibitors. The inhibitory effects of E2 or G1 on P2Y receptor-induced increases in Ca(2+) were reversed by treating the cells with a protein kinase A (PKA) inhibitor. These results demonstrated that the inhibitory effects of G1 or E2 on P2Y receptor-mediated Ca(2+) mobilization and cytokine secretion were due to GPER-mediated activation of a cAMP-dependent PKA pathway. This study has reported, for the first time, the expression and function of GPER as an anti-inflammatory component in human bronchial epithelia, which may mediate through its opposing effects on the pro-inflammatory pathway activated by the P2Y receptors in inflamed airway epithelia.

  1. Cellular profile of the peritumoral inflammatory infiltrate in squamous cells carcinoma of oral mucosa: Correlation with the expression of Ki67 and histologic grading

    PubMed Central

    Vieira, Fabricio LD; Vieira, Beatriz J; Guimaraes, Marco AM; Aarestrup, Fernando M

    2008-01-01

    Background Squamous cells carcinoma is the most important malignant tumor with primary site in the oral cavity and, given the great exposure of mucosa and lips to the etiologic factors of this neoplasm, its incidence is high. Investigation of the prognostic determinants is significant for the expectations of treatment proposal and cure of the patient. The local immune response represented by peritumoral inflammatory infiltrate is a possible prognostic factor. Methods In this study, oral mucosa samples of squamous cells carcinoma were analyzed, separated according to their histological classification as well as the phenotypical profile of the cells comprising the peritumoral inflammatory infiltrate was investigated by immunohistochemical method, in addiction, the cell proliferation index via protein Ki67 expression was determinated. Results The T lymphocytes made up most of this inflammatory infiltrate, and among these cells, there was a predominance of T CD8 lymphocytes relative to the T CD4 lymphocytes. The B lymhocytes were the second most visualized leucocyte cell type followed by macrophages and neutrophils. The immunohistochemical assessment of Ki-67 positive cells revealed a greater expression of this protein in samples of undifferentiated squamous cells carcinoma. Conclusion The results suggest that the cellular immune response is the main defense mechanism in squamous cells carcinoma of oral mucosa, expressed by the large number of T lymphocytes and macrophages, and that the greatest intensity of local response may be associated with the best prognosis. PMID:18764952

  2. Implementation of Mass Cytometry as a Tool for Mechanism of Action Studies in Inflammatory Bowel Disease.

    PubMed

    Tyler, Christopher J; Pérez-Jeldres, Tamara; Ehinger, Erik; Capaldo, Brian; Karuppuchamy, Thangaraj; Boyer, Joshua D; Patel, Derek; Dulai, Parambir; Boland, Brigid S; Lannigan, Joanne; Eckmann, Lars; Ernst, Peter B; Sandborn, William J; Ho, Samuel B; Rivera-Nieves, Jesús

    2018-06-08

    Novel therapeutics for inflammatory bowel disease (IBD) are under development, yet mechanistic readouts at the tissue level are lacking. Techniques to assess intestinal immune composition could represent a valuable tool for mechanism of action (MOA) studies of novel drugs. Mass cytometry enables analysis of intestinal inflammatory cell infiltrate and corresponding molecular fingerprints with unprecedented resolution. Here, we aimed to optimize the methodology for isolation and cryopreservation of cells from intestinal tissue to allow for the potential implementation of mass cytometry in MOA studies. We investigated key technical issues, including minimal tissue requirements, cell isolation protocols, and cell storage, using intestinal biopsies and peripheral blood from healthy individuals. High-dimensional mass cytometry was employed for the analyses of biopsy-derived intestinal cellular subsets. Dithiothreitol and mechanical dissociation decreased epithelial cell contamination and allowed for isolation of adequate cell numbers from 2 to 4 colonic or ileal biopsies (6 × 104±2 × 104) after a 20-minute collagenase digestion, allowing for reliable detection of most major immune cell subsets. Biopsies and antibody-labeled mononuclear cells could be cryopreserved for later processing and acquisition (viability > 70%; P < 0.05). Mass cytometry represents a unique tool for deep immunophenotyping intestinal cell composition. This technique has the potential to facilitate analysis of drug actions at the target tissue by identifying specific cellular subsets and their molecular signatures. Its widespread implementation may impact not only IBD research but also other gastrointestinal conditions where inflammatory cells play a role in pathogenesis.

  3. Implantation of GL261 neurospheres into C57/BL6 mice: a more reliable syngeneic graft model for research on glioma-initiating cells.

    PubMed

    Yi, Liang; Zhou, Chun; Wang, Bing; Chen, Tunan; Xu, Minhui; Xu, Lunshan; Feng, Hua

    2013-08-01

    Recent studies have demonstrated that inflammatory cells and inflammatory mediators are indispensable components of the tumor-initiating cell (TIC) niche and regulate the malignant behavior of TICs. However, conventional animal models for glioma-initiating cell (GIC) studies are based on the implantation of GICs from human glioblastoma (GBM) into immunodeficient mice without the regulation of immune system. Whether animal models can mimic the cellular microenvironment of malignancy and evaluate the biological features of GICs accurately is unclear. Here, we detected the biological features of neurosphere-like tumor cells derived from the murine GBM cell line GL261 (GL261-NS) and from primary human GBM (PGBM-NS) in vitro, injected GL261-NS into syngeneic C57/BL6 mouse brain and injected PGBM-NS into NOD/SCID mouse brain, respectively. The tumorigenic characteristics of the two different orthotopic transplantation models were analyzed and the histological discrepancy between grafts and human primary GBM was compared. We found that GICs enriched in GL261-NS, GL261-NS and PGBM-NS exhibited increased GIC potential and enhanced chemoresistance in vitro. GL261-NS was significantly more aggressive compared to GL261 adhesive cells (GL261-AC) in vivo and the enhanced aggression was more significant in syngeneic mice compared to immunodeficient mice. The discrepancy of tumorigenicity between GL261-NS and GL261-AC in C57/BL6 mice was also larger compared to that between PGBM-NS and PGBM-AC in immunodeficient mice. Syngrafts derived from GL261-NS in C57/BL6 mice corresponded to the human GBM histologically better, compared with xenografts derived from PGBM-NS in NOD/SCID mice, which lack inflammatory cells and inflammatory mediators. We conclude that the inflammatory niche is involved in the tumorigenicity of GICs and implantation of GL261-NS into C57/BL6 mice is a more reliable syngeneic graft model for in vivo study on GICs relative to the immunodeficiency model.

  4. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro

    PubMed Central

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    Objective The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. Methods In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Results Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3+ CD56− T lymphocytes, CD3+ CD56+ NKT cells, CD3−CD56+ NK cells, and also some cells within the CD3−CD56− non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. Conclusion The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria. PMID:28848360

  5. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro.

    PubMed

    Jensen, Gitte S; Cash, Howard A; Farmer, Sean; Keller, David

    2017-01-01

    The aim of this study was to document the immune activating and anti-inflammatory effects of inactivated probiotic Bacillus coagulans GBI-30, 6086 (Staimune™) cells on human immune cells in vitro. In vitro cultures of human peripheral blood mononuclear cells (PBMC) from healthy blood donors were treated with inactivated B. coagulans GBI-30, 6086 cells for 24 hours. After incubation, the PBMC were stained with fluorochrome-labeled monoclonal antibodies for CD3, CD56, and CD69 to monitor cellular activation by flow cytometry. The culture supernatants were tested for cytokine profile using a 27-plex Luminex array, including pro- and anti-inflammatory cytokines, chemokines, and growth factors. Inactivated B. coagulans GBI-30, 6086 cells induced the CD69 early activation marker on CD3 + CD56 - T lymphocytes, CD3 + CD56 + NKT cells, CD3 - CD56 + NK cells, and also some cells within the CD3 - CD56 - non-T non-NK cell subset. Culture supernatants showed robust increases in the immune-activating cytokines IL-1β, IL-6, IL-17A, and TNF-α. IFN-γ levels were increased, along with three chemokines, MCP-1, MIP-1α, and MIP-1β. The two anti-inflammatory cytokines IL-1ra and IL-10 showed increases, as well as the G-CSF growth factor involved in repair and stem cell biology. In contrast, GM-CSF levels showed a mild decrease, showing a highly selective growth factor response. The inactivated B. coagulans GBI-30, 6086 cells activated human immune cells and altered the production of both immune activating and anti-inflammatory cytokines and chemokines. Of special importance is the novel demonstration of a selective upregulation of the G-CSF growth factor involved in postinjury and postinflammation repair and regeneration. This suggests that important immunogenic cell wall components, such as lipoteichoic acid, are undamaged after the inactivation and retain the complex beneficial biological activities previously demonstrated for the cell walls from live B. coagulans GBI-30, 6086 (GanedenBC30) probiotic bacteria.

  6. Unique and shared inflammatory profiles of human brain endothelia and pericytes.

    PubMed

    Smyth, Leon C D; Rustenhoven, Justin; Park, Thomas I-H; Schweder, Patrick; Jansson, Deidre; Heppner, Peter A; O'Carroll, Simon J; Mee, Edward W; Faull, Richard L M; Curtis, Maurice; Dragunow, Mike

    2018-05-11

    Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β 1 , IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β. Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.

  7. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.

    PubMed

    Schaer, Dominik J; Vinchi, Francesca; Ingoglia, Giada; Tolosano, Emanuela; Buehler, Paul W

    2014-01-01

    Hemolysis, which occurs in many disease states, can trigger a diverse pathophysiologic cascade that is related to the specific biochemical activities of free Hb and its porphyrin component heme. Normal erythropoiesis and concomitant removal of senescent red blood cells (RBC) from the circulation occurs at rates of approximately 2 × 10(6) RBCs/second. Within this physiologic range of RBC turnover, a small fraction of hemoglobin (Hb) is released into plasma as free extracellular Hb. In humans, there is an efficient multicomponent system of Hb sequestration, oxidative neutralization and clearance. Haptoglobin (Hp) is the primary Hb-binding protein in human plasma, which attenuates the adverse biochemical and physiologic effects of extracellular Hb. The cellular receptor target of Hp is the monocyte/macrophage scavenger receptor, CD163. Following Hb-Hp binding to CD163, cellular internalization of the complex leads to globin and heme metabolism, which is followed by adaptive changes in antioxidant and iron metabolism pathways and macrophage phenotype polarization. When Hb is released from RBCs within the physiologic range of Hp, the potential deleterious effects of Hb are prevented. However, during hyper-hemolytic conditions or with chronic hemolysis, Hp is depleted and Hb readily distributes to tissues where it might be exposed to oxidative conditions. In such conditions, heme can be released from ferric Hb. The free heme can then accelerate tissue damage by promoting peroxidative reactions and activation of inflammatory cascades. Hemopexin (Hx) is another plasma glycoprotein able to bind heme with high affinity. Hx sequesters heme in an inert, non-toxic form and transports it to the liver for catabolism and excretion. In the present review we discuss the components of physiologic Hb/heme detoxification and their potential therapeutic application in a wide range of hemolytic conditions.

  8. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.

    PubMed

    Cooper, Paul R; Holder, Michelle J; Smith, Anthony J

    2014-04-01

    Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise

    PubMed Central

    Roberts, Llion A.; Figueiredo, Vandre C.; Egner, Ingrid; Krog, Simone; Aas, Sigve N.; Suzuki, Katsuhiko; Markworth, James F.; Coombes, Jeff S.; Cameron‐Smith, David; Raastad, Truls

    2016-01-01

    Key points Cold water immersion and active recovery are common post‐exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion.We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise‐trained men 2, 24 and 48 h during recovery after acute resistance exercise.Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro‐inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery.Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Abstract Cold water immersion and active recovery are common post‐exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro‐inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower‐body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB‐crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB‐crystallin and the percentage of type II fibres stained for αB‐crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. PMID:27704555

  10. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise.

    PubMed

    Peake, Jonathan M; Roberts, Llion A; Figueiredo, Vandre C; Egner, Ingrid; Krog, Simone; Aas, Sigve N; Suzuki, Katsuhiko; Markworth, James F; Coombes, Jeff S; Cameron-Smith, David; Raastad, Truls

    2017-02-01

    Cold water immersion and active recovery are common post-exercise recovery treatments. A key assumption about the benefits of cold water immersion is that it reduces inflammation in skeletal muscle. However, no data are available from humans to support this notion. We compared the effects of cold water immersion and active recovery on inflammatory and cellular stress responses in skeletal muscle from exercise-trained men 2, 24 and 48 h during recovery after acute resistance exercise. Exercise led to the infiltration of inflammatory cells, with increased mRNA expression of pro-inflammatory cytokines and neurotrophins, and the subcellular translocation of heat shock proteins in muscle. These responses did not differ significantly between cold water immersion and active recovery. Our results suggest that cold water immersion is no more effective than active recovery for minimizing the inflammatory and stress responses in muscle after resistance exercise. Cold water immersion and active recovery are common post-exercise recovery treatments. However, little is known about whether these treatments influence inflammation and cellular stress in human skeletal muscle after exercise. We compared the effects of cold water immersion versus active recovery on inflammatory cells, pro-inflammatory cytokines, neurotrophins and heat shock proteins (HSPs) in skeletal muscle after intense resistance exercise. Nine active men performed unilateral lower-body resistance exercise on separate days, at least 1 week apart. On one day, they immersed their lower body in cold water (10°C) for 10 min after exercise. On the other day, they cycled at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24 and 48 h after exercise in both trials. Exercise increased intramuscular neutrophil and macrophage counts, MAC1 and CD163 mRNA expression (P < 0.05). Exercise also increased IL1β, TNF, IL6, CCL2, CCL4, CXCL2, IL8 and LIF mRNA expression (P < 0.05). As evidence of hyperalgesia, the expression of NGF and GDNF mRNA increased after exercise (P < 0.05). The cytosolic protein content of αB-crystallin and HSP70 decreased after exercise (P < 0.05). This response was accompanied by increases in the cytoskeletal protein content of αB-crystallin and the percentage of type II fibres stained for αB-crystallin. Changes in inflammatory cells, cytokines, neurotrophins and HSPs did not differ significantly between the recovery treatments. These findings indicate that cold water immersion is no more effective than active recovery for reducing inflammation or cellular stress in muscle after a bout of resistance exercise. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge

    PubMed Central

    Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C.; Vera, Santiago R.; Fish-Trotter, Hannah; Williams, Robert W.; Childress, Richard D.

    2017-01-01

    Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia. PMID:28771594

  12. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge.

    PubMed

    Elam, Marshall B; Majumdar, Gipsy; Mozhui, Khyobeni; Gerling, Ivan C; Vera, Santiago R; Fish-Trotter, Hannah; Williams, Robert W; Childress, Richard D; Raghow, Rajendra

    2017-01-01

    Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia.

  13. A Systems Biology Approach Reveals that Tissue Tropism to West Nile Virus Is Regulated by Antiviral Genes and Innate Immune Cellular Processes

    PubMed Central

    Suthar, Mehul S.; Brassil, Margaret M.; Blahnik, Gabriele; McMillan, Aimee; Ramos, Hilario J.; Proll, Sean C.; Belisle, Sarah E.; Katze, Michael G.; Gale, Michael

    2013-01-01

    The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. PMID:23544010

  14. Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span.

    PubMed

    Ricordi, Camillo; Garcia-Contreras, Marta; Farnetti, Sara

    2015-01-01

    Chronic inflammation negatively impacts all physiological functions, causing an array of degenerative conditions including diabetes; cancer; cardiovascular, osteo-articular, and neurodegenerative diseases; autoimmunity disorders; and aging. In particular, there is a growing knowledge of the role that gene transcription factors play in the inflammatory process. Obesity, metabolic syndrome, and diabetes represent multifactorial conditions resulting from improper balances of hormones and gene expression. In addition, these conditions have a strong inflammatory component that can potentially be impacted by the diet. It can reduce pro-inflammatory eicosanoids that can alter hormonal signaling cascades to the modulation of the innate immune system and gene transcription factors. Working knowledge of the impact of how nutrients, especially dietary fatty acids and polyphenols, can impact these various molecular targets makes it possible to develop a general outline of an anti-inflammatory diet that offers a unique, nonpharmacological approach in treating obesity, metabolic syndrome, and diabetes. Several important bioactive dietary components can exert their effect through selected inflammatory pathways that can affect metabolic and genetic changes. In fact, dietary components that can modulate glucose and insulin levels, as well as any other mediator that can activate nuclear factor-kB, can also trigger inflammation through common pathway master switches.

  15. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance.

    PubMed

    Contreras, G Andres; Thelen, Kyan; Schmidt, Sarah E; Strieder-Barboza, Clarissa; Preseault, Courtney L; Raphael, William; Kiupel, Matti; Caron, John; Lock, Adam L

    2016-12-01

    Excessive rates of demand lipolysis in the adipose tissue (AT) during periods of negative energy balance (NEB) are associated with increased susceptibility to disease and limited lactation performance. Lipolysis induces a remodeling process within AT that is characterized by an inflammatory response, cellular proliferation, and changes in the extracellular matrix (ECMT). The adipose tissue macrophage (ATM) is a key component of the inflammatory response. Infiltration of ATM-forming cellular aggregates was demonstrated in transition cows, suggesting that ATM trafficking and phenotype changes may be associated with disease. However, it is currently unknown if ATM infiltration occurs in dairy cows only during NEB states related to the transition period or also during NEB-induced lipolysis at other stages of lactation. The objective of this study was to evaluate changes in ATM trafficking and inflammatory phenotypes, and the expression of genetic markers of AT remodeling in healthy late-lactation cows during feed restriction-induced NEB. After a 14-d (d -14 to d -1) preliminary period, Holstein cows were randomly assigned to 1 of 2 feeding protocols, ad libitum (AL) or feed restriction (FR), for 4 d (d 1-4). Caloric intake was reduced in FR to achieve a targeted energy balance of -15 Mcal/d of net energy for lactation. Omental and subcutaneous AT samples were collected laparoscopically to harvest stromal vascular fraction (SVF) cells on d -3 and 4. The FR induced a NEB of -14.1±0.62 Mcal/d of net energy for lactation, whereas AL cows remained in positive energy balance (3.2±0.66 Mcal/d of NE L ). The FR triggered a lipolytic response reflected in increased plasma nonesterified fatty acids (0.65±0.05 mEq/L on d 4), enhanced phosphorylation of hormone sensitive lipase, and reduced adipocyte diameter. Flow cytometry and immunohistochemistry analysis revealed that on d 4, FR cows had increased numbers of CD172a + , an ATM (M1 and M2) surface marker, cells in SVF that were localized in aggregates. However, FR did not alter the number of SVF cells expressing M1 markers (CD14 and CD11c) or M2 markers (CD11b and CD163). This finding contrasts with the predominately M1 phenotype observed previously in ATM from clinically diseased cows. No changes were observed in the expression of ECMT-related or cell proliferation markers. In summary, an acute 4-d lipolytic stimulus in late-lactation dairy cows led to ATM infiltration with minimal changes in inflammatory phenotype and no changes in ECMT. These results underscore that physiological changes related to parturition, the onset of lactation, extended periods of lipolysis, or a combination of these can induce intense AT remodeling with enhanced ATM inflammatory phenotype expression that may impair the metabolic function of AT in transition dairy cattle. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner.

    PubMed

    Hwang, Jung Seok; Kang, Eun Sil; Han, Sung Gu; Lim, Dae-Seog; Paek, Kyung Shin; Lee, Chi-Ho; Seo, Han Geuk

    2018-01-01

    The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellular inflammatory responses. RAW264.7 murine macrophages were exposed to lipopolysaccharide (LPS) in the presence or absence of formononetin. The levels of HMGB1 release, sirtuin 1 (SIRT1) expression, and HMGB1 acetylation were analyzed by immunoblotting and real-time polymerase chain reaction. The effects of resveratrol and sirtinol, an activator and inhibitor of SIRT1, respectively, on LPS-induced HMGB1 release were also evaluated. Formononetin modulated cellular inflammatory responses by suppressing the release of HMGB1 by macrophages exposed to LPS. In RAW264.7 cells, formononetin significantly attenuated LPS-induced release of HMGB1 into the extracellular environment, which was accompanied by a reduction in its translocation from the nucleus to the cytoplasm. In addition, formononetin significantly induced mRNA and protein expression of SIRT1 in a peroxisome proliferator-activated receptor δ (PPARδ)-dependent manner. These effects of formononetin were dramatically attenuated in cells treated with small interfering RNA (siRNA) against PPARδ or with GSK0660, a specific inhibitor of PPARδ, indicating that PPARδ is involved in formononetin-mediated SIRT1 expression. In line with these effects, formononetin-mediated inhibition of HMGB1 release in LPS-treated cells was reversed by treatment with SIRT1-targeting siRNA or sirtinol, a SIRT1 inhibitor. By contrast, resveratrol, a SIRT1 activator, further potentiated the inhibitory effect of formononetin on LPS-induced HMGB1 release, revealing a possible mechanism by which formononetin regulates HMGB1 release through SIRT1. Furthermore, modulation of SIRT1 expression by transfection of SIRT1- or PPARδ-targeting siRNA significantly counteracted the inhibitory effects of formononetin on LPS-induced HMGB1 acetylation, which was responsible for HMGB1 release. This study shows for the first time that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner. Formononetin consequently exhibits anti-inflammatory activity. Identification of agents, such as formononetin, which can block HMGB1 release, may help to treat inflammation-related disorders.

  17. Formononetin inhibits lipopolysaccharide-induced release of high mobility group box 1 by upregulating SIRT1 in a PPARδ-dependent manner

    PubMed Central

    Hwang, Jung Seok; Kang, Eun Sil; Han, Sung Gu; Lim, Dae-Seog; Paek, Kyung Shin; Lee, Chi-Ho

    2018-01-01

    Background The release of high mobility group box 1 (HMGB1) induced by inflammatory signals acts as a cellular alarmin to trigger a chain of inflammatory responses. Although the inflammatory actions of HMGB1 are well studied, less is known about the therapeutic agents that can impede its release. This study investigated whether the isoflavonoid formononetin can modulate HMGB1 release in cellular inflammatory responses. Methods RAW264.7 murine macrophages were exposed to lipopolysaccharide (LPS) in the presence or absence of formononetin. The levels of HMGB1 release, sirtuin 1 (SIRT1) expression, and HMGB1 acetylation were analyzed by immunoblotting and real-time polymerase chain reaction. The effects of resveratrol and sirtinol, an activator and inhibitor of SIRT1, respectively, on LPS-induced HMGB1 release were also evaluated. Results Formononetin modulated cellular inflammatory responses by suppressing the release of HMGB1 by macrophages exposed to LPS. In RAW264.7 cells, formononetin significantly attenuated LPS-induced release of HMGB1 into the extracellular environment, which was accompanied by a reduction in its translocation from the nucleus to the cytoplasm. In addition, formononetin significantly induced mRNA and protein expression of SIRT1 in a peroxisome proliferator-activated receptor δ (PPARδ)-dependent manner. These effects of formononetin were dramatically attenuated in cells treated with small interfering RNA (siRNA) against PPARδ or with GSK0660, a specific inhibitor of PPARδ, indicating that PPARδ is involved in formononetin-mediated SIRT1 expression. In line with these effects, formononetin-mediated inhibition of HMGB1 release in LPS-treated cells was reversed by treatment with SIRT1-targeting siRNA or sirtinol, a SIRT1 inhibitor. By contrast, resveratrol, a SIRT1 activator, further potentiated the inhibitory effect of formononetin on LPS-induced HMGB1 release, revealing a possible mechanism by which formononetin regulates HMGB1 release through SIRT1. Furthermore, modulation of SIRT1 expression by transfection of SIRT1- or PPARδ-targeting siRNA significantly counteracted the inhibitory effects of formononetin on LPS-induced HMGB1 acetylation, which was responsible for HMGB1 release. Discussion This study shows for the first time that formononetin inhibits HMGB1 release by decreasing HMGB1 acetylation via upregulating SIRT1 in a PPARδ-dependent manner. Formononetin consequently exhibits anti-inflammatory activity. Identification of agents, such as formononetin, which can block HMGB1 release, may help to treat inflammation-related disorders. PMID:29312829

  18. Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype

    PubMed Central

    Mathey, Emily K; Park, Susanna B; Hughes, Richard A C; Pollard, John D; Armati, Patricia J; Barnett, Michael H; Taylor, Bruce V; Dyck, P James B; Kiernan, Matthew C; Lin, Cindy S-Y

    2015-01-01

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an inflammatory neuropathy, classically characterised by a slowly progressive onset and symmetrical, sensorimotor involvement. However, there are many phenotypic variants, suggesting that CIDP may not be a discrete disease entity but rather a spectrum of related conditions. While the abiding theory of CIDP pathogenesis is that cell-mediated and humoral mechanisms act together in an aberrant immune response to cause damage to peripheral nerves, the relative contributions of T cell and autoantibody responses remain largely undefined. In animal models of spontaneous inflammatory neuropathy, T cell responses to defined myelin antigens are responsible. In other human inflammatory neuropathies, there is evidence of antibody responses to Schwann cell, compact myelin or nodal antigens. In this review, the roles of the cellular and humoral immune systems in the pathogenesis of CIDP will be discussed. In time, it is anticipated that delineation of clinical phenotypes and the underlying disease mechanisms might help guide diagnostic and individualised treatment strategies for CIDP. PMID:25677463

  19. Dynamical optical imaging monocytes/macrophages migration and activation in contact hypersensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong

    2017-02-01

    Inflammatory monocytes/macrophages (Mon/Mφ) play an important role in cutaneous allergic inflammation. However, their migration and activation in dermatitis and how they accelerate the inflammatory reaction are largely unknown. Optical molecular imaging is the most promising tool for investigating the function and motility of immune cells in vivo. We have developed a multi-scale optical imaging approach to evaluate the spatio-temporal dynamic behavior and properties of immune cells from the whole field of organs to the cellular level at the inflammatory site in delayed type hypersensitivity reaction. Here, we developed some multi-color labeling mouse models based on the endogenous labeling with fluorescent proteins and the exogenous labeling with fluorescent dyes. We investigated the cell movement, cell interaction and function of immunocytes (e.g. Mon/Mφ, DC, T cells and neutrophils) in the skin allergy inflammation (e.g., contact hypersensitivity) by using intravital microscopy. The long-term imaging data showed that after inflammatory Mon/Mφ transendothelial migration in dermis, they migrating in interstitial space of dermis. Depletion of blood monocyte with clodronate liposome extremely reduced the inflammatory reaction. Our finding provided further insight into inflammatory Mon/Mφ mediating the inflammatory cascade through functional migration in allergic contact dermatitis.

  20. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    PubMed

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  1. Cellular angiofibroma with atypia or sarcomatous transformation: clinicopathologic analysis of 13 cases.

    PubMed

    Chen, Eleanor; Fletcher, Christopher D M

    2010-05-01

    Cellular angiofibroma is a mesenchymal neoplasm that is characterized by a bland spindle cell component, morphologically reminiscent of spindle cell lipoma, and thick-walled vessels. The tumor occurs equally in men and women and usually arises in the inguino-scrotal or vulvovaginal regions. An earlier study of 51 cases from our group showed that the tumor follows a benign course without any tendency for recurrence. In 1 case, an intralesional microscopic nodule of pleomorphic liposarcoma was observed. The biologic significance of atypia or sarcomatous transformation in cellular angiofibroma remains uncertain. In this study, we characterized clinicopathologic features in 13 cases of cellular angiofibroma with morphologic atypia or sarcomatous transformation. Thirteen cases with atypia or sarcomatous transformation among 154 usual cellular angiofibromas identified between 1993 and 2009 were retrieved from consultation files. There were 12 females and 1 male ranging in age from 39 to 71 years (median age, 46 y). Tumor size ranged from 1.2 to 7.5 cm. In 11 cases, the tumors occurred in the vulva. One case each occurred in the paratesticular and hip regions. Most tumors were located in subcutaneous tissue. There were 4 cases of cellular angiofibroma with atypia. Three showed severely atypical cells as scattered foci within the cellular angiofibroma. One case showed a discrete nodule of atypical cells. There were 9 cases of cellular angiofibroma with morphologic features of sarcomatous transformation. In each case, abrupt transition to a discrete sarcomatous component was seen. Of these 9 cases, the sarcomatous component in 2 cases showed features of pleomorphic liposarcoma with multivacuolated lipoblasts readily identified. Three of these 9 cases showed discrete nodule(s) closely resembling atypical lipomatous tumor within usual cellular angiofibroma. In the remaining 4 cases, the sarcomatous component was composed of pleomorphic spindle cells arranged in various patterns. By immunohistochemistry, atypical cells and sarcomatous areas showed either multifocal or more diffuse p16 expression compared with either scattered or negative expression in the conventional cellular angiofibroma. The 3 cases with atypical lipomatous tumor-like areas were negative for MDM-2 and CDK4. Follow-up information was available for 7 patients (range from 2 to 75 mo; median: 14 mo). Six patients did not develop recurrence or metastasis. One patient died of metastatic carcinoma of unknown primary site 27 months after the diagnosis of cellular angiofibroma with sarcomatous transformation. Cellular angiofibroma with atypia or morphologic sarcomatous transformation occurs predominantly in the subcutaneous tissue of the vulva and, as yet, shows no evident tendency to recur based on limited clinical follow-up available for 7 cases. The sarcomatous component can show variable features including atypical lipomatous tumor, pleomorphic liposarcoma, and pleomorphic sarcoma NOS. Overexpression of p16 in the atypical cells and sarcomatous component suggests a possible underlying molecular mechanism.

  2. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  3. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  4. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  5. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    PubMed

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  6. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats

    PubMed Central

    Kim, Jae Young; Mun, Chin Hee; Suh, Minah

    2017-01-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206+ & ED1+ cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype. PMID:29093636

  7. Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities.

    PubMed

    Erel, Sura Baykan; Karaalp, Canan; Bedir, Erdal; Kaehlig, Hanspeter; Glasl, Sabine; Khan, Shabana; Krenn, Liselotte

    2011-08-01

    Centaurea L. (Astreaceae) species are used as herbal remedies in Turkey. Centaurea calolepis Boiss. is an endemic species of Anatolia that has not been subjected to phytochemical studies except essential oil analysis. Secondary metabolite determination, isolation and structure elucidation of pure compounds were performed on C. calolepis. Cnicin, which is the main component of several Centaurea species, was tested for its in vitro anti-inflammatory, antioxidant and cytotoxic activities. Chloroform and methanol extracts of the aerial parts of C. calolepis were subjected to isolation process using column chromatography. The structures of the compounds were characterized by 1D- and 2D-NMR experiments. Thin-layer chromatography and high performance liquid chromatography were used in determination of phenolics. Cnicin was subjected to a panel of cellular assays to test for inhibition of nuclear factor κB (NF-κB), inducible nitric oxide synthase (iNOS), reactive oxygen species and cytotoxicity. Cnicin, lucenin-2, schaftoside and 3-O-feruloylquinic acid were isolated from C. calolepis extracts. Vicenin-2, vitexin, isovitexin, homoorientin, rutin, orientin, luteolin-7-O-glycoside and chlorogenic acid were determined in fractions. Cnicin showed inhibition of NF-κB and inhibition of iNOS activity with IC₅₀ Values of 1.8 and 6.5 µM, respectively. Cytotoxic activity of cnicin was observed toward pig kidney epithelial (LLC-PK₁₁), human malignant melanoma (SK-MEL) and human ductal carcinoma (BT-549) cells with IC₅₀ values of 23.3, 14.0 and 18.3 µM, respectively. This is the first detailed report of secondary metabolites of C. calolepis. Evaluation of biological activity of cnicin establishes the potential of this compound as an anti-inflammatory and cytotoxic agent.

  8. Loss of expression of TGF-βs and their receptors in chronic skin lesions induced by sulfur mustard as compared with chronic contact dermatitis patients.

    PubMed

    Khaheshi, Isa; Keshavarz, Saeed; Imani Fooladi, Abbas Ali; Ebrahimi, Majid; Yazdani, Samaneh; Panahi, Yunes; Shohrati, Majid; Nourani, Mohammad Reza

    2011-01-14

    Sulfur mustard (SM) is a blister-forming agent that has been used as a chemical weapon. Sulfur mustard can cause damage in various organs, especially the skin, respiratory system, and eyes. Generally, the multiple complications of mustard gas result from its alkalizing potency; it reacts with cellular components like DNA, RNA, proteins, and lipid membranes.TGF-β is a multi-functional cytokine with multiple biological effects ranging from cell differentiation and growth inhibition to extracellular matrix stimulation, immunosuppression, and immunomodulation. TGF-β has 3 isoforms (TGF-β 1, 2, 3) and its signaling is mediated by its receptors: R1, R2 and intracellular Smads molecules.TGF-β has been shown to have anti-inflammatory effects. TGF-βs and their receptors also have an important role in modulation of skin inflammation, proliferation of epidermal cells, and wound healing, and they have been implicated in different types of skin inflammatory disorders. Seventeen exposed SM individuals (48.47 ± 9.3 years), 17 chronic dermatitis patients (46.52 ± 14.6 years), and 5 normal controls (44.00 ± 14.6 years) were enrolled in this study.Evaluation of TGF-βs and their receptors expressions was performed by semiquantitative RT-PCR. Only TGF1 was analyzed immunohistochemically. Our results showed significant decreases in the expression percentages of TGF-β 1, 2 and R1, R2 in chemical victims in comparison with chronic dermatitis and normal subjects and significant decreases in the intensity of R1 and R2 expressions in chemical victims in comparison with chronic dermatitis and normal controls. (P value < 0.05) TGF-βs and their receptors appear to have a noticeable role in chronic inflammatory skin lesions caused by sulfur mustard.

  9. Post-Translational Modification Control of Innate Immunity.

    PubMed

    Liu, Juan; Qian, Cheng; Cao, Xuetao

    2016-07-19

    A coordinated balance between the positive and negative regulation of pattern-recognition receptor (PRR)-initiated innate inflammatory responses is required to ensure the most favorable outcome for the host. Post-translational modifications (PTMs) of innate sensors and downstream signaling molecules influence their activity and function by inducing their covalent linkage to new functional groups. PTMs including phosphorylation and polyubiquitination have been shown to potently regulate innate inflammatory responses through the activation, cellular translocation, and interaction of innate receptors, adaptors, and downstream signaling molecules in response to infectious and dangerous signals. Other PTMs such as methylation, acetylation, SUMOylation, and succinylation are increasingly implicated in the regulation of innate immunity and inflammation. In this review, we focus on the roles of PTMs in controlling PRR-triggered innate immunity and inflammatory responses. The emerging roles of PTMs in the pathogenesis and potential treatment of infectious and inflammatory immune diseases are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  11. Topical ivermectin improves allergic skin inflammation.

    PubMed

    Ventre, E; Rozières, A; Lenief, V; Albert, F; Rossio, P; Laoubi, L; Dombrowicz, D; Staels, B; Ulmann, L; Julia, V; Vial, E; Jomard, A; Hacini-Rachinel, F; Nicolas, J-F; Vocanson, M

    2017-08-01

    Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Blocking NF-κB: an inflammatory issue.

    PubMed

    Rahman, Arshad; Fazal, Fabeha

    2011-11-01

    The nuclear factor (NF)-κB is considered the master regulator of inflammatory responses. Studies in mouse models have established this transcription factor as an important mediator of many inflammatory disease states, including pulmonary diseases such as acute lung injury and acute respiratory distress syndrome. Endothelial cells provide the first barrier for leukocytes migrating to the inflamed sites and hence offer an attractive cellular context for targeting NF-κB for treatment of these diseases. However, recent studies showing that NF-κB also plays an important role in resolution phase of inflammation and in tissue repair and homeostasis have challenged the view of therapeutic inhibition of NF-κB. This article reviews the regulation of NF-κB in the context of endothelial cell signaling and provides a perspective on why "dampening" rather than "abolishing" NF-κB activation may be a safe and effective treatment strategy for inflammation-associated pulmonary and other inflammatory diseases.

  13. An Overview of Lipid Droplets in Cancer and Cancer Stem Cells

    PubMed Central

    Seco, J.

    2017-01-01

    For decades, lipid droplets have been considered as the main cellular organelles involved in the fat storage, because of their lipid composition. However, in recent years, some new and totally unexpected roles have been discovered for them: (i) they are active sites for synthesis and storage of inflammatory mediators, and (ii) they are key players in cancer cells and tissues, especially in cancer stem cells. In this review, we summarize the main concepts related to the lipid droplet structure and function and their involvement in inflammatory and cancer processes. PMID:28883835

  14. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  15. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    PubMed Central

    Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul

    2014-01-01

    Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982

  16. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P., E-mail: ciavarrp@evms.ed

    2009-04-25

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45{sup high}CD11b{sup +}) and CD8{supmore » +} T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8{sup +} T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.« less

  17. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients.

    PubMed

    Heo, Yu-Jung; Joo, Young-Bin; Oh, Hye-Jwa; Park, Mi-Kyung; Heo, Yang-Mi; Cho, Mi-La; Kwok, Seung-Ki; Ju, Ji-Hyeon; Park, Kyung-Su; Cho, Seok Goo; Park, Sung-Hwan; Kim, Ho-Youn; Min, Jun-Ki

    2010-01-04

    Interleukin-17-producing CD4(+) T cells (Th17 cells) are the dominant pathogenic cellular component in autoimmune inflammatory diseases, including autoimmune arthritis. IL-10 promotes the generation of Foxp3(+) regulatory T cells via the IL-10 receptor signal. The objective of this study was to examine whether IL-10, which acts as an anti-inflammatory cytokine, has a suppressive effect on the activation of human Th17 cells. Expression of IL-17 and IL-10 was examined immunohistochemically in tissue obtained from rheumatoid arthritis patients. Human peripheral blood CD4(+) T cells were isolated and cultured under various stimulatory conditions. Th17 cells and regulatory T (Treg) cells were detected by flow cytometry. The gene expression of related cytokines and transcription factors were assessed by ELISA and RT-PCR. IL-17 was overexpressed in rheumatoid arthritis patients. IL-10 treatment significantly decreased the numbers of IL-17-producing and RORc-expressing cells among human CD4(+) T cells that had been activated in vitro by Th17-differentiating conditions in autoimmune arthritis patients. IL-10 induced Foxp3(+) regulatory T cells in the human CD4(+) T cell population. Our results demonstrate that IL-17 is overexpressed in autoimmune disease patients and that IL-10 suppresses IL-17 expression. IL-10 may be useful in the treatment of autoimmune diseases.

  18. Delayed polymorphonuclear leukocyte infiltration is an important component of Thalassophryne maculosa venom pathogenesis.

    PubMed

    Pareja-Santos, Alessandra; Oliveira Souza, Valdênia Maria; Bruni, Fernanda M; Sosa-Rosales, Josefina Ines; Lopes-Ferreira, Mônica; Lima, Carla

    2008-07-01

    Thalassophryne maculosa fish envenomation is characterized by severe pain, dizziness, fever, edema and necrosis. Here, the dynamic of cellular influx, activation status of phagocytic cells, and inflammatory modulator production in the acute inflammatory response to T. maculosa venom was studied using an experimental model. Leukocyte counting was performed (2 h to 21 days) after venom injection in BALB/c mice footpads. Our results showed an uncommon leukocyte migration kinetic after venom injection, with early mononuclear cell recruitment followed by elevated and delayed neutrophil influx. The pattern of chemokine expression is consistent with the delay in neutrophil recruitment to the footpad: T. maculosa venom stimulated an early production of IL-1beta, IL-6, and MCP-1, but was unable to induce an effective early TNF-alpha and KC release. Complementary to these observations, we detected a marked increase in soluble KC and TNF-alpha in footpad at 7 days post-venom injection when a prominent influx of neutrophils was also detected. In addition, we demonstrated that bone marrow-derived macrophages and dendritic cells were strongly stimulated by the venom, showing up-regulated ability to capture FITC-dextran. Thus, the reduced levels of KC and TNF-alpha in footpad of mice concomitant with a defective accumulation of neutrophils at earlier times provide an important clue to uncovering the mechanism by which T. maculosa venom regulates neutrophil movement.

  19. Microarray Analyses of Inflammation Response of Human Dermal Fibroblasts to Different Strains of Borrelia burgdorferi Sensu Stricto

    PubMed Central

    Schramm, Frédéric; Kern, Aurélie; Barthel, Cathy; Nadaud, Sophie; Meyer, Nicolas

    2012-01-01

    In Lyme borreliosis, the skin is the key site of bacterial inoculation by the infected tick, and of cutaneous manifestations, erythema migrans and acrodermatitis chronica atrophicans. We explored the role of fibroblasts, the resident cells of the dermis, in the development of the disease. Using microarray experiments, we compared the inflammation of fibroblasts induced by three strains of Borrelia burgdorferi sensu stricto isolated from different environments and stages of Lyme disease: N40 (tick), Pbre (erythema migrans) and 1408 (acrodermatitis chronica atrophicans). The three strains exhibited a similar profile of inflammation with strong induction of chemokines (CXCL1 and IL-8) and IL-6 cytokine mainly involved in the chemoattraction of immune cells. Molecules such as TNF-alpha and NF-κB factors, metalloproteinases (MMP-1, -3 and -12) and superoxide dismutase (SOD2), also described in inflammatory and cellular events, were up-regulated. In addition, we showed that tick salivary gland extracts induce a cytotoxic effect on fibroblasts and that OspC, essential in the transmission of Borrelia to the vertebrate host, was not responsible for the secretion of inflammatory molecules by fibroblasts. Tick saliva components could facilitate the early transmission of the disease to the site of injury creating a feeding pit. Later in the development of the disease, Borrelia would intensively multiply in the skin and further disseminate to distant organs. PMID:22768217

  20. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.

    PubMed

    Massie, Ashley; Boland, Erin; Kapás, Levente; Szentirmai, Éva

    2018-06-05

    The relationship between sleep, metabolism and immune functions has been described, but the cellular components of the interaction are incompletely identified. We previously reported that systemic macrophage depletion results in sleep impairment after sleep loss and in cold environment. These findings point to the role of macrophage-derived signals in maintaining normal sleep. Macrophages exist either in resting form, classically activated, pro-inflammatory (M1) or alternatively activated, anti-inflammatory (M2) phenotypes. In the present study we determined the contribution of M2 macrophages to sleep signaling by using IL-4 receptor α-chain-deficient [IL-4Rα knockout (KO)] mice, which are unable to produce M2 macrophages. Sleep deprivation induced robust increases in non-rapid-eye-movement sleep (NREMS) and slow-wave activity in wild-type (WT) animals. NREMS rebound after sleep deprivation was ~50% less in IL-4Rα KO mice. Cold exposure induced reductions in rapid-eye-movement sleep (REMS) and NREMS in both WT and KO mice. These differences were augmented in IL-4Rα KO mice, which lost ~100% more NREMS and ~25% more REMS compared to WTs. Our finding that M2 macrophage-deficient mice have the same sleep phenotype as mice with global macrophage depletion reconfirms the significance of macrophages in sleep regulation and suggests that the main contributors are the alternatively activated M2 cells.

  1. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  2. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    PubMed

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  3. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-05-01

    The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation. Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules' morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested. Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p < 0.01), insulin production (p < 0.01), reduced the inflammatory profile (TNF-α, IFN-ϒ, IL-6 and IL-1β; p < 0.01) and improved the microcapsule physical and mechanical strength (p < 0.01). β-cell microencapsulation using 1% PLO, 2.5% PAA, 1.8% SA, 4.5% USG and the bile acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.

  4. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology.

    PubMed

    Layé, Sophie; Nadjar, Agnès; Joffre, Corinne; Bazinet, Richard P

    2018-01-01

    Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Extraction Optimization for Obtaining Artemisia capillaris Extract with High Anti-Inflammatory Activity in RAW 264.7 Macrophage Cells

    PubMed Central

    Jang, Mi; Jeong, Seung-Weon; Kim, Bum-Keun; Kim, Jong-Chan

    2015-01-01

    Plant extracts have been used as herbal medicines to treat a wide variety of human diseases. We used response surface methodology (RSM) to optimize the Artemisia capillaris Thunb. extraction parameters (extraction temperature, extraction time, and ethanol concentration) for obtaining an extract with high anti-inflammatory activity at the cellular level. The optimum ranges for the extraction parameters were predicted by superimposing 4-dimensional response surface plots of the lipopolysaccharide- (LPS-) induced PGE2 and NO production and by cytotoxicity of A. capillaris Thunb. extracts. The ranges of extraction conditions used for determining the optimal conditions were extraction temperatures of 57–65°C, ethanol concentrations of 45–57%, and extraction times of 5.5–6.8 h. On the basis of the results, a model with a central composite design was considered to be accurate and reliable for predicting the anti-inflammation activity of extracts at the cellular level. These approaches can provide a logical starting point for developing novel anti-inflammatory substances from natural products and will be helpful for the full utilization of A. capillaris Thunb. The crude extract obtained can be used in some A. capillaris Thunb.-related health care products. PMID:26075271

  6. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    PubMed Central

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  7. Systemic Inflammatory and Th17 Immune Activation among Patients Treated for Lumbar Radiculopathy Exceeds that of Patients Treated for Persistent Postoperative Neuropathic Pain.

    PubMed

    Shamji, Mohammed F; Guha, Daipayan; Paul, Darcia; Shcharinsky, Alina

    2017-09-01

    The pathophysiology of lumbar radiculopathy includes both mechanical compression and biochemical irritation of apposed neural elements. Inflammatory and immune cytokines have been implicated, induced by systemic exposure of immune-privileged intervertebral disc tissue. Surgical intervention provides improved symptoms and quality of life, but persistent postoperative neuropathic pain (PPNP) afflicts a significant fraction of patients. To compare the inflammatory and immune phenotypes among patients undergoing structural surgery for lumbar radiculopathy and spinal cord stimulation for neuropathic pain. Consecutive patients undergoing surgical intervention for lumbar radiculopathy or neuropathic pain were studied. Demographic data included age, gender, and VAS and neuropathic pain scores. Serum was evaluated for cytokine levels (IL-6, Il-17, TNF-α) and cellular content [white blood cell (WBC)/differential, lymphocyte subtypes]. The primary analysis differentiated molecular and cellular profiles between radiculopathy and neuropathic pain patients. Subgroup analysis within the surgical radiculopathy population compared those patients achieving relief of symptoms and those with PPNP. Heightened IL-6, Il-17, and TNF-α levels were observed for the lumbar radiculopathy group compared with the neuropathic pain group. This was complemented by higher WBC count and a greater fraction of Th17 lymphocytes among radiculopathy patients. In the lumbar discectomy subgroup, pain relief was seen among patients with preoperatively elevated IL-17 levels. Those patients with PPNP refractory to surgical discectomy exhibited normal cytokine levels. Differences in Th17 immune activation are seen among radiculopathy and neuropathic pain patients. These cellular and molecular profiles may be translated into biomarkers to improve patient selection for structural spine surgery. Copyright © 2017 by the Congress of Neurological Surgeons

  8. Titanium dioxide nanoparticles increase inflammatory responses in vascular endothelial cells

    PubMed Central

    Han, Sung Gu; Newsome, Bradley; Hennig, Bernhard

    2013-01-01

    Atherosclerosis is a chronic inflammatory disease that remains the leading cause of death in the United States. Numerous risk factors for endothelial cell inflammation and the development of atherosclerosis have been identified, including inhalation of ultrafine particles. Recently, engineered nanoparticles (NPs) such as titanium (TiO2) NPs have attracted much attention due to their wide range of applications. However, there are also great concerns surrounding potential adverse health effects in vascular systems. Although TiO2 NPs are known to induce oxidative stress and inflammation, the associated signaling pathways have not been well studied. The focus of this work, therefore, deals with examination of the cellular signaling pathways responsible for TiO2 NP-induced endothelial oxidative stress and inflammation. In this study, primary vascular endothelial cells were treated with TiO2 NPs for 2–16 h at concentrations of 0–50 µg/mL. TiO2 NP exposure increased cellular oxidative stress and DNA binding of NF-κB. Further, phosphorylation of Akt, ERK, JNK and p38 was increased in cells exposed to TiO2 NPs. TiO2 NPs also significantly increased induction of mRNA and protein levels of vascular cell adhesion molecule-1 (VCAM-1) and mRNA levels of monocyte chemoattractant protein-1 (MCP-1). Pretreatment with inhibitors for NF-κB (pyrrolidine dithiocarbamate), oxidative stress (epigallocatechin gallate and apocynin), Akt (LY294002), ERK (PD98059), JNK (SP600125) and p38 (SB203580) significantly attenuated TiO2 NP-induced MCP-1 and VCAM-1 gene expression, as well as activation of NF-κB. These data indicate that TiO2 NPs can induce endothelial inflammatory responses via redox-sensitive cellular signaling pathways. PMID:23380242

  9. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release

    PubMed Central

    Ilyinskii, Petr O.; Roy, Christopher J.; O’Neil, Conlin P.; Browning, Erica A.; Pittet, Lynnelle A.; Altreuter, David H.; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A.; Iannacone, Matteo; Radovic-Moreno, Aleksandar F.; Langer, Robert S.; Farokhzad, Omid C.; von Andrian, Ulrich H.; Johnston, Lloyd P.M.; Kishimoto, Takashi Kei

    2014-01-01

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  10. Antagonizing Effects and Mechanisms of Afzelin against UVB-Induced Cell Damage

    PubMed Central

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Kim, Jang-Hyun; Kim, Eui-Gyun; Lee, Jongsung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human keratinocytes, resulting in skin inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effects of UV irradiation is essential. Therefore, in this study, we investigated the protective effects of afzelin, one of the flavonoids, against UV irradiation in human keratinocytes and epidermal equivalent models. Spectrophotometric measurements revealed that the afzelin extinction maxima were in the UVB and UVA range, and UV transmission below 376 nm was <10%, indicating UV-absorbing activity of afzelin. In the phototoxicity assay using the 3T3 NRU phototoxicity test (3T3-NRU-PT), afzelin presented a tendency to no phototoxic potential. In addition, in order to investigate cellular functions of afzelin itself, cells were treated with afzelin after UVB irradiation. In human keratinocyte, afzelin effectively inhibited the UVB-mediated increase in lipid peroxidation and the formation of cyclobutane pyrimidine dimers. Afzelin also inhibited UVB-induced cell death in human keratinocytes by inhibiting intrinsic apoptotic signaling. Furthermore, afzelin showed inhibitory effects on UVB-induced release of pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and prostaglandin-E2 in human keratinocytes by interfering with the p38 kinase pathway. Using an epidermal equivalent model exposed to UVB radiation, anti-apoptotic activity of afzelin was also confirmed together with a photoprotective effect at the morphological level. Taken together, our results suggest that afzelin has several cellular activities such as DNA-protective, antioxidant, and anti-inflammatory as well as UV-absorbing activity and may protect human skin from UVB-induced damage by a combination of UV-absorbing and cellular activities. PMID:23626759

  11. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.

    PubMed

    Astudillo, Alma M; Meana, Clara; Guijas, Carlos; Pereira, Laura; Lebrero, Patricia; Balboa, María A; Balsinde, Jesús

    2018-02-01

    Recent studies have highlighted the role of palmitoleic acid [16:1 n-7 ( cis -9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1 n-7 isomer, cis -7-hexadecenoic acid (16:1 n-9 ), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1 n-10 (6- cis -hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1 n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1 n-7 and 16:1 n-9 , 16:1 n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1 n-7 and 16:1 n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1 n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    PubMed

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  13. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation.

    PubMed

    He, YingYing; Lawlor, Nathan T; Newburg, David S

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2'-fucosyllactose attenuate TLR4 signaling; 3'-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. © 2016 American Society for Nutrition.

  14. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation12

    PubMed Central

    He, YingYing; Lawlor, Nathan T

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2′-fucosyllactose attenuate TLR4 signaling; 3′-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. PMID:26773018

  15. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti

    PubMed Central

    Campo, Joseph J.; Cicéron, Micheline; Raccurt, Christian P.; Beau De Rochars, Valery E. M.

    2017-01-01

    Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority. PMID:28369062

  16. T cell subtypes and reciprocal inflammatory mediator expression differentiate P. falciparum memory recall responses in asymptomatic and symptomatic malaria patients in southeastern Haiti.

    PubMed

    Lehmann, Jason S; Campo, Joseph J; Cicéron, Micheline; Raccurt, Christian P; Boncy, Jacques; Beau De Rochars, Valery E M; Cannella, Anthony P

    2017-01-01

    Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority.

  17. The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes

    PubMed Central

    Mills, SC; Windsor, AC; Knight, SC

    2005-01-01

    n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207

  18. Azelaic acid gel 15%: clinical versatility in the treatment of rosacea.

    PubMed

    Del Rosso, James Q; Baum, Eric W; Draelos, Zoe Diana; Elewski, Boni E; Fleischer, Alan B; Kakita, Lenore S; Thiboutot, Diane

    2006-11-01

    There are numerous proposed but contested components involved in the pathophysiology of rosacea, including inflammatory mediators, reactive oxygen species (ROS) released by neutrophils, and microbial components. Ideal comprehensive rosacea management should address these components. Azelaic acid (AzA), a naturally occurring substance, has many proposed mechanisms of action--antimicrobial, anti-inflammatory/antioxidant, and keratinolytic--that address the proposed components of rosacea pathophysiology and has demonstrated efficacy in subtype 2 rosacea. In a roundtable discussion, information leaders discussed the pathophysiology of rosacea and other issues of importance to successful rosacea management, such as skin care regimens, quality of life (QOL), and compliance.

  19. Evaluation of Cellular Phenotypes Implicated in Immunopathogenesis and Monitoring Immune Reconstitution Inflammatory Syndrome in HIV/Leprosy Cases

    PubMed Central

    Giacoia-Gripp, Carmem Beatriz Wagner; Sales, Anna Maria; Nery, José Augusto da Costa; Santos-Oliveira, Joanna Reis; de Oliveira, Ariane Leite; Sarno, Euzenir Nunes; Morgado, Mariza Gonçalves

    2011-01-01

    Background It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. Methods/Principal Findings Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%), dropping significantly (p<0,05) during post-IRIS/RR moments (median: 29,7%). Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. Conclusion/Significance These data suggest CD38 expression in CD8+ T cells interesting tool identifying HIV/leprosy individuals at risk for IRIS/RR. So, a comparative investigation to leprosy patients at RR should be conducted. PMID:22205964

  20. Evaluation of cellular phenotypes implicated in immunopathogenesis and monitoring immune reconstitution inflammatory syndrome in HIV/leprosy cases.

    PubMed

    Giacoia-Gripp, Carmem Beatriz Wagner; Sales, Anna Maria; Nery, José Augusto da Costa; Santos-Oliveira, Joanna Reis; de Oliveira, Ariane Leite; Sarno, Euzenir Nunes; Morgado, Mariza Gonçalves

    2011-01-01

    It is now evident that HAART-associated immunological improvement often leads to a variety of new clinical manifestations, collectively termed immune reconstitution inflammatory syndrome, or IRIS. This phenomenon has already been described in cases of HIV coinfection with Mycobacterium leprae, most of them belonging to the tuberculoid spectrum of leprosy disease, as observed in leprosy reversal reaction (RR). However, the events related to the pathogenesis of this association need to be clarified. This study investigated the immunological profile of HIV/leprosy patients, with special attention to the cellular activation status, to better understand the mechanisms related to IRIS/RR immunopathogenesis, identifying any potential biomarkers for IRIS/RR intercurrence. Eighty-five individuals were assessed in this study: HIV/leprosy and HIV-monoinfected patients, grouped according to HIV-viral load levels, leprosy patients without HIV coinfection, and healthy controls. Phenotypes were evaluated by flow cytometry for T cell subsets and immune differentiation/activation markers. As expected, absolute counts of the CD4+ and CD8+ T cells from the HIV-infected individuals changed in relation to those of the leprosy patients and controls. However, there were no significant differences among the groups, whether in the expression of cellular differentiation phenotypes or cellular activation, as reflected by the expression of CD38 and HLA-DR. Six HIV/leprosy patients identified as IRIS/RR were analyzed during IRIS/RR episodes and after prednisone treatment. These patients presented high cellular activation levels regarding the expression of CD38 in CD8+ cells T during IRIS/RR (median: 77,15%), dropping significantly (p<0,05) during post-IRIS/RR moments (median: 29,7%). Furthermore, an increase of cellular activation seems to occur prior to IRIS/RR. These data suggest CD38 expression in CD8+ T cells interesting tool identifying HIV/leprosy individuals at risk for IRIS/RR. So, a comparative investigation to leprosy patients at RR should be conducted.

  1. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    PubMed

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  2. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    PubMed Central

    Rennert, Robert C.; Garg, Ravi K.; Gurtner, Geoffrey C.

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting. PMID:23970899

  3. Cellular response to a novel fetal acellular collagen matrix: implications for tissue regeneration.

    PubMed

    Rennert, Robert C; Sorkin, Michael; Garg, Ravi K; Januszyk, Michael; Gurtner, Geoffrey C

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting.

  4. Ursolic Acid Inhibits Na+/K+-ATPase Activity and Prevents TNF-α-Induced Gene Expression by Blocking Amino Acid Transport and Cellular Protein Synthesis

    PubMed Central

    Yokomichi, Tomonobu; Morimoto, Kyoko; Oshima, Nana; Yamada, Yuriko; Fu, Liwei; Taketani, Shigeru; Ando, Masayoshi; Kataoka, Takao

    2011-01-01

    Pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, induce the expression of a wide variety of genes, including intercellular adhesion molecule-1 (ICAM-1). Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) was identified to inhibit the cell-surface ICAM-1 expression induced by pro-inflammatory cytokines in human lung carcinoma A549 cells. Ursolic acid was found to inhibit the TNF-α-induced ICAM-1 protein expression almost completely, whereas the TNF-α-induced ICAM-1 mRNA expression and NF-κB signaling pathway were decreased only partially by ursolic acid. In line with these findings, ursolic acid prevented cellular protein synthesis as well as amino acid uptake, but did not obviously affect nucleoside uptake and the subsequent DNA/RNA syntheses. This inhibitory profile of ursolic acid was similar to that of the Na+/K+-ATPase inhibitor, ouabain, but not the translation inhibitor, cycloheximide. Consistent with this notion, ursolic acid was found to inhibit the catalytic activity of Na+/K+-ATPase. Thus, our present study reveals a novel molecular mechanism in which ursolic acid inhibits Na+/K+-ATPase activity and prevents the TNF-α-induced gene expression by blocking amino acid transport and cellular protein synthesis. PMID:24970122

  5. Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients.

    PubMed

    Provencio, J Javier; Kivisäkk, Pia; Tucky, Barbara H; Luciano, Mark G; Ransohoff, Richard M

    2005-06-01

    The aim of the present study was to define the cellular composition of ventricular, as compared with lumbar, cerebrospinal fluid (CSF) in patients with non-inflammatory neurological disorders (NIND). We addressed this issue by determining the cellular composition of lumbar CSF from patients with normal pressure hydrocephalus (NPH) who were undergoing lumbar CSF drainage during evaluation for shunting procedures, and evaluating ventricular CSF from a subset of these who underwent subsequent placement of ventriculoperitoneal shunts. We determined the cellular composition of lumbar CSF from 18 patients with NPH, and found that the leukocyte differentials, and relative proportions of CD4+ and CD8+ central memory (TCM), effector memory (TEM) and naive cell (TNaive) populations, were equivalent to those found previously in studies of CSF from patients with NIND. We further evaluated cells in the ventricular CSF of five patients who had previously undergone lumbar drainage. Leukocyte differential counts, as well as CD4+ and CD8+ TCM, TEM, and TNaive proportions, were equivalent in matched ventricular and lumbar CSF samples. These observations support the hypothesis that leukocytes enter the CSF in a selective fashion, at its site of formation in the choroid plexus. The results implicate CSF T cells in the immune surveillance of the central nervous system.

  6. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep

    USDA-ARS?s Scientific Manuscript database

    Low magnesium status has been associated with numerous conditions characterized as having a chronic inflammatory stress component. Some animal findings indicate that a moderate magnesium deficiency, similar to which apparently commonly occurs in humans, may enhance inflammatory or oxidative stress i...

  7. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures

    PubMed Central

    Shin, Ok Sarah; Kumar, Mukesh; Yanagihara, Richard; Song, Jin-Won

    2014-01-01

    The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process. PMID:24074584

  8. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis

    PubMed Central

    Zhou, Li; Plattner, Florian; Liu, Mingxia; Parks, John S; Hammer, Robert E; Boucher, Philippe; Tsai, Shirling

    2017-01-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses. PMID:29144234

  9. Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency.

    PubMed

    Marcuzzi, Annalisa; Crovella, Sergio; Pontillo, Alessandra

    2011-01-01

    The inhibition of the mevalonate pathway through genetic defects such as mevalonate kinase deficiency (MKD) or pharmacological drugs such as aminobisphosphonates causes a shortage of intermediate compounds, in particular geranylgeranyl-pyrophosphate (GGPP), which is associated with the consequent augmented IL-1β release in monocytes. Considering that, due to its biochemical structure, isoprenoid geraniol enters the mevalonate pathway and may revert the genetic or pharmacological inhibition, the present study tested isoprenoid geraniol in cellular and animal MKD models obtained through the use of aminobisphosphonate pamidronate. The effect of natural isoprenoid geraniol on bacterial induced-inflammation was evaluated in a monocytic cell line (Raw 264.7) and in Balb/c mice treated with pamidronate. Geraniol diminished the levels of inflammatory markers induced by pamidronate stimuli in vitro and in vivo. Geraniol may be proposed as a novel therapeutic approach for the orphan disease MKD, and may also be considered for the evaluation of possible inflammatory side-effects of aminobisphosphonates.

  10. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells

    PubMed Central

    Rauber, Simon; Luber, Markus; Weber, Stefanie; Maul, Lisa; Soare, Alina; Wohlfahrt, Thomas; Lin, Neng-Yu; Dietel, Katharina; Bozec, Aline; Herrmann, Martin; Kaplan, Mark H.; Weigmann, Benno; Zaiss, Mario M.; Fearon, Ursula; Veale, Douglas J.; Canete, Juan D.; Distler, Oliver; Rivellese, Felice; Pitzalis, Costantino; Neurath, Markus F.; McKenzie, Andrew N.J.; Wirtz, Stefan; Schett, Georg; Distler, Jörg H.W.; Ramming, Andreas

    2017-01-01

    Inflammatory diseases such as arthritis are chronic conditions that fail to resolve spontaneously. While the cytokine and cellular pathways triggering arthritis are well defined, those responsible for the resolution of inflammation are incompletely characterized. Here we identified IL-9-producing type 2 innate lymphoid cells (ILC2s) as a molecular and cellular pathway that orchestrates the resolution of chronic inflammation. In mice, the absence of IL-9 impaired ILC2 proliferation, activation of regulatory T cells (Treg) and resulted in chronic arthritis with excessive cartilage destruction and bone loss. In contrast, treatment with IL-9 promoted ILC2-dependent Treg activation and effectively induced resolution of inflammation and protection of bone. Rheumatoid arthritis patients in remission demonstrated high numbers of IL-9+ ILC2s in the joints and in the circulation. Hence, fostering IL-9-mediated ILC2 activation may offer a novel therapeutic approach inducing resolution of inflammation rather than suppression of inflammatory responses. PMID:28714991

  11. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients.

    PubMed

    Moviglia, G A; Varela, G; Brizuela, J A; Moviglia Brandolino, M T; Farina, P; Etchegaray, G; Piccone, S; Hirsch, J; Martinez, G; Marino, S; Deffain, S; Coria, N; Gonzáles, A; Sztanko, M; Salas-Zamora, P; Previgliano, I; Aingel, V; Farias, J; Gaeta, C A; Saslavsky, J; Blasseti, N

    2009-06-01

    With the intention to ameliorate the clinical condition of patients with chronic spinal cord injury (SCI), a program that combines three cell therapies and an appropriate neurorehabilitation program were used to recreate and enhance the natural conditions of SCI repair. Vascularization recovery is approached by selective artery infusion of BMMNCs (bone marrow mononuclear cells) to the disrupted area. Eighteen days later, with the aim to restore the specific inflammatory activity, an i.v. infusion of spinal cord specific ETCs (effector T cells) is carried out. With the intention of supplying cellular components for the process of repair, an infusion of autologous neural stem cells (NSCs) through selective feeding artery infusion is carried out, followed by an appropriate neurorehabilitation program. A total of eight ASIA (American Spinal Injury Association) A patients (five with jeopardized brachial plexus and three without) received the treatment. No severe adverse events was observed in any of the receptor patients: five patients evolved from ASIA A to ASIA D and regained the ability to stand up and, with varying effectiveness, to walk; two patients remained in the same condition, but exhibited motor and sensitive improvements; and one patient could not be evaluated. These reports suggest that the biological characteristics of acute SCI may be recreated in a comprehensive, safe and effective manner.

  12. Non-thermal plasma activates human keratinocytes by stimulation of antioxidant and phase II pathways.

    PubMed

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-03-13

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies

    PubMed Central

    van Kesteren, C F M G; Gremmels, H; de Witte, L D; Hol, E M; Van Gool, A R; Falkai, P G; Kahn, R S; Sommer, I E C

    2017-01-01

    Although the precise pathogenesis of schizophrenia is unknown, genetic, biomarker and imaging studies suggest involvement of the immune system. In this study, we performed a systematic review and meta-analysis of studies investigating factors related to the immune system in postmortem brains of schizophrenia patients and healthy controls. Forty-one studies were included, reporting on 783 patients and 762 controls. We divided these studies into those investigating histological alterations of cellular composition and those assessing molecular parameters; meta-analyses were performed on both categories. Our pooled estimate on cellular level showed a significant increase in the density of microglia (P=0.0028) in the brains of schizophrenia patients compared with controls, albeit with substantial heterogeneity between studies. Meta-regression on brain regions demonstrated this increase was most consistently observed in the temporal cortex. Densities of macroglia (astrocytes and oligodendrocytes) did not differ significantly between schizophrenia patients and healthy controls. The results of postmortem histology are paralleled on the molecular level, where we observed an overall increase in expression of proinflammatory genes on transcript and protein level (P=0.0052) in patients, while anti-inflammatory gene expression levels were not different between schizophrenia and controls. The results of this meta-analysis strengthen the hypothesis that components of the immune system are involved in the pathogenesis of schizophrenia. PMID:28350400

  14. Strychnine inhibits inflammatory angiogenesis in mice via down regulation of VEGF, TNF-α and TGF-β.

    PubMed

    Saraswati, Sarita; Agarwal, S S

    2013-05-01

    Strychnine is known to possess anti-inflammatory and antitumour activity, but its roles in tumour angiogenesis, the key step involved in tumour growth and metastasis, and the involved molecular mechanism are still unknown. We aimed to investigate the effects of strychnine on key components of inflammatory angiogenesis in the murine cannulated sponge implant angiogenesis model. Polyester-polyurethane sponges, used as a framework for fibrovascular tissue growth, were implanted in Swiss albino mice and strychnine (0.25, and 0.5 mg/kg/day) was given through installed cannulas for 9 days. The implants collected at day 9 postimplantation were processed for the assessment of haemoglobin (Hb), myeloperoxidase (MPO), N-acetylglucosaminidase (NAG) and collagen used as indexes for angiogenesis, neutrophil and macrophage accumulation and extracellular matrix deposition, respectively. Relevant inflammatory, angiogenic and fibrogenic cytokines were also determined. Strychnine treatment attenuated the main components of the fibrovascular tissue, wet weight, vascularization (Hb content), macrophage recruitment (NAG activity), collagen deposition and the levels of vascular endothelial growth factor (VEGF), tumour necrosis factor (TNF)-α and transforming growth factor (TGF-β). A regulatory function of strychnine on multiple parameters of main components of inflammatory angiogenesis has been revealed giving insight into the potential therapeutic underlying the actions of strychnine. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    NASA Astrophysics Data System (ADS)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  16. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity.

    PubMed

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-08-01

    Inflammation and oxidative stress plays an important role in the development of obesity-related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti-inflammatory, antioxidant and anti-cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti-inflammatory activity in lipopolysaccharide-stimulated macrophages. However, its ability to alleviate obesity-induced heart injury via its anti-inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high-fat diet rat model. We observed that palmitic acid treatment in cardiac-derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high-fat diet-induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti-inflammatory and anti-oxidative actions of X22 were associated with Nrf2 activation and nuclear factor-kappaB (NF-κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF-κB may be important therapeutic targets for obesity-related complications. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Anti-inflammatory cytokine interleukin-19 inhibits smooth muscle cell migration and activation of cytoskeletal regulators of VSMC motility

    PubMed Central

    Gabunia, Khatuna; Jain, Surbhi; England, Ross N.

    2011-01-01

    Vascular smooth muscle cell (VSMC) migration is an important cellular event in multiple vascular diseases, including atherosclerosis, restenosis, and transplant vasculopathy. Little is known regarding the effects of anti-inflammatory interleukins on VSMC migration. This study tested the hypothesis that an anti-inflammatory Th2 interleukin, interleukin-19 (IL-19), could decrease VSMC motility. IL-19 significantly decreased platelet-derived growth factor (PDGF)-stimulated VSMC chemotaxis in Boyden chambers and migration in scratch wound assays. IL-19 significantly decreased VSMC spreading in response to PDGF. To determine the molecular mechanism(s) for these cellular effects, we examined the effect of IL-19 on activation of proteins that regulate VSMC cytoskeletal dynamics and locomotion. IL-19 decreased PDGF-driven activation of several cytoskeletal regulatory proteins that play an important role in smooth muscle cell motility, including heat shock protein-27 (HSP27), myosin light chain (MLC), and cofilin. IL-19 decreased PDGF activation of the Rac1 and RhoA GTPases, important integrators of migratory signals. IL-19 was unable to inhibit VSMC migration nor was able to inhibit activation of cytoskeletal regulatory proteins in VSMC transduced with a constitutively active Rac1 mutant (RacV14), suggesting that IL-19 inhibits events proximal to Rac1 activation. Together, these data are the first to indicate that IL-19 can have important inhibitory effects on VSMC motility and activation of cytoskeletal regulatory proteins. This has important implications for the use of anti-inflammatory cytokines in the treatment of vascular occlusive disease. PMID:21209363

  18. Circadian molecular clock in lung pathophysiology

    PubMed Central

    Sundar, Isaac K.; Yao, Hongwei; Sellix, Michael T.

    2015-01-01

    Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology. PMID:26361874

  19. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries.

    PubMed

    Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell

    2008-09-01

    Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development.

  20. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries

    PubMed Central

    Stoner, Gary David; Wang, Li-Shu; Casto, Bruce Cordell

    2008-01-01

    Reactive oxygen species (ROS) are a major cause of cellular injury in an increasing number of diseases, including cancer. Most ROS are created in the cell through normal cellular metabolism. They can be produced by environmental insults such as ultraviolet light and toxic chemicals, as well as by the inflammatory process. Interception of ROS or limiting their cellular effects is a major role of antioxidants. Due to their content of phenolic and flavonoid compounds, berries exhibit high antioxidant potential, exceeding that of many other foodstuffs. Through their ability to scavenge ROS and reduce oxidative DNA damage, stimulate antioxidant enzymes, inhibit carcinogen-induced DNA adduct formation and enhance DNA repair, berry compounds have been shown to inhibit mutagenesis and cancer initiation. Berry constituents also influence cellular processes associated with cancer progression including signaling pathways associated with cell proliferation, differentiation, apoptosis and angiogenesis. This review article summarizes laboratory and human studies, demonstrating the protective effects of berries and berry constituents on oxidative and other cellular processes leading to cancer development. PMID:18544560

  1. Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling.

    PubMed

    Alves-Pereira, Mariana; Castelo Branco, Nuno A A

    2007-01-01

    At present, infrasound (0-20 Hz) and low-frequency noise (20-500 Hz) (ILFN, 0-500 Hz) are agents of disease that go unchecked. Vibroacoustic disease (VAD) is a whole-body pathology that develops in individuals excessively exposed to ILFN. VAD has been diagnosed within several professional groups employed within the aeronautical industry, and in other heavy industries. However, given the ubiquitous nature of ILFN and the absence of legislation concerning ILFN, VAD is increasingly being diagnosed among members of the general population, including children. VAD is associated with the abnormal growth of extra-cellular matrices (collagen and elastin), in the absence of an inflammatory process. In VAD, the end-product of collagen and elastin growth is reinforcement of structural integrity. This is seen in blood vessels, cardiac structures, trachea, lung, and kidney of both VAD patients and ILFN-exposed animals. VAD is, essentially, a mechanotransduction disease. Inter- and intra-cellular communication is achieved through both biochemical and mechanotranduction signalling. When the structural components of tissue are altered, as is seen in ILFN-exposed specimens, the mechanically mediated signalling is, at best, impaired. Common medical diagnostic tests, such as EKG, EEG, as well as many blood chemistry analyses, are based on the mal-function of biochemical signalling processes. VAD patients typically present normal values for these tests. However, when echocardiography, brain MRI or histological studies are performed, where structural changes can be identified, all consistently show significant changes in VAD patients and ILFN-exposed animals. Frequency-specific effects are not yet known, valid dose-responses have been difficult to identify, and large-scale epidemiological studies are still lacking.

  2. AMP-Activated Protein Kinase: An Ubiquitous Signaling Pathway With Key Roles in the Cardiovascular System.

    PubMed

    Salt, Ian P; Hardie, D Grahame

    2017-05-26

    The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions. © 2017 American Heart Association, Inc.

  3. Differences in the Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats Highlights the Potential Significance of the Inflammatory Response

    PubMed Central

    Sutherland, Theresa C.; Mathews, Kathryn J.; Mao, Yilin; Nguyen, Tara; Gorrie, Catherine A.

    2017-01-01

    There exists a trend for a better functional recovery from spinal cord injury (SCI) in younger patients compared to adults, which is also reported for animal studies; however, the reasons for this are yet to be elucidated. The post injury tissue microenvironment is a complex milieu of cells and signals that interact on multiple levels. Inflammation has been shown to play a significant role in this post injury microenvironment. Endogenous neural progenitor cells (NPC), in the ependymal layer of the central canal, have also been shown to respond and migrate to the lesion site. This study used a mild contusion injury model to compare adult (9 week), juvenile (5 week) and infant (P7) Sprague-Dawley rats at 24 h, 1, 2, and 6 weeks post-injury (n = 108). The innate cells of the inflammatory response were examined using counts of ED1/IBA1 labeled cells. This found a decreased inflammatory response in the infants, compared to the adult and juvenile animals, demonstrated by a decreased neutrophil infiltration and macrophage and microglial activation at all 4 time points. Two other prominent cellular contributors to the post-injury microenvironment, the reactive astrocytes, which eventually form the glial scar, and the NPC were quantitated using GFAP and Nestin immunohistochemistry. After SCI in all 3 ages there was an obvious increase in Nestin staining in the ependymal layer, with long basal processes extending into the parenchyma. This was consistent between age groups early post injury then deviated at 2 weeks. The GFAP results also showed stark differences between the mature and infant animals. These results point to significant differences in the inflammatory response between infants and adults that may contribute to the better recovery indicated by other researchers, as well as differences in the overall injury progression and cellular responses. This may have important consequences if we are able to mirror and manipulate this response in patients of all ages; however much greater exploration in this area is required. PMID:28133446

  4. Inflammatory effects induced by selected limonene oxidation products: 4-OPA, IPOH, 4-AMCH in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines.

    PubMed

    Lipsa, Dorelia; Leva, Paolo; Barrero-Moreno, Josefa; Coelhan, Mehmet

    2016-11-16

    Limonene, a monoterpene abundantly present in most of the consumer products (due to its pleasant citrus smell), easily undergoes ozonolysis leading to several limonene oxidation products (LOPs) such as 4-acetyl-1-methylcyclohexene (4-AMCH), 4-oxopentanal (4-OPA) and 3-isopropenyl-6-oxoheptanal (IPOH). Toxicological studies have indicated that human exposure to limonene and ozone can cause adverse airway effects. However, little attention has been paid to the potential health impact of specific LOPs, in particular of IPOH, 4-OPA and 4-AMCH. This study evaluates the cytotoxic effects of the selected LOPs on human bronchial epithelial (16HBE14o-) and alveolar epithelial (A549) cell lines by generating concentration-response curves using the neutral red uptake assay and analyzing the inflammatory response with a series of cytokines/chemokines. The cellular viability was mostly reduced by 4-OPA [IC 50 =1.6mM (A549) and 1.45mM (16HBE14o-)] when compared to IPOH [IC 50 =3.5mM (A549) and 3.4mM (16HBE14o-)] and 4-AMCH [IC 50 could not be calculated]. As a result from the inflammatory response, IPOH [50μM] induced an increase of both IL-6 and IL-8 secretion in A549 (1.5-fold change) and in 16HBE14o- (2.8- and 7-fold change respectively). 4-OPA [50μM] treatment of A549 increased IL-6 (1.4-times) and IL-8 (1.3-times) levels, while in 16HBE14o- had an opposite effect. A549 treated with 4-AMCH [50μM] elevate both IL-6 and IL-8 levels by 1.2-times, while in 16HBE14o- had an opposite effect. Based on our results, lung cellular injury characterized by inflammatory cytokine release was observed for both cell lines treated with the selected chemicals at concentrations that did not affect their cellular viability. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Early growth response protein-1 mediates lipotoxicity-associated placental inflammation: Role in maternal obesity

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with low-grade chronic inflammation, which contributes to cellular dysfunction promoting metabolic disease. Obesity during pregnancy leads to a pro-inflammatory milieu in the placenta; however, the underlying causes for obesity-induced placental inflammation remain unclear. H...

  6. Microwave components for cellular portable radiotelephone

    NASA Astrophysics Data System (ADS)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  7. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis

    PubMed Central

    2017-01-01

    Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS), which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy) in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM) activity or from components of lean body mass (LBM) submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value. PMID:28930162

  8. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis

    PubMed Central

    Fransén-Pettersson, Nina; Duarte, Nadia; Nilsson, Julia; Lundholm, Marie; Mayans, Sofia; Larefalk, Åsa; Hannibal, Tine D.; Hansen, Lisbeth; Schmidt-Christensen, Anja; Ivars, Fredrik; Cardell, Susanna; Palmqvist, Richard; Rozell, Björn

    2016-01-01

    Here we characterize a new animal model that spontaneously develops chronic inflammation and fibrosis in multiple organs, the non-obese diabetic inflammation and fibrosis (N-IF) mouse. In the liver, the N-IF mouse displays inflammation and fibrosis particularly evident around portal tracts and central veins and accompanied with evidence of abnormal intrahepatic bile ducts. The extensive cellular infiltration consists mainly of macrophages, granulocytes, particularly eosinophils, and mast cells. This inflammatory syndrome is mediated by a transgenic population of natural killer T cells (NKT) induced in an immunodeficient NOD genetic background. The disease is transferrable to immunodeficient recipients, while polyclonal T cells from unaffected syngeneic donors can inhibit the disease phenotype. Because of the fibrotic component, early on-set, spontaneous nature and reproducibility, this novel mouse model provides a unique tool to gain further insight into the underlying mechanisms mediating transformation of chronic inflammation into fibrosis and to evaluate intervention protocols for treating conditions of fibrotic disorders. PMID:27441847

  9. Lean Body Mass Harbors Sensing Mechanisms that Allow Safeguarding of Methionine Homeostasis.

    PubMed

    Ingenbleek, Yves

    2017-09-20

    Protein-depleted states generate allosteric inhibition of liver cystathionine β-synthase (CBS), which governs the first enzymatic step of the transsulfuration cascade, resulting in upstream accretion of homocysteine (Hcy) in body fluids. A similar Hcy increase may arise from normal hepatocytes undergoing experimentally-induced impairment of betaine-homocysteine methyltransferase (BHTM) activity or from components of lean body mass (LBM) submitted to any inflammatory disorder. LBM comprises a composite agglomeration of extrarenal tissues characterized by naturally occurring BHTM inactivity. As a result of cellular injury, LBM releases high concentrations of Hcy into the extracellular space, contrasting with the disruption of normal remethylation pathways. Hyperhomocysteinemia acts as a biomarker, reflecting the severity of insult and operating as an alarm signal. Elevated Hcy levels constitute a precursor pool recognized by a CBS coding region that reacts to meet increased methionine requirements in LBM tissues, using its enhanced production in hepatocytes. Preservation of methionine homeostasis benefits from its high metabolic priority and survival value.

  10. Towards Targeting the Aryl Hydrocarbon Receptor in Cystic Fibrosis

    PubMed Central

    Paolicelli, Giuseppe; De Luca, Antonella; Renga, Giorgia; Borghi, Monica; Pariano, Marilena; Stincardini, Claudia; Scaringi, Lucia; Ricci, Maurizio; Romani, Luigina

    2018-01-01

    Tryptophan (trp) metabolism is an important regulatory component of gut mucosal homeostasis and the microbiome. Metabolic pathways targeting the trp can lead to a myriad of metabolites, of both host and microbial origins, some of which act as endogenous low-affinity ligands for the aryl hydrocarbon receptor (AhR), a cytosolic, ligand-operated transcription factor that is involved in many biological processes, including development, cellular differentiation and proliferation, xenobiotic metabolism, and the immune response. Low-level activation of AhR by endogenous ligands is beneficial in the maintenance of immune health and intestinal homeostasis. We have defined a functional node whereby certain bacteria species contribute to host/microbial symbiosis and mucosal homeostasis. A microbial trp metabolic pathway leading to the production of indole-3-aldehyde (3-IAld) by lactobacilli provided epithelial protection while inducing antifungal resistance via the AhR/IL-22 axis. In this review, we highlight the role of AhR in inflammatory lung diseases and discuss the possible therapeutic use of AhR ligands in cystic fibrosis. PMID:29670460

  11. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions.

    PubMed

    Mantovani, Alberto; Locati, Massimo

    2013-07-01

    Macrophages are present in all body compartments, including cancerous tissues, and their functions are profoundly affected by signals from the microenvironment under homeostatic and pathological conditions. Tumor-associated macrophages are a major cellular component of cancer-related inflammation and have served as a paradigm for the plasticity and functional polarization of mononuclear phagocytes. Tumor-associated macrophages can exert dual influence of cancer depending on the activation state, with classically activated (M1) and alternatively activated (M2) cells generally exerting antitumoral and protumoral functions, respectively. These are extremes in a continuum of polarization states in a universe of diversity. Tumor-associated macrophages affect virtually all aspects of tumor tissues, including stem cells, metabolism, angiogenesis, invasion, and metastasis. Progress has been made in defining signaling molecules, transcription factors, epigenetic changes, and repertoire of microRNAs underlying macrophage polarization. Preclinical and early clinical data suggest that macrophages may serve as tools for the development of innovative diagnostic and therapeutic strategies in cancer and chronic nonresolving inflammatory diseases.

  12. Immune mechanisms in fish skin against monogeneans--a model.

    PubMed

    Buchmann, K

    1999-01-01

    Host responses against skin inhabiting monogeneans are commonly observed but the responsible immune mechanisms in the fish skin are sufficiently described. Based on recent knowledge of fish immunity and skin response mechanisms in mammals a model for the skin immunity in fish to monogenean infections is proposed. Important cellular components of the model are the epithelial cells, the mucous cells and leucocytes. The release of cytokines, e.g., IL-1, following mechanical or chemical injury of the epithelial cells, initiates a series of events leading to decrease of the ectoparasite population. Cytokines (e.g., IL-1, TNF, INF) are suggested to affect secretions from mucous cell and attract neutrophils and macrophages. Leukotrienes are probably involved in the inflammatory reactions. The subsequent production of humoral substances (among others complement factors and peptides) could be responsible for the antiparasitic response in the later stages of infection. Although non-specific factors dominate the response, the involvement of specific antibodies and lymphocytes cannot be excluded.

  13. The evolving landscape of RAAS inhibition: from ACE inhibitors to ARBs, to DRIs and beyond.

    PubMed

    Epstein, Benjamin J; Leonard, Paul T; Shah, Niren K

    2012-06-01

    Chronic renin-angiotensin-aldosterone system (RAAS) activation has far-reaching effects on cardiometabolic risk and is a substantial contributor to cardiovascular (CV) disease and renal dysfunction. The vascular effects of sustained RAAS activation are associated with hemodynamic imbalances, as well as inflammatory stimulation and prothrombotic processes that lead to fibrosis, endothelial dysfunction and cellular remodeling. RAAS inhibition therapies, which include the use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and more recently, direct renin inhibitors, have been used in clinical practice for more than 30 years. Our understanding of how these drugs work, alone and in combination, has contributed to an expanding landscape of treatment options and established RAAS inhibition as essential for reducing the risk of CV and renal disease. This perspective provides a historical overview of how RAAS inhibitors have evolved to their present-day status and will discuss recently discovered functions for components of this complicated and powerful regulatory system.

  14. Subacute ruminal acidosis (SARA) challenge, ruminal condition and cellular immunity in cattle.

    PubMed

    Sato, Shigeru

    2015-02-01

    Subacute ruminal acidosis (SARA) is characterized by repeated bouts of low ruminal pH. Cows with SARA often develop complications or other diseases, and associate physiologically with immunosuppression and inflammation. Ruminal free lipopolysaccharide (LPS) increases during SARA and translocates into the blood circulation activating an inflammatory response. Ruminal fermentation and cellular immunity are encouraged by supplementing hay with calf starter during weaning. SARA calves given a 5-day repeated administration of a bacteria-based probiotic had stable ruminal pH levels (6.6-6.8). The repeated administration of probiotics enhance cellular immune function and encourage recovery from diarrhea in pre-weaning calves. Furthermore, the ruminal fermentation could guard against acute and short-term feeding changes, and changes in the rumen microbial composition of SARA cattle might occur following changes in ruminal pH. The repeated bouts of low ruminal pH in SARA cattle might be associated with depression of cellular immunity.

  15. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.

    PubMed

    Benavente-García, O; Castillo, J

    2008-08-13

    Significantly, much of the activity of Citrus flavonoids appears to impact blood and microvascular endothelial cells, and it is not surprising that the two main areas of research on the biological actions of Citrus flavonoids have been inflammation and cancer. Epidemiological and animal studies point to a possible protective effect of flavonoids against cardiovascular diseases and some types of cancer. Although flavonoids have been studied for about 50 years, the cellular mechanisms involved in their biological action are still not completely known. Many of the pharmacological properties of Citrus flavonoids can be linked to the abilities of these compounds to inhibit enzymes involved in cell activation. Attempts to control cancer involve a variety of means, including the use of suppressing, blocking, and transforming agents. Suppressing agents prevent the formation of new cancers from procarcinogens, and blocking agents prevent carcinogenic compounds from reaching critical initiation sites, while transformation agents act to facilitate the metabolism of carcinogenic components into less toxic materials or prevent their biological actions. Flavonoids can act as all three types of agent. Many epidemiological studies have shown that regular flavonoid intake is associated with a reduced risk of cardiovascular diseases. In coronary heart disease, the protective effects of flavonoids include mainly antithrombotic, anti-ischemic, anti-oxidant, and vasorelaxant. It is suggested that flavonoids decrease the risk of coronary heart disease by three major actions: improving coronary vasodilatation, decreasing the ability of platelets in the blood to clot, and preventing low-density lipoproteins (LDLs) from oxidizing. The anti-inflammatory properties of the Citrus flavonoids have also been studied. Several key studies have shown that the anti-inflammatory properties of Citrus flavonoids are due to its inhibition of the synthesis and biological activities of different pro-inflammatory mediators, mainly the arachidonic acid derivatives, prostaglandins E 2, F 2, and thromboxane A 2. The anti-oxidant and anti-inflammatory properties of Citrus flavonoids can play a key role in their activity against several degenerative diseases and particularly brain diseases. The most abundant Citrus flavonoids are flavanones, such as hesperidin, naringin, or neohesperidin. However, generally, the flavones, such as diosmin, apigenin, or luteolin, exhibit higher biological activity, even though they occur in much lower concentrations. Diosmin and rutin have a demonstrated activity as a venotonic agent and are present in several pharmaceutical products. Apigenin and their glucosides have been shown a good anti-inflammatory activity without the side effects of other anti-inflammatory products. In this paper, we discuss the relation between each structural factor of Citrus flavonoids and the anticancer, anti-inflammatory, and cardiovascular protection activity of Citrus flavonoids and their role in degenerative diseases.

  16. Inflammatory targets of therapy in sickle cell disease

    PubMed Central

    Owusu-Ansah, Amma; Ihunnah, Chibueze A.; Walker, Aisha L.; Ofori-Acquah, Solomon F.

    2015-01-01

    Sickle cell disease (SCD) is a monogenic globin disorder characterized by the production of a structurally abnormal hemoglobin (Hb) variant Hb S, which causes severe hemolytic anemia, episodic painful vaso-occlusion and ultimately end-organ damage. The primary disease pathophysiology is intracellular Hb S polymerization and consequent sickling of erythrocytes. It has become evident over several decades that a more complex disease process contributes to the myriad of clinical complications seen in SCD patients with inflammation playing a central role. Drugs targeting specific inflammatory pathways therefore offer an attractive therapeutic strategy to ameliorate many of the clinical events in SCD. In addition they are useful tools to dissecting the molecular and cellular mechanisms that promote individual clinical events, and for developing improved therapeutics to address more challenging clinical dilemmas such as refractoriness to opioids or hyperalgesia. Here, we discuss the prospect of targeting multiple inflammatory pathways implicated in the pathogenesis of SCD with a focus on new therapeutics, striving to link the actions of the anti-inflammatory agents to a defined pathobiology, and specific clinical manifestations of SCD. We also review the anti-inflammatory attributes and the cognate inflammatory targets of hydroxyurea, the only FDA approved drug for SCD. PMID:26226206

  17. Inflammation, leukocytes and menstruation.

    PubMed

    Evans, Jemma; Salamonsen, Lois A

    2012-12-01

    Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.

  18. Molecular targets of celastrol derived from Thunder of God Vine: potential role in the treatment of inflammatory disorders and cancer.

    PubMed

    Kannaiyan, Radhamani; Shanmugam, Muthu K; Sethi, Gautam

    2011-04-01

    Identification of active constituents and their molecular targets from traditional medicine is an enormous opportunity for modern pharmacology. Celastrol is one such compound that was originally identified from traditional Chinese medicine (Thunder of God Vine) almost three decades ago and generally used for the treatment of inflammatory and auto-immune diseases. Celastrol has attracted great interest recently, especially for its potential anti-inflammatory and anti-cancer activities. The anti-inflammatory effects of this triterpene have been demonstrated in animal models of different inflammatory diseases, including arthritis, Alzheimer's disease, asthma, and systemic lupus erythematosus. This triterpene has also been found to inhibit the proliferation of a variety of tumor cells and suppress tumor initiation, promotion and metastasis in various cancer models in vivo. Celastrol's ability to modulate the expression of pro-inflammatory cytokines, MHC II, HO-1, iNOS, NF-κB, Notch-1, AKT/mTOR, CXCR4, TRAIL receptors DR4 and DR5, CHOP, JNK, VEGF, adhesion molecules, proteasome activity, topoisomerase II, potassium channels, and heat shock response has been reported. This review describes the various molecular targets of celastrol, cellular responses to celastrol, and animal studies with celastrol in cancer and other inflammatory disorders. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges

    PubMed Central

    Saxena, Amit; Russo, Ilaria; Frangogiannis, Nikolaos G

    2015-01-01

    In the infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response. Inflammatory pathways play a crucial role in regulation of a wide range of cellular processes involved in injury, repair and remodeling of the infarcted heart. Pro-inflammatory cytokines, such as tumor necrosis factor-a and interleukin (IL)-1, are markedly upregulated in the infarcted myocardium and promote adhesive interactions between endothelial cells and leukocytes, by stimulating chemokine and adhesion molecule expression. Distinct chemokine/chemokine receptor pairs are implicated in recruitment of various leukocyte subpopulations in the infarcted myocardium. Over the last 30 years, extensive experimental work has explored the role of inflammatory signals and the contributions of leukocyte subpopulations, in myocardial infarction. Robust evidence derived from experimental models of myocardial infarction has identified inflammatory targets that may attenuate cardiomyocyte injury, or protect from adverse remodeling. Unfortunately, attempts to translate the promising experimental findings to clinical therapy have failed. This review manuscript discusses the biology of the inflammatory response following myocardial infarction, attempts to identify the causes for the translational failures of the past, and proposes promising new therapeutic directions. Because of their potential involvement in injurious, reparative and regenerative responses, inflammatory cells may hold the key for design of new therapies in myocardial infarction. PMID:26241027

  20. The gingival Stillman's clefts: histopathology and cellular characteristics.

    PubMed

    Cassini, Maria Antonietta; Cerroni, Loredana; Ferlosio, Amedeo; Orlandi, Augusto; Pilloni, Andrea

    2015-01-01

    Stillman's cleft is a mucogingival triangular-shaped defect on the buccal surface of a root with unknown etiology and pathogenesis. The aim of this study is to examine the Stillman's cleft obtained from excision during root coverage surgical procedures at an histopathological level. Harvesting of cleft was obtained from two periodontally healthy patients with a scalpel and a bevel incision and then placed in a test tube with buffered solution to be processed for light microscopy. Microscopic analysis has shown that Stillman's cleft presented a lichenoid hand-like inflammatory infiltration, while in the periodontal patient an inflammatory fibrous hyperplasia was identified. Stillman's cleft remains to be investigated as for the possible causes of such lesion of the gingival margin, although an inflammatory response seems to be evident and active from a strictly histopathological standpoint.

  1. Possible Contribution of Zerumbone-Induced Proteo-Stress to Its Anti-Inflammatory Functions via the Activation of Heat Shock Factor 1.

    PubMed

    Igarashi, Yoko; Ohnishi, Kohta; Irie, Kazuhiro; Murakami, Akira

    2016-01-01

    Zerumbone is a sesquiterpene present in Zinger zerumbet. Many studies have demonstrated its marked anti-inflammatory and anti-carcinogenesis activities. Recently, we showed that zerumbone binds to numerous proteins with scant selectivity and induces the expression of heat shock proteins (HSPs) in hepatocytes. To dampen proteo-toxic stress, organisms have a stress-responsive molecular machinery, known as heat shock response. Heat shock factor 1 (HSF1) plays a key role in this protein quality control system by promoting activation of HSPs. In this study, we investigated whether zerumbone-induced HSF1 activation contributes to its anti-inflammatory functions in stimulated macrophages. Our findings showed that zerumbone increased cellular protein aggregates and promoted nuclear translocation of HSF1 for HSP expression. Interestingly, HSF1 down-regulation attenuated the suppressive effects of zerumbone on mRNA and protein expressions of pro-inflammatory genes, including inducible nitric oxide synthase and interlukin-1β. These results suggest that proteo-stress induced by zerumbone activates HSF1 for exhibiting its anti-inflammatory functions.

  2. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  3. Sodium channel γENaC mediates IL-17 synergized high salt induced inflammatory stress in breast cancer cells

    PubMed Central

    Amara, Suneetha; Ivy, Michael T; Myles, Elbert L; Tiriveedhi, Venkataswarup

    2015-01-01

    Chronic inflammation is known to play a critical role in the development of cancer. Recent evidence suggests that high salt in the tissue microenvironment induces chronic inflammatory milieu. In this report, using three breast cancer-related cell lines, we determined the molecular basis of the potential synergistic inflammatory effect of sodium chloride (NaCl) with interleukin-17 (IL-17). Combined treatment of high NaCl (0.15 M) with sub-effective IL-17 (0.1 nM) induced enhanced growth in breast cancer cells along with activation of reactive nitrogen and oxygen (RNS/ROS) species known to promote cancer. Similar effect was not observed with equi-molar mannitol. This enhanced of ROS/RNS activity correlates with upregulation of γENaC an inflammatiory sodium channel. The similar culture conditions have also induced expression of pro-inflammatory cytokines such as IL-6, TNFα etc. Taken together, these data suggest that high NaCl in the cellular microenvironment induces a γENaC mediated chronic inflammatory response with a potential pro-carcinogenic effect. PMID:26723502

  4. Valosin containing protein (VCP) interacts with macrolide antibiotics without mediating their anti-inflammatory activities.

    PubMed

    Nujić, Krunoslav; Smith, Marjorie; Lee, Michael; Belamarić, Daniela; Tomašković, Linda; Alihodžić, Sulejman; Malnar, Ivica; Polančec, Denis; Schneider, Klaus; Eraković Haber, Vesna

    2012-02-29

    In addition to antibacterial activity, some macrolide antibiotics, such as azithromycin and clarithromycin, also exhibit anti-inflammatory properties in vitro and in vivo, although the targets and mechanism(s) of action remain unknown. The aim of the present study was to identify protein targets of azithromycin and clarithromycin which could potentially explain their anti-inflammatory effects. Using chemical proteomics approach, based on compound-immobilized affinity chromatography, valosin containing protein (VCP) was identified as a potential target of the macrolides. Validation studies confirmed the interaction of macrolides and VCP and gave some structural characteristics of this interaction. Cell based assays however, including the use of gene silencing and the study of VCP specific cellular functions in J774.A1 (murine macrophage) and IB3-1 (human cystic fibrotic epithelial) cell lines, failed to confirm an association between the binding of the macrolides to VCP and anti-inflammatory effects. These findings suggest the absence of an abundant high affinity protein target and the potential involvement of other biological molecules in the anti-inflammatory activity of macrolides. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    PubMed

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.

  6. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis.

    PubMed

    Yu, Tao; Rhee, Man Hee; Lee, Jongsung; Kim, Seung Hyung; Yang, Yanyan; Kim, Han Gyung; Kim, Yong; Kim, Chaekyun; Kwak, Yi-Seong; Kim, Jong-Hoon; Cho, Jae Youl

    2016-01-01

    Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng's various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.

  7. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  8. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2.

    PubMed

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R; Lewis, Stephanie N; Bassaganya-Riera, Josep

    2012-01-01

    Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates.

  9. Computational Modeling-Based Discovery of Novel Classes of Anti-Inflammatory Drugs That Target Lanthionine Synthetase C-Like Protein 2

    PubMed Central

    Lu, Pinyi; Hontecillas, Raquel; Horne, William T.; Carbo, Adria; Viladomiu, Monica; Pedragosa, Mireia; Bevan, David R.; Lewis, Stephanie N.; Bassaganya-Riera, Josep

    2012-01-01

    Background Lanthionine synthetase component C-like protein 2 (LANCL2) is a member of the eukaryotic lanthionine synthetase component C-Like protein family involved in signal transduction and insulin sensitization. Recently, LANCL2 is a target for the binding and signaling of abscisic acid (ABA), a plant hormone with anti-diabetic and anti-inflammatory effects. Methodology/Principal Findings The goal of this study was to determine the role of LANCL2 as a potential therapeutic target for developing novel drugs and nutraceuticals against inflammatory diseases. Previously, we performed homology modeling to construct a three-dimensional structure of LANCL2 using the crystal structure of lanthionine synthetase component C-like protein 1 (LANCL1) as a template. Using this model, structure-based virtual screening was performed using compounds from NCI (National Cancer Institute) Diversity Set II, ChemBridge, ZINC natural products, and FDA-approved drugs databases. Several potential ligands were identified using molecular docking. In order to validate the anti-inflammatory efficacy of the top ranked compound (NSC61610) in the NCI Diversity Set II, a series of in vitro and pre-clinical efficacy studies were performed using a mouse model of dextran sodium sulfate (DSS)-induced colitis. Our findings showed that the lead compound, NSC61610, activated peroxisome proliferator-activated receptor gamma in a LANCL2- and adenylate cyclase/cAMP dependent manner in vitro and ameliorated experimental colitis by down-modulating colonic inflammatory gene expression and favoring regulatory T cell responses. Conclusions/Significance LANCL2 is a novel therapeutic target for inflammatory diseases. High-throughput, structure-based virtual screening is an effective computational-based drug design method for discovering anti-inflammatory LANCL2-based drug candidates. PMID:22509338

  10. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  11. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling

    PubMed Central

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.

    2014-01-01

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536

  12. The structure and function of Alzheimer's gamma secretase enzyme complex.

    PubMed

    Krishnaswamy, Sudarsan; Verdile, Giuseppe; Groth, David; Kanyenda, Limbikani; Martins, Ralph N

    2009-01-01

    The production and accumulation of the beta amyloid protein (Abeta) is a key event in the cascade of oxidative and inflammatory processes that characterizes Alzheimer's disease (AD). A multi-subunit enzyme complex, referred to as gamma (gamma) secretase, plays a pivotal role in the generation of Abeta from its parent molecule, the amyloid precursor protein (APP). Four core components (presenilin, nicastrin, aph-1, and pen-2) interact in a high-molecular-weight complex to perform intramembrane proteolysis on a number of membrane-bound proteins, including APP and Notch. Inhibitors and modulators of this enzyme have been assessed for their therapeutic benefit in AD. However, although these agents reduce Abeta levels, the majority have been shown to have severe side effects in pre-clinical animal studies, most likely due to the enzymes role in processing other proteins involved in normal cellular function. Current research is directed at understanding this enzyme and, in particular, at elucidating the roles that each of the core proteins plays in its function. In addition, a number of interacting proteins that are not components of gamma-secretase also appear to play important roles in modulating enzyme activity. This review will discuss the structural and functional complexity of the gamma-secretase enzyme and the effects of inhibiting its activity.

  13. Psoriasis.

    PubMed

    Perera, Gayathri K; Di Meglio, Paola; Nestle, Frank O

    2012-01-01

    Psoriasis is a common relapsing and remitting immune-mediated inflammatory disease that affects the skin and joints. This review focuses on current immunogenetic concepts, key cellular players, and axes of cytokines that are thought to contribute to disease pathogenesis. We highlight potential therapeutic targets and give an overview of the currently used immune-targeted therapies.

  14. Navigating novel mechanisms of cellular plasticity with the NAD+ precursor and nutrient nicotinamide.

    PubMed

    Li, Faqi; Chong, Zhao Zhong; Maiese, Kenneth

    2004-09-01

    Interest in neuroprotectants for the central nervous system continues to garner significant attention. Nicotinamide, the amide form of niacin (vitamin B3), is the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD+) and is considered to be necessary for cellular function and metabolism. However, recent work has focused on the development of nicotinamide as a novel agent that is critical for modulating cellular plasticity, longevity, and inflammatory microglial function. The ability of nicotinamide to preserve both neuronal and vascular cell populations in the brain during injury is intriguing, but further knowledge of the specific cellular mechanisms that determine protection by this agent is required. The capacity of nicotinamide to govern not only intrinsic cellular integrity, but also extrinsic cellular inflammation rests with the modulation of a host of cellular targets that involve protein kinase B, glycogen synthase kinase-3 beta (GSK-3 beta), Forkhead transcription factors, mitochondrial dysfunction, poly(ADP-ribose) polymerase, cysteine proteases, and microglial activation. Intimately tied to the cytoprotection of nicotinamide is the modulation of an early and late phase of apoptotic injury that is triggered by the loss of membrane asymmetry. Identifying robust cytoprotective agents as nicotinamide in conjunction with the elucidation of the cellular mechanisms responsible for cell survival will continue to solidify the development of therapeutic strategies against neurodegenerative diseases

  15. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    PubMed Central

    Yang, Qian; Nanayakkara, Gayani K.; Drummer, Charles; Sun, Yu; Johnson, Candice; Cueto, Ramon; Fu, Hangfei; Shao, Ying; Wang, Luqiao; Yang, William Y.; Tang, Peng; Liu, Li-Wen; Ge, Shuping; Zhou, Xiao-Dong; Khan, Mohsin; Wang, Hong; Yang, Xiaofeng

    2017-01-01

    Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair. PMID:29109687

  16. Diet and Inflammation in Alzheimer's Disease and Related Chronic Diseases: A Review.

    PubMed

    Gardener, Samantha L; Rainey-Smith, Stephanie R; Martins, Ralph N

    2016-01-01

    Inflammation is one of the pathological features of the neurodegenerative disease, Alzheimer's disease (AD). A number of additional disorders are likewise associated with a state of chronic inflammation, including obesity, cardiovascular disease, and type-2 diabetes, which are themselves risk factors for AD. Dietary components have been shown to modify the inflammatory process at several steps of the inflammatory pathway. This review aims to evaluate the published literature on the effect of consumption of pro- or anti-inflammatory dietary constituents on the severity of both AD pathology and related chronic diseases, concentrating on the dietary constituents of flavonoids, spices, and fats. Diet-based anti-inflammatory components could lead to the development of potent novel anti-inflammatory compounds for a range of diseases. However, further work is required to fully characterize the therapeutic potential of such compounds, including gaining an understanding of dose-dependent relationships and limiting factors to effectiveness. Nutritional interventions utilizing anti-inflammatory foods may prove to be a valuable asset in not only delaying or preventing the development of age-related neurodegenerative diseases such as AD, but also treating pre-existing conditions including type-2 diabetes, cardiovascular disease, and obesity.

  17. Evaluation of analgesic and anti-inflammatory activities of Rubia cordifolia L. by spectrum-effect relationships.

    PubMed

    Shen, Cai-Hong; Liu, Cui-Ting; Song, Xiao-Juan; Zeng, Wei-Ya; Lu, Xiao-Ying; Zheng, Zuo-Liang; Jie-Pan; Zhan, Ruo-Ting; Ping-Yan

    2018-07-15

    The objective of the current work was to evaluate the spectrum-effect relationships between high-performance liquid chromatography fingerprints and analgesic and anti-inflammatory effects of Rubia cordifolia L. extract (RCE), and to identify active components of RCE. Chemical fingerprints of ten batches of RC from various sources were obtained by HPLC, and similarity and hierarchical clustering analyses were carried out. Pharmacodynamic assays were performed in adjuvant-induced arthritis rat model to assess the analgesic and anti-inflammatory properties of RCE. The spectrum-effect relationships between chemical fingerprints and the analgesic and anti-inflammatory effects of RCE were established by gray correlation analysis. UPLC-ESI-MS was used to identify the structures of potential active components, by reference standards comparison. The results showed that a close correlation existed between chemical fingerprints with analgesic and anti-inflammatory activities, and alizarin, 6-hydroxyrubiadin, purpurin and rubiadin might be the active constituents of RCE. In addition, RCE attenuated pathological changes in adjuvant-induced arthritis. The current findings provide a strong basis for combining chemical fingerprints with analgesic and anti-inflammatory activities in assessing the spectrum-effect relationships of RCE. Copyright © 2018. Published by Elsevier B.V.

  18. Evaluation of inflammatory processes by FTIR spectroscopy.

    PubMed

    Rodrigues, Laís Morandini; Carvalho, Luís Felipe das Chagas E Silva; Bonnier, Franck; Anbinder, Ana Lia; Martinho, Herculano da Silva; Almeida, Janete Dias

    2018-04-01

    Fourier transform infrared (FTIR) spectroscopy is a powerful diagnosis technique and has been used to identify patterns of molecular changes based on vibration modes. The objective of this study was to evaluate inflammatory fibrous hyperplasia (IFH) lesions and oral normal mucosa (NM) initially with histopathological exam and then using micro-FTIR spectroscopy to analyse the samples. Eleven IFH and 11 NM samples were analysed at five different points to cover the largest area possible by the micro-FTIR technique. Bands were observed between 970 and 1743 cm -1 which corresponded to different structural components like collagen, lipids, fatty acids, proteins and amino acids. Spectral bands were more intense mostly for IFH lesions, including collagen bands, which are an important component of inflammatory fibrous hyperplasia. This study demonstrated that differentiation in the inflammatory tissue was observed in FTIR spectral differences, in terms of biochemical composition.

  19. Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'.

    PubMed

    Damaskos, Dimitrios; Kolios, George

    2008-04-01

    The intestinal microflora is a large bacterial community that colonizes the gut, with a metabolic activity equal to an organ and various functions that affect the physiology and pathology of the host's mucosal immune system. Intestinal bacteria are useful in promotion of human health, but certain components of microflora, in genetically susceptible individuals, contribute to various pathological disorders, including inflammatory bowel disease. Clinical and experimental observations indicate an imbalance in protective and harmful microflora components in these disorders. Manipulation of gut flora to enhance its protective and beneficial role represents a promising field of new therapeutic strategies of inflammatory bowel disease. In this review, we discuss the implication of gut flora in the intestinal inflammation that justifies the role of probiotics and prebiotics in the prevention and treatment of inflammatory bowel disease and we address the evidence for therapeutic benefits from their use in experimental models of colitis and clinical trials.

  20. Action and function of Faecalibacterium prausnitzii in health and disease.

    PubMed

    Ferreira-Halder, Carmen Veríssima; Faria, Alessandra Valéria de Sousa; Andrade, Sheila Siqueira

    2017-12-01

    Faecalibacterium prausnitzii, anaerobic bacteria, is one of the main components of gut microbiota and the most important butyrate-producing bacteria in the human colon. So far, this commensal bacterium has been considered as a bioindicator of human health, once when its population is altered (decreased), inflammatory processes are favored. Several reports in the literature highlighted that the amount of Faecalibacterium prausnitzii negatively correlates to the activity of inflammatory bowel disease and colorectal cancer. Therefore, counterbalancing dysbiosis using Faecalibacterium prausnitzii as a potential active component of probiotic formulations appears to be a promising therapeutic strategy for inflammatory bowel diseases and colorectal cancer. However, once this microbial is very sensitive to oxygen, the formulation development is a great challenge. In this review, we will focus our attention on Faecalibacterium prausnitzii biology, anti-inflammatory metabolites, modulators of this bacterium population and its impact on human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top