Science.gov

Sample records for inflammatory immune system

  1. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease

    PubMed Central

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD. PMID:26900473

  2. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    PubMed

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  3. HIV Immune Recovery Inflammatory Syndrome and Central Nervous System Paracoccidioidomycosis.

    PubMed

    de Almeida, Sérgio Monteiro; Roza, Thiago Henrique

    2017-04-01

    The immune reconstitution inflammatory syndrome (IRIS) is a deregulated inflammatory response to invading microorganisms. It is manifested when there is an abrupt change in host immunity from an anti-inflammatory and immunosuppressive state to a pro-inflammatory state as a result of rapid depletion or removal of factors that promote immune suppression or inhibition of inflammation. The aim of this paper is to discuss and re-interpret the possibility of association of paracoccidioidomycosis (PCM) with IRIS in the central nervous system (CNS) in a case from Brazil published by Silva-Vergara ML. et al. (Mycopathologia 177:137-141, 6). An AIDS patient who was not receiving medical care developed pulmonary PCM successfully treated with itraconazole. The patient developed central nervous system PCM (NPCM) after starting the ARV therapy with recovery of immunity and control of HIV viral load, although it was not interpreted as IRIS by the authors, it fulfills the criteria for CNS IRIS. This could be the first case of NPCM associated with IRIS described. Although not frequent, IRIS must be considered in PCM patients and HIV, from endemic areas or patients that traveled to endemic areas, receiving ARV treatment and with worsening symptoms.

  4. The relationship between the immune system and oral manifestations of inflammatory bowel disease: a review

    PubMed Central

    Vasovic, Miroslav; Gajovic, Nevena; Brajkovic, Denis; Jovanovic, Marina; Zdravkovaic, Natasa

    2016-01-01

    Inflammatory bowel diseases (IBDs) are chronic, relapsing inflammatory diseases characterized by exacerbations and remissions of the gastrointestinal tract, clinically manifested as Crohn’s disease and ulcerative colitis. The etiology of IBDs is considered to be multi factorial, comprising environmental, immune, microbial and genetic factors. Clinical signs may include abdominal pain, frequent bloody diarrheas, mucorrhea, vomiting, fever, fatigue or weight loss. Changes in the oral cavity often precede intestinal symptoms. Inflammatory bowel disease leads to a significant deterioration of oral health, which indicates that cooperation between the dentist and the gastroenterologist is necessary when considering patients’ welfare. Patients with IBD have an altered immune response, but microorganisms of the oral cavity may also be responsible for its modification. This review paper discusses the correlation between the immune system and inflammatory bowel disease manifestations in the oral cavity. PMID:27833449

  5. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease

    PubMed Central

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to “danger” or “non-danger” signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation. PMID:26635804

  6. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease.

    PubMed

    Di Giovangiulio, Martina; Verheijden, Simon; Bosmans, Goele; Stakenborg, Nathalie; Boeckxstaens, Guy E; Matteoli, Gianluca

    2015-01-01

    One of the main tasks of the immune system is to discriminate and appropriately react to "danger" or "non-danger" signals. This is crucial in the gastrointestinal tract, where the immune system is confronted with a myriad of food antigens and symbiotic microflora that are in constant contact with the mucosa, in addition to any potential pathogens. This large number of antigens and commensal microflora, which are essential for providing vital nutrients, must be tolerated by the intestinal immune system to prevent aberrant inflammation. Hence, the balance between immune activation versus tolerance should be tightly regulated to maintain intestinal homeostasis and to prevent immune activation indiscriminately against all luminal antigens. Loss of this delicate equilibrium can lead to chronic activation of the intestinal immune response resulting in intestinal disorders, such as inflammatory bowel diseases (IBD). In order to maintain homeostasis, the immune system has evolved diverse regulatory strategies including additional non-immunological actors able to control the immune response. Accumulating evidence strongly indicates a bidirectional link between the two systems in which the brain modulates the immune response via the detection of circulating cytokines and via direct afferent input from sensory fibers and from enteric neurons. In the current review, we will highlight the most recent findings regarding the cross-talk between the nervous system and the mucosal immune system and will discuss the potential use of these neuronal circuits and neuromediators as novel therapeutic tools to reestablish immune tolerance and treat intestinal chronic inflammation.

  7. Nociceptin/orphanin FQ-NOP receptor system in inflammatory and immune-mediated diseases.

    PubMed

    Gavioli, Elaine C; de Medeiros, Iris Ucella; Monteiro, Marta C; Calo, Girolamo; Romão, Pedro R T

    2015-01-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the G-protein-coupled receptor NOP. Cells from the immune system express the precursor preproN/OFQ and the NOP receptor, as well as secrete N/OFQ. The activation of the N/OFQ-NOP pathway can regulate inflammatory and immune responses. Several immune activities, including leukocyte migration, cytokine and chemokine production, and lymphocytes proliferation are influenced by NOP activation. It was demonstrated that cytokines and other stimuli such as Toll-like receptor agonist (e.g., lipopolysaccharide) induce N/OFQ production by cells from innate and adaptive immune response. In this context, N/OFQ could modulate the outcome of inflammatory diseases, such as sepsis and immune-mediated pathologies by mechanisms not clearly elucidated. In fact, clinical studies revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's disease. Preclinical and clinical studies pointed to the blockade of NOP receptor signaling as successful strategy for the treatment of inflammatory diseases. This review is focused on experimental and clinical data that suggest the participation of N/OFQ-NOP receptor activation in the modulation of the immune response, highlighting the immunomodulatory potential of NOP antagonists in the inflammatory and immunological disturbances.

  8. Interactions between the host innate immune system and microbes in inflammatory bowel disease.

    PubMed

    Abraham, Clara; Medzhitov, Ruslan

    2011-05-01

    The intestinal immune system defends against pathogens and entry of excessive intestinal microbes; simultaneously, a state of immune tolerance to resident intestinal microbes must be maintained. Perturbation of this balance is associated with intestinal inflammation in various mouse models and is thought to predispose humans to inflammatory bowel disease (IBD). The innate immune system senses microbes; dendritic cells, macrophages, and epithelial cells produce an initial, rapid response. The immune system continuously monitors resident microbiota and utilizes constitutive antimicrobial mechanisms to maintain immune homeostasis. associations between IBD and genes that regulate microbial recognition and innate immune pathways, such as nucleotide oligomerization domain 2 (Nod2), genes that control autophagy (eg, ATG16L1, IRGM), and genes in the interleukin-23-T helper cell 17 pathway indicate the important roles of host-microbe interactions in regulating intestinal immune homeostasis. There is increasing evidence that intestinal microbes influence host immune development, immune responses, and susceptibility to human diseases such as IBD, diabetes mellitus, and obesity. Conversely, host factors can affect microbes, which in turn modulate disease susceptibility. We review the cell populations and mechanisms that mediate interactions between host defense and tolerance and how the dysregulation of host-microbe interactions leads to intestinal inflammation and IBD.

  9. A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response.

    PubMed

    Waelput, W; Brouckaert, P; Broekaert, D; Tavernier, J

    2002-09-01

    Leptin was originally identified as an adipocyte-derived cytokine with a key role in the regulation of the energy balance. Subsequent research has, however, revealed that leptin's biological action is not restricted to its effects on appetite and food intake, but rather has a much more pleiotropic character. Evidence is now accumulating that it has important functions in reproduction, hematopoiesis, HPA-axis endocrinology and angiogenesis. In this review, we have focused on the effects of leptin in the immune system, which can be found in both the antigen-specific immunity and in the inflammatory effector system.

  10. An Overview of the Innate and Adaptive Immune System in Inflammatory Bowel Disease.

    PubMed

    Choy, Matthew C; Visvanathan, Kumar; De Cruz, Peter

    2017-01-01

    Inflammatory bowel diseases (IBDs) are thought to develop as a result of complex interactions between host genetics, the immune system and the environment including the gut microbiome. Although an improved knowledge of the immunopathogenesis of IBDs has led to great advances in therapy such as the highly effective anti-tumor necrosis factor class of medications, a significant proportion of patients with Crohn's disease and ulcerative colitis do not respond to anti-tumor necrosis factor antibodies. Further understanding of the different immune pathways involved in the genesis of chronic intestinal inflammation is required to help find effective treatments for IBDs. In this review, the role of the mucosal innate and adaptive immune system in IBD is summarized, highlighting new areas of discovery which may hold the key to identifying novel predictive or prognostic biomarkers and new avenues of therapeutic discovery.

  11. Neurocysticercosis: local and systemic immune-inflammatory features related to severity.

    PubMed

    Sáenz, Brenda; Fleury, Agnes; Chavarría, Anahí; Hernández, Marisela; Crispin, José C; Vargas-Rojas, María I; Fragoso, Gladis; Sciutto, Edda

    2012-02-01

    Neurocysticercosis (NC) is caused by the establishment of Taenia solium cysticerci in the central nervous system. Previous studies have established that neuroinflammation plays a key role in the severity of the disease. However, the relationship between peripheral and local immune response remains inconclusive. This work studies the peripheral and local immune-inflammatory features and their relationships, toward the identification of potential peripheral immunologic features related to severity. A panel of cytokines was measured in paired cerebrospinal fluid (CSF) and in the supernatant of antigen-specific stimulated peripheral blood mononuclear cells samples (SN) in a total of 31 untreated inflammatory and non-inflammatory NC patients. Increased clinical and radiologic severity was associated with an increased cerebrospinal fluid cell count. A peripheral proliferative depression that negatively correlates with CSF cellularity and TNFα and that positively correlates with SN IL5 was observed in severe NC patients. These results provide evidences to support the systemic proliferative response as a biomarker to monitor the level of neuroinflammation, of possible value in the patients' follow-up during treatment.

  12. Pathogenesis of the immune reconstitution inflammatory syndrome affecting the central nervous system in patients infected with HIV.

    PubMed

    Martin-Blondel, Guillaume; Delobel, Pierre; Blancher, Antoine; Massip, Patrice; Marchou, Bruno; Liblau, Roland S; Mars, Lennart T

    2011-04-01

    Anti-retroviral therapy partially restores the immune function of patients infected with human immunodeficiency virus, thereby drastically reducing morbidity and mortality. However, the clinical condition of a subset of patients on anti-retroviral therapy secondarily deteriorates due to an inflammatory process termed immune reconstitution inflammatory syndrome. This condition results from the restoration of the immune system that upon activation can be detrimental to the host. Among the various clinical manifestations, central nervous system involvement is associated with greater morbidity and mortality. This review covers the pathogenesis of this novel neuroinflammatory disease, including the nature of the provoking pathogens and the composition and specificity of the evoked immune responses. Our current perception of this neuroinflammatory disease supports therapeutic strategies aimed at modulating immune aggression without dampening the life-saving restoration of the immune response.

  13. Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug

    PubMed Central

    Chen, Chider; Xu, Xingtian; Ansari, Sahar; Zadeh, Homayoun H.; Schricker, Scott R.; Paine, Michael L.; Moradian-Oldak, Janet; Khademhosseini, Ali; Snead, Malcolm L.

    2015-01-01

    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration. PMID:26120294

  14. HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases

    PubMed Central

    Montgomery, McKale R.; Leyva, Kathryn J.

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are powerful epigenetic regulators that have enormous therapeutic potential and have pleiotropic effects at the cellular and systemic levels. To date, HDAC inhibitors are used clinically for a wide variety of disorders ranging from hematopoietic malignancies to psychiatric disorders, are known to have anti-inflammatory properties, and are in clinical trials for several other diseases. In addition to influencing gene expression, HDAC enzymes also function as part of large, multisubunit complexes which have many nonhistone targets, alter signaling at the cellular and systemic levels, and result in divergent and cell-type specific effects. Thus, the effects of HDAC inhibitor treatment are too intricate to completely understand with current knowledge but the ability of HDAC inhibitors to modulate the immune system presents intriguing therapeutic possibilities. This review will explore the complexity of HDAC inhibitor treatment at the cellular and systemic levels and suggest strategies for effective use of HDAC inhibitors in biomedical research, focusing on the ability of HDAC inhibitors to modulate the immune system. The possibility of combining the documented anticancer effects and newly emerging immunomodulatory effects of HDAC inhibitors represents a promising new combinatorial therapeutic approach for HDAC inhibitor treatments. PMID:27556043

  15. Reciprocal interaction between the suprachiasmatic nucleus and the immune system tunes down the inflammatory response to lipopolysaccharide.

    PubMed

    Guerrero-Vargas, Natalí N; Salgado-Delgado, Roberto; Basualdo, María Del Carmen; García, Joselyn; Guzmán-Ruiz, Mara; Carrero, Julio C; Escobar, Carolina; Buijs, Ruud M

    2014-08-15

    Several studies have shown circadian variations in the response of the immune system suggesting a role of the suprachiasmatic nucleus (SCN). Here we show that lipopolysaccharide (LPS) administration in the beginning of the active period induced more severe responses in temperature and cytokines than LPS given in the rest period. Moreover night administered LPS increased SCN basal neuronal activity indicating a direct influence of inflammation on the SCN. Bilateral lesions of the SCN resulted in an increased inflammatory response to LPS demonstrating that an interaction between the SCN and the immune system modulates the intensity of the inflammatory response.

  16. Immune System

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Immune System KidsHealth > For Teens > Immune System A A A ... could put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  17. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease

    PubMed Central

    Worthington, John J

    2015-01-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine. PMID:26551720

  18. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease.

    PubMed

    Worthington, John J

    2015-08-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies' largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.

  19. Insulin resistance, selfish brain, and selfish immune system: an evolutionarily positively selected program used in chronic inflammatory diseases

    PubMed Central

    2014-01-01

    Insulin resistance (IR) is a general phenomenon of many physiological states, disease states, and diseases. IR has been described in diabetes mellitus, obesity, infection, sepsis, trauma, painful states such as postoperative pain and migraine, schizophrenia, major depression, chronic mental stress, and others. In arthritis, abnormalities of glucose homeostasis were described in 1920; and in 1950 combined glucose and insulin tests unmistakably demonstrated IR. The phenomenon is now described in rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis, polymyalgia rheumatica, and others. In chronic inflammatory diseases, cytokine-neutralizing strategies normalize insulin sensitivity. This paper delineates that IR is either based on inflammatory factors (activation of the immune/ repair system) or on the brain (mental activation via stress axes). Due to the selfishness of the immune system and the selfishness of the brain, both can induce IR independent of each other. Consequently, the immune system can block the brain (for example, by sickness behavior) and the brain can block the immune system (for example, stress-induced immune system alterations). Based on considerations of evolutionary medicine, it is discussed that obesity per se is not a disease. Obesity-related IR depends on provoking factors from either the immune system or the brain. Chronic inflammation and/or stress axis activation are thus needed for obesity-related IR. Due to redundant pathways in stimulating IR, a simple one factor-neutralizing strategy might help in chronic inflammatory diseases (inflammation is the key), but not in obesity-related IR. The new considerations towards IR are interrelated to the published theories of IR (thrifty genotype, thrifty phenotype, and others). PMID:25608958

  20. Developmental origins of inflammatory and immune diseases.

    PubMed

    Chen, Ting; Liu, Han-Xiao; Yan, Hui-Yi; Wu, Dong-Mei; Ping, Jie

    2016-08-01

    Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention.

  1. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  2. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response.

    PubMed

    Cruvinel, Wilson de Melo; Mesquita, Danilo; Araújo, Júlio Antônio Pereira; Catelan, Tânia Tieko Takao; de Souza, Alexandre Wagner Silva; da Silva, Neusa Pereira; Andrade, Luís Eduardo Coelho

    2010-01-01

    The immune system consists of an intricate network of organs, cells, and molecules responsible for maintaining the body's homeostasis and responding to aggression in general. Innate immunity operates in conjunction with adaptive immunity and is characterized by rapid response to aggression, regardless of previous stimulus, being the organism first line of defense. Its mechanisms include physical, chemical and biological barriers, cellular components, as well as soluble molecules. The organism first line of defense against tissue damage involves several steps closely integrated and constituted by different components of this system. The aim of this review is to restore the foundations of this response, which has high complexity and consists of several components that converge to articulate the development of adaptive immune response. We selected some of the following steps to review: perception and molecular recognition of aggressive agents; activation of intracellular pathways, which result in vascular and tissue changes; production of a myriad of mediators with local and systemic effects on cell activation and proliferation, synthesis of new products involved in the chemoattraction and migration of cells specialized in destruction and removal of offending agent; and finally, tissue recovery with restoration of functional tissue or organ.

  3. Anxiety, not anger, induces inflammatory activity: An avoidance/approach model of immune system activation.

    PubMed

    Moons, Wesley G; Shields, Grant S

    2015-08-01

    Psychological stressors reliably trigger systemic inflammatory activity as indexed by levels of proinflammatory cytokines. This experiment demonstrates that one's specific emotional reaction to a stressor may be a significant determinant of whether an inflammatory reaction occurs in response to that stressor. Based on extant correlational evidence and theory, a causal approach was used to determine whether an avoidant emotion (anxiety) triggers more inflammatory activity than an approach emotion (anger). In an experimental design (N = 40), a 3-way Emotion Condition × Time × Analyte interaction revealed that a writing-based anxiety induction, but not a writing-based anger induction, increased mean levels of interferon-γ (IFN- γ) and interleukin-1β (IL-1β), but not interleukin-6 (IL-6) in oral mucous, F(2, 54) = 4.64, p = .01, ηp(²) = .15. Further, self-reported state anxiety predicted elevated levels of proinflammatory cytokines, all ΔR(²) >.06, ps <.04, but self-reported state anger did not. These results constitute the first evidence to our knowledge that specific negative emotions can differentially cause inflammatory activity and support a theoretical model explaining these effects based on the avoidance or approach motivations associated with emotions.

  4. A role for leptin in the systemic inflammatory response syndrome (SIRS) and in immune response, an update.

    PubMed

    Waelput, W; Brouckaert, P; Broekaert, D; Tavernier, J

    2006-01-01

    Leptin was originally identified as an adipocyte-derived cytokine with a key role in the regulation of the energy balance. Subsequent research revealed that leptin's biological action is not restricted to its effects on appetite and food intake, but instead has a much more pleiotropic character. There is now ample evidence that leptin has important functions in reproduction, hematopoiesis, HPA-axis endocrinology and angiogenesis. In this review we have focused on the effects of leptin in the antigen-specific immunity and in the inflammatory effector system.

  5. Dynamic Patterns of Systemic Innate Immunity and Inflammatory Associated Factors in Experimental Caprine Coccidiosis

    PubMed Central

    Tadayon, Shabnam; Razavi, Seyed Mostafa; Nazifi, Saeed

    2016-01-01

    The present study was designed to assess the dynamic patterns of pro-inflammatory cytokines, including IFN-γ, TNF-α, IL-4, IL-6, acute phase protein (α1-acid-glycoprotein, AGP), and an inflammation associated factor (adenosine deaminase; ADA) following experimental caprine coccidiosis. Ten kids aging from 2 to 4 months were infected orally with 5×104 sporulated oocysts and 10 animals served as controls. Blood samples were collected in both groups before infection and at days 3, 7, 14, 21, 28, and 35 post-infection (PI), and the levels of above-mentioned factors were measured. IFN-γ, TNF-α, IL-4, IL-6, AGP, and ADA activities were significantly higher in infected animals from day 7 PI (P<0.05). In conclusion, the circulatory levels of most systemic inflammatory markers, including pro-inflammatory cytokines (IFN-γ, TNF-α, IL-4, IL-6), AGP, and ADA increased significantly starting from day 3 to day 7 PI in caprine coccidiosis. PMID:28095656

  6. Inflammatory bowel disease related innate immunity and adaptive immunity.

    PubMed

    Huang, Yuan; Chen, Zhonge

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease, including ulcerative colitis (UC) and Crohn's disease (CD). Its pathogenesis remains not yet clear. Current researchers believe that after environmental factors act on individuals with genetic susceptibility, an abnormal intestinal immune response is launched under stimulation of intestinal flora. However, previous studies only focused on adaptive immunity in the pathogenesis of IBD. Currently, roles of innate immune response in the pathogenesis of intestinal inflammation have also drawn much attention. In this study, IBD related innate immunity and adaptive immunity were explained, especially the immune mechanisms in the pathogenesis of IBD.

  7. Immune System

    EPA Science Inventory

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  8. Immune Reconstitution Inflammatory Syndrome: Opening Pandora's Box

    PubMed Central

    2017-01-01

    One of the purposes of antiretroviral therapy (ART) is to restore the immune system. However, it can sometimes lead to an aberrant inflammatory response and paradoxical clinical worsening known as the immune reconstitution inflammatory syndrome (IRIS). We describe a 23-year-old male, HIV1 infected with a rapid progression phenotype, who started ART with TCD4+ of 53 cells/mm3 (3,3%) and HIV RNA = 890000 copies/mL (6 log). Four weeks later he was admitted to the intensive care unit with severe sepsis. The diagnostic pathway identified progressive multifocal leukoencephalopathy, digestive Kaposi sarcoma, and P. aeruginosa bacteraemia. Five weeks after starting ART, TCD4+ cell count was 259 cells/mm3 (15%) and HIV RNA = 3500 copies/mL (4 log). He developed respiratory failure and progressed to septic shock and death. Those complications might justify the outcome but its autopsy opened Pandora's box: cerebral and cardiac toxoplasmosis was identified, as well as hemophagocytic syndrome, systemic candidiasis, and Mycobacterium avium complex infection. IRIS remains a concern and eventually a barrier to ART. Male gender, young age, low TCD4 cell count, and high viral load are risk factors. The high prevalence of subclinical opportunistic diseases highlights the need for new strategies to reduce IRIS incidence. PMID:28163944

  9. HIV-1 tuberculosis-associated immune reconstitution inflammatory syndrome.

    PubMed

    Lai, Rachel P J; Meintjes, Graeme; Wilkinson, Robert J

    2016-03-01

    Patients co-infected with HIV-1 and tuberculosis (TB) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) following commencement of antiretroviral therapy (ART). TB-IRIS is characterized by transient but severe localized or systemic inflammatory reactions against Mycobacterium tuberculosis antigens. Here, we review the risk factors and clinical management of TB-IRIS, as well as the roles played by different aspects of the immune response in contributing to TB-IRIS pathogenesis.

  10. Adaptive Immunity Is the Key to the Understanding of Autoimmune and Paraneoplastic Inflammatory Central Nervous System Disorders

    PubMed Central

    Weissert, Robert

    2017-01-01

    There are common aspects and mechanisms between different types of autoimmune diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), and autoimmune encephalitis (AE) as well as paraneoplastic inflammatory disorders of the central nervous system. To our present knowledge, depending on the disease, T and B cells as well as antibodies contribute to various aspects of the pathogenesis. Possibly the events leading to the breaking of tolerance between the different diseases are of great similarity and so far, only partially understood. Beside endogenous factors (genetics, genomics, epigenetics, malignancy) also exogenous factors (vitamin D, sun light exposure, smoking, gut microbiome, viral infections) contribute to susceptibility in such diseases. What differs between these disorders are the target molecules of the immune attack. For T cells, these target molecules are presented on major histocompatibility complex (MHC) molecules as MHC-bound ligands. B cells have an important role by amplifying the immune response of T cells by capturing antigen with their surface immunoglobulin and presenting it to T cells. Antibodies secreted by plasma cells that have differentiated from B cells are highly structure specific and can have important effector functions leading to functional impairment or/and lesion evolvement. In MS, the target molecules are mainly myelin- and neuron/axon-derived proteins; in NMOSD, mainly aquaporin-4 expressed on astrocytes; and in AE, various proteins that are expressed by neurons and axons. PMID:28386263

  11. Innate immune dysfunction in inflammatory bowel disease.

    PubMed

    Gersemann, M; Wehkamp, J; Stange, E F

    2012-05-01

    The pathogenetic mechanisms that cause the two types of inflammatory bowel disease (IBD), Crohn's disease (CD) and ulcerative colitis (UC), are still under investigation. Nevertheless, there is broad agreement that luminal microbes are of particular relevance in the development of these conditions. In recent years, increasing evidence has shown that defects in the innate immunity are at the centre of both types of IBD. The innate intestinal barrier is provided by the epithelium which secretes antimicrobial peptides (so-called defensins) that are retained in the mucus layer. In ileal CD, the alpha-defensins are lacking owing to several Paneth cell defects. In colonic CD, the expression of beta-defensins is inadequate. This may be related to downregulation of the transcription factor peroxisome proliferator-activated receptor-gamma and in some cohorts is associated with a reduced HBD2 gene copy number. In UC, the mucus layer, which protects the host from the enormous amounts of luminal microbes, is defective. This is accompanied by an insufficient differentiation from intestinal stem cells towards goblet cells. All these disturbances in the gut barrier shift the balance from epithelial defence towards bacterial offence. The current treatment for CD and UC is based on suppression of this secondary inflammatory process. In future, patients may benefit from new therapeutic approaches stimulating the protective innate immune system.

  12. Neural immune pathways and their connection to inflammatory diseases

    PubMed Central

    Eskandari, Farideh; Webster, Jeanette I; Sternberg, Esther M

    2003-01-01

    Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic–pituitary–adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic–pituitary–gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood–brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis. PMID:14680500

  13. Schistosome-Derived Molecules as Modulating Actors of the Immune System and Promising Candidates to Treat Autoimmune and Inflammatory Diseases

    PubMed Central

    Vieira, Anderson Rodrigues Araújo; de Campos, Tatiana Amabile

    2016-01-01

    It is long known that some parasite infections are able to modulate specific pathways of host's metabolism and immune responses. This modulation is not only important in order to understand the host-pathogen interactions and to develop treatments against the parasites themselves but also important in the development of treatments against autoimmune and inflammatory diseases. Throughout the life cycle of schistosomes the mammalian hosts are exposed to several biomolecules that are excreted/secreted from the parasite infective stage, named cercariae, from their tegument, present in adult and larval stages, and finally from their eggs. These molecules can induce the activation and modulation of innate and adaptive responses as well as enabling the evasion of the parasite from host defense mechanisms. Immunomodulatory effects of helminth infections and egg molecules are clear, as well as their ability to downregulate proinflammatory cytokines, upregulate anti-inflammatory cytokines, and drive a Th2 type of immune response. We believe that schistosomes can be used as a model to understand the potential applications of helminths and helminth-derived molecules against autoimmune and inflammatory diseases. PMID:27635405

  14. Chronic inflammatory systemic diseases

    PubMed Central

    Straub, Rainer H.; Schradin, Carsten

    2016-01-01

    It has been recognized that during chronic inflammatory systemic diseases (CIDs) maladaptations of the immune, nervous, endocrine and reproductive system occur. Maladaptation leads to disease sequelae in CIDs. The ultimate reason of disease sequelae in CIDs remained unclear because clinicians do not consider bodily energy trade-offs and evolutionary medicine. We review the evolution of physiological supersystems, fitness consequences of genes involved in CIDs during different life-history stages, environmental factors of CIDs, energy trade-offs during inflammatory episodes and the non-specificity of CIDs. Incorporating bodily energy regulation into evolutionary medicine builds a framework to better understand pathophysiology of CIDs by considering that genes and networks used are positively selected if they serve acute, highly energy-consuming inflammation. It is predicted that genes that protect energy stores are positively selected (as immune memory). This could explain why energy-demanding inflammatory episodes like infectious diseases must be terminated within 3–8 weeks to be adaptive, and otherwise become maladaptive. Considering energy regulation as an evolved adaptive trait explains why many known sequelae of different CIDs must be uniform. These are, e.g. sickness behavior/fatigue/depressive symptoms, sleep disturbance, anorexia, malnutrition, muscle wasting—cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, alterations of steroid hormone axes, disturbances of the hypothalamic-pituitary-gonadal (HPG) axis, hypertension, bone loss and hypercoagulability. Considering evolved energy trade-offs helps us to understand how an energy imbalance can lead to the disease sequelae of CIDs. In the future, clinicians must translate this knowledge into early diagnosis and symptomatic treatment in CIDs. PMID:26817483

  15. Immune System (For Parents)

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Immune System KidsHealth > For Parents > Immune System A A A ... can lead to illness and infection. About the Immune System The immune system is the body's defense against ...

  16. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions

    PubMed Central

    Vindigni, Stephen M.; Zisman, Timothy L.; Suskind, David L.; Damman, Christopher J.

    2016-01-01

    We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental ‘hits’ are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function. PMID:27366227

  17. The intestinal microbiome, barrier function, and immune system in inflammatory bowel disease: a tripartite pathophysiological circuit with implications for new therapeutic directions.

    PubMed

    Vindigni, Stephen M; Zisman, Timothy L; Suskind, David L; Damman, Christopher J

    2016-07-01

    We discuss the tripartite pathophysiological circuit of inflammatory bowel disease (IBD), involving the intestinal microbiota, barrier function, and immune system. Dysfunction in each of these physiological components (dysbiosis, leaky gut, and inflammation) contributes in a mutually interdependent manner to IBD onset and exacerbation. Genetic and environmental risk factors lead to disruption of gut homeostasis: genetic risks predominantly affect the immune system, environmental risks predominantly affect the microbiota, and both affect barrier function. Multiple genetic and environmental 'hits' are likely necessary to establish and exacerbate disease. Most conventional IBD therapies currently target only one component of the pathophysiological circuit, inflammation; however, many patients with IBD do not respond to immune-modulating therapies. Hope lies in new classes of therapies that target the microbiota and barrier function.

  18. Psychological factors and DNA methylation of genes related to immune/inflammatory system markers: the VA Normative Aging Study

    PubMed Central

    Kim, Daniel; Kubzansky, Laura D; Baccarelli, Andrea; Sparrow, David; Spiro, Avron; Tarantini, Letizia; Cantone, Laura; Vokonas, Pantel; Schwartz, Joel

    2016-01-01

    Objectives Although psychological factors have been associated with chronic diseases such as coronary heart disease (CHD), the underlying pathways for these associations have yet to be elucidated. DNA methylation has been posited as a mechanism linking psychological factors to CHD risk. In a cohort of community-dwelling elderly men, we explored the associations between positive and negative psychological factors with DNA methylation in promoter regions of multiple genes involved in immune/inflammatory processes related to atherosclerosis. Design Prospective cohort study. Setting Greater Boston, Massachusetts area. Participants Samples of 538 to 669 men participating in the Normative Aging Study cohort with psychological measures and DNA methylation measures, collected on 1–4 visits between 1999 and 2006 (mean age=72.7 years at first visit). Outcome measures We examined anxiety, depression, hostility and life satisfaction as predictors of leucocyte gene-specific DNA methylation. We estimated repeated measures linear mixed models, controlling for age, smoking, education, history of heart disease, stroke or diabetes, % lymphocytes, % monocytes and plasma folate. Results Psychological distress measured by anxiety, depression and hostility was positively associated, and happiness and life satisfaction were inversely associated with average Intercellular Adhesion Molecule-1 (ICAM-1) and coagulation factor III (F3) promoter methylation levels. There was some evidence that hostility was positively associated with toll-like receptor 2 (TLR-2) promoter methylation, and that life satisfaction was inversely associated with TLR-2 and inducible nitric oxide synthase (iNOS) promoter methylation. We observed less consistent and significant associations between psychological factors and average methylation for promoters of the genes for glucocorticoid receptor (NR3C1), interferon-γ (IFN-γ) and interleukin 6 (IL-6). Conclusions These findings suggest that positive and negative

  19. Paradoxical Mycobacterium tuberculosis meningitis immune reconstitution inflammatory syndrome in an HIV-infected child.

    PubMed

    Kalk, Emma; Technau, Karl; Hendson, Willy; Coovadia, Ashraf

    2013-02-01

    Immune reconstitution inflammatory syndrome occurs in a subset of HIV-infected individuals as the immune system recovers secondary to antiretroviral therapy. An exaggerated and uncontrolled inflammatory response to antigens of viable or nonviable organisms is characteristic, with clinical deterioration despite improvement in laboratory indicators. We describe a fatal case of Mycobacterium tuberculosis meningitis immune reconstitution inflammatory syndrome in an HIV-infected child and review the literature.

  20. Glatiramer Acetate in Treatment of Multiple Sclerosis: A Toolbox of Random Co-Polymers for Targeting Inflammatory Mechanisms of both the Innate and Adaptive Immune System?

    PubMed Central

    Jalilian, Babak; Einarsson, Halldór Bjarki; Vorup-Jensen, Thomas

    2012-01-01

    Multiple sclerosis is a disease of the central nervous system, resulting in the demyelination of neurons, causing mild to severe symptoms. Several anti-inflammatory treatments now play a significant role in ameliorating the disease. Glatiramer acetate (GA) is a formulation of random polypeptide copolymers for the treatment of relapsing-remitting MS by limiting the frequency of attacks. While evidence suggests the influence of GA on inflammatory responses, the targeted molecular mechanisms remain poorly understood. Here, we review the multiple pharmacological modes-of-actions of glatiramer acetate in treatment of multiple sclerosis. We discuss in particular a newly discovered interaction between the leukocyte-expressed integrin αMβ2 (also called Mac-1, complement receptor 3, or CD11b/CD18) and perspectives on the GA co-polymers as an influence on the function of the innate immune system. PMID:23203082

  1. The immune system and hypertension.

    PubMed

    Singh, Madhu V; Chapleau, Mark W; Harwani, Sailesh C; Abboud, Francois M

    2014-08-01

    A powerful interaction between the autonomic and the immune systems plays a prominent role in the initiation and maintenance of hypertension and significantly contributes to cardiovascular pathology, end-organ damage and mortality. Studies have shown consistent association between hypertension, proinflammatory cytokines and the cells of the innate and adaptive immune systems. The sympathetic nervous system, a major determinant of hypertension, innervates the bone marrow, spleen and peripheral lymphatic system and is proinflammatory, whereas the parasympathetic nerve activity dampens the inflammatory response through α7-nicotinic acetylcholine receptors. The neuro-immune synapse is bidirectional as cytokines may enhance the sympathetic activity through their central nervous system action that in turn increases the mobilization, migration and infiltration of immune cells in the end organs. Kidneys may be infiltrated by immune cells and mesangial cells that may originate in the bone marrow and release inflammatory cytokines that cause renal damage. Hypertension is also accompanied by infiltration of the adventitia and perivascular adipose tissue by inflammatory immune cells including macrophages. Increased cytokine production induces myogenic and structural changes in the resistance vessels, causing elevated blood pressure. Cardiac hypertrophy in hypertension may result from the mechanical afterload and the inflammatory response to resident or migratory immune cells. Toll-like receptors on innate immune cells function as sterile injury detectors and initiate the inflammatory pathway. Finally, abnormalities of innate immune cells and the molecular determinants of their activation that include toll-like receptor, adrenergic, cholinergic and AT1 receptors can define the severity of inflammation in hypertension. These receptors are putative therapeutic targets.

  2. Chitin and Its Effects on Inflammatory and Immune Responses.

    PubMed

    Elieh Ali Komi, Daniel; Sharma, Lokesh; Dela Cruz, Charles S

    2017-03-01

    Chitin, a potential allergy-promoting pathogen-associated molecular pattern (PAMP), is a linear polymer composed of N-acetylglucosamine residues which are linked by β-(1,4)-glycosidic bonds. Mammalians are potential hosts for chitin-containing protozoa, fungi, arthropods, and nematodes; however, mammalians themselves do not synthetize chitin and thus it is considered as a potential target for recognition by mammalian immune system. Chitin is sensed primarily in the lungs or gut where it activates a variety of innate (eosinophils, macrophages) and adaptive immune cells (IL-4/IL-13 expressing T helper type-2 lymphocytes). Chitin induces cytokine production, leukocyte recruitment, and alternative macrophage activation. Intranasal or intraperitoneal administration of chitin (varying in size, degree of acetylation and purity) to mice has been applied as a routine approach to investigate chitin's priming effects on innate and adaptive immunity. Structural chitin present in microorganisms is actively degraded by host true chitinases, including acidic mammalian chitinases and chitotriosidase into smaller fragments that can be sensed by mammalian receptors such as FIBCD1, NKR-P1, and RegIIIc. Immune recognition of chitin also involves pattern recognition receptors, mainly via TLR-2 and Dectin-1, to activate immune cells to induce cytokine production and creation of an immune network that results in inflammatory and allergic responses. In this review, we will focus on various immunological aspects of the interaction between chitin and host immune system such as sensing, interactions with immune cells, chitinases as chitin degrading enzymes, and immunologic applications of chitin.

  3. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    PubMed

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-09-07

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.

  4. Immune System Quiz

    MedlinePlus

    ... Room? What Happens in the Operating Room? Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System A A A How much do you know about your immune system? Find out by taking this quiz! About KidsHealth ...

  5. Mortality in adult intensive care patients with severe systemic inflammatory response syndromes is strongly associated with the hypo-immune TNF -238A polymorphism.

    PubMed

    Pappachan, John V; Coulson, Tim G; Child, Nicholas J A; Markham, David J; Nour, Sarah M; Pulletz, Mark C K; Rose-Zerilli, Matthew J; de Courcey-Golder, Kim; Barton, Sheila J; Yang, Ian A; Holloway, John W

    2009-10-01

    The systemic inflammatory response syndrome (SIRS) is associated with activation of innate immunity. We studied the association between mortality and measures of disease severity in the intensive care unit (ICU) and functional polymorphisms in genes coding for Toll-like receptor 4 (TLR4), macrophage migratory inhibitory factor (MIF), tumour necrosis factor (TNF) and lymphotoxin-alpha (LTA). Two hundred thirty-three patients with severe SIRS were recruited from one general adult ICU in a tertiary centre in the UK. DNA from patients underwent genotyping by 5' nuclease assay. Genotype was compared to phenotype. Primary outcome was mortality in ICU. Minor allele frequencies were TLR4 +896G 7%, MIF 173C 16%, TNF -238A 10% and LTA +252G 34%. The frequency of the hypoimmune minor allele TNF -238A was significantly higher in patients who died in ICU compared to those who survived (p = 0.0063) as was the frequency of the two haplotypes LTA +252G, TNF -1031T, TNF -308G, TNF -238A and LTA +252G, TNF-1031T, TNF-308A and TNF-238A (p = 0.0120 and 0.0098, respectively). These findings re-enforce the view that a balanced inflammatory/anti-inflammatory response is the most important determinant of outcome in sepsis. Genotypes that either favour inflammation or its counter-regulatory anti-inflammatory response are likely to influence mortality and morbidity.

  6. Melatonin: Buffering the Immune System

    PubMed Central

    Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.

    2013-01-01

    Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496

  7. Immune Responses to Intestinal Microbes in Inflammatory Bowel Diseases.

    PubMed

    Hansen, Jonathan J

    2015-10-01

    Inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, are characterized by chronic, T-cell-mediated inflammation of the gastrointestinal tract that can cause significant, lifelong morbidity. Data from both human and animal studies indicate that IBDs are likely caused by dysregulated immune responses to resident intestinal microbes. Certain products from mycobacteria, fungi, and Clostridia stimulate increased effector T cell responses during intestinal inflammation, whereas other bacterial products from Clostridia and Bacteroides promote anti-inflammatory regulatory T cell responses. Antibody responses to bacterial and fungal components may help predict the severity of IBDs. While most currently approved treatments for IBDs generally suppress the patient's immune system, our growing understanding of microbial influences in IBDs will likely lead to the development of new diagnostic tools and therapies that target the intestinal microbiota.

  8. The Immune System in Hypertension

    ERIC Educational Resources Information Center

    Trott, Daniel W.; Harrison, David G.

    2014-01-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely…

  9. Complement in immune and inflammatory disorders: therapeutic interventions

    PubMed Central

    Ricklin, Daniel; Lambris, John D.

    2013-01-01

    With the awareness that immune-inflammatory crosstalk is at the heart of many disorders, the desire for novel immunomodulatory strategies in the therapy of such diseases has grown dramatically. As a prime initiator and important modulator of immunological and inflammatory processes, the complement system has emerged as an attractive target for early and upstream intervention in inflammatory diseases and has moved into the spotlight of drug discovery. While prevalent conditions such as age-related macular degeneration have attracted the most attention, the diverse array of complement-mediated pathologies, with distinct underlying mechanisms, demands a multifaceted arsenal of therapeutic strategies. Fortunately, efforts in recent years have not only introduced the first complement inhibitors to the clinic but also filled the pipelines with promising candidates. With a focus on immunomodulatory strategies, this review discusses complement-directed therapeutic concepts and highlights promising candidate molecules. PMID:23564578

  10. miRNA-124 in Immune System and Immune Disorders

    PubMed Central

    Qin, Zhen; Wang, Peng-Yuan; Su, Ding-Feng; Liu, Xia

    2016-01-01

    In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future. PMID:27757114

  11. Bacopa monnieri (L.) exerts anti-inflammatory effects on cells of the innate immune system in vitro.

    PubMed

    Williams, Roderick; Münch, Gerald; Gyengesi, Erika; Bennett, Louise

    2014-03-01

    Bacopa monnieri (L., BM) is a traditional Ayurvedic medicinal herb recognised for its efficacy in relieving acute pain and inflammation, as related to selective inhibition of cyclo-oxygenase-2 (COX-2) enzyme and consequent reduction in COX-2-mediated prostanoid mediators. BM is also associated with cognitive enhancing (nootropic) activity including improving memory free recall, observed after prolonged intake (>3 months). It is likely that the time frame required to exert an effect in the brain reflects regulation by BM of chronic inflammation and oxidative stress associated with aging and chronic diseases, and other polypharmacological effects. We report down-regulation by BM of NO and TNF-α in stimulated RAW 246.7 macrophages and of IFN-γ in stimulated human blood cells. Furthermore, in human blood cells, IL-10 was slightly elevated indicating polarisation towards a regulatory T cell phenotype. These results provide further supportive evidence to justify the clinical evaluation of BM for managing diseases involving chronic systemic and brain inflammation driven by the innate immune system.

  12. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing.

  13. Immune System and Disorders

    MedlinePlus

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  14. Immune System Quiz

    MedlinePlus

    ... los dientes Video: Getting an X-ray Quiz: Immune System KidsHealth > For Kids > Quiz: Immune System Print A A A How much do you know about your immune system? Find out by taking this quiz! About KidsHealth ...

  15. [Immune system and tumors].

    PubMed

    Terme, Magali; Tanchot, Corinne

    2017-02-01

    Despite having been much debated, it is now well established that the immune system plays an essential role in the fight against cancer. In this article, we will highlight the implication of the immune system in the control of tumor growth and describe the major components of the immune system involved in the antitumoral immune response. The immune system, while exerting pressure on tumor cells, also will play a pro-tumoral role by sculpting the immunogenicity of tumors cells as they develop. Finally, we will illustrate the numerous mechanisms of immune suppression that take place within the tumoral microenvironment which allow tumor cells to escape control from the immune system. The increasingly precise knowledge of the brakes to an effective antitumor immune response allows the development of immunotherapy strategies more and more innovating and promising of hope.

  16. IRF3 is an important molecule in the UII/UT system and mediates immune inflammatory injury in acute liver failure

    PubMed Central

    Liu, Liang-ming; Tu, Wen-juan; Zhu, Tong; Wang, Xiao-ting; Tan, Zhi-li; Zhong, Huan; Gao, De-yong; Liang, Dong-yu

    2016-01-01

    The urotensin II/urotensin receptor (UII/UT) system can mediate inflammatory liver injury in acute liver failure (ALF); however; the related mechanism is not clear. In this study, we confirmed that lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced up-regulation of liver interferon regulatory factor 3 (IRF3) in ALF mice, whereas the UT antagonist urantide inhibited the up-regulated liver IRF3. LPS stimulation induced IRF3 transcription and nuclear translocation and promoted the secretion of interleukin-6 (IL-6), interferon (IFN)-β, and IFN-γ in Kupffer cells (KCs); these effects in LPS-stimulated KCs were inhibited by urantide. Knockdown of IRF3 using an adenovirus expressing an IRF3 shRNA inhibited IFN-β transcription and secretion as well as tumor necrosis factor (TNF)-α and IL-1β secretion from LPS-stimulated KCs; additionally, IL-10 transcription and secretion were promoted in response to LPS. However, LPS-stimulated TNF-α and IL-1β mRNA was not affected in the KCs. The IRF3 shRNA also did not have a significant effect on the NF-κB p65 subunit and p38MAPK protein phosphorylation levels in the nuclei of LPS-stimulated KCs. Therefore, IRF3 expression and activation depended on the signal transduction of the UII/UT system, and played important roles in UII/UT-mediated immune inflammatory injury in the liver but did not affect NF-κB and p38 MAPK activity. PMID:27448985

  17. The Immune System Game

    ERIC Educational Resources Information Center

    Work, Kirsten A.; Gibbs, Melissa A.; Friedman, Erich J.

    2015-01-01

    We describe a card game that helps introductory biology students understand the basics of the immune response to pathogens. Students simulate the steps of the immune response with cards that represent the pathogens and the cells and molecules mobilized by the immune system. In the process, they learn the similarities and differences between the…

  18. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  19. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  20. Human immune system variation

    PubMed Central

    Brodin, Petter; Davis, Mark M.

    2017-01-01

    The human immune system is highly variable between individuals but relatively stable over time within a given person. Recent conceptual and technological advances have enabled systems immunology analyses, which reveal the composition of immune cells and proteins in populations of healthy individuals. The range of variation and some specific influences that shape an individual’s immune system is now becoming clearer. Human immune systems vary as a consequence of heritable and non-heritable influences, but symbiotic and pathogenic microbes and other non-heritable influences explain most of this variation. Understanding when and how such influences shape the human immune system is key for defining metrics of immunological health and understanding the risk of immune-mediated and infectious diseases. PMID:27916977

  1. The innate immune system in demyelinating disease.

    PubMed

    Mayo, Lior; Quintana, Francisco J; Weiner, Howard L

    2012-07-01

    Demyelinating diseases such as multiple sclerosis are chronic inflammatory autoimmune diseases with a heterogeneous clinical presentation and course. Both the adaptive and the innate immune systems have been suggested to contribute to their pathogenesis and recovery. In this review, we discuss the role of the innate immune system in mediating demyelinating diseases. In particular, we provide an overview of the anti-inflammatory or pro-inflammatory functions of dendritic cells, mast cells, natural killer (NK) cells, NK-T cells, γδ T cells, microglial cells, and astrocytes. We emphasize the interaction of astroctyes with the immune system and how this interaction relates to the demyelinating pathologies. Given the pivotal role of the innate immune system, it is possible that targeting these cells may provide an effective therapeutic approach for demyelinating diseases.

  2. Swine immune system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probably no area of veterinary medicine has seen a greater explosion in knowledge then the immune system and its implications in disease and vaccination. In this chapter on the Swine Immune System for the 10th Edition of Diseases of Swine we expand on the information provided in past editions by in...

  3. Autonomic nervous system and immune system interactions.

    PubMed

    Kenney, M J; Ganta, C K

    2014-07-01

    The present review assesses the current state of literature defining integrative autonomic-immune physiological processing, focusing on studies that have employed electrophysiological, pharmacological, molecular biological, and central nervous system experimental approaches. Central autonomic neural networks are informed of peripheral immune status via numerous communicating pathways, including neural and non-neural. Cytokines and other immune factors affect the level of activity and responsivity of discharges in sympathetic and parasympathetic nerves innervating diverse targets. Multiple levels of the neuraxis contribute to cytokine-induced changes in efferent parasympathetic and sympathetic nerve outflows, leading to modulation of peripheral immune responses. The functionality of local sympathoimmune interactions depends on the microenvironment created by diverse signaling mechanisms involving integration between sympathetic nervous system neurotransmitters and neuromodulators; specific adrenergic receptors; and the presence or absence of immune cells, cytokines, and bacteria. Functional mechanisms contributing to the cholinergic anti-inflammatory pathway likely involve novel cholinergic-adrenergic interactions at peripheral sites, including autonomic ganglion and lymphoid targets. Immune cells express adrenergic and nicotinic receptors. Neurotransmitters released by sympathetic and parasympathetic nerve endings bind to their respective receptors located on the surface of immune cells and initiate immune-modulatory responses. Both sympathetic and parasympathetic arms of the autonomic nervous system are instrumental in orchestrating neuroimmune processes, although additional studies are required to understand dynamic and complex adrenergic-cholinergic interactions. Further understanding of regulatory mechanisms linking the sympathetic nervous, parasympathetic nervous, and immune systems is critical for understanding relationships between chronic disease

  4. The immune system in hypertension.

    PubMed

    Trott, Daniel W; Harrison, David G

    2014-03-01

    While hypertension has predominantly been attributed to perturbations of the vasculature, kidney, and central nervous system, research for almost 50 yr has shown that the immune system also contributes to this disease. Inflammatory cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension and likely contribute to end-organ damage. We and others have shown that mice lacking adaptive immune cells, including recombinase-activating gene-deficient mice and rats and mice with severe combined immunodeficiency have blunted hypertension to stimuli such as ANG II, high salt, and norepinephrine. Adoptive transfer of T cells restores the blood pressure response to these stimuli. Agonistic antibodies to the ANG II receptor, produced by B cells, contribute to hypertension in experimental models of preeclampsia. The central nervous system seems important in immune cell activation, because lesions in the anteroventral third ventricle block hypertension and T cell activation in response to ANG II. Likewise, genetic manipulation of reactive oxygen species in the subfornical organ modulates both hypertension and immune cell activation. Current evidence indicates that the production of cytokines, including tumor necrosis factor-α, interleukin-17, and interleukin-6, contribute to hypertension, likely via effects on both the kidney and vasculature. In addition, the innate immune system also appears to contribute to hypertension. We propose a working hypothesis linking the sympathetic nervous system, immune cells, production of cytokines, and, ultimately, vascular and renal dysfunction, leading to the augmentation of hypertension. Studies of immune cell activation will clearly be useful in understanding this common yet complex disease.

  5. The Gut Microbiota in Immune-Mediated Inflammatory Diseases

    PubMed Central

    Forbes, Jessica D.; Van Domselaar, Gary; Bernstein, Charles N.

    2016-01-01

    The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID. PMID:27462309

  6. Immune System 101

    MedlinePlus

    ... Infectious Diseases - The Immune System Related Topics on AIDS.gov CD4 Count Viral Load Cancer Opportunistic Infections ... Immune Response (video) Last revised: 08/22/2011 AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  7. Obesity, inflammation and the immune system.

    PubMed

    de Heredia, Fátima Pérez; Gómez-Martínez, Sonia; Marcos, Ascensión

    2012-05-01

    Obesity shares with most chronic diseases the presence of an inflammatory component, which accounts for the development of metabolic disease and other associated health alterations. This inflammatory state is reflected in increased circulating levels of pro-inflammatory proteins, and it occurs not only in adults but also in adolescents and children. The chronic inflammatory response has its origin in the links existing between the adipose tissue and the immune system. Obesity, like other states of malnutrition, is known to impair the immune function, altering leucocyte counts as well as cell-mediated immune responses. In addition, evidence has arisen that an altered immune function contributes to the pathogenesis of obesity. This review attempts to briefly comment on the various plausible explanations that have been proposed for the phenomenon: (1) the obesity-associated increase in the production of leptin (pro-inflammatory) and the reduction in adiponectin (anti-inflammatory) seem to affect the activation of immune cells; (2) NEFA can induce inflammation through various mechanisms (such as modulation of adipokine production or activation of Toll-like receptors); (3) nutrient excess and adipocyte expansion trigger endoplasmic reticulum stress; and (4) hypoxia occurring in hypertrophied adipose tissue stimulates the expression of inflammatory genes and activates immune cells. Interestingly, data suggest a greater impact of visceral adipose tissue and central obesity, rather than total body fat, on the inflammatory process. In summary, there is a positive feedback loop between local inflammation in adipose tissue and altered immune response in obesity, both contributing to the development of related metabolic complications.

  8. CD147: a novel modulator of inflammatory and immune disorders.

    PubMed

    Zhu, X; Song, Z; Zhang, S; Nanda, A; Li, G

    2014-01-01

    CD147, a transmembrane glycoprotein, is expressed on all leukocytes, platelets, and endothelial cells. It has been implicated in a variety of physiological and pathological activities through interacting with multiple partners, including cyclophilins, monocarboxylate transporters, Caveolin-1, and integrins. While CD147 is best known as a potent inducer of extracellular matrix metalloproteinases (hence also called EMMPRIN), it can also function as a key mediator of inflammatory and immune responses. Increased expression of CD147 has been implicated in the pathogenesis of a number of diseases, such as asthma-mediated lung inflammation, rheumatoid arthritis, multiple sclerosis, myocardial infarction and ischemic stroke. Therapeutic targeting of CD147 has yielded encouraging effects in a number of experimental models of human diseases, suggesting CD147 as an attractive target for treatment of inflammation-related diseases. Here we review the current understanding of CD147 expression and functions in inflammatory and immune responses and potential implications for treatment of inflammatory disorders.

  9. The immune and inflammatory response to orf virus.

    PubMed

    Haig, D M; McInnes, C; Deane, D; Reid, H; Mercer, A

    1997-06-01

    Orf virus is a zoonotic, epitheliotropic DNA parapox virus that principally infects sheep and goats. The fact that the virus can repeatedly reinfect sheep has provoked an interest in the underlying cellular, virological and molecular mechanisms for its apparent escape from the host protective immune response. The local immune and inflammatory response in skin and the cell phenotype and cytokine response in lymph analysed around a single lymph node are characteristic of an anti-viral response. An unusual feature is the dense accumulation of MHC Class II+ dendritic cells in the skin lesion. The function of these cells is not known. Orf virus virulence genes and activities have been identified that may interfere with the development of the host protective immune and inflammatory response.

  10. Immune System (For Parents)

    MedlinePlus

    ... teens. Environmental allergies (to dust mites, for example), seasonal allergies (such as hay fever), drug allergies (reactions to ... For Parents MORE ON THIS TOPIC Definition: ... Allergies Activity: Immune System Word! Autoimmunity HIV and AIDS ...

  11. Crusted scabies-associated immune reconstitution inflammatory syndrome

    PubMed Central

    2012-01-01

    Background Despite the widely accepted association between crusted scabies and human immunodeficiency virus (HIV)-infection, crusted scabies has not been included in the spectrum of infections associated with immune reconstitution inflammatory syndrome in HIV-infected patients initiating antiretroviral therapy. Case presentation We report a case of a 28-year-old Mexican individual with late HIV-infection, who had no apparent skin lesions but soon after initiation of antiretroviral therapy, he developed an aggressive form of crusted scabies with rapid progression of lesions. Severe infestation by Sarcoptes scabiei was confirmed by microscopic examination of the scale and skin biopsy. Due to the atypical presentation of scabies in a patient responding to antiretroviral therapy, preceded by no apparent skin lesions at initiation of antiretroviral therapy, the episode was interpreted for the first time as “unmasking crusted scabies-associated immune reconstitution inflammatory syndrome”. Conclusion This case illustrates that when crusted scabies is observed in HIV-infected patients responding to antiretroviral therapy, it might as well be considered as a possible manifestation of immune reconstitution inflammatory syndrome. Patient context should be considered for adequate diagnosis and treatment of conditions exacerbated by antiretroviral therapy-induced immune reconstitution. PMID:23181485

  12. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.

    PubMed

    Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo

    2017-02-01

    The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.

  13. Autophagy, inflammation and innate immunity in inflammatory myopathies.

    PubMed

    Cappelletti, Cristina; Galbardi, Barbara; Kapetis, Dimos; Vattemi, Gaetano; Guglielmi, Valeria; Tonin, Paola; Salerno, Franco; Morandi, Lucia; Tomelleri, Giuliano; Mantegazza, Renato; Bernasconi, Pia

    2014-01-01

    Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs). In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM), polymyositis (PM), dermatomyositis (DM) and juvenile dermatomyositis (JDM). We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1). These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.

  14. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    PubMed Central

    Vamvakopoulos, Nicholas V.

    1995-01-01

    This review higlghts key aspects of corticotropin releasing hormone (CRH) biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h) CRH gene: (1) a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2) a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system. PMID:18475634

  15. The immune system

    PubMed Central

    2016-01-01

    All organisms are connected in a complex web of relationships. Although many of these are benign, not all are, and everything alive devotes significant resources to identifying and neutralizing threats from other species. From bacteria through to primates, the presence of some kind of effective immune system has gone hand in hand with evolutionary success. This article focuses on mammalian immunity, the challenges that it faces, the mechanisms by which these are addressed, and the consequences that arise when it malfunctions. PMID:27784777

  16. Innate immune system cells in atherosclerosis.

    PubMed

    Chávez-Sánchez, Luis; Espinosa-Luna, Jose E; Chávez-Rueda, Karina; Legorreta-Haquet, María V; Montoya-Díaz, Eduardo; Blanco-Favela, Francisco

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by innate and adaptive immune system involvement. A key component of atherosclerotic plaque inflammation is the persistence of different innate immune cell types including mast cells, neutrophils, natural killer cells, monocytes, macrophages and dendritic cells. Several endogenous signals such as oxidized low-density lipoproteins, and exogenous signals such as lipopolysaccharides, trigger the activation of these cells. In particular, these signals orchestrate the early and late inflammatory responses through the secretion of pro-inflammatory cytokines and contribute to plaque evolution through the formation of foam cells, among other events. In this review we discuss how innate immune system cells affect atherosclerosis pathogenesis.

  17. [Olive oil, immune system and infection].

    PubMed

    Puertollano, M A; Puertollano, E; Alvarez de Cienfuegos, G; de Pablo Martínez, Manuel Antonio

    2010-01-01

    Polyunsaturated fatty acids contribute to the suppression of immune system functions. For this reason, n-3 polyunsaturated fatty acids have been applied in the resolution of inflammatory disorders. Although the inhibition of several immune functions promotes beneficial effects on the human health, this state may lead to a significant reduction of immune protection against infectious microorganisms (viruses, bacteria, fungi and parasites). Nevertheless, less attention has been paid to the action of olive oil in immunonutrition. Olive oil, a main constituent of the Mediterranean diet, is capable of modulating several immune functions, but it does not reduce host immune resistance to infectious microorganisms. Based on these criteria, we corroborate that olive oil administration may exert beneficial effects on the human health and especially on immune system, because it contributes to the reduction of typical inflammatory activity observed in patients suffering from autoimmune disorders, but without exacerbating the susceptibility to pathogen agents. The administration of olive oil in lipid emulsions may exert beneficial effects on the health and particularly on the immune system of immunocompromised patients. Therefore, this fact acquires a crucial importance in clinical nutrition. This review contributes to clarify the interaction between the administration of diets containing olive oil and immune system, as well as to determine the effect promoted by this essential component of Mediterranean diet in the immunomodulation against an infectious agent.

  18. Immune and Inflammatory Mechanisms in Pulmonary Arterial Hypertension

    PubMed Central

    El Chami, Hala; Hassoun, Paul M.

    2012-01-01

    Altered immunity and inflammation are increasingly recognized features of pulmonary arterial hypertension (PAH). This is suggested by infiltration of various inflammatory cells (e.g., macrophages, T and B lymphocytes), increased cytokine and growth factor (e.g., VEGF and PDGF) expression in remodeled pulmonary vessels, and the presence of circulating chemokines and cytokines. In certain diseases associated with PAH, increased expression of growth and transcriptional (e.g., Nuclear Factor of Activated T cells or NFAT) factors, and viral protein components (e.g., HIV-1 Nef), appear to contribute directly to recruitment of inflammatory cells in remodeled vessels, and may potentially serve as specific therapeutic targets. This section provides an overview of inflammatory pathways highlighting their potential role in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy. PMID:23009917

  19. Immunopathology of immune reconstitution inflammatory syndrome in Whipple's disease.

    PubMed

    Moos, Verena; Feurle, Gerhard E; Schinnerling, Katina; Geelhaar, Anika; Friebel, Julian; Allers, Kristina; Moter, Annette; Kikhney, Judith; Loddenkemper, Christoph; Kühl, Anja A; Erben, Ulrike; Fenollar, Florence; Raoult, Didier; Schneider, Thomas

    2013-03-01

    During antimicrobial treatment of classic Whipple's disease (CWD), the chronic systemic infection with Tropheryma whipplei, immune reconstitution inflammatory syndrome (IRIS), is a serious complication. The aim of our study was to characterize the immunological processes underlying IRIS in CWD. Following the definition of IRIS, we describe histological features of IRIS and immunological parameters of 24 CWD IRIS patients, 189 CWD patients without IRIS, and 89 healthy individuals. T cell reconstitution, Th1 reactivity, and the phenotype of T cells were described in the peripheral blood, and infiltration of CD4(+) T cells and regulatory T cells in the duodenal mucosa was determined. During IRIS, tissues were heavily infiltrated by CD3(+), predominantly CD45RO(+)CD4(+) T cells. In the periphery, initial reduction of CD4(+) cell counts and their reconstitution on treatment was more pronounced in CWD patients with IRIS than in those without IRIS. The ratio of activated and regulatory CD4(+) T cells, nonspecific Th1 reactivity, and the proportion of naive among CD4(+) T cells was high, whereas serum IL-10 was low during IRIS. T. whipplei-specific Th1 reactivity remained suppressed before and after emergence of IRIS. The findings that IRIS in CWD mainly are mediated by nonspecific activation of CD4(+) T cells and that it is not sufficiently counterbalanced by regulatory T cells indicate that flare-up of pathogen-specific immunoreactivity is not instrumental in the pathogenesis of IRIS in CWD.

  20. What is the evidence for the role of TRP channels in inflammatory and immune cells?

    PubMed Central

    Parenti, A; De Logu, F; Benemei, S

    2016-01-01

    A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases. PMID:26603538

  1. Linking immunity, epigenetics, and cancer in inflammatory bowel disease.

    PubMed

    Däbritz, Jan; Menheniott, Trevelyan R

    2014-09-01

    Most of what is known about the pathogenesis of inflammatory bowel disease (IBD) pertains to complex interplay between host genetics, immunity, and environmental factors. Epigenetic modifications play pivotal roles in intestinal immunity and mucosal homeostasis as well as mediating gene-environment interactions. In this article, we provide a historical account of epigenetic research either directly related or pertinent to the pathogenesis and management of IBD. We further collate emerging evidence supporting roles for epigenetic mechanisms in relevant aspects of IBD biology, including deregulated immunity, host-pathogen recognition and mucosal integrity. Finally, we highlight key epigenetic mechanisms that link chronic inflammation to specific IBD comorbidities, including colitis-associated cancer and discuss their potential utility as novel biomarkers or pharmacologic targets in IBD therapy.

  2. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders.

    PubMed

    Bahia, Malkeet Singh; Kaur, Maninder; Silakari, Pragati; Silakari, Om

    2015-06-01

    The various cells of innate immune system quickly counter-attack invading pathogens, and mount up "first line" defense through their trans-membrane receptors including Toll-like receptors (TLRs) and interleukin receptors (IL-Rs) that result in the secretion of pro-inflammatory cytokines. Albeit such inflammatory responses are beneficial in pathological conditions, their overstimulation may cause severe inflammatory damage; thus, make this defense system a "double edged sword". IRAK-4 has been evaluated as an indispensable element of IL-Rs and TLR pathways that can regulate the abnormal levels of cytokines, and therefore could be employed to manage immune- and inflammation-related disorders. Historically, the identification of selective and potent inhibitors has been challenging; thus, a limited number of small molecule IRAK-4 inhibitors are available in literature. Recently, IRAK-4 achieved great attention, when Ligand® pharmaceutical and Nimbus Discovery® reported the beneficial potentials of IRAK-4 inhibitors in the pre-clinical evaluation for various inflammatory- and immune-related disorders, but not limited to, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, gout, asthma and cancer.

  3. Immune deficiency vs. immune excess in inflammatory bowel diseases-STAT3 as a rheo-STAT of intestinal homeostasis.

    PubMed

    Leppkes, Moritz; Neurath, Markus F; Herrmann, Martin; Becker, Christoph

    2016-01-01

    Genome-wide association studies have provided many genetic alterations, conferring susceptibility to multifactorial polygenic diseases, such as inflammatory bowel diseases. Yet, how specific genetic alterations functionally affect intestinal inflammation often remains elusive. It is noteworthy that a large overlap of genes involved in immune deficiencies with those conferring inflammatory bowel disease risk has been noted. This has provided new arguments for the debate on whether inflammatory bowel disease arises from either an excess or a deficiency in the immune system. In this review, we highlight the functional effect of an inflammatory bowel disease-risk allele, which cannot be deduced from genome-wide association studies data alone. As exemplified by the transcription factor signal transducer and activator of transcription 3 (STAT3), we show that a single gene can have a plethora of effects in various cell types of the gut. These effects may individually contribute to the restoration of intestinal homeostasis on the one hand or pave the way for excessive immunopathology on the other, as an inflammatory "rheo-STAT".

  4. Inflammatory and immune processes in the human lung in health and disease: evaluation by bronchoalveolar lavage.

    PubMed Central

    Hunninghake, G. W.; Gadek, J. E.; Kawanami, O.; Ferrans, V. J.; Crystal, R. G.

    1979-01-01

    Bronchoalveolar lavage is an invaluable means of accurately evaluating the inflammatory and immune processes of the human lung. Although lavage recovers only those cells and proteins present on the epithelial surface of the lower respiratory tract, comparison with open lung biopsies shows that these constituents are representative of the inflammatory and immune systems of the alveolar structures. With the use of these techniques, sufficient materials are obtained from normal individuals to allow characterization of not only the types of cells and proteins present but their functions as well. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease. Lavage methods have been used to characterize inflammatory and immune processes of the lower respiratory tract in destructive, infectious, neoplastic, and interstitial disorders. From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders. (Am J Pathol 97:149--206, 1979). Images Figure 9 Figure 1 Figure 2 Figure 10 Figure 7 Figure 8 Figure 4 Figure 5 Figure 6 Figure 3 PMID:495693

  5. Exploring the Homeostatic and Sensory Roles of the Immune System

    PubMed Central

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection. PMID:27065209

  6. Exploring the Homeostatic and Sensory Roles of the Immune System.

    PubMed

    Marques, Rafael Elias; Marques, Pedro Elias; Guabiraba, Rodrigo; Teixeira, Mauro Martins

    2016-01-01

    Immunology developed under the notion of the immune system exists to fight pathogens. Recently, the discovery of interactions with commensal microbiota that are essential to human health initiated a change in this old paradigm. Here, we argue that the immune system has major physiological roles extending far beyond defending the host. Immune and inflammatory responses share the core property of sensing, defining the immune system also as a sensory system. The inference with the immune system collects, interprets, and stores information, while creating an identity of self, places it in close relationship to the nervous system, which suggests that these systems may have a profound evolutionary connection.

  7. Immune Mechanisms in Inflammatory and Degenerative Eye Disease

    PubMed Central

    Perez, Victor L.; Caspi, Rachel R.

    2015-01-01

    It has recently been recognized that pathology of age-associated degenerative eye diseases such as adult macular degeneration (AMD), glaucoma and diabetic retinopathy, have strong immunological underpinnings. Attempts have been made to extrapolate to age-related degenerative disease insights from inflammatory processes associated with non-infectious uveitis, but these have not yet been sufficiently informative. Here we review recent findings on the immune processes underlying uveitis and those that have been shown to contribute to AMD, discussing in this context parallels and differences between overt inflammation and para-inflammation in the eye. We propose that mechanisms associated with ocular immune privilege, in combination with paucity of age-related antigen(s) within the target tissue, dampen what could otherwise be overt inflammation and result in the para-inflammation that characterizes age-associated neurodegenerative disease. PMID:25981967

  8. Vaccinations in patients with immune-mediated inflammatory diseases

    PubMed Central

    Rahier, Jean-François; Moutschen, Michel; Van Gompel, Alfons; Van Ranst, Marc; Louis, Edouard; Segaert, Siegfried; Masson, Pierre

    2010-01-01

    Patients with immune-mediated inflammatory diseases (IMID) such as RA, IBD or psoriasis, are at increased risk of infection, partially because of the disease itself, but mostly because of treatment with immunomodulatory or immunosuppressive drugs. In spite of their elevated risk for vaccine-preventable disease, vaccination coverage in IMID patients is surprisingly low. This review summarizes current literature data on vaccine safety and efficacy in IMID patients treated with immunosuppressive or immunomodulatory drugs and formulates best-practice recommendations on vaccination in this population. Especially in the current era of biological therapies, including TNF-blocking agents, special consideration should be given to vaccination strategies in IMID patients. Clinical evidence indicates that immunization of IMID patients does not increase clinical or laboratory parameters of disease activity. Live vaccines are contraindicated in immunocompromized individuals, but non-live vaccines can safely be given. Although the reduced quality of the immune response in patients under immunotherapy may have a negative impact on vaccination efficacy in this population, adequate humoral response to vaccination in IMID patients has been demonstrated for hepatitis B, influenza and pneumococcal vaccination. Vaccination status is best checked and updated before the start of immunomodulatory therapy: live vaccines are not contraindicated at that time and inactivated vaccines elicit an optimal immune response in immunocompetent individuals. PMID:20591834

  9. Multiphasic and multifocal cryptococcal immune reconstitution inflammatory syndrome in an HIV-infected patient: interplay of infection and immunity.

    PubMed

    Katchanov, Juri; Zimmermann, Ulrike; Branding, Gordian; Tintelnot, Kathrin; Müller, Markus; Arastéh, Keikawus; Stocker, Hartmut

    2014-01-01

    We report a case of cryptococcal immune reconstitution inflammatory syndrome affecting the lungs, and 10 months later the cervical lymph nodes, in the absence of cryptococcal meningitis, in advanced HIV infection. Our report demonstrates the organ-specificity of the timing of the inflammatory response and illustrates the organ-specific interplay of immunity and infection in cryptococcal disease.

  10. Dysregulated innate immune function in the aetiopathogenesis of idiopathic inflammatory myopathies.

    PubMed

    Day, Jessica; Otto, Sophia; Proudman, Susanna; Hayball, John D; Limaye, Vidya

    2017-01-01

    The idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of systemic muscle conditions that are believed to be autoimmune in nature. They have distinct pathological features, but the aetiopathogenesis of each subtype remains largely unknown. Recently, there has been increased interest in the complex role the innate immune system plays in initiating and perpetuating these conditions, and how this may differ between subtypes. This article summarises the traditional paradigms of IIM pathogenesis and reviews the accumulating evidence for disturbances in innate immune processes in these rare, but debilitating chronic conditions.

  11. Extra virgin olive oil: a key functional food for prevention of immune-inflammatory diseases.

    PubMed

    Aparicio-Soto, Marina; Sánchez-Hidalgo, Marina; Rosillo, Ma Ángeles; Castejón, Ma Luisa; Alarcón-de-la-Lastra, Catalina

    2016-11-09

    Nowadays, it is clear that an unhealthy diet is one of the prime factors that contributes to the rise of inflammatory diseases and autoimmunity in the populations of both developed and developing countries. The Mediterranean diet has been associated with a reduced incidence of certain pathologies related to chronic inflammation and the immune system. Olive oil, the principal source of dietary lipids of the Mediterranean diet, possesses a high nutritional quality and a particular composition, which is especially relevant in the case of Extra Virgin Olive Oil (EVOO). EVOO is obtained from olives solely by mechanical or other physical preparation methods, under conditions that do not alter the natural composition. EVOO is described as a key bioactive food with multiple beneficial properties and it may be effective in the management of some immune-inflammatory diseases. In this review, the key research is summarised which provides evidence of the beneficial effects of EVOO and its minor components focusing on their mechanisms on immune-inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and sclerosis.

  12. Paradoxical Reactions and the Immune Reconstitution Inflammatory Syndrome.

    PubMed

    Church, L W Preston; Chopra, Amit; Judson, Marc A

    2017-03-01

    In HIV-infected individuals, paradoxical reactions after the initiation of antiretroviral therapy (ART) are associated with a variety of underlying infections and have been called the immune reconstitution inflammatory syndrome (IRIS). In cases of IRIS associated with tuberculosis (TB), two distinct patterns of disease are recognized: (i) the progression of subclinical TB to clinical disease after the initiation of ART, referred to as unmasking, and (ii) the progression or appearance of new clinical and/or radiographic disease in patients with previously recognized TB after the initiation of ART, the classic or "paradoxical" TB-IRIS. IRIS can potentially occur in all granulomatous diseases, not just infectious ones. All granulomatous diseases are thought to result from interplay of inflammatory cells and mediators. One of the inflammatory cells thought to be integral to the development of the granuloma is the CD4 T lymphocyte. Therefore, HIV-infected patients with noninfectious granulomatous diseases such as sarcoidosis may also develop IRIS reactions. Here, we describe IRIS in HIV-infected patients with TB and sarcoidosis and review the basic clinical and immunological aspects of these phenomena.

  13. Inflammatory and Immune Activation in Intestinal Myofibroblasts Is Developmentally Regulated

    PubMed Central

    Zawahir, Sharmila; Li, Guanghui; Banerjee, Aditi; Shiu, Jessica; Blanchard, Thomas G.

    2015-01-01

    We previously demonstrated that intestinal myofibroblasts from immature tissue produce excessive IL-8 in response to Escherichia coli lipopolysaccharide (LPS) compared to cells from mature tissue. However, it is unknown whether other cytokines and TLR agonists contribute to this developmentally regulated response. The aim of this study was to further characterize differences in inflammatory signaling in human primary intestinal fibroblasts from fetal (FIF) and infant (IIF) tissue and examine their potential to activate the adaptive immune response in vitro. Cytokine profiles of LPS-stimulated FIF and IIF were assessed by cytokine profile array. IL-8, IL-6, and IL-10 production in response to TLR2, TLR2/6, TLR4, and TLR5 agonists was determined by quantitative ELISA. The potential of activated myofibroblasts to activate adaptive immunity was determined by measuring surface class II MHC expression using flow cytometry. LPS-stimulated FIF produced a distinct proinflammatory cytokine profile consisting of MCP-1, GRO-alpha, IL-6, and IL-8 expression. FIF produced significant IL-8 and IL-6 in response to TLR4 agonist. IIF produced significant levels of IL-8 and IL-6 in the presence of TLR5 and TLR2 agonists. IFN-γ-treated FIF expressed greater HLA-DR levels compared to unstimulated controls and IFN-γ- and LPS-treated IIF. Activated FIF produce a more diverse inflammatory cytokine profile and greater levels of IL-8 and IL-6 in response to TLR4 stimulation compared to IIF. FIF express class II MHC proteins associated with activation of the adaptive immune response. These data suggest that FIF may contribute to bacterial-associated gut inflammation in the immature intestine. PMID:26101946

  14. The innate immune system and transplantation.

    PubMed

    Farrar, Conrad A; Kupiec-Weglinski, Jerzy W; Sacks, Steven H

    2013-10-01

    The sensitive and broadly reactive character of the innate immune system makes it liable to activation by stress factors other than infection. Thermal and metabolic stresses experienced during the transplantation procedure are sufficient to trigger the innate immune response and also augment adaptive immunity in the presence of foreign antigen on the donor organ. The resulting inflammatory and immune reactions combine to form a potent effector response that can lead to graft rejection. Here we examine the evidence that the complement and toll-like receptor systems are central to these pathways of injury and present a formidable barrier to transplantation. We review extensive information about the effector mechanisms that are mediated by these pathways, and bring together what is known about the damage-associated molecular patterns that initiate this sequence of events. Finally, we refer to two ongoing therapeutic trials that are evaluating the validity of these concepts in man.

  15. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus.

    PubMed

    Beltrán, Luis M; Rubio-Navarro, Alfonso; Amaro-Villalobos, Juan Manuel; Egido, Jesús; García-Puig, Juan; Moreno, Juan Antonio

    2015-01-01

    Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.

  16. NLR proteins: integral members of innate immunity and mediators of inflammatory diseases

    PubMed Central

    Wilmanski, Jeanette M.; Petnicki-Ocwieja, Tanja; Kobayashi, Koichi S.

    2012-01-01

    The innate immune system is the first line of defense against microorganisms and is conserved in both plants and animals. The NLR protein family is a recent addition to the members of innate immunity effector molecules. These proteins are characterized by a central oligomerization domain termed NACHT (or NBD/NOD) and a protein interaction domain, LRRs (Leucine rich repeats) at the C-terminus. It has been shown that NLR proteins are localized to the cytoplasm and recognize microbial products. To date, it is known that Nod1 and Nod2 detect bacterial cell wall components, whereas IPAF and NAIP detect bacterial flagellin and NALP1 has been shown to detect anthrax lethal toxin. NLR proteins comprise a diverse protein family (over 20 in humans), indicating that NLRs have evolved to acquire specificity to various pathogenic microorganisms, thereby controlling host-pathogen interactions. Activation of NLR proteins results in inflammatory responses mediated either by NF-κB, MAPK or Caspase-1 activation, accompanied by subsequent secretion of pro-inflammatory cytokines. Mutations in several members of the NLR protein family have been linked to inflammatory diseases, suggesting these molecules play important roles in maintaining host-pathogen interaction and inflammatory responses. Therefore, understanding NLR signaling is important for the therapeutic intervention of various infectious and inflammatory diseases. PMID:17875812

  17. The Pathogenesis of ACLF: The Inflammatory Response and Immune Function.

    PubMed

    Moreau, Richard

    2016-05-01

    Although systemic inflammation is a hallmark of acute-on-chronic liver failure (ACLF), its role in the development of this syndrome is poorly understood. Here the author first summarizes the general principles of the inflammatory response. Inflammation can be triggered by exogenous or endogenous inducers. Important exogenous inducers include bacterial products such as pathogen-associated molecular patterns (PAMPs) and virulence factors. Pathogen-associated molecular patterns elicit inflammation through structural feature recognition (using innate pattern-recognition receptors [PRRs]), whereas virulence factors generally trigger inflammation via functional feature recognition. Endogenous inducers are called danger-associated molecular patterns (DAMPs) and include molecules released by necrotic cells and products of extracellular matrix breakdown. Danger-associated molecular patterns use different PRRs. The purpose of the inflammatory response may differ according to the type of stimulus: The aim of infection-induced inflammation is to decrease pathogen burden, whereas the DAMP-induced inflammation aims to promote tissue repair. An excessive inflammatory response can induce collateral tissue damage (a process called immunopathology). However immunopathology may not be the only mechanism of tissue damage; for example, organ failure can develop because of failed disease tolerance. In this review, the author also discusses how general principles of the inflammatory response can help us to understand the development of ACLF in different contexts: bacterial infection, severe alcoholic hepatitis, and cases in which there is no identifiable trigger.

  18. The emerging role of microRNAs in regulating immune and inflammatory responses in the lung.

    PubMed

    Foster, Paul S; Plank, Maximilian; Collison, Adam; Tay, Hock L; Kaiko, Gerard E; Li, Jingjing; Johnston, Sebastian L; Hansbro, Philip M; Kumar, Rakesh K; Yang, Ming; Mattes, Joerg

    2013-05-01

    Chronic inflammatory diseases of the lung are leading causes of morbidity and mortality worldwide. Many of these disorders can be attributed to abnormal immune responses to environmental stimuli and infections. As such, understanding the innate host defense pathways and their regulatory systems will be critical to developing new approaches to treatment. In this regard, there is increasing interest in the role of microRNAs (miRNAs) in the regulation of pulmonary innate host defense responses and the inflammatory sequelae in respiratory disease. In this review, we discuss recent findings that indicate an important role for miRNAs in the regulation in mouse models of various respiratory diseases and in host defense against bacterial and viral infection. We also discuss the potential utility and limitations of targeting these molecules as anti-inflammatory strategies and also as a means to improve pathogen clearance from the lung.

  19. Immune Reconstitution Inflammatory Syndrome Occurring in a Kidney Transplant Patient with Extrapulmonary Tuberculosis

    PubMed Central

    Ledesma, Kandria Jumil; Liu, Jessie

    2017-01-01

    Tuberculosis (TB) occurring in solid organ transplantation (SOT) is associated with significant morbidity and mortality usually due to delays in diagnosis, drug toxicity encountered with antimycobacterial therapy, and drug-drug interactions. TB in SOT patients may mimic other infectious and noninfectious posttransplant complications such as posttransplant lymphoproliferative disorder (PTLD) and systemic cytomegalovirus infection. Immune reconstitution inflammatory syndrome (IRIS) is a host response resulting in paradoxical worsening of an infectious disease which occurs after the employment of effective therapy and reversal of an immunosuppressed state. We describe the development of immune reconstitution inflammatory syndrome (IRIS), a unique complication occurring during the treatment of extrapulmonary tuberculosis occurring after transplant which resulted from decreasing immunosuppression in a patient who received Alemtuzumab induction therapy. Although (IRIS) has been originally described in HIV/AIDS patients receiving highly active antiretroviral therapy (HAART), solid organ transplant recipients with diagnosed or occult TB whose immune system may undergo immune reconstitution during their posttransplant course represent a new high risk group. PMID:28367350

  20. The immune system and aging: a review.

    PubMed

    Castelo-Branco, Camil; Soveral, Iris

    2014-01-01

    Abstract The concept of immunosenescence reflects age-related changes in immune responses, both cellular and serological, affecting the process of generating specific responses to foreign and self-antigens. The decline of the immune system with age is reflected in the increased susceptibility to infectious diseases, poorer response to vaccination, increased prevalence of cancer, autoimmune and other chronic diseases. Both innate and adaptive immune responses are affected by the aging process; however, the adaptive response seems to be more affected by the age-related changes in the immune system. Additionally, aged individuals tend to present a chronic low-grade inflammatory state that has been implicated in the pathogenesis of many age-related diseases (atherosclerosis, Alzheimer's disease, osteoporosis and diabetes). However, some individuals arrive to advanced ages without any major health problems, referred to as healthy aging. The immune system dysfunction seems to be somehow mitigated in this population, probably due to genetic and environmental factors yet to be described. In this review, an attempt is made to summarize the current knowledge on how the immune system is affected by the aging process.

  1. Hypothalamus-Pituitary-Adrenal cell-mediated immunity regulation in the Immune Restoration Inflammatory Syndrome

    PubMed Central

    Khakshooy, Allen; Chiappelli, Francesco

    2016-01-01

    Over one third of the patients sero-positive for the human immunodeficiency virus (HIV) with signs of the acquired immune deficiency syndrome (AIDS), and under treatment with anti-retroviral therapy (ART), develop the immune reconstitution inflammatory syndrome (IRIS). It is not clear what variables are that determine whether a patient with HIV/AIDS will develop ART-related IRIS, but the best evidence base thus far indicates that HIV/AIDS patients with low CD4 cell count, and HIV/AIDS patients whose CD4 count recovery shows a sharp slope, suggesting a particularly fast "immune reconstitution", are at greater risk of developing IRIS. Here, we propose the hypothesis that one important variable that can contribute to low CD4 cell count number and function in ART-treated HIV/AIDS patients is altered hypothalamic-pituitary-adrenal (HPA) cell-mediated immune (CMI) regulation. We discuss HPA-CMI deregulation in IRIS as the new frontier in comparative effectiveness research (CRE) for obtaining and utilizing the best evidence base for treatment of patients with HIV/AIDS in specific clinical settings. We propose that our hypothesis about altered HPA-CMI may extend to the pathologies observed in related viral infection, including Zika PMID:27212842

  2. [The role of the innate immune system in atopic dermatitis].

    PubMed

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  3. Immune-mediated inflammatory reactions and tumors as skin side effects of inflammatory bowel disease therapy.

    PubMed

    Marzano, Angelo V; Borghi, Alessandro; Meroni, Pier Luigi; Crosti, Carlo; Cugno, Massimo

    2014-05-01

    All drugs currently used for treating patients with inflammatory bowel disease (IBD - including Crohn's disease and ulcerative colitis) have the potential to induce skin lesions ranging from mild eruptions to more serious and widespread clinical presentations. The number of cutaneous adverse reactions due to IBD therapies is progressively increasing and the most frequently involved drugs are thiopurines and biologics like tumor necrosis factor (TNF)-α antagonists. The main drug-induced cutaneous manifestations are non-melanoma skin cancer (NMSC), notably basal cell and squamous cell carcinomas, and viral skin infections for thiopurines and psoriasiform, eczematoid and lichenoid eruptions as well as skin infections and cutaneous lupus erythematosus for biologics. Cutaneous manifestations should be promptly recognized and correctly diagnosed in order to quickly establish an adequate therapy. The main treatment for NMSC is surgical excision whereas the management of immune-mediated inflammatory skin reactions varies from topical therapy for mild presentations to the shift to another drug alone or in combination with corticosteroids for extensive eruptions.

  4. Ginseng, the 'Immunity Boost': The Effects of Panax ginseng on Immune System

    PubMed Central

    Kang, Soowon; Min, Hyeyoung

    2012-01-01

    Thousands of literatures have described the diverse role of ginseng in physiological processes such as cancer, neurodegenerative disorders, insulin resistance, and hypertension. In particular, ginseng has been extensively reported to maintain homeostasis of the immune system and to enhance resistance to illness or microbial attacks through the regulation of immune system. Immune system comprises of different types of cells fulfilling their own specialized functions, and each type of the immune cells is differentially influenced and may be simultaneously controlled by ginseng treatment. This review summarizes the current knowledge on the effects of ginseng on immune system. We discuss how ginseng regulates each type of immune cells including macrophages, natural killer cells, dendritic cells, T cells, and B cells. We also describe how ginseng exhibits beneficial effects on controlling inflammatory diseases and microbial infections. PMID:23717137

  5. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination.

    PubMed

    Mari, Elisabeth R; Moore, Jason N; Zhang, Guang-Xian; Rostami, Abdolmohamad

    2015-08-01

    Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.

  6. Mycobacterium avium complex suppurative parotitis in a patient with human immunodeficiency virus infection presenting with immune reconstitution inflammatory syndrome.

    PubMed

    Babiker, Zahir Osman Eltahir; Beeston, Christine; Purcell, Janet; Desai, Niranjan; Ustianowski, Andrew

    2010-11-01

    Restoration of the immune system following initiation of antiretroviral therapy can result in an adverse phenomenon known as immune reconstitution inflammatory syndrome (IRIS). Herein, we report a case of Mycobacterium avium complex (MAC) suppurative parotitis associated with IRIS in a patient with advanced human immunodeficiency virus disease. To the best of our knowledge, this is the first reported case of MAC parotitis in the setting of IRIS and clinicians should be aware of this condition.

  7. Utility of immune response-derived biomarkers in the differential diagnosis of inflammatory disorders.

    PubMed

    ten Oever, Jaap; Netea, Mihai G; Kullberg, Bart-Jan

    2016-01-01

    Differentiating between inflammatory disorders is difficult, but important for a rational use of antimicrobial agents. Biomarkers reflecting the host immune response may offer an attractive strategy to predict the etiology of an inflammatory process and can thus be of help in decision making. We performed a review of the literature to evaluate the diagnostic value of inflammatory biomarkers in adult patients admitted to the hospital with suspected systemic acute infections. Elevated procalcitonin (PCT) concentrations indicate a bacterial infection in febrile patients with an auto-immune disease, rather than a disease flare. CD64 expression on neutrophils can discriminate between non-infectious systemic inflammation and sepsis, and limited evidence suggests the same for decoy receptor 3. PCT is useful for both diagnosing bacterial infection complicating influenza and guiding antibiotic treatment in lower respiratory tract infections in general. In undifferentiated illnesses, increased CD35 expression on neutrophils distinguishes bacterial from viral infections. Compared to bacterial infections, invasive fungal infections are characterized by low concentrations of PCT. No biomarker predicting a specific infecting agent could be identified.

  8. Dynamics of immune system vulnerabilities

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  9. The immune system and cardiac repair

    PubMed Central

    Frangogiannis, Nikolaos G.

    2008-01-01

    Myocardial infarction is the most common cause of cardiac injury and results in acute loss of a large number of myocardial cells. Because the heart has negligible regenerative capacity, cardiomyocyte death triggers a reparative response that ultimately results in formation of a scar and is associated with dilative remodeling of the ventricle. Cardiac injury activates innate immune mechanisms initiating an inflammatory reaction. Toll Like Receptor-mediated pathways, the complement cascade and reactive oxygen generation induce Nuclear Factor (NF)-κB activation and upregulate chemokine and cytokine synthesis in the infarcted heart. Chemokines stimulate the chemotactic recruitment of inflammatory leukocytes into the infarct, while cytokines promote adhesive interactions between leukocytes and endothelial cells, resulting in transmigration of inflammatory cells into the site of injury. Monocyte subsets play distinct roles in phagocytosis of dead cardiomyocytes and in granulation tissue formation through the release of growth factors. Clearance of dead cells and matrix debris may be essential for resolution of inflammation and transition into the reparative phase. Transforming Growth Factor (TGF)-β plays a crucial role in cardiac repair by suppressing inflammation while promoting myofibroblast phenotypic modulation and extracellular matrix deposition. Myofibroblast proliferation and angiogenesis result in formation of highly vascularized granulation tissue. As the healing infarct matures, fibroblasts become apoptotic and a collagen-based matrix is formed, while many infarct neovessels acquire a muscular coat and uncoated vessels regress. Timely resolution of the inflammatory infiltrate and spatial containment of the inflammatory and reparative response into the infarcted area are essential for optimal infarct healing. Targeting inflammatory pathways following infarction may reduce cardiomyocyte injury and attenuate adverse remodeling. In addition, understanding the

  10. Oxidative and Nitrosative Stress and Immune-Inflammatory Pathways in Patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS)

    PubMed Central

    Morris, Gerwyn; Maes, Michael

    2014-01-01

    Myalgic Encephalomyelitis (ME) / Chronic Fatigue Syndrome (CFS) has been classified as a disease of the central nervous system by the WHO since 1969. Many patients carrying this diagnosis do demonstrate an almost bewildering array of biological abnormalities particularly the presence of oxidative and nitrosative stress (O&NS) and a chronically activated innate immune system. The proposal made herein is that once generated chronically activated O&NS and immune-inflammatory pathways conspire to generate a multitude of self-sustaining and self-amplifying pathological processes which are associated with the onset of ME/CFS. Sources of continuous activation of O&NS and immune-inflammatory pathways in ME/CFS are chronic, intermittent and opportunistic infections, bacterial translocation, autoimmune responses, mitochondrial dysfunctions, activation of the Toll-Like Receptor Radical Cycle, and decreased antioxidant levels. Consequences of chronically activated O&NS and immune-inflammatory pathways in ME/CFS are brain disorders, including neuroinflammation and brain hypometabolism / hypoperfusion, toxic effects of nitric oxide and peroxynitrite, lipid peroxidation and oxidative damage to DNA, secondary autoimmune responses directed against disrupted lipid membrane components and proteins, mitochondrial dysfunctions with a disruption of energy metabolism (e.g. compromised ATP production) and dysfunctional intracellular signaling pathways. The interplay between all of these factors leads to self-amplifying feed forward loops causing a chronic state of activated O&NS, immune-inflammatory and autoimmune pathways which may sustain the disease. PMID:24669210

  11. Nociception and role of immune system in pain.

    PubMed

    Verma, Vivek; Sheikh, Zeeshan; Ahmed, Ahad S

    2015-09-01

    Both pain and inflammation are protective responses. However, these self-limiting conditions (with well-established negative feedback loops) become pathological if left uncontrolled. Both pain and inflammation can interact with each other in a multi-dimensional manner. These interactions are known to create an array of 'difficult to manage' pathologies. This review explains in detail the role of immune system and the related cells in peripheral sensitization and neurogenic inflammation. Various neuro-immune interactions are analyzed at peripheral, sensory and central nervous system levels. Innate immunity plays a critical role in central sensitization and in establishing acute pain as chronic condition. Moreover, inflammatory mediators also exhibit psychological effects, thus contributing towards the emotional elements associated with pain. However, there is also a considerable anti-inflammatory and analgesic role of immune system. This review also attempts to enlist various novel pharmacological approaches that exhibit their actions through modification of neuro-immune interface.

  12. Immunizations in Children with Inflammatory Bowel Disease Treated with Immunosuppressive Therapy

    PubMed Central

    Bousvaros, Athos

    2014-01-01

    The vast majority of patients with inflammatory bowel disease (IBD) will receive immunosuppressive therapy at some point for their disease, whether for the short term (such as a course of corticosteroids) or long term (such as maintenance therapy with immunomodulators or biologics). The systemic immunosuppression places patients at increased risk for infections. Therefore, it is important that patients are up-to-date with immunizations to minimize vaccine-preventable infections. However, the literature shows that the rate of immunization in patients with IBD is low. Ideally, the vaccination status is checked at diagnosis, and patients are immunized with the vaccines they need. Drawing titers is helpful in cases in which vaccination history is unclear or to confirm that titers are at an adequate level in cases in which patients have been vaccinated. Current guidelines recommend that patients with IBD follow the same routine immunization schedule as healthy children, but patients should not be administered live vaccines if they are receiving immunosuppressive therapy. Therefore, it is ideal to administer any necessary vaccinations as early as possible, prior to starting immunosuppressive therapy. Patients may receive inactivated vaccines regardless of immunosuppressive status. The IBD literature suggests that inactivated vaccines are safe and do not worsen disease activity. In general, patients with IBD mount an immune response to vaccines, but the response may be lower if patients are receiving immunosuppressive therapy, especially tumor necrosis factor inhibitors. PMID:25013388

  13. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  14. Overview of the immune system.

    PubMed

    Medina, Kay L

    2016-01-01

    The immune system is designed to execute rapid, specific, and protective responses against foreign pathogens. To protect against the potentially harmful effects of autoreactive escapees that might arise during the course of the immune response, multiple tolerance checkpoints exist in both the primary and secondary lymphoid organs. Regardless, autoantibodies targeting neural antigens exist in multiple neurologic diseases. The goal of this introductory chapter is to provide a foundation of the major principles and components of the immune system as a framework to understanding autoimmunity and autoimmune neurologic disorders. A broad overview of: (1) innate mechanisms of immunity and their contribution in demyelinating diseases; (2) B and T lymphocytes as effector arms of the adaptive immune response and their contribution to the pathophysiology of neurologic diseases; and (3) emerging therapeutic modalities for treatment of autoimmune disease is provided.

  15. Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain

    PubMed Central

    Xie, Wenrui; Chen, Sisi; Strong, Judith A.; Li, Ai-Ling; Lewkowich, Ian P.

    2016-01-01

    Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a “microsympathectomy” by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal

  16. Trauma equals danger--damage control by the immune system.

    PubMed

    Stoecklein, Veit M; Osuka, Akinori; Lederer, James A

    2012-09-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis.

  17. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    PubMed

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.

  18. Impact of nutrition on immune function and the inflammatory response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The review utilizes data on three micronutrients (vitamin A, zinc and iron), anthropometrically defined undernutrition (stunting, wasting and underweight) and obesity to evaluate the effect on immune function, recovery of immune function in response to nutritional interventions, related health outco...

  19. Individuals with increased inflammatory response to ozone demonstrate muted signaling of immune cell trafficking pathways

    EPA Science Inventory

    Background Exposure to ozone activates innate immune function and causes neutrophilic (PMN) airway inflammation that in some individuals is robustly elevated. The interplay between immunoinflammatory function and genomic signaling in those with heightened inflammatory responsive...

  20. Erythema elevatum diutinum in acquired immune deficiency syndrome: Can it be an immune reconstitution inflammatory syndrome?

    PubMed Central

    Jose, Sheethal K; Marfatia, Yogesh S.

    2016-01-01

    A 47-year-old male with acquired immune deficiency syndrome (AIDS) presented with multiple hyperpigmented papules and nodules on both ankles, dorsum of bilateral feet and soles. It was associated with mild itching and pain. The patient was diagnosed with human immunodeficiency virus (HIV) in 2007. First-line antiretroviral therapy (ART) was started in 2009 to which he responded initially. He was shifted to second-line ART 11 months ago in March 2015 due to treatment failure as suggested by CD4 count of 50 cells/mm3. The present skin lesions started 2 months after the initiation of second-line ART. Differential diagnoses considered were Kaposi's sarcoma and immune reconstitution inflammatory syndrome (IRIS) related infections, but biopsy was suggestive of erythema elevatum diutinum (EED). Patient was started on oral dapsone 100 mg/day and increased to 200 mg/day to which he is responding gradually. In the present case, appearance of the lesions after initiation of second-line ART coupled with increase in CD4 count and decrease of viral load below undetectable level suggest that EED could be an IRIS. PMID:27190420

  1. Portable Immune-Assessment System

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Stowe, Raymond P.; Mishra, Saroj K.

    1995-01-01

    Portable immune-assessment system developed for use in rapidly identifying infections or contaminated environment. System combines few specific fluorescent reagents for identifying immune-cell dysfunction, toxic substances, buildup of microbial antigens or microbial growth, and potential identification of pathogenic microorganisms using fluorescent microplate reader linked to laptop computer. By using few specific dyes for cell metabolism, DNA/RNA conjugation, specific enzyme activity, or cell constituents, one makes immediate, onsite determination of person's health or of contamination of environment.

  2. MODEL OF COLONIC INFLAMMATION: IMMUNE MODULATORY MECHANISMS IN INFLAMMATORY BOWEL DISEASE

    PubMed Central

    Wendelsdorf, Katherine; Bassaganya-Riera, Josep; Hontecillas, Raquel; Eubank, Stephen

    2010-01-01

    Inflammatory Bowel Disease (IBD) is an immunoinflammatory illness of the gut initiated by an immune response to bacteria in the microflora. The resulting immunopathogenesis leads to lesions in epithelial lining of the colon through which bacteria may infiltrate the tissue causing recurring bouts of diarrhea, rectal bleeding, and mal-nutrition. In healthy individuals such immunopathogenesis is avoided by the presence of regulatory cells that inhibit the inflammatory pathway. Highly relevant to the search for treatment strategies is the identification of components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immunopathogenesis to proceed. In vitro techniques have identified cellular interactions involved in inflammation-regulation crosstalk. However, tracing immunological mechanisms discovered at the cellular level confidently back to an in vivo context of multiple, simultaneous interactions has met limited success. To explore the impact of specific interactions, we have constructed a system of 29 ordinary differential equations representing different phenotypes of T-cells, macrophages, dendritic cells, and epithelial cells as they move and interact with bacteria in the lumen, lamina propria, and lymphoid tissue of the colon. Simulations revealed the positive inflammatory feedback loop formed by inflammatory M1 macrophage activation of T-cells as a driving force underlying the immunopathology of IBD. Furthermore, strategies that remove M1 from the site of infection, by either i) increasing its potential to switch to a regulatory M2 phenotype or ii) increasing the rate of reversion (for M1 and M2 alike) to a resting state, cease immunopathogenesis even as bacteria are eliminated by other inflammatory cells. Based on these results, we identify macrophages and their mechanisms of plasticity as key targets for mucosal inflammation intervention strategies. In addition, we propose that the primary mechanism behind the association of

  3. Cystatins in Immune System

    PubMed Central

    Magister, Špela; Kos, Janko

    2013-01-01

    Cystatins comprise a large superfamily of related proteins with diverse biological activities. They were initially characterised as inhibitors of lysosomal cysteine proteases, however, in recent years some alternative functions for cystatins have been proposed. Cystatins possessing inhibitory function are members of three families, family I (stefins), family II (cystatins) and family III (kininogens). Stefin A is often linked to neoplastic changes in epithelium while another family I cystatin, stefin B is supposed to have a specific role in neuredegenerative diseases. Cystatin C, a typical type II cystatin, is expressed in a variety of human tissues and cells. On the other hand, expression of other type II cystatins is more specific. Cystatin F is an endo/lysosome targeted protease inhibitor, selectively expressed in immune cells, suggesting its role in processes related to immune response. Our recent work points on its role in regulation of dendritic cell maturation and in natural killer cells functional inactivation that may enhance tumor survival. Cystatin E/M expression is mainly restricted to the epithelia of the skin which emphasizes its prominent role in cutaneous biology. Here, we review the current knowledge on type I (stefins A and B) and type II cystatins (cystatins C, F and E/M) in pathologies, with particular emphasis on their suppressive vs. promotional function in the tumorigenesis and metastasis. We proposed that an imbalance between cathepsins and cystatins may attenuate immune cell functions and facilitate tumor cell invasion. PMID:23386904

  4. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    PubMed

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  5. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  6. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  7. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  8. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Fusetani, Nobuhiro

    2011-03-01

    The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.

  9. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  10. Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-07-16

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998-2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009-2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories.

  11. Effects of Intravenous Injection of Porphyromonas gingivalis on Rabbit Inflammatory Immune Response and Atherosclerosis

    PubMed Central

    Lin, Gengbing; Chen, Shuai; Lei, Lang; You, Xiaoqing; Huang, Min; Luo, Lan; Li, Yanfen; Zhao, Xin; Yan, Fuhua

    2015-01-01

    The effects of intravenous injection of Porphyromonas gingivalis (Pg) on rabbit inflammatory immune response and atherosclerosis were evaluated by establishing a microamount Pg bacteremia model combined with high-fat diet. Twenty-four New Zealand rabbits were randomly divided into Groups A-D (n = 6). After 14 weeks, levels of inflammatory factors (C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1)) in peripheral blood were detected by ELISA. The aorta was subjected to HE staining. Local aortic expressions of toll-like receptor-2 (TLR-2), TLR-4, TNF-α, CRP, IL-6, matrix metallopeptidase-9, and MCP-1 were detected by real-time PCR, and those of nuclear factor-κB (NF-κB) p65, phospho-p38 mitogen-activated protein kinase (MAPK), and phospho-c-Jun N-terminal kinase (JNK) proteins were detected by Western blot. Intravenous injection of Pg to the bloodstream alone induced atherosclerotic changes and significantly increased systemic and local aortic expressions of inflammatory factors, NF-κB p65, phospho-p38-MAPK, and JNK, especially in Group D. Injection of microamount Pg induced inflammatory immune response and accelerated atherosclerosis, in which the NF-κB p65, p38-MAPK, and JNK signaling pathways played important roles. Intravenous injection of Pg is not the same as Pg from human periodontitis entering the blood stream. Therefore, our results cannot be extrapolated to human periodontitis. PMID:26063970

  12. Interventions to Improve Adherence in Patients with Immune-Mediated Inflammatory Disorders: A Systematic Review

    PubMed Central

    Depont, Fanny; Berenbaum, Francis; Filippi, Jérome; Le Maitre, Michel; Nataf, Henri; Paul, Carle; Peyrin-Biroulet, Laurent; Thibout, Emmanuel

    2015-01-01

    Background In patients with immune-mediated inflammatory disorders, poor adherence to medication is associated with increased healthcare costs, decreased patient satisfaction, reduced quality of life and unfavorable treatment outcomes. Objective To determine the impact of different interventions on medication adherence in patients with immune-mediated inflammatory disorders. Design Systematic review. Data sources MEDLINE, EMBASE and Cochrane Library. Study eligibility criteria for selecting studies Included studies were clinical trials and observational studies in adult outpatients treated for psoriasis, Crohn’s disease, ulcerative colitis, rheumatoid arthritis, spondyloarthritis, psoriatic arthritis or multiple sclerosis. Study appraisal and synthesis methods Intervention approaches were classified into four categories: educational, behavioral, cognitive behavioral, and multicomponent interventions. The risk of bias/study limitations of each study was assessed using the GRADE system. Results Fifteen studies (14 clinical trials and one observational study) met eligibility criteria and enrolled a total of 1958 patients. Forty percent of the studies (6/15) was conducted in patients with inflammatory bowel disease, half (7/15) in rheumatoid arthritis patients, one in psoriasis patients and one in multiple sclerosis patients. Seven out of 15 interventions were classified as multicomponent, four as educational, two as behavioral and two as cognitive behavioral. Nine studies, of which five were multicomponent interventions, had no serious limitations according to GRADE criteria. Nine out of 15 interventions showed an improvement of adherence: three multicomponent interventions in inflammatory bowel disease; one intervention of each category in rheumatoid arthritis; one multicomponent in psoriasis and one multicomponent in multiple sclerosis. Conclusion The assessment of interventions designed for increasing medication adherence in IMID is rare in the literature and

  13. Immune reconstitution inflammatory syndrome: incidence and implications for mortality

    PubMed Central

    Novak, Richard M.; Richardson, James T.; Buchacz, Kate; Chmiel, Joan S.; Durham, Marcus D.; Palella, Frank J.; Wendrow, Andrea; Wood, Kathy; Young, Benjamin; Brooks, John T.

    2015-01-01

    Objective To describe incidence of immune reconstitution inflammatory syndrome (IRIS) and its association with mortality in a large multisite US HIV-infected cohort applying an objective, comprehensive definition. Design We studied 2 610 patients seen during 1996–2007 who initiated or resumed highly active combination antiretroviral therapy (cART) and, during the next 6 months, demonstrated a decline in plasma HIV-RNA viral load of at least 0.5 log10 copies/ml or an increase of at least 50% in CD4 cell count per microliter. We defined IRIS as the diagnosis of a type B or C condition [as per the Centers for Disease Control and Prevention (CDC) 1993 AIDS case definition] or any new mucocutaneous disorder during this same 6-month period. Methods We assessed the incidence of IRIS and evaluated risk factors for IRIS using conditional logistic regression and for all-cause mortality using proportional hazards models. Results We identified 370 cases of IRIS (in 276 patients). Median and nadir CD4 cell counts at cART initiation were 90 and 43 cells/μl, respectively; median viral load was 2.7 log10 copies/ml. The most common IRIS-defining diagnoses were candidiasis (all forms), cytomegalovirus infection, disseminated Mycobacterium avium intracellulare, Pneumocystis pneumonia, varicella zoster, Kaposi’s sarcoma and non-Hodgkin lymphoma. Only one case of Mycobacterium tuberculosis was observed. IRIS was independently associated with CD4 cell count less than 50 cells/μl vs. at least 200 cells/μl [odds ratio (OR) 5.0] and a viral load of at least 5.0 log10 copies vs. less than 4.0 log10 copies (OR 2.3). IRIS with a type B-defining or type C-defining diagnosis approximately doubled the risk for all-cause mortality. Conclusion In this large US-based HIV-infected cohort, IRIS occurred in 10.6% of patients who responded to effective ART and contributed to increased mortality. PMID:22233655

  14. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    PubMed

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment.

  15. Inflammatory and immune markers associated with physical frailty syndrome: findings from Singapore longitudinal aging studies

    PubMed Central

    Lu, Yanxia; Tan, Crystal Tze Ying; Nyunt, Ma Shwe Zin; Mok, Esther Wing Hei; Camous, Xavier; Kared, Hassen; Fulop, Tamas; Feng, Liang

    2016-01-01

    Chronic systematic inflammation and reduced immune system fitness are considered potential contributing factors to the development of age-related frailty, but the underlying mechanisms are poorly defined. This exploratory study aimed to identify frailty-related inflammatory markers and immunological phenotypes in a cohort of community-dwelling adults aged ≥ 55 years. Frailty was assessed using two models, a Frailty Index and a categorical phenotype, and correlated with levels of circulating immune biomarkers and markers of senescence in immune cell subsets. We identified eight serological biomarkers that were associated with frailty, including sgp130, IL-2Rα, I-309, MCP-1, BCA-1, RANTES, leptin, and IL-6R. Frailty Index was inversely predicted by the frequency of CD3+, CD45RA+, and central memory CD4 cells, and positively predicted by the loss of CD28 expression, especially in CD8+ T cells, while frailty status was predicted by the frequency of terminal effector CD8+ T cells. In γ/δ T cells, frailty was negatively associated with CD27, and positively associated with IFNγ+TNFα- secretion by γ/δ2+ cells and IFNγ-TNFα+ secretion by γ/δ2- cells. Increased numbers of exhausted and CD38+ B cells, as well as CD14+CD16+ inflammatory monocytes, were also identified as frailty-associated phenotypes. This pilot study supports an association between inflammation, cellular immunity, and the process of frailty. These findings have significance for the early identification of frailty using circulating biomarkers prior to clinical manifestations of severe functional decline in the elderly. PMID:27119508

  16. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).

    PubMed

    Korolevskaya, Larisa B; Shmagel, Konstantin V; Shmagel, Nadezhda G; Saidakova, Evgeniya V

    2016-03-01

    Currently, immune activation is proven to be the basis for the HIV infection pathogenesis and a strong predictor of the disease progression. Among the causes of systemic immune activation the virus and its products, related infectious agents, pro-inflammatory cytokines, and regulatory CD4+ T cells' decrease are considered. Recently microbial translocation (bacterial products yield into the bloodstream as a result of the gastrointestinal tract mucosal barrier integrity damage) became the most popular hypothesis. Previously, we have found an association between immune complexes present in the bloodstream of HIV infected patients and the T cell activation. On this basis, we propose a significantly modified hypothesis of immune activation in HIV infection. It is based on the immune complexes' participation in the immunocompetent cells' activation. Immune complexes are continuously formed in the chronic phase of the infection. Together with TLR-ligands (viral antigens, bacterial products coming from the damaged gut) present in the bloodstream they interact with macrophages. As a result macrophages are transformed into the type II activated forms. These macrophages block IL-12 production and start synthesizing IL-10. High level of this cytokine slows down the development of the full-scale Th1-response. The anti-viral reactions are shifted towards the serogenesis. Newly synthesized antibodies' binding to viral antigens leads to continuous formation of the immune complexes capable of interacting with antigen-presenting cells.

  17. [Cardiovascular disease and systemic inflammatory diseases].

    PubMed

    Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego

    2016-01-01

    More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity.

  18. Neutrophils: Cinderella of innate immune system.

    PubMed

    Kumar, V; Sharma, A

    2010-11-01

    Neutrophils are the first line of innate immune defense against infectious diseases. However, since their discovery by Elie Metchnikoff, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during acute infections. Now, extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Along with releasing various antimicrobial molecules, neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophils in the regulation of both innate and adaptive immunity during acute infectious or inflammatory conditions.

  19. The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases

    PubMed Central

    Casas, Rosa; Sacanella, Emilio; Estruch, Ramon

    2016-01-01

    Dietary patterns high in refined starches, sugar, and saturated and trans-fatty acids, poor in natural antioxidants and fiber from fruits, vegetables, and whole grains, and poor in omega-3 fatty acids may cause an activation of the innate immune system, most likely by excessive production of proinflammatory cytokines associated with a reduced production of anti-inflammatory cytokines. The Mediterranean Diet (MedDiet) is a nutritional model inspired by the traditional dietary pattern of some of the countries of the Mediterranean basin. This dietary pattern is characterized by the abundant consumption of olive oil, high consumption of plant foods (fruits, vegetables, pulses, cereals, nuts and seeds); frequent and moderate intake of wine (mainly with meals); moderate consumption of fish, seafood, yogurt, cheese, poultry and eggs; and low consumption of red meat, processed meat products and seeds. Several epidemiological studies have evaluated the effects of a Mediterranean pattern as protective against several diseases associated with chronic low-grade inflammation such as cancer, diabetes, obesity, atherosclerosis, metabolic syndrome and cognition disorders. The adoption of this dietary pattern could counter the effects of several inflammatory markers, decreasing, for example, the secretion of circulating and cellular biomarkers involved in the atherosclerotic process. Thus, the aim of this review was to consider the current evidence about the effectiveness of the MedDiet in these chronic inflammatory diseases due to its antioxidant and anti-inflammatory properties, which may not only act on classical risk factors but also on inflammatory biomarkers such as adhesion molecules, cytokines or molecules related to the stability of atheromatic plaque. PMID:25244229

  20. Relationship between the clinical heterogeneity of neurocysticercosis and the immune-inflammatory profiles.

    PubMed

    Chavarría, Anahí; Fleury, Agnes; García, Esperanza; Márquez, Carlos; Fragoso, Gladis; Sciutto, Edda

    2005-09-01

    Human neurocysticercosis is caused by the establishment of Taenia solium cysticerci in the central nervous system. Neurocysticercosis may be asymptomatic or manifested by non-specific mild to severe neurological symptoms. Host factors may be involved in this heterogeneous clinical picture. An immune-inflammatory profile that underlies neurocysticercosis presentation was determined in 45 cerebral spinal fluid (CSF), from clinical and radiologically characterized neurocysticercosis patients, measuring specific IgG subclasses and cytokines. Severity related with increased cellularity in the CSF which was characterized by increased levels of IgG subclasses, IL6/IL5/IL10, proteins, and eosinophils. Multiple neurocysticercosis showed higher levels of IL5/IL6 than single neurocysticercosis. Women presented increased IL6/IL5/IL10 levels pointing out immunological differences due to gender. Severe symptomatology was found when cysticerci were located intraventricular or in the subarachnoid space of the base, inducing an exacerbated response in the CSF. These results constitute an integrative insight to understand the immune-inflammatory response that underlies symptomatic neurocysticercosis.

  1. Pneumonia - weakened immune system

    MedlinePlus

    ... treatments to remove fluid and mucus from the respiratory system are often needed. Outlook (Prognosis) Factors that may ... immunocompromised host Images Pneumococci organism Lungs The lungs Respiratory system References Donnelly JP, Blijlevens NMA, van der Velden ...

  2. [The inflammatory reflex: the role of the vagus nerve in regulation of immune functions].

    PubMed

    Mravec, B

    2011-01-01

    Experimental studies published in past years have shown an important role of the vagus nerve in regulating immune functions. Afferent pathways of this cranial nerve transmit signals related to tissue damage and immune reactions to the brain stem. After central processing of these signals, activated efferent vagal pathways modulate inflammatory reactions through inhibiting the synthesis and secretion of pro-inflammatory cytokines by immune cells. Therefore, pathways localized in the vagus nerve constitute the afferent and efferent arms of the so-called "inflammatory reflex" that participates in negative feedback regulation of inflammation in peripheral tissues. Activation of efferent pathways of the vagus nerve significantly reduces tissue damage in several models of diseases in experimental animals. Clinical studies also indicate the importance of the vagus nerve in regulating inflammatory reactions in humans. It is suggested that alteration of the inflammatory reflex underlies the etiopathogenesis of diseases characterized by exaggerated production of pro-inflammatory mediators. Therefore, research into the inflammatory reflex may create the basis for developing new approaches in the treatment of diseases with inflammatory components.

  3. Adaptation in the innate immune system and heterologous innate immunity.

    PubMed

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  4. Control of adaptive immunity by the innate immune system

    PubMed Central

    Iwasaki, Akiko; Medzhitov, Ruslan

    2015-01-01

    Microbial infections are recognized by the innate immune system both to elicit immediate defense and to generate long-lasting adaptive immunity. To detect and respond to vastly different groups of pathogens, the innate immune system uses several recognition systems that rely on sensing common structural and functional features associated with different classes of microorganisms. These recognition systems determine microbial location, viability, replication and pathogenicity. Detection of these features by recognition pathways of the innate immune system is translated into different classes of effector responses though specialized populations of dendritic cells. Multiple mechanisms for the induction of immune responses are variations on a common design principle wherein the cells that sense infections produce one set of cytokines to induce lymphocytes to produce another set of cytokines, which in turn activate effector responses. Here we discuss these emerging principles of innate control of adaptive immunity. PMID:25789684

  5. B cells as under-appreciated mediators of non-auto-immune inflammatory disease.

    PubMed

    Nikolajczyk, Barbara S

    2010-06-01

    B lymphocytes play roles in many auto-immune diseases characterized by unresolved inflammation, and B cell ablation is proving to be a relatively safe, effective treatment for such diseases. B cells function, in part, as important sources of regulatory cytokines in auto-immune disease, but B cell cytokines also play roles in other non-auto-immune inflammatory diseases. B cell ablation may therefore benefit inflammatory disease patients in addition to its demonstrated efficacy in auto-immune disease. Current ablation drugs clear both pro- and anti-inflammatory B cell subsets, which may unexpectedly exacerbate some pathologies. This possibility argues that a more thorough understanding of B cell function in human inflammatory disease is required to safely harness the clinical promise of B cell ablation. Type 2 diabetes (T2D) and periodontal disease (PD) are two inflammatory diseases characterized by little autoimmunity. These diseases are linked by coincident presentation and alterations in toll-like receptor (TLR)-dependent B cell cytokine production, which may identify B cell ablation as a new therapy for co-affected individuals. Further analysis of the role B cells and B cell cytokines play in T2D, PD and other inflammatory diseases is required to justify testing B cell depletion therapies on a broader range of patients.

  6. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication.

    PubMed

    Rummel, Christoph

    2016-05-01

    Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated.

  7. Arginase: an emerging key player in the mammalian immune system

    PubMed Central

    Munder, Markus

    2009-01-01

    The enzyme arginase metabolizes L-arginine to L-ornithine and urea. Besides its fundamental role in the hepatic urea cycle, arginase is also expressed the immune system of mice and man. While significant interspecies differences exist regarding expression, subcellular localization and regulation of immune cell arginase, associated pathways of immunopathology are comparable between species. Arginase is induced in murine myeloid cells mainly by Th2 cytokines and inflammatory agents and participates in a variety of inflammatory diseases by down-regulation of nitric oxide synthesis, induction of fibrosis and tissue regeneration. In humans, arginase I is constitutively expressed in polymorphonuclear neutrophils and is liberated during inflammation. Myeloid cell arginase-mediated L-arginine depletion profoundly suppresses T cell immune responses and this has emerged as a fundamental mechanism of inflammation-associated immunosuppression. Pharmacological interference with L-arginine metabolism is a novel promising strategy in the treatment of cancer, autoimmunity or unwanted immune deviation. PMID:19764983

  8. Mass Cytometry of the Human Mucosal Immune System Identifies Tissue- and Disease-Associated Immune Subsets.

    PubMed

    van Unen, Vincent; Li, Na; Molendijk, Ilse; Temurhan, Mine; Höllt, Thomas; van der Meulen-de Jong, Andrea E; Verspaget, Hein W; Mearin, M Luisa; Mulder, Chris J; van Bergen, Jeroen; Lelieveldt, Boudewijn P F; Koning, Frits

    2016-05-17

    Inflammatory intestinal diseases are characterized by abnormal immune responses and affect distinct locations of the gastrointestinal tract. Although the role of several immune subsets in driving intestinal pathology has been studied, a system-wide approach that simultaneously interrogates all major lineages on a single-cell basis is lacking. We used high-dimensional mass cytometry to generate a system-wide view of the human mucosal immune system in health and disease. We distinguished 142 immune subsets and through computational applications found distinct immune subsets in peripheral blood mononuclear cells and intestinal biopsies that distinguished patients from controls. In addition, mucosal lymphoid malignancies were readily detected as well as precursors from which these likely derived. These findings indicate that an integrated high-dimensional analysis of the entire immune system can identify immune subsets associated with the pathogenesis of complex intestinal disorders. This might have implications for diagnostic procedures, immune-monitoring, and treatment of intestinal diseases and mucosal malignancies.

  9. Anti-inflammatory therapies of amyotrophic lateral sclerosis guided by immune pathways

    PubMed Central

    Lam, Larry; Halder, Ramesh C; Montoya, Dennis J; Rubbi, Liudmilla; Rinaldi, Arturo; Sagong, Bien; Weitzman, Sarah; Rubattino, Rachel; Singh, Ram Raj; Pellegrini, Matteo; Fiala, Milan

    2015-01-01

    Sporadic ALS patients display heterogeneous immune pathways in peripheral blood mononuclear cells (PBMCs). We tested nine sALS patients and one unaffected identical twin of an index case by RNA-Seq of PBMCs. The inflammatory patients (n = 3) clustered into a subset with an inflammatory Th1/Th17 signature and the non-inflammatory patients (n = 7) into another subset with a B cell signature. The inflammatory subset was remarkable for granulocyte and agranulocyte diapedesis, hepatic fibrosis, roles of cytokines and metalloproteases. The non-inflammatory subset was highlighted by degradation of vitamin E, serotonin and nucleotides, altered T cell and B cell signaling, agranulocyte diapedesis, and up regulation of B cell genes. Identification of these differentially regulated pathways in sALS patients may guide the choice of anti-inflammatory therapies. PMID:26807342

  10. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  11. [Psychoneuroimmunology--regulation of immunity at the systemic level].

    PubMed

    Boranić, Milivoj; Sabioncello, Ante; Gabrilovac, Jelka

    2008-01-01

    Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subjected to systemic regulation by the vegetative and endocrine systems since immune cells express receptors for neurotransmitters and hormones. Neuroendocrine signals may enhance or suppress the immune reaction, accelerate or slow it, but do not affect specificity. Various stressful factors, including the psychosocial ones, affect immunity. In turn, cytokines generated by the immune system influence hormonal secretion and central nervous system, producing specific behavioral changes (the "sickness behavior") accompanying infectious and inflammatory diseases. That includes somnolence, loss of apetite, depression or anxiety and decrease of cognitive abilities, attention and memory. Local immune systems in skin and mucosa are also subjected to systemic neuroendocrine regulation and possess intrinsic neuroregulatory networks as well. These mechanisms render skin and respiratory and digestive tracts responsive to various forms of stress. Examples are neurodermitis, asthma and ulcerative colitis. In children, the immune and the neuroendocrine systems are still developing, particularly in fetal, neonatal and early infant periods, and exposure to stressful experiences at that time may result in late consequences in the form of deficient immunity or greater risks for allergic or autoimmune reactions. Recognition of the participation of neuroendocrine mechanisms in regulation of immunity helps us understand alterations and disturbances of immune reactions under the influence of stressful factors but so far has not produced reliable therapeutic implications. Psychosocial interventions involving the child and its family may be useful.

  12. Energetics and the immune system

    PubMed Central

    Reiches, Meredith W.; Prentice, Andrew M.; Moore, Sophie E.; Ellison, Peter T.

    2017-01-01

    Abstract Background and objectives: The human immune system is an ever-changing composition of innumerable cells and proteins, continually ready to respond to pathogens or insults. The cost of maintaining this state of immunological readiness is rarely considered. In this paper we aim to discern a cost to non-acute immune function by investigating how low levels of C-reactive protein (CRP) relate to other energetic demands and resources in adolescent Gambian girls. Methodology: Data from a longitudinal study of 66 adolescent girls was used to test hypotheses around investment in immune function. Non-acute (under 2 mg/L) CRP was used as an index of immune function. Predictor variables include linear height velocity, adiposity, leptin, and measures of energy balance. Results: Non-acute log CRP was positively associated with adiposity (β = 0.16, P < 0.001, R2 = 0.17) and levels of the adipokine leptin (β = 1.17, P = 0.006, R2 = 0.09). CRP was also negatively associated with increased investment in growth, as measured by height velocity (β = −0.58, P < 0.001, R2 = 0.13) and lean mass deposition β = −0.42, P = 0.005, R2 = 0.08). Relationships between adiposity and growth explained some, but not all, of this association. We do not find that CRP was related to energy balance. Conclusions and implications: These data support a hypothesis that investment in non-acute immune function is facultative, and sensitive to energetic resources and demands. We also find support for an adaptive association between the immune system and adipose tissue. PMID:28003312

  13. Priming in Systemic Plant Immunity

    SciTech Connect

    Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin; Glazebrook, Jane; Greenberg, Jean T.

    2009-01-01

    Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, is also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.

  14. Induction of mucosal immunity through systemic immunization: Phantom or reality?

    PubMed Central

    Su, Fei; Patel, Girishchandra B.; Hu, Songhua; Chen, Wangxue

    2016-01-01

    ABSTRACT Generation of protective immunity at mucosal surfaces can greatly assist the host defense against pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely explored and appear promising for eliciting protective mucosal immunity in mammals, their application in clinical practice has been limited due to technical and safety related challenges. Most of the currently approved human vaccines are administered via systemic (such as intramuscular and subcutaneous) routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic humoral and cell-mediated immune responses, they are generally perceived as incapable of generating IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes of immunization for the induction of mucosal immunity. PMID:26752023

  15. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics.

    PubMed

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-11-14

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms "probiotics" and "gene expression" combined with "intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and interleukins

  16. Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics

    PubMed Central

    Plaza-Diaz, Julio; Gomez-Llorente, Carolina; Fontana, Luis; Gil, Angel

    2014-01-01

    The potential for the positive manipulation of the gut microbiome through the introduction of beneficial microbes, as also known as probiotics, is currently an active area of investigation. The FAO/WHO define probiotics as live microorganisms that confer a health benefit to the host when administered in adequate amounts. However, dead bacteria and bacterial molecular components may also exhibit probiotic properties. The results of clinical studies have demonstrated the clinical potential of probiotics in many pathologies, such as allergic diseases, diarrhea, inflammatory bowel disease and viral infection. Several mechanisms have been proposed to explain the beneficial effects of probiotics, most of which involve gene expression regulation in specific tissues, particularly the intestine and liver. Therefore, the modulation of gene expression mediated by probiotics is an important issue that warrants further investigation. In the present paper, we performed a systematic review of the probiotic-mediated modulation of gene expression that is associated with the immune system and inflammation. Between January 1990 to February 2014, PubMed was searched for articles that were published in English using the MeSH terms “probiotics" and "gene expression" combined with “intestines", "liver", "enterocytes", "antigen-presenting cells", "dendritic cells", "immune system", and "inflammation". Two hundred and five original articles matching these criteria were initially selected, although only those articles that included specific gene expression results (77) were later considered for this review and separated into three major topics: the regulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver. Particular strains of Bifidobacteria, Lactobacilli, Escherichia coli, Propionibacterium, Bacillus and Saccharomyces influence the gene expression of mucins, Toll-like receptors, caspases, nuclear factor-κB, and

  17. Recognition of Streptococcus pneumoniae by the innate immune system.

    PubMed

    Koppe, Uwe; Suttorp, Norbert; Opitz, Bastian

    2012-04-01

    Streptococcus pneumoniae is both a frequent colonizer of the upper respiratory tract and a leading cause of life-threatening infections such as pneumonia, meningitis and sepsis. The innate immune system is critical for the control of colonization and for defence during invasive disease. Initially, pneumococci are recognized by different sensors of the innate immune system called pattern recognition receptors (PRRs), which control most subsequent host defence pathways. These PRRs include the transmembrane Toll-like receptors (TLRs) as well as the cytosolic NOD-like receptors (NLRs) and DNA sensors. Recognition of S. pneumoniae by members of these PRR families regulates the production of inflammatory mediators that orchestrate the following immune response of infected as well as neighbouring non-infected cells, stimulates the recruitment of immune cells such as neutrophils and macrophages, and shapes the adaptive immunity. This review summarizes the current knowledge of the function of different PRRs in S. pneumoniae infection.

  18. Early development of immune reconstitution inflammatory syndrome related to Pneumocystis pneumonia after antiretroviral therapy.

    PubMed

    Mok, Hoi Ping; Hart, Elizabeth; Venkatesan, Pradhib

    2014-04-01

    Immune reconstitution inflammatory syndrome is a recognized complication after the initiation of combination antiretroviral therapy (cART). We report a patient who developed life-threatening pulmonary immune reconstitution inflammatory syndrome (IRIS) three days after initiation of cART. We reviewed published cases of IRIS after Pneumocystis pneumonia (PCP), in particular the time from initiation of cART to IRIS event. The median duration from the initiation of cART to the onset of IRIS was 15 days in the 33 patients reviewed. This report alerts clinicians to the rapidity of the development of pulmonary IRIS following PCP after the initiation of cART.

  19. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function

    PubMed Central

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function. PMID:28246613

  20. Continuous Dual Resetting of the Immune Repertoire as a Basic Principle of the Immune System Function.

    PubMed

    Balzar, Silvana

    2017-01-01

    Idiopathic chronic inflammatory conditions (ICIC) such as allergy, asthma, chronic obstructive pulmonary disease, and various autoimmune conditions are a worldwide health problem. Understanding the pathogenesis of ICIC is essential for their successful therapy and prevention. However, efforts are hindered by the lack of comprehensive understanding of the human immune system function. In line with those efforts, described here is a concept of stochastic continuous dual resetting (CDR) of the immune repertoire as a basic principle that governs the function of immunity. The CDR functions as a consequence of system's thermodynamically determined intrinsic tendency to acquire new states of inner equilibrium and equilibrium against the environment. Consequently, immune repertoire undergoes continuous dual (two-way) resetting: against the physiologic continuous changes of self and against the continuously changing environment. The CDR-based dynamic concept of immunity describes mechanisms of self-regulation, tolerance, and immunosenescence, and emphasizes the significance of immune system's compartmentalization in the pathogenesis of ICIC. The CDR concept's relative simplicity and concomitantly documented congruency with empirical, clinical, and experimental data suggest it may represent a plausible theoretical framework to better understand the human immune system function.

  1. Immune System as a Sensory System

    PubMed Central

    Dozmorov, Igor M.; Dresser, D.

    2010-01-01

    As suggested by the well-known gestalt concept the immune system can be regarded as an integrated complex system, the functioning of which cannot be fully characterized by the behavior of its constituent elements. Similar approaches to the immune system in particular and sensory systems in general allows one to discern similarities and differences in the process of distinguishing informative patterns in an otherwise random background, thus initiating an appropriate and adequate response. This may lead to a new interpretation of difficulties in the comprehension of some immunological phenomena. PMID:21686066

  2. [Role of cytokines and their blocking in immune-mediated inflammatory diseases].

    PubMed

    Matikainen, Sampsa; Jokiranta, Sakari; Eklund, Kari K

    2016-01-01

    Rheumatoid arthritis, inflammatory bowel diseases and psoriasis are examples of immune-mediated inflammatory diseases. They involve activation of a partly similar cytokine network that has an essential role in the disease pathogenesis. Biological drugs have been developed for the inhibition of single cytokines, and good therapeutic responses have been achieved by using them. For instance, TNF blockers are used in the treatment of several inflammatory diseases. The use of the blockers of certain other cytokines is more limited. Other important target molecules include certain interleukins. New bispecific antibodies enabling inhibition of the action of two distinct cytokines are currently undergoing clinical studies.

  3. Nicotine and serotonin in immune regulation and inflammatory processes: a perspective.

    PubMed

    Cloëz-Tayarani, Isabelle; Changeux, Jean-Pierre

    2007-03-01

    Nicotine and serotonin modulate the innate and adaptive immune responses and the inflammatory states. Several nicotinic cholinergic and serotonergic receptor subtypes have been characterized in B and T lymphocytes, monocytes, macrophages, and dendritic cells. The use of knockout mice has allowed a better characterization of nicotinic receptors and their role in anti-inflammatory processes in these cells. Cytokines play a crucial role in controlling inflammatory reactions. Nicotine and serotonin have been reported to regulate cytokine release. Cholinergic mechanisms also play an important role in inflammation through endogenous acetylcholine. Nicotine mimics this effect by activating the cholinergic anti-inflammatory pathways. New concepts of reciprocal interactions between nicotine and serotonin are emerging. The role of nicotine as an anti-inflammatory agent has been established, whereas that of serotonin remains more controversial.

  4. Effects of Stress and Depression on Inflammatory Immune Parameters in Pregnancy

    PubMed Central

    Christian, Lisa M.

    2014-01-01

    There is a substantial body of literature linking psychological stress to adverse pregnancy outcomes, particularly preterm birth. Comparatively few studies have examined potential biological mechanisms explaining these associations. Attention to inflammatory processes is warranted. The current paper describes emerging studies demonstrating that, as in nonpregnant humans and animals, psychological stress and distress (i.e., depressive symptoms) predict dysregulation of inflammatory processes in human pregnancy. This includes elevations in circulating inflammatory cytokines, exaggerated inflammatory responses to in vivo biological challenges, and more robust inflammatory responses to psychological challenges. Continued research in this area is needed to determine the implications of such stress-induced immune dysregulation for birth outcomes as well as maternal health and fetal development. PMID:24956551

  5. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  6. Cortisol-treated zebrafish embryos develop into pro-inflammatory adults with aberrant immune gene regulation

    PubMed Central

    Hartig, Ellen I.; Zhu, Shusen; King, Benjamin L.

    2016-01-01

    ABSTRACT Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults. Treated larvae had elevated whole-body cortisol and glucocorticoid signaling, and upregulated genes associated with defense response and immune system processes. In adulthood the treated fish maintained elevated basal cortisol levels in the absence of exogenous cortisol, and constitutively mis-expressed genes involved in defense response and its regulation. Adults derived from cortisol-treated embryos displayed defective tailfin regeneration, heightened basal expression of pro-inflammatory genes, and failure to appropriately regulate those genes following injury or immunological challenge. These results support the hypothesis that chronically elevated glucocorticoid signaling early in life directs development of a pro-inflammatory adult phenotype, at the expense of immunoregulation and somatic regenerative capacity. PMID:27444789

  7. The Role of Cell-Mediated Immunity in the Induction of Inflammatory Responses

    PubMed Central

    Cohen, Stanley

    1977-01-01

    Reactions of cell-mediated immunity fall into two broad categories: those that involve direct participation of intact lymphocytes in the effector mechanism of the reaction and those that involve mediation by soluble lymphocyte-derived factors known as lymphokines. The first kind of reaction is essentially limited to lymphocyte-dependent cytotoxicity, although certain aspects of T cell-B cell cooperation may fall into this category as well. The second category appears to comprise the bulk of the so-called cell-mediated immune response and provides a link between this system and the inflammatory system. Various lymphokines have been shown to exert profound influence upon inflammatory cell metabolism, cell surface properties, patterns of cell migration, and the activation of cells for various biologic activities involved in host defense. Although substantial information is now available about various physicochemical as well as biologic properties of lymphokines, purification and characterization data are as yet too incomplete to allow us to ascribe all of these activities to discrete mediator molecules. Current work involving the development of antibody-based techniques for mediator assay may shed light on this issue. Information on the kinds of cells capable of lymphokine production is now available. Contrary to prior expectation, T cells are not unique in their capacity for lymphokine production. Under appropriate circumstances, B cells and even nonlymphoid cells can do so as well. The unique property of lymphocytes in this regard appears to relate to their ability to respond to certain specialized signals such as specific antigen or an appropriate mitogen. Mediator production per se may represent a general biologic phenomenon. Although lymphokines have been defined mainly in terms of in vitro assays, early speculations about their in vivo importance are proving correct. Evidence for the role of lymphokines comes from studies involving detection of lymphokines in

  8. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  9. Balancing Innate Immunity and Inflammatory State via Modulation of Neutrophil Function: A Novel Strategy to Fight Sepsis.

    PubMed

    Fang, Haoshu; Jiang, Wei; Cheng, Jin; Lu, Yan; Liu, Anding; Kan, Lixin; Dahmen, Uta

    2015-01-01

    Sepsis and SIRS (systemic inflammatory response syndrome) belong to a severe disease complex characterized by infection and/or a whole-body inflammatory state. There is a growing body of evidence that neutrophils are actively involved in sepsis and are responsible for both release of cytokines and phagocytosis of pathogens. The neutrophil level is mainly regulated by G-CSF, a cytokine and drug, which is widely used in the septic patient with neutropenia. This review will briefly summarize the role of neutrophils and the therapeutic effect of G-CSF in sepsis. We further suggest that targeting neutrophil function to modulate the balance between innate immunity and inflammatory injury could be a worthwhile therapeutic strategy for sepsis.

  10. Complement System Part II: Role in Immunity

    PubMed Central

    Merle, Nicolas S.; Noe, Remi; Halbwachs-Mecarelli, Lise; Fremeaux-Bacchi, Veronique; Roumenina, Lubka T.

    2015-01-01

    The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target. PMID:26074922

  11. Immune System Toxicity and Immunotoxicity Hazard Identification

    EPA Science Inventory

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  12. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain.

    PubMed

    Shin, Ok Sarah; Song, Gabriella Shinyoung; Kumar, Mukesh; Yanagihara, Richard; Lee, Ho-Wang; Song, Jin-Won

    2014-08-01

    Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.

  13. Immune reconstitution inflammatory syndrome presenting as secondary syphilis with polymorphous erythema and knee arthritis.

    PubMed

    Brochard, J; Khatchatourian, L; Woaye-Hune, P; Biron, C; Lefebvre, M; Denis-Musquer, M; Grange, P; Dupin, N; Raffi, F

    2017-03-08

    Syphilis and HIV are strongly linked to one another and immune reconstitution inflammatory syndrome (IRIS) after antiretroviral therapy (ART) initiation can complicate matters. A 24-years-old homosexual man was hospitalized for fever, cough and headache. HIV infection had been diagnosed 5 years earlier but he discontinued ART for the last 2 years. This article is protected by copyright. All rights reserved.

  14. Heart failure and cardiogenic shock associated with the TB-immune reconstitution inflammatory syndrome.

    PubMed

    Kenyon, Chris; Schrueder, Neshaad; Ntsekhe, Mpiko; Meintjes, Graeme

    2012-04-12

    Heart failure has not been described in the setting of TB-immune reconstitution inflammatory syndrome (IRIS). We describe a case of cardiogenic shock in the setting of TB-IRIS four weeks after commencement of antiretroviral therapy. Possible aetiologies and pathophysiology as well as suggested diagnostic and therapeutic approaches to this problem are discussed.

  15. Impact of Making Textile Handcrafts on Mood Enhancement and Inflammatory Immune Changes

    ERIC Educational Resources Information Center

    Futterman Collier, Ann D.; Wayment, Heidi A.; Birkett, Melissa

    2016-01-01

    The authors hypothesized that a textile art-making activity that was high in arousal, engagement, and positive mood and low in rumination and negative affect would be most effective for mood repair and would buffer inflammatory immune reactions. Forty-seven experienced textile handcrafters were asked to recall an upsetting situation before random…

  16. Immune Evasion, Immunopathology and the Regulation of the Immune System

    PubMed Central

    Sorci, Gabriele; Cornet, Stéphane; Faivre, Bruno

    2013-01-01

    Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response. PMID:25436882

  17. The immune system in human milk and the developing infant.

    PubMed

    Goldman, Armond S

    2007-12-01

    The concept of the immune system in human milk emerged in the 1970s from clinical and laboratory observations made between the late 18th through the mid-20th centuries. The discovery of living leukocytes in human milk in 1970 was the final link to the chain of evidence that culminated in the concept. The concept was later expanded to include not only antimicrobial but also anti-inflammatory and immunoregulatory agents. These agents evolved to compensate for developmental delays in the immune system during infancy. Indeed, that explains the defense by human milk against common infectious diseases in infancy, necrotizing enterocolitis in preterm infants, and immune-mediated disorders such as Crohn's disease in later childhood. These diverse evolutionary outcomes underscore the superiority of human milk for the nutrition of human infants. Finally, other components of the immune system in human milk and their fate and functions in the developing infant may well be discovered in the near future.

  18. Biology of longevity: role of the innate immune system.

    PubMed

    Candore, Giuseppina; Colonna-Romano, Giuseppina; Balistreri, Carmela Rita; Di Carlo, Daniele; Grimaldi, Maria Paola; Listì, Florinda; Nuzzo, Domenico; Vasto, Sonya; Lio, Domenico; Caruso, Calogero

    2006-01-01

    Genetic factors play a relevant role in the attainment of longevity because they are involved in cell maintenance systems, including the immune system. In fact, longevity may be correlated with optimal functioning of clonotypic and natural immunity. The aging of the immune system, known as immunosenescence, is the consequence of the continuous attrition caused by chronic antigenic overload. The antigenic load results in the progressive generation of inflammatory responses involved in age-related diseases. Most of the parameters influencing immunosenescence appear to be under genetic control, and immunosenescence fits with the basic assumptions of evolutionary theories of aging, such as antagonistic pleiotropy. In fact, by neutralizing infectious agents the immune system plays a beneficial role until reproduction and parenting. However, by determining chronic inflammation, it can be detrimental later in life, a period largely unforeseen by evolution. In particular, the data coming from the long-lived male population under study show that genetic polymorphisms responsible for a low inflammatory response might result in an increased chance of long lifespan in an environment with a reduced pathogen burden. Such a modern and healthy environment also permits a lower grade of survivable atherogenic inflammatory response.

  19. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review.

    PubMed

    Mocchegiani, Eugenio; Costarelli, Laura; Giacconi, Robertina; Malavolta, Marco; Basso, Andrea; Piacenza, Francesco; Ostan, Rita; Cevenini, Elisa; Gonos, Efstathios S; Monti, Daniela

    2014-01-01

    Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.

  20. Evolution of innate and adaptive immune systems in jawless vertebrates.

    PubMed

    Kasamatsu, Jun

    2013-01-01

    Because jawless vertebrates are the most primitive vertebrates, they have been studied to gain understanding of the evolutionary processes that gave rise to the innate and adaptive immune systems in vertebrates. Jawless vertebrates have developed lymphocyte-like cells that morphologically resemble the T and B cells of jawed vertebrates, but they express variable lymphocyte receptors (VLRs) instead of the T and B cell receptors that specifically recognize antigens in jawed vertebrates. These VLRs act as antigen receptors, diversity being generated in their antigen-binding sites by assembly of highly diverse leucine-rich repeat modules. Therefore, jawless vertebrates have developed adaptive immune systems based on the VLRs. Although pattern recognition receptors, including Toll-like receptors (TLRs) and Rig-like receptors (RLRs), and their adaptor genes are conserved in jawless vertebrates, some transcription factor and inflammatory cytokine genes in the TLR and RLR pathways are not present. However, like jawed vertebrates, the initiation of adaptive immune responses in jawless vertebrates appears to require prior activation of the innate immune system. These observations imply that the innate immune systems of jawless vertebrates have a unique molecular basis that is distinct from that of jawed vertebrates. Altogether, although the molecular details of the innate and adaptive immune systems differ between jawless and jawed vertebrates, jawless vertebrates have developed versions of these immune systems that are similar to those of jawed vertebrates.

  1. Visual computing model for immune system and medical system.

    PubMed

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  2. The immune system in hypertension.

    PubMed

    Harrison, David G

    2014-01-01

    Hypertension is generally attributed to perturbations of the vasculature, the kidney, and the central nervous system. During the past several years, it has become apparent that cells of the innate and adaptive immune system also contribute to this disease. Macrophages and T cells accumulate in the kidneys and vasculature of humans and experimental animals with hypertension, and likely contribute to end-organ damage. We have shown that mice lacking lymphocytes, such as recombinase-activating gene-deficient (RAG-1(-/-)) mice, have blunted hypertension in response to angiotensin II, increased salt levels, and norepinephrine. Adoptive transfer of T cells restores the blood pressure response to these stimuli. Others have shown that mice with severe combined immunodeficiency have blunted hypertension in response to angiotensin II. Deletion of the RAG gene in Dahl salt-sensitive rats reduces the hypertensive response to salt feeding. The central nervous system seems to orchestrate immune cell activation. We produced lesions of the anteroventral third ventricle and showed that these block T cell activation in response to angiotensin II. Likewise, we showed that genetic manipulation of reactive oxygen species in the subfornical organ modulates both hypertension and T cell activation. Current evidence indicates that production of cytokines including tumor necrosis factor alpha, interleukin 17, and interleukin 6 contribute to hypertension, likely by promoting vasoconstriction, production of reactive oxygen species, and sodium reabsorption in the kidney. We propose a working hypothesis linking the sympathetic nervous system, immune cells, the production of cytokines, and ultimately vascular and renal dysfunction, leading to augmentation of hypertension.

  3. Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases.

    PubMed

    Zhong, Zhenyu; Sanchez-Lopez, Elsa; Karin, Michael

    2016-01-01

    Loss of homeostasis, as a result of pathogen invasion or self imbalance, causes tissue damage and inflammation. In addition to its well-established role in promoting clearance of pathogens or cell corpses, inflammation is also key to drive tissue repair and regeneration. Conserved from flies to humans, a transient, well-balanced inflammatory response is critical for restoration of tissue homeostasis after damage. The absence of such a response can result in failure of tissue repair, leading to the development of devastating immunopathologies and degenerative diseases. Studies in the past decade collectively suggest that a malfunction of NLRP3 inflammasome, a key tissue damage sensor, is a dominant driver of various autoinflammatory and autoimmune diseases, including gout, rheumatoid arthritis, and lupus. It is therefore crucial to understand the biology and regulation of NLRP3 inflammasome and determine its affect in the context of various diseases. Of note, various studies suggest that autophagy, a cellular waste removal and rejuvenation process, serves an important role as a macrophage-intrinsic negative regulator of NLRP3 inflammasome. Here, we review recent advances in understanding how autophagy regulates NLRP3 inflammasome activity and discuss the implications of this regulation on the pathogenesis of autoinflammatory and autoimmune diseases.

  4. Immunological memory within the innate immune system

    PubMed Central

    Sun, Joseph C; Ugolini, Sophie; Vivier, Eric

    2014-01-01

    Immune memory has traditionally been the domain of the adaptive immune system, present only in antigen-specific T and B cells. The purpose of this review is to summarize the evidence for immunological memory in lower organisms (which are not thought to possess adaptive immunity) and within specific cell subsets of the innate immune system. A special focus will be given to recent findings in both mouse and humans for specificity and memory in natural killer (NK) cells, which have resided under the umbrella of innate immunity for decades. The surprising longevity and enhanced responses of previously primed NK cells will be discussed in the context of several immunization settings. PMID:24674969

  5. Non-steroidal anti-inflammatory drugs, tumour immunity and immunotherapy.

    PubMed

    Hussain, Muzammal; Javeed, Aqeel; Ashraf, Muhammad; Al-Zaubai, Nuha; Stewart, Alastair; Mukhtar, Muhammad Mahmood

    2012-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) have received considerable importance in cancer chemoprevention over the last few years. They are now being considered as prospective candidates in cancer immunotherapy because of their striking immune-enhancing impact on various effector elements of anti-tumour immunity on one hand, and to augment the efficacy of different anti-cancer immunotherapeutic strategies on the other. This review specifically discusses the role of NSAIDs in anti-tumour immunity by describing their immunomodulatory effects on different immune cells including tumour-associated macrophages (TAM), dendritic cells (DC), natural killer (NK) cells, T effector cells, and T regulatory cells (Treg). Secondly, the therapeutic perspective of NSAIDs in combination with different anti-cancer immunotherapeutic approaches, in particular the cancer vaccines, tumour-specific monoclonal antibodies, and cytokine-based therapy, has been outlined. At the end, the impact of anti-inflammatories other than NSAIDs on tumour immunity and immunotherapy, and the immunopharmacological potential of selective E-prostanoid (EP) receptor antagonists with respect to cancer immunity have also been discussed briefly.

  6. Genomics and the immune system.

    PubMed

    Pipkin, Matthew E; Monticelli, Silvia

    2008-05-01

    While the hereditary information encoded in the Watson-Crick base pairing of genomes is largely static within a given individual, access to this information is controlled by dynamic mechanisms. The human genome is pervasively transcribed, but the roles played by the majority of the non-protein-coding genome sequences are still largely unknown. In this review we focus on insights to gene transcriptional regulation by placing special emphasis on genome-wide approaches, and on how non-coding RNAs, which derive from global transcription of the genome, in turn control gene expression. We review recent progress in the field with highlights on the immune system.

  7. Significance of Anti-cyclic Citrullinated Peptide Autoantibodies in Immune-mediated Inflammatory Skin Disorders with and without Arthritis

    PubMed Central

    Grover, Chander; Kashyap, Bineeta; Daulatabad, Deepashree; Dhawan, Amit; Kaur, Iqbal R

    2016-01-01

    Background: Anti-cyclic citrullinated peptides (CCPs) are autoantibodies directed against citrullinated peptides. Rheumatoid factor (RF), an antibody against the Fc portion of IgG, is known to form immune complexes and contribute to the etiopathogenesis of various skin disorders. C-reactive protein (CRP), an acute-phase protein, increases following secretion of interleukin-6 from macrophages and T cells. Anti-CCP, RF, and CRP are well-established immune-markers, their diagnostic potential in immune-mediated skin disorders remains less widely studied. Aims and Objectives: To determine the correlation between anti-CCP, RF, and CRP in immune-mediated inflammatory skin diseases. Materials and Methods: About 61 clinically diagnosed cases of various immune-mediated skin diseases (psoriasis [n = 38], connective tissue diseases such as systemic lupus erythematosus and systemic sclerosis [n = 14], and immunobullous disorders including pemphigus vulgaris and pemphigus foliaceus [n = 9]) were included in the study. These patients were subclassified on the basis of presence or absence of arthritis. Arthritis was present in nine cases of psoriasis and seven connective tissue disorder patients. Detection of serum anti-CCP was done using enzyme-linked immunosorbent assay, whereas CRP and RF levels were detected using latex agglutination technique. Results: Of the 61 specimens, 14.75% had elevated serum anti-CCP levels. RF and CRP levels were elevated in 18.03% and 39.34% specimens, respectively. RF was elevated in 13.16% of inflammatory and 42.88% of connective tissue disorders, whereas anti-CCP was raised in 10.53% of inflammatory and 35.71% of connective tissue disorders. CRP positivity was highest in connective tissue disorders (50%), followed by 39.47% in inflammatory and 22.22% in immunobullous conditions. In none of the immunobullous patients, anti-CCP or RF levels were found to be elevated. Association of the presence of arthritis with elevated anti-CCP was found to be

  8. A brief outline of the immune system.

    PubMed

    Tomar, Namrata; De, Rajat K

    2014-01-01

    The various cells and proteins responsible for immunity constitute the immune system, and their orchestrated response to defend foreign/non-self substances (antigen) is known as the immune response. When an antigen attacks the host system, two distinct, yet interrelated, branches of the immune system are active-the nonspecific/innate and specific/adaptive immune response. Both of these systems have certain physiological mechanisms, which enable the host to recognize foreign materials to itself and to neutralize, eliminate, or metabolize them. Innate immunity represents the earliest development of protection against antigens. Adaptive immunity has again two branches-humoral and cell mediated. It should be noted that both innate and adaptive immunities do not work independently. Moreover, most of the immune responses involve the activity and interplay of both the humoral and the cell-mediated immune branches of the immune system. We have described these branches in detail along with the mechanism of antigen recognition. This chapter also describes the disorders of immune system in brief.

  9. Nutritionally mediated programming of the developing immune system.

    PubMed

    Palmer, Amanda C

    2011-09-01

    A growing body of evidence highlights the importance of a mother's nutrition from preconception through lactation in programming the emerging organ systems and homeostatic pathways of her offspring. The developing immune system may be particularly vulnerable. Indeed, examples of nutrition-mediated immune programming can be found in the literature on intra-uterine growth retardation, maternal micronutrient deficiencies, and infant feeding. Current models of immune ontogeny depict a "layered" expansion of increasingly complex defenses, which may be permanently altered by maternal malnutrition. One programming mechanism involves activation of the maternal hypothalamic-pituitary-adrenal axis in response to nutritional stress. Fetal or neonatal exposure to elevated stress hormones is linked in animal studies to permanent changes in neuroendocrine-immune interactions, with diverse manifestations such as an attenuated inflammatory response or reduced resistance to tumor colonization. Maternal malnutrition may also have a direct influence, as evidenced by nutrient-driven epigenetic changes to developing T regulatory cells and subsequent risk of allergy or asthma. A 3rd programming pathway involves placental or breast milk transfer of maternal immune factors with immunomodulatory functions (e.g. cytokines). Maternal malnutrition can directly affect transfer mechanisms or influence the quality or quantity of transferred factors. The public health implications of nutrition-mediated immune programming are of particular importance in the developing world, where prevalent maternal undernutrition is coupled with persistent infectious challenges. However, early alterations to the immune system, resulting from either nutritional deficiencies or excesses, have broad relevance for immune-mediated diseases, such as asthma, and chronic inflammatory conditions like cardiovascular disease.

  10. CNS Remyelination and the Innate Immune System

    PubMed Central

    McMurran, Christopher E.; Jones, Clare A.; Fitzgerald, Denise C.; Franklin, Robin J. M.

    2016-01-01

    A misguided inflammatory response is frequently implicated in myelin damage. Particularly prominent among myelin diseases, multiple sclerosis (MS) is an autoimmune condition, with immune–mediated damage central to its etiology. Nevertheless, a robust inflammatory response is also essential for the efficient regeneration of myelin sheaths after such injury. Here, we discuss the functions of inflammation that promote remyelination, and how these have been experimentally disentangled from the pathological facets of the immune response. We focus on the contributions that resident microglia and monocyte-derived macrophages make to remyelination and compare the roles of these two populations of innate immune cells. Finally, the current literature is framed in the context of developing therapies that manipulate the innate immune response to promote remyelination in clinical myelin disease. PMID:27200350

  11. Associations between periodontitis and systemic inflammatory diseases: response to treatment.

    PubMed

    El-Shinnawi, Una; Soory, Mena

    2013-09-01

    There is a significant prevalence of subjects with periodontitis presenting with other inflammatory conditions such as coronary heart disease, insulin resistance and arthritis. This pattern of disease presentation underscores the importance of inflammatory loading from chronic diseases, in driving their pathogeneses in a multidirectional manner. Pro-inflammatory cytokines and other agents play an important role in this process; for example, a single nucleotide polymorphism of the TNF-α gene is associated with significant periodontal attachment loss in patients with coronary heart disease. Changes in gene expression associated with inflammation and lipid metabolism in response to oral infection with the periodontal pathogen Porphyromonas gingivalis (Pg) have been demonstrated in mouse models, independent of the demonstration of atherosclerotic lesions. Insulin resistance is considered to be a chronic low-grade inflammatory condition, associated with altered glucose tolerance, hypertriglyceridemia, central obesity and coronary heart disease. It is accompanied by elevated levels of IL-1, IL-6 and TNF-α also relevant to the progression of periodontitis. There is evidence that uncontrolled periodontal disease contributes to maintenance of systemic diseases, including rheumatoid arthritis (RA), with increased risk of periodontitis in subjects with RA. The periodontal pathogen Pg is significant in contributing to citrullination of proteins resulting in immune dysregulation and autoimmune responses, seen in RA. However, they are both multifactorial chronic diseases with complex etiopathogeneses that affect their presentation. Consistent but weak associations are seen for surrogate markers of periodontitis such as tooth loss, with multiple systemic conditions. Effective treatment of periodontitis would be important in reducing systemic inflammatory loading from chronic local inflammation and in achieving systemic health. Lack of a consistent cause and effect relationship

  12. GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro

    PubMed Central

    2010-01-01

    - and the PWM-induced expression of IL-10. Conclusion The data suggest that consumption of GanedenBC30TM may introduce both cell wall components and metabolites that modulate inflammatory processes in the gut. Both the cell wall and the supernatant possess strong immune modulating properties in vitro. The anti-inflammatory effects, combined with direct induction of IL-10, are of interest with respect to possible treatment of inflammatory bowel diseases as well as in support of a healthy immune system. PMID:20331905

  13. Overview of the Immune System

    MedlinePlus

    ... in the bone marrow is the precursor to innate immune cells—neutrophils, eosinophils, basophils, mast cells, monocytes, ... common lymphoid progenitor and share features of both innate and adaptive immune cells, as they provide immediate ...

  14. The interplay between the gut microbiota and the immune system.

    PubMed

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  15. Programmed cell death in the plant immune system.

    PubMed

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  16. The Mucosal Immune System and Its Regulation by Autophagy

    PubMed Central

    Kabat, Agnieszka M.; Pott, Johanna; Maloy, Kevin J.

    2016-01-01

    The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders. PMID:27446072

  17. Activation of circulated immune cells and inflammatory immune adherence are involved in the whole process of acute venous thrombosis

    PubMed Central

    Wang, Le-Min; Duan, Qiang-Lin; Yang, Fan; Yi, Xiang-Hua; Zeng, Yu; Tian, Hong-Yan; Lv, Wei; Jin, Yun

    2014-01-01

    Objective: To investigate localization and distribution of integrin subunit β1, β2 and β3 and morphological changes of ligand-recepter binding in thrombi of acute pulmonary embolism (PE) patients and explore activation of circulated immune cells, inflammatory immune adherence and coagulation response in acute venous thrombosis. Methods: Thrombi were collected from patients with acute PE. Immunohistochemistry was done to detect the expression and distribution of integrin β1, β2 and β3 in cells within thrombi, and ligands of integrin subunit β1, β2 and β3 were also determined by immunohistochemistry within the thrombi. Results: 1) Acute venous thrombi were red thrombi composed of skeletons and filamentous mesh containing large amounts of red blood cells and white blood cells; 2) Integrin subunit β1, β2 and β3 were expressed on lymphocytes, neutrophils and platelets; 3) No expression of integrin β1 ligands: Laminin, Fibronectin, Collagen I or Collagen-II on lymphocytes; integrin β2 ligands including ICAM, factor X and iC3b are distributed on neutrophils, and ligand fibrinogen bound to neutrophils; integrin β3 was expressed on platelets which form the skeleton of thrombi and bound to fibrinogen to construct mesh structure; 4) Factor Xa was expressed on the filamentous mesh; 5) Filamentous mesh was fully filled with red blood cell dominant blood cells. Conclusion: Acute venous thrombosis is an activation process of circulated lymphocytes, neutrophils and platelets mainly, and a whole process including integrin subunit β2 and β3 binding with their ligands. Activation of immune cells, inflammatory immune adherence and coagulation response are involved in the acute venous thrombosis. PMID:24753749

  18. Emerging Roles for the Immune System in Traumatic Brain Injury

    PubMed Central

    McKee, Celia A.; Lukens, John R.

    2016-01-01

    Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis. PMID:27994591

  19. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  20. The innate immune function of airway epithelial cells in inflammatory lung disease

    PubMed Central

    Hiemstra, Pieter S.; McCray, Paul B.; Bals, Robert

    2016-01-01

    The airway epithelium is now considered central to the orchestration of pulmonary inflammatory and immune responses, and is also key to tissue remodelling. It acts as a first barrier in the defence against a wide range of inhaled challenges, and is critically involved in the regulation of both innate and adaptive immune responses to these challenges. Recent progress in our understanding of the developmental regulation of this tissue, the differentiation pathways, recognition of pathogens and antimicrobial responses is now exploited to help understand how epithelial cell function and dysfunction contributes to the pathogenesis of a variety of inflammatory lung diseases. In the review, advances in our knowledge of the biology of airway epithelium, as well as its role and (dys)function in asthma, COPD and cystic fibrosis, are discussed. PMID:25700381

  1. DC-SIGN expression on podocytes and its role in inflammatory immune response of lupus nephritis.

    PubMed

    Cai, Minchao; Zhou, Tong; Wang, Xuan; Shang, Minghua; Zhang, Yueyue; Luo, Maocai; Xu, Chundi; Yuan, Weijie

    2016-03-01

    Podocytes, the main target of immune complex, participate actively in the development of glomerular injury as immune cells. Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is an innate immune molecular that has an immune recognition function, and is involved in mediation of cell adhesion and immunoregulation. Here we explored the expression of DC-SIGN on podocytes and its role in immune and inflammatory responses in lupus nephritis (LN). Expression of DC-SIGN and immunoglobulin (Ig)G1 was observed in glomeruli of LN patients. DC-SIGN was co-expressed with nephrin on podocytes. Accompanied by increased proteinuria of LN mice, DC-SIGN and IgG1 expressions were observed in the glomeruli from 20 weeks, and the renal function deteriorated up to 24 weeks. Mice with anti-DC-SIGN antibody showed reduced proteinuria and remission of renal function. After the podocytes were stimulated by serum of LN mice in vitro, the expression of DC-SIGN, major histocompatibility complex (MHC) class II and CD80 was up-regulated, stimulation of T cell proliferation was enhanced and the interferon (IFN)-γ/interleukin (IL)-4 ratio increased. However, anti-DC-SIGN antibody treatment reversed these events. These results suggested that podocytes in LN can exert DC-like function through their expression of DC-SIGN, which may be involved in immune and inflammatory responses of renal tissues. However, blockage of DC-SIGN can inhibit immune functions of podocytes, which may have preventive and therapeutic effects.

  2. Infectious Complications and Immune/Inflammatory Response in Cardiogenic Shock Patients: A Prospective Observational Study

    PubMed Central

    Parenica, Jiri; Jarkovsky, Jiri; Malaska, Jan; Mebazaa, Alexandre; Gottwaldova, Jana; Helanova, Katerina; Litzman, Jiri; Dastych, Milan; Tomandl, Josef; Spinar, Jindrich; Dostalova, Ludmila; Lokaj, Petr; Tomandlova, Marie; Pavkova, Monika Goldergova; Sevcik, Pavel; Legrand, Matthieu

    2017-01-01

    ABSTRACT Introduction: Patients with cardiogenic shock (CS) are at a high risk of developing infectious complications; however, their early detection is difficult, mainly due to a frequently occurring noninfectious inflammatory response, which accompanies an extensive myocardial infarction (MI) or a postcardiac arrest syndrome. The goal of our prospective study was to describe infectious complications in CS and the immune/inflammatory response based on a serial measurement of several blood-based inflammatory biomarkers. Methods: Eighty patients with CS were evaluated and their infections were monitored. Inflammatory markers (C-reactive protein, procalcitonin, pentraxin 3, presepsin) were measured seven times per week. The control groups consisted of 11 patients with ST segment elevation myocardial infarction without CS and without infection, and 22 patients in septic shock. Results: Infection was diagnosed in 46.3% of patients with CS; 16 patients developed an infection within 48 h. Respiratory infection was most common, occurring in 33 out of 37 patients. Infection was a significant or even the main reason of death only in 3.8% of all patients with CS, and we did not find statistically significant difference in 3-month mortality between group of patients with CS with and without infection. There was no statistically significant prolongation of the duration of mechanical ventilation associated with infection. Strong inflammatory response is often in patients with CS due to MI, but we found no significant difference in the course of the inflammatory response expressed by evaluated biomarkers in patients with CS with and without infection. We found a strong relationship between the elevated inflammatory markers (sampled at 12 h) and the 3-month mortality: the area under the curve of receiver operating characteristic ranged between 0.683 and 0.875. Conclusion: The prevalence of infection in patients with CS was 46.3%, and respiratory tract infections were the most

  3. Potential Use of Salivary Markers for Longitudinal Monitoring of Inflammatory Immune Responses to Vaccination

    PubMed Central

    Garssen, Johan; Sandalova, Elena

    2016-01-01

    Vaccination, designed to trigger a protective immune response against infection, is a trigger for mild inflammatory responses. Vaccination studies can address the question of inflammation initiation, levels, and resolution as well as its regulation for respective studied pathogens. Such studies largely based on analyzing the blood components including specific antibodies and cytokines were usually constrained by number of participants and volume of collected blood sample. Hence, blood-based studies may not be able to cover the full dynamic range of inflammation responses induced by vaccination. In this review, the potential of using saliva in addition to blood for studying the kinetics of inflammatory response studies was assessed. Saliva sampling is noninvasive and has a great potential to be used for studies aimed at analysing the magnitude, time course, and variance in immune responses, including inflammation after vaccination. Based on a literature survey of inflammatory biomarkers that can be determined in saliva and an analysis of how these biomarkers could help to understand the mechanisms and dynamics of immune reactivity and inflammation, we propose that the saliva-based approach might have potential to add substantial value to clinical studies, particularly in vulnerable populations such as infants, toddlers, and ill individuals. PMID:27022211

  4. Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs

    PubMed Central

    Ramos, Irene; Fernandez-Sesma, Ana

    2015-01-01

    Infection by influenza A viruses (IAV) is frequently characterized by robust inflammation that is usually more pronounced in the case of avian influenza. It is becoming clearer that the morbidity and pathogenesis caused by IAV are consequences of this inflammatory response, with several components of the innate immune system acting as the main players. It has been postulated that using a therapeutic approach to limit the innate immune response in combination with antiviral drugs has the potential to diminish symptoms and tissue damage caused by IAV infection. Indeed, some anti-inflammatory agents have been shown to be effective in animal models in reducing IAV pathology as a proof of principle. The main challenge in developing such therapies is to selectively modulate signaling pathways that contribute to lung injury while maintaining the ability of the host cells to mount an antiviral response to control virus replication. However, the dissection of those pathways is very complex given the numerous components regulated by the same factors (i.e., NF kappa B transcription factors) and the large number of players involved in this regulation, some of which may be undescribed or unknown. This article provides a comprehensive review of the current knowledge regarding the innate immune responses associated with tissue damage by IAV infection, the understanding of which is essential for the development of effective immunomodulatory drugs. Furthermore, we summarize the recent advances on the development and evaluation of such drugs as well as the lessons learned from those studies. PMID:26257731

  5. Systems vaccinology: Probing humanity’s diverse immune systems with vaccines

    PubMed Central

    Pulendran, Bali

    2014-01-01

    Homo sapiens are genetically diverse, but dramatic demographic and socioeconomic changes during the past century have created further diversification with respect to age, nutritional status, and the incidence of associated chronic inflammatory disorders and chronic infections. These shifting demographics pose new challenges for vaccination, as emerging evidence suggests that age, the metabolic state, and chronic infections can exert major influences on the immune system. Thus, a key public health challenge is learning how to reprogram suboptimal immune systems to induce effective vaccine immunity. Recent advances have applied systems biological analysis to define molecular signatures induced early after vaccination that correlate with and predict the later adaptive immune responses in humans. Such “systems vaccinology” approaches offer an integrated picture of the molecular networks driving vaccine immunity, and are beginning to yield novel insights about the immune system. Here we discuss the promise of systems vaccinology in probing humanity’s diverse immune systems, and in delineating the impact of genes, the environment, and the microbiome on protective immunity induced by vaccination. Such insights will be critical in reengineering suboptimal immune systems in immunocompromised populations. PMID:25136102

  6. Rhodoccocus Equi Pneumonia and Paradoxical Immune Reconstitution Inflammatory Syndrome in a Patient with Acquired Immune Deficiency Syndrome (AIDS)

    PubMed Central

    Zijoo, Ritika; Dirweesh, Ahmed; Karabulut, Nigahus

    2017-01-01

    Patient: Male, 47 Final Diagnosis: Rhodococcus equi pneumonia • paradoxical immune reconstitution inflammatory syndrome Symptoms: Cough • fever • shorthness of breath Medication: — Clinical Procedure: — Specialty: Infectious Diseases Objective: Rare co-existance of disease or pathology Background: Pulmonary infections are a major cause of mortality and morbidity in patients infected with human immunodeficiency virus (HIV) and can progress rapidly to respiratory failure and death without appropriate therapy. Herein, we present a rare case of an advanced HIV infection and Rhodoccocus equi (R. equi) pneumonia in a young male who had severe paradoxical immune reconstitution inflammatory syndrome (IRIS). Case Report: A 47-year-old nonsmoking Hispanic man with advanced HIV infection presented with severe acute necrotizing pneumonia secondary to R. equi. Although his initial response to antimicrobial therapy was optimal, he became symptomatic again in spite of continuation of antibiotics as he developed severe paradoxical IRIS 3 weeks after starting a new highly active anti-retroviral therapy (HAART). Conclusions: The diagnosis of IRIS remains challenging because of the wide variations in the clinical presentation and etiologies. In spite of its rarity as an opportunistic pathogen, we recommend that R. equi, an intracellular pathogen, be included in the differential list of pathogens associated with IRIS. PMID:28100903

  7. Avian biological clock - Immune system relationship.

    PubMed

    Markowska, Magdalena; Majewski, Paweł M; Skwarło-Sońta, Krystyna

    2017-01-01

    Biological rhythms in birds are driven by the master clock, which includes the suprachiasmatic nucleus, the pineal gland and the retina. Light/dark cycles are the cues that synchronize the rhythmic changes in physiological processes, including immunity. This review summarizes our investigations on the bidirectional relationships between the chicken pineal gland and the immune system. We demonstrated that, in the chicken, the main pineal hormone, melatonin, regulates innate immunity, maintains the rhythmicity of immune reactions and is involved in the seasonal changes in immunity. Using thioglycollate-induced peritonitis as a model, we showed that the activated immune system regulates the pineal gland by inhibition of melatonin production at the level of the key enzyme in its biosynthetic pathway, arylalkylamine-N-acetyltransferase (AANAT). Interleukin 6 and interleukin 18 seem to be the immune mediators influencing the pineal gland, directly inhibiting Aanat gene transcription and modulating expression of the clock genes Bmal1 and Per3, which in turn regulate Aanat.

  8. Unmasking histoplasmosis immune reconstitution inflammatory syndrome in a patient recently started on antiretroviral therapy

    PubMed Central

    Nabeta, Henry W; Okia, Richard; Rhein, Joshua; Lukande, Robert

    2016-01-01

    Histoplasmosis is the most common endemic mycoses among HIV-infected people. Patients with suppressed cell immunity mainly due to HIV are at increased risk of disseminated disease. Dermatological manifestations of immune reconstitution inflammatory syndrome (IRIS) and cutaneous manifestations of histoplasmosis similar to an IRIS event have been previously described. We report the case of a 43-year-old male who presented with cutaneous disseminated histoplasmosis due to Histoplasma capsulatum var. capsulatum 4 months after the onset of the antiretroviral therapy and some improvement in the immune reconstitution. After 2 weeks of amphotericin B and itraconazole therapy, the scheduled treatment involved fluconazole maintenance therapy, which resulted in an improvement of his skin lesions. PMID:28210571

  9. The Microbiome, Systemic Immune Function, and Allotransplantation.

    PubMed

    Nellore, Anoma; Fishman, Jay A

    2016-01-01

    Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future.

  10. The Microbiome, Systemic Immune Function, and Allotransplantation

    PubMed Central

    Nellore, Anoma

    2015-01-01

    SUMMARY Diverse effects of the microbiome on solid organ transplantation are beginning to be recognized. In allograft recipients, microbial networks are disrupted by immunosuppression, nosocomial and community-based infectious exposures, antimicrobial therapies, surgery, and immune processes. Shifting microbial patterns, including acute infectious exposures, have dynamic and reciprocal interactions with local and systemic immune systems. Both individual microbial species and microbial networks have central roles in the induction and control of innate and adaptive immune responses, in graft rejection, and in ischemia-reperfusion injury. Understanding the diverse interactions between the microbiome and the immune system of allograft recipients may facilitate clinical management in the future. PMID:26656674

  11. Innate immune system and tissue regeneration in planarians: an area ripe for exploration.

    PubMed

    Peiris, T Harshani; Hoyer, Katrina K; Oviedo, Néstor J

    2014-08-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism.

  12. Innate immune system and tissue regeneration in Planarians: An area ripe for exploration

    PubMed Central

    Peiris, T. Harshani; Hoyer, Katrina K.; Oviedo, Néstor J.

    2014-01-01

    The immune system has been implicated as an important modulator of tissue regeneration. However, the mechanisms driving injury-induced immune response and tissue repair remain poorly understood. For over 200 years, planarians have been a classical model for studies on tissue regeneration, but the planarian immune system and its potential role in repair is largely unknown. We found through comparative genomic analysis and data mining that planarians contain many potential homologs of the innate immune system that are activated during injury and repair of adult tissues. These findings support the notion that the relationship between adult tissue repair and the immune system is an ancient feature of basal Bilateria. Further analysis of the planarian immune system during regeneration could potentially add to our understanding of how the innate immune system and inflammatory responses interplay with regenerative signals to induce scar-less tissue repair in the context of the adult organism. PMID:25082737

  13. Conceptual Spaces of the Immune System.

    PubMed

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.

  14. Conceptual Spaces of the Immune System

    PubMed Central

    Fierz, Walter

    2016-01-01

    The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors’ geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors’ conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy. PMID:28018339

  15. Clinical value of detection of immune index and inflammatory reaction changes in patients with autoimmune disease.

    PubMed

    Zhang, X J; Zhou, H Y; Li, Y

    2016-09-23

    Previous studies have shown a close correlation between the generation of B cell autoantibodies and imbalances in T lymphocyte subpopulations and the occurrence of disease. In this study, we have analyzed the effects of abnormal expression of CD4+CD25+-regulatory T cells, T lymphocyte subpopulations, immunoglobulins, complement factors, inflammatory factors, and adhesion molecules in the peripheral blood on the occurrence and development of autoimmune disease. Eighty patients with autoimmune disease were randomly (equally) divided into active-stage and stable-stage disease groups (according to pre-defined criteria). Fifty healthy people were recruited to the control group. The above-mentioned indices were detected by flow cytometry, immunity transmission turbidity, and enzyme-linked immunosorbent assay. We observed an obvious decrease in the CD4+CD25+- regulatory T cell, CD4+ cell, CD4+/CD8+ cell, NK cell, C3, and C4 expression in all three groups; however, this decrease was statistically significant in the active-stage group (P < 0.05). Alternately, we observed a significant increase in the expression of CD8+ cells, immunoglobulin (Ig) A, IgG, IgM, tumor necrosis factor-α, interleukin (IL)-10, IL-17, interferon-g, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expression in the active-stage group (P < 0.05). Therefore, inflammatory reactions and immune dysfunction occurs during the active-stage of autoimmune disease, and detection of the immune indices and inflammatory and adhesion factors could help evaluate the immune stage in these patients, providing an experimental basis for the determination of disease progression and clinical treatment.

  16. Adaptation of the inflammatory immune response across pregnancy and postpartum in Black and White women.

    PubMed

    Gillespie, Shannon L; Porter, Kyle; Christian, Lisa M

    2016-04-01

    Pregnancy is a period of considerable physiological adaption in neuroendocrine, cardiovascular, as well as immune function. Understanding of typical changes in inflammatory immune responses during healthy pregnancy is incomplete. In addition, despite considerable racial difference in adverse pregnancy outcomes, data are lacking on potential racial differences in such adaptation. This repeated measures prospective cohort study included 37 Black and 39 White women who provided blood samples during early, mid-, and late pregnancy and 8-10 weeks postpartum. Peripheral blood mononuclear cells were incubated with lipopolysaccharide (LPS) for 24h and supernatants assayed by electrochemiluminescence to quantify interleukin(IL)-6, tumor necrosis factor(TNF)-α, IL-1β, and IL-8 production. While no changes were observed in IL-8 production over time, significant increases in IL-6, TNF-α, and IL-1β production were observed from early to late pregnancy, with subsequent declines approaching early pregnancy values at postpartum (ps<0.05). Overall, inflammatory response patterns were highly similar among Black versus White women. However, Black women had greater TNF-α production during mid-pregnancy (p=0.002) and marginally lower IL-1β production at postpartum (p=0.054). These data show a clear trajectory of change in the inflammatory immune response across pregnancy and postpartum. In this cohort of generally healthy women, Black and White women exhibited minimal differences in LPS-stimulated cytokine production across the perinatal period. Future prospective studies in Black and White women with healthy versus adverse outcomes (e.g., preeclampsia, preterm birth) would inform our understanding of the potential role of immune dysregulation in pregnant women and in relation to racial disparities in perinatal health.

  17. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  18. [Immune System Reaction against Environmental Pollutants].

    PubMed

    Tanabe, Tsuyoshi; Yamaguchi, Natsu; Okuda, Masayuki; Ishimaru, Yasutaka; Takahashi, Hidekazu

    2015-01-01

    Environmental pollutants (such as diesel exhaust particles and silica) cause disorders ranging from bronchial asthma to malignant tumors. In recent years, it has been reported that some of the signaling pathways in which environmental contaminants act in vivo are associated with innate immunity. Innate immunity recognizes ligands and induces inflammation. Those ligands are pathogen-associated molecular patterns (PAMPs: e.g., lipopolysaccharide) and danger-associated molecular patterns (DAMPs: e.g., cholesterol crystallization or uric acid crystal). Activation of innate immunity stimulates the acquired immunity system. Therefore, innate immunity regulates the strength of the general immune system. Furthermore, crystal silica, which is an environmental pollutant, activates innate immunity as a ligand. Innate immunity involves the membrane-bound Toll-like receptors (TLR) and cytoplasm-localized nucleotide-binding oligomerization domain (NOD)-like receptors (NLR). We reported the innate immunity-system-related diseases such as Crohn's disease, Blau syndrome, myelogenous leukemia, and sarcoidosis. An inflammasome complex containing NLR has attracted attention owing to its correlation with the onset of several diseases. It is reported that the inflammasome activation is related to the development of lifestyle-related diseases such as myocardial infarction and fatty liver. It is also reported that the mechanism by which crystal silica and asbestos cause inflammation involves the inflammasome activation. Analyzing the genes of innate immunity contributes to the clarification of the mechanism of disease onset caused by environmental pollutants.

  19. Effects of Delayed Enteral Nutrition on Inflammatory Responses and Immune Function Competence in Critically Ill Patients with Prolonged Fasting.

    PubMed

    Xi, Fengchan; Li, Ning; Geng, Yanxia; Gao, Tao; Zhang, Juanjuan; Jun, Tanshan; Lin, Zhiliang; Li, Weiqin; Zhu, Weiming; Yu, Wenkui; Li, Jieshou

    2014-05-01

    Although different studies suggest that early enteral nutrition (EEN) has benefits in reducing infectious complications, there is no data that addresses whether delayed enteral nutrition (EN) is detrimental and if it may have effects on inflammatory responses and immune function. Forty-five critically ill patients with long fasting were randomly allocated in two groups according to the type of nutritional support. The first group included patients assuming a standard enteral nutrition (EN, n = 22) and the second group assuming a parenteral nutrition (PN, n = 23). The daily nutritional amount was 25 kcal (105 kJ)/kg for all patients. The inflammatory markers white blood cells (WBC), C-reactive protein (CRP), TNF-α, IL-1-β, IL-6, IL-4, IL- 10 and the immune T-lymphocyte sub-populations CD3+, CD4+, CD8+, and HLA-DR+ were evaluated at day 1, and after 2, 3 and 7 days. IL-4, IL-10, CD3+, CD4+, CD8+ and the CD4+/CD8+ ratio were not statistically different between the two groups. WBC and TNF-α in EN patients were higher than those in PN after 3 and 7 days (P < 0.05). CRP and IL-6 levels were higher in EN patients than those assuming a PN after 2 and 3 days (P < 0.05). HLA-DR levels in patients assuming an EN were found higher than those in PN at day 7 (P < 0.05). Delayed EN for critically ill patients with long-term fasting increased systemic inflammatory responses, whereas EN could modify immune function, therefore reducing hospital stay and costs.

  20. Allergen-sensitization in vivo enhances mast cell-induced inflammatory responses and supports innate immunity.

    PubMed

    Salinas, Eva; Quintanar, J Luis; Ramírez-Celis, Nora Alejandra; Quintanar-Stephano, Andrés

    2009-12-02

    Mast cells are immune cells that play a crucial role in inflammatory reactions related to allergic reactions and the defense against certain parasites and bacteria. In allergy, the binding of immunoglobulin E (IgE) to its high-affinity receptor (FcepsilonRI) sensitizes mast cells. Subsequent cross-linking of IgE-FcepsilonRI by multivalent antigen results in cellular activation and the release of proinflammatory mediators. Recent in vivo and in vitro experiments suggest that IgE not only acts as an allergen sensor, but also induces molecular and biological changes in mast cells. In the present study we examined whether allergen-sensitization in vivo could modify the magnitude of mast cells-induced inflammatory responses. Moreover, we studied changes in peritoneal mast cell number and histamine amount during and after sensitization. We provided evidence that sensitization, at the time of the maximum allergen-specific IgE-titer, increases the intensity of a local inflammatory process generated in a cutaneous anaphylactic reaction. Sensitization also supports innate immunity, improving survival and speeding up the resolution of an acute inflammatory reaction induced by polymicrobial sepsis, while decreasing the amount of histamine in peritoneal mast cells. In addition, our results showed that sensitization induces a late increase in the number and histamine amount of peritoneal mast cells. Thus, our findings clearly demonstrated that sensitization induces changes in mast cells which prepare the cell to induce more intense inflammatory responses. This entails an increased detrimental role in subsequent IgE-dependent allergic reactions and an improved protective function in innate defense against pathogens.

  1. [Immune proteasomes in the development of rat immune system].

    PubMed

    Karpova, Ia D; Lyupina, Iu V; Astakhova, T M; Stepanova, A A; Erokhov, P A; Abramova, E B; Sharova, N P

    2013-01-01

    their plunge by P5 may be related to the loss of liver function of a primary lymphoid organ of the immune system by this stage and disappearance of B-lymphocytes enriched by immune proteasomes in it. In the spleen and liver, MHC class I molecules were revealed at the periods of the raise of proteasome immune subunits level. On E21 , the liver was enriched by neuronal NO-synthase, its level decreased after birth and enhanced to P18. This fact indicates the possibility of the induction of the immune subunits LMP7 [character: see text] LMP2 expression in hepatocytes in signal way with neuronal NO-synthase participation. The results obtained prove that T-cell immune response with spleen participation as regards rat liver cells is possible starting with P19-P21 stage. First, at this period, white pulp T-area is formed in the spleen. Second, enhanced immune proteasomes and MHC class I molecules levels in hepatocytes can procure antigenic epitopes formation from foreign proteins and their delivery to cell surface for their subsequent presentation for cytotoxic T-lymphocytes.

  2. Inflammation Mediated Metastasis: Immune Induced Epithelial-To-Mesenchymal Transition in Inflammatory Breast Cancer Cells.

    PubMed

    Cohen, Evan N; Gao, Hui; Anfossi, Simone; Mego, Michal; Reddy, Neelima G; Debeb, Bisrat; Giordano, Antonio; Tin, Sanda; Wu, Qiong; Garza, Raul J; Cristofanilli, Massimo; Mani, Sendurai A; Croix, Denise A; Ueno, Naoto T; Woodward, Wendy A; Luthra, Raja; Krishnamurthy, Savitri; Reuben, James M

    2015-01-01

    Inflammatory breast cancer (IBC) is the most insidious form of locally advanced breast cancer; about a third of patients have distant metastasis at initial staging. Emerging evidence suggests that host factors in the tumor microenvironment may interact with underlying IBC cells to make them aggressive. It is unknown whether immune cells associated to the IBC microenvironment play a role in this scenario to transiently promote epithelial to mesenchymal transition (EMT) in these cells. We hypothesized that soluble factors secreted by activated immune cells can induce an EMT in IBC and thus promote metastasis. In a pilot study of 16 breast cancer patients, TNF-α production by peripheral blood T cells was correlated with the detection of circulating tumor cells expressing EMT markers. In a variety of IBC model cell lines, soluble factors from activated T cells induced expression of EMT-related genes, including FN1, VIM, TGM2, ZEB1. Interestingly, although IBC cells exhibited increased invasion and migration following exposure to immune factors, the expression of E-cadherin (CDH1), a cell adhesion molecule, increased uniquely in IBC cell lines but not in non-IBC cell lines. A combination of TNF-α, IL-6, and TGF-β was able to recapitulate EMT induction in IBC, and conditioned media preloaded with neutralizing antibodies against these factors exhibited decreased EMT. These data suggest that release of cytokines by activated immune cells may contribute to the aggressiveness of IBC and highlight these factors as potential target mediators of immune-IBC interaction.

  3. Feeding Our Immune System: Impact on Metabolism

    PubMed Central

    Wolowczuk, Isabelle; Verwaerde, Claudie; Viltart, Odile; Delanoye, Anne; Delacre, Myriam; Pot, Bruno; Grangette, Corinne

    2008-01-01

    Endogenous intestinal microflora and environmental factors, such as diet, play a central role in immune homeostasis and reactivity. In addition, microflora and diet both influence body weight and insulin-resistance, notably through an action on adipose cells. Moreover, it is known since a long time that any disturbance in metabolism, like obesity, is associated with immune alteration, for example, inflammation. The purpose of this review is to provide an update on how nutrients-derived factors (mostly focusing on fatty acids and glucose) impact the innate and acquired immune systems, including the gut immune system and its associated bacterial flora. We will try to show the reader how the highly energy-demanding immune cells use glucose as a main source of fuel in a way similar to that of insulin-responsive adipose tissue and how Toll-like receptors (TLRs) of the innate immune system, which are found on immune cells, intestinal cells, and adipocytes, are presently viewed as essential actors in the complex balance ensuring bodily immune and metabolic health. Understanding more about these links will surely help to study and understand in a more fundamental way the common observation that eating healthy will keep you and your immune system healthy. PMID:18350123

  4. Pathology in euthermic bats with white nose syndrome suggests a natural manifestation of immune reconstitution inflammatory syndrome

    USGS Publications Warehouse

    Meteyer, Carol U.; Barber, Daniel; Mandl, Judith N.

    2012-01-01

    White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS), which was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.

  5. Unbalanced Immune System: Immunodeficiencies and Autoimmunity

    PubMed Central

    Giardino, Giuliana; Gallo, Vera; Prencipe, Rosaria; Gaudino, Giovanni; Romano, Roberta; De Cataldis, Marco; Lorello, Paola; Palamaro, Loredana; Di Giacomo, Chiara; Capalbo, Donatella; Cirillo, Emilia; D’Assante, Roberta; Pignata, Claudio

    2016-01-01

    Increased risk of developing autoimmune manifestations has been identified in different primary immunodeficiencies (PIDs). In such conditions, autoimmunity and immune deficiency represent intertwined phenomena that reflect inadequate immune function. Autoimmunity in PIDs may be caused by different mechanisms, including defects of tolerance to self-antigens and persistent stimulation as a result of the inability to eradicate antigens. This general immune dysregulation leads to compensatory and exaggerated chronic inflammatory responses that lead to tissue damage and autoimmunity. Each PID may be characterized by distinct, peculiar autoimmune manifestations. Moreover, different pathogenetic mechanisms may underlie autoimmunity in PID. In this review, the main autoimmune manifestations observed in different PID, including humoral immunodeficiencies, combined immunodeficiencies, and syndromes with immunodeficiencies, are summarized. When possible, the pathogenetic mechanism underlying autoimmunity in a specific PID has been explained. PMID:27766253

  6. Systemic inflammatory response and neuromuscular involvement in amyotrophic lateral sclerosis

    PubMed Central

    Lu, Ching-Hua; Allen, Kezia; Oei, Felicia; Leoni, Emanuela; Kuhle, Jens; Tree, Timothy; Fratta, Pietro; Sharma, Nikhil; Sidle, Katie; Howard, Robin; Orrell, Richard; Fish, Mark; Greensmith, Linda; Pearce, Neil; Gallo, Valentina

    2016-01-01

    Objective: To evaluate the combined blood expression of neuromuscular and inflammatory biomarkers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis (ALS). Methods: Logistic regression adjusted for markers of the systemic inflammatory state and principal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11 cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating biomarkers were used to study survival by Cox regression analysis and correlated with disease progression and neurofilament light chain (NfL) levels available from a previous study. Cytokines expression was also tested in blood samples longitudinally collected for up to 4 years from 59 patients with ALS. Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–α, and interleukin (IL)–1β, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–γ were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-α, and IFN-γ were the most highly regulated markers when all explanatory variables were jointly analyzed. High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated with CK, as was TNF-α with NfL. IL-6 was strongly associated with CRP levels and was the only marker showing increasing expression towards end-stage disease in the longitudinal analysis. Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory markers mostly active on T-cell immune responses. Disease stratification based on the prognostic value of circulating inflammatory markers could improve clinical trials design in ALS. PMID:27308305

  7. The cannabinergic system as a target for anti-inflammatory therapies.

    PubMed

    Lu, Dai; Vemuri, V Kiran; Duclos, Richard I; Makriyannis, Alexandros

    2006-01-01

    Habitual cannabis use has been shown to affect the human immune system, and recent advances in endocannabinoid research provide a basis for understanding these immunomodulatory effects. Cell-based experiments or in vivo animal testing suggest that regulation of the endocannabinoid circuitry can impact almost every major function associated with the immune system. These studies were assisted by the development of numerous novel molecules that exert their biological effects through the endocannabinoid system. Several of these compounds were tested for their effects on immune function, and the results suggest therapeutic opportunities for a variety of inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, atherosclerosis, allergic asthma, and autoimmune diabetes through modulation of the endocannabinoid system.

  8. Recent Advances in Aptamers Targeting Immune System.

    PubMed

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  9. Anti-inflammatory and immune-regulatory mechanisms prevent contact hypersensitivity to Arnica montana L.

    PubMed

    Lass, Christian; Vocanson, Marc; Wagner, Steffen; Schempp, Christoph M; Nicolas, Jean-Francois; Merfort, Irmgard; Martin, Stefan F

    2008-10-01

    Sesquiterpene lactones (SL), secondary plant metabolites from flowerheads of Arnica, exert anti-inflammatory effects mainly by preventing nuclear factor (NF)-kappaB activation because of alkylation of the p65 subunit. Despite its known immunosuppressive action, Arnica has been classified as a plant with strong potency to induce allergic contact dermatitis. Here we examined the dual role of SL as anti-inflammatory compounds and contact allergens in vitro and in vivo. We tested the anti-inflammatory and allergenic potential of SL in the mouse contact hypersensitivity model. We also used dendritic cells to study the activation of NF-kappaB and the secretion of interleukin (IL)-12 in the presence of different doses of SL in vitro. Arnica tinctures and SL potently suppressed NF-kappaB activation and IL-12 production in dendritic cells at high concentrations, but had immunostimulatory effects at low concentrations. Contact hypersensitivity could not be induced in the mouse model, even when Arnica tinctures or SL were applied undiluted to inflamed skin. In contrast, Arnica tinctures suppressed contact hypersensitivity to the strong contact sensitizer trinitrochlorobenzene and activation of dendritic cells. However, contact hypersensitivity to Arnica tincture could be induced in acutely CD4-depleted MHC II knockout mice. These results suggest that induction of contact hypersensitivity by Arnica is prevented by its anti-inflammatory effect and immunosuppression as a result of immune regulation in immunocompetent mice.

  10. Heme Cytotoxicity and the Pathogenesis of Immune-Mediated Inflammatory Diseases

    PubMed Central

    Larsen, Rasmus; Gouveia, Zélia; Soares, Miguel P.; Gozzelino, Raffaella

    2012-01-01

    Heme, iron (Fe) protoporphyrin IX, functions as a prosthetic group in a range of hemoproteins essential to support life under aerobic conditions. The Fe contained within the prosthetic heme groups of these hemoproteins can catalyze the production of reactive oxygen species. Presumably for this reason, heme must be sequestered within those hemoproteins, thereby shielding the reactivity of its Fe-heme. However, under pathologic conditions associated with oxidative stress, some hemoproteins can release their prosthetic heme groups. While this heme is not necessarily damaging per se, it becomes highly cytotoxic in the presence of a range of inflammatory mediators such as tumor necrosis factor. This can lead to tissue damage and, as such, exacerbate the pathologic outcome of several immune-mediated inflammatory conditions. Presumably, targeting “free heme” may be used as a therapeutic intervention against these diseases. PMID:22586395

  11. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders.

    PubMed

    Ballow, Mark

    2011-02-01

    Intravenous immune globulin (IVIG) is an important treatment modality in patients with humoral or B-cell immune deficiency as replacement therapy. Soon after its introduction in the early 1980s for the treatment of patients with immune deficiency, IVIG was used in the treatment of children with idiopathic thrombocytopenia purpura. Presently, more commercial IVIG is used for the treatment of autoimmune and inflammatory disorders than as replacement therapy in patients with immune deficiency. Understanding the mechanisms of action of IVIG in these autoimmune and inflammatory disorders has occupied investigators over the past 3 decades. A number of mechanisms for the immune modulation and anti-inflammatory actions of IVIG have been described, including Fc receptor blockade, inhibition of complement deposition, enhancement of regulatory T cells, inhibition or neutralization of cytokines and growth factors, accelerated clearance of autoantibodies, modulation of adhesion molecules and cell receptors, and activation of regulatory macrophages through the FcγRIIb receptor. It can now be appreciated that IVIG affects many different pathways to modulate the immune and inflammatory response. Further delineation of these pathways might lead to new treatment strategies.

  12. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection.

    PubMed

    Bourke, Claire D; Prendergast, Catriona T; Sanin, David E; Oulton, Tate E; Hall, Rebecca J; Mountford, Adrian P

    2015-03-01

    Keratinocytes constitute the majority of cells in the skin's epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45(-), CD326(-), CD34(+)) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin(-)) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67(+) nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  13. A possible cause and corresponding treatment for inflammatory, auto-immune or auto-aggressive diseases.

    PubMed

    Gracia, M C

    2007-01-01

    This article develops the idea that many inflammatory, auto-immune or auto-aggressive diseases might result from conditioned responses acquired when occasional, possibly minor pathological conditions, normal organ fatigue, or similar sensations, are reinforced by an intense neural reward coinciding, often by pure bad luck, with these minor troubles. After such conditioning, and especially in times of frustration or distress, the brain will repeatedly try to obtain the reward again by recreating, with an intensity in proportion to the degree of frustration, the sensorial pattern of the initial minor trouble, producing auto-aggressive effects. This leads naturally to the idea of trying to extinguish diseases implying self-aggression by applying negative reinforcement. This behavioural strategy has been tested for some minor or medium-severity inflammatory/auto-immune troubles and, essentially, it works, although it implies practical difficulties that are reviewed in the text. Furthermore, the experience was very limited because of the difficulty of convincing people to try for good a scarcely tested technique requiring intense mental effort and completely different from the medical treatments people are used to. The article describes the physiological-behavioural model underlying our proposal, evaluates different possibilities of treatment, and provides useful practical advice. In particular, it appears that our proposal seems best suited for diseases in which the mental abilities of the person are intact and the inflammatory aggression is clearly identifiable by its symptoms, for example pain, itching, fatigue or paralysis. Possible candidate diseases could be, for example, superficial allergies or irritations, digestive inflammatory problems, rheumatoid or circulatory troubles, or motor neurological diseases like multiple sclerosis, Guillain-Barré syndrome and possibly ALS or Parkinson. The article is completed by some guidelines on the prevention of diseases

  14. Physical Theory of the Immune System

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2012-10-01

    I will discuss to theories of the immune system and describe a theory of the immune response to vaccines. I will illustrate this theory by application to design of the annual influenza vaccine. I will use this theory to explain limitations in the vaccine for dengue fever and to suggest a transport-inspired amelioration of these limitations.

  15. The Molecules of the Immune System.

    ERIC Educational Resources Information Center

    Tonegawa, Susumu

    1985-01-01

    The immune system includes the most diverse proteins known because they are encoded by hundreds of scattered gene fragments which can be combined in millions or billions of ways. Events of immune response, binding of antigens, antibody structure, T-cell receptors, and other immunologically-oriented topics are discussed. (DH)

  16. Inflammatory abdominal aortic aneurysm followed by disseminated intravascular coagulation and immune thrombocytopenia.

    PubMed

    Machida, Hisanori; Kobayashi, Makoto; Taguchi, Hirokuni

    2002-11-01

    A 71-year-old man was diagnosed as having an abdominal aortic aneurysm when he was treated for idiopathic interstitial pneumonia (IIP). Three years later, he developed severe thrombocytopenia and had disseminated intravascular coagulation (DIC) that was associated with the inflammatory abdominal aortic aneurysm (IAAA). The coagulation abnormalities were corrected by low-molecular weight heparin, however the platelet count remained low. Bone marrow showed normocellularity with an increase of immature and mature forms of megakaryocytes. Platelet-associated IgG level was high. These findings suggested that the patient had severe thrombocytopenia caused by unusual complications of immune thrombocytopenic purpura and IAAA-associated DIC.

  17. Phenytoin-Induced Gingival Overgrowth: A Review of the Molecular, Immune, and Inflammatory Features

    PubMed Central

    Corrêa, Jôice Dias; Queiroz-Junior, Celso Martins; Costa, José Eustáquio; Teixeira, Antônio Lúcio; Silva, Tarcilia Aparecida

    2011-01-01

    Gingival overgrowth (GO) is a side effect associated with some distinct classes of drugs, such as anticonvulsants, immunosuppressant, and calcium channel blockers. GO is characterized by the accumulation of extracellular matrix in gingival connective tissues, particularly collagenous components, with varying degrees of inflammation. One of the main drugs associated with GO is the antiepileptic phenytoin, which affects gingival tissues by altering extracellular matrix metabolism. Nevertheless, the pathogenesis of such drug-induced GO remains fulfilled by some contradictory findings. This paper aims to present the most relevant studies regarding the molecular, immune, and inflammatory aspects of phenytoin-induced gingival overgrowth. PMID:21991476

  18. Cryptococcal immune reconstitution inflammatory syndrome in HIV-1-infected individuals: proposed clinical case definitions.

    PubMed

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2010-11-01

    Cryptococcal immune reconstitution inflammatory syndrome (IRIS) may present as a clinical worsening or new presentation of cryptococcal disease after initiation of antiretroviral therapy (ART), and is thought to be caused by recovery of cryptococcus-specific immune responses. We have reviewed reports of cryptococcal IRIS and have developed a consensus case definition specifically for paradoxical crytopcoccal IRIS in patients with HIV-1 and known cryptococcal disease before ART, and a separate definition for incident cryptococcosis developed during ART (termed ART-associated cryptococcosis), for which a proportion of cases are likely to be unmasking cryptococcal IRIS. These structured case definitions are intended to aid design of future clinical, epidemiological, and immunopathological studies of cryptococcal IRIS, to standardise diagnostic criteria, and to facilitate comparisons between studies. As for definitions of tuberculosis-associated IRIS, definitions for cryptococcal IRIS should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement.

  19. Oral Inflammatory Diseases and Systemic Inflammation: Role of the Macrophage

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan; Van Dyke, Thomas E.

    2012-01-01

    Inflammation is a complex reaction to injurious agents and includes vascular responses, migration, and activation of leukocytes. Inflammation starts with an acute reaction, which evolves into a chronic phase if allowed to persist unresolved. Acute inflammation is a rapid process characterized by fluid exudation and emigration of leukocytes, primarily neutrophils, whereas chronic inflammation extends over a longer time and is associated with lymphocyte and macrophage infiltration, blood vessel proliferation, and fibrosis. Inflammation is terminated when the invader is eliminated, and the secreted mediators are removed; however, many factors modify the course and morphologic appearance as well as the termination pattern and duration of inflammation. Chronic inflammatory illnesses such as diabetes, arthritis, and heart disease are now seen as problems that might have an impact on the periodontium. Reciprocal effects of periodontal diseases are potential factors modifying severity in the progression of systemic inflammatory diseases. Macrophages are key cells for the inflammatory processes as regulators directing inflammation to chronic pathological changes or resolution with no damage or scar tissue formation. As such, macrophages are involved in a remarkably diverse array of homeostatic processes of vital importance to the host. In addition to their critical role in immunity, macrophages are also widely recognized as ubiquitous mediators of cellular turnover and maintenance of extracellular matrix homeostasis. In this review, our objective is to identify macrophage-mediated events central to the inflammatory basis of chronic diseases, with an emphasis on how control of macrophage function can be used to prevent or treat harmful outcomes linked to uncontrolled inflammation. PMID:22623923

  20. Artificial Immune System Approaches for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  1. Role of defensins and cathelicidin LL37 in auto-immune and auto-inflammatory diseases.

    PubMed

    Frasca, Loredana; Lande, Roberto

    2012-08-01

    Defensins and cathelicidins are anti-microbial peptides (AMPs) that act as natural antibiotics and are part of the innate immune defence in many species. We consider human defensins and LL37, the only human member of the cathelicidin family. In particular, we refer to the human alpha-defensins called human neutrophil peptides (HNP1 through 4), which are produced by neutrophils, HD5 and HD6, mainly expressed in Paneth cells of intestine, the human beta-defensins HBD1, HBD2 and HBD3, synthesized by epithelial cells and LL37, which is located in granulocytes, but is also produced by epithelial cells of the skin, lungs, and gut. In the last years, the study of AMPs activity and regulation has allowed to understand the important role of these peptides not only in the innate defence mechanisms against bacteria, viruses, fungi, but also in the regulation of immune cell activation and migration. Complementary studies have disclosed a role for AMPs in modulating many physiological processes that involve non-immune cells, such as activation of wound healing, angiogenesis, cartilage remodeling. Due to the pleiotropic tasks of these peptides, many of them are now being discovered to contribute to immune pathology of chronic diseases that affect skin, gut, joints; this is supported by many examples of immune-mediated pathologies in which their expression is disregulated. In this article we review the current literature that suggests a role for human defensins and LL37 in pathogenic mechanisms of several chronic diseases that are considered of auto-immune or auto-inflammatory origin.

  2. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis.

    PubMed

    Ngo, Lisa Y; Kasahara, Shinji; Kumasaka, Debra K; Knoblaugh, Sue E; Jhingran, Anupam; Hohl, Tobias M

    2014-01-01

    Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)- and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity.

  3. How phototherapy affects the immune system

    NASA Astrophysics Data System (ADS)

    Dyson, Mary

    2008-03-01

    The immune system is a complex group of cells, tissues and organs that recognize and attack foreign substances, pathogenic organisms and cancer cells. It also responds to injury by producing inflammation. The immune system has peripheral components that include skin-associated lymphoid tissues (SALT) and mucosa-associated lymphoid tissues (MALT), located where pathogens and other harmful substances gain access to the body. Phototherapy, delivered at appropriate treatment parameters, exerts direct actions on the cellular elements of the peripheral part of the immune system since it is readily accessible to photons.

  4. The contribution of the immune system to parturition

    PubMed Central

    Jorens, Ph.; Student, I.; Heylen, R.

    1996-01-01

    The immune system plays a central role before and during parturition, including the main physiological processes of parturition: uterine contractions and cervical ripening. The immune system comprises white blood cells and their secretions. Polymorphonuclear cells and macrophages invade the cervical tissue and release compounds, such as oxygen radicals and enzymes, which break down the cervical matrix to allow softening and dilatation. During this inflammatory process, white blood cells undergo chemotaxis, adherence to endothelial cells, diapedesis, migration and activation. Factors that regulate white blood cell invasion and secretion include cytokines such as tumour necrosis factor and interleukins. Glucocorticoids, sex hormones and prostaglandins, affect cytokine synthesis. They also modulate the target cells, resulting in altered responses to cytokines. On the other hand, the immune system has profound effects on the hormonal system and prostaglandin synthesis. In animals, nitric oxide has marked effects on uterine quiescence during gestation. At the same time, it plays an important role in regulating the vascular tone of uterine arteries and has anti-adhesive effects on leukocytes. Cytokines are found in amniotic fluid, and in maternal and foetal serum at term and preterm. Several intrauterine cells have been shown to produce these cytoldnes. Since neither white blood cells, cytokines nor nitric oxide seem to be the ultimate intermediate for human parturition, the immune system is an additional but obligatory and underestimated component in the physiology of delivery. Scientists, obstetricians and anaesthesiologists must thus be aware of these processes. PMID:18475712

  5. [Regulation of allergy by innate immune system].

    PubMed

    Kumagai, Yutaro; Akira, Shizuo

    2009-11-01

    Allergy is an immune disease including asthma. Activation of Th2 response, such as production of IL-4, IL-5 and IL-13 from CD4+ T cells and IgG1 or IgE from B cells is responsible for allergy. Activation of acquired immune system requires preceding activation of innate immunity, therefore innate immunity may control Th2 response and allergy. Recent studies revealed that dendritic cells, epithelial cells, and basophils play central roles in the initiation of Th2 response. In this review, we will summarize the current understanding on the control of Th2 and allergic responses by innate immune system, and discuss recent findings on house dust mite-induced allergic response based on these understandings.

  6. A brief journey through the immune system.

    PubMed

    Yatim, Karim M; Lakkis, Fadi G

    2015-07-07

    This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney.

  7. A Brief Journey through the Immune System

    PubMed Central

    Yatim, Karim M.

    2015-01-01

    This review serves as an introduction to an Immunology Series for the Nephrologist published in CJASN. It provides a brief overview of the immune system, how it works, and why it matters to kidneys. This review describes in broad terms the main divisions of the immune system (innate and adaptive), their cellular and tissue components, and the ways by which they function and are regulated. The story is told through the prism of evolution in order to relay to the reader why the immune system does what it does and why imperfections in the system can lead to renal disease. Detailed descriptions of cell types, molecules, and other immunologic curiosities are avoided as much as possible in an effort to not detract from the importance of the broader concepts that define the immune system and its relationship to the kidney. PMID:25845377

  8. Imitating a stress response: a new hypothesis about the innate immune system's role in pregnancy.

    PubMed

    Schminkey, Donna L; Groer, Maureen

    2014-06-01

    Recent research challenges long-held hypotheses about mechanisms through which pregnancy induces maternal immune suppression or tolerance of the embryo/fetus. It is now understood that normal pregnancy engages the immune system and that the immune milieu changes with advancing gestation. We suggest that pregnancy mimics the innate immune system's response to stress, causing a sterile inflammatory response that is necessary for successful reproduction. The relationship between external stressors and immunomodulation in pregnancy has been acknowledged, but the specific mechanisms are still being explicated. Implantation and the first trimester are times of immune activation and intensive inflammation in the uterine environment. A period of immune quiescence during the second trimester allows for the growth and development of the maturing fetus. Labor is also an inflammatory event. The length of gestation and timing of parturition can be influenced by environmental stressors. These stressors affect pregnancy through neuroendocrine interaction with the immune system, specifically through the hypothalamic-pituitary-adrenal (HPA) axis and the hypothalamic-pituitary-ovarian axis. Trophoblastic cells that constitute the maternal-fetal interface appear to harness the maternal immune system to promote and maximize the reproductive success of the mother and fetus. Pregnancy is a time of upregulated innate immune responses and decreased adaptive, cell-mediated responses. The inflammatory processes of pregnancy resemble an immune response to brief naturalistic stressors: there is a shift from T helper (Th) 1 to T helper (Th) 2 dominant adaptive immunity with a concomitant shift in cytokine production, decreased proliferation of T cells, and decreased cytotoxicity of natural killer (NK) cells. Inclusion of both murine and human studies, allows an exploration of insights into how trophoblasts influence the activity of the maternal innate immune system during gestation.

  9. Systemic tolerance and secretory immunity after oral immunization

    PubMed Central

    1980-01-01

    Diminished systemic immune reaction after ingestion of antigen has been reported in several animal models. Conversely, it has been reported recently that oral immunization may lead to the production of secretory antibodies. To determine whether these events could occur concurrently, CBA/J mice were immunized intragastrically with varying doses of ovalbumin (OVA) and Streptococcus mutans. After 7 d, the animals were challenged systemically with antigen in complete adjuvant and 8 d later serum and saliva taken, and the draining lymph nodes assayed for a proliferative response. Intragastric doses of 1 mg OVA or 10(9) S. mutans led to significant suppression of the proliferative response, and intragastric doses of 10 mg OVA or 2.5 X 10(9) S. mutans led to the production of detectable salivary antibodies using hemagglutination. Serum antibodies were not detected after intragastric administration of OVA or S. mutans. Suppression of the proliferative response could be detected from 2-60 d after intragastric administration of OVA, and 2-21 d after S. mutans. Prior intragastric immunization with heterologous antigens did not suppress the response to OVA or S. mutans. Transfer of 40 X 10(6) mesenteric lymph node cells from mice given 20 mg OVA or 10(9) S. mutans led to suppression of the proliferative response in syngeneic recipients. Salivary antibodies wer removed by absorption with anti-IgA, but not anti-IgG or IgM, indicating that they were of the IgA class. It appears that intragastric administration of soluble or particulate antigens in mice may lead to the concurrent induction of salivary antibodies and systemic suppression. PMID:7452148

  10. Immunization with recombinant Pb27 protein reduces the levels of pulmonary fibrosis caused by the inflammatory response against Paracoccidioides brasiliensis.

    PubMed

    Morais, Elis Araujo; Martins, Estefânia Mara do Nascimento; Boelone, Jankerle Neves; Gomes, Dawidson Assis; Goes, Alfredo Miranda

    2015-02-01

    Paracoccidioidomycosis (PCM) is a systemic mycosis in which the host response to the infectious agent typically consists of a chronic granulomatous inflammatory process. This condition causes lesions that impair lung function and lead to chronic pulmonary insufficiency resulting from fibrosis development, which is a sequel and disabling feature of the disease. The rPb27 protein has been studied for prophylactic and therapeutic treatment against PCM. Previous studies from our laboratory have shown a protective effect of rPb27 against PCM. However, these studies have not determined whether rPb27 immunization prevents lung fibrosis. We therefore conducted this study to investigate fibrosis resulting from infection by Paracoccidioides brasiliensis in the lungs of animals immunized with rPb27. Animals were immunized with rPb27 and subsequently infected with a virulent strain of P. brasiliensis. Fungal load was evaluated by counting colony-forming units, and Masson's trichrome staining was performed to evaluate fibrosis at 30 and 90 days post-infection. The levels of CCR7, active caspase 3, collagen and cytokines were analyzed. At the two time intervals mentioned, the rPb27 group showed lower levels of fibrosis on histology and reduced levels of collagen and the chemokine receptor CCR7 in the lungs. CCR7 was detected at higher levels in the control groups that developed very high levels of pulmonary fibrosis. Additionally, the immunized groups showed high levels of active caspase 3, IFN-γ, TGF-β and IL-10 in the early phase of P. brasiliensis infection. Immunization with Pb27, in addition to its protective effect, was shown to prevent pulmonary fibrosis.

  11. [Flu vaccine and auto-immune and/or inflammatory diseases].

    PubMed

    Duchet-Niedziolka, Paula; Hanslik, Thomas; Mouthon, Luc; Guillevin, Loïc; Launay, Odile

    2011-03-01

    Patients with systemic inflammatory and/or autoimmune diseases have an increased risk of infections particularly severe influenza infections. Annually vaccination can prevent these infections. Available data about the influenza vaccine in these patients show that, it remains well tolerated and effective even if the antibody response is lower compared to healthy controls. These data encourage to vaccine every year patients with systemic inflammatory and/or autoimmune diseases with influenza vaccine, particularly patients taking immunosuppressant drugs or having respiratory, cardiac or renal chronic diseases according to guidelines. More data are needed about the severity of influenza infection and the efficacy of influenza vaccination in patients with systemic inflammatory and/or autoimmune diseases to improve their vaccine coverage.

  12. Interleukin-7 is decreased and maybe plays a pro-inflammatory function in primary immune thrombocytopenia.

    PubMed

    Li, Hui-Yuan; Zhang, Dong-Lei; Zhang, Xian; Liu, Xiao-Fan; Xue, Feng; Yang, Ren-Chi

    2015-01-01

    Primary immune thrombocytopenia (ITP) is an autoimmune disease with many immune dysfunctions, including over-proliferation and apoptosis resistance of auto-reactive lymphocytes. This study aimed to determine the effects of interleukin (IL)-7 on the cytokine production and survival of peripheral blood mononuclear cells and bone marrow mononuclear cells from ITP patients. We found that the plasma IL-7 levels in peripheral blood from ITP patients were lower than that of the normal controls, and it had positive correlation with platelet counts. However, the levels of IL-7 did not change in bone marrow serum of ITP patients compared with that of normal controls. The result of further stimulation experiments in vitro showed that IL-7 up-regulated the apoptosis of autologous platelets, promoted the proliferation and secretion of interferon-γ, tumor necrosis factor-α as well as IL-10 of lymphocyte both from peripheral blood and bone marrow. As the role of IL-7 in apoptosis-resistance and stimulation of pro-inflammatory cytokines, we speculated that decreased IL-7 in peripheral blood, maybe, is a consequence of the negative feedback of the pro-inflammatory function in ITP patients.

  13. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease.

    PubMed

    de Lange, Katrina M; Moutsianas, Loukas; Lee, James C; Lamb, Christopher A; Luo, Yang; Kennedy, Nicholas A; Jostins, Luke; Rice, Daniel L; Gutierrez-Achury, Javier; Ji, Sun-Gou; Heap, Graham; Nimmo, Elaine R; Edwards, Cathryn; Henderson, Paul; Mowat, Craig; Sanderson, Jeremy; Satsangi, Jack; Simmons, Alison; Wilson, David C; Tremelling, Mark; Hart, Ailsa; Mathew, Christopher G; Newman, William G; Parkes, Miles; Lees, Charlie W; Uhlig, Holm; Hawkey, Chris; Prescott, Natalie J; Ahmad, Tariq; Mansfield, John C; Anderson, Carl A; Barrett, Jeffrey C

    2017-02-01

    Genetic association studies have identified 215 risk loci for inflammatory bowel disease, thereby uncovering fundamental aspects of its molecular biology. We performed a genome-wide association study of 25,305 individuals and conducted a meta-analysis with published summary statistics, yielding a total sample size of 59,957 subjects. We identified 25 new susceptibility loci, 3 of which contain integrin genes that encode proteins in pathways that have been identified as important therapeutic targets in inflammatory bowel disease. The associated variants are correlated with expression changes in response to immune stimulus at two of these genes (ITGA4 and ITGB8) and at previously implicated loci (ITGAL and ICAM1). In all four cases, the expression-increasing allele also increases disease risk. We also identified likely causal missense variants in a gene implicated in primary immune deficiency, PLCG2, and a negative regulator of inflammation, SLAMF8. Our results demonstrate that new associations at common variants continue to identify genes relevant to therapeutic target identification and prioritization.

  14. Weakened Immune System and Adult Vaccination

    MedlinePlus

    ... for Healthcare Professionals Weakened Immune System and Adult Vaccination Recommend on Facebook Tweet Share Compartir Vaccines are ... up to age 26 years Learn about adult vaccination and other health conditions Asplenia Diabetes Type 1 ...

  15. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Hamann, Mark T.

    2016-01-01

    During 2000 research on the pharmacology of marine chemicals involved investigators from Australia, Brazil, Canada, Egypt, France, Germany, India, Indonesia, Israel, Italy, Japan, the Netherlands, New Zealand, Phillipines, Singapore, Slovenia, South Korea, Spain, Sweden, Switzerland, United Kingdom, and the United States. This current review, a sequel to the authors’ 1998 and 1999 reviews, classifies 68 peer-reviewed articles on the basis of the reported preclinical pharmacologic properties of marine chemicals derived from a diverse group of marine animals, algae, fungi, and bacteria. Antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antituberculosis, or antiviral activity was reported for 35 marine chemicals. An additional 20 marine compounds were shown to have significant effects on the cardiovascular and nervous system, and to possess anti-inflammatory or immunosuppressant properties. Finally, 23 marine compounds were reported to act on a variety of molecular targets and thus could potentially contribute to several pharmacologic classes. Thus, as in 1998 and 1999, during 2000 pharmacologic research with marine chemicals continued to contribute potentially novel chemical leads to the ongoing global search for therapeutic agents in the treatment of multiple disease categories. PMID:14583811

  16. 99th Dahlem Conference on Infection, Inflammation and Chronic Inflammatory Disorders: Innate immune responses in plants

    PubMed Central

    Schulze-Lefert, P

    2010-01-01

    Plants rely exclusively upon mechanisms of innate immunity. Current concepts of the plant innate immune system are based largely on two forms of immunity that engage distinct classes of immune receptors. These receptors enable the recognition of non-self structures that are either conserved between members of a microbial class or specific to individual strains of a microbe. One type of receptor comprises membrane-resident pattern recognition receptors (PRRs) that detect widely conserved microbe-associated molecular patterns (MAMPs) on the cell surface. A second type of mainly intracellular immune sensors, designated resistance (R) proteins, recognizes either the structure or function of strain-specific pathogen effectors that are delivered inside host cells. Phytopathogenic microorganisms have evolved a repertoire of effectors, some of which are delivered into plant cells to sabotage MAMP-triggered immune responses. Plants appear to have also evolved receptors that sense cellular injury by the release and perception of endogenous damage-associated molecular patterns (DAMPs). It is possible that the integration of MAMP and DAMP responses is critical to mount robust MAMP-triggered immunity. This signal integration might help to explain why plants are colonized in nature by remarkably diverse and seemingly asymptomatic microbial communities. PMID:20415853

  17. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: A double-blind RCT.

    PubMed

    Pilat, C; Frech, T; Wagner, A; Krüger, K; Hillebrecht, A; Pons-Kühnemann, J; Scheibelhut, C; Bödeker, R-H; Mooren, F-C

    2015-08-01

    Traumeel (Tr14) is a natural, combination drug, which has been shown to modulate inflammation at the cytokine level. This study aimed to investigate potential effects of Tr14 on the exercise-induced immune response. In a double-blind, randomized, controlled trial, healthy, untrained male subjects received either Tr14 (n = 40) or placebo (n = 40) for 24 h after a strenuous experimental exercise trial on a bicycle (60 min at 80%VO2 max). A range of antigen-stimulated cytokines (in vitro), white blood cell count, lymphocyte activation and apoptosis markers, and indicators of muscle damage were assessed up to 24 h following exercise. The area under the curve with respect to the increase (AUCI ) was compared between both groups. The Tr14 group showed a reduced exercise-induced leukocytosis and neutrocytosis (P < 0.01 for both), a higher AUCI score of antigen-stimulated IL-1β and IL-1α (absolute and per monocyte, all P < 0.05), a lower AUCI score of antigen-stimulated GM-CSF (P < 0.05) and by trend a lower AUCI score of antigen-stimulated IL-2 and IL-4 as well as a higher AUCI score of antigen-stimulated IL-6 (all P < 0.1). Tr14 might promote differentiated effects on the exercise-induced immune response by (a) decreasing the inflammatory response of the innate immune system; and (b) augmenting the pro-inflammatory cytokine response.

  18. The Human Metapneumovirus Matrix Protein Stimulates the Inflammatory Immune Response In Vitro

    PubMed Central

    Bagnaud-Baule, Audrey; Reynard, Olivier; Perret, Magali; Berland, Jean-Luc; Maache, Mimoun; Peyrefitte, Christophe; Vernet, Guy; Volchkov, Viktor; Paranhos-Baccalà, Gláucia

    2011-01-01

    Each year, during winter months, human Metapneumovirus (hMPV) is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV) response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs) during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs) and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients. PMID:21412439

  19. The route to pathologies in chronic inflammatory diseases characterized by T helper type 2 immune cells

    PubMed Central

    Jovanovic, K; Siebeck, M; Gropp, R

    2014-01-01

    T helper type 2 (Th2)-characterized inflammatory responses are highly dynamic processes initiated by epithelial cell damage resulting in remodelling of the tissue architecture to prevent further harm caused by a dysfunctional epithelial barrier or migrating parasites. This process is a temporal and spatial response which requires communication between immobile cells such as epithelial, endothelial, fibroblast and muscle cells and the highly mobile cells of the innate and adaptive immunity. It is further characterized by a high cellular plasticity that enables the cells to adapt to a specific inflammatory milieu. Incipiently, this milieu is shaped by cytokines released from epithelial cells, which stimulate Th2, innate lymphoid and invariant natural killer (NK) T cells to secrete Th2 cytokines and to activate dendritic cells which results in the further differentiation of Th2 cells. This milieu promotes wound-healing processes which are beneficial in parasitic infections or toxin exposure but account for increasingly dysfunctional vital organs, such as the lung in the case of asthma and the colon in ulcerative colitis. A better understanding of the dynamics underlying relapses and remissions might lead ultimately to improved therapeutics for chronic inflammatory diseases adapted to individual needs and to different phases of the inflammation. PMID:24981014

  20. Effects of chalcone derivatives on players of the immune system.

    PubMed

    Lee, Jian Sian; Bukhari, Syed Nasir Abbas; Fauzi, Norsyahida Mohd

    2015-01-01

    The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells.

  1. Effects of chalcone derivatives on players of the immune system

    PubMed Central

    Lee, Jian Sian; Bukhari, Syed Nasir Abbas; Fauzi, Norsyahida Mohd

    2015-01-01

    The immune system is the defense mechanism in living organisms that protects against the invasion of foreign materials, microorganisms, and pathogens. It involves multiple organs and tissues in human body, such as lymph nodes, spleen, and mucosa-associated lymphoid tissues. However, the execution of immune activities depends on a number of specific cell types, such as B cells, T cells, macrophages, and granulocytes, which provide various immune responses against pathogens. In addition to normal physiological functions, abnormal proliferation, migration, and differentiation of these cells (in response to various chemical stimuli produced by invading pathogens) have been associated with several pathological disorders. The unwanted conditions related to these cells have made them prominent targets in the development of new therapeutic interventions against various pathological implications, such as atherosclerosis and autoimmune diseases. Chalcone derivatives exhibit a broad spectrum of pharmacological activities, such as immunomodulation, as well as anti-inflammatory, anticancer, antiviral, and antimicrobial properties. Many studies have been conducted to determine their inhibitory or stimulatory activities in immune cells, and the findings are of significance to provide a new direction for subsequent research. This review highlights the effects of chalcone derivatives in different types of immune cells. PMID:26316713

  2. Microarray analysis of the inflammatory and immune responses in head kidney turbot leucocytes treated with resveratrol.

    PubMed

    Domínguez, Berta; Pardo, Belén G; Noia, Manuel; Millán, Adrián; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José; Lamas, Jesús

    2013-03-01

    A DNA oligo-microarray enriched in genes and involved in inflammatory and immune responses was used to evaluate the effects of resveratrol on gene expression in turbot head kidney leucocytes. Leucocytes were cultured for 3, 6 and 24 h, in the presence or absence of resveratrol, or were stimulated with the membrane fraction of the parasite Philasterides dicentrarchi or with the membrane plus resveratrol. Gene expression changed considerably in control cells, and several of the regulated genes were related to inflammatory and immune responses and to the cytoskeleton. Similar changes in gene expression occurred in control cells and in cells stimulated with P. dicentrarchi membrane fraction. Treatment with resveratrol induced changes in the expression (mostly down-regulation) of several genes involved in immune responses and inflammation. Thus, the down-regulation of the transcription factor PU.1, pentraxin-multidomain protein, heme oxygenase 1, S100 calcium-binding protein A-16 (S100A16) and the signal transducer and activator of transcription 4 was observed after all three incubation times. The down-regulation of the suppressor of cytokine signalling 3a, LPS-induced tumour necrosis alpha, hepcidin, metallothionein, TLR8 and the calcium dependent lectin A was observed after 3 and 6 h. Resveratrol also decreased the expression of CCL20, IL-8, apolipoprotein E and glutathione S-transferase after incubation for 6 and 24 h, and of TNF-α after incubation for 3 and 24 h. Resveratrol also induced strong regulation of several cytoskeleton-related genes. The use of the turbot oligo-microarray enabled us to discover genes whose expression was not previously suspected of being modulated by this polyphenol.

  3. Molecular insights on the cerebral innate immune system.

    PubMed

    Rivest, Serge

    2003-02-01

    All species need an immediate reply to the microbial pathogens that is part of an effective immune response and is essential for the survival of most organisms. This reply is known as the innate immune response and is characterized by the de novo production of mediators that either kill the microbes directly or activate phagocytic cells to ingest and kill them. The innate immune response can be driven through specific recognition systems, the best example being an interaction between the endotoxin lipopolysaccharide (LPS) and its receptors CD14 and Toll-like receptor 4 (TLR4). For a long time, the brain was considered to be a privileged organ from an immunological point of view, owing to its inability to mount an immune response and process antigens. Although this is partly true, the CNS shows a well-organized innate immune reaction in response to systemic bacterial infection and cerebral injury. The CD14 and TLR4 receptors are constitutively expressed in the circumventricular organs (CVOs), choroid plexus and leptomeninges. Circulating LPS is able to cause a rapid transcriptional activation of genes encoding CD14 and TLR2, as well as a wide variety of pro-inflammatory molecules in CVOs. A delayed response to LPS takes place in cells located at boundaries of the CVOs and in microglia across the CNS. Therefore, without having direct access to the brain parenchyma, pathogens have the ability to trigger an innate immune reaction throughout cerebral tissue. This review presents evidence supporting the existence of such a system in the brain, which is finely regulated at the transcription level. Transient activation of this system is not harmful toward neuronal elements.

  4. Complex role for the immune system in initiation and progression of pancreatic cancer.

    PubMed

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-08-28

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.

  5. Complex role for the immune system in initiation and progression of pancreatic cancer

    PubMed Central

    Inman, Kristin S; Francis, Amanda A; Murray, Nicole R

    2014-01-01

    The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed. PMID:25170202

  6. Lipid Nanocapsule as Vaccine Carriers for His-Tagged Proteins: Evaluation of Antigen-Specific Immune Responses to HIV I His-Gag p41 and Systemic Inflammatory Responses

    PubMed Central

    Wadhwa, Saurabh; Jain, Anekant; Woodward, Jerold G.; Mumper, Russell J

    2011-01-01

    The purpose of this study was to design novel nanocapsules (NCs) with surface-chelated nickel (Ni-NCs) as a vaccine delivery system for histidine (His)-tagged protein antigens. Ni-NCs were characterized for binding His-tagged model proteins through high affinity non-covalent interactions. The mean diameter and zeta potential of the optimized Ni-NCs was 214.9 nm and - 14.8 mV, respectively. The optimal binding ratio of His-tagged Green Fluorescent Protein (His-GFP) and His-tagged HIV-1 Gag p41 (His-Gag p41) to the Ni-NCs was 1:221 and 1:480 w/w, respectively. Treatment of DC2.4 cells with Ni-NCs did not result in significant loss in the cell viability up to 24 h (<5%). We further evaluated the antibody response of the Ni-NCs using His-Gag p41 as a model antigen. Formulations were administered subcutaneously to BALB/c mice at day 0 (prime) and 14 (boost) followed by serum collection on day 28. Serum His-Gag p41 specific antibody levels were found to be significantly higher at 1 and 0.5 μg doses of Gag p41-His-Ni-NCs (His-Gag p41 equivalent) compared to His-Gag p41 (1 μg) adjuvanted with aluminum hydroxide (AH). The serum IgG2a levels induced by Gag p41-His-Ni-NCs (1 μg) were significantly higher than AH adjuvanted His-Gag p41. The Ni-NCs alone did not result in elevation of systemic IL-12/p40 and CCL5/RANTES inflammatory cytokine levels upon subcutaneous administration in BALB/c mice. In conclusion, the proposed Ni-NCs can bind His-tagged proteins and have the potential to be used as antigen delivery system capable of generating strong antigen specific antibodies at doses much lower than with aluminum based adjuvant and causing no significant elevation of systemic proinflammatory IL-12/p40 and CCL5/RANTES cytokines. PMID:22068049

  7. [Biotherapy targeting the immune system].

    PubMed

    Frenzel, Laurent

    2015-01-01

    The use of monoclonal antibody targeted therapy has changed the management of several diseases, including in hematology and immunology. The panel of the present available biotherapies allows a specific action at various stages of the immune response. Indeed, some of these molecules can target the naive T cell at the immunological synapse or the way of TH1, TH17 and regulatory T cell. Others may be more specific for the B cell and immunoglobulin. Some will even be active on both B and T cells.

  8. The immune system in space and microgravity.

    PubMed

    Sonnenfeld, Gerald

    2002-12-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  9. The immune system in space and microgravity

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    2002-01-01

    Space flight and models that created conditions similar to those that occur during space flight have been shown to affect a variety of immunological responses. These have primarily been cell-mediated immune responses including leukocyte proliferation, cytokine production, and leukocyte subset distribution. The mechanisms and biomedical consequences of these changes remain to be established. Among the possible causes of space flight-induced alterations in immune responses are exposure to microgravity, exposure to stress, exposure to radiation, and many more as yet undetermined causes. This review chronicles the known effects of space flight on the immune system and explores the possible role of stress in contributing to these changes.

  10. The immune system--multiple sites but one system.

    PubMed

    Harleman, Johannes H

    2006-07-01

    Recently several guidelines were published on immunotoxicity. Validation studies have shown that detailed extended examination of the immune system is able to flag immunotoxic compounds. Parameters of the examination are presented. In the final examination it is important that the whole immune system is evaluated as one functional system--multiple sites but one system.

  11. Adenovirus sensing by the immune system.

    PubMed

    Atasheva, Svetlana; Shayakhmetov, Dmitry M

    2016-12-01

    The host immune system developed multiple ways for recognition of viral pathogens. Upon disseminated adenovirus infection, the immune system senses adenovirus invasion from the moment it enters the bloodstream. The soluble blood factors, FX, antibodies, and complement, can bind and activate plethora of host-protective immune responses. Adenovirus binding to the cellular β3 integrin and endosomal membrane rupture trigger activation of IL-1α/IL-1R1 proinflammatory cascade leading to attraction of cytotoxic immune cells to the site of infection. Upon cell entry, adenovirus exposes its DNA genome in the cytoplasm and triggers DNA sensors signaling. Even when inside the nucleus, the specialized cellular machinery that recognizes the double-strand DNA breaks become activated and triggers viral DNA replication arrest. Thus, the host employs very diverse mechanisms to prevent viral dissemination.

  12. Supradural inflammatory soup in awake and freely moving rats induces facial allodynia that is blocked by putative immune modulators.

    PubMed

    Wieseler, Julie; Ellis, Amanda; McFadden, Andrew; Stone, Kendra; Brown, Kimberley; Cady, Sara; Bastos, Leandro F; Sprunger, David; Rezvani, Niloofar; Johnson, Kirk; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2017-03-16

    Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1β, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.

  13. West African Sorghum bicolor Leaf Sheaths Have Anti-Inflammatory and Immune-Modulating Properties In Vitro

    PubMed Central

    Benson, Kathleen F.; Beaman, Joni L.; Ou, Boxin; Okubena, Ademola; Okubena, Olajuwon

    2013-01-01

    Abstract The impact of chronic inflammatory conditions on immune function is substantial, and the simultaneous application of anti-inflammatory and immune modulating modalities has potential for reducing inflammation-induced immune suppression. Sorghum-based foods, teas, beers, and extracts are used in traditional medicine, placing an importance on obtaining an increased understanding of the biological effects of sorghum. This study examined selected anti-inflammatory and immune-modulating properties in vitro of Jobelyn™, containing the polyphenol-rich leaf sheaths from a West African variant of Sorghum bicolor (SBLS). Freshly isolated primary human polymorphonuclear (PMN) and mononuclear cell subsets were used to test selected cellular functions in the absence versus presence of aqueous and ethanol extracts of SBLS. Both aqueous and nonaqueous compounds contributed to reduced reactive oxygen species formation by inflammatory PMN cells, and reduced the migration of these cells in response to the inflammatory chemoattractant leukotriene B4. Distinct effects were seen on lymphocyte and monocyte subsets in cultures of peripheral blood mononuclear cells. The aqueous extract of SBLS triggered robust upregulation of the CD69 activation marker on CD3− CD56+ natural killer (NK) cells, whereas the ethanol extract of SBLS triggered similar upregulation of CD69 on CD3+ CD56+ NKT cells, CD3+ T lymphocytes, and monocytes. This was accompanied by many-fold increases in the chemokines RANTES/CCL5, Mip-1α/CCL3, and MIP-1β/CCL4. Both aqueous and nonaqueous compounds contribute to anti-inflammatory effects, combined with multiple effects on immune cell activation status. These observations may help suggest mechanisms of action that contribute to the traditional use of sorghum-based products, beverages, and extracts for immune support. PMID:23289787

  14. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease

    PubMed Central

    Al-Ghadban, Sara; Kaissi, Samira; Homaidan, Fadia R.; Naim, Hassan Y.; El-Sabban, Marwan E.

    2016-01-01

    Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins’ expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier. PMID:27417573

  15. Immune reconstitution inflammatory syndrome in HIV and sporotrichosis coinfection: report of two cases and review of the literature.

    PubMed

    Lyra, Marcelo Rosandiski; Nascimento, Maria Letícia Fernandes Oliveira; Varon, Andréa Gina; Pimentel, Maria Inês Fernandes; Antonio, Liliane de Fátima; Saheki, Maurício Naoto; Bedoya-Pacheco, Sandro Javier; Valle, Antonio Carlos Francesconi do

    2014-01-01

    We report 2 cases of patients with immune reconstitution inflammatory syndrome (IRIS) associated with cutaneous disseminated sporotrichosis and human immunodeficiency virus (HIV) coinfection. The patients received specific treatment for sporotrichosis. However, after 4 and 5 weeks from the beginning of antiretroviral therapy, both patients experienced clinical exacerbation of skin lesions despite increased T CD4+ cells (T cells cluster of differentiation 4 positive) count and decreased viral load. Despite this exacerbation, subsequent mycological examination after systemic corticosteroid administration did not reveal fungal growth. Accordingly, they were diagnosed with IRIS. However, the sudden withdrawal of the corticosteroids resulted in the recurrence of IRIS symptoms. No serious adverse effects could be attributed to prednisone. We recommend corticosteroid treatment for mild-to-moderate cases of IRIS in sporotrichosis and HIV coinfection with close follow-up.

  16. Fatal immune reconstitution inflammatory syndrome with human immunodeficiency virus infection and Candida meningitis: case report and review of the literature.

    PubMed

    Berkeley, Jennifer L; Nath, Avindra; Pardo, Carlos A

    2008-05-01

    Immune reconstitution inflammatory syndrome (IRIS) is an increasingly recognized phenomenon of paradoxical worsening of patients with acquired immunodeficiency syndrome (AIDS) upon initiation of highly active antiretroviral therapy (HAART). To date, there have been limited reports of IRIS in the central nervous system (CNS). Here, the authors describe a 43-year-old man with AIDS who presented with subacute meningitis. No pathogenic organism was identified by routine diagnostic tests, and he was treated empirically with an antituberculous regimen and initiated on HAART therapy. Soon after, he had a precipitous neurologic decline leading to his death. Postmortem evaluation showed a basilar Candida meningitis as well as vasculitis characterized by CD8+ T-cell infiltration, consistent with IRIS. The authors discuss the challenges in diagnosing fungal meningitides and the risks of initiating HAART therapy in those with possible undiagnosed underlying opportunistic infections. Additionally, the authors review the literature regarding CNS IRIS.

  17. Circadian Clocks in the Immune System.

    PubMed

    Labrecque, Nathalie; Cermakian, Nicolas

    2015-08-01

    The immune system is a complex set of physiological mechanisms whose general aim is to defend the organism against non-self-bodies, such as pathogens (bacteria, viruses, parasites), as well as cancer cells. Circadian rhythms are endogenous 24-h variations found in virtually all physiological processes. These circadian rhythms are generated by circadian clocks, located in most cell types, including cells of the immune system. This review presents an overview of the clocks in the immune system and of the circadian regulation of the function of immune cells. Most immune cells express circadian clock genes and present a wide array of genes expressed with a 24-h rhythm. This has profound impacts on cellular functions, including a daily rhythm in the synthesis and release of cytokines, chemokines and cytolytic factors, the daily gating of the response occurring through pattern recognition receptors, circadian rhythms of cellular functions such as phagocytosis, migration to inflamed or infected tissue, cytolytic activity, and proliferative response to antigens. Consequently, alterations of circadian rhythms (e.g., clock gene mutation in mice or environmental disruption similar to shift work) lead to disturbed immune responses. We discuss the implications of these data for human health and the areas that future research should aim to address.

  18. Lung cancer: the immune system and radiation.

    PubMed

    Mendes, F; Antunes, C; Abrantes, A M; Gonçalves, A C; Nobre-Gois, I; Sarmento, A B; Botelho, M F; Rosa, M S

    2015-01-01

    Lung cancer has a known relationship with smoking and is one of the leading causes of cancer-related death worldwide. Although the number of studies discussing lung cancer is vast, treatment efficacy is still suboptimal due to the wide range of factors that affect patient outcome. This review aims to collect information on lung cancer treatment, specially focused on radiation therapy. It also compiles information regarding the influence of radiotherapy on the immune system and its response to tumour cells. It evaluates how immune cells react after radiation exposure and the influence of their cytokines in the tumour microenvironment. The literature analysis points out that the immune system is a very promising field of investigation regarding prognosis, mostly because the stromal microenvironment in the tumour can provide some information about what can succeed in the future concerning treatment choices and perspectives. T cells (CD4+ and CD8+), interleukin-8, vascular endothelial growth factor and transforming growth factor-β seem to have a key role in the immune response after radiation exposure. The lack of large scale studies means there is no common consensus in the scientific community about the role of the immune system in lung cancer patients treated with radiotherapy. Clarification of the mechanism behind the immune response after radiation can lead to better treatments and better quality life for patients.

  19. Immune system stimulation by probiotic microorganisms.

    PubMed

    Ashraf, Rabia; Shah, Nagendra P

    2014-01-01

    Probiotic organisms are claimed to offer several functional properties including stimulation of immune system. This review is presented to provide detailed informations about how probiotics stimulate our immune system. Lactobacillus rhamnosus GG, Lactobacillus casei Shirota, Bifidobacterium animalis Bb-12, Lactobacillus johnsonii La1, Bifidobacterium lactis DR10, and Saccharomyces cerevisiae boulardii are the most investigated probiotic cultures for their immunomodulation properties. Probiotics can enhance nonspecific cellular immune response characterized by activation of macrophages, natural killer (NK) cells, antigen-specific cytotoxic T-lymphocytes, and the release of various cytokines in strain-specific and dose-dependent manner. Mixture and type (gram-positive and gram-negative) of probiotic organisms may induce different cytokine responses. Supplementation of probiotic organisms in infancy could help prevent immune-mediated diseases in childhood, whereas their intervention in pregnancy could affect fetal immune parameters, such as cord blood interferon (IFN)-γ levels, transforming growth factor (TGF)-β1 levels, and breast milk immunoglobulin (Ig)A. Probiotics that can be delivered via fermented milk or yogurt could improve the gut mucosal immune system by increasing the number of IgA(+) cells and cytokine-producing cells in the effector site of the intestine.

  20. Treatment of chronic immune-mediated neuropathies: chronic inflammatory demyelinating polyradiculoneuropathy, multifocal motor neuropathy, and the Lewis-Sumner syndrome.

    PubMed

    Sederholm, Benson H

    2010-09-01

    Current treatment approaches for the management of chronic immune-mediated peripheral neuropathies are reviewed, including chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), multifocal motor neuropathy (MMN), and the Lewis-Sumner syndrome (LSS). A summary of existing evidence for commonly used treatment modalities, such as corticosteroids, intravenous immune globulin (IVIG), and plasma exchange is provided. Evidence for the use of additional immunosuppressant and immunomodulatory agents is also reviewed.

  1. [The role of immune system in the control of cancer development and growth].

    PubMed

    Sütő, Gábor

    2016-06-01

    The role of immune system is the maintenace of the integritiy of the living organism. The elements of the immune system are connected by several ways forming a complex biological network. This network senses the changes of the inner and outer environment and works out the most effective response against infections and tumors. Dysfunction of the immune system leads to the development of cancer development and chronic inflammatory diseases. Modulation of the checkpoints of the immune system opened new perspecitves in the treatment of rheumatological and oncological diseases as well. Beside the potent antiinflammatory activity, new therapies are able to stimulate anticancer activity of the immune system. The result of these recent developments is a better outcome of malignant diseases, which had an unfavorable outcome in the past. Orv. Hetil., 2016, 157(Suppl. 2), 3-8.

  2. [Hepatitis B virus (HBV) and the inflammatory/immune response. I. The natural environment of the antigen presentation and immunologic chaos induced by the virus].

    PubMed

    Villarrubia, V G; Alvarez-Mon, M; Chirigos, M A; Herrerías, J M

    1997-12-01

    In this paper, the authors update on the immunopathology of hepatitis B virus (HBV) infection, with special reference to the roles of inflammatory and natural immune responses (macrophages and NK cells) in the viral clearance. The role of specific immune responses being related to the influence of the environment of the antigen presentation (macrophages, NK cells, and their related cytokines IL-12 and IFN-gamma) on Th cells within the liver. The viral scape leading to chronic hepatitis B is thought to be due (a) to the suppressive actions of the virus on NK cells and IFN-gamma production (b) to the downregulation of IL-12/IL-15 production provoked by the inflammatory response (factor C3 of the complement system) on IL-12-producing macrophages: immunologic chaos.

  3. Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity

    PubMed Central

    Choquet, Hélène; Pawlikowska, Ludmila; Nelson, Jeffrey; McCulloch, Charles E.; Akers, Amy; Baca, Beth; Khan, Yasir; Hart, Blaine; Morrison, Leslie; Kim, Helen

    2014-01-01

    Background Familial cerebral cavernous malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions that often result in intracerebral hemorrhage (ICH), seizures, and neurological deficits. Carriers of the same genetic mutation can present with variable symptoms and severity of disease, suggesting the influence of modifier factors. Evidence is emerging that inflammation and immune response play a role in the pathogenesis of CCM. The purpose of this study was to investigate whether common variants in inflammatory and immune response genes influence the severity of familial CCM1 disease, as manifested by ICH and greater brain lesion count. Methods Hispanic CCM1 patients (n=188) harboring the founder Q455X ‘common Hispanic mutation’ (CHM) in the KRIT1 gene were analyzed at baseline. Participants were enrolled between June 2010 and March 2014 either through the Brain Vascular Malformation Consortium (BVMC) study or through the Angioma Alliance organization. Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging were performed to determine ICH as well as total and large (≥5 mm in diameter) lesion counts. Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 830 variants in 56 inflammatory and immune response genes for association with ICH and residuals of log-transformed total or large lesion count adjusted for age at enrollment and gender. Variants were analyzed individually, grouped by sub-pathways or whole pathway. Results At baseline, 30.3% of CCM1-CHM subjects had ICH, with a mean ± standard deviation (SD) of 60.1 ± 115.0 (range 0 to 713) for total lesions and 4.9 ± 8.7 (range 0 to 104) for large lesions. The heritability estimates explained by all autosomal variants were 0.20 (SE=0.31), 0.81 (SE=0.17) and 0.48 (SE=0.19), for ICH, total lesion count and large lesion count

  4. Stress responses sculpt the insect immune system, optimizing defense in an ever-changing world.

    PubMed

    Adamo, Shelley Anne

    2017-01-01

    A whole organism, network approach can help explain the adaptive purpose of stress-induced changes in immune function. In insects, mediators of the stress response (e.g. stress hormones) divert molecular resources away from immune function and towards tissues necessary for fight-or-flight behaviours. For example, molecules such as lipid transport proteins are involved in both the stress and immune responses, leading to a reduction in disease resistance when these proteins are shifted towards being part of the stress response system. Stress responses also alter immune system strategies (i.e. reconfiguration) to compensate for resource losses that occur during fight-or flight events. In addition, stress responses optimize immune function for different physiological conditions. In insects, the stress response induces a pro-inflammatory state that probably enhances early immune responses.

  5. Neural Control of the Immune System

    ERIC Educational Resources Information Center

    Sundman, Eva; Olofsson, Peder S.

    2014-01-01

    Neural reflexes support homeostasis by modulating the function of organ systems. Recent advances in neuroscience and immunology have revealed that neural reflexes also regulate the immune system. Activation of the vagus nerve modulates leukocyte cytokine production and alleviates experimental shock and autoimmune disease, and recent data have…

  6. Effects of microgravity on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Taylor, Gerald R.

    1991-01-01

    Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.

  7. Cerebrospinal Fluid Neopterin Analysis in Neuropediatric Patients: Establishment of a New Cut Off-Value for the Identification of Inflammatory-Immune Mediated Processes

    PubMed Central

    Molero-Luis, Marta; Fernández-Ureña, Sergio; Jordán, Iolanda; Serrano, Mercedes; Ormazábal, Aida; Garcia-Cazorla, Àngels; Artuch, Rafael

    2013-01-01

    Objective A high level of cerebrospinal fluid (CSF) neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. Methods To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A), acquired/unknown etiologic neurologic diseases (B) and inflammatory-immune mediated processes (C). Results The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. Conclusions Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes. PMID:24367586

  8. Local immune system in oviduct physiology and pathophysiology: attack or tolerance?

    PubMed

    Marey, M A; Yousef, M S; Kowsar, R; Hambruch, N; Shimizu, T; Pfarrer, C; Miyamoto, A

    2016-07-01

    The local immune system in the oviduct has a unique ability to deal with pathogens, allogeneic spermatozoa, and the semi-allogeneic embryo. To achieve this, it seems likely that the oviduct possesses an efficient and strictly controlled immune system that maintains optimal conditions for fertilization and early embryo development. The presence of a proper sperm and/or embryo-oviduct interaction begs the question of whether the local immune system in the oviduct exerts beneficial or deleterious effects on sperm and early embryo; support or attack?. A series of studies has revealed that bovine oviduct epithelial cells (BOECs) are influenced by preovulatory levels of Estradiol-17β, progesterone, and LH to maintain an immunologic homeostasis in bovine oviduct, via inhibition of proinflammatory responses that are detrimental to allogenic sperm. Under pathologic conditions, the mucosal immune system initiates the inflammatory response to the infection; the bacterial lipopolysaccharide (LPS) at low concentrations induces a proinflammatory response with increased expression of TLR-4, PTGS2, IL-1β, NFκB1, and TNFα, resulting in tissue damage. At higher concentrations, however, LPS induces a set of anti-inflammatory genes (TLR-2, IL-4, IL-10, and PTGES) that may initiate a tissue repair. This response of BOECs is accompanied by the secretion of acute phase protein, suggesting that BOECs react to LPS with a typical acute proinflammatory response. Under physiological conditions, polymorphonuclear neutrophils (PMN) are existent in the oviductal fluid during preovulatory period in the bovine. Interestingly, the bovine oviduct downregulates sperm phagocytosis by PMN via prostaglandin E2 (PGE2) action. In addition, the angiotensin-endothelin-PGE2 system controlling oviduct contraction may fine-tune the PMN phagocytic behavior to sperm in the oviduct. Importantly, a physiological range of PGE2 supplies anti-inflammatory balance in BOEC. Our recent results show that the sperm

  9. Anti‐Inflammatory Immune Skewing Is Atheroprotective: Apoe−/−FcγRIIb−/− Mice Develop Fibrous Carotid Plaques

    PubMed Central

    Harmon, Erin Y.; Fronhofer, Van; Keller, Rebecca S.; Feustel, Paul J.; Zhu, Xinmei; Xu, Hao; Avram, Dorina; Jones, David M.; Nagarajan, Shanmugam; Lennartz, Michelle R.

    2014-01-01

    Background Stroke, caused by carotid plaque rupture, is a major cause of death in the United States. Whereas vulnerable human plaques have higher Fc receptor (FcγR) expression than their stable counterparts, how FcγR expression impacts plaque histology is unknown. We investigated the role of FcγRIIb in carotid plaque development and stability in apolipoprotein (Apo)e−/− and Apoe−/−FcγRIIb−/− double knockout (DKO) animals. Methods and Results Plaques were induced by implantation of a shear stress‐modifying cast around the carotid artery. Plaque length and stenosis were followed longitudinally using ultrasound biomicroscopy. Immune status was determined by flow cytometry, cytokine release, immunoglobulin G concentration and analysis of macrophage polarization both in plaques and in vitro. Surprisingly, DKO animals had lower plaque burden in both carotid artery and descending aorta. Plaques from Apoe−/− mice were foam‐cell rich and resembled vulnerable human specimens, whereas those from DKO mice were fibrous and histologically stable. Plaques from DKO animals expressed higher arginase 1 (Arg‐1) and lower inducible nitric oxide synthase (iNOS), indicating the presence of M2 macrophages. Analysis of blood and cervical lymph nodes revealed higher interleukin (IL)‐10, immune complexes, and regulatory T cells (Tregs) and lower IL‐12, IL‐1β, and tumor necrosis factor alpha (TNF‐α) in DKO mice. Similarly, in vitro stimulation produced higher IL‐10 and Arg‐1 and lower iNOS, IL‐1β, and TNF‐α in DKO versus Apoe−/− macrophages. These results define a systemic anti‐inflammatory phenotype. Conclusions We hypothesized that removal of FcγRIIb would exacerbate atherosclerosis and generate unstable plaques. However, we found that deletion of FcγRIIb on a congenic C57BL/6 background induces an anti‐inflammatory Treg/M2 polarization that is atheroprotective. PMID:25516435

  10. Histamine H3 Receptor Integrates Peripheral Inflammatory Signals in the Neurogenic Control of Immune Responses and Autoimmune Disease Susceptibility

    PubMed Central

    Martin, Rebecca A.; Subramanian, Meenakumari; Noubade, Rajkumar; Rio, Roxana Del; Mawe, Gary M.; Bond, Jeffrey P.; Poynter, Matthew E.; Blankenhorn, Elizabeth P.; Teuscher, Cory

    2013-01-01

    Histamine H3 receptor (Hrh3/H3R) is primarily expressed by neurons in the central nervous system (CNS) where it functions as a presynaptic inhibitory autoreceptor and heteroreceptor. Previously, we identified an H3R-mediated central component in susceptibility to experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis (MS), related to neurogenic control of blood brain barrier permeability and peripheral T cell effector responses. Furthermore, we identified Hrh3 as a positional candidate for the EAE susceptibility locus Eae8. Here, we characterize Hrh3 polymorphisms between EAE-susceptible and resistant SJL and B10.S mice, respectively, and show that Hrh3 isoform expression in the CNS is differentially regulated by acute peripheral inflammatory stimuli in an allele-specific fashion. Next, we show that Hrh3 is not expressed in any subpopulations of the immune compartment, and that secondary lymphoid tissue is anatomically poised to be regulated by central H3R signaling. Accordingly, using transcriptome analysis, we show that, inflammatory stimuli elicit unique transcriptional profiles in the lymph nodes of H3RKO mice compared to WT mice, which is indicative of negative regulation of peripheral immune responses by central H3R signaling. These results further support a functional link between the neurogenic control of T cell responses and susceptibility to CNS autoimmune disease coincident with acute and/or chronic peripheral inflammation. Pharmacological targeting of H3R may therefore be useful in preventing the development and formation of new lesions in MS, thereby limiting disease progression. PMID:23894272

  11. Effects of ceftaroline on the innate immune and on the inflammatory responses of bronchial epithelial cells exposed to cigarette smoke.

    PubMed

    Pace, E; Ferraro, M; Di Vincenzo, S; Siena, L; Gjomarkaj, M

    2016-09-06

    The tobacco smoking habit interferes with the innate host defence system against infections. Recurrent infections accelerated the functional respiratory decline. The present study assessed the effects of ceftaroline on TLR2 and TLR4 and on pro-inflammatory responses in airway epithelial cells (16HBE cell line and primary bronchial epithelial cells) with or without cigarette smoke extracts (CSE 10%). TLR2, TLR4, LPS binding and human beta defensin 2 (HBD2) were assessed by flow cytometry, NFkB nuclear translocation by western blot analysis, IL-8 and HBD2 mRNA by Real Time PCR; the localization of NFkB on the HBD2 and IL-8 promoters by ChiP Assay. CSE increased TLR4, TLR2 expression, LPS binding and IL-8 mRNA; CSE decreased HBD2 (protein and mRNA), activated NFkB and promoted the localization of NFkB on IL-8 promoter and not on HBD2 promoter. Ceftaroline counteracted the CSE effect on TLR2 expression, on LPS binding, on IL-8 mRNA, HBD2 and NFkB in 16HBE. The effects of ceftaroline on HBD2 protein and on IL-8 mRNA were confirmed in primary bronchial epithelial cells. In conclusion, ceftaroline is able to counteract the effects of CSE on the innate immunity and pro-inflammatory responses modulating TLR2, LPS binding, NFkB activation and activity, HBD2 and IL-8 expression in bronchial epithelial cells.

  12. Neither classical nor alternative macrophage activation is required for Pneumocystis clearance during immune reconstitution inflammatory syndrome.

    PubMed

    Zhang, Zhuo-Qian; Wang, Jing; Hoy, Zachary; Keegan, Achsah; Bhagwat, Samir; Gigliotti, Francis; Wright, Terry W

    2015-12-01

    Pneumocystis is a respiratory fungal pathogen that causes pneumonia (Pneumocystis pneumonia [PcP]) in immunocompromised patients. Alveolar macrophages are critical effectors for CD4(+) T cell-dependent clearance of Pneumocystis, and previous studies found that alternative macrophage activation accelerates fungal clearance during PcP-related immune reconstitution inflammatory syndrome (IRIS). However, the requirement for either classically or alternatively activated macrophages for Pneumocystis clearance has not been determined. Therefore, RAG2(-/-) mice lacking either the interferon gamma (IFN-γ) receptor (IFN-γR) or interleukin 4 receptor alpha (IL-4Rα) were infected with Pneumocystis. These mice were then immune reconstituted with wild-type lymphocytes to preserve the normal T helper response while preventing downstream effects of Th1 or Th2 effector cytokines on macrophage polarization. As expected, RAG2(-/-) mice developed severe disease but effectively cleared Pneumocystis and resolved IRIS. Neither RAG/IFN-γR(-/-) nor RAG/IL-4Rα(-/-) mice displayed impaired Pneumocystis clearance. However, RAG/IFN-γR(-/-) mice developed a dysregulated immune response, with exacerbated IRIS and greater pulmonary function deficits than those in RAG2 and RAG/IL-4Rα(-/-) mice. RAG/IFN-γR(-/-) mice had elevated numbers of lung CD4(+) T cells, neutrophils, eosinophils, and NK cells but severely depressed numbers of lung CD8(+) T suppressor cells. Impaired lung CD8(+) T cell responses in RAG/IFN-γR(-/-) mice were associated with elevated lung IFN-γ levels, and neutralization of IFN-γ restored the CD8 response. These data demonstrate that restricting the ability of macrophages to polarize in response to Th1 or Th2 cytokines does not impair Pneumocystis clearance. However, a cell type-specific IFN-γ/IFN-γR-dependent mechanism regulates CD8(+) T suppressor cell recruitment, limits immunopathogenesis, preserves lung function, and enhances the resolution of PcP-related IRIS.

  13. Uropathogenic Escherichia coli modulates innate immunity to suppress Th1-mediated inflammatory responses during infectious epididymitis.

    PubMed

    Lang, Tali; Hudemann, Christoph; Tchatalbachev, Svetlin; Stammler, Angelika; Michel, Vera; Aslani, Ferial; Bhushan, Sudhanshu; Chakraborty, Trinad; Renz, Harald; Meinhardt, Andreas

    2014-03-01

    Infectious epididymitis in men, a frequent entity in urological outpatient settings, is commonly caused by bacteria originating from the anal region ascending the genitourinary tract. One of the most prevalent pathogens associated with epididymitis is Escherichia coli. In our previous study, we showed that semen quality is compromised in men following epididymitis associated with specific E. coli pathovars. Thus, our aim was to investigate possible differences in immune responses elicited during epididymitis following infection with the uropathogenic E. coli (UPEC) strain CFT073 and the nonpathogenic enteric E. coli (NPEC) strain 470. Employing an in vivo experimental epididymitis model, C57BL/6 mice were infected with UPEC CFT073, NPEC 470, or phosphate-buffered saline (PBS) as a sham control for up to 7 days. After infection with NPEC 470, the expression of proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in the epididymis was significantly increased. Conversely, UPEC CFT073-challenged mice displayed inflammatory gene expression at levels comparable to sham PBS-treated animals. Moreover, by day 7 only NPEC-infected animals showed activation of adaptive immunity evident by a substantial influx of CD3+ and F4/80+ cells in the epididymal interstitium. This correlated with enhanced production of Th1-associated cytokines IL-2 and gamma interferon (IFN-γ). Furthermore, splenocytes isolated from UPEC-infected mice exhibited diminished T-cell responses with significantly reduced secretion of IL-2 and IFN-γ in contrast to NPEC-infected animals. Overall, these findings provide new insights into understanding pathogen-specific modulation of host immunity during acute phases of epididymitis, which may influence severity of disease and clinical outcomes.

  14. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    PubMed

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases.

  15. Inflammatory diseases of the central nervous system in dogs.

    PubMed

    Thomas, W B

    1998-08-01

    Inflammatory diseases of the central nervous system (CNS) are important causes of seizures in dogs. Specific diseases include canine distemper, rabies, cryptococcosis, coccidioidomycosis, toxoplasmosis, neosporosis, Rocky Mountain spotted fever, ehrlichiosis, granulomatous meningoencephalomyelitis, and pug dog encephalitis. Inflammatory disorders should be considered when a dog with seizures has persistent neurological deficits, suffers an onset of seizures at less than 1 or greater than 5 years of age, or exhibits signs of systemic illness. A thorough history, examination, and analysis of cerebrospinal fluid are important in the diagnosis of inflammatory diseases. However, even with extensive diagnostic testing, a specific etiology is identified in less than two thirds of dogs with inflammatory diseases of the CNS.

  16. Network representations of immune system complexity

    PubMed Central

    Subramanian, Naeha; Torabi-Parizi, Parizad; Gottschalk, Rachel A.; Germain, Ronald N.; Dutta, Bhaskar

    2015-01-01

    The mammalian immune system is a dynamic multi-scale system composed of a hierarchically organized set of molecular, cellular and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein-protein interactions underlying intracellular signaling pathways and single cell responses to increasingly complex networks of in vivo cellular interaction, positioning and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather non-linear behaviors arising from dynamic, feedback-regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multi-scale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular and organism-level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. PMID:25625853

  17. The innate immune system in human systemic lupus erythematosus.

    PubMed

    Weidenbusch, Marc; Kulkarni, Onkar P; Anders, Hans-Joachim

    2017-04-25

    Although the role of adaptive immune mechanisms, e.g. autoantibody formation and abnormal T-cell activation, has been long noted in the pathogenesis of human systemic lupus erythematosus (SLE), the role of innate immunity has been less well characterized. An intricate interplay between both innate and adaptive immune elements exists in protective anti-infective immunity as well as in detrimental autoimmunity. More recently, it has become clear that the innate immune system in this regard not only starts inflammation cascades in SLE leading to disease flares, but also continues to fuel adaptive immune responses throughout the course of the disease. This is why targeting the innate immune system offers an additional means of treating SLE. First trials assessing the efficacy of anti-type I interferon (IFN) therapy or modulators of pattern recognition receptor (PRR) signalling have been attempted. In this review, we summarize the available evidence on the role of several distinct innate immune elements, especially neutrophils and dendritic cells as well as the IFN system, as well as specific innate PRRs along with their signalling pathways. Finally, we highlight recent clinical trials in SLE addressing one or more of the aforementioned components of the innate immune system.

  18. Neurotuberculosis immune reconstitution inflammatory syndrome in the setting of HIV infection: A case report and review of literature

    PubMed Central

    Jaganmohan, Deepasree; Chakkalakkoombil, Sunitha V; Beena, Anjana A; Krishnan, Nagarajan

    2016-01-01

    Immune reconstitution inflammatory syndrome (IRIS) is an exaggerated immune response which can occur with various coinfections in human immunodeficiency virus (HIV) infected patients, of which the most commonly implicated in central nervous system (CNS)-IRIS are progressive multifocal leukoencephalopathy (PML), cryptococcosis, and tuberculosis (TB). TB-IRIS is a known complication of pulmonary TB or TB lymphadenitis coinfection in HIV infected patients who are on antituberculosis treatment (ATT) after the initiation of antiretroviral therapy (ART). However, development of IRIS in extrapulmonary TB such as CNS TB is very rare. Our case is that of an isolated CNS-TB-IRIS, presenting as increase in the size and perilesional edema of the ring enhancing lesions in the brain, which was observed in two sequential magnetic resonance imaging done over a period of 2 months in a retropositive patient who presented with clinical deterioration after commencement of ART. As prompt diagnosis was made and specific management aimed at IRIS was started without delay, the patient improved symptomatically. PMID:28104935

  19. Immune reconstitution inflammatory syndrome Kaposi sarcoma in the liver manifesting as acute obstructive hepatitis: another potential role for montelukast?

    PubMed

    Read, P J; Lucas, S; Morris, S; Kulasegaram, R

    2013-02-01

    Immune reconstitution inflammatory syndrome has been described in Kaposi sarcoma, but does not usually manifest as acute hepatitis. We describe a case of rapid obstructive jaundice after initiation of antiretroviral therapy, in which the liver biopsy confirmed hepatic Kaposi sarcoma, and the clinical course was altered by the addition of montelukast.

  20. Catecholamines—Crafty Weapons in the Inflammatory Arsenal of Immune/Inflammatory Cells or Opening Pandora’s Box§?

    PubMed Central

    Flierl, Michael A; Rittirsch, Daniel; Huber-Lang, Markus; Sarma, J Vidya; Ward, Peter A

    2008-01-01

    It is well established that catecholamines (CAs), which regulate immune and inflammatory responses, derive from the adrenal medulla and from presynaptic neurons. Recent studies reveal that T cells also can synthesize and release catecholamines which then can regulate T cell function. We have shown recently that macrophages and neutrophils, when stimulated, can generate and release catecholamines de novo which, then, in an autocrine/paracrine manner, regulate mediator release from these phagocytes via engagement of adrenergic receptors. Moreover, regulation of catecholamine-generating enzymes as well as degrading enzymes clearly alter the inflammatory response of phagocytes, such as the release of proinflammatory mediators. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses. PMID:18079995

  1. Relevance of Immune-Sympathetic Nervous System Interplay for the Development of Hypertension.

    PubMed

    Winklewski, Pawel J; Radkowski, Marek; Demkow, Urszula

    2016-01-01

    Historically, the sympathetic nervous system (SNS) has been mostly associated with the 'fight or flight' response and the regulation of cardiovascular function. However, evidence over the past 30 years suggests that SNS may also influence the function of immune cells. In this review we describe the basic research being done in the area of SNS regulation of immune function. Further, we show that the SNS-immune interplay during circadian rhythm may modulate the robustness of the inflammatory response, critical for survival during periods of increased activity. Finally, new concepts of a close relationship between these systems in the pathogenesis of hypertension are discussed.

  2. Diabetic foot syndrome: Immune-inflammatory features as possible cardiovascular markers in diabetes

    PubMed Central

    Tuttolomondo, Antonino; Maida, Carlo; Pinto, Antonio

    2015-01-01

    by lower plasma levels of adiponectin and higher plasma levels of interleukin-6 thus linking foot ulcers pathogenesis to microvascular and inflammatory events. The purpose of this review is to highlight the immune inflammatory features of DFS and its possible role as a marker of cardiovascular risk in diabetes patients and to focus the management of major complications related to diabetes such as infections and peripheral arteriopathy. PMID:25621212

  3. Do leprosy and tuberculosis generate a systemic inflammatory shift? Setting the ground for a new dialogue between experimental immunology and bioarchaeology.

    PubMed

    Crespo, Fabian A; Klaes, Christopher K; Switala, Andrew E; DeWitte, Sharon N

    2017-01-01

    It is possible that during long lasting chronic infections such as tuberculosis (TB) and leprosy individuals who generate a stronger immune response will produce a chronic shift in the systemic levels of inflammatory proteins. Consequently, the systemic immunological shift could affect inflammatory responses against other persistent pathogens such as Porphyromonas gingivalis associated with periodontal disease (PD).

  4. Immune system alterations in amyotrophic lateral sclerosis.

    PubMed

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-11-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other and contribute to neurodegeneration. Infiltrating peripheral immune cells appears to correlate with disease progression, but their significance and composition is unclear. The deleterious effects of this collaborating system of cells appear to outweigh the protective aspects, and revealing this interplay might give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation seemingly increases with disease progression. Infiltrating monocytes, macrophages and T cells are associated with these areas, although with mixed reports regarding T cell composition. This literature review will provide evidence supporting the immune system as an important part of ALS disease mechanism and present a hypothesis to direct the way for further studies.

  5. The cellular immune system in the post-myocardial infarction repair process.

    PubMed

    Latet, Sam C; Hoymans, Vicky Y; Van Herck, Paul L; Vrints, Christiaan J

    2015-01-20

    Growing evidence indicates that overactivation and prolongation of the inflammatory response after acute myocardial infarction (AMI) result in worse left ventricular remodelling, dysfunction and progression to heart failure. This post-AMI inflammatory response is characterised by the critical involvement of cells from both the innate and adaptive immune systems. In this review paper, we aim to summarise and discuss the emergence of immune cells in the bloodstream and myocardium after AMI in men and mice. Subset composition, phenotypes, and kinetics of immune cells are considered. In addition, the relation with post-MI cardiac remodelling, function and outcome is reported. Increased knowledge of immune components, the mechanisms and interactions by which these cells contribute to myocardial damage and repair following AMI may help to close the gaps that limit improvement of treatments of those who survive the acute infarction.

  6. Effects of SCR-3 on the immunosuppression accompanied with the systemic inflammatory response syndrome.

    PubMed

    Li, Jun; Niu, Jie; Ou, Shan; Ye, Zhan-Yong; Liu, Deng-Qun; Wang, Feng-Chao; Su, Yong-Ping; Wang, Jun-Ping

    2012-05-01

    Steroid receptor coactivator-3 (SRC-3) is a multifunctional protein that plays an important role in mammary gland growth, development, and tumorigenesis. In this study, SCR-3 gene knockout mice were used to study the effects of SCR-3 on the immunosuppression accompanied with systemic inflammatory response syndrome (SIRS). Bacterial clearance assay was performed by blood culture and frozen sections, and the results showed that the absence of SCR-3 protein serious damaged the innate immune system and the body's ability to inactivate or phagocytosis of bacteria was significantly decreased, and the absence of SCR-3 protein also weakened phagocytes' ability to degrade bacteria and their metabolites. Furthermore, animal model of inflammatory reaction was established and the immune function was determined, and the results revealed that SRC-3 protein may play an important role in maintenance of T-cells' immune function, and severe T-cell immune function disorder would be resulted once SRC-3 protein is missing. In addition, the results of our study showed the steady-state of lymphocyte subsets was destroyed after SIRS, leading the suppression of cellular immune function, and the absence of SCR-3 protein may aggravate the suppression of T-lymphocyte function. Therefore, the present study demonstrated that the absence of SCR-3 protein would aggravate immunosuppression. In addition, SRC-3 protein is a significant regulator of infection and inflammation, and SRC-3 protein play an essential role in the development of immunosuppression accompanied with SIRS.

  7. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity.

    PubMed

    Shi, Ju; Johansson, Jenny; Woodling, Nathaniel S; Wang, Qian; Montine, Thomas J; Andreasson, Katrin

    2010-06-15

    Peripheral inflammation leads to immune responses in brain characterized by microglial activation, elaboration of proinflammatory cytokines and reactive oxygen species, and secondary neuronal injury. The inducible cyclooxygenase (COX), COX-2, mediates a significant component of this response in brain via downstream proinflammatory PG signaling. In this study, we investigated the function of the PGE2 E-prostanoid (EP) 4 receptor in the CNS innate immune response to the bacterial endotoxin LPS. We report that PGE2 EP4 signaling mediates an anti-inflammatory effect in brain by blocking LPS-induced proinflammatory gene expression in mice. This was associated in cultured murine microglial cells with decreased Akt and I-kappaB kinase phosphorylation and decreased nuclear translocation of p65 and p50 NF-kappaB subunits. In vivo, conditional deletion of EP4 in macrophages and microglia increased lipid peroxidation and proinflammatory gene expression in brain and in isolated adult microglia following peripheral LPS administration. Conversely, EP4 selective agonist decreased LPS-induced proinflammatory gene expression in hippocampus and in isolated adult microglia. In plasma, EP4 agonist significantly reduced levels of proinflammatory cytokines and chemokines, indicating that peripheral EP4 activation protects the brain from systemic inflammation. The innate immune response is an important component of disease progression in a number of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In addition, recent studies demonstrated adverse vascular effects with chronic administration of COX-2 inhibitors, indicating that specific PG signaling pathways may be protective in vascular function. This study supports an analogous and beneficial effect of PGE2 EP4 receptor signaling in suppressing brain inflammation.

  8. Immunization

    MedlinePlus

    ... remembers" the germ and can fight it again. Vaccines contain germs that have been killed or weakened. When given to a healthy person, the vaccine triggers the immune system to respond and thus ...

  9. Prion Disease and the Innate Immune System

    PubMed Central

    Bradford, Barry M.; Mabbott, Neil A.

    2012-01-01

    Prion diseases or transmissible spongiform encephalopathies are a unique category of infectious protein-misfolding neurodegenerative disorders. Hypothesized to be caused by misfolding of the cellular prion protein these disorders possess an infectious quality that thrives in immune-competent hosts. While much has been discovered about the routing and critical components involved in the peripheral pathogenesis of these agents there are still many aspects to be discovered. Research into this area has been extensive as it represents a major target for therapeutic intervention within this group of diseases. The main focus of pathological damage in these diseases occurs within the central nervous system. Cells of the innate immune system have been proven to be critical players in the initial pathogenesis of prion disease, and may have a role in the pathological progression of disease. Understanding how prions interact with the host innate immune system may provide us with natural pathways and mechanisms to combat these diseases prior to their neuroinvasive stage. We present here a review of the current knowledge regarding the role of the innate immune system in prion pathogenesis. PMID:23342365

  10. Leptin as a link between the immune system and kidney-related diseases: leading actor or just a coadjuvant?

    PubMed

    Moraes-Vieira, P M M; Bassi, E J; Araujo, R C; Câmara, N O S

    2012-08-01

    Food intake and nutritional status modify the physiological responses of the immune system to illness and infection and regulate the development of chronic inflammatory processes, such as kidney disease. Adipose tissue secretes immune-related proteins called adipokines that have pleiotropic effects on both the immune and neuroendocrine systems, linking metabolism and immune physiology. Leptin, an adipose tissue-derived adipokine, displays a variety of immune and physiological functions, and participates in several immune responses. Here, we review the current literature on the role of leptin in kidney diseases, linking adipose tissue and the immune system with kidney-related disorders. The modulation of this adipose hormone may have a major impact on the treatment of several immune- and metabolic-related kidney diseases.

  11. Joint Replacement Surgery and the Innate Immune System

    PubMed Central

    Goodman, Stuart; Konttinen, Yrjö T.; Takagi, Michiaki

    2015-01-01

    Total joint replacement is a highly successful, cost-effective surgical procedure that relieves pain and improves function for patients with end-stage arthritis. The most commonly used materials for modern joint replacements include metal alloys such as cobalt chrome and titanium alloys, polymers including polymethylmethacrylate and polyethylene, and ceramics. Implantation of a joint prosthesis incites an acute inflammatory reaction that is regulated by the innate immune system, a preprogrammed non-antigen specific biological response composed of cells, proteins, and other factors. This “frontline” immune mechanism was originally designed to combat invading microorganisms, but now responds to both pathogen-associated molecular patterns or PAMPS (by-products from microorganisms), and damage associated molecular patterns or DAMPS (molecular by-products from cells), via pattern recognition receptors (PRRs). In this way, potentially injurious stimuli that might disrupt the normal homeostatic regulatory mechanisms of the organism are efficiently dealt with, ensuring the survival of the host. Initial surgical implantation of the joint replacement, as well as ongoing generation of wear debris and byproducts during usage of the joint, activates the innate immune system. Understanding and potentially modulating these events may lead to improved function and increased longevity of joint replacements in the future. PMID:25747028

  12. [The liver and the immune system].

    PubMed

    Jakab, Lajos

    2015-07-26

    The liver is known to be the metabolic centre of the organism and is under the control of the central nervous system. It has a peculiar tissue structure and its anatomic localisation defines it as part of the immune system having an individual role in the defence of the organism. The determinant of its particular tissue build-up is the sinusoid system. In addition to hepatocytes, one cell row "endothelium", stellate cells close to the external surface, Kupffer cells tightly to its inner surface, as well as dendritic cells and other cell types (T and B lymphocytes, natural killer and natural killer T-cells, mast cells, granulocytes) are present. The multitudes and variety of cells make it possible to carry out the tasks according to the assignment of the organism. The liver is a member of the immune system having immune cells largely in an activated state. Its principal tasks are the assurance of the peripheral immune tolerance of the organism with the help of the haemopoetic cells and transforming growth factor-β. The liver takes part in the determination of the manner of the non-specific immune response of the organism. In addition to acute phase reaction of the organism, the liver has a role in the adaptive/specific immune response. These functions include retardation of the T and B lymphocytes and the defence against harmful pathogens. With the collaboration of transforming growth factor-β, immunoglobulins and their subclasses are inhibited just as the response of the T lymphocytes. The only exception is the undisturbed immunoglobulin A production. Particularly important is the intensive participation of the liver in the acute phase reaction of the organism, which is organised and guided by the coordinated functions of the cortico-hypothalamo-hypophysis-adrenal axis. Beside cellular elements, hormones, adhesion molecules, chemokines and cytokines are also involved in the cooperation with the organs. Acute phase reactants play a central role in these processes

  13. Reactions of the immune system in epilepsy

    PubMed Central

    COJOCARU, Inimioara Mihaela; COJOCARU, Manole

    2010-01-01

    ABSTRACT Epilepsy may present as a symptom of many neurological disorders and often an etiological explanation cannot be identified. There is growing evidence that autoimmune mechanisms might have a role in some patients. The evidence for immunological mechanisms in epilepsy can be examined within the following three main areas: the childhood epilepsy syndromes, epilepsy associated with other immunologically mediated diseases, and the more common unselected groups of patients with epilepsy. Autoimmunity was recently suspected to be involved in the pathology of certain human epilepsies. This includes numerous reports of the detection of theoretically relevant serum autoantibodies, experimental data showing that antibodies can be epileptogenic, and a response of some epilepsy syndromes to immunomodulation. The high prevalence of epilepsies in specific immune diseases suggests that immune system may play a role in the pathogenesis of epilepsy or might be associated with it. There is some evidence that immune mechanisms play a role in the pathogenesis of some epilepsy syndromes. PMID:21977153

  14. The humoral immune system of anadromous fish.

    PubMed

    Zwollo, Patty

    2017-01-03

    The immune system of anadromous fish is extremely complex, a direct consequence of their diadromous nature. Hormone levels fluctuate widely throughout their life cycle, as fish move between fresh and salt water. This poses major challenges to the physiology of anadromous fish, including adaptation to very different saline environments, distinct pathogen fingerprints, and different environmental stressors. Elevated cortisol and sex hormone levels inhibit B lymphopoiesis and IgM(+) antibody responses, while catecholamines, growth hormones and thyroid hormones are generally stimulatory and enhance the humoral immune response. Immunological memory in the form of long-lived plasma cells likely plays important roles in health and survival during the life cycle of anadromous fishes. This review discusses some of the complex immune-endocrine pathways in anadromous fish, focusing on essential roles for B lineage cells in the successful completion of their life cycle. A discussion is included on potential differences in immuno-competence between wild and hatchery-raised fish.

  15. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  16. The immune system and skin cancer.

    PubMed

    Yu, Sherry H; Bordeaux, Jeremy S; Baron, Elma D

    2014-01-01

    Carcinogenesis involves multiple mechanisms that disturb genomic integrity and encourage abnormal proliferation. The immune system plays an integral role in maintaining homeostasis and these mechanisms may arrest or enhance dysplasia. There exists a large body of evidence from organ transplantation literature supporting the significance of the immune suppression in the development of skin cancer. Nonmelanoma skin cancers are the most frequent neoplasms after organ transplantation, with organ transplant recipients having a 65-fold increase in squamous cell carcinoma incidence and 10-fold increase in basal cell carcinoma incidence. Similarly, UV-radiation (UVR) induced immunosuppression is correlated with the development of cutaneous malignancies in a dose-dependent manner. This was first shown several decades ago by Margaret Kripke, when transplanted tumors were rejected in mice with competent immune systems, but grew unchecked in immunosuppressed specimens. After UV exposure, chromophores initiate a cascade that leads to immunosuppression via derangement of Langerhans cells' antigen-presenting capacity. UV-irradiated Langerhans cells present antigens to Th2 cells, but fail to stimulate Th1 cells. A subset of T regulatory cells, specific for the antigen encountered after UVR, is also stimulated to proliferate. In general UV irradiation leads to a greater number of T regulatory cells and fewer effector T cells in the skin, shiftingthe balance from T-cell-mediated immunity to immunosuppression. These regulatory cells have the phenotype CD4+, CD25+, Foxp3+, CTLA-4+. These and many other changes in local immunity lead to a suppressed immune state, which allow for skin cancer development.

  17. Immune and inflammatory gene signature in rat cerebrum in subarachnoid hemorrhage with microarray analysis.

    PubMed

    Lee, Chu-I; Chou, An-Kuo; Lin, Ching-Chih; Chou, Chia-Hua; Loh, Joon-Khim; Lieu, Ann-Shung; Wang, Chih-Jen; Huang, Chi-Ying F; Howng, Shen-Long; Hong, Yi-Ren

    2012-01-01

    Cerebral vasospasm following subarachnoid hemorrhage (SAH) has been studied in terms of a contraction of the major cerebral arteries, but the effect of cerebrum tissue in SAH is not yet well understood. To gain insight into the biology of SAH-expressing cerebrum, we employed oligonucleotide microarrays to characterize the gene expression profiles of cerebrum tissue at the early stage of SAH. Functional gene expression in the cerebrum was analyzed 2 h following stage 1-hemorrhage in Sprague-Dawley rats. mRNA was investigated by performing microarray and quantitative real-time PCR analyses, and protein expression was determined by Western blot analysis. In this study, 18 upregulated and 18 downregulated genes displayed at least a 1.5-fold change. Five genes were verified by real-time PCR, including three upregulated genes [prostaglandin E synthase (PGES), CD14 antigen, and tissue inhibitor of metalloproteinase 1 (TIMP1)] as well as two downregulated genes [KRAB-zinc finger protein-2 (KZF-2) and γ-aminobutyric acid B receptor 1 (GABA B receptor)]. Notably, there were functional implications for the three upregulated genes involved in the inflammatory SAH process. However, the mechanisms leading to decreased KZF-2 and GABA B receptor expression in SAH have never been characterized. We conclude that oligonucleotide microarrays have the potential for use as a method to identify candidate genes associated with SAH and to provide novel investigational targets, including genes involved in the immune and inflammatory response. Furthermore, understanding the regulation of MMP9/TIMP1 during the early stages of SAH may elucidate the pathophysiological mechanisms in SAH rats.

  18. Ovine chlamydial abortion: characterization of the inflammatory immune response in placental tissues.

    PubMed

    Buxton, D; Anderson, I E; Longbottom, D; Livingstone, M; Wattegedera, S; Entrican, G

    2002-01-01

    Ovine chlamydial abortion is a serious cause of fetal mortality in several sheep-rearing countries. The causal agent, Chlamydophila abortus (Chlamydia psittaci), does not generally induce clinical signs in the ewe other than abortion; this is associated with macroscopically visible damage in the placenta, which may be inflamed and thickened. To investigate the nature of the placental inflammation, seven pregnant sheep were inoculated subcutaneously at 70 days' gestation with C. abortus (strain S 26/3). A further five pregnant sheep received control inoculum by the same route at the same stage of pregnancy. Three of the infected ewes produced stillborn lambs and four produced live lambs. Lesions characteristic of chlamydial infection were present in all placentas except for two from one ewe that gave birth to twins. Histopathological examination of placental tissues from aborted fetuses showed a mixed inflammatory cell infiltrate with vasculitis and thrombosis in the mesenchyme of the intercotyledonary membranes. Cells expressing the macrophage-associated molecule CD 14 were found to be numerous, as were cells expressing major histocompatibility complex class II (MHC II) molecules. Many cells expressing messenger RNA (mRNA) encoding for tumour necrosis factor-alpha (TNF-alpha) were demonstrated, but few cells expressing interferon gamma mRNA and none expressing interleukin-4 mRNA were detected. The fetal immune response included small numbers of CD4+ and CD8+ cells, gamma delta T cells and B cells. It is concluded that abortion is the result of several factors, including destruction of tissue by C. abortus, vascular thrombosis, and an inflammatory response by the fetus. Production of TNF-alpha by fetal macrophages expressing MHC II molecules may be of considerable significance in the pathogenesis of abortion.

  19. Immune System Transcriptome in Gingival Tissues of Young Nonhuman Primates

    PubMed Central

    Gonzalez, O.A.; Nagarajan, R.; Novak, M.J.; Orraca, L.; Gonzalez-Martinez, J.A.; Kirakodu, S. S.; Ebersole, J.L.

    2015-01-01

    Young/adolescent humans demonstrate many microorganisms associated with periodontal disease in adults and substantial gingival inflammatory responses. However, younger individuals do not demonstrate the soft and hard tissue destruction that hallmark periodontitis. This study evaluated responses to the oral microbial ecology in gingival tissues from clinically healthy young Macaca mulatta (<3 years old) compared to older animals (5-23 years old). Global transcriptional profiling of four age groups revealed a subset of 159 genes that were differentially expressed at least across one of the age comparisons. Correlation metrics generated a relevance network abstraction of these genes. Partitioning of the relevance network revealed seven distinct communities comprising functionally related genes associated with host inflammatory and immune responses. A group of genes were identified that were selectively increased/decreased or positively/negatively correlated with gingival profiles in the animals. A Principal Components Analysis created metagenes of expression profiles for classifying the 23 animals. The results provide novel system-level insights into gene expression differences in healthy young tissues weighted towards host responses that were associated with anti-inflammatory biomolecules or those linked with T cell regulation of responses. The combination of the regulated microenvironment may help to explain the apparent “resistance” of younger individuals to developing periodontal disease. PMID:26077888

  20. Peripheral antinociceptive effects of exogenous and immune cell-derived endomorphins in prolonged inflammatory pain.

    PubMed

    Labuz, Dominika; Berger, Stephan; Mousa, Shaaban A; Zöllner, Christian; Rittner, Heike L; Shaqura, Mohammed A; Segovia-Silvestre, Toni; Przewlocka, Barbara; Stein, Christoph; Machelska, Halina

    2006-04-19

    Endomorphins (EMs) are endogenous selective mu-opioid receptor agonists. Their role in inflammatory pain has not been fully elucidated. Here we examine peripheral antinociception elicited by exogenously applied EM-1 and EM-2 and the contribution of EM-containing leukocytes to stress- and corticotropin-releasing factor (CRF)-induced antinociception. To this end, we applied behavioral (paw pressure) testing, radioligand binding, immunohistochemistry, and flow cytometry in rats with unilateral hindpaw inflammation induced with Freund's adjuvant. EMs injected directly into both hindpaws produced antinociception exclusively in inflamed paws. This was blocked by locally applied mu-receptor-selective (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2) but not kappa-receptor-selective (nor-binaltorphimine) antagonists. Delta-receptor antagonists (naltrindole and N,N-diallyl-Tyr-Aib-Aib-Phe-Leu) did not influence EM-1-induced but dose-dependently decreased EM-2-induced antinociception. Antibodies against beta-endorphin, methionine-enkephalin, or leucine-enkephalin did not significantly change EM-2-induced antinociception. Both EMs displaced binding of [3H]-[D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin to mu-receptors in dorsal root ganglia (DRG). Using [3H]-naltrindole or [(125)I]-[D-Pen2,5]-enkephalin, no detectable delta-binding was found in DRG of inflamed hindlimbs. Numerous beta-endorphin-containing and fewer EM-1- and EM-2-containing leukocytes were detected in subcutaneous tissue of inflamed paws. Leukocyte-depleting serum decreased the number of immigrating opioid-containing immune cells and attenuated swim stress- and CRF-induced antinociception in inflamed paws. Both forms of antinociception were strongly attenuated by anti-beta-endorphin and to a lesser degree by anti-EM-1 and anti-EM-2 antibodies injected into inflamed paws. Together, exogenously applied and immune cell-derived EMs alleviate prolonged inflammatory pain through selective activation of peripheral opioid receptors

  1. The immune system: role in hypertension.

    PubMed

    Schiffrin, Ernesto L

    2013-05-01

    Over the past 20 years it has become recognized that low-grade inflammation plays a role in cardiovascular disease. More recently, participation of the innate and the adaptive immune response in mechanisms that contribute to inflammation in cardiovascular disease has been reported in atherosclerosis and hypertension. Different subsets of lymphocytes and their cytokines are involved in vascular remodelling and hypertensive renal disease as well as heart disease. Effector T cells including T-helper (Th) 1 (interferon-γ-producing) and Th2 lymphocytes (interleukin-4 producing), as well as Th17 (which produce interleukin-17), and T suppressor lymphocytes such as T regulatory cells, which express the transcription factor forkhead box P3, participate respectively as pro- and anti-inflammatory cells, and mediate effects of angiotensin II and mineralocorticoids. Involvement of immune mechanisms in cardiac, vascular, and renal changes in hypertension has been demonstrated in many experimental models, an example being the Dahl-salt sensitive rat and the spontaneously hypertensive rat. How activation of immunity is triggered remains unknown, but neoantigens could be generated by elevated blood pressure through damage-associated molecular pattern receptors or other mechanisms. When activated, Th1 may contribute to blood pressure elevation by affecting the kidney, vascular remodelling of blood vessels directly via effects of the cytokines produced, or through their effects on perivascular fat. T regulatory cells protect from blood pressure elevation acting on similar targets. These novel findings may open the way for new therapeutic approaches to improve outcomes in hypertension and cardiovascular disease in humans.

  2. [Role of intracellular degradation system in regulation of innate immune response].

    PubMed

    Saitoh, Tatsuya

    2014-01-01

    Innate immunity is induced after sensing microbial components by pattern-recognition receptors and functions as a first line of host defense against microbes. However, innate immunity is also induced after sensing host-derived stimulatory substances such as monosodium urate crystals and causes the development of inflammatory diseases, such as gout. Therefore, a better understanding of innate immunity is required for the development of effective therapeutic treatments for infectious and inflammatory diseases. This paper summarizes recent findings on regulation of the innate immune response. Accumulating evidence has shown that the intracellular degradation system is critically involved in various cellular processes. We focused on the intracellular degradation system and have revealed the molecular mechanisms underlying regulation of the innate immune response. Ubiquitin-proteasome, autophagy and phagocyte-specific proteases most certainly regulate the innate immune response induced by infection of microbes and exposure to host-derived stimulatory substances. Therefore, intracellular degradation systems would be attractive therapeutic targets for the treatment of immune-related diseases.

  3. Immune response to influenza vaccine in children with inflammatory bowel disease

    PubMed Central

    Lu, Ying; Jacobson, Denise L.; Ashworth, Lori A.; Grand, Richard J.; Meyer, Anthony L.; McNeal, Monica M.; Gregas, Matt C.; Burchett, Sandra K.; Bousvaros, Athos

    2013-01-01

    OBJECTIVE Patients with inflammatory bowel disease (IBD) frequently receive immunosuppressive therapy. The immune response in these patients to vaccines has not been well studied. We conducted a prospective, open label study to evaluate the serologic response to influenza vaccine in children with IBD. METHODS Serum was obtained from 146 children and young adults with IBD (96 CD, 47 UC, 3 IC) for baseline influenza titer, immediately followed by immunization with trivalent [A/Solomon Islands/3/2006 (H1N1), A/Wisconsin/67/2005 (H3N2), and B/Malaysia/2506/2004 (B)] inactivated influenza vaccine. Subjects returned for repeat titers 3-9 weeks later. Seroprotection against each influenza strain was defined as hemagglutination inhibition (HAI) titer ≥40. Patients were categorized as non-immunosuppressed [(NIS), aminosalicylates only, antibiotics only, or no therapy] or immunosuppressed [(IS), any immunosuppressive agent]. IS patients were further subcategorized as: (1) tacrolimus; (2) TNF-alpha inhibitor; (3) immunomodulator; and (4) corticosteroids only. RESULTS More patients were seroprotected against strains A/H1N1 and A/H3N2 than B strain (p<0.02), regardless of immunosuppression status. The proportion seroprotected and geometric mean titers at post-vaccination were similar between NIS and IS groups for all three strains. Subanalysis of patients not seroprotected at baseline showed that those receiving anti-TNF therapy were less likely seroprotected against strain B (14%) compared to patients in the NIS group (39%, p=0.025). There were no serious vaccine-associated adverse events. CONCLUSION Influenza vaccination produces a high prevalence of seroprotection in IBD patients, particularly against A strains. The vaccine is well tolerated. Routine influenza vaccination in IBD patients is recommended, irrespective of whether patients receive immunosuppressive medications. PMID:19174786

  4. Chasing the recipe for a pro-regenerative immune system.

    PubMed

    Godwin, James W; Pinto, Alexander R; Rosenthal, Nadia A

    2017-01-01

    Identification of the key ingredients and essential processes required to achieve perfect tissue regeneration in humans has so far remained elusive. Injury in vertebrates induces an obligatory wound response that will precede or overlap any regeneration specific program or scarring outcome. This process shapes the cellular and molecular landscape of the tissue, influencing the success of endogenous repair pathways or for potential clinical intervention. The involvement of immune cells is also required for aspects of development extending beyond the initial inflammatory phase of wounding. It has now become clear from amphibian, fish and mammalian models of tissue injury that the type of immune response and the profile of immune cells attending the site of injury can act as the gatekeepers that determine wound repair quality. The heterogeneity among innate and adaptive immune cell populations, along with the developmental origin of these cells, form key ingredients affecting the potential for downstream repair and the suppression of fibrosis. Cell-to-cell interactions between immune cells, such as macrophages and T cells, with stem cells and mesenchymal cells are critically important for shaping this process and these exchanges, are in turn influenced by the type of injury, tissue location and developmental stage of the organism. Developmentally, mouse cardiac regeneration is restricted to early stages of postnatal life where the balance of innate to adaptive immune cells may be poised towards regeneration. In the injured adult mouse liver, specific macrophage subsets improve repair while other bone marrow derived cells can exacerbate injury. Other studies using genetically diverse mice have shown enhanced regeneration in certain strains, restricted to specific tissues. This enhanced repair is linked with expression of genes such as Insulin-like Growth Factor- 1 (IGF-1) and activin (Act 1), that both play important roles in shaping the immune system. Immune cells are

  5. Chasing the recipe for a pro-regenerative immune system

    PubMed Central

    Pinto, Alexander R.; Rosenthal, Nadia A.

    2017-01-01

    Identification of the key ingredients and essential processes required to achieve perfect tissue regeneration in humans has so far remained elusive. Injury in vertebrates induces an obligatory wound response that will precede or overlap any regeneration specific program or scarring outcome. This process shapes the cellular and molecular landscape of the tissue, influencing the success of endogenous repair pathways or for potential clinical intervention. The involvement of immune cells is also required for aspects of development extending beyond the initial inflammatory phase of wounding. It has now become clear from amphibian, fish and mammalian models of tissue injury that the type of immune response and the profile of immune cells attending the site of injury can act as the gatekeepers that determine wound repair quality. The heterogeneity among innate and adaptive immune cell populations, along with the developmental origin of these cells, form key ingredients affecting the potential for downstream repair and the suppression of fibrosis. Cell-to-cell interactions between immune cells, such as macrophages and T cells, with stem cells and mesenchymal cells are critically important for shaping this process and these exchanges, are in turn influenced by the type of injury, tissue location and developmental stage of the organism. Developmentally, mouse cardiac regeneration is restricted to early stages of postnatal life where the balance of innate to adaptive immune cells may be poised towards regeneration. In the injured adult mouse liver, specific macrophage subsets improve repair while other bone marrow derived cells can exacerbate injury. Other studies using genetically diverse mice have shown enhanced regeneration in certain strains, restricted to specific tissues. This enhanced repair is linked with expression of genes such as Insulin-like Growth Factor- 1 (IGF-1) and activin (Act 1), that both play important roles in shaping the immune system. Immune cells are

  6. The role of the immune system in central nervous system plasticity after acute injury.

    PubMed

    Peruzzotti-Jametti, L; Donegá, M; Giusto, E; Mallucci, G; Marchetti, B; Pluchino, S

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization.

  7. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  8. The ubiquitin system: a critical regulator of innate immunity and pathogen–host interactions

    PubMed Central

    Li, Jie; Chai, Qi-Yao; Liu, Cui Hua

    2016-01-01

    The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host–pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host–pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion. PMID:27524111

  9. The Mucosal Immune System of Teleost Fish

    PubMed Central

    Salinas, Irene

    2015-01-01

    Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. PMID:26274978

  10. Sympathetic neural modulation of the immune system

    SciTech Connect

    Madden, K.S.

    1989-01-01

    One route by which the central nervous system communicates with lymphoid organs in the periphery is through the sympathetic nervous system (SNS). To study SNS regulation of immune activity in vivo, selective removal of peripheral noradrenergic nerve fibers was achieved by administration of the neurotoxic drug, 6-hydroxydopamine (6-OHDA), to adult mice. To assess SNS influence on lymphocyte proliferation in vitro, uptake of {sup 125}iododeoxyuridine ({sup 125}IUdR), a DNA precursor, was measured following 6-OHDA treatment. Sympathectomy prior to epicutaneous immunization with TNCB did not alter draining lymph nodes (LN) cell proliferation, whereas 6-OHDA treatment before footpad immunization with KLH reduced DNA synthesis in popliteal LN by 50%. In mice which were not deliberately immunized, sympathectomy stimulated {sup 125}IUdR uptake inguinal and axillary LN, spleen, and bone marrow. In vitro, these LN and spleen cells exhibited decreased proliferation responses to the T cell mitogen, concanavalin A (Con A), whereas lipopolysaccharide (LPS)-stimulated IgG secretion was enhanced. Studies examining {sup 51}Cr-labeled lymphocyte trafficking to LN suggested that altered cell migration may play a part in sympathectomy-induced changes in LN cell function.

  11. [Intestinal-brain axis. Neuronal and immune-inflammatory mechanisms of brain and intestine pathology].

    PubMed

    Bondarenko, V M; Riabichenko, E V

    2013-01-01

    Mutually directed connections between intestine and brain are implemented by endocrine, neural and immune systems and nonspecific natural immunity. Intestine micro flora as an active participant of intestine-brain axis not only influences intestine functions but also stimulates the development of CNS in perinatal period and interacts with higher nervous centers causing depression and cognitive disorders in pathology. A special role belongs to intestine microglia. Apart from mechanic (protective) and trophic functions for intestine neurons, glia implements neurotransmitter, immunologic, barrier and motoric functions in the intestine. An interconnection between intestine barrier function and hematoencephalic barrier regulation exists. Chronic endotoxinemia as a result of intestine barrier dysfunction forms sustained inflammation state in periventricular zone of the brain with consequent destabilization of hematoencephalic barriers and spread oF inflammation to other parts of the brain resulting in neurodegradation development.

  12. Innate immune recognition of flagellin limits systemic persistence of Brucella.

    PubMed

    Terwagne, Matthieu; Ferooz, Jonathan; Rolán, Hortensia G; Sun, Yao-Hui; Atluri, Vidya; Xavier, Mariana N; Franchi, Luigi; Núñez, Gabriel; Legrand, Thomas; Flavell, Richard A; De Bolle, Xavier; Letesson, Jean-Jacques; Tsolis, Renée M

    2013-06-01

    Brucella are facultative intracellular bacteria that cause chronic infections by limiting innate immune recognition. It is currently unknown whether Brucella FliC flagellin, the monomeric subunit of flagellar filament, is sensed by the host during infection. Here, we used two mutants of Brucella melitensis, either lacking or overexpressing flagellin, to show that FliC hinders bacterial replication in vivo. The use of cells and mice genetically deficient for different components of inflammasomes suggested that FliC was a target of the cytosolic innate immune receptor NLRC4 in vivo but not in macrophages in vitro where the response to FliC was nevertheless dependent on the cytosolic adaptor ASC, therefore suggesting a new pathway of cytosolic flagellin sensing. However, our work also suggested that the lack of TLR5 activity of Brucella flagellin and the regulation of its synthesis and/or delivery into host cells are both part of the stealthy strategy of Brucella towards the innate immune system. Nevertheless, as a flagellin-deficient mutant of B. melitensis wasfound to cause histologically demonstrable injuries in the spleen of infected mice, we suggested that recognition of FliC plays a role in the immunological stand-off between Brucella and its host, which is characterized by a persistent infection with limited inflammatory pathology.

  13. Fatal meningitis by Cryptococcus laurentii in a post-partum woman: A manifestation of immune reconstitution inflammatory syndrome.

    PubMed

    Mittal, N; Vatsa, S; Minz, Aka

    2015-01-01

    Cryptococcal meningitis in immunocompetent post-partum women has been rarely reported. Immune restoration during post-partum period leads to unmasking of many opportunistic infections that may have been acquired during pregnancy but manifest itself in the post-partum period due to immune reconstitution inflammatory syndrome. This case highlights the importance of considering opportunistic pathogens in immunocompetent patients who may be undergoing immune restoration. We report here a fatal case of post-partum immunocompetent women who presented with clinical features of meningitis. Prognosis of the cryptococcal meningitis not only depends on the immune status of the patient but also on how early the disease is diagnosed in the course of illness.

  14. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  15. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis.

    PubMed

    Boilard, Eric; Lai, Ying; Larabee, Katherine; Balestrieri, Barbara; Ghomashchi, Farideh; Fujioka, Daisuke; Gobezie, Reuben; Coblyn, Jonathan S; Weinblatt, Michael E; Massarotti, Elena M; Thornhill, Thomas S; Divangahi, Maziar; Remold, Heinz; Lambeau, Gérard; Gelb, Michael H; Arm, Jonathan P; Lee, David M

    2010-05-01

    Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation.

  16. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  17. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis

    PubMed Central

    Boilard, Eric; Lai, Ying; Larabee, Katherine; Balestrieri, Barbara; Ghomashchi, Farideh; Fujioka, Daisuke; Gobezie, Reuben; Coblyn, Jonathan S; Weinblatt, Michael E; Massarotti, Elena M; Thornhill, Thomas S; Divangahi, Maziar; Remold, Heinz; Lambeau, Gérard; Gelb, Michael H; Arm, Jonathan P; Lee, David M

    2010-01-01

    Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation. PMID:20432503

  18. Bovine milk RNases modulate pro-inflammatory responses induced by nucleic acids in cultured immune and epithelial cells.

    PubMed

    Gupta, Sandeep K; Haigh, Brendan J; Seyfert, Hans-Martin; Griffin, Frank J; Wheeler, Thomas T

    2017-03-01

    Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.

  19. Effects of pro-inflammatory cytokines on cannabinoid CB1 and CB2 receptors in immune cells

    PubMed Central

    Jean-Gilles, Lucie; Braitch, Manjit; Latif, M. Liaque; Aram, Jehan; Fahey, Angela J.; Edwards, Laura J.; Robins, R. Adrian; Tanasescu, Radu; Tighe, Patrick J.; Gran, Bruno; Showe, Louise C.; Alexander, Steve P.; Chapman, Victoria; Kendall, David A.; Constantinescu, Cris S.

    2015-01-01

    Aims To investigate the regulation of cannabinoid receptors CB1 and CB2 on immune cells by proinflammatory cytokines and its potential relevance to the inflammatory neurological disease, multiple sclerosis (MS). CB1 and CB2 signalling may be anti-inflammatory and neuroprotective in neuroinflammatory diseases. Cannabinoids can suppress inflammatory cytokines but the effects of these cytokines on CB1 and CB2 expression and function are unknown. Methods Immune cells from peripheral blood were obtained from healthy volunteers and patients with MS. Expression of CB1 and CB2 mRNA in whole blood cells, peripheral blood mononuclear cells (PBMC) and T cells was determined by quantitative real time-polymerase chain reaction (qRT-PCR). Expression of CB1 and CB2 protein was determined by flow cytometry. CB1 and CB2 signaling in PBMC was determined by Western blotting for Erk1/2. Results Proinflammatory cytokines IL-1β, IL-6 and TNF-α (the latter likely NFκB-dependently) can up-regulate CB1 and CB2 on human whole blood and peripheral blood mononuclear cells (PBMC). We also demonstrate up-regulation of CB1 and CB2 and increased IL-1β, IL-6 and TNF-α mRNA in blood of MS patients compared with controls. Conclusion The levels of CB1 and CB2 can be up-regulated by inflammatory cytokines, which can explain their increase in inflammatory conditions including MS. PMID:25704169

  20. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings.

    PubMed

    Meintjes, Graeme; Lawn, Stephen D; Scano, Fabio; Maartens, Gary; French, Martyn A; Worodria, William; Elliott, Julian H; Murdoch, David; Wilkinson, Robert J; Seyler, Catherine; John, Laurence; van der Loeff, Maarten Schim; Reiss, Peter; Lynen, Lut; Janoff, Edward N; Gilks, Charles; Colebunders, Robert

    2008-08-01

    The immune reconstitution inflammatory syndrome (IRIS) has emerged as an important early complication of antiretroviral therapy (ART) in resource-limited settings, especially in patients with tuberculosis. However, there are no consensus case definitions for IRIS or tuberculosis-associated IRIS. Moreover, previously proposed case definitions are not readily applicable in settings where laboratory resources are limited. As a result, existing studies on tuberculosis-associated IRIS have used a variety of non-standardised general case definitions. To rectify this problem, around 100 researchers, including microbiologists, immunologists, clinicians, epidemiologists, clinical trialists, and public-health specialists from 16 countries met in Kampala, Uganda, in November, 2006. At this meeting, consensus case definitions for paradoxical tuberculosis-associated IRIS, ART-associated tuberculosis, and unmasking tuberculosis-associated IRIS were derived, which can be used in high-income and resource-limited settings. It is envisaged that these definitions could be used by clinicians and researchers in a variety of settings to promote standardisation and comparability of data.

  1. Tuberculosis-associated immune reconstitution inflammatory syndrome: case definitions for use in resource-limited settings

    PubMed Central

    Meintjes, Graeme; Lawn, Stephen D; Scano, Fabio; Maartens, Gary; French, Martyn A; Worodria, William; Elliott, Julian H; Murdoch, David; Wilkinson, Robert J; Seyler, Catherine; John, Laurence; van der Loeff, Maarten Schim; Reiss, Peter; Lynen, Lut; Janoff, Edward N; Gilks, Charles; Colebunders, Robert

    2009-01-01

    The immune reconstitution inflammatory syndrome (IRIS) has emerged as an important early complication of antiretroviral therapy (ART) in resource-limited settings, especially in patients with tuberculosis. However, there are no consensus case definitions for IRIS or tuberculosis-associated IRIS. Moreover, previously proposed case definitions are not readily applicable in settings where laboratory resources are limited. As a result, existing studies on tuberculosis-associated IRIS have used a variety of non-standardised general case definitions. To rectify this problem, around 100 researchers, including microbiologists, immunologists, clinicians, epidemiologists, clinical trialists, and public-health specialists from 16 countries met in Kampala, Uganda, in November, 2006. At this meeting, consensus case definitions for paradoxical tuberculosis-associated IRIS, ART-associated tuberculosis, and unmasking tuberculosis-associated IRIS were derived, which can be used in high-income and resource-limited settings. It is envisaged that these definitions could be used by clinicians and researchers in a variety of settings to promote standardisation and comparability of data. PMID:18652998

  2. Clustering of (auto)immune diseases with early-onset and complicated inflammatory bowel disease.

    PubMed

    Bueno de Mesquita, Mirjam; Ferrante, Marc; Henckaerts, Liesbet; Joossens, Marie; Janssens, Virginie; Hlavaty, Tibor; Pierik, Marie; Joossens, Sofie; Van Schuerbeek, Nele; Van Assche, Gert; Rutgeerts, Paul; Vermeire, Severine; Hoffman, Ilse

    2009-05-01

    Studies in adult inflammatory bowel disease (IBD) patients have highlighted associations with genetic and serologic markers and suggest an association with disease location, behaviour and natural history. Data on patients with Crohn's disease (CD, n=80), ulcerative colitis (UC, n=15) and indeterminate colitis (n=4) were collected. All individuals were analysed for CARD15 R702W, G908R and L1007fs for toll-like receptor 4 (TLR4) Asp299Gly and for anti-Saccharomyces cerevisiae antibodies (ASCA) and atypical perinuclear antineutrophil cytoplasmatic antibodies (pANCA). After a mean of 10.7 years of follow up, the disease behaviour changed in 45% of CD patients, in contrast to disease location, where only 12.5% had a change (p<0.001). The younger the age at diagnosis, the more patients presented with colonic disease (p=0.021). Also, more TLR4 Asp299 Gly variants were found when the age at onset was younger (p=0.018). A large number of concomitant diseases were observed. There was no difference in the prevalence of TLR4 variants nor ASCA or pANCA between the patients with or without concomitant diseases. Patients who progressed more often needed surgery as compared to patients who remained free of stenosing or fistulising disease (27/32 or 84% versus 3/35 or 8.6%, respectively, p<0.0001) and more often had concomitant immune-mediated diseases and a trend for more seroreactivity towards ASCA.

  3. Chrono-immunology: progress and challenges in understanding links between the circadian and immune systems

    PubMed Central

    Geiger, Sarah S; Fagundes, Caio T; Siegel, Richard M

    2015-01-01

    Development of inflammatory diseases, such as metabolic syndrome and cancer, is prevalent in individuals that encounter continuous disruption of their internal clock. Further, daily oscillations in susceptibility to infection as well as a multitude of other immunological processes have been described. Much progress has been made and various mechanisms have been proposed to explain circadian variations in immunity; yet much is still unknown. Understanding the crosstalk between the circadian and the immune systems will allow us to manipulate clock outputs to prevent and treat inflammatory diseases in individuals at risk. This review briefly summarizes current knowledge about circadian rhythms and their role in the immune system and highlights progress and challenges in chrono-immunological research. PMID:26301993

  4. [Considerations about mechanisms of acupuncture therapy for improving hypertension by regulating immune system].

    PubMed

    Yu, Zheng; Wu, Qiao-Feng; Liang, Fan-Rong

    2014-08-01

    Essential hypertension (EH) is a very common clinical disorder affecting the patient's health. Accumulating evidence indicates that immunological factors play an important role in the pathogenesis of hypertension. In the present paper, the authors introduce 1) progress of researches on the pathogenesis of hypertension from cellular immune and body fluid immune (multiple immuno-humoral factors); 2) effects of acupuncture intervention on natural killer cell activity, exercise-induced immunosuppression, circulating inflammatory factor levels and balance of cytokines; 3) blood-pressure reduction effect of acupuncture intervention by lowering circulating TNF-alpha, IL-6, matrix metalloproteinases-9, angiotensin convertase and endothelin levels, and up-regulating serum opioid peptide content, etc. to decrease inflammatory injury of the cardiovascular system. Many researches have demonstrated that acupuncture may have a positive role in improving EH in clinical practice, which may be associated with its regulative effect on immune system, but its mechanism has not been fully elucidated.

  5. Systemic immune modulation induced by alcoholic beverage intake in obese-diabetes (db/db) mice.

    PubMed

    Lee, Hyunah; Jang, Ik-Soon; Park, Junsoo; Kim, Seol-Hee; Baek, So-Young; Go, Sung-Ho; Lee, Seung-Hoon

    2013-03-01

    Alcohol over-consumption is generally immunosuppressive. In this study, the effects of single or repetitive alcohol administration on the systemic immunity of db/db mice were observed to clarify the possible mechanisms for the increased susceptibility of obese individuals to alcohol-related immunological health problems. Alcohol (as a form of commercially available 20% distilled-alcoholic beverage) was orally administered one-time or seven times over 2 weeks to db/db mice and normal C57BL/6J mice. Immunologic alterations were analyzed by observation of body weight and animal activity, along with proportional changes of splenocytes for natural killer cells, macrophages, and T and B lymphocytes. Modulation of plasma cytokine level and immune-related genes were also ascertained by micro-bead assay and a microarray method, respectively. The immune micro-environment of db/db mice was an inflammatory state and adaptive cellular immunity was significantly suppressed. Low-dose alcohol administration reversed the immune response, decreasing inflammatory responses and the increment of adaptive immunity mainly related to CD4(+) T cells, but not CD8(+) T cells, to normal background levels. Systemic immune modulation due to alcohol administration in the obese-diabetic mouse model may be useful in the understanding of the induction mechanism, which will aid the development of therapeutics for related secondary diseases.

  6. Systemic complications of inflammatory bowel disease.

    PubMed

    Baillie, J; Soltis, R D

    1985-02-01

    Radiologic assessment of the sacroiliac joints should be part of every inflammatory bowel disease patient's workup; ankylosing spondylitis is 10 to 20 times more common in ulcerative colitis patients than in normal persons. Iritis, which occurs in 10 to 20% of ulcerative colitis patients, often precedes bowel symptoms. It may be necessary to use long-term, low-dose steroid therapy to control frequently recurring iritis.

  7. Is immune system-related hypertension associated with ovarian hormone deficiency?

    PubMed Central

    Sandberg, Kathryn; Ji, Hong; Einstein, Gillian; Au, April; Hay, Meredith

    2017-01-01

    The immune system is known to contribute to the development of high blood pressure in males. However, the role of the immune system in the development of high blood pressure in females and the role of ovarian hormones has only recently begun to be studied. In animal studies, both the sex of the host and the T cell are critical biological determinants of susceptibility and resistance to hypertension induced by angiotensin II. In women, natural menopause is known to result in significant changes in the expression of genes regulating the immune system. Likewise, in animal models, ovariectomy results in hypertension and an upregulation in T-cell tumour necrosis factor-α-related genes. Oestrogen replacement results in decreases in inflammatory genes in the brain regions involved in blood pressure regulation. Together, these studies suggest that the response of the adaptive immune system to ovarian hormone deficiency is a significant contributor to hypertension in women. PMID:26419911

  8. Did the molecules of adaptive immunity evolve from the innate immune system?

    PubMed

    Bartl, Simona; Baish, Meredith; Weissman, Irving L; Diaz, Marilyn

    2003-04-01

    The antigen receptors on cells of innate immune systems recognize broadly expressed markers on non-host cells while the receptors on lymphocytes of the adaptive immune system display a higher level of specificity. Adaptive immunity, with its exquisite specificity and immunological memory, has only been found in the jawed vertebrates, which also display innate immunity. Jawless fishes and invertebrates only have innate immunity. In the adaptive immune response, T and B-lymphocytes detect foreign agents or antigens using T cell receptors (TCR) or immunoglobulins (Ig), respectively. While Ig can bind free intact antigens, TCR only binds processed antigenic fragments that are presented on molecules encoded in the major histocompatibility complex (MHC). MHC molecules display variation through allelic polymorphism. A diverse repertoire of Ig and TCR molecules is generated by gene rearrangement and junctional diversity, processes carried out by the recombinase activating gene (RAG) products and terminal deoxynucleotidyl transferase (TdT). Thus, the molecules that define adaptive immunity are TCR, Ig, MHC molecules, RAG products and TdT. No direct predecessors of these molecules have been found in the jawless fishes or invertebrates. In contrast, the complement cascade can be activated by either adaptive or innate immune systems and contains examples of molecules that gradually evolved from non-immune functions to being part of the innate and then adaptive immune system. In this paper we examine the molecules of the adaptive immune system and speculate on the existence of direct predecessors that were part of innate immunity.

  9. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS).

    PubMed

    Cooper, Edwin L

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the

  10. Evolution of immune systems from self/not self to danger to artificial immune systems (AIS)

    NASA Astrophysics Data System (ADS)

    Cooper, Edwin L.

    2010-03-01

    This review will examine the evolution of immune mechanisms by emphasizing information from animal groups exclusive of all vertebrates. There will be a focus on concepts that propelled the immune system into prominent discourse in the life sciences. The self/not self hypothesis was crucial and so was the concern for immunologic memory or anamnesia, development of cancer, autoimmunity, and clonal selection. Now we may be able to deconstruct clonal selection since it is not applicable in the sense that it is not applicable to invertebrate mechanisms. Clonal selection seems to be purely as all evidence indicates a vertebrate strategy and therefore irrelevant to invertebrates. Some views may insist that anthropocentric mammalian immunologists utilized a tool to propel: the universal innate immune system of ubiquitous and plentiful invertebrates as an essential system for vertebrates. This was advantageous for all immunology; moreover innate immunity acquired an extended raison d'être. Innate immunity should help if there would be a failure of the adaptive immune system. Still to be answered are questions concerning immunologic surveillance that includes clonal selection. We can then ask does immunologic surveillance play a role in the survival of invertebrates that most universally seem to not develop cancer of vertebrates especially mammals; invertebrates only develop benign tumor. A recent proposal concerns an alternative explanation that is all embracing. Danger hypothesis operates in striking contrast to the self/not self hypothesis. This view holds that the immune system is adapted to intervene not because self is threatened but because of the system's sense of danger. This perception occurs by means of signals other than recognition of microbial pattern recognition molecules characteristic of invertebrates. Response to danger may be another way of analyzing innate immunity that does not trigger the production of clones and therefore does not rely entirely on the

  11. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system

    PubMed Central

    Garrett, Wendy S.; Lord, Graham M.; Punit, Shivesh; Lugo-Villarino, Geanncarlo; Mazmanian, Sarkis; Ito, Susumu; Glickman, Jonathan N.; Glimcher, Laurie H.

    2007-01-01

    SUMMARY Inflammatory bowel disease (IBD) has been attributed to over-exuberant host immunity or the emergence of harmful intestinal flora. The transcription factor T-bet orchestrates inflammatory genetic programs in both adaptive and innate immunity. We describe a profound and unexpected function for T-bet in influencing the behavior of host inflammatory activity and commensal bacteria. T-bet deficiency in the innate immune system results in spontaneous and communicable ulcerative colitis in the absence of adaptive immunity and increased susceptibility to colitis in immunologically intact hosts. T-bet controls the response of the mucosal immune system to commensal bacteria by regulating TNF-α production in colonic dendritic cells, critical for colonic epithelial barrier maintenance. Loss of T-bet influences bacterial populations to become colitogenic, and this colitis is communicable to genetically intact hosts. These findings reveal a novel function for T-bet as a peacekeeper of host-commensal relationships and provide new perspectives on the pathophysiology of IBD. PMID:17923086

  12. Dealing with Danger in the CNS: The Response of the Immune System to Injury.

    PubMed

    Gadani, Sachin P; Walsh, James T; Lukens, John R; Kipnis, Jonathan

    2015-07-01

    Fighting pathogens and maintaining tissue homeostasis are prerequisites for survival. Both of these functions are upheld by the immune system, though the latter is often overlooked in the context of the CNS. The mere presence of immune cells in the CNS was long considered a hallmark of pathology, but this view has been recently challenged by studies demonstrating that immunological signaling can confer pivotal neuroprotective effects on the injured CNS. In this review, we describe the temporal sequence of immunological events that follow CNS injury. Beginning with immediate changes at the injury site, including death of neural cells and release of damage-associated molecular patterns (DAMPs), and progressing through innate and adaptive immune responses, we describe the cascade of inflammatory mediators and the implications of their post-injury effects. We conclude by proposing a revised interpretation of immune privilege in the brain, which takes beneficial neuro-immune communications into account.

  13. Immune and inflammatory gene expressions are different in Behçet’s disease compared to those in Familial Mediterranean Fever

    PubMed Central

    Özdemir, Filiz Türe; Demiralp, Emel Ekşioğlu; Aydın, Sibel Z.; Atagündüz, Pamir; Ergun, Tülin; Direskeneli, Haner

    2016-01-01

    Objective The immune classification of Behçet’s disease (BD) is still controversial. In this study, we aimed to compare the immune/inflammatory gene expressions in BD with those in familial Mediterranean fever (FMF), an autoinflammatory disorder with innate immune activation. Material and Methods CD4+ T cells and CD14+ monocytes were isolated from the peripheral blood mononuclear cells of Behçet’s disease patients (n=10), FMF (n=6) patients, and healthy controls (n=4) with microbeads, and then, the mRNA was isolated. The expressions of 440 genes associated with immune and inflammatory responses were studied with a focused DNA microarray using a chemiluminescent tagging system. Changes above 1.5-fold and below 0.8-fold were accepted to be significant. Results In BD patients, in the CD4+ T-lymphocyte subset, interleukin 18 receptor accessory protein (1.7-fold), IL-7 receptor (1.9-fold), and prokineticin 2 (2.5-fold) were all increased compared to those in FMF patients, whereas chemokine (C-X3-C motif ) receptor-1 (CX3CR1) (0.7-fold) and endothelial cell growth factor-1 (0.6-fold) were decreased. In the CD14+ monocyte population, the V-fos FBJ murine osteosarcoma viral oncogene homolog (1.5-fold), Interleukin-8 (IL-8) (2.1-fold), and Tumor Necrosis Factor alpha (TNF-α) (1.8-fold) were all increased, whereas the chemokine (C-C motif ) ligand 5 (CCL5) (0.6-fold), C-C chemokine receptor type 7 (0.6-fold), and CX3CR1 (0.7-fold) were decreased, again when compared to those in FMF. Compared to healthy controls in the CD4+ T-lymphocyte population, in both BD and FMF patients, pro-platelet basic protein and CD27 had elevated expression. In BD and FMF patients, 24 and 19 genes, respectively, were downregulated, with 15 overlapping genes between both disorders. In the CD14+ monocytes population, chemokine (C-C motif ) receptor-1 (CCR1) was upregulated both in BD and FMF patients compared to that in the controls, whereas CCL5 was downregulated. Conclusion Immune and

  14. Sublethal doses of dinophysistoxin-1 and okadaic acid stimulate secretion of inflammatory factors on innate immune cells: Negative health consequences.

    PubMed

    Del Campo, Miguel; Zhong, Ta-Ying; Tampe, Ricardo; García, Lorena; Lagos, Néstor

    2017-02-01

    One of the proposed mechanisms to explain why Diarrhetic Shellfish Poison (DSP) toxins are tumor promoters is founded on the capacity of these toxins to increase TNF-α secretion. Although macrophages are the principal cells in the activation of the inflammatory response, the immune profile that Okadaic acid (OA) and Dinophysistoxin-1 (DTX-1) trigger in these cells has not been fully explored. We have therefore investigated the effect of various concentrations of both toxins on the activity of several inflammatory factors. Our results demonstrate that OA and DTX-1, at sublethal doses, stimulate secretion of inflammatory factors. Nevertheless DTX-1 was more potent than OA in increasing TNF-α and IL-6 as well as their dependent chemokines KC, MCP-1, LIX, MIP-1 α, MIP-1 β and MIP-2. On the other hand, secretion of IFN-γ and the anti-inflammatory cytokines, IL-4 and IL-10, was unaffected. In addition, DTX-1 also raises matrix metalloproteinase-9 (MMP-9) activity. In this study, for the first time the effect of OA and DTX-1 over the secretion of pro-inflammatory and carcinogenic signals in macrophages are compared, showing that DTX-1 is ten times more potent that OA. The inflammatory profile produced by DTX-1 is shown for the first time. The safe limit regulation should be changed to DSP toxins zero tolerance in the shellfish to be consumed by humans.

  15. Central nervous system-immune system interactions: psychoneuroendocrinology of stress and its immune consequences.

    PubMed Central

    Black, P H

    1994-01-01

    Psychoneuroimmunology is a relatively new discipline which deals with CNS-immune system interactions. The evidence for such interactions was reviewed, as was the neuroendocrinologic response to stress. Recent evidence indicates that the behavioral, nervous system, and neuroendocrine responses to stress are mediated by hypothalamic CRF, which acts on both the sympathetic nervous system and the HPA axis, resulting in increased levels of corticosteroids, catecholamines, and certain opiates, substances which are generally immunosuppressive. Concentrations of growth hormone and prolactin, which are immunoenhancing, are elevated early during the response to stress but are later suppressed. Although several other neuromediators may also be released with stress, the net effect of a variety of acute stressors is down regulation of the immune system function. In the following minireview, I consider whether stress alters the resistance of the host to infection as well as the immunomodulatory effects of released immune system mediators on the brain. PMID:8141561

  16. Targeting B cells in immune-mediated inflammatory disease: a comprehensive review of mechanisms of action and identification of biomarkers.

    PubMed

    Dörner, Thomas; Kinnman, Nils; Tak, Paul P

    2010-03-01

    B cell-depletion therapy, particularly using anti-CD20 treatment, has provided proof of concept that targeting B cells and the humoral response may result in clinical improvements in immune-mediated inflammatory disease. In this review, the mechanisms of action of B cell-targeting drugs are investigated, and potential biomarkers associated with response to treatment in patients with autoimmune diseases are identified. Most available data relate to B cell depletion using anti-CD20 therapy (rituximab) in patients with rheumatoid arthritis (RA). Treatment leads to significant clinical benefit, but apparently fails to deplete long-lived plasma cells, and discontinuation is associated with relapse. Biomarkers commonly used in studies of B cell-targeted therapies include rheumatoid factor, anti-citrullinated peptide antibodies, and immunoglobulin (Ig) levels. More recently, there has been interest in markers such as B cell phenotype analysis, and B lymphocyte stimulator (BLyS)/a proliferation-inducing ligand (APRIL), the latter particularly in studies of the IgG Fc-transmembrane activator and CAML interactor (TACI) fusion protein (atacicept) and anti-BLyS therapy (belimumab). Data from clinical trials of B cell-depleting agents in RA suggest that specific autoantibodies, BLyS, APRIL, and circulating and synovial B lineage cell levels may have potential as biomarkers predictive of response to treatment. Further trials validating these markers against clinical outcomes in RA are required. In patients with systemic lupus erythematosus, Fc receptors and levels of circulating immune cells (including B cells and natural killer cells) may be relevant markers.

  17. A case report of small bowel perforation secondary to cytomegalovirus related immune reconstitution inflammatory syndrome in an AIDS patient.

    PubMed

    Gutiérrez-Delgado, Eva María; Villanueva-Lozano, Hiram; García Rojas-Acosta, Miguel J; Miranda-Maldonado, Ivett C; Ramos-Jiménez, Javier

    2017-01-01

    Non-traumatic small bowel perforation is rare in adults but carries a high morbidity and mortality. The diagnosis is made on clinical suspicion, and the most common causes in developing countries are infectious diseases, being cytomegalovirus infection in immunocompromised patients the main etiology. We describe a patient with a recently diagnosed advanced stage HIV infection and an intestinal perforation associated with cytomegalovirus immune reconstitution inflammatory syndrome after highly active antiretroviral therapy initiation.

  18. Systemic Immune Response to Vaccination on FDG-PET/CT.

    PubMed

    Mingos, Mark; Howard, Stephanie; Giacalone, Nicholas; Kozono, David; Jacene, Heather

    2016-12-01

    A patient with newly diagnosed right lung cancer had transient (18)F-fluorodeoxyglucose (FDG)-avid left axillary lymph nodes and intense splenic FDG uptake on positron emission tomography (PET)/computed tomography (CT). History revealed that the patient received a left-sided influenza vaccine 2-3 days before the examination. Although inflammatory FDG uptake in ipsilateral axillary nodes is reported, to our knowledge, this is the first report of visualization of the systemic immune response in the spleen related to the influenza vaccination on FDG-PET/CT. The history, splenic uptake and time course on serial FDG-PET/CT helped to avoid a false-positive interpretation for progressing lung cancer and alteration of the radiation therapy plan.

  19. Integration of the immune system: a complex adaptive supersystem

    NASA Astrophysics Data System (ADS)

    Crisman, Mark V.

    2001-10-01

    Immunity to pathogenic organisms is a complex process involving interacting factors within the immune system including circulating cells, tissues and soluble chemical mediators. Both the efficiency and adaptive responses of the immune system in a dynamic, often hostile, environment are essential for maintaining our health and homeostasis. This paper will present a brief review of one of nature's most elegant, complex adaptive systems.

  20. Parkinson's disease and immune system: is the culprit LRRKing in the periphery?

    PubMed

    Greggio, Elisa; Civiero, Laura; Bisaglia, Marco; Bubacco, Luigi

    2012-07-09

    Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain kinase/GTPase that has been recently linked to three pathological conditions: Parkinson's disease; Crohn's disease; and leprosy. Although LRRK2 physiological function is poorly understood, a potential role in inflammatory response is suggested by its high expression in immune cells and tissues, its up-regulation by interferon γ, and its function as negative regulator of the immune response transcription factor NFAT1. In this review we discuss the most recent findings regarding how LRRK2 could be a player in the inflammatory response and we propose a scenario where the detrimental effects mediated by Parkinson's disease LRRK2 mutations may initiate in the periphery and extend to the central nervous system as a consequence of increased levels of pro-inflammatory factors permeable to the blood brain barrier.

  1. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system.

    PubMed

    Zhao, Feng; Yan, Chao; Wang, Xuan; Yang, Yang; Wang, Guangyin; Lee, Wenhui; Xiang, Yang; Zhang, Yun

    2014-02-01

    Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians.

  2. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance.

    PubMed

    Winer, Shawn; Winer, Daniel A

    2012-09-01

    Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.

  3. CB2 and GPR55 Receptors as Therapeutic Targets for Systemic Immune Dysregulation

    PubMed Central

    Zhou, Juan; Burkovskiy, Ian; Yang, Hyewon; Sardinha, Joel; Lehmann, Christian

    2016-01-01

    The endocannabinoid system (ECS) is involved in many physiological processes and has been suggested to play a critical role in the immune response and the central nervous system (CNS). Therefore, ECS modulation has potential therapeutic effects on immune dysfunctional disorders, such as sepsis and CNS injury-induced immunodeficiency syndrome (CIDS). In sepsis, excessive release of pro- and anti-inflammatory mediators results in multi-organ dysfunction, failure, and death. In CIDS, an acute CNS injury dysregulates a normally well-balanced interplay between CNS and the immune system, leading to increased patients’ susceptibility to infections. In this review, we will discuss potential therapeutic modulation of the immune response in sepsis and CNS injury by manipulation of the ECS representing a novel target for immunotherapy. PMID:27597829

  4. Maintenance of gut homeostasis by the mucosal immune system.

    PubMed

    Okumura, Ryu; Takeda, Kiyoshi

    2016-01-01

    Inflammatory bowel diseases (IBD) are represented by ulcerative colitis (UC) and Crohn's disease (CD), both of which involve chronic intestinal inflammation. Recent evidence has indicated that gut immunological homeostasis is maintained by the interaction between host immunity and intestinal microbiota. A variety of innate immune cells promote or suppress T cell differentiation and activation in response to intestinal bacteria or their metabolites. Some commensal bacteria species or bacterial metabolites enhance or repress host immunity by inducing T helper (Th) 17 cells or regulatory T cells. Intestinal epithelial cells between host immune cells and intestinal microbiota contribute to the separation of these populations and modulate host immune responses to intestinal microbiota. Therefore, the imbalance between host immunity and intestinal microbiota caused by host genetic predisposition or abnormal environmental factors promote susceptibility to intestinal inflammation.

  5. Maintenance of gut homeostasis by the mucosal immune system

    PubMed Central

    OKUMURA, Ryu; TAKEDA, Kiyoshi

    2016-01-01

    Inflammatory bowel diseases (IBD) are represented by ulcerative colitis (UC) and Crohn’s disease (CD), both of which involve chronic intestinal inflammation. Recent evidence has indicated that gut immunological homeostasis is maintained by the interaction between host immunity and intestinal microbiota. A variety of innate immune cells promote or suppress T cell differentiation and activation in response to intestinal bacteria or their metabolites. Some commensal bacteria species or bacterial metabolites enhance or repress host immunity by inducing T helper (Th) 17 cells or regulatory T cells. Intestinal epithelial cells between host immune cells and intestinal microbiota contribute to the separation of these populations and modulate host immune responses to intestinal microbiota. Therefore, the imbalance between host immunity and intestinal microbiota caused by host genetic predisposition or abnormal environmental factors promote susceptibility to intestinal inflammation. PMID:27840390

  6. As we age: Does slippage of quality control in the immune system lead to collateral damage?

    PubMed

    Müller, Ludmila; Pawelec, Graham

    2015-09-01

    The vertebrate adaptive immune system is remarkable for its possession of a very broad range of antigen receptors imbuing the system with exquisite specificity, in addition to the phagocytic and inflammatory cells of the innate system shared with invertebrates. This system requires strict control both at the level of the generation the cells carrying these receptors and at the level of their activation and effector function mediation in order to avoid autoimmunity and mitigate immune pathology. Thus, quality control checkpoints are built into the system at multiple nodes in the response, relying on clonal selection and regulatory networks to maximize pathogen-directed effects and minimize collateral tissue damage. However, these checkpoints are compromised with age, resulting in poorer immune control manifesting as tissue-damaging autoimmune and inflammatory phenomena which can cause widespread systemic disease, paradoxically compounding the problems associated with increased susceptibility to infectious disease and possibly cancer in the elderly. Better understanding the reasons for slippage of immune control will pave the way for developing rational strategies for interventions to maintain appropriate immunity while reducing immunopathology.

  7. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis.

    PubMed

    Fu, Yanxia; Zhou, Hailing; Wang, Mengqi; Cen, Juren; Wei, Qun

    2014-05-07

    Isogarcinol is a natural compound that we extracted from Garcinia mangostana L., and we were the first to report that it is a new immunosuppressant. In the present study, we investigated the immune regulation and anti-inflammatory effects of isogarcinol on collagen-induced arthritis (CIA) and explored its potential mechanism in the treatment of rheumatoid arthritis. The oral administration of isogarcinol significantly reduced clinical scores, alleviated cartilage and bone erosion, and reduced the levels of serum inflammatory cytokines in CIA mice. Isogarcinol inhibited xylene-induced mouse ear edema in vivo. In vitro, isogarcinol decreased iNOS and COX-2 mRNA expression and NO content by inhibiting NF-κB expression. Furthermore, isogarcinol decreased the activity of NFAT and inhibited IL-2 expression. The mechanism of action of isogarcinol is associated with down-regulation of both autoimmune and inflammatory reactions.

  8. Parallels between immune driven-hematopoiesis and T cell activation: 3 signals that relay inflammatory stress to the bone marrow

    SciTech Connect

    Libregts, Sten F.W.M.; Nolte, Martijn A.

    2014-12-10

    Quiescence, self-renewal, lineage commitment and differentiation of hematopoietic stem cells (HSCs) towards fully mature blood cells are a complex process that involves both intrinsic and extrinsic signals. During steady-state conditions, most hematopoietic signals are provided by various resident cells inside the bone marrow (BM), which establish the HSC micro-environment. However, upon infection, the hematopoietic process is also affected by pathogens and activated immune cells, which illustrates an effective feedback mechanism to hematopoietic stem and progenitor cells (HSPCs) via immune-mediated signals. Here, we review the impact of pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), costimulatory molecules and pro-inflammatory cytokines on the quiescence, proliferation and differentiation of HSCs and more committed progenitors. As modulation of HSPC function via these immune-mediated signals holds an interesting parallel with the “three-signal-model” described for the activation and differentiation of naïve T-cells, we propose a novel “three-signal” concept for immune-driven hematopoiesis. In this model, the recognition of PAMPs and DAMPs will activate HSCs and induce proliferation, while costimulatory molecules and pro-inflammatory cytokines confer a second and third signal, respectively, which further regulate expansion, lineage commitment and differentiation of HSPCs. We review the impact of inflammatory stress on hematopoiesis along these three signals and we discuss whether they act independently from each other or that concurrence of these signals is important for an adequate response of HSPCs upon infection. - Highlights: • Inflammation and infection have a direct impact on hematopoiesis in the bone marrow. • We draw a striking parallel between immune-driven hematopoiesis and T cell activation. • We review how PAMPs and DAMPs, costimulation and cytokines influence HSPC function.

  9. Chronic Systemic Immune Dysfunction in African-Americans with Small Vessel-Type Ischemic Stroke.

    PubMed

    Brown, Candice M; Bushnell, Cheryl D; Samsa, Gregory P; Goldstein, Larry B; Colton, Carol A

    2015-12-01

    The incidence of small vessel-type (lacunar) ischemic strokes is greater in African-Americans compared to whites. The chronic inflammatory changes that result from lacunar stroke are poorly understood. To elucidate these changes, we measured serum inflammatory and thrombotic biomarkers in African-Americans at least 6 weeks post-stroke compared to control individuals. Cases were African-Americans with lacunar stroke (n = 30), and controls were age-matched African-Americans with no history of stroke or other major neurologic disease (n = 37). Blood was obtained >6 weeks post-stroke and was analyzed for inflammatory biomarkers. Freshly isolated peripheral blood mononuclear cells were stimulated with lipopolysaccharide (LPS) to assess immune responsiveness in a subset of cases (n = 5) and controls (n = 4). After adjustment for covariates, the pro-inflammatory biomarkers, soluble vascular cadherin adhesion molecule-1 (sVCAM-1) and thrombin anti-thrombin (TAT), were independently associated with lacunar stroke. Immune responsiveness to LPS challenge was abnormal in cases compared to controls. African-Americans with lacunar stroke had elevated blood levels of VCAM-1 and TAT and an abnormal response to acute immune challenge >6 weeks post-stroke, suggesting a chronically compromised systemic inflammatory response.

  10. Hygiene and other early childhood influences on the subsequent function of the immune system.

    PubMed

    Rook, Graham A W; Lowry, Christopher A; Raison, Charles L

    2015-08-18

    The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease.

  11. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells.

    PubMed

    Lovelace, Erica S; Maurice, Nicholas J; Miller, Hannah W; Slichter, Chloe K; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states.

  12. Silymarin suppresses basal and stimulus-induced activation, exhaustion, differentiation, and inflammatory markers in primary human immune cells

    PubMed Central

    Lovelace, Erica S.; Maurice, Nicholas J.; Miller, Hannah W.; Slichter, Chloe K.; Harrington, Robert; Magaret, Amalia; Prlic, Martin; De Rosa, Stephen; Polyak, Stephen J.

    2017-01-01

    Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM suppresses both acute and chronic immune activation (CIA), including in the context of HIV infection. SM treatment suppressed the expression of T cell activation and exhaustion markers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-activated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad anti-inflammatory and immunoregulatory activity in primary human immune cells. By using novel compounds to alter cellular inflammatory status, it may be possible to regulate inflammation in both non-disease and disease states. PMID:28158203

  13. Immunity-Based Aircraft Fault Detection System

    NASA Technical Reports Server (NTRS)

    Dasgupta, D.; KrishnaKumar, K.; Wong, D.; Berry, M.

    2004-01-01

    In the study reported in this paper, we have developed and applied an Artificial Immune System (AIS) algorithm for aircraft fault detection, as an extension to a previous work on intelligent flight control (IFC). Though the prior studies had established the benefits of IFC, one area of weakness that needed to be strengthened was the control dead band induced by commanding a failed surface. Since the IFC approach uses fault accommodation with no detection, the dead band, although it reduces over time due to learning, is present and causes degradation in handling qualities. If the failure can be identified, this dead band can be further A ed to ensure rapid fault accommodation and better handling qualities. The paper describes the application of an immunity-based approach that can detect a broad spectrum of known and unforeseen failures. The approach incorporates the knowledge of the normal operational behavior of the aircraft from sensory data, and probabilistically generates a set of pattern detectors that can detect any abnormalities (including faults) in the behavior pattern indicating unsafe in-flight operation. We developed a tool called MILD (Multi-level Immune Learning Detection) based on a real-valued negative selection algorithm that can generate a small number of specialized detectors (as signatures of known failure conditions) and a larger set of generalized detectors for unknown (or possible) fault conditions. Once the fault is detected and identified, an adaptive control system would use this detection information to stabilize the aircraft by utilizing available resources (control surfaces). We experimented with data sets collected under normal and various simulated failure conditions using a piloted motion-base simulation facility. The reported results are from a collection of test cases that reflect the performance of the proposed immunity-based fault detection algorithm.

  14. CD44 Antibodies and Immune Thrombocytopenia in the Amelioration of Murine Inflammatory Arthritis

    PubMed Central

    Mott, Patrick J.; Lazarus, Alan H.

    2013-01-01

    Antibodies to CD44 have been used to successfully ameliorate murine models of autoimmune disease. The most often studied disease model has been murine inflammatory arthritis, where a clear mechanism for the efficacy of CD44 antibodies has not been established. We have recently shown in a murine passive-model of the autoimmune disease immune thrombocytopenia (ITP) that some CD44 antibodies themselves can induce thrombocytopenia in mice, and the CD44 antibody causing the most severe thrombocytopenia (IM7), also is known to be highly effective in ameliorating murine models of arthritis. Recent work in the K/BxN serum-induced model of arthritis demonstrated that antibody-induced thrombocytopenia reduced arthritis, causing us to question whether CD44 antibodies might primarily ameliorate arthritis through their thrombocytopenic effect. We evaluated IM7, IRAWB14.4, 5035-41.1D, KM201, KM114, and KM81, and found that while all could induce thrombocytopenia, the degree of protection against serum-induced arthritis was not closely related to the length or severity of the thrombocytopenia. CD44 antibody treatment was also able to reverse established inflammation, while thrombocytopenia induced by an anti-platelet antibody targeting the GPIIbIIIa platelet antigen, could not mediate this effect. While CD44 antibody-induced thrombocytopenia may contribute to some of its therapeutic effect against the initiation of arthritis, for established disease there are likely other mechanisms contributing to its efficacy. Humans are not known to express CD44 on platelets, and are therefore unlikely to develop thrombocytopenia after CD44 antibody treatment. An understanding of the relationship between arthritis, thrombocytopenia, and CD44 antibody treatment remains critical for continued development of CD44 antibody therapeutics. PMID:23785450

  15. Incidence of Paradoxical Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome and Impact on Patient Outcome

    PubMed Central

    Bonnet, Maryline; Baudin, Elisabeth; Jani, Ilesh V.; Nunes, Elizabete; Verhoustraten, François; Calmy, Alexandra; Bastos, Rui; Bhatt, Nilesh B.; Michon, Christophe

    2013-01-01

    Objectives and Design We used data from a randomized trial of HIV-tuberculosis co-infected patients in Mozambique to determine the incidence and predictors of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (IRIS) occurring within 12 weeks of starting antiretroviral therapy, and to evaluate its association with patient outcome at 48 weeks. Methods HIV-tuberculosis co-infected and antiretroviral therapy-naïve adults with less than 250 CD4/mm3 were randomized to a nevirapine or efavirenz-based antiretroviral therapy initiated 4 to 6 weeks after starting tuberculosis treatment, and were then followed for 48 weeks. Tuberculosis cases were diagnosed using WHO guidelines, and tuberculosis-IRIS by case definitions of the International Network for the Study of HIV-associated IRIS. Results The 573 HIV-tuberculosis co-infected patients who initiated antiretroviral therapy had a median CD4 count of 92 cells/mm3 and HIV-1 RNA of 5.6 log10 copies/mL. Mortality at week 48 was 6.1% (35/573). Fifty-three (9.2%) patients presented a tuberculosis-IRIS within 12 weeks of starting antiretroviral therapy. Being female and having a low CD4 count, high HIV-1 RNA load, low body mass index and smear-positive pulmonary tuberculosis were independently associated with tuberculosis-IRIS. After adjustment for baseline body mass index, CD4 count and hemoglobin, occurrence of tuberculosis-IRIS was independently associated with 48-week mortality (aOR 2.72 95%CI 1.14-6.54). Immunological and HIV-1 virological responses and tuberculosis treatment outcomes were not different between patients with and without tuberculosis-IRIS. Conclusion In this large prospective cohort, tuberculosis-IRIS occurrence within 12 weeks of starting antiretroviral therapy was independently associated with the mortality of HIV-tuberculosis co-infected patients at 48 weeks post antiretroviral therapy initiation. PMID:24367678

  16. Anti-Inflammatory Effects of Vitamin D on Human Immune Cells in the Context of Bacterial Infection

    PubMed Central

    Hoe, Edwin; Nathanielsz, Jordan; Toh, Zheng Quan; Spry, Leena; Marimla, Rachel; Balloch, Anne; Mulholland, Kim; Licciardi, Paul V.

    2016-01-01

    Vitamin D induces a diverse range of biological effects, including important functions in bone health, calcium homeostasis and, more recently, on immune function. The role of vitamin D during infection is of particular interest given data from epidemiological studies suggesting that vitamin D deficiency is associated with an increased risk of infection. Vitamin D has diverse immunomodulatory functions, although its role during bacterial infection remains unclear. In this study, we examined the effects of 1,25(OH)2D3, the active metabolite of vitamin D, on peripheral blood mononuclear cells (PBMCs) and purified immune cell subsets isolated from healthy adults following stimulation with the bacterial ligands heat-killed pneumococcal serotype 19F (HK19F) and lipopolysaccharide (LPS). We found that 1,25(OH)2D3 significantly reduced pro-inflammatory cytokines TNF-α, IFN-γ, and IL-1β as well as the chemokine IL-8 for both ligands (three- to 53-fold), while anti-inflammatory IL-10 was increased (two-fold, p = 0.016) in HK19F-stimulated monocytes. Levels of HK19F-specific IFN-γ were significantly higher (11.7-fold, p = 0.038) in vitamin D-insufficient adults (<50 nmol/L) compared to sufficient adults (>50 nmol/L). Vitamin D also shifted the pro-inflammatory/anti-inflammatory balance towards an anti-inflammatory phenotype and increased the CD14 expression on monocytes (p = 0.008) in response to LPS but not HK19F stimulation. These results suggest that 1,25(OH)2D3 may be an important regulator of the inflammatory response and supports further in vivo and clinical studies to confirm the potential benefits of vitamin D in this context. PMID:27973447

  17. A dialogue between the immune system and brain, spoken in the language of serotonin.

    PubMed

    Baganz, Nicole L; Blakely, Randy D

    2013-01-16

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity

  18. A Dialogue between the Immune System and Brain, Spoken in the Language of Serotonin

    PubMed Central

    2012-01-01

    Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity

  19. The α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response

    PubMed Central

    Delgado-Vélez, Manuel; Báez-Pagán, Carlos A; Gerena, Yamil; Quesada, Orestes; Santiago-Pérez, Laura I; Capó-Vélez, Coral M; Wojna, Valerie; Meléndez, Loyda; León-Rivera, Rosiris; Silva, Walter; Lasalde-Dominicci, José A

    2015-01-01

    Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of the cholinergic anti-inflammatory pathway by HIV envelope protein gp120IIIB. Our results demonstrate that HIV gp120IIIB induces α7 nicotinic acetylcholine receptor (α7) upregulation and a paradoxical proinflammatory phenotype in macrophages, as activation of the upregulated α7 is no longer capable of inhibiting the release of proinflammatory cytokines. Our results demonstrate that disruption of the cholinergic-mediated anti-inflammatory response can result from an HIV protein. Collectively, these findings suggest that HIV tampering with a natural strategy to control inflammation could contribute to a crucial, unresolved problem of HIV infection: chronic inflammation. PMID:26719799

  20. Role of pro-inflammatory cytokine IL-17 in Leishmania pathogenesis and in protective immunity by Leishmania vaccines.

    PubMed

    Banerjee, Antara; Bhattacharya, Parna; Joshi, Amritanshu B; Ismail, Nevien; Dey, Ranadhir; Nakhasi, Hira L

    2016-11-01

    The clinical outcome of Leishmania pathogenesis ranges from active skin lesions to fatal visceral dissemination and severely impaired T cell immunity. It is well established that a strong Th1 immune response is protective against cutaneous forms of the disease, however a mixed Th1/Th2 response is most commonly observed against visceral infections as evident from previous studies. Aside from Th1/Th2 cytokines, the pro-inflammatory IL-17 cytokine family plays an important role in the clearance of intracellular pathogens. In Leishmania induced skin lesions, IL-17 produced by Th17 cells is shown to exacerbate the disease, suggesting a role in pathogenesis. However, a protective role for IL-17 is indicated by the expansion of IL-17 producing cells in vaccine-induced immunity. In human visceral leishmaniasis (VL) it has been demonstrated that IL-17 and IL-22 are associated with protection against re-exposure to Leishmania, which further suggests the involvement of IL-17 in vaccine induced protective immunity. Although there is no vaccine against any form of leishmaniasis, the development of genetically modified live attenuated parasites as vaccine candidates prove to be promising, as they successfully induce a robust protective immune response in various animal models. However, the role of IL-17 producing cells and Th17 cells in response to these vaccine candidates remains unexplored. In this article, we review the role of IL-17 in Leishmania pathogenesis and the potential impact on vaccine induced immunity, with a special focus on live attenuated Leishmania parasites.

  1. Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination.

    PubMed

    Evonuk, Kirsten S; Moseley, Carson E; Doyle, Ryan E; Weaver, Casey T; DeSilva, Tara M

    2016-09-12

    A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration.

  2. Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

    PubMed Central

    Doyle, Ryan E.; Weaver, Casey T.; DeSilva, Tara M.

    2016-01-01

    A major hallmark of the autoimmune demyelinating disease multiple sclerosis (MS) is immune cell infiltration into the brain and spinal cord resulting in myelin destruction, which not only slows conduction of nerve impulses, but causes axonal injury resulting in motor and cognitive decline. Current treatments for MS focus on attenuating immune cell infiltration into the central nervous system (CNS). These treatments decrease the number of relapses, improving quality of life, but do not completely eliminate relapses so long-term disability is not improved. Therefore, therapeutic agents that protect the CNS are warranted. In both animal models as well as human patients with MS, T cell entry into the CNS is generally considered the initiating inflammatory event. In order to assess if a drug protects the CNS, any potential effects on immune cell infiltration or proliferation in the periphery must be ruled out. This protocol describes how to determine whether CNS protection observed after drug intervention is a consequence of attenuating CNS-infiltrating immune cells or blocking death of CNS cells during inflammatory insults. The ability to examine MS treatments that are protective to the CNS during inflammatory insults is highly critical for the advancement of therapeutic strategies since current treatments reduce, but do not completely eliminate, relapses (i.e., immune cell infiltration), leaving the CNS vulnerable to degeneration. PMID:27685467

  3. Chronic infection and the origin of adaptive immune system.

    PubMed

    Usharauli, David

    2010-08-01

    It has been speculated that the rise of the adaptive immune system in jawed vertebrates some 400 million years ago gave them a superior protection to detect and defend against pathogens that became more elusive and/or virulent to the host that had only innate immune system. First, this line of thought implies that adaptive immune system was a new, more sophisticated layer of host defense that operated independently of the innate immune system. Second, the natural consequence of this scenario would be that pathogens would have exercised so strong an evolutionary pressure that eventually no host could have afforded not to have an adaptive immune system. Neither of these arguments is supported by the facts. First, new experimental evidence has firmly established that operation of adaptive immune system is critically dependent on the ability of the innate immune system to detect invader-pathogens and second, the absolute majority of animal kingdom survives just fine with only an innate immune system. Thus, these data raise the dilemma: If innate immune system was sufficient to detect and protect against pathogens, why then did adaptive immune system develop in the first place? In contrast to the innate immune system, the adaptive immune system has one important advantage, precision. By precision I mean the ability of the defense system to detect and remove the target, for example, infected cells, without causing unwanted bystander damage of surrounding tissue. While the target precision per se is not important for short-term immune response, it becomes a critical factor when the immune response is long-lasting, as during chronic infection. In this paper I would like to propose new, "toxic index" hypothesis where I argue that the need to reduce the collateral damage to the tissue during chronic infection(s) was the evolutionary pressure that led to the development of the adaptive immune system.

  4. Network intrusion detection by the coevolutionary immune algorithm of artificial immune systems with clonal selection

    NASA Astrophysics Data System (ADS)

    Salamatova, T.; Zhukov, V.

    2017-02-01

    The paper presents the application of the artificial immune systems apparatus as a heuristic method of network intrusion detection for algorithmic provision of intrusion detection systems. The coevolutionary immune algorithm of artificial immune systems with clonal selection was elaborated. In testing different datasets the empirical results of evaluation of the algorithm effectiveness were achieved. To identify the degree of efficiency the algorithm was compared with analogs. The fundamental rules based of solutions generated by this algorithm are described in the article.

  5. Neural circuitry and immunity.

    PubMed

    Pavlov, Valentin A; Tracey, Kevin J

    2015-12-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuro-immune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex, are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases define the emerging field of Bioelectronic Medicine.

  6. Modulatory Effects of Antidepressant Classes on the Innate and Adaptive Immune System in Depression.

    PubMed

    Eyre, H A; Lavretsky, H; Kartika, J; Qassim, A; Baune, B T

    2016-05-01

    Current reviews exploring for unique immune-modulatory profiles of antidepressant classes are limited by focusing mainly on cytokine modulation only and neglecting other aspects of the innate and adaptive immune system. These reviews also do not include recent comparative clinical trials, immune-genetic studies and therapeutics with unique neurotransmitter profiles (e. g., agomelatine). This systematic review extends the established literature by comprehensively reviewing the effects of antidepressants classes on both the innate and adaptive immune system. Antidepressants appear, in general, to reduce pro-inflammatory factor levels, particularly C-reactive protein (CRP), tumour necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. We caution against conclusions as to which antidepressant possesses the greater anti-inflammatory effect, given the methodological heterogeneity among studies and the small number of comparative studies. The effects of antidepressant classes on adaptive immune factors are complex and poorly understood, and few studies have been conducted. Methodological heterogeneity is high among these studies (e. g., length of study, cohort characteristics, dosage used and immune marker analysis). We recommend larger, comparative studies - in clinical and pre-clinical populations.

  7. Effects of chromium on the immune system.

    PubMed

    Shrivastava, Richa; Upreti, R K; Seth, P K; Chaturvedi, U C

    2002-09-06

    Chromium is a naturally occurring heavy metal found commonly in the environment in trivalent, Cr(III), and hexavalent, Cr(VI), forms. Cr(VI) compounds have been declared as a potent occupational carcinogen among workers in chrome plating, stainless steel, and pigment industries. The reduction of Cr(VI) to Cr(III) results in the formation of reactive intermediates that together with oxidative stress oxidative tissue damage and a cascade of cellular events including modulation of apoptosis regulatory gene p53, contribute to the cytotoxicity, genotoxicity and carcinogenicity of Cr(VI)-containing compounds. On the other hand, chromium is an essential nutrient required to promote the action of insulin in body tissues so that the body can use sugars, proteins and fats. Chromium is of significant importance in altering the immune response by immunostimulatory or immunosuppressive processes as shown by its effects on T and B lymphocytes, macrophages, cytokine production and the immune response that may induce hypersensitivity reactions. This review gives an overview of the effects of chromium on the immune system of the body.

  8. [Association of fatty acid metabolism with systemic inflammatory response in chronic respiratory diseases].

    PubMed

    Denisenko, Y K; Novgorodtseva, T P; Zhukova, N V; Antonuk, M V; Lobanova, E G; Kalinina, E P

    2016-03-01

    We examined composition of plasma non-esterified fatty acids (NFAs), erythrocyte fatty acids, levels of eicosanoids in patients with asthma and chronic obstructive pulmonary disease (COPD) with different type of the inflammatory response. The results of our study show that asthma and COPD in remission are associated with changes in the composition NFAs of plasma, FA of erythrocytes, level eicosanoid despite the difference in the regulation of immunological mechanisms of systemic inflammation. These changes are characterized by excessive production of arachidonic acid (20:4n-6) and cyclooxygenase and lipoxygenase metabolites (thromboxane B2, leukotriene B4) and deficiency of their functional antagonist, eicosapentaenoic acid (20:5n-3). The recognized association between altered fatty acid composition and disorders of the immune mechanisms of regulation of systemic inflammation in COPD and asthma demonstrated the important role of fatty acids and their metabolites in persistence of inflammatory processes in diseases of the respiratory system in the condition of remission.

  9. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System.

    PubMed

    Long, Hai; Liao, Wei; Wang, Ling; Lu, Qianjin

    2016-03-01

    Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review.

  10. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System

    PubMed Central

    Long, Hai; Liao, Wei; Wang, Ling; Lu, Qianjin

    2016-01-01

    Summary Eosinophils have traditionally been associated with allergic diseases and parasite infection. Research advances in the recent decades have brought evolutionary changes in our understanding of eosinophil biology and its roles in immunity. It is currently recognized that eosinophils play multiple roles in both innate and adaptive immunity. As effector cells in innate immunity, eosinophils exert a pro-inflammatory and destructive role in the Th2 immune response associated with allergic inflammation or parasite infection. Eosinophils can also be recruited by danger signals released by pathogen infections or tissue injury, inducing host defense against parasitic, fungal, bacterial or viral infection or promoting tissue repair and remodeling. Eosinophils also serve as nonprofessional antigen-presenting cells in response to allergen challenge or helminth infection, and, meanwhile, are known to function as a versatile coordinator that actively regulates or interacts with various immune cells including T lymphocytes and dendritic cells. More roles of eosinophils implicated in immunity have been proposed including in immune homeostasis, allograft rejection, and anti-tumor immunity. Eosinophil interactions with structural cells are also implicated in the mechanisms in allergic inflammation and in Helicobacter pylori gastritis. These multifaceted roles of eosinophils as both players and coordinators in immune system are discussed in this review. PMID:27226792

  11. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin

    NASA Astrophysics Data System (ADS)

    Borovikova, Lyudmila V.; Ivanova, Svetlana; Zhang, Minghuang; Yang, Huan; Botchkina, Galina I.; Watkins, Linda R.; Wang, Haichao; Abumrad, Naji; Eaton, John W.; Tracey, Kevin J.

    2000-05-01

    Vertebrates achieve internal homeostasis during infection or injury by balancing the activities of proinflammatory and anti-inflammatory pathways. Endotoxin (lipopolysaccharide), produced by all gram-negative bacteria, activates macrophages to release cytokines that are potentially lethal. The central nervous system regulates systemic inflammatory responses to endotoxin through humoral mechanisms. Activation of afferent vagus nerve fibres by endotoxin or cytokines stimulates hypothalamic-pituitary-adrenal anti-inflammatory responses. However, comparatively little is known about the role of efferent vagus nerve signalling in modulating inflammation. Here, we describe a previously unrecognized, parasympathetic anti-inflammatory pathway by which the brain modulates systemic inflammatory responses to endotoxin. Acetylcholine, the principle vagal neurotransmitter, significantly attenuated the release of cytokines (tumour necrosis factor (TNF), interleukin (IL)-1β, IL-6 and IL-18), but not the anti-inflammatory cytokine IL-10, in lipopolysaccharide-stimulated human macrophage cultures. Direct electrical stimulation of the peripheral vagus nerve in vivo during lethal endotoxaemia in rats inhibited TNF synthesis in liver, attenuated peak serum TNF amounts, and prevented the development of shock.

  12. Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression

    PubMed Central

    Won, Eunsoo; Kim, Yong-Ku

    2016-01-01

    The autonomic nervous system is one of the major neural pathways activated by stress. In situations that are often associated with chronic stress, such as major depressive disorder, the sympathetic nervous system can be continuously activated without the normal counteraction of the parasympathetic nervous system. As a result, the immune system can be activated with increased levels of pro-inflammatory cytokines. These inflammatory conditions have been repeatedly observed in depression. In the search for the mechanism by which the immune system might contribute to depression, the enhanced activity of indoleamine 2,3-dioxygenase by pro-inflammatory cytokines has been suggested to play an important role. Indoleamine 2,3-dioxygenase is the first enzyme in the kynurenine pathway that converts tryptophan to kynurenine. Elevated activity of this enzyme can cause imbalances in downstream kynurenine metabolites. This imbalance can induce neurotoxic changes in the brain and create a vulnerable glial-neuronal network, which may render the brain susceptible to depression. This review focuses on the interaction between stress, the autonomic nervous system and the immune system which can cause imbalances in the kynurenine pathway, which may ultimately lead to major depressive disorder. PMID:27640517

  13. Artificial Immune System for Recognizing Patterns

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terrance

    2005-01-01

    A method of recognizing or classifying patterns is based on an artificial immune system (AIS), which includes an algorithm and a computational model of nonlinear dynamics inspired by the behavior of a biological immune system. The method has been proposed as the theoretical basis of the computational portion of a star-tracking system aboard a spacecraft. In that system, a newly acquired star image would be treated as an antigen that would be matched by an appropriate antibody (an entry in a star catalog). The method would enable rapid convergence, would afford robustness in the face of noise in the star sensors, would enable recognition of star images acquired in any sensor or spacecraft orientation, and would not make an excessive demand on the computational resources of a typical spacecraft. Going beyond the star-tracking application, the AIS-based pattern-recognition method is potentially applicable to pattern- recognition and -classification processes for diverse purposes -- for example, reconnaissance, detecting intruders, and mining data.

  14. Sympathetic nervous system influence on the innate immune response.

    PubMed

    Maestroni, Georges J M

    2006-06-01

    Our studies focused on the sympathetic nervous system (SNS) influence on dendritic cells (DCs), which play a crucial role in the innate immune response. We found that DCs express a variety of adrenergic receptors (ARs) with alpha1-ARs playing a stimulatory and beta2-ARs an inhibitory effect on DCs migration. beta2-ARs in skin and bone marrow-derived DCs when stimulated by bacterial toll-like receptors (TLRs) agonists respond to norepinephrine (NE) by decreased interleukin-12 (IL-12) and increased IL-10 production which in turn downregulates inflammatory cytokine production and CCR7 expression and thus their migration ability leading to reduced T helper-1 (Th1) priming. We also found that contact sensitizers that may induce a predominant Th1 response, do so by inhibiting the local NE turnover in the skin. The SNS seems therefore to contribute in shaping the information conveyed by DCs to T cells and thus in inducing the appropriate adaptive immune response. In this sense, the SNS physiological influence may allow Th2 priming to fight infections sustained by extracellular pathogens and limit the risk for organ-specific autoimmune reactions associated with excessive Th1 priming and inhibition of T regulatory cell functions. More recently, we found that preconditioning of the skin by beta-adrenergic antagonist and the TLR2 agonist S. Aureus peptidoglycan (PGN) may instruct a Th1 adaptive response to a soluble protein antigen. On the contrary, when the TLR4 agonist E. Coli lipopolysaccharide was used, the presence of the beta-adrenergic antagonist was not effective. These effects were consonant with the pattern of TLRs expression shown by epidermal keratinocytes (EKs) but not by skin DCs. As beta-ARs signaling defects together with S. Aureus infections are thought to serve as initiation and/or persistence factors for numerous Th1-sustained autoimmune inflammatory skin diseases, we might have disclosed at least part of the relevant pathogenetic mechanism.

  15. IMMUNE SYSTEM MATURITY AND SENSITIVITY TO CHEMICAL EXPOSURE

    EPA Science Inventory

    It is well established that human diseases associated with abnormal immune function, including some common infectious diseases and asthma, are considerably more prevalent at younger ages. The immune system continues to mature after birth, and functional immaturity accounts for m...

  16. The impact of environmental enrichment on the murine inflammatory immune response

    PubMed Central

    Brod, Samuel; Gobbetti, Thomas; Gittens, Beatrice; Ono, Masahiro; D’Acquisto, Fulvio

    2017-01-01

    Living in a mentally and physically stimulating environment has been suggested to have a beneficial effect on the immune response. This study investigates these effects, utilizing a 2-week program of environmental enrichment (EE) and 2 models of acute inflammation: zymosan-induced peritonitis (ZIP) and the cecal ligation and puncture (CLP) model of sepsis. Our results revealed that following exposure to EE, mice possessed a significantly higher circulating neutrophil to lymphocyte ratio compared with control animals. When subject to ZIP, EE animals exhibit enhanced neutrophil and macrophage influx into their peritoneal cavity. Corresponding results were found in CLP, where we observed an improved capacity for enriched animals to clear systemic microbial infection. Ex vivo investigation of leukocyte activity also revealed that macrophages from EE mice presented an enhanced phagocytic capacity. Supporting these findings, microarray analysis of EE animals revealed the increased expression of immunomodulatory genes associated with a heightened and immunoprotective status. Taken together, these results provide potentially novel mechanisms by which EE influences the development and dynamics of the immune response.

  17. The spleen in local and systemic regulation of immunity

    PubMed Central

    Bronte, Vincenzo; Pittet, Mikael J

    2013-01-01

    Summary The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. However, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We also consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity. PMID:24238338

  18. The spleen in local and systemic regulation of immunity.

    PubMed

    Bronte, Vincenzo; Pittet, Mikael J

    2013-11-14

    The spleen is the main filter for blood-borne pathogens and antigens, as well as a key organ for iron metabolism and erythrocyte homeostasis. Also, immune and hematopoietic functions have been recently unveiled for the mouse spleen, suggesting additional roles for this secondary lymphoid organ. Here we discuss the integration of the spleen in the regulation of immune responses locally and in the whole body and present the relevance of findings for our understanding of inflammatory and degenerative diseases and their treatments. We consider whether equivalent activities in humans are known, as well as initial therapeutic attempts to target the spleen for modulating innate and adaptive immunity.

  19. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    PubMed

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  20. Characterization of the Probiotic Yeast Saccharomyces boulardii in the Healthy Mucosal Immune System.

    PubMed

    Hudson, Lauren E; McDermott, Courtney D; Stewart, Taryn P; Hudson, William H; Rios, Daniel; Fasken, Milo B; Corbett, Anita H; Lamb, Tracey J

    2016-01-01

    The probiotic yeast Saccharomyces boulardii has been shown to ameliorate disease severity in the context of many infectious and inflammatory conditions. However, use of S. boulardii as a prophylactic agent or therapeutic delivery vector would require delivery of S. boulardii to a healthy, uninflamed intestine. In contrast to inflamed mucosal tissue, the diverse microbiota, intact epithelial barrier, and fewer inflammatory immune cells within the healthy intestine may all limit the degree to which S. boulardii contacts and influences the host mucosal immune system. Understanding the nature of these interactions is crucial for application of S. boulardii as a prophylactic agent or therapeutic delivery vehicle. In this study, we explore both intrinsic and immunomodulatory properties of S. boulardii in the healthy mucosal immune system. Genomic sequencing and morphological analysis of S. boulardii reveals changes in cell wall components compared to non-probiotic S. cerevisiae that may partially account for probiotic functions of S. boulardii. Flow cytometry and immunohistochemistry demonstrate limited S. boulardii association with murine Peyer's patches. We also show that although S. boulardii induces a systemic humoral immune response, this response is small in magnitude and not directed against S. boulardii itself. RNA-seq of the draining mesenteric lymph nodes indicates that even repeated administration of S. boulardii induces few transcriptional changes in the healthy intestine. Together these data strongly suggest that interaction between S. boulardii and the mucosal immune system in the healthy intestine is limited, with important implications for future work examining S. boulardii as a prophylactic agent and therapeutic delivery vehicle.

  1. Hypo-gravity and immune system effects

    NASA Technical Reports Server (NTRS)

    Carter, Paul D.; Barnes, Frank

    1990-01-01

    Recent studies on the effects of hypo-gravity on astronauts have shown depressed response of the immune system component cells (e.g. T-lymphocytes activity) and associated bone-mass loss due to demineralization. The widespread use of various electrical stimulation techniques in fracture repair and bone growth make use of the inherent piezoelectric and streaming potentials in Ca(2++) depositation. In-vitro and in-vivo experiments were designed to determine if these potentials, absent or greatly reduced in space, could be artificially enhanced to advantageously effect the bone marrow and, consequently, immune system cells. The bone marrow plays an extremely important role in the development and maturation of all blood cells and, specifically, T- and B-lymphocytes. It is our belief that simulated E-fields will enhance this development when 'ambient' physiological fields are absent during spaceflight or extended bedrest. Our investigation began with a look at the component immune system cells and their growth patterns in vitro. The first chamber will induce E-fields by current densities produced from an agar-bridge electrode arrangement. The cells are immersed in a nutrient agar and isolated from the electrodes by an agar bridge to prevent electrolytic contamination. The second chamber induces current densities by mutual induction from a magnetic field produced by a solenoid coil. Cells are isolated in a small radial area to reduce (1/r) effects and for accurate field calculations. We anticipate inducing currents in the nano- and microampere range as indicated by our calculations of physiological fields.

  2. Immuno-epidemiology of a population structured by immune status: a mathematical study of waning immunity and immune system boosting.

    PubMed

    Barbarossa, M V; Röst, G

    2015-12-01

    When the body gets infected by a pathogen the immune system develops pathogen-specific immunity. Induced immunity decays in time and years after recovery the host might become susceptible again. Exposure to the pathogen in the environment boosts the immune system thus prolonging the time in which a recovered individual is immune. Such an interplay of within host processes and population dynamics poses significant challenges in rigorous mathematical modeling of immuno-epidemiology. We propose a framework to model SIRS dynamics, monitoring the immune status of individuals and including both waning immunity and immune system boosting. Our model is formulated as a system of two ordinary differential equations (ODEs) coupled with a PDE. After showing existence and uniqueness of a classical solution, we investigate the local and the global asymptotic stability of the unique disease-free stationary solution. Under particular assumptions on the general model, we can recover known examples such as large systems of ODEs for SIRWS dynamics, as well as SIRS with constant delay.

  3. Prenatal Alcohol Exposure and the Developing Immune System.

    PubMed

    Gauthier, Theresa W

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensive knowledge of the mechanisms underlying alcohol's effects on the developing immune system only will become clear once researchers establish improved methods for identifying newborns exposed to alcohol in utero.

  4. Measuring the immune system: a comprehensive approach for the analysis of immune functions in humans.

    PubMed

    Claus, Maren; Dychus, Nicole; Ebel, Melanie; Damaschke, Jürgen; Maydych, Viktoriya; Wolf, Oliver T; Kleinsorge, Thomas; Watzl, Carsten

    2016-10-01

    The immune system is essential to provide protection from infections and cancer. Disturbances in immune function can therefore directly affect the health of the affected individual. Many extrinsic and intrinsic factors such as exposure to chemicals, stress, nutrition and age have been reported to influence the immune system. These influences can affect various components of the immune system, and we are just beginning to understand the causalities of these changes. To investigate such disturbances, it is therefore essential to analyze the different components of the immune system in a comprehensive fashion. Here, we demonstrate such an approach which provides information about total number of leukocytes, detailed quantitative and qualitative changes in the composition of lymphocyte subsets, cytokine levels in serum and functional properties of T cells, NK cells and monocytes. Using samples from a cohort of 24 healthy volunteers, we demonstrate the feasibility of our approach to detect changes in immune functions.

  5. Approaches Mediating Oxytocin Regulation of the Immune System

    PubMed Central

    Li, Tong; Wang, Ping; Wang, Stephani C.; Wang, Yu-Feng

    2017-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine–immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic–pituitary–immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic–pituitary–immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine–immune

  6. Approaches Mediating Oxytocin Regulation of the Immune System.

    PubMed

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  7. Cancer immune cycle: a video introduction to the interaction between cancer and the immune system.

    PubMed

    Preusser, Matthias; Berghoff, Anna S; Thallinger, Christiane; Zielinski, Christoph C

    2016-01-01

    This educational video discusses and visualises the key steps of the complex interaction between cancer and the immune system. Essential steps of the cancer immune cycle take place in the tumour itself and in regional lymph nodes, with immune cells travelling between these distinct sites. Antigen-presenting cells such as dendritic cells migrate into the tumour microenvironment and take up tumour antigens. Antigen-presenting cells travel to regional lymph nodes, where they present the tumour antigens to naïve T cells in order to initiate a tumour-specific T cell response. Activated tumour-specific T cells multiply by clonal expansion and enter the blood flow and travel from the regional lymph node to the tumour site. As soon as activated T cells arrive at the tumor site they start a tumour-specific immune response. Co-inhibitory receptors modulate the immune response and may be exploited by tumour cells to escape immunological destruction. In summary, the cancer immune cycle involves several pivotal steps that are essential for generation of a successful specific antitumour immune response. Importantly, dysfunction of a single step may interrupt the entire cycle, thus impairing the immune-mediated control of tumour growth. Immune modulatory therapies such as vaccines or immune checkpoint modulators target specific steps of the cancer immune cycle with the ultimate aim of facilitating an antitumour immune response.

  8. Opioid System Modulates the Immune Function: A Review

    PubMed Central

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    2016-01-01

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function. PMID:26985446

  9. Opioid System Modulates the Immune Function: A Review.

    PubMed

    Liang, Xuan; Liu, Renyu; Chen, Chunhua; Ji, Fang; Li, Tianzuo

    Opioid receptors and their ligands produce powerful analgesia that is effective in perioperative period and chronic pain managements accompanied with various side effects including respiratory depression, constipation and addiction etc. Opioids can also interfere with the immune system, not only participating in the function of the immune cells, but also modulating innate and acquired immune responses. The traditional notion of opioids is immunosuppressive. Recent studies indicate that the role of opioid receptors on immune function is complicated, working through various different mechanisms. Different opioids or opioids administrations show various effects on the immune system: immunosuppressive, immunostimulatory, or dual effect. It is important to elucidate the relationship between opioids and immune function, since immune system plays critical role in various physiological and pathophysiological processes, including the inflammation, tumor growth and metastasis, drug abuse, and so on. This review article tends to have an overview of the recent work and perspectives on opioids and the immune function.

  10. Comorbidity between depression and inflammatory bowel disease explained by immune-inflammatory, oxidative, and nitrosative stress; tryptophan catabolite; and gut-brain pathways.

    PubMed

    Martin-Subero, Marta; Anderson, George; Kanchanatawan, Buranee; Berk, Michael; Maes, Michael

    2016-04-01

    The nature of depression has recently been reconceptualized, being conceived as the clinical expression of activated immune-inflammatory, oxidative, and nitrosative stress (IO&NS) pathways, including tryptophan catabolite (TRYCAT), autoimmune, and gut-brain pathways. IO&NS pathways are similarly integral to the pathogenesis of inflammatory bowel disease (IBD). The increased depression prevalence in IBD associates with a lower quality of life and increased morbidity in IBD, highlighting the role of depression in modulating the pathophysiology of IBD.This review covers data within such a wider conceptualization that better explains the heightened co-occurrence of IBD and depression. Common IO&NS underpinning between both disorders is evidenced by increased pro-inflammatory cytokine levels, eg, interleukin-1 (IL-1) and tumor necrosis factor-α, IL-6 trans-signalling; Th-1- and Th-17-like responses; neopterin and soluble IL-2 receptor levels; positive acute phase reactants (haptoglobin and C-reactive protein); lowered levels of negative acute phase reactants (albumin, transferrin, zinc) and anti-inflammatory cytokines (IL-10 and transforming growth factor-β); increased O&NS with damage to lipids, proteinsm and DNA; increased production of nitric oxide (NO) and inducible NO synthase; lowered plasma tryptophan but increased TRYCAT levels; autoimmune responses; and increased bacterial translocation. As such, heightened IO&NS processes in depression overlap with the biological underpinnings of IBD, potentially explaining their increased co-occurrence. This supports the perspective that there is a spectrum of IO&NS disorders that includes depression, both as an emergent comorbidity and as a contributor to IO&NS processes. Such a frame of reference has treatment implications for IBD when "comorbid" with depression.

  11. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  12. The Immune System in Cancer Prevention, Development and Therapy.

    PubMed

    Candeias, Serge M; Gaipl, Udo S

    2016-01-01

    The immune system plays a pivotal role in the maintenance of the integrity of an organism. Besides the protection against pathogens, it is strongly involved in cancer prevention, development and defense. This review focuses on how the immune system protects against infections and trauma and on its role in cancer development and disease. Focus is set on the interactions of the innate and adaptive immune system and tumors. The role of IFN-γ as a pleiotropic cytokine that plays a very important role at the interface of innate and adaptive immune systems in tumor development and induction of anti-tumor immune responses is outlined. Further, immune cells as prognostic and predictive markers of cancer will be discussed. Data are provided that even the brain as immune privileged organ is subjected to immune surveillance and consequently also brain tumors. Immune therapeutic approaches for glioblastoma multiforme, the most frequent and malignant brain tumor, based on vaccination with dendritic cells are outlined and application of hyperthermia in form of magnetic nanoparticles is discussed. We conclude that the immune system and developing tumors are intimately intertwined. Anti-tumor immune responses can be prominently boosted by multimodal therapies aiming on the one hand to induce immunogenic tumor cell death forms and on the other hand to actively counteract the immune suppressive microenvironment based on the tumor itself.

  13. Impaired Leukocyte Trafficking and Skin Inflammatory Responses in Hamsters Lacking a Functional Circadian System

    PubMed Central

    Prendergast, Brian J.; Cable, Erin J.; Patel, Priyesh N.; Pyter, Leah M.; Onishi, Kenneth G.; Stevenson, Tyler J.; Ruby, Norman F.; Bradley, Sean P.

    2013-01-01

    The immune system is under strong circadian control, and circadian desynchrony is a risk factor for metabolic disorders, inflammatory responses and cancer. Signaling pathways that maintain circadian rhythms (CRs) in immune function in vivo, and the mechanisms by which circadian desynchrony impairs immune function, remain to be fully-identified. These experiments tested the hypothesis that the hypothalamic circadian pacemaker in the suprachiasmatic nucleus (SCN) drives CRs in the immune system, using a non-invasive model of SCN circadian arrhythmia. Robust CRs in blood leukocyte trafficking, with a peak during the early light phase (ZT4) and nadir in the early dark phase (ZT18), were absent in arrhythmic hamsters, as were CRs in spleen clock gene (per1, bmal1) expression, indicating that a functional pacemaker in the SCN is required for the generation of CRs in leukocyte trafficking and for driving peripheral clocks in secondary lymphoid organs. Pinealectomy was without effect on CRs in leukocyte trafficking, but abolished CRs in spleen clock gene expression, indicating that nocturnal melatonin secretion is necessary for communicating circadian time information to the spleen. CRs in trafficking of antigen presenting cells (CD11c+ dendritic cells) in the skin were abolished, and antigen-specific delayed-type hypersensitivity skin inflammatory responses were markedly impaired in arrhythmic hamsters. The SCN drives robust CRs in leukocyte trafficking and lymphoid clock gene expression; the latter of which is not expressed in the absence of melatonin. Robust entrainment of the circadian pacemaker provides a signal critical to diurnal rhythms in immunosurveilliance and optimal memory T-cell dependent immune responses. PMID:23474187

  14. The eye: A window to the soul of the immune system.

    PubMed

    Perez, V L; Saeed, A M; Tan, Y; Urbieta, M; Cruz-Guilloty, F

    2013-09-01

    The eye is considered as an immune privileged site, and with good reason. It has evolved a variety of molecular and cellular mechanisms that limit immune responses to preserve vision. For example, the cornea is mainly protected from autoimmunity by the lack of blood and lymphatic vessels, whereas the retina-blood barrier is maintained in an immunosuppressive state by the retinal pigment epithelium. However, there are several scenarios in which immune privilege is altered and the eye becomes susceptible to immune attack. In this review, we highlight the role of the immune system in two clinical conditions that affect the anterior and posterior segments of the eye: corneal transplantation and age-related macular degeneration. Interestingly, crosstalk between the innate and adaptive immune systems is critical in both acute and chronic inflammatory responses in the eye, with T cells playing a central role in combination with neutrophils and macrophages. In addition, we emphasize the advantage of using the eye as a model for in vivo longitudinal imaging of the immune system in action. Through this technique, it has been possible to identify functionally distinct intra-graft motility patterns of responding T cells, as well as the importance of chemokine signaling in situ for T cell activation. The detailed study of ocular autoimmunity could provide novel therapeutic strategies for blinding diseases while also providing more general information on acute versus chronic inflammation.

  15. Cells of the immune system orchestrate changes in bone cell function.

    PubMed

    Wythe, Sarah E; Nicolaidou, Vicky; Horwood, Nicole J

    2014-01-01

    There is a complex interplay between the cells of the immune system and bone. Immune cells, such as T and NK cells, are able to enhance osteoclast formation via the production of RANKL. Yet there is increasing evidence to show that during the resolution of inflammation or as a consequence of increased osteoclastogenesis there is an anabolic response via the formation of more osteoblasts. Furthermore, osteoblasts themselves are involved in the control of immune cell function, thus promoting the resolution of inflammation. Hence, the concept of "coupling"-how bone formation is linked to resorption-needs to be more inclusive rather than restricting our focus to osteoblast-osteoclast interactions as in a whole organism these cells are never in isolation. This review will investigate the role of immune cells in normal bone homeostasis and in inflammatory diseases where the balance between resorption and formation is lost.

  16. Cross-talk between probiotic lactobacilli and host immune system.

    PubMed

    Kemgang, T S; Kapila, S; Shanmugam, V P; Kapila, R

    2014-08-01

    The mechanism by which probiotic lactobacilli affect the immune system is strain specific. As the immune system is a multicompartmental system, each strain has its way to interact with it and induce a visible and quantifiable effect. This review summarizes the interplay existing between the host immune system and probiotic lactobacilli, that is, with emphasis on lactobacilli as a prototype probiotic genus. Several aspects including the bacterial-host cross-talk with the mucosal and systemic immune system are presented, as well as short sections on the competing effect towards pathogenic bacteria and their uses as delivery vehicle for antigens.

  17. Extracellular Adenosine Mediates a Systemic Metabolic Switch during Immune Response

    PubMed Central

    Bajgar, Adam; Kucerova, Katerina; Jonatova, Lucie; Tomcala, Ales; Schneedorferova, Ivana; Okrouhlik, Jan; Dolezal, Tomas

    2015-01-01

    Immune defense is energetically costly, and thus an effective response requires metabolic adaptation of the organism to reallocate energy from storage, growth, and development towards the immune system. We employ the natural infection of Drosophila with a parasitoid wasp to study energy regulation during immune response. To combat the invasion, the host must produce specialized immune cells (lamellocytes) that destroy the parasitoid egg. We show that a significant portion of nutrients are allocated to differentiating lamellocytes when they would otherwise be used for development. This systemic metabolic switch is mediated by extracellular adenosine released from immune cells. The switch is crucial for an effective immune response. Preventing adenosine transport from immune cells or blocking adenosine receptor precludes the metabolic switch and the deceleration of development, dramatically reducing host resistance. Adenosine thus serves as a signal that the “selfish” immune cells send during infection to secure more energy at the expense of other tissues. PMID:25915062

  18. Reciprocal Interactions of the Intestinal Microbiota and Immune System

    PubMed Central

    Maynard, Craig L.; Elson, Charles O.; Hatton, Robin D.; Weaver, Casey T.

    2013-01-01

    Preface Emergence of the adaptive immune system in vertebrates set the stage for evolution of an advanced symbiotic relationship with the intestinal microbiota. The defining features of specificity and memory that characterize adaptive immunity have afforded vertebrates mechanisms for efficiently tailoring immune responses to diverse types of microbes, whether to promote mutualism or host defense. These same attributes carry risk for immune-mediated diseases that are increasingly linked to the intestinal microbiota. Understanding how the adaptive immune system copes with the remarkable number and diversity of microbes that colonize the digestive tract, and how it integrates with more primitive innate immune mechanisms to maintain immune homeostasis, holds considerable promise for new approaches to modulate immune networks in order to treat and prevent disease. PMID:22972296

  19. [Systemic inflammatory response syndrome (SIRS) and endothelial cell injury].

    PubMed

    Gando, Satoshi

    2004-12-01

    During recent years, evidences have been accumulated demonstrating bidirectional crosstalk between coagulation and inflammation. This review outlines the influences that coagulation and inflammation exert on each other to the endothelium and how these systems induce systemic inflammatory response syndrome (SIRS). Then we discussed the implications of leucocyte-endothelial activation to endothelial cell injury followed by multiple organ dysfunction syndrome (MODS) in patients with sustained SIRS. Last we demonstrated an important role of inflammatory circulation disturbance induced by endothelial cell injury for the pathogenesis of MODS in SIRS and sepsis.

  20. Multiple-Valued Immune Network with Apoptosis System

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Takayuki; Tang, Zheng

    In this paper, we describe a new model of immune network based on biological immune response network. We propose an immunity like multiple-valued network with apoptosis mechanism. The model is based on the interaction between B cells and T cells and the biological apoptosis mechanism in human body. With the mechanism, a naturally immune system can be reproduced. The model is also applied to pattern recognition. It gets possible with a conventional model to restricting categories increase of memory patterns.

  1. Intercellular Communication in the Adaptive Immune System

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup

    2004-03-01

    Higher organisms, like humans, have an adaptive immune system that can respond to pathogens that have not been encountered before. T lymphocytes (T cells) are the orchestrators of the adaptive immune response. They interact with cells, called antigen presenting cells (APC), that display molecular signatures of pathogens. Recently, video microscopy experiments have revealed that when T cells detect antigen on APC surfaces, a spatially patterned supramolecular assembly of different types of molecules forms in the junction between cell membranes. This recognition motif is implicated in information transfer between APC and T cells, and so, is labeled the immunological synapse. The observation of synapse formation sparked two broad questions: How does the synapse form? Why does the synapse form? I will describe progress made in answering these fundamental questions in biology by synergistic use of statistical mechanical theory/computation, chemical engineering principles, and genetic and biochemical experiments. The talk will also touch upon mechanisms that may underlie the extreme sensitivity with which T cells discriminate between self and non-self.

  2. The neonate versus adult mammalian immune system in cardiac repair and regeneration.

    PubMed

    Sattler, Susanne; Rosenthal, Nadia

    2016-07-01

    The immune system is a crucial player in tissue homeostasis and wound healing. A sophisticated cascade of events triggered upon injury ensures protection from infection and initiates and orchestrates healing. While the neonatal mammal can readily regenerate damaged tissues, adult regenerative capacity is limited to specific tissue types, and in organs such as the heart, adult wound healing results in fibrotic repair and loss of function. Growing evidence suggests that the immune system greatly influences the balance between regeneration and fibrotic repair. The neonate mammalian immune system has impaired pro-inflammatory function, is prone to T-helper type 2 responses and has an immature adaptive immune system skewed towards regulatory T cells. While these characteristics make infants susceptible to infection and prone to allergies, it may also provide an immunological environment permissive of regeneration. In this review we will give a comprehensive overview of the immune cells involved in healing and regeneration of the heart and explore differences between the adult and neonate immune system that may explain differences in regenerative ability. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  3. Are the innate and adaptive immune systems setting hypertension on fire?

    PubMed

    Bomfim, Gisele F; Rodrigues, Fernanda Luciano; Carneiro, Fernando S

    2017-03-01

    Hypertension is the most common chronic cardiovascular disease and is associated with several pathological states, being an important cause of morbidity and mortality around the world. Low-grade inflammation plays a key role in hypertension and the innate and adaptive immune systems seem to contribute to hypertension development and maintenance. Hypertension is associated with vascular inflammation, increased vascular cytokines levels and infiltration of immune cells in the vasculature, kidneys and heart. However, the mechanisms that trigger inflammation and immune system activation in hypertension are completely unknown. Cells from the innate immune system express pattern recognition receptors (PRR), which detect conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that induce innate effector mechanisms to produce endogenous signals, such as inflammatory cytokines and chemokines, to alert the host about danger. Additionally, antigen-presenting cells (APC) act as sentinels that are activated by PAMPs and DAMPs to sense the presence of the antigen/neoantigen, which ensues the adaptive immune system activation. In this context, different lymphocyte types are activated and contribute to inflammation and end-organ damage in hypertension. This review will focus on experimental and clinical evidence demonstrating the contribution of the innate and adaptive immune systems to the development of hypertension.

  4. Inflammatory and Immune Response Genes Polymorphisms are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease in Tatars Population from Russia.

    PubMed

    Korytina, Gulnaz Faritovna; Akhmadishina, L Z; Kochetova, O V; Aznabaeva, Y G; Zagidullin, Sh Z; Victorova, T V

    2016-08-01

    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease of the respiratory system affecting primarily distal respiratory pathways and lung parenchyma. This work was designed as a case-control study aimed at investigating the association of COPD with polymorphisms in inflammatory and immune response genes (JAK1, JAK3, STAT1, STAT3, NFKB1, IL17A, ADIPOQ, ADIPOR1, etc.) in Tatar population from Russia. Ten SNPs (rs310216, rs3212780, rs12693591, rs2293152, rs28362491, rs4711998, rs1974226, rs1501299, rs266729, and rs12733285) were genotyped by the real-time polymerase chain reaction (TaqMan assays) in a case-control study (425 COPD patients and 457 in the control group, from Ufa, Russia). Logistic regression was used to detect the association of SNPs in different models. Linear regression analyses were performed to estimate the relationship between SNPs and lung function parameters and pack-years. In Tatar population, significant associations of JAK1 (rs310216) (P = 0.0002, OR 1.70 in additive model), JAK3 (rs3212780) (P = 0.001, OR 1.61 in dominant model), and IL17A (rs1974226) (P = 0.0037, OR 2.31 in recessive model) with COPD were revealed. The disease risk was higher in carriers of insertion allele of NFKB1 (rs28362491) (P = 0.045, OR 1.22). We found a significant gene-by-environment interaction of smoking status and IL17A (rs1974226) (P interact = 0.016), JAK3 (rs3212780) (P interact = 0.031), ADIPOQ (rs266729) (P interact = 0.013), and ADIPOR1 (rs12733285) (P interact = 0.018). The relationship between the rs4711998, rs1974226, rs310216, rs3212780, rs28362491, and smoking pack-years was found (P = 0.045, P = 0.004, P = 0.0005, P = 0.021, and P = 0.042). A significant genotype-dependent variation of forced vital capacity was observed for NFKB1 (rs28362491) (P = 0.017), ADIPOR1 (rs12733285) (P = 0.043), and STAT1 (rs12693591) (P = 0.048). The genotypes of STAT1 (rs12693591) (P = 0.013) and JAK1 (rs

  5. Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency

    PubMed Central

    Cols, Montserrat; Rahman, Adeeb; Maglione, Paul J.; Garcia-Carmona, Yolanda; Simchoni, Noa; Ko, Huai-Bin M.; Radigan, Lin; Cerutti, Andrea; Blankenship, Derek; Pascual, Virginia; Cunningham-Rundles, Charlotte

    2016-01-01

    Background Common variable immunodeficiency (CVID) is an antibody deficiency treated with immunoglobulin; however, patients can have noninfectious inflammatory conditions that lead to heightened morbidity and mortality. Objectives Modular analyses of RNA transcripts in whole blood previously identified an upregulation of many interferon-responsive genes. In this study we sought the cell populations leading to this signature. Methods Lymphoid cells were measured in peripheral blood of 55 patients with CVID (31 with and 24 without inflammatory/autoimmune complications) by using mass cytometry and flow cytometry. Surface markers, cytokines, and transcriptional characteristics of sorted innate lymphoid cells (ILCs) were defined by using quantitative PCR. Gastrointestinal and lung biopsy specimens of subjects with inflammatory disease were stained to seek ILCs in tissues. Results The linage-negative, CD127+, CD161+ lymphoid population containing T-box transcription factor, retinoic acid–related orphan receptor (ROR) γt, IFN-γ, IL-17A, and IL-22, all hallmarks of type 3 innate lymphoid cells, were expanded in the blood of patients with CVID with inflammatory conditions (mean, 3.7% of PBMCs). ILCs contained detectable amounts of the transcription factors inhibitor of DNA binding 2, T-box transcription factor, and RORγt and increased mRNA transcripts for IL-23 receptor (IL-23R) and IL-26, demonstrating inflammatory potential. In gastrointestinal and lung biopsy tissues of patients with CVID, numerous IFN-γ+RORγt+CD3− cells were identified, suggesting a role in these mucosal inflammatory states. Conclusions An expansion of this highly inflammatory ILC population is a characteristic of patients with CVID with inflammatory disease; ILCs and the interferon signature are markers for the uncontrolled inflammatory state in these patients. PMID:26542033

  6. Inflammatory activation and recovering BKV-specific immunity correlate with self-limited BKV replication after renal transplantation.

    PubMed

    Schachtner, Thomas; Stein, Maik; Sefrin, Anett; Babel, Nina; Reinke, Petra

    2014-03-01

    As BKV-associated nephropathy has emerged as an important cause of allograft failure, it has been of major importance to find immune mechanisms suitable to identify kidney transplant recipients (KTRs) at increased risk of BKV replication. We monitored 29 KTRs with seven measurements during the first year post-transplantation. BKV-specific T cells directed to 5 BKV proteins were analyzed in an interferon-γ ELISPOT assay. BKV-specific antibodies were measured using an ELISA. The extent of immunosuppression and inflammatory activation were quantified by measures of immune function including lymphocyte subpopulations, IP-10, and adhesion molecule serum levels. All 5 BKV-specific T cells increased significantly from diagnosis to resolution of BKV replication (P<0.001). While antistructural T cells were significantly higher in KTRs with BKV replication (P<0.05), no differences were observed for antismall t- and large T-antigen-directed T cells (P>0.05). Interestingly, 65% of KTRs without BKV replication showed transient appearance of antismall t- and large T-antigen-directed T cells. Although no significant differences were observed for T-cell subpopulations and adhesion molecules, IP-10 levels increased significantly during BKV replication (P<0.05). Assessment of BKV-specific T cells identifies recovering BKV-specific immunity in KTRs with BKV replication and suggests their protective ability in KTRs without BKV replication. Increases in IP-10 levels stress the importance of infiltrating inflammatory leukocytes in the regulation of BKV replication and point to inflammatory activation in the pathogenesis of BKV replication.

  7. Immune and inflammatory responses in pigs infected with Trichuris suis and Oesophagostomum dentatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to investigate parasite induced immune responses in pigs co-infected with Trichuris suis and Oesophagostomum dentatum as compared to mono-species infected pigs. T. suis is known to elicit a strong immune response leading to rapid expulsion, and a strong antagonistic ...

  8. Fever and the thermal regulation of immunity: the immune system feels the heat

    PubMed Central

    Evans, Sharon S.; Repasky, Elizabeth A.; Fisher, Daniel T.

    2016-01-01

    Fever is a cardinal response to infection that has been conserved in warm and cold-blooded vertebrates for over 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. Here, we review our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction as well as during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. Finally, we discuss the emerging evidence that suggests the adrenergic signalling pathways associated with thermogenesis shape immune cell function. PMID:25976513

  9. Cryptococcal breast abscess in an HIV-positive patient: arguments for reviewing the definition of immune reconstitution inflammatory syndrome.

    PubMed

    Haddow, Lewis J; Sahid, Faieza; Moosa, Mahomed-Yunus S

    2008-07-01

    Atypical manifestations of Cryptococcus neoformans disease have been reported in patients with HIV-1 infection as part of the spectrum of the immune reconstitution inflammatory syndrome (IRIS). We describe a cryptococcal breast abscess in a patient presenting after 11 months of highly active antiretroviral therapy (HAART). The arguments for and against the case being a novel manifestation of IRIS are discussed. The potential hazards of using CD4 count as a surrogate marker of IRIS and the danger of misdiagnosing IRIS as failure of HAART are highlighted.

  10. Hantavirus-induced pathogenesis in mice with a humanized immune system.

    PubMed

    Kobak, Lidija; Raftery, Martin J; Voigt, Sebastian; Kühl, Anja A; Kilic, Ergin; Kurth, Andreas; Witkowski, Peter; Hofmann, Jörg; Nitsche, Andreas; Schaade, Lars; Krüger, Detlev H; Schönrich, Günther

    2015-06-01

    Hantaviruses are emerging zoonotic pathogens that can cause severe disease in humans. Clinical observations suggest that human immune components contribute to hantavirus-induced pathology. To address this issue we generated mice with a humanized immune system. Hantavirus infection of these animals resulted in systemic infection associated with weight loss, decreased activity, ruffled fur and inflammatory infiltrates of lung tissue. Intriguingly, after infection, humanized mice harbouring human leukocyte antigen (HLA) class I-restricted human CD8+ T cells started to lose weight earlier (day 10) than HLA class I-negative humanized mice (day 15). Moreover, in these mice the number of human platelets dropped by 77 % whereas the number of murine platelets did not change, illustrating how differences between rodent and human haemato-lymphoid systems may contribute to disease development. To our knowledge this is the first description of a humanized mouse model of hantavirus infection, and our results indicate a role for human immune cells in hantaviral pathogenesis.

  11. Cryptococcal Immune Reconstitution Inflammatory Syndrome in HIV-1–infected individuals: Literature Review and Proposed Clinical Case Definitions

    PubMed Central

    Haddow, Lewis J; Colebunders, Robert; Meintjes, Graeme; Lawn, Stephen D; Elliott, Julian H; Manabe, Yukari C; Bohjanen, Paul R; Sungkanuparph, Somnuek; Easterbrook, Philippa J; French, Martyn A; Boulware, David R

    2011-01-01

    Cryptococcal immune reconstitution inflammatory syndrome (C-IRIS) may present as a clinical deterioration or new presentation of cryptococcal disease following initiation of antiretroviral therapy (ART) and is believed to be caused by recovery of cryptococcus-specific immune responses. We have reviewed the existing literature on C-IRIS to inform the development of a consensus case definition specific for paradoxical cryptococcal IRIS in patients with known cryptococcal disease prior to ART, and a second definition for incident cases of cryptococcosis developing during ART (here termed ART-associated cryptococcosis), a proportion of which are likely to be “unmasking” C-IRIS. These structured case definitions are intended for use in future clinical, epidemiologic and immunopathologic studies of C-IRIS, harmonizing diagnostic criteria, and facilitating comparisons between studies. As with tuberculosis-associated IRIS, these proposed definitions should be regarded as preliminary until further insights into the immunopathology of IRIS permit their refinement. PMID:21029993

  12. Neuronal influence behind the central nervous system regulation of the immune cells.

    PubMed

    Chavarría, Anahí; Cárdenas, Graciela

    2013-09-02

    Central nervous system (CNS) has a highly specialized microenvironment, and despite being initially considered an immune privileged site, this immune status is far from absolute because it varies with age and brain topography. The brain monitors immune responses by several means that act in parallel; one pathway involves afferent nerves (vagal nerve) and the other resident cells (neurons and glia). These cell populations exert a strong role in the regulation of the immune system, favoring an immune-modulatory environment in the CNS. Neurons control glial cell and infiltrated T-cells by contact-dependent and -independent mechanisms. Contact-dependent mechanisms are provided by several membrane immune modulating molecules such as Sema-7A, CD95L, CD22, CD200, CD47, NCAM, ICAM-5, and cadherins; which can inhibit the expression of microglial inflammatory cytokines, induce apoptosis or inactivate infiltrated T-cells. On the other hand, soluble neuronal factors like Sema-3A, cytokines, neurotrophins, neuropeptides, and neurotransmitters attenuate microglial and/or T-cell activation. In this review, we focused on all known mechanism driven only by neurons in order to control the local immune cells.

  13. Alcohol consumption and antitumor immunity: dynamic changes from activation to accelerated deterioration of the immune system.

    PubMed

    Zhang, Hui; Zhu, Zhaohui; Zhang, Faya; Meadows, Gary G

    2015-01-01

    The molecular mechanisms of how alcohol and its metabolites induce cancer have been studied extensively. However, the mechanisms whereby chronic alcohol consumption affects antitumor immunity and host survival have largely been unexplored. We studied the effects of chronic alcohol consumption on the immune system and antitumor immunity in mice inoculated with B16BL6 melanoma and found that alcohol consumption activates the immune system leading to an increase in the proportion of IFN-γ-producing NK, NKT, and T cells in mice not injected with tumors. One outcome associated with enhanced IFN-γ activation is inhibition of melanoma lung metastasis. However, the anti-metastatic effects do not translate into increased survival of mice bearing subcutaneous tumors. Continued growth of the subcutaneous tumors and alcohol consumption accelerates the deterioration of the immune system, which is reflected in the following: (1) inhibition in the expansion of memory CD8+ T cells, (2) accelerated decay of Th1 cytokine-producing cells, (3) increased myeloid-derived suppressor cells, (4) compromised circulation of B cells and T cells, and (5) increased NKT cells that exhibit an IL-4 dominant cytokine profile, which is inhibitory to antitumor immunity. Taken together, the dynamic effects of alcohol consumption on antitumor immunity are in two opposing phases: the first phase associated with immune stimulation is tumor inhibitory and the second phase resulting from the interaction between the effects of alcohol and the tumor leads to immune inhibition and resultant tumor progression.

  14. Pro-inflammatory caspase-1 activation during the immune response in cells from rainbow trout Oncorhynchus mykiss (Walbaum 1792) challenged with pathogen-associated molecular patterns.

    PubMed

    Rojas, V; Camus-Guerra, H; Guzmán, F; Mercado, L

    2015-11-01

    In response to pathogens, the higher vertebrate innate immune system activates pro-inflammatory caspase-1 which is responsible for the processing and secretion of several important cytokines involved in the host's defence against infection. To date, caspase-1 has been described in few teleost fish, and its activity has been demonstrated through substrate cleavage and inhibition by pharmacological agents. In this study, the detection of the active form of caspase-1 during the immune response in salmonid fish is described, where two antibodies were produced. These antibodies differentially recognize the structural epitopes of the inactive pro-caspase-1 and the processed active form of the caspase. Firstly, caspase-1 activation was demonstrated in vitro by ELISA, Western blotting and immunocytochemistry in rainbow trout macrophages exposed to different pathogen-associated molecular patterns plus the pathogen Aeromonas hydrophila. This activity was clearly abrogated by a caspase inhibitor and seems to be unrelated to IL-1β secretion. Caspase-1 activation was then validated in vivo in gill cells from fish challenged with Aeromonas salmonicida. These results represent the first demonstration of caspase-1 activation in salmonids, and the first evidence of the putative regulatory role which this protease plays in inflammatory response in this fish group, as described for some other teleosts and mammals.

  15. Delayed neutralization of interleukin 6 reduces organ injury, selectively suppresses inflammatory mediator, and partially normalizes immune dysfunction following trauma and hemorrhagic shock.

    PubMed

    Zhang, Yong; Zhang, Jinxiang; Korff, Sebastian; Ayoob, Faez; Vodovotz, Yoram; Billiar, Timothy R

    2014-09-01

    An excessive and uncontrolled systemic inflammatory response is associated with organ failure, immunodepression, and increased susceptibility to nosocomial infection following trauma. Interleukin 6 (IL-6) plays a particularly prominent role in the host immune response after trauma with hemorrhage. However, as a result of its pleiotropic functions, the effect of IL-6 in trauma and hemorrhage is still controversial. It remains unclear whether suppression of IL-6 after hemorrhagic shock and trauma will attenuate organ injury and immunosuppression. In this study, C57BL/6 mice were treated with anti-mouse IL-6 monoclonal antibody immediately prior to resuscitation in an experimental model combining hemorrhagic shock and lower-extremity injury. Interleukin 6 levels and signaling were transiently suppressed following administrations of anti-IL-6 monoclonal antibody following hemorrhagic shock and lower-extremity injury. This resulted in reduced lung and liver injury, as well as suppression in the levels of key inflammatory mediators including IL-10, keratinocyte-derived chemokine, monocyte chemoattractant protein 1, and macrophage inhibitory protein 1α at both 6 and 24 h. Furthermore, the shift to TH2 cytokine production and suppressed lymphocyte response were partly prevented. These results demonstrate that IL-6 is not only a biomarker but also an important driver of injury-induced inflammation and immune suppression in mice. Rapid measurement of IL-6 levels in the early phase of postinjury care could be used to guide IL-6-based interventions.

  16. Neural circuitry and immunity

    PubMed Central

    Pavlov, Valentin A.; Tracey, Kevin J.

    2015-01-01

    Research during the last decade has significantly advanced our understanding of the molecular mechanisms at the interface between the nervous system and the immune system. Insight into bidirectional neuroimmune communication has characterized the nervous system as an important partner of the immune system in the regulation of inflammation. Neuronal pathways, including the vagus nerve-based inflammatory reflex are physiological regulators of immune function and inflammation. In parallel, neuronal function is altered in conditions characterized by immune dysregulation and inflammation. Here, we review these regulatory mechanisms and describe the neural circuitry modulating immunity. Understanding these mechanisms reveals possibilities to use targeted neuromodulation as a therapeutic approach for inflammatory and autoimmune disorders. These findings and current clinical exploration of neuromodulation in the treatment of inflammatory diseases defines the emerging field of Bioelectronic Medicine. PMID:26512000

  17. Neuroendocrine and Immune System Responses with Spaceflights

    NASA Technical Reports Server (NTRS)

    Tipton, Charles M.; Greenleaf, John E.; Jackson, Catherine G. R.

    1996-01-01

    Despite the fact that the first human was in space during 1961 and individuals have existed in a microgravity environment for more than a year, there are limited spaceflight data available on the responses of the neuroendocrine and immune systems. Because of mutual interactions between these respective integrative systems, it is inappropriate to assume that the responses of one have no impact on functions of the other. Blood and plasma volume consistently decrease with spaceflight; hence, blood endocrine and immune constituents will be modified by both gravitational and measurement influences. The majority of the in-flight data relates to endocrine responses that influence fluids and electrolytes during the first month in space. Adrenocorticotropin (ACTH), aldo-sterone. and anti-diuretic hormone (ADH) appear to be elevated with little change in the atrial natriuretic peptides (ANP). Flight results longer than 60 d show increased ADH variability with elevations in angiotensin and cortisol. Although post-flight results are influenced by reentry and recovery events, ACTH and ADH appear to be consistently elevated with variable results being reported for the other hormones. Limited in-flight data on insulin and growth hormone levels suggest they are not elevated to counteract the loss in muscle mass. Post-flight results from short- and long-term flights indicate that thyroxine and insulin are increased while growth hormone exhibits minimal change. In-flight parathyroid hormone (PTH) levels are variable for several weeks after which they remain elevated. Post-flight PTH was increased on missions that lasted either 7 or 237 d, whereas calcitonin concentrations were increased after 1 wk but decreased after longer flights. Leukocytes are elevated in flights of various durations because of an increase in neutrophils. The majority of post-flight data indicates immunoglobulin concentrations are not significantly changed from pre-flight measurements. However, the numbers of T

  18. [Understanding of immune system by visualization of spatiotemporal regulation of immune cells in the entire body].

    PubMed

    Tomura, Michio

    2013-01-01

    Immune system is high-dimensional integrated system distributed in the whole body. Many kinds of, total 10(11) of immune cells are regulated by receiving appropriate signals in appropriate places. We have been attempting to understand immune system by revealing spatiotemporal regulation of immune cells at the whole body level by "Visualization of immune response in vivo". Photoconvertible protein, "Kaede"-Tg mice allowed us to monitor cell-replacement and cell-movement in the whole body by marking cells with color of Kaede from green to red with exposure to violet light. It is applicable to small cell number populations in both lymphoid organs and also peripheral tissues under both normal and pathophysiological conditions. By using this system, we have demonstrated novel findings that "Naive CD4(+) T cell recirculation is an active process that they recirculate through lymphoid organs to seek limited niche for interacting with endogenous antigens and upregulate their function." and "Activated regulatory T cells emigrating from cutaneous immune response is responsible for termination of immune reponse." I will introduce these new tools of us and would like to discuss what is needed to understand immune system in the entire body.

  19. Inflammation on the Mind: Visualizing Immunity in the Central Nervous System

    PubMed Central

    Kang, Silvia S.

    2016-01-01

    The central nervous system (CNS) is a remarkably complex structure that utilizes electrochemical signaling to coordinate activities throughout the entire body. Because the nervous system contains nonreplicative cells, it is postulated that, through evolutionary pressures, this compartment has acquired specialized mechanisms to limit damage. One potential source of damage comes from our immune system, which has the capacity to survey the CNS and periphery for the presence of foreign material. The immune system is equipped with numerous effector mechanisms and can greatly alter the homeostasis and function of the CNS. Degeneration, autoimmunity, and pathogen infection can all result in acute, and sometimes chronic, inflammation within the CNS. Understanding the specialized functionality of innate and adaptive immune cells within the CNS is critical to the design of more efficacious treatments to mitigate CNS inflammatory conditions. Much of our knowledge of CNS-immune interactions stems from seminal studies that have used static and dynamic imaging approaches to visualize inflammatory cells responding to different CNS conditions. This review will focus on how imaging techniques have elevated our understanding of CNS inflammation as well as the exciting prospects that lie ahead as we begin to pursue investigation of the inflamed CNS in real time. PMID:19521688

  20. Macrophage folate receptor-β (FR-β) expression in auto-immune inflammatory rheumatic diseases: a forthcoming marker for cardiovascular risk?

    PubMed

    Jager, Nynke A; Teteloshvili, Nato; Zeebregts, Clark J; Westra, Johanna; Bijl, Marc

    2012-07-01

    In patients with systemic auto-immune inflammatory rheumatic diseases (AIIRD) like rheumatoid arthritis the prevalence of cardiovascular disease (CVD) is increased. In the pathogenesis of AIIRD and atherosclerosis many similarities can be found in the process underlying CVD. Accumulation of inflammatory cells, in particular macrophages at the site of inflammation producing inflammatory mediators serve as a prominent feature in both systemic inflammation and atherosclerosis. Two different subtypes of macrophages have been described in recent literature namely classically activated macrophages (M1) and alternatively activated macrophages (M2). Alternatively activated macrophages are characterized by low CD14 and high CD163 expression. Macrophages expressing CD14 (M1) have been identified within atherosclerotic plaques, whereas CD14 low macrophages are abundant in vessels without atherosclerosis. Depending on the environment and responses to different stimuli, macrophages in plaques can express diverse pro and anti-atherogenic functions. The balance of these different activation profiles influences atheroma evolution and outcome. Nowadays, influx of macrophages is recognized as a very important feature of the pathogenesis of plaque formation. Activated macrophages accumulate at the sites of inflammation and can therefore be exploited to better visualize inflammatory responses in atherosclerosis. Furthermore, activated (but not resting) macrophages possess a functionally active receptor for folate (FR-β), but it is not completely clear which subtype of this activated macrophages expresses this receptor and whether the expression of FR-β is restricted to only one of the macrophage subsets. Although future research needs to be done to investigate FR-β expression and function within inflamed tissues, the expression of functional FR-β on tissue macrophages likely occurs during activation. Therefore, expression of FR-β on activated macrophages holds a promising

  1. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection.

    PubMed

    Sena, Angela A S; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R

    2016-08-03

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection.

  2. Divergent Annexin A1 expression in periphery and gut is associated with systemic immune activation and impaired gut immune response during SIV infection

    PubMed Central

    Sena, Angela A. S.; Glavan, Tiffany; Jiang, Guochun; Sankaran-Walters, Sumathi; Grishina, Irina; Dandekar, Satya; Goulart, Luiz R.

    2016-01-01

    HIV-1 disease progression is paradoxically characterized by systemic chronic immune activation and gut mucosal immune dysfunction, which is not fully defined. Annexin A1 (ANXA1), an inflammation modulator, is a potential link between systemic inflammation and gut immune dysfunction during the simian immunodeficiency virus (SIV) infection. Gene expression of ANXA1 and cytokines were assessed in therapy-naïve rhesus macaques during early and chronic stages of SIV infection and compared with SIV-negative controls. ANXA1 expression was suppressed in the gut but systemically increased during early infection. Conversely, ANXA1 expression increased in both compartments during chronic infection. ANXA1 expression in peripheral blood was positively correlated with HLA-DR+CD4+ and CD8+ T-cell frequencies, and negatively associated with the expression of pro-inflammatory cytokines and CCR5. In contrast, the gut mucosa presented an anergic cytokine profile in relation to ANXA1 expression. In vitro stimulations with ANXA1 peptide resulted in decreased inflammatory response in PBMC but increased activation of gut lymphocytes. Our findings suggest that ANXA1 signaling is dysfunctional in SIV infection, and may contribute to chronic inflammation in periphery and with immune dysfunction in the gut mucosa. Thus, ANXA1 signaling may be a novel therapeutic target for the resolution of immune dysfunction in HIV infection. PMID:27484833

  3. Platelets protect lung from injury induced by systemic inflammatory response

    PubMed Central

    Luo, Shuhua; Wang, Yabo; An, Qi; Chen, Hao; Zhao, Junfei; Zhang, Jie; Meng, Wentong; Du, Lei

    2017-01-01

    Systemic inflammatory responses can severely injure lungs, prompting efforts to explore how to attenuate such injury. Here we explored whether platelets can help attenuate lung injury in mice resulting from extracorporeal circulation (ECC)-induced systemic inflammatory responses. Mice were subjected to ECC for 30 min, then treated with phosphate-buffered saline, platelets, the GPIIb/IIIa inhibitor Tirofiban, or the combination of platelets and Tirofiban. Blood and lung tissues were harvested 60 min later, and lung injury and inflammatory status were assessed. As expected, ECC caused systemic inflammation and pulmonary dysfunction, and platelet transfusion resulted in significantly milder lung injury and higher lung function. It also led to greater numbers of circulating platelet-leukocyte aggregates and greater platelet accumulation in the lung. Platelet transfusion was associated with higher production of transforming growth factor-β and as well as lower levels of tumour necrosis factor-α and neutrophil elastase in plasma and lung. None of these platelet effects was observed in the presence of Tirofiban. Our results suggest that, at least under certain conditions, platelets can protect lung from injury induced by systemic inflammatory responses. PMID:28155889

  4. Colchicine-responsive protracted gouty arthritis with systemic inflammatory reactions.

    PubMed

    Nonaka, Fumiaki; Migita, Kiyoshi; Haramura, Tomoko; Sumiyoshi, Remi; Kawakami, Atsushi; Eguchi, Katsumi

    2014-05-01

    Acute gouty arthritis is a severe but self-limiting arthritis caused by inflammatory responses to urate crystals. Oral colchicines are effective for initial stages or prophylaxis, but generally, colchicines are ineffective for established gouty arthritis. We describe an unusual case of gouty arthritis with systemic inflammatory reactions, including high fever and polymyalgia. Refractory polyarthritis and high fever were eradicated by colchicine treatment. Genetic analysis revealed a heterozygous mutation in exon 2 of the MEFV gene (E148Q). This case underscores the possibility that MEFV gene mutations may modify the phenotype of gouty arthritis.

  5. Reversal of hepatitis B virus-induced systemic immune tolerance by intrinsic innate immune stimulation.

    PubMed

    Han, Qiuju; Lan, Peixiang; Zhang, Jian; Zhang, Cai; Tian, Zhigang

    2013-08-01

    Systemic immune tolerance induced by chronic hepatitis B virus (HBV) infection is a significant question, but the mechanism of which remains unclear. In this mini-review, we summarize the impaired innate and adaptive immune responses involved in immune tolerance in chronic HBV infection. Furthermore, we delineate a novel dual functional small RNA to inhibit HBV replication and stimulate innate immunity against HBV, which proposed a promising immunotherapeutic intervention to interrupt HBV-induced immunotolerance. A mouse model of HBV persistence was established and used to observe the immune tolerant to HBV vaccination, the cell-intrinsic immune tolerance of which might be reversed by chemically synthesized dual functional small RNA (3p-hepatitis B Virus X gene [HBx]-small interfering RNA) in vitro experiments and by biologically constructed dual functional vector (single-stranded RNA-HBx- short hairpin RNA) in vivo experiment using HBV-carrier mice.

  6. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases.

    PubMed

    Calcagni, Emanuele; Elenkov, Ilia

    2006-06-01

    Associations between stress and health outcomes have now been carefully documented, but the mechanisms by which stress specifically influences disease susceptibility and outcome remain poorly understood. Recent evidence indicates that glucocorticoids (GCs) and catecholamines (CAs), the major stress hormones, inhibit systemically IL-12, TNF-alpha, and INF-gamma, but upregulate IL-10, IL-4, and TGF-beta production. Thus, during an immune and inflammatory response, the activation of the stress system, through induction of a Th2 shift may protect the organism from systemic "overshooting" with T helper lymphocyte 1 (Th1)/proinflammatory cytokines. In certain local responses and under certain conditions, however, stress hormones may actually facilitate inflammation, through induction of IL-1, IL-6, IL-8, IL-18, TNF-alpha, and CRP production, and through activation of the corticotropin-releasing hormone (CRH)/substance P(SP)-histamine axis. Autoimmunity, chronic infections, major depression, and atherosclerosis are characterized by a dysregulation of the pro/anti-inflammatory and Th1/Th2 cytokine balance. Thus, hyperactive or hypoactive stress system, and a dysfunctional neuroendocrine-immune interface associated with abnormalities of the "systemic anti-inflammatory feedback" and/or "hyperactivity" of the local proinflammatory factors may contribute to the pathogenesis of these diseases. Conditions that are associated with significant changes in stress system activity, such as acute or chronic stress, cessation of chronic stress, pregnancy and the postpartum period, or rheumatoid arthritis (RA) through modulation of the systemic or local pro/anti-inflammatory and Th1/Th2 cytokine balance, may suppress or potentiate disease activity and/or progression. Thus, stress hormones-induced inhibition or upregulation of innate and Th cytokine production may represent an important mechanism by which stress affects disease susceptibility, activity, and outcome of various immune

  7. Reactive oxygen species in the immune system.

    PubMed

    Yang, Yuhui; Bazhin, Alexandr V; Werner, Jens; Karakhanova, Svetlana

    2013-06-01

    Reactive oxygen species (ROS) are a group of highly reactive chemicals containing oxygen produced either exogenously or endogenously. ROS are related to a wide variety of human disorders, such as chronic inflammation, age-related diseases and cancers. Besides, ROS are also essential for various biological functions, including cell survival, cell growth, proliferation and differentiation, and immune response. At present there are a number of excellent publications including some reviews about functions of these molecules either in normal cell biology or in pathophysiology. In this work, we reviewed available information and recent advances about ROS in the main immune cell types and gave summary about functions of these highly reactive molecules both in innate immunity as conservative defense mechanisms and in essential immune cells involved in adaptive immunity, and particularly in immune suppression.

  8. How the Innate Immune System Senses Trouble and Causes Trouble.

    PubMed

    Hato, Takashi; Dagher, Pierre C

    2015-08-07

    The innate immune system is the first line of defense in response to nonself and danger signals from microbial invasion or tissue injury. It is increasingly recognized that each organ uses unique sets of cells and molecules that orchestrate regional innate immunity. The cells that execute the task of innate immunity are many and consist of not only "professional" immune cells but also nonimmune cells, such as renal epithelial cells. Despite a high level of sophistication, deregulated innate immunity is common and contributes to a wide range of renal diseases, such as sepsis-induced kidney injury, GN, and allograft dysfunction. This review discusses how the innate immune system recognizes and responds to nonself and danger signals. In particular, the roles of renal epithelial cells that make them an integral part of the innate immune apparatus of the kidney are highlighted.

  9. A rare case of immune reconstitution inflammatory syndrome presenting as secondary syphilis.

    PubMed

    Khatri, Asma; Skalweit, Marion J

    2015-09-01

    Immune reconstitution syndrome has rarely been reported in the context of syphilis infection. We report a patient with AIDS (CD4 42 cells/mm(3), viral load 344,000 cp/ml), treated previously for secondary syphilis and started on an integrase inhibitor-based single-tablet antiretroviral treatment regimen. After four weeks of antiretroviral treatment, he presented with non-tender, non-blanching erythematous nodules on his chest, an elevated rapid plasma reagin (1:1024) and immune reconstitution (CD4 154 cells/mm(3), HIV-RNA 130 cp/ml). A detailed workup to exclude opportunistic infections including secondary and neurosyphilis was performed. The patient was continued on antiretroviral treatment and treated empirically for neurosyphilis given cerebrospinal lymphocytosis and dermatopathology suggesting treponemal antigen-driven B-cell hyperplasia. We favour a diagnosis of immune reconstitution in association with prior syphilis infection attributable to rapid and potent immune restoration afforded by integrase inhibitors.

  10. Inorganic nanoparticles and the immune system: detection, selective activation and tolerance

    NASA Astrophysics Data System (ADS)

    Bastús, Neus G.; Sánchez-Tilló, Ester; Pujals, Silvia; Comenge, Joan; Giralt, Ernest; Celada, Antonio; Lloberas, Jorge; Puntes, Victor F.

    2012-03-01

    The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.

  11. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.

    PubMed

    Magrone, Thea; Russo, Matteo Antonio; Jirillo, Emilio

    2016-01-01

    Immune cells actively participate to the central nervous system (CNS) injury either damaging or protecting neural tissue with release of various mediators. Residential microglia and monocyte-derived macrophages play a fundamental role within the injured CNS and, here, special emphasis will be placed on M1 and M2 macrophages for their different functional activities. On the other hand, peripheral T regulatory (Treg) cells exert antiinflammatory activities in the diseased host. In this respect, activation of Treg cells by nutraceuticals may represent a novel approach to treat neuroinflammation. Omega-3 fatty acids and polyphenols will be described as substances endowed with antioxidant and anti-inflammatory activities. However, taking into account that Treg cells act in the later phase of CNS injury, favoring immune suppression, manipulation of host immune system with both substances requires caution to avoid undesired side effects.

  12. How colonization by microbiota in early life shapes the immune system

    PubMed Central

    Gensollen, Thomas; Iyer, Shankar S.; Kasper, Dennis L.; Blumberg, Richard S.

    2016-01-01

    Microbial colonization of mucosal tissues during infancy plays an instrumental role in the development and education of the host mammalian immune system. These early-life events can have long-standing consequences: facilitating tolerance to environmental exposures or contributing to the development of disease in later life, including inflammatory bowel disease, allergy, and asthma. Recent studies have begun to define a critical period during early development in which disruption of optimal host-commensal interactions can lead to persistent and in some cases irreversible defects in the development and training of specific immune subsets. Here, we discuss the role of early-life education of the immune system during this “window of opportunity,” when microbial colonization has a potentially critical impact on human health and disease. PMID:27126036

  13. Childhood infections, the developing immune system, and the origins of asthma.

    PubMed

    Openshaw, Peter J M; Yamaguchi, Yuko; Tregoning, John S

    2004-12-01

    Asthma is an immune-mediated inflammatory condition characterized by increased responsiveness to bronchoconstrictive stimuli. Viruses have been shown to play an important role in asthma, with viral infection being present during about 85% of exacerbations. However, the role they play in the onset of asthma is more controversial. Some respiratory viral infections might be protective, but there is a strong association between respiratory syncytial virus-induced bronchiolitis in infancy and recurrent wheeze up to 12 years of age. Both the respiratory tract and the immune system undergo rapid maturation during the first year of life, and it seems that postnatal development is affected by and affects responses to viral infections. Understanding postnatal developmental changes in the immune system might help to explain the origins and pathogenesis of asthma and thus the effectiveness or ineffectiveness of specific asthma therapies.

  14. Endoscopic scoring systems for inflammatory bowel disease: pros and cons.

    PubMed

    Tontini, Gian Eugenio; Bisschops, Raf; Neumann, Helmut

    2014-07-01

    Endoscopy plays a pivotal role for diagnosis and assessment of disease activity and extent in patients with inflammatory bowel diseases. International guidelines recommend the use of endoscopic scoring systems for evaluation of the prognosis and efficacy of medical treatments. Ideal scoring systems are easy to use, reproducible, reliable, responsive to changes, and validated in different clinical settings in order to guide therapeutic strategies. However, currently available endoscopic scoring systems often appear as complex for routine endoscopy and suffer from insufficient interobserver agreement and lack of formal validation which often limit their use in clinical trials. Here, we describe the role of endoscopic scoring systems in inflammatory bowel diseases focusing on pros and cons in the era of advanced endoscopic imaging and mucosal healing.

  15. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy.

    PubMed

    Zamarin, Dmitriy; Holmgaard, Rikke B; Subudhi, Sumit K; Park, Joon Seok; Mansour, Mena; Palese, Peter; Merghoub, Taha; Wolchok, Jedd D; Allison, James P

    2014-03-05

    Preexisting lymphocytic infiltration of tumors is associated with superior prognostic outcomes in a variety of cancers. Recent studies also suggest that lymphocytic responses may identify patients more likely to benefit from therapies targeting immune checkpoints, suggesting that therapeutic efficacy of immune checkpoint blockade can be enhanced through strategies that induce tumor inflammation. To achieve this effect, we explored the immunotherapeutic potential of oncolytic Newcastle disease virus (NDV). We find that localized intratumoral therapy of B16 melanoma with NDV induces inflammatory responses, leading to lymphocytic infiltrates and antitumor effect in distant (nonvirally injected) tumors without distant virus spread. The inflammatory effect coincided with distant tumor infiltration with tumor-specific CD4(+) and CD8(+) T cells, which was dependent on the identity of the virus-injected tumor. Combination therapy with localized NDV and systemic CTLA-4 blockade led to rejection of preestablished distant tumors and protection from tumor rechallenge in poorly immunogenic tumor models, irrespective of tumor cell line sensitivity to NDV-mediated lysis. Therapeutic effect was associated with marked distant tumor infiltration with activated CD8(+) and CD4(+) effector but not regulatory T cells, and was dependent on CD8(+) cells, natural killer cells, and type I interferon. Our findings demonstrate that localized therapy with oncolytic NDV induces inflammatory immune infiltrates in distant tumors, making them susceptible to systemic therapy with immunomodulatory antibodies, which provides a strong rationale for investigation of such combination therapies in the clinic.

  16. The role of the neuroendocrine and immune systems in the pathogenesis of depression.

    PubMed

    Ogłodek, Ewa; Szota, Anna; Just, Marek; Moś, Danuta; Araszkiewicz, Aleksander

    2014-10-01

    Development of depression is associated with the body's response to prolonged stress, which adversely affects the functioning of the nervous, endocrine and immune systems. Prolonged stress can lead to the development of a so-called allostatic load and reduction of concentration of brain-derived neurotrophic factor. These changes result in impairment of neurogenesis and synaptic remodeling process. This article illustrates the involvement of key mediators of allostasis such as the neuroendocrine and immune systems, in the pathogenesis of depression. The literature concerning the contribution of the neuroendocrine and immune systems to depression incidence was reviewed. Development of depression is associated with disturbance of the body's allostasis and inflammatory activation of the immune system. It leads to a chronic increase in the concentration of cortisol and proinflammatory cytokines, which results in an allostatic load. This load leads to neurodegeneration, eventually causing irreversible cognitive impairment and permanent disability. Determination of the concentration of chemokines and their receptors is an important indicator of activation of the immune and neuroendocrine systems. The activity of these systems reflects the severity of the disease and provides important information for effective antidepressant treatment.

  17. Resident viruses and their interactions with the immune system.

    PubMed

    Duerkop, Breck A; Hooper, Lora V

    2013-07-01

    The human body is colonized with a diverse resident microflora that includes viruses. Recent studies of metagenomes have begun to characterize the composition of the human 'virobiota' and its associated genes (the 'virome'), and have fostered the emerging field of host-virobiota interactions. In this Perspective, we explore how resident viruses interact with the immune system. We review recent findings that highlight the role of the immune system in shaping the composition of the virobiota and consider how resident viruses may impact host immunity. Finally, we discuss the implications of virobiota-immune system interactions for human health.

  18. Promoting tissue regeneration by modulating the immune system.

    PubMed

    Julier, Ziad; Park, Anthony J; Briquez, Priscilla S; Martino, Mikaël M

    2017-01-22

    The immune system plays a central role in tissue repair and regeneration. Indeed, the immune response to tissue injury is crucial in determining the speed and the outcome of the healing process, including the extent of scarring and the restoration of organ function. Therefore, controlling immune components via biomaterials and drug delivery systems is becoming an attractive approach in regenerative medicine, since therapies based on stem cells and growth factors have not yet proven to be broadly effective in the clinic. To integrate the immune system into regenerative strategies, one of the first challenges is to understand the precise functions of the different immune components during the tissue healing process. While remarkable progress has been made, the immune mechanisms involved are still elusive, and there is indication for both negative and positive roles depending on the tissue type or organ and life stage. It is well recognized that the innate immune response comprising danger signals, neutrophils and macrophages modulates tissue healing. In addition, it is becoming evident that the adaptive immune response, in particular T cell subset activities, plays a critical role. In this review, we first present an overview of the basic immune mechanisms involved in tissue repair and regeneration. Then, we highlight various approaches based on biomaterials and drug delivery systems that aim at modulating these mechanisms to limit fibrosis and promote regeneration. We propose that the next generation of regenerative therapies may evolve from typical biomaterial-, stem cell-, or growth factor-centric approaches to an immune-centric approach.

  19. Invited essay: Cognitive influences on the psychological immune system.

    PubMed

    Rachman, S J

    2016-12-01

    The construct of the psychological immune system is described and analysed. The direct and indirect cognitive influences on the system are discussed, and the implications of adding a cognitive construal to the influential model of a behavioural immune system are considered. The psychological immune system has two main properties: defensive and healing. It encompasses a good amount of health-related phenomena that is outside the scope of the behavioural model or the biological immune system. Evidence pertaining to the psychological immune system includes meta-analyses of the associations between psychological variables such as positive affect/wellbeing and diseases and mortality, and associations between wellbeing and positive health. The results of long-term prospective studies are consistent with the conclusions drawn from the meta-analyses. Laboratory investigations of the effects of psychological variables on the biological immune system show that negative affect can slow wound-healing, and positive affect can enhance resistance to infections, for example in experiments involving the introduction of the rhinovirus and the influenza A virus. A number of problems concerning the assessment of the functioning of the psychological immune system are considered, and the need to develop techniques for determining when the system is active or not, is emphasized. This problem is particularly challenging when trying to assess the effects of the psychological immune system during a prolonged psychological intervention, such as a course of resilience training.

  20. Immune reconstitution and strategies for rebuilding the immune system after haploidentical stem cell transplantation.

    PubMed

    Oevermann, Lena; Lang, Peter; Feuchtinger, Tobias; Schumm, Michael; Teltschik, Heiko-Manuel; Schlegel, Patrick; Handgretinger, Rupert

    2012-08-01

    Haploidentical hematopoietic stem cell transplantation is a curative alternative option for patients without an otherwise suitable stem cell donor. In order to prevent graft-versus-host disease (GvHD), different in vitro and in vivo T cell-depletion strategies have been developed. A delayed immune reconstitution is common to all these strategies, and an impaired immune function after haploidentical transplantation with subsequent infections is a major cause of deaths in these patients. In addition to in vitro and in vivo T cell-depletion methods, posttransplant strategies to rapidly rebuild the immune system have been introduced in order to improve the outcome. Advances in in vitro and in vivo T cell-depletion methods, and adoptive transfer of immune cells of the innate and specific immune system, will contribute to reduce the risk of GvHD, lethal infections, and the risk of relapse of the underlying malignant disease.

  1. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies.

    PubMed

    Sideras, K; Braat, H; Kwekkeboom, J; van Eijck, C H; Peppelenbosch, M P; Sleijfer, S; Bruno, M

    2014-05-01

    Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.

  2. Food Components and the Immune System: From Tonic Agents to Allergens

    PubMed Central

    Faria, Ana Maria Caetano; Gomes-Santos, Ana Cristina; Gonçalves, Juliana Lauar; Moreira, Thais Garcias; Medeiros, Samara Rabelo; Dourado, Luana Pereira Antunes; Cara, Denise Carmona

    2013-01-01

    The intestinal mucosa is the major site of contact with antigens, and it houses the largest lymphoid tissue in the body. In physiological conditions, microbiota and dietary antigens are the natural sources of stimulation for the gut-associated lymphoid tissues (GALT) and for the immune system as a whole. Germ-free models have provided some insights on the immunological role of gut antigens. However, most of the GALT is not located in the large intestine, where gut microbiota is prominent. It is concentrated in the small intestine where protein absorption takes place. In this review, we will address the involvement of food components in the development and the function of the immune system. Studies in mice have already shown that dietary proteins are critical elements for the developmental shift of the immature neonatal immune profile into a fully developed immune system. The immunological effects of other food components (such as vitamins and lipids) will also be addressed. Most of the cells in the GALT are activated and local pro-inflammatory mediators are abundant. Regulatory elements are known to provide a delicate yet robust balance that maintains gut homeostasis. Usually antigenic contact in the gut induces two major immune responses, oral tolerance and production of secretory IgA. However, under pathological conditions mucosal homeostasis is disturbed resulting in inflammatory reactions such as food hypersensitivity. Food allergy development depends on many factors such as genetic predisposition, biochemical features of allergens, and a growing array of environmental elements. Neuroimmune interactions are also implicated in food allergy and they are examples of the high complexity of the phenomenon. Recent findings on the gut circuits triggered by food components will be reviewed to show that, far beyond their role as nutrients, they are critical players in the operation of the immune system in health and disease. PMID:23730302

  3. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.

    PubMed

    Lampa, Jon; Westman, Marie; Kadetoff, Diana; Agréus, Anna Nordenstedt; Le Maître, Erwan; Gillis-Haegerstrand, Caroline; Andersson, Magnus; Khademi, Mohsen; Corr, Maripat; Christianson, Christina A; Delaney, Ada; Yaksh, Tony L; Kosek, Eva; Svensson, Camilla I

    2012-07-31

    During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments.

  4. Innate immunity.

    PubMed

    Revillard, Jean-Pierre

    2002-01-01

    For more than half a century immunological research has been almost exclusively orientated towards the acquired immune response and the mechanisms of immune tolerance. Major discoveries have enabled us to better understand the functioning of the specific immune system: the structure of antibody molecules, the genetic mechanisms leading to the molecular diversity of B (BCR) and T (TCR) lymphocyte antigen receptors, the biological function of major histocompatibility complex (MHC) molecules in the presentation of peptides to alpha/beta receptor bearing T lymphocytes, the processes of positive and negative selection of lymphocytes during the course of their differentiation. The major role of specific or acquired immunity has been shown by the rapidly lethal character of severe combined immune deficiency diseases and various alterations in the mechanisms of tolerance have been proposed to explain the chronic inflammatory illnesses which are considered to be auto-immune. Natural or innate immunity has been known since the first description of an inflammatory reaction attributed to Cornelius Celsus. It entered into the scientific era at the end of the 19th century with the discovery of phagocytes by Metchnikoff and of the properties of the complement system by Bordet [1] but due to the vastness of the field and its lack of clear definition, it failed to excite the interest of researchers. The discovery of cytokines and progress in knowledge of the mechanisms of the inflammatory reaction have certainly helped to banish preconceived ideas about natural immunity, which was wrongly labelled as non-specific. This has led to the proposition of a wider role for immune functions beyond the level of the cell or the organism [2] and to a better understanding of the importance of the immediate defence mechanisms and their role in the later orientation of the acquired response.

  5. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases.

    PubMed

    Maxeiner, Horst-Guenter; Marion Schneider, E; Kurfiss, Sina-Tatjana; Brettschneider, Johannes; Tumani, Hayrettin; Bechter, Karl

    2014-09-01

    The present study aimed at profiling inflammatory cytokines for neurological and psychiatric diseases. A total of 86 patients with meningitis, multiple sclerosis, tension-type headache, idiopathic facial nerve palsy (IFNP), affective and schizophrenic disorders were tested for both, serum and cerebrospinal fluid (CSF) using a multiplexed cytokine ELISA for IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-8/CXCL8, IL-10, IL12p70, IL-13 and IL-17. Cases with viral and bacterial meningitis had unequivocally higher cytokine concentrations in the CSF when compared with serum. Bacterial meningitis was unique by extremely elevated IL-17, TNF-α and IL-1β, indicating a plethora of inflammatory pathways, selectively activated in the CSF. In relapsing multiple sclerosis, IFN-γ and IL-10 were elevated in both, serum and CSF, but IL-12p70, IL-5, IL-13, and TNF-α were more prominent in serum than in CSF. Qualitatively similar biomarker patterns were detected in patients with idiopathic facial nerve palsy and tension-type cephalgia. Affective and schizophrenic disorders clearly present with an inflammatory phenotype in the CSF and also serum, the cytokines determined were in general higher in schizophrenia. Except IFN-γ, schizophrenic patients had higher IL-12p70 and a trend of higher IL-10 and IL-13 in serum suggesting a more prominent TH2-type counter regulatory immune response than in affective disorders. These differences were also mirrored in the CSF. Elevated IL-8 appears to be the most sensitive marker for inflammation in the CSF of all diseases studied, whereas TNF-α was restricted to peripheral blood. With the exception of IL-8, all but viral and bacterial meningitis, studied, displayed higher means of elevated lymphokine concentrations in the serum than in the CSF. This observation supports the concept of immunological crosstalk between periphery and intrathecal immunity in neurological and psychiatric diseases.

  6. Effects of Group Drumming Interventions on Anxiety, Depression, Social Resilience and Inflammatory Immune Response among Mental Health Service Users

    PubMed Central

    Fancourt, Daisy; Perkins, Rosie; Ascenso, Sara; Carvalho, Livia A.; Steptoe, Andrew; Williamon, Aaron

    2016-01-01

    Growing numbers of mental health organizations are developing community music-making interventions for service users; however, to date there has been little research into their efficacy or mechanisms of effect. This study was an exploratory examination of whether 10 weeks of group drumming could improve depression, anxiety and social resilience among service users compared with a non-music control group (with participants allocated to group by geographical location.) Significant improvements were found in the drumming group but not the control group: by week 6 there were decreases in depression (-2.14 SE 0.50 CI -3.16 to -1.11) and increases in social resilience (7.69 SE 2.00 CI 3.60 to 11.78), and by week 10 these had further improved (depression: -3.41 SE 0.62 CI -4.68 to -2.15; social resilience: 10.59 SE 1.78 CI 6.94 to 14.24) alongside significant improvements in anxiety (-2.21 SE 0.50 CI -3.24 to -1.19) and mental wellbeing (6.14 SE 0.92 CI 4.25 to 8.04). All significant changes were maintained at 3 months follow-up. Furthermore, it is now recognised that many mental health conditions are characterised by underlying inflammatory immune responses. Consequently, participants in the drumming group also provided saliva samples to test for cortisol and the cytokines interleukin (IL) 4, IL6, IL17, tumour necrosis factor alpha (TNFα), and monocyte chemoattractant protein (MCP) 1. Across the 10 weeks there was a shift away from a pro-inflammatory towards an anti-inflammatory immune profile. Consequently, this study demonstrates the psychological benefits of group drumming and also suggests underlying biological effects, supporting its therapeutic potential for mental health. Trial Registration: ClinicalTrials.gov NCT01906892 PMID:26974430

  7. Psychoneuroimmunology--cross-talk between the immune and nervous systems.

    PubMed

    Ziemssen, Tjalf; Kern, Simone

    2007-05-01

    Psychoneuroimmunology is a relatively new field of study that investigates interactions between behaviour and the immune system, mediated by the endocrine and nervous systems. The immune and central nervous system (CNS) maintain extensive communication. On the one hand, the brain modulates the immune system by hardwiring sympathetic and parasympathetic nerves (autonomic nervous system) to lymphoid organs. On the other hand, neuroendocrine hormones such as corticotrophin-releasing hormone or substance P regulate cytokine balance. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and immune system-mediated disease.

  8. Mapping the effects of drugs on the immune system

    PubMed Central

    Kidd, Brian A; Wroblewska, Aleksandra; Boland, Mary R; Agudo, Judith; Merad, Miriam; Tatonetti, Nicholas P; Brown, Brian D; Dudley, Joel T

    2015-01-01

    Understanding how drugs affect the immune system has consequences for treating disease and minimizing unwanted side effects. Here we present an integrative computational approach for predicting interactions between drugs and immune cells in a system-wide manner. The approach matches gene sets between transcriptional signatures to determine their similarity. We apply the method to model the interactions between 1,309 drugs and 221 immune cell types and predict 69,995 known and novel interactions. The resulting immune-cell pharmacology map is used to predict how 5 drugs influence 4 immune cell types in humans and mice. To validate the predictions, we analyzed patient records and examined cell population changes from in vivo experiments. Our method offers a tool for screening thousands of interactions to identify relationships between drugs and the immune system. PMID:26619012

  9. Mapping the effects of drugs on the immune system.

    PubMed

    Kidd, Brian A; Wroblewska, Aleksandra; Boland, Mary R; Agudo, Judith; Merad, Miriam; Tatonetti, Nicholas P; Brown, Brian D; Dudley, Joel T

    2016-01-01

    Understanding how drugs affect the immune system has consequences for treating disease and minimizing unwanted side effects. Here we present an integrative computational approach for predicting interactions between drugs and immune cells in a system-wide manner. The approach matches gene sets between transcriptional signatures to determine their similarity. We apply the method to model the interactions between 1,309 drugs and 221 immune cell types and predict 69,995 interactions. The resulting immune-cell pharmacology map is used to predict how five drugs influence four immune cell types in humans and mice. To validate the predictions, we analyzed patient records and examined cell population changes from in vivo experiments. Our method offers a tool for screening thousands of interactions to identify relationships between drugs and the immune system.

  10. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance.

  11. Healthy working school teachers with high effort-reward-imbalance and overcommitment show increased pro-inflammatory immune activity and a dampened innate immune defence.

    PubMed

    Bellingrath, Silja; Rohleder, Nicolas; Kudielka, Brigitte M

    2010-11-01

    To test whether chronic work stress is accompanied by altered immune functioning, changes in lymphocyte subsets and in lymphocyte production of cytokines were examined in reaction to acute psychosocial stress. Work stress was measured according to Siegrist's effort-reward-imbalance (ERI) model. ERI reflects stress due to a lack of reciprocity between costs and gains at work. Overcommitment (OC) is conceptualized as a dysfunctional coping pattern mainly characterized by the inability to withdraw from work obligations. Fifty-five healthy teachers (34 women, 21 men, mean age 50.0 ± 8.47 years) were exposed to a standardized laboratory stressor (Trier Social Stress Test). Lymphocyte subset counts and lymphocyte production of tumor-necrosis-factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, -4, -6 and -10 were measured before and after challenge. High levels of ERI and OC were associated with lower natural killer (NK) cell (CD16+/56+) numbers whereas high levels of OC were related to a lower increase in T-helper cells (CD4+) after stress. Furthermore, subjects with higher ERI showed an overall increased pro-inflammatory activity, with higher TNF-α production at both time points and elevated pre-stress IL-6 production. IL-10 production decreased with higher ERI after stress. The ratios of TNF-α/IL-10 and IL-6/IL-10 were significantly increased in subjects high on ERI. Finally, OC was associated with higher IL-2 production post-stress. The present findings suggest a dampened innate immune defence, reflected in lower NK cell numbers together with an increased pro-inflammatory activity in teachers high on ERI and OC. Such pathways could partly be responsible for the increased vulnerability for stress-related diseases in individuals suffering from chronic work stress.

  12. Vitamin D and inflammatory diseases

    PubMed Central

    Yin, Kai; Agrawal, Devendra K

    2014-01-01

    Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed. PMID:24971027

  13. The Immune System in the Pathogenesis of Ovarian Cancer

    PubMed Central

    Charbonneau, Bridget; Goode, Ellen L.; Kalli, Kimberly R.; Knutson, Keith L.; DeRycke, Melissa S.

    2014-01-01

    Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks. PMID:23582060

  14. The impact of probiotics and prebiotics on the immune system.

    PubMed

    Klaenhammer, Todd R; Kleerebezem, Michiel; Kopp, Matthias Volkmar; Rescigno, Maria

    2012-10-01

    Probiotics and prebiotics are increasingly being added to foodstuffs with claims of health benefits. Probiotics are live microorganisms that are thought to have beneficial effects on the host, whereas prebiotics are ingredients that stimulate the growth and/or function of beneficial intestinal microorganisms. But can these products directly modulate immune function and influence inflammatory diseases? Here, Nature Reviews Immunology asks four experts to discuss these issues and provide their thoughts on the future application of probiotics as a disease therapy.

  15. The nervous system of airways and its remodeling in inflammatory lung diseases.

    PubMed

    Audrit, Katrin Julia; Delventhal, Lucas; Aydin, Öznur; Nassenstein, Christina

    2017-03-01

    Inflammatory lung diseases are associated with bronchospasm, cough, dyspnea and airway hyperreactivity. The majority of these symptoms cannot be primarily explained by immune cell infiltration. Evidence has been provided that vagal efferent and afferent neurons play a pivotal role in this regard. Their functions can be altered by inflammatory mediators that induce long-lasting changes in vagal nerve activity and gene expression in both peripheral and central neurons, providing new targets for treatment of pulmonary inflammatory diseases.

  16. [Psychoneuroimmunology of the life span: impact of childhood stress on immune dysregulation and inflammatory disease in later life].

    PubMed

    Schubert, Christian

    2014-05-01

    Studies have shown clearly that childhood mistreatment, abuse and neglect are associated with severe inflammatory disease in adulthood (e. g. cancer, heart disease, autoimmune disorder) and shortened life span. This review deals with the psychoneuroimmunological pathways of this connection. It shows that chronic stressors interfere very early in life with those protective mechanisms of the biological stress system that normally down-regulate potentially harmful inflammation. In the long term, serious inflammatory diseases, such as allergic asthma, can result. In this review, the pathogenetic connections between allergic asthma and early stress and stress system dysfunction are discussed. As our understanding of the dysfunctional psychophysiological mechanisms of inflammatory disease increases, psychodiagnostic and psychotherapeutic intervention in the treatment of physical disease will become more specific.

  17. Alkaline ceramidase 3 deficiency aggravates colitis and colitis-associated tumorigenesis in mice by hyperactivating the innate immune system.

    PubMed

    Wang, K; Xu, R; Snider, A J; Schrandt, J; Li, Y; Bialkowska, A B; Li, M; Zhou, J; Hannun, Y A; Obeid, L M; Yang, V W; Mao, C

    2016-03-03

    Increasing studies suggest that ceramides differing in acyl chain length and/or degree of unsaturation have distinct roles in mediating biological responses. However, still much remains unclear about regulation and role of distinct ceramide species in the immune response. Here, we demonstrate that alkaline ceramidase 3 (Acer3) mediates the immune response by regulating the levels of C18:1-ceramide in cells of the innate immune system and that Acer3 deficiency aggravates colitis in a murine model by augmenting the expression of pro-inflammatory cytokines in myeloid and colonic epithelial cells (CECs). According to the NCBI Gene Expression Omnibus (GEO) database, ACER3 is downregulated in immune cells in response to lipopolysaccharides (LPS), a potent inducer of the innate immune response. Consistent with these data, we demonstrated that LPS downregulated both Acer3 mRNA levels and its enzymatic activity while elevating C(18:1)-ceramide, a substrate of Acer3, in murine immune cells or CECs. Knocking out Acer3 enhanced the elevation of C(18:1)-ceramide and the expression of pro-inflammatory cytokines in immune cells and CECs in response to LPS challenge. Similar to Acer3 knockout, treatment with C(18:1)-ceramide, but not C18:0-ceramide, potentiated LPS-induced expression of pro-inflammatory cytokines in immune cells. In the mouse model of dextran sulfate sodium-induced colitis, Acer3 deficiency augmented colitis-associated elevation of colonic C(18:1)-ceramide and pro-inflammatory cytokines. Acer3 deficiency aggravated diarrhea, rectal bleeding, weight loss and mortality. Pathological analyses revealed that Acer3 deficiency augmented colonic shortening, immune cell infiltration, colonic epithelial damage and systemic inflammation. Acer3 deficiency also aggravated colonic dysplasia in a mouse model of colitis-associated colorectal cancer. Taken together, these results suggest that Acer3 has an important anti-inflammatory role by suppressing cellular or tissue C(18

  18. Natural evolution, disease, and localization in the immune system

    NASA Astrophysics Data System (ADS)

    Deem, Michael

    2004-03-01

    Adaptive vertebrate immune system is a wonder of modern evolution. Under most circumstances, the dynamics of the immune system is well-matched to the dynamics of pathogen growth during a typical infection. Some pathogens, however, have evolved escape mechanisms that interact in subtle ways with the immune system dynamics. In addition, negative interactions the immune system, which has evolved over 400 000 000 years, and vaccination,which has been practiced for only 200 years, are possible. For example,vaccination against the flu can actually increase susceptibility to the flu in the next year. As another example, vaccination against one of the four strains of dengue fever typically increases susceptibility against the other three strains. Immunodominance also arises in the immune system control of nascent tumors--the immune system recognizes only a small subset of the tumor specific antigens, and the rest are free to grow and cause tumor growth. In this talk, I present a physical theory of original antigenic sin and immunodominance. How localization in the immune system leads to the observed phenomena is discussed. 1) M. W. Deem and H. Y. Lee, ``Sequence Space Localization in the Immune System Response to Vaccination and Disease,'' Phys. Rev. Lett. 91 (2003) 068101

  19. The University Immune System: Overcoming Resistance to Change

    ERIC Educational Resources Information Center

    Gilley, Ann; Godek, Marisha; Gilley, Jerry W.

    2009-01-01

    A university, similar to any other organization, has an immune system that erects a powerful barrier against change. This article discusses the university immune system and what can be done to counteract its negative effects and thereby allow change to occur.

  20. Overview of fish immune system and infectious diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...

  1. Conditioned effects of ethanol on the immune system.

    PubMed

    Gano, Anny; Pautassi, Ricardo Marcos; Doremus-Fitzwater, Tamara L; Deak, Terrence

    2017-04-01

    Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to

  2. Systemic protein delivery by muscle-gene transfer is limited by a local immune response

    PubMed Central

    Wang, Lixin; Dobrzynski, Eric; Schlachterman, Alexander; Cao, Ou; Herzog, Roland W.

    2005-01-01

    Adeno-associated viral (AAV) vectors have been successfully used for therapeutic expression of systemic transgene products (such as factor IX or erythropoietin) following in vivo administration to skeletal muscle of animal models of inherited hematologic disorders. However, an immune response may be initiated if the transgene product represents a neoantigen. Here, we use ovalbumin (OVA) as a model antigen and demonstrate immune-mediated elimination of expression on muscle-directed AAV-2 gene transfer. Administration to immune competent mice resulted in transient systemic OVA expression. Within 10 days, OVA-specific T-helper cells had been activated in draining lymph nodes, an inflammatory immune response ensued, and OVA-expressing muscle fibers were destroyed by a cytotoxic CD8+ T-cell response. Use of a muscle-specific promoter did not prevent this immune response. Adoptively transferred CD4+ cells transgenic for a T-cell receptor specific to OVA peptide-major histocompatibility complex class II showed antigen-specific, vector dose-dependent proliferation confined to the draining lymph nodes of AAV-OVA–transduced muscle within 5 days after gene transfer and subsequently participated in lymphocytic infiltration of transduced muscle. This study documents that a local immune response limits sustained expression of a secreted protein in muscle gene transfer, a finding that may have consequences for design of clinical protocols. PMID:15713796

  3. IMMUNE RECONSTITUTION INFLAMMATORY SYNDROME (IRIS)-ASSOCIATED BURKITT LYMPHOMA FOLLOWING COMBINATION ANTI-RETROVIRAL THERAPY IN HIV-INFECTED PATIENTS

    PubMed Central

    Vishnu, Prakash; Dorer, Russell P.; Aboulafia, David M.

    2015-01-01

    HIV/AIDS-associated immune reconstitution inflammatory syndrome (IRIS) is defined as a paradoxical worsening or unmasking of infections and autoimmune diseases, following initiation of combination anti-retroviral therapy (cART). More recently, the case definition of IRIS has been broadened to include certain malignancies including Kaposi’s sarcoma, and less frequently Hodgkin’s and non-Hodgkin’s lymphoma (NHL). Here in we describe 3 patients infected with HIV who began cART and within a median of 15 weeks each achieved non-detectable HIV viral loads, and yet within 6 months presented for medical attention with fevers, night sweats, weight loss and bulky lymphadenopathy. Laboratory studies included elevated lactate dehydrogenase and β-2 microglobulin levels and well preserved CD4+ lymphocyte counts in excess of 350 cells/µL. In each patient lymph node biopsies were diagnostic of Burkitt lymphoma (BL). Patients were managed with multi-agent chemotherapy in conjunction with cART. We also survey the medical literature of other cases of IRIS-associated BL. Although the pathogenesis of IRIS-associated BL is not well elucidated, chronic antigenic stimulation coupled with immune deterioration, followed by subsequent restoration of the immune response and aberrant cytokine expression may be a pathway