Yam, Mun-Li; Abdul Hafid, Sitti Rahma; Cheng, Hwee-Ming; Nesaretnam, Kalanithi
2009-09-01
Tocotrienols are powerful chain breaking antioxidant. Moreover, they are now known to exhibit various non-antioxidant properties such as anti-cancer, neuroprotective and hypocholesterolemic functions. This study was undertaken to investigate the anti-inflammatory effects of tocotrienol-rich fraction (TRF) and individual tocotrienol isoforms namely delta-, gamma-, and alpha-tocotrienol on lipopolysaccharide-stimulated RAW264.7 macrophages. The widely studied vitamin E form, alpha-tocopherol, was used as comparison. Stimulation of RAW264.7 with lipopolysaccharide induced the release of various inflammatory markers. 10 mcirog/ml of TRF and all tocotrienol isoforms significantly inhibited the production of interleukin-6 and nitric oxide. However, only alpha-tocotrienol demonstrated a significant effect in lowering tumor necrosis factor-alpha production. Besides, TRF and all tocotrienol isoforms except gamma-tocotrienol reduced prostaglandin E(2) release. It was accompanied by the down-regulation of cyclooxygenase-2 gene expression by all vitamin E forms except alpha-tocopherol. Collectively, the data suggested that tocotrienols are better anti-inflammatory agents than alpha-tocopherol and the most effective form is delta-tocotrienol.
Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal
Cadieux, Jean-Sébastien; Leclerc, Patrick; St-Onge, Mireille; Dussault, Andrée-Anne; Laflamme, Cynthia; Picard, Serge; Ledent, Catherine; Borgeat, Pierre; Pouliot, Marc
2010-01-01
Summary Neutrophils, which are often the first to migrate at inflamed sites, can generate leukotriene B4 from the 5-lipoxygenase pathway and prostaglandin E2 through the inducible cyclooxygenase-2 pathway. Adenosine, an endogenous autacoid with several anti-inflammatory properties, blocks the synthesis of leukotriene B4 while it potentiates the cyclooxygenase-2 pathway in fMLP-treated neutrophils, following activation of the A2A receptor. Using the murine air pouch model of inflammation, we observed that inflammatory leukocytes from mice lacking the A2A receptor have less cyclooxygenase-2 induction than wild-type animals. In human leukocytes, A2A receptor activation specifically elicited potentiation of cyclooxygenase-2 in neutrophils, but not in monocytes. Signal transduction studies indicated that the cAMP, ERK1/2, PI-3K and p38K intracellular pathways are implicated both in the direct upregulation of cyclooxygenase-2 and in its potentiation. Together, these results indicate that neutrophils are particularly important mediators of adenosine’s effects. Given the uncontrolled inflammatory phenotype observed in knockout mice and in view of the potent inhibitory actions of prostaglandin E2 on inflammatory cells, an increased cyclooxygenase-2 expression resulting from A2A receptor activation, observed particularly in neutrophils, may take part in an early modulatory mechanism promoting anti-inflammatory activities of adenosine. PMID:15769843
[Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].
Páramo, José A; Beloqui, Oscar; Orbe, Josune
2006-05-27
It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.
Xiong, Xi; He, Ya-Nan; Feng, Bi; Pan, Yuan; Zhang, Hai-Zhu; Ke, Xiu-Mei; Zhang, Yi; Yang, Ming; Han, Li; Zhang, Ding-Kun
2018-05-10
Nowadays, breast disorders seriously affect women's health in an increasing number. In China, Xiaojin Pills are commonly used in the treatment of breast diseases. Doctors have concluded that the combined use of Xiaojin Pills with conventional therapy can significantly improve the efficacy with fewer side effects. However, the prescription of Xiaojin Pills is complicated and their quality control methods cannot completely ensure the quality of Xiaojin Pills. On the basis of its mechanism, our study combined chemical evaluation and biological evaluation to identify the anti-inflammatory markers of Xiaojin Pills. In this manuscript, 13 compounds in Xiaojin Pills were quantified. At the same time, the cyclooxygenase-2 inhibition rates of different Xiaojin Pills were measured and the possible markers were screened by spectrum-effect relationship. Further, anti-inflammatory activities of markers were verified and protein interaction network was analyzed, identifying the components of Protocatechuate, Beta-Boswellic acid and Levistilide A as the anti-inflammatory quality markers of Xiaojin Pills. We hope our studies can provide a scientific theoretical basis for accurately quality control of Xiaojin Pills and reasonable suggestions for pharmaceutical companies and new ideas for the quality control of other medicines.
Joseph, Laurie B.; Gerecke, Donald R.; Heck, Diane E.; Black, Adrienne T.; Sinko, Patrick J.; Cervelli, Jessica A.; Casillas, Robert P.; Babin, Michael C.; Laskin, Debra L.; Laskin, Jeffrey D.
2011-01-01
Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1–14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures. PMID:21672537
Joseph, Laurie B; Gerecke, Donald R; Heck, Diane E; Black, Adrienne T; Sinko, Patrick J; Cervelli, Jessica A; Casillas, Robert P; Babin, Michael C; Laskin, Debra L; Laskin, Jeffrey D
2011-10-01
Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1-14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures. Copyright © 2011 Elsevier Inc. All rights reserved.
Anitua, E; Muruzabal, F; de la Fuente, M; Riestra, A; Merayo-Lloves, J; Orive, G
2016-10-01
Ocular graft versus host disease (oGVHD) is part of a systemic inflammatory disease that usually affects ocular surface tissues manifesting as a dry eye syndrome. Current treatments provide unsatisfactory results. Blood-derived products, like plasma rich in growth factors (PRGF) emerge as a potential therapy for this disease. The purpose of this study was to evaluate the tissue regeneration and anti-inflammatory capability of PRGF, an autologous platelet enriched plasma eye-drop, compared to autologous serum (AS) obtained from oGVHD patients on ocular surface cells cultured in a pro-inflammatory environment. PRGF and AS were obtained from four GVHD patients. Cell proliferation and inflammation markers, intercellular adhesion molecule-1 (ICAM-1) and cyclooxygenase-2 (COX-2), were measured in corneal and conjunctival fibroblastic cells cultured under pro-inflammatory conditions and after treatment with PRGF or AS eye drops. Moreover, cell proliferation increased after treatment with PRGF and AS, though this enhancement in the case of keratocytes was significantly higher with PRGF. PRGF eye drops showed a significant reduction of both inflammatory markers with respect to the initial inflammatory situation and to the AS treatment. Our results concluded that PRGF exerts more potent regenerative and anti-inflammatory effects than autologous serum on ocular surface fibroblasts treated with pro-inflammatory IL-1β and TNFα. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flavocoxid, a Nutraceutical Approach to Blunt Inflammatory Conditions
Squadrito, Francesco; Mecchio, Anna
2014-01-01
Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions. PMID:25242871
Flavocoxid, a nutraceutical approach to blunt inflammatory conditions.
Bitto, Alessandra; Squadrito, Francesco; Irrera, Natasha; Pizzino, Gabriele; Pallio, Giovanni; Mecchio, Anna; Galfo, Federica; Altavilla, Domenica
2014-01-01
Flavonoids, from Scutellaria baicalensis (Chinese skullcap) and Acacia catechu (black catechu), have been shown to exert a variety of therapeutic effects, including anti-inflammatory, antiviral, antibacterial, and anticancer activities. Flavocoxid is a mixed extract containing baicalin and catechin and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Controlled clinical trials and a postmarketing study have clearly shown that flavocoxid is as effective as naproxen in managing the signs and symptoms of osteoarthritis of the knee and it has better upper gastrointestinal, renal, and respiratory safety profile than naproxen. Flavocoxid may therefore provide a potential therapeutic approach to the treatment of chronic inflammatory conditions.
Chagas-Paula, Daniela Aparecida; Oliveira, Tiago Branquinho; Faleiro, Danniela Príscylla Vasconcelos; Oliveira, Rejane Barbosa; Costa, Fernando Batista Da
2015-09-01
Cyclooxygenase and 5-lipoxygenase are enzymes that catalyze important inflammatory pathways, suggesting that dual cyclooxygenase/lipoxygenase inhibitors should be more efficacious as anti-inflammatory medicines with lower side effects than the currently available nonsteroidal anti-inflammatory drugs. Many plants from the family Asteraceae have anti-inflammatory activities, which could be exerted by inhibiting the cyclooxygenase-1 and 5-lipoxygenase enzymes. Nevertheless, only a small number of compounds from this family have been directly evaluated for their ability to inhibit the enzymes in cell-free assays. Therefore, this study systematically evaluated 57 Asteraceae extracts in vitro in enzyme activity experiments to determine whether any of these extracts exhibit dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The chemical profiles of the extracts were obtained by the high-performance liquid chromatography-ultraviolet-diode array detector method, and their major constituents were dereplicated. Of the 57 tested extracts, 13 (26.6 %, IC50 range from 0.03-36.2 µg/mL) of them displayed dual inhibition. Extracts from known anti-inflammatory herbs, food plants, and previously uninvestigated species are among the most active. Additionally, the extract action was found to be specific with IC50 values close to or below those of the standard inhibitors. Thus, the active extracts and active substances of these species are potent inhibitors acting through the mechanism of dual inhibition of cyclooxygenase-1 and 5-lipoxygenase. The extracts were prepared for this study using nontoxic extraction solvents (EtOH-H2O), requiring only a small amount of plant material to carry out the bioassays and the phytochemical analyses. In summary, this study demonstrated the potential of the investigated species as dual inhibitors, revealing their potential as pharmaceuticals or nutraceuticals. Georg Thieme Verlag KG Stuttgart · New York.
Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme.
Masferrer, J L; Seibert, K; Zweifel, B; Needleman, P
1992-01-01
The effect of endogenous glucocorticoids on the expression of the cyclooxygenase enzyme was studied by contrasting cyclooxygenase expression and prostanoid synthesis in adrenalectomized and sham-adrenalectomized mice with or without the concurrent administration of endotoxin. Peritoneal macrophages obtained from adrenalectomized mice showed a 2- to 3-fold induction in cyclooxygenase synthesis and activity when compared to sham controls. Intravenous injection of a sublethal dose of endotoxin (5 micrograms/kg) further stimulated cyclooxygenase synthesis, resulting in a 4-fold increase in prostaglandin production. Similar cyclooxygenase induction can be achieved in macrophages obtained from normal mice but only after high doses of endotoxin (2.5 mg/kg) that are 100% lethal to adrenalectomized mice. Restoration of glucocorticoids in adrenalectomized animals with dexamethasone completely inhibited the elevated cyclooxygenase and protected these animals from endotoxin-induced death. In contrast, no signs of cyclooxygenase induction were observed in the kidneys of the adrenalectomized mice, even when treated with endotoxin. Dexamethasone did not affect the constitutive cyclooxygenase activity and prostaglandin production present in normal and adrenalectomized kidneys. These data indicate the existence of a constitutive cyclooxygenase that is normally present in most cells and tissues and is unaffected by steroids and of an inducible cyclooxygenase that is expressed only in the context of inflammation by proinflammatory cells, like macrophages, and that is under glucocorticoid regulation. Under normal physiological conditions glucocorticoids maintain tonic inhibition of inducible cyclooxygenase expression. Depletion of glucocorticoids or the presence of an inflammatory stimulus such as endotoxin causes rapid induction of this enzyme, resulting in an exacerbated inflammatory response that is often lethal. Images PMID:1570314
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E
2012-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human immunodeficiency virus-acquired immunodeficiency syndrome (AIDS) and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenase isotypes 1 and 2 (COX1 and COX2) in the brains of SIV-infected macaques with or without encephalitis and antiretroviral therapy and uninfected controls.Cyclooxygenase isotype 1, but not COX2, was coexpressed with markers of cholinergic phenotype, that is, choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human, brain. Cyclooxygenase isotype 1 was decreased in basal forebrain neurons in macaques with AIDS versus uninfected and asymptomatic SIV-infected macaques. The VAChT-positive fiber density was reduced in frontal, parietal, and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2',3'-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results further imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent irreversible brain damage.
Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.
Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün
2004-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.
Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee
2017-07-10
Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.
Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida
2015-01-01
Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794
Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B.; Heck, Diane E.; Heindel, Ned D.; Young, Sherri C.; Sinko, Patrick J.; Casillas, Robert P.; Laskin, Jeffrey D.; Laskin, Debra L.; Gerecke, Donald R.
2014-01-01
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 hr post-SM exposure. After 96 hr, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermalepidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. PMID:25127551
Chang, Yoke-Chen; Wang, James D; Hahn, Rita A; Gordon, Marion K; Joseph, Laurie B; Heck, Diane E; Heindel, Ned D; Young, Sherri C; Sinko, Patrick J; Casillas, Robert P; Laskin, Jeffrey D; Laskin, Debra L; Gerecke, Donald R
2014-10-15
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. Copyright © 2014 Elsevier Inc. All rights reserved.
Monti, Martina; Terzuoli, Erika; Ziche, Marina; Morbidelli, Lucia
2016-11-01
Cardiovascular diseases as atherosclerosis are associated to an inflammatory state of the vessel wall which is accompanied by endothelial dysfunction, and adherence and activation of circulating inflammatory cells. Hydrogen sulfide, a novel cardiovascular protective gaseous mediator, has been reported to exert anti-inflammatory activity. We have recently demonstrated that the SH containing ACE inhibitor zofenoprilat, the active metabolite of zofenopril, controls the angiogenic features of vascular endothelium through H 2 S enzymatic production by cystathionine gamma lyase (CSE). Based on H 2 S donor/generator property of zofenoprilat, the objective of this study was to evaluate whether zofenoprilat exerts anti-inflammatory activity in vascular cells through its ability to increase H 2 S availability. Here we found that zofenoprilat, in a CSE/H 2 S-mediated manner, abolished all the inflammatory features induced by interlukin-1beta (IL-1β) in human umbilical vein endothelial cells (HUVEC), especially the NF-κB/cyclooxygenase-2 (COX-2)/prostanoid biochemical pathway. The pre-incubation with zofenoprilat/CSE dependent H 2 S prevented IL-1β induced paracellular hyperpermeability through the control of expression and localization of cell-cell junctional markers ZO-1 and VE-cadherin. Moreover, zofenoprilat/CSE dependent H 2 S reduced the expression of the endothelial markers CD40 and CD31, involved in the recruitment of circulating mononuclear cells and platelets. Interestingly, this anti-inflammatory activity was also confirmed in vascular smooth muscle cells and fibroblasts as zofenoprilat reduced, in both cell lines, proliferation, migration and COX-2 expression induced by IL-1β, but independently from the SH moiety and H 2 S availability. These in vitro data document the anti-inflammatory activity of zofenoprilat on vascular cells, reinforcing the cardiovascular protective effect of this multitasking drug. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cyclooxygenase 2 (COX-2) expression is induced by physiological and inflammatory stimuli. Regulation of COX-2 expression is stimulus- and cell type-specific. Exposure to Zn2+ has been associated with activation of multiple intracellular signaling pathways as well as the induction...
Prevention of Endotoxin-Induced Uveitis in Rats by Benfotiamine, a Lipophilic Analogue of Vitamin B1
Yadav, Umesh C. S.; Subramanyam, Sumitra; Ramana, Kota V.
2009-01-01
Purpose To study the amelioration of ocular inflammation in endotoxin-induced uveitis (EIU) in rats by benfotiamine, a lipid-soluble analogue of thiamine. Methods EIU in Lewis rats was induced by subcutaneous injection of lipopolysaccharide (LPS) followed by treatment with benfotiamine. The rats were killed 3 or 24 hours after LPS injection, eyes were enucleated, aqueous humor (AqH) was collected, and the number of infiltrating cells, protein concentration, and inflammatory marker levels were determined. Immunohistochemical analysis of eye sections was performed to determine the expression of inducible–nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, protein kinase C (PKC), and transcription factor NF-κB. Results Infiltrating leukocytes, protein concentrations, and inflammatory cytokines and chemokines were significantly elevated in the AqH of EIU rats compared with control rats, and benfotiamine treatment suppressed these increases. Similarly increased expression of inflammatory markers iNOS and Cox-2 in ciliary body and retinal wall was also significantly inhibited by benfotiamine. The increased phosphorylation of PKC and the activation of NF-κB in the ciliary body and in the retinal wall of EIU rat eyes were suppressed by benfotiamine. Conclusions These results suggest that benfotiamine suppresses oxidative stress–induced NF-κB– dependent inflammatory signaling leading to uveitis. Therefore, benfotiamine could be used as a novel therapeutic agent for the treatment of ocular inflammation, especially uveitis. (Invest Ophthalmol Vis Sci. PMID:19136698
Sherif, Iman O
2018-05-18
The urotoxicity is a common complication associated with patients receiving cyclophosphamide (CYP). This study was designed to investigate the uroprotective mechanism of quercetin (Quer) flavonoid against CYP induced urotoxicity via determination of oxidative stress markers as well as inflammatory mediators in bladder tissue. Forty male Wistar rats were divided into four groups; Normal group: received saline for 10 days. Quer control group: received quercetin 50 mg/kg/day for 10 days. CYP group: received saline for 10 days and injected with a single dose of 150 mg/kg CYP intraperitoneal (i.p) at day 8. The Quer + CYP group: received Quer 50 mg/kg/day for 10 days plus CYP 150 mg/kg i.p. injection at day 8. The CYP injection produced a significant elevation in bladder contents of malondialdehyde (MDA), and nitric oxide (NO), and bladder protein levels and expressions of tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in addition to the upregulation of cyclooxygenase-2 (COX-2) bladder gene expression. Also, CYP injection showed a marked reduction in bladder levels of catalase, superoxide dismutase (SOD), and IL-10 when compared with normal group. Moreover, histopathological examination of the bladder showed degenerative alterations, severe edema, and inflammation following CYP injection. Quer attenuated the biochemical markers and histopathological changes induced by CYP. The uroprotective effect of Quer was exerted by restoring the balance between oxidative/antioxidative status and pro-/anti-inflammatory cytokines via its antioxidant and anti-inflammatory activities. © 2018 Wiley Periodicals, Inc.
Ratheesh, M; Sandya, S; Pramod, C; Asha, S; Svenia, Jose P; Premlal, S; GrishKumar, B
2017-02-01
Kerabala (CB) is a novel ayurvedic formulation used for treating various inflammatory diseases. This formulation was made from virgin coconut oil and it comprises extracts of Sida cordifolia, coconut milk and sesame oil. The current study was performed to evaluate the anti-inflammatory action of CB on carrageenan-induced acute and adjuvant-induced chronic experimental models. 5 mg/kg bwt was found to be potent dose from carrageenan model and evaluated its effect in adjuvant-induced chronic arthritic model. The antioxidant assays like SOD, catalase, glutathione peroxidase, lipid peroxidation product, nitrate level and GSH were measured in paw tissue. Hematological parameters like hemoglobin (HB) count, ESR, WBC count, plasma CRP levels were analyzed. By RT-PCR, the inflammatory markers like cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) expressions were evaluated. The extracellular matrix proteins like MMP-2 and MMP-9 were determined by zymography and its expression by western blotting. Histopathology and cytology of paw tissue and synovium were analyzed. The result indicated that there was a significant increment in the levels of antioxidant enzymes on CB administration. The hematological markers such as ESR, WBC and plasma CRP levels were reduced by CB treatment and it also increases the HB level. The upregulated gene level expressions of inflammatory markers like COX-2, iNOS, TNF-α and IL-6 were down regulated by administration of CB. MMP-2 and MMP-9 expression significantly reduced by CB administration. Massive influx of inflammatory cell infiltration, proliferative collagen in histological analysis of paw tissue of arthritic rat was decreased by CB administration. Synovial cytology of CB administrated group shows reduced number of reactive mesothelial cells and synovial inflammatory cells. This current study shows that ayurvedic drug CB has an antioxidant, anti-inflammatory and anti-arthritic activity in experimental arthritic model. CB as an anti-arthritic drug has beneficial effect for treating inflammation, tissue damage and pain associated with arthritis.
Mahat, Mahamad Yunnus A; Kulkarni, Nagaraj M; Vishwakarma, Santosh L; Khan, Farhin R; Thippeswamy, B S; Hebballi, Vijay; Adhyapak, Anjana A; Benade, Vijay S; Ashfaque, Saudagar Mohammad; Tubachi, Suraj; Patil, Basangouda M
2010-09-10
Kaempferol has been reported to inhibit nitric oxide synthase and cyclooxygenase enzymes in animal models. The present study was designed to investigate whether kaempferol modulates the cyclooxygenase pathway via inhibition of nitric oxide production, which in turn contributes to its anti-inflammatory activity. Investigations were performed using carrageenan induced rat air pouch model. Inflammation was assessed by measurement of nitrites (nitrite, a breakdown product of nitric oxide), prostaglandin-E(2) levels and cellular infiltration in the pouch fluid exudates. To assess the anti-inflammatory effect of the extract, rat air pouch linings were examined histologically. The levels of nitrite and prostaglandin-E(2) in pouch fluid were measured by using Griess assay and ELISA respectively. Cell counts and differential counts were performed using a Coulter counter and Wright-Giemsa stain respectively. Kaempferol when administered orally at 50 and 100mg/kg dose showed significant inhibition of carrageenan induced production of nitrite (40.12 and 59.74%, respectively) and prostaglandin-E(2) generation (64.23 and 78.55%, respectively). Infiltration of the cells into the rat granuloma air pouch was also significantly inhibited by kaempferol. Modulation of cyclooxygenase pathway via inhibition of nitric oxide synthesis significantly contributes to kaempferol's anti-inflammatory activity. The present study characterizes the effects and mechanisms of naturally occurring phenolic flavonoid kaempferol, on inducible nitric oxide synthase expression and nitric oxide production. These results partially explain the pharmacological efficacy of flavonoids in general and kaempferol in particular as anti-inflammatory compounds. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells.
Hwang, Su Jung; Kim, Yong-Wan; Park, Yohan; Lee, Hyo-Jong; Kim, Kyu-Won
2014-01-01
Chlorogenic acid, which belongs to the polyphenols, is an anti-oxidant and anti-obesity agent. In this study, we investigated the role of chlorogenic acid in inflammation. Anti-inflammatory effects of chlorogenic acid were examined in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages and BV2 microglial cells. We observed the level of various inflammation markers such as nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and chemokine (C-X-C motif) ligand 1 (CXCL1) under LPS treatment with or without chlorogenic acid. To clarify the specific effect of chlorogenic acid, we evaluated the adhesion activity of macrophages and ninjurin1 (Ninj1) expression level in macrophages. Finally, we confirmed the activation of the nuclear factor-κB (NF-κB) signaling pathway, which is one of the most important transcription factors in the inflammatory process. Chlorogenic acid significantly inhibited not only NO production but also the expression of COX-2 and iNOS, without any cytotoxicity. Chlorogenic acid also attenuated pro-inflammatory cytokines (including IL-1β and TNF-α) and other inflammation-related markers such as IL-6 in a dose-dependent manner. Additionally, endotoxin-induced adhesion of macrophages and the expression level of ninjurin1 (Ninj1) were decreased by chlorogenic acid. Finally, chlorogenic acid inhibited the nuclear translocation of NF-κB. Chlorogenic acid may be beneficial for the prevention and treatment of anti-inflammatory diseases.
Pulmonary and systemic inflammatory responses to intra-amniotic IL-1α in fetal sheep
Kramer, Boris W.; Nitsos, Ilias; Pillow, J. Jane; Collins, Jennifer J. P.; Polglase, Graeme R.; Newnham, John P.; Jobe, Alan H.
2011-01-01
Clinical and epidemiological studies implicate IL-1 as an important mediator of perinatal inflammation. We tested the hypothesis that intra-amniotic IL-1α would induce pulmonary and systemic fetal inflammatory responses. Sheep with singleton fetuses were given an intra-amniotic injection of recombinant sheep IL-1α (100 μg) and were delivered 1, 3, or 7 days later, at 124 ± 1 days gestation (n=5–8/group). A separate group of sheep were given two intra-amniotic IL-1α injections (100 μg dose each): 7 days and again 1 day prior to delivery. IL-1α induced a robust increase in monocytes, neutrophils, lymphocytes, and IL-8 protein in bronchoalveolar lavage fluid. H2O2 secretion was increased in inflammatory cells isolated from lungs of IL-1α-exposed lambs upon LPS challenge in vitro compared with control monocytes. T lymphocytes were recruited to the lung. IL-1β, cyclooxygenase-1, and cyclooxygenase-2 mRNA expression increased in the lung 1 day after intra-amniotic IL-1α exposure. Lung volumes increased 7 days after intra-amniotic IL-1α exposure, with minimal anatomic changes in air space morphology. The weight of the posterior mediastinal lymph node draining the lung and the gastrointestinal tract doubled, inducible nitric oxide synthase (NOSII)-positive cells increased, and Foxp3-positive T-regulatory lymphocytes decreased in the lymph node after IL-1α exposure. In the blood, neutrophil counts and plasma haptoglobin increased after IL-1α exposure. Compared with a single exposure, exposure to intra-amniotic IL-1α 7 days and again 1 day before delivery had a variable effect (increases in some inflammatory markers, but not pulmonary cytokines). IL-1α is a potent mediator of the fetal inflammatory response syndrome. PMID:21665964
Meera, M; Ruckmani, A; Saravanan, R; Lakshmipathy Prabhu, R
2017-10-09
The present study was conducted to identify the chemical constituents and evaluate the anti-inflammatory activity of crude ethanolic extracts of spine, skin and rind of jack fruit (Artocarpus heterophyllus) peel. Polyphenol and flavonoid contents were assessed using Folin's Ciocalteu reagent and aluminium chloride methods which revealed 316, 355 and 382 mg tannic acid equivalent/g of polyphenol and 96.7, 131.6 and 164.6 mg quercetin equivalent/g of flavonoid in spine, skin and rind, respectively. Anti-inflammatory activity of all three extracts was comparable to diclofenac in vitro and in vivo studies. Skin exhibited maximum anti-inflammatory activity, rind had preferential inhibition on Cyclooxygenase-2 and spine and skin inhibited both Cyclooxygenase-1 and 2 in vitro.
Goldstein, J L; Miner, P B; Schlesinger, P K; Liu, S; Silberg, D G
2006-04-15
Studies to date have not directly compared the pharmacodynamic efficacies of different proton pump inhibitors in controlling intragastric acidity in patients treated with non-steroidal anti-inflammatory drugs. To compare acid suppression with once-daily esomeprazole 40 mg, lansoprazole 30 mg and pantoprazole 40 mg in patients receiving non-selective or cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drug therapy. In this multicentre, open-label, comparative, three-way crossover study, adult patients (n = 90) receiving non-steroidal anti-inflammatory drugs were randomized to one of six treatment sequences. At the study site, patients were administered esomeprazole 40 mg, lansoprazole 30 mg and pantoprazole 40 mg for 5 days each, with a washout period of > or =10 days between each treatment. Twenty-four-hour pH testing was performed on day 5 of each dosing period. The mean percentage of time during the 24-h pH monitoring period that gastric pH was >4.0 was significantly greater with esomeprazole (74.2%) compared with lansoprazole (66.5%; P < 0.001) and pantoprazole (60.8%; P < 0.001), and significantly greater with esomeprazole (P < 0.05) than with the comparators regardless of whether using non-selective vs. cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drugs. At the doses studied, esomeprazole treatment provides significantly greater gastric acid suppression than lansoprazole or pantoprazole in patients receiving non-selective or cyclo-oxygenase-2-selective non-steroidal anti-inflammatory drugs.
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L
2009-08-01
The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced TNF-alpha mRNA levels (LPS = 8 +/- 0.9; flavocoxid = 1.9 +/- 0.8 n-fold/beta-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression.
Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas
2014-01-01
The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.
Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to themore » skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair markers are associated with NDH4438 treatment on SM injury.« less
Lam, Emily Y M; Funder, John W; Nikolic-Paterson, David J; Fuller, Peter J; Young, Morag J
2006-07-01
The pathophysiologic effects of nonepithelial mineralocorticoid receptor (MR) activation include vascular inflammation followed by renal and cardiac remodeling in experimental animals. We have recently shown that MR blockade can reverse established cardiac fibrosis and vascular inflammation; the present study explores whether a similar protection is seen in renal tissue. Rats were uninephrectomized and maintained on 0.9% NaCl solution to drink and treated as follows: control, vehicle; deoxycorticosterone (DOC), 20 mg/wk sc for 4 wk and then killed; DOC for 8 wk; DOC for 4 wk and no steroid for wk 5-8; DOC for 8 wk and eplerenone 100 mg/kg.d in the food for wk 5-8. DOC increased renal collagen at 4 and 8 wk; rats given DOC for 4 wk and killed at 8 wk showed levels of fibrosis identical with those killed at 4 wk, whereas rats given DOC for 8 wk plus eplerenone for wk 5-8 were indistinguishable from control. The inflammatory markers ED-1, osteopontin, and cyclooxygenase-2 remained significantly elevated despite the withdrawal of DOC (DOC404), whereas eplerenone restored cyclooxygenase-2 expression (but not that of ED-1 or osteopontin) to control levels. In addition, markers of oxidative stress and TGFbeta were determined. We hypothesize that continuing tubular inflammation and fibrosis despite DOC withdrawal indicates that the renal tissue may reflect MR activation in the context of tissue damage.
Jachak, Sanjay M; Gautam, Raju; Selvam, C; Madhan, Himanshu; Srivastava, Amit; Khan, Taj
2011-03-01
The standardized EtOAc, MeOH and 70% EtOH extracts of Tridax procumbens aerial parts showed significant inhibition of rat paw edema at a medium dose of 200mg/kg and the EtOAC extract was the most active. These extracts were standardized by HPLC with the help of chemical markers. Further, the extracts were evaluated for COX-1 and COX-2 inhibitory activity and EtOAc extract exhibited the highest inhibition of COX-1 and COX-2 at 50 μg/mL. Cent aurein, centaureidin and bergenin were isolated as COX-1 and COX-2 inhibitory principles from the EtOAc extract. The extracts also exhibited antioxidant activity against DPPH and ABTS free radicals. The anti-inflammatory activity of T. procumbens aerial parts could be at least in part due to COX-1, COX-2 enzyme inhibition and free radical-scavenging activities which may be attributed to the presence of flavonoids and other polyphenols in the extracts. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of cyclooxygenase inhibitors on gentamicin-induced nephrotoxicity in rats.
Hosaka, E M; Santos, O F P; Seguro, A C; Vattimo, M F F
2004-07-01
The frequent use of nonsteroidal anti-inflammatory drugs (NSAID) in combination with gentamicin poses the additional risk of nephrotoxic renal failure. Cyclooxygenase-1 (COX-1) is the main enzyme responsible for the synthesis of renal vasodilator prostaglandins, while COX-2 participates predominantly in the inflammatory process. Both are inhibited by non-selective NSAID such as indomethacin. Selective COX-2 inhibitors such as rofecoxib seem to have fewer renal side effects than non-selective inhibitors. The objective of the present study was to determine whether the combined use of rofecoxib and gentamicin can prevent the increased renal injury caused by gentamicin and indomethacin. Male Wistar rats (250-300 g) were treated with gentamicin (100 mg/kg body weight, ip, N = 7), indomethacin (5 mg/kg, orally, N = 7), rofecoxib (1.4 mg/kg, orally, N = 7), gentamicin + rofecoxib (100 and 1.4 mg/kg, respectively) or gentamicin + indomethacin (100 and 5 mg/kg, respectively, N = 8) for 5 days. Creatinine clearance and alpha-glutathione-S-transferase concentrations were used as markers of renal injury. Animals were anesthetized with ether and sacrificed for blood collection. The use of gentamicin plus indomethacin led to worsened renal function (0.199 +/- 0.019 ml/min), as opposed to the absence of a nephrotoxic effect of rofecoxib when gentamicin plus rofexicob was used (0.242 +/- 0.011 ml/min). These results indicate that COX-2-selective inhibitors can be used as an alternative treatment to conventional NSAID, especially in situations in which risk factors for nephrotoxicity are present.
Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung
2014-07-10
Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.
Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender
2016-01-01
Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638
Gautam, Raju; Jachak, Sanjay M; Kumar, Vivek; Mohan, C Gopi
2011-03-15
Stellatin (4), isolated from Dysophylla stellata is a cyclooxygenase (COX) inhibitor. The present study reports the synthesis and biological evaluation of new stellatin derivatives for COX-1, COX-2 inhibitory and anti-inflammatory activities. Eight derivatives showed more pronounced COX-2 inhibition than stellatin and, 17 and 21 exhibited the highest COX-2 inhibition. They also exhibited the significant anti-inflammatory activity in TPA-induced mouse ear edema assay and their anti-inflammatory effects were more than that of stellatin and indomethacin at 0.5mg/ear. The derivatives were further evaluated for antioxidant activity wherein 16 and 17 showed potent free radical scavenging activity against DPPH and ABTS radicals. Molecular docking study revealed the binding orientations of stellatin and its derivatives into the active sites of COX-1 and COX-2 and thereby helps to design the potent inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Li, C S; Black, W C; Chan, C C; Ford-Hutchinson, A W; Gauthier, J Y; Gordon, R; Guay, D; Kargman, S; Lau, C K; Mancini, J
1995-12-08
The recent discovery of an alternative form cyclooxygenase (cyclooxygenase-2, COX-2), which has been proposed to play a significant role in inflammatory conditions, may provide an opportunity to develop anti-inflammatory drugs with fewer side effects than existing non-steroidal anti-inflammatory drugs (NSAIDs). We have now identified 6-[(2,4-difluorophenyl)-thio]-5-methanesulfonamido-1-indanone++ + (20) (L-745,337) as a potent, selective, and orally active COX-2 inhibitor. The structure-activity relationships in this series have been extensively studied. Ortho- and para-substituted 6-phenyl substitutents are optimal for in vitro potency. Replacement of this phenyl ring by a variety of heterocycles gave compounds that were less active. The methanesulfonamido group seems to be the optimal group at the 5-position of the indanone system. Compound 20 has an efficacy profile that is superior or comparable to that of the nonselective COX inhibitor indomethacin in animal models of inflammation, pain, and fever and appears to be nonulcerogenic within the dosage ranges required for functional efficacy. Although 20 and its oxygen linkage analog 2 (flosulide) are equipotent in the in vitro assays, compound 20 is more potent in the rat paw edema assay, has a longer t1/2 in squirrel monkeys, and seems less ulcergenic than 2 in rats.
Cyclooxygenase-2 inhibitors: promise or peril?
Mengle-Gaw, Laurel J; Schwartz, Benjamin D
2002-01-01
The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519
Plasma n-3 and n-6 fatty acids and inflammatory markers in Chinese vegetarians.
Yu, Xiaomei; Huang, Tao; Weng, Xiumei; Shou, Tianxing; Wang, Qiang; Zhou, Xiaoqiong; Hu, Qinxin; Li, Duo
2014-09-29
Polyunsaturated fatty acid (PUFA) intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, the relationship between the PUFA and inflammatory factors in the healthy vegetarians were not clear. We aimed to investigate the plasma fatty acids status, and its association with plasma inflammatory factors in Chinese vegetarians and omnivores. A total of 89 male vegetarians and 106 male omnivores were participated the study. Plasma concentrations of inflammatory factors were detected by ELISA, and as standard methods fatty acids were extracted and determined by chromatography. Compared with omnivores, vegetarians have significant higher interleukin-6 (IL-6), plasma n-6 PUFA, n-6/n-3, and 18:3n-3; while they have significant lower leukotriene B4 (LTB4), cyclo-oxygenase-2 (COX2) and prostaglandin E2 (PGE2), 20:5n-3, 22:5n-3, 22:6n-3, and n-3 PUFA. In vegetarians, plasma 20:4n-6 was significant positively related to TNF-α. LTB4 was significantly positively related to plasma 22:6n-3, and negatively associated with n-6 PUFA. Vegetarians have higher plasma n-6 PUFA and IL-6, but lower LTB4, n-3 PUFA, 22:6n-3, COX2 and PGE2 levels. It would seem appropriate for vegetarians to increase their dietary n-3 PUFA, while reduce dietary n-6 PUFA and thus reduce the risk of chronic inflammatory-related diseases.
Verma, Saguna; Kumar, Mukesh; Nerurkar, Vivek R
2011-03-01
Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood-brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE.
Lamraoui, Amal; Adi-Bessalem, Sonia; Laraba-Djebari, Fatima
2015-10-01
Scorpion venoms are known to cause different inflammatory disorders through complex mechanisms in various tissues. In the study here, the involvement of phospholipase A2 (PLA2) and cyclo-oxygenase (COX)-derived metabolites in hepatic and renal inflammation responses were examined. Mice were envenomed with Androctonus australis hector scorpion venom in the absence or presence of inhibitors that can interfere with lipid inflammatory mediator synthesis, i.e., dexamethasone (PLA2 inhibitor), indomethacin (non-selective COX-1/COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor). The inflammatory response was assessed by evaluating vascular permeability changes, inflammatory cell infiltration, oxidative/nitrosative stress marker levels, and by histologic and functional analyses of the liver and kidney. Results revealed that the venom alone induced an inflammatory response in this tissues marked by increased microvascular permeability and inflammatory cell infiltration, increases in levels of nitric oxide and lipid peroxidation, and decreases in antioxidant defense. Moreover, significant alterations in the histological architecture of these organs were associated with increased serum levels of some metabolic enzymes, as well as urea and uric acid. Pre-treatment of mice with dexamethasone led to significant decreases of the inflammatory disorders in the hepatic parenchyma; celecoxib pre-treatment seemed to be more effective against renal inflammation. Indomethacin pre-treatment only slightly reduced the inflammatory disorders in the tissues. These results suggest that the induced inflammation response in liver was mediated mainly by PLA2 activation, while the renal inflammatory process was mediated by prostaglandin formation by COX-2. These findings provide additional insight toward the understanding of activated pathways and related mechanisms involved in scorpion envenoming syndrome.
Singh, Gurjit; Bhatti, Rajbir; Mannan, Rahul; Singh, Drishtant; Kesavan, Anup; Singh, Palwinder
2018-05-07
Osthole is a bioactive component reported in medicinal plants such as Angelica pubescens and Cnidium monnieri, known for analgesic activity. However, the toxicity, median effective dose (ED 50 ), and dual modulation of nitric oxide and cyclooxygenase pathways along with inflammatory cytokines of osthole are yet to be determined. The animals (mice) were assessed for general behaviour and mortality in varying doses (50, 300, and 2000 mg kg -1 ) of osthole for acute toxicity over 14 days. The analgesic activity was investigated using acetic acid and formalin-induced hyperalgesia, and anti-inflammatory activity was explored in carrageenan-induced paw oedema. ED 50 of osthole was calculated using Design Expert software. Involvement of nitric oxide and cyclooxygenase pathways was investigated by agonist challenges with L-arginine and substance P, respectively. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was determined in spinal sections by immunohistochemical analysis. Lipopolysaccharide (LPS) challenge was used to assess in vivo effect on inflammatory cytokines (TNFα and IL-6). Acute toxicity studies revealed no behavioural abnormality or mortality on osthole treatment and unremarkable histological findings. Osthole was found to significantly decrease acetic acid and formalin-induced hyperalgesia (ED 50 = 5.43 mg kg -1 ) and carrageenan-induced paw oedema with no toxicity symptoms. Osthole produced a marked decrease in iNOS and COX-2 expression as well as TNFα and IL-6. The findings corroborate to modulation of iNOS and COX-2 and inflammatory cytokines by osthole. This study provides promising insights and prospects for application of osthole in pain management.
Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D
2013-01-01
The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336
Lineage tracing of cells involved in atherosclerosis.
Albarrán-Juárez, Julián; Kaur, Harmandeep; Grimm, Myriam; Offermanns, Stefan; Wettschureck, Nina
2016-08-01
Despite the clinical importance of atherosclerosis, the origin of cells within atherosclerotic plaques is not fully understood. Due to the lack of a definitive lineage-tracing strategy, previous studies have provided controversial results about the origin of cells expressing smooth muscle and macrophage markers in atherosclerosis. We here aim to identify the origin of vascular smooth muscle (SM) cells and macrophages within atherosclerosis lesions. We combined a genetic fate mapping approach with single cell expression analysis in a murine model of atherosclerosis. We found that 16% of CD68-positive plaque macrophage-like cells were derived from mature SM cells and not from myeloid sources, whereas 31% of αSMA-positive smooth muscle-like cells in plaques were not SM-derived. Further analysis at the single cell level showed that SM-derived CD68(+) cells expressed higher levels of inflammatory markers such as cyclooxygenase 2 (Ptgs2, p = 0.02), and vascular cell adhesion molecule (Vcam1, p = 0.05), as well as increased mRNA levels of genes related to matrix synthesis such as Col1a2 (p = 0.01) and Fn1 (p = 0.04), than non SM-derived CD68(+) cells. These results demonstrate that smooth muscle cells within atherosclerotic lesions can switch to a macrophage-like phenotype characterized by higher expression of inflammatory and synthetic markers genes that may further contribute to plaque progression. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha
2007-09-14
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2 with peptide WCS is 1.90x10(-10)M, the kinetic constant (K(i)) determined by spectrophotometry is 4.85x10(-9)M and the IC(50) value is 1.5x10(-8)M by ELISA test.
Fan, Songtao; Huang, Xiaojun; Wang, Sunan; Li, Chang; Zhang, Zhihong; Xie, Mingyong; Nie, Shaoping
2018-05-15
This study investigated the possible protective effect of combined fungal polysaccharides (CFP), consisting of Cordyceps sinensis polysaccharides (CSP) and Ganoderma atrum polysaccharides (PSG) with well-defined structural characteristics, against cyclophosphamide (CTX)-induced hepatotoxicity in mice. Our results indicated CFP effectively prevented the liver injury by decreasing toxicity markers (aspartate transaminase, alanine aminotransferase and alkaline phosphatase). Further biochemical and molecular analysis indicated CSP particularly inhibited the activation of Toll-like receptor 9 (TLR9) and its related inflammatory signals, including pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 to modulate hepatic inflammation response. Relatively, through activation of peroxisome proliferator-activated receptor α (PPARα), PSG increased hepatic glutathione peroxidase and glutathione content depleted by CTX, as well as prevented mitochondria-dependent apoptosis with regulation on Bcl-2 family proteins (Bad, Bax and Bcl-2). In addition, protective effect of CFP was associated with enhanced modulations on cellular oxidant/antioxidant imbalance, mitochondrial apoptotic pathway and pro-inflammatory factors via PPARα upregulation and TLR9 downregulation. Taking together, the combinatorial approach based on CSP and PSG presented a practical option for the management of drug-induced liver injury. Copyright © 2018 Elsevier Ltd. All rights reserved.
2014-01-01
Background Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. Results HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Conclusions Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways. PMID:25012519
Tan, Woan Sean; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Fakurazi, Sharida
2015-01-01
Aim of Study. Moringa oleifera Lam. (M. oleifera) possess highest concentration of antioxidant bioactive compounds and is anticipated to be used as an alternative medicine for inflammation. In the present study, we investigated the anti-inflammatory activity of 80% hydroethanolic extract of M. oleifera flower on proinflammatory mediators and cytokines produced in lipopolysaccharide- (LPS-) induced RAW 264.7 macrophages. Materials and Methods. Cell cytotoxicity was conducted by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Nitric oxide (NO) production was quantified through Griess reaction while proinflammatory cytokines and other key inflammatory markers were assessed through enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Results. Hydroethanolic extract of M. oleifera flower significantly suppressed the secretion and expression of NO, prostaglandin E2 (PGE2), interleukin- (IL-) 6, IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-κB), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2). However, it significantly increased the production of IL-10 and IκB-α (inhibitor of κB) in a concentration dependent manner (100 μg/mL and 200 μg/mL). Conclusion. These results suggest that 80% hydroethanolic extract of M. oleifera flower has anti-inflammatory action related to its inhibition of NO, PGE2, proinflammatory cytokines, and inflammatory mediator's production in LPS-stimulated macrophages through preventing degradation of IκB-α in NF-κB signaling pathway. PMID:26609199
Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L
2009-01-01
Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the enhanced TNF-α mRNA levels (LPS = 8 ± 0.9; flavocoxid = 1.9 ± 0.8 n-fold/β-actin) induced by LPS. Finally, flavocoxid decreased MDA, TNF and nitrite levels from LPS-stimulated macrophages. Conclusion and implications: Flavocoxid might be useful as a potential anti-inflammatory agent, acting at the level of gene and protein expression. PMID:19681869
García-González, María Asunción; Nicolás-Pérez, David; Lanas, Angel; Bujanda, Luis; Carrera, Patricia; Benito, Rafael; Strunk, Mark; Sopeña, Federico; Santolaria, Santos; Piazuelo, Elena; Jiménez, Pilar; Campo, Rafael; Espinel, Jesús; Manzano, Marisa; Geijo, Fernando; Pellisé, María; González-Huix, Ferrán; Espinós, Jorge; Zaballa, Manuel; Titó, Llúcia; Barranco, Luis; Pazo, Roberto; Quintero, Enrique
2012-01-01
Background Genetic factors influencing the prognosis of gastric adenocarcinoma (GAC) are not well known. Given the relevance of cytokines and other pro-inflammatory mediators in cancer progression and invasiveness, we aimed to assess the prognostic role of several functional cytokine and cyclooxygenase gene polymorphisms in patients with GAC. Methodology Genomic DNA from 380 Spanish Caucasian patients with primary GAC was genotyped for 23 polymorphisms in pro-inflammatory (IL1B, TNFA, LTA, IL6, IL12p40), anti-inflammatory (IL4, IL1RN, IL10, TGFB1) cytokine, and cyclooxygenase (PTGS1 and PTGS2) genes by PCR, RFLP and TaqMan assays. Clinical and histological information was collected prospectively. Survival curves were estimated by the Kaplan-Meier method and compared using the log rank test. Outcome was determined by analysis of Cox proportional hazards, adjusting for confounding factors. Results The median follow-up period and median overall survival (OS) time were 9.9 months (range 0.4–120.3) and 10.9 months (95% CI: 8.9–14.1), respectively. Multivariate analysis identified tumor stages III (HR, 3.23; 95% CI:2–5.22) and IV (HR, 5.5; 95% CI: 3.51–8.63) as independent factors associated with a significantly reduced OS, whereas surgical treatment (HR: 0.44; 95%CI: 0.3–0.6) was related to a better prognosis of the disease. Concerning genetic factors, none of the 23 polymorphisms evaluated in the current study did influence survival. Moreover, no gene-environment interactions on GAC prognosis were observed. Conclusions Our results show that, in our population, the panel of selected pro- and anti-inflammatory cytokine, and cyclooxygenase gene polymorphisms are not relevant in determining the prognosis of gastric adenocarcinoma. PMID:23029430
Al-Asmari, Abdulrahman Khazim; Khan, Abdul Quaiyoom; Al-Asmari, Sarah A; Al-Rawi, Abdulqadir; Al-Omani, Saud
2016-12-01
BackgroundIntestinal mucositis is a major concern related with cancer therapy. It is well established that overproduction of reactive oxygen species and inflammatory mediators plays vital role in the pathogenesis of mucositis. The aim of the study was to investigate the modulatory effect of vitamin E (vit. E) on 5-fluorouracil (5-FU)-induced intestinal mucositis by targeting oxidative stress and inflammatory markers in rats. MethodsRats were randomly divided into four groups of six animals each. All four-group animals received normal standard diet and water throughout the experimental period which last up to 10 days. Rats were gavaged with vit. E (300 mg/kg b. wt.) daily for 10 days (day 1-10) and were given intraperitoneal injection of 5-FU (150 mg/kg b. wt.) or saline (control) on day 8 to induce mucositis. Results We found that vit. E supplementation ameliorated 5-FU-induced lipid peroxidation, myeloperoxidase activity, activation of nuclear factor κB, expression of cyclooxygenase-2, inducible nitric oxide synthase and mucin depletion. Vit. E administration also attenuated 5-FU-induced histological anomalies such as neutrophil infiltration, loss of cellular integrity, villus and crypt deformities. ConclusionsFindings of the study suggest that vit. E inhibits 5-FU-induced mucositis via modulation of oxidative stress, activation of redox sensitive transcription factor and its downstream targets.
Pringle, Nadine A; Koekemoer, Trevor C; Holzer, Andrea; Young, Carly; Venables, Luanne; van de Venter, Maryna
2018-02-28
The process of wound healing constitutes an ordered sequence of events that provides numerous opportunities for therapeutic intervention to improve wound repair. Rooibos, Aspalathus linearis , is a popular ingredient in skin care products, however, little scientific data exists exploring its therapeutic potential. In the present study, we evaluated the effects of fermented and aspalathin-enriched green rooibos in various in vitro models representative of dermal wound healing. Treatment of RAW 264.7 macrophages with fermented rooibos resulted in increased nitric oxide production as well as increased levels of cellular inducible nitric oxide synthase and cyclooxygenase-2, which are typical markers for classically activated macrophages. In contrast, the green extract was devoid of such activity. Using glycated gelatin as a model to mimic diabetic wounds, only the green extract showed potential to reduce cyclooxygenase-2 levels. Considering the role of reactive oxygen species in wound healing, the effects of rooibos on oxidative stress and cell death in human dermal fibroblasts was evaluated. Both fermented and green rooibos decreased cellular reactive oxygen species and attenuated apoptotic/necrotic cell death. Our findings highlight several properties that support the therapeutic potential of rooibos, and demonstrate that green and fermented rooibos present distinctly different properties with regards to their application in wound healing. The proinflammatory nature of fermented rooibos may have therapeutic value for wounds characterised with a delayed initial inflammatory phase, such as early diabetic wounds. The green extract is more suited to wounds burdened with excessive inflammation as it attenuated cyclooxygenase-2 levels and effectively protected fibroblasts against oxidative stress. Georg Thieme Verlag KG Stuttgart · New York.
Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline
2017-05-01
Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.
USDA-ARS?s Scientific Manuscript database
This study was aimed at the evaluation of the anti-inflammatory activity of twelve compounds isolated from the methanolic extract of fruits of Terminalia chebula. The activity was determined in terms of their ability to inhibit inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in L...
Zhang, Bo; Yan, Lingdi; Zhou, Peilan; Dong, Zhaoqi; Feng, Siliang; Liu, Keliang; Gong, Zehui
2013-02-01
Andrographolides, a type of diterpene lactone, are widely known to have anti-inflammatory and anti-oxidative properties. CHP1002, a synthetic derivative of andrographolide, has similar anti-inflammatory action in mouse ear swelling test and rat paw edema test. In the present study, the mechanism of anti-inflammatory effects of CHP1002 was investigated in RAW264.7 macrophages. CHP1002 potently suppressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. CHP1002 reduced the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 (PGE2). CHP1002 induced heme oxygenase-1 (HO-1) expression via activation of extracellular signal-regulated kinase (ERK) and NF-E2 related factor 2 transcription factor (Nrf2). Down-regulation of LPS-induced iNOS and COX-2 expressions was partially reversed by the HO-1 inhibitor zinc protoporphyrin (ZnPP). In addition, CHP1002 significantly attenuated LPS-induced TNF-α, IL-1β and IL-6 production. CHP1002 effectively induced HO-1 and was capable of inhibiting some macrophage-derived pro-inflammatory mediators, which may be closely correlated with its anti-inflammatory action. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Marpaung, B.; Siregar, J.
2018-03-01
Osteoarthritis (OA) is degenerative and inflammatory joint diseases. Management of OA, until now limited only to overcome the pain, inflammation, and improvement of joint function with medication in the form of NSAIDs that have many side effects. Damage to cells due to the stimulus will free various mediators or substances inflammation such as prostaglandin, IL-6, TNF-α and nitric oxide. Sidaguri plant (Sidarhombifolia L) has anti-inflammatory activity by inhibition of nitric oxide. The mechanism of action Meloxicam, like other NSAIDs, may be associated with the inhibition of prostaglandin synthetase (cyclo-oxygenase). One of the markers of the inflammatory process is CRP and ESR. We tested 50 patients divided into two groups, patients who get Meloxicam and Sidaguri (n = 25) and patients who get Meloxicam and placebo (n = 25). There were significant changes before and after therapy with p-value<0.0001.
A review of the application of inflammatory biomarkers in epidemiologic cancer research
Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.
2014-01-01
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838
Huang, Ming-Hsien; Shen, Yu-Fang; Hsu, Tuan-Ti; Huang, Tsui-Hsien; Shie, Ming-You
2016-08-01
Hinokitiol is a natural material and it has antibacterial and anti-inflammatory effects. The purpose of this study was to evaluate the material characterization, cell viability, antibacterial and anti-inflammatory abilities of the hinokitiol-modified calcium silicate (CS) cement as a root end filling material. The setting times, diametral tensile strength (DTS) values and XRD patterns of CS cements with 0-10mM hinokitiol were examined. Then, the antibacterial effect and the expression levels of cyclooxygenase 2 (COX-2) and interleukin-1 (IL-1) of the hinokitiol-modified CS cements were evaluated. Furthermore, the cytocompatibility, the expression levels of the markers of odontoblastic differentiation, mineralized nodule formation and calcium deposition of human dental pulp cells (hDPCs) cultured on hinokitiol-modified CS cements were determined. The hinokitiol-modified CS cements had better antibacterial and anti-inflammatory abilities and cytocompatibility than non-modified CS cements. Otherwise, the hinokitiol-modified CS cements had suitable setting times and better odontoblastic potential of hDPCs. Previous report pointed out that the root-end filling materials may induce inflammatory cytokines reaction. In our study, hinokitiol-modified CS cements not only inhibited the expression level of inflammatory cytokines, but also had better cytocompatibility, antimicrobial properties and active ability of odontoblastic differentiation of hDPCs. Therefore, the hinokitiol-modified CS cement may be a potential root end filling material for clinic. Copyright © 2016 Elsevier B.V. All rights reserved.
Klarich, DawnKylee S.; Penprase, Jerrold; Cintora, Patricia; Medrano, Octavio; Erwin, Danielle; Brasser, Susan M.; Hong, Mee Young
2017-01-01
Excessive alcohol consumption is a risk factor associated with colorectal cancer; however, some studies have reported that moderate alcohol consumption may not contribute additional risk for developing colorectal cancer while others suggest that moderate alcohol consumption provides a protective effect that reduces colorectal cancer risk. The purpose of this study was to determine the effects of moderate voluntary alcohol (20% ethanol) intake on alternate days for 3 months in outbred Wistar rats on risk factors associated with colorectal cancer development. Colonic gene expression of cyclooxygenase-2, RelA, 8-oxoguanine DNA glycosylase 1, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase M1, and aldehyde dehydrogenase 2 were determined. Blood alcohol content, liver function enzyme activities, and 8-oxo-deoxyguanosine DNA adducts were also assessed. Alcohol-treated rats were found to have significantly lower 8-oxo-deoxyguanosine levels in blood, a marker of DNA damage. Alanine aminotransferase and lactate dehydrogenase were both significantly lower in the alcohol group. Moderate alcohol significantly decreased cyclooxygenase-2 gene expression, an inflammatory marker associated with colorectal cancer risk. The alcohol group had significantly increased glutathione-S-transferase M1 expression, an antioxidant enzyme that helps detoxify carcinogens, such as acetaldehyde, and significantly increased aldehyde dehydrogenase 2 expression, which allows for greater acetaldehyde clearance. Increased expression of glutathione-S-transferase M1 and aldehyde dehydrogenase 2 likely contributed to reduce mucosal damage that is caused by acetaldehyde accumulation. These results indicate that moderate alcohol may reduce the risk for colorectal cancer development, which was evidenced by reduced inflammation activity and lower DNA damage after alcohol exposure. PMID:28599714
Messina, Sonia; Bitto, Alessandra; Aguennouz, M'hammed; Mazzeo, Anna; Migliorato, Alba; Polito, Francesca; Irrera, Natasha; Altavilla, Domenica; Vita, Gian Luca; Russo, Massimo; Naro, Antonino; De Pasquale, Maria Grazia; Rizzuto, Emanuele; Musarò, Antonio; Squadrito, Francesco; Vita, Giuseppe
2009-12-01
Muscle degeneration in dystrophic muscle is exacerbated by the endogenous inflammatory response and increased oxidative stress. A key role is played by nuclear factor(NF)-kappaB. We showed that NF-kappaB inhibition through compounds with also antioxidant properties has beneficial effects in mdx mice, the murine model of Duchenne muscular dystrophy (DMD), but these drugs are not available for clinical studies. We evaluated whether flavocoxid, a mixed flavonoid extract with anti-inflammatory, antioxidant and NF-kappaB inhibiting properties, has beneficial effects in mdx mice in comparison with methylprednisolone, the gold standard treatment for DMD patients. Five-week-old mdx mice were treated for 5 weeks with flavocoxid, methylprednisolone or vehicle. The evaluation of in vivo and ex vivo functional properties and morphological parameters was performed. Serum samples were assayed for oxidative stress markers, creatine-kinase (CK) and leukotriene B-4. Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), tumor necrosis factor-alpha, p-38, JNK1 expression was evaluated in muscle by western blot analysis. NF-kappaB binding activity was investigated by electrophoresis mobility shift assay. The administration of flavocoxid: (1) ameliorated functional properties in vivo and ex vivo; (2) reduced CK; (3) reduced the expression of oxidative stress markers and of inflammatory mediators; (4) inhibited NF-kappaB and mitogen-activated protein kinases (MAPKs) signal pathways; (5) reduced muscle necrosis and enhanced regeneration. Our results highlight the detrimental effects of oxidative stress and NF-kappaB, MAPKs and COX/5-LOX pathways in the dystrophic process and show that flavocoxid is more effective in mdx mice than methylprednisolone.
Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R
2017-12-16
Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory pathways for its treatment.
Diethylcarbamazine Attenuates the Development of Carrageenan-Induced Lung Injury in Mice
Ribeiro, Edlene Lima; Barbosa, Karla Patricia de Souza; Fragoso, Ingrid Tavares; Donato, Mariana Aragão Matos; Oliveira dos Santos Gomes, Fabiana; da Silva, Bruna Santos; Silva, Amanda Karolina Soares e; Rocha, Sura Wanessa Santos; Amaro da Silva Junior, Valdemiro; Peixoto, Christina Alves
2014-01-01
Diethylcarbamazine (DEC) is an antifilarial drug with potent anti-inflammatory properties as a result of its interference with the metabolism of arachidonic acid. The aim of the present study was to evaluate the anti-inflammatory activity of DEC in a mouse model of acute inflammation (carrageenan-induced pleurisy). The injection of carrageenan into the pleural cavity induced the accumulation of fluid containing a large number of polymorphonuclear cells (PMNs) as well as infiltration of PMNs in lung tissues and increased production of nitrite and tumor necrosis factor-α and increased expression of interleukin-1β, cyclooxygenase (COX-2), and inducible nitric oxide synthase. Carrageenan also induced the expression of nuclear factor-κB. The oral administration of DEC (50 mg/Kg) three days prior to the carrageenan challenge led to a significant reduction in all inflammation markers. The present findings demonstrate that DEC is a potential drug for the treatment of acute lung inflammation. PMID:24550603
Anaphylaxis to ibuprofen in a 12-year-old boy
Kay, Emily; Ben-Shoshan, Moshe
2013-01-01
Non-steroidal anti-inflammatory (NSAIDs) drugs are a group of medications acting through cyclooxygenase (COX-1) and cyclooxygenase (COX-2) enzymes inhibition. Hypersensitivity reactions to NSAIDs, although not rare, are poorly characterised and often go undiagnosed especially in children. We present in this paper a case of ibuprofen anaphylaxis that exemplifies the challenges involved in diagnosis and management of hypersensitivity reactions to NSAIDs. PMID:23322307
Nelson, Shakira M.; Shay, Ashley E.; James, Jamaal L.; Carlson, Bradley A.; Urban, Joseph F.; Prabhu, K. Sandeep
2016-01-01
The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trspfl/flCreWT mice that express selenoproteins driven by tRNASec (Trsp), whereas N. brasiliensis-infected Trspfl/flCreLysM selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ12-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses. PMID:26644468
Herath, Kalahe Hewage Iresha Nadeeka Madushani; Bing, So Jin; Cho, Jinhee; Kim, Areum; Kim, Gi-Ok; Lee, Jong-Chul; Jee, Youngheun
2016-12-01
Hallabong [(Citrus unshiu × C. sinensis) X C. reticulata)] (Rutaceae) is a hybrid citrus cultivated in temperate regions of South Korea. Its fruit is well-known for pharmacological properties. This study examined the anti-inflammatory effect of 80% ethanol extract of Hallabong (HE) on concanavalin A (Con A)-stimulated splenocytes and mouse oedema model induced by 12-O-tetradecanoylphorbal acetate (TPA). Murine splenocytes treated with HE were stimulated with Con A (10 μg/mL, for 24 h) were evaluated for T-cell population and production of inflammatory cytokines IL-2, IL-4 and IFN-γ. Anti-inflammatory effect of topically applied HE (100 μg/20 μL) on TPA (4 μg/20 μL/ear)-induced ear oedema was investigated in mouse model. HE-treated Con A-stimulated murine splenocytes showed a marked decrease in CD44/CD62L + memory T-cell population, an important marker for anti-inflammatory activity, and a significant inhibition in the production of IL-2 and IFN-γ. HE treatment had reduced the mouse skin oedema (47%) and myeloperoxidase (MPO) activity significantly (40%) in TPA-challenged tissues. More importantly, immunohistochemical localization revealed the suppressed (p < 0.05) expression of inducible nitric oxide (iNOS), cyclooxygenase-2 (COX2). HE decreased the infiltration of CD3 + T cells and F4/80 + macrophages to the site of inflammation and a topical application of HE significantly suppressed the expression of TNF-α (20.2%). A topical application of HE can exert a potential anti-inflammatory effect and HE can be explored further as a putative alternative therapeutic agent for inflammatory oedema.
Binding of indomethacin methyl ester to cyclooxygenase-2. A computational study.
Sárosi, Menyhárt-Botond
2018-06-05
Inhibitors selective towards the second isoform of prostaglandin synthase (cyclooxygenase, COX-2) are promising nonsteroidal anti-inflammatory drugs and antitumor medications. Methylation of the carboxylate group in the relatively nonselective COX inhibitor indomethacin confers significant COX-2 selectivity. Several other modifications converting indomethacin into a COX-2 selective inhibitor have been reported. Earlier experimental and computational studies on neutral indomethacin derivatives suggest that the methyl ester derivative likely binds to COX-2 with a similar binding mode as that observed for the parent indomethacin. However, docking studies followed by molecular dynamics simulations revealed two possible binding modes in COX-2 for indomethacin methyl ester, which differs from the experimental binding mode found for indomethacin. Both alternative binding modes might explain the observed COX-2 selectivity of indomethacin methyl ester. Graphical abstract Binding of indomethacin methyl ester to cyclooxygenase-2.
Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Ortiz, Sergio; Vela, José M; Guaza, Carmen
2002-05-24
Theiler's murine encephalomyelitis virus (TMEV) causes an acute encephalomyelitis followed by a persistent infection of the central nervous system (CNS) resulting in a chronic inflammation and axonal demyelination in susceptible strains of mice. The pathogenesis of TMEV-induced demyelinating disease remains unknown, but infection of brain glial cells is a critical factor for virus persistence in the CNS. In the present study we investigated the effects of the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) on the production of inflammatory mediators, such as prostaglandins, after infection of primary astroglial SJL/J murine cultures with TMEV. This infection resulted in a time-dependent transcription of the gene encoding cyclooxygenase-2 (COX-2) and an increased production of prostaglandin E2 (PGE(2)). Both, IL-4 but mainly, IL-10 (1 and 10 ng/ml) decreased the TMEV-induced expression of COX-2 as well as the synthesis of PGE(2). Interestingly, treatment with IL-10 completely abrogated COX-2 induction. The molecular mechanisms involved in the regulation of COX-2 expression by TMEV are unknown, but the effects of anti-inflammatory cytokines may involve the inhibition of the transcription factor nuclear factor B activity and lead to strategies capable of interrupting the inflammatory cascade triggered by TMEV in brain glial cells.
Chu, Ling-yun; Chang, Tzu-Ching; Kuo, Cheng-Chin; Wu, Kenneth K.
2014-01-01
Quiescent fibroblasts possess unique genetic program and exhibit high metabolic activity distinct from proliferative fibroblasts. In response to inflammatory stimulation, quiescent fibroblasts are more active in expressing cyclooxygenase-2 and other proinflammatory genes than proliferative fibroblasts. The underlying transcriptional mechanism is unclear. Here we show that phorbol 12-myristate 13-acetate (PMA) and cytokines increased p300 histone acetyltransferase activity to a higher magnitude (> 2 fold) in quiescent fibroblasts than in proliferative fibroblasts. Binding of p300 to cyclooxygenase-2 promoter was reduced in proliferative fibroblasts. By ultrahigh-performance liquid chromatography coupled with a quadrupole time of flight mass spectrometer and enzyme-immunoassay, we found that production of 5-methoxytryptophan was 2–3 folds higher in proliferative fibroblasts than that in quiescent fibroblasts. Addition of 5-methoxytryptophan and its metabolic precursor, 5-hydroxytryptophan, to quiescent fibroblasts suppressed PMA-induced p300 histone acetyltransferase activity and cyclooxygenase-2 expression to the level of proliferative fibroblasts. Silencing of tryptophan hydroxylase-1 or hydroxyindole O-methyltransferase in proliferative fibroblasts with siRNA resulted in elevation of PMA-induced p300 histone acetyltransferase activity to the level of that in quiescent fibroblasts, which was rescued by addition of 5-hydroxytryptophan or 5-methoxytryptophan. Our findings indicate that robust inflammatory gene expression in quiescent fibroblasts vs. proliferative fibroblasts is attributed to uncontrolled p300 histone acetyltransferase activation due to deficiency of 5-methoxytryptophan production. 5-methoxytryptophan thus is a potential valuable lead compound for new anti-inflammatory drug development. PMID:24523905
Stress-Induced Enzyme Compounds Methamphetamine Neurotoxicity
... two exposures. They implicate ketoprofen’s main target, the pro-inflammatory enzyme cyclooxygenase (COX-1/COX-2), in ... Illegal Drugs Inhalants K2/Spice Kratom LSD (Acid) Marijuana MDMA (Ecstasy) Methamphetamine Opioids Other Drugs Over-the- ...
[Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].
Rioda, W T; Nervetti, A
2001-01-01
The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.
Liu, Fuyan; Zhang, Xiaofeng; Li, Yuqiu; Chen, Qixin; Liu, Fei; Zhu, Xiqiang; Mei, Li; Song, Xinlei; Liu, Xia; Song, Zhigang; Zhang, Jinhua; Zhang, Wen; Ling, Peixue
2017-01-01
The hard-shelled mussel (Mytilus coruscus) has been used as Chinese traditional medicine for thousands of years; however, to date the ingredients responsible for the various beneficial health outcomes attributed to Mytilus coruscus are still unclear. An α-d-Glucan, called MP-A, was isolated from Mytilus coruscus, and observed to exert anti-inflammatory activity in THP-1 human macrophage cells. Specifically, we showed that MP-A treatment inhibited the production of inflammatory markers, including TNF-α, NO, and PGE2, inducible NOS (iNOS), and cyclooxygenase-2 (COX-2), in LPS-activated THP-1 cells. It was also shown to enhance phagocytosis in the analyzed cells, but to severely inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear translocation of NF-κB P65. Finally, MP-A was found to exhibit a high binding affinity for the cell surface receptor TLR4, but a low affinity for TLR2 and dectin-1, via surface plasmon resonance (SPR) analysis. The study indicates that MP-A suppresses LPS-induced TNF-α, NO and PEG2 production via TLR4/NF-κB/MAPK pathway inhibition, and suggests that MP-A may be a promising therapeutic candidate for diseases associated with TNF-α, NO, and/or PEG2 overproduction. PMID:28930149
Liu, Fuyan; Zhang, Xiaofeng; Li, Yuqiu; Chen, Qixin; Liu, Fei; Zhu, Xiqiang; Mei, Li; Song, Xinlei; Liu, Xia; Song, Zhigang; Zhang, Jinhua; Zhang, Wen; Ling, Peixue; Wang, Fengshan
2017-09-20
The hard-shelled mussel ( Mytilus coruscus ) has been used as Chinese traditional medicine for thousands of years; however, to date the ingredients responsible for the various beneficial health outcomes attributed to Mytilus coruscus are still unclear. An α-d-Glucan, called MP-A, was isolated from Mytilus coruscus , and observed to exert anti-inflammatory activity in THP-1 human macrophage cells. Specifically, we showed that MP-A treatment inhibited the production of inflammatory markers, including TNF-α, NO, and PGE2, inducible NOS (iNOS), and cyclooxygenase-2 (COX-2), in LPS-activated THP-1 cells. It was also shown to enhance phagocytosis in the analyzed cells, but to severely inhibit the phosphorylation of mitogen-activated protein kinases (MAPKs) and the nuclear translocation of NF-κB P65. Finally, MP-A was found to exhibit a high binding affinity for the cell surface receptor TLR4, but a low affinity for TLR2 and dectin-1, via surface plasmon resonance (SPR) analysis. The study indicates that MP-A suppresses LPS-induced TNF-α, NO and PEG2 production via TLR4/NF-κB/MAPK pathway inhibition, and suggests that MP-A may be a promising therapeutic candidate for diseases associated with TNF-α, NO, and/or PEG2 overproduction.
Beswick, Paul; Bingham, Sharon; Bountra, Chas; Brown, Terry; Browning, Kerry; Campbell, Ian; Chessell, Iain; Clayton, Nick; Collins, Sue; Corfield, John; Guntrip, Stephen; Haslam, Claudine; Lambeth, Paul; Lucas, Fiona; Mathews, Neil; Murkit, Graham; Naylor, Alan; Pegg, Neil; Pickup, Elizabeth; Player, Hazel; Price, Helen; Stevens, Alexander; Stratton, Sharon; Wiseman, Joanne
2004-11-01
GW406381 (8), currently undergoing clinical evaluation for the treatment of inflammatory pain is a member of a novel series of 2,3-diaryl-pyrazolo[1,5-b]pyridazine based cyclooxygenase-2 (COX-2) inhibitors, which have been shown to be highly potent and selective. Several examples of the series, in addition to possessing favourable pharmacokinetic profiles and analgesic activity in vivo, have also demonstrated relatively high brain penetration in the rat compared with the clinically available compounds, which may ultimately prove beneficial in the treatment of pain.
Gonzales, Amanda M.; Hunsaker, Lucy A.; Franco, Carolina R.; Royer, Robert E.; Vander Jagt, David L.; Vander Jagt, Dorothy J.
2010-01-01
Abstract Nonsteroidal anti-inflammatory drugs (NSAIDs) are a primary choice of therapy for diseases with a chronic inflammatory component. Unfortunately, long-term NSAID therapy is often accompanied by severe side effects, including cardiovascular and gastrointestinal complications. Because of this, there is critical need for identification of new and safer treatments for chronic inflammation to circumvent these side effects. Inflammatory diseases have been successfully remedied with natural herbs by many cultures. To better understand the potential of natural herbs in treating chronic inflammation and to identify their mechanism of action, we have evaluated the anti-inflammatory activities of 20 medicinal herbs commonly used in the Hispanic culture. We have established a standardized method for preparing aqueous extracts (teas) from the selected medicinal herbs and screened for inhibition of tumor necrosis factor-α-induced activation of nuclear factor κB (NF-κB), which is the central signaling pathway of the inflammatory response. A number of herbal teas were identified that exhibited significant anti-inflammatory activity. In particular, tea from the herb commonly called laurel was found to be an especially potent inhibitor of NF-κB-dependent cyclooxygenase-2 gene expression and prostaglandin E2 production in cultured murine macrophages. These findings indicate that laurel tea extract contains potent anti-inflammatory compounds that function by inhibiting the major signal transduction pathway responsible for inducing an inflammatory event. Based on these results, laurel may represent a new, safe therapeutic agent for managing chronic inflammation. PMID:20482259
Ahmad, Wasif; Prawez, Shahid; Chanderashekara, H H; Tandan, Surendra Kumar; Sankar, Palanisamy; Sarkar, Souvendra Nath
2012-03-01
We evaluated the modulatory role of the groundwater contaminant arsenic on the pharmacodynamic responses of the nonsteroidal analgesic-antipyretic drug ketoprofen and the major pro-inflammatory mediators linked to the mechanism of ketoprofen's therapeutic effects. Rats were pre-exposed to sodium arsenite (0.4, 4 and 40 ppm) through drinking water for 28 days. The pharmacological effects of orally administered ketoprofen (5 mg/kg) were evaluated the following day. Pain, inflammation and pyretic responses were, respectively, assessed through formalin-induced nociception, carrageenan-induced inflammation and lipopolysaccharide-induced pyrexia. Arsenic inhibited ketoprofen's analgesic, anti-inflammatory and antipyretic effects. Further, arsenic enhanced cyclooxygenase-1 and cyclooxygenase-2 activities and tumor necrosis factor-α, interleukin-1β and prostaglandin-E(2) production in hind paw muscle. These results suggest a functional antagonism of ketoprofen by arsenic. This may relate to arsenic-mediated local release of tumor necrosis factor-α and interleukin-1β, which causes cyclooxygenase induction and consequent prostaglandin-E(2) release. In conclusion, subacute exposure to environmentally relevant concentrations of arsenic through drinking water may aggravate pain, inflammation and pyrexia and thereby, may reduce the therapeutic efficacy of ketoprofen. Copyright © 2011 Elsevier B.V. All rights reserved.
Takechi, Ryusuke; Pallebage-Gamarallage, Menuka M; Lam, Virginie; Giles, Corey; Mamo, John C
2013-06-19
Emerging evidence suggests that disturbances in the blood-brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations.
Min, Kyoung-Jin; Choi, Kyounghwa; Kwon, Taeg Kyu
2011-08-01
Microglia are the major immune effector cells in the brain, and microglia activated by injury and infection can produce inflammatory mediators. A number of studies have reported that withaferin A has anti-inflammatory functions. However, the effects of withaferin A on the microglial inflammatory response have not been investigated. Our results show that withaferin A inhibited lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-2 mRNA and protein expression and prostaglandin E2 (PGE(2)) production in BV2 murine microglial cells. Withaferin A had no effect on LPS-induced Akt and ERK phosphorylation, but phosphorylation of p38 and JNK was slightly decreased by withaferin A. Withaferin A significantly inhibited LPS-induced STAT1 and STAT3 phosphorylation in a dose-dependent manner. Furthermore, withaferin A inhibited nuclear translocation of STAT1 and interferon-gamma activated sequence (GAS)-promoter activity. Taken together, these results suggest that withaferin A inhibits LPS-induced PGE(2) production and COX-2 expression, at least in part, by blocking STAT1 and STAT3 activation. Copyright © 2011 Elsevier B.V. All rights reserved.
Gao, Jin-Hang; Wen, Shi-Lei; Tong, Huan; Wang, Chun-Hui; Yang, Wen-Juan; Tang, Shi-Hang; Yan, Zhao-Ping; Tai, Yang; Ye, Cheng; Liu, Rui; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Tang, Cheng-Wei
2016-06-01
Inflammatory transport through the gut-liver axis may facilitate liver cirrhosis. Cyclooxygenase-2 (COX-2) has been considered as one of the important molecules that regulates intestinal epithelial barrier function. This study was aimed to test the hypothesis that inhibition of COX-2 by celecoxib might alleviate liver cirrhosis via reduction of intestinal inflammatory transport in thiacetamide (TAA) rat model. COX-2/prostaglandin E2 (PGE2)/EP-2/p-ERK integrated signal pathways regulated the expressions of intestinal zonula occludens-1 (ZO-1) and E-cadherin, which maintain the function of intestinal epithelial barrier. Celecoxib not only decreased the intestinal permeability to a 4-kDa FITC-dextran but also significantly increased expressions of ZO-1 and E-cadherin. When celecoxib greatly decreased intestinal levels of LPS, TNF-α, and IL-6, it significantly enhanced T cell subsets reduced by TAA. As a result, liver fibrosis induced by TAA was significantly alleviated in the celecoxib group. These data indicated that celecoxib improved the integrity of intestinal epithelial barrier, blocked inflammatory transport through the dysfunctional gut-liver axis, and ameliorated the progress of liver cirrhosis. Copyright © 2016 the American Physiological Society.
Setia, Shruti; Nehru, Bimla; Sanyal, Sankar Nath
2014-02-01
Several studies have shown the anti-neoplastic effects of non-steroidal anti-inflammatory drugs (NSAIDs) on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis, but how these drugs act in case of inflammation-augmented tumorigenesis is still not clear. The present study therefore designs an animal model of colitis-associated colon cancer where 3% Dextran sufate sodium (DSS) is used to develop ulcerative colitis and DMH treatment leads to colon carcinogenesis as early as in six weeks. Clinical symptoms for ulcerative colitis were studied using Disease Activity Index (DAI) while myeloperoxidase assay marked the neutrophil infiltration in DSS and DMH treated groups. The present results indicated the upregulation of the activity of inflammatory marker enzyme, cyclooxygenase-2 (cox-2) and pro-inflammatory cytokines such as TNF-α, IL-1β, IL-4 and IFN-γ with the treatment of DSS as well as DMH. The presence of cytokines in the inflammatory milieu might lead to the transformation of cytoplasmic inactive NF-κB (Nuclear Factor κB) to its active nuclear form, thereby leading to tumorigenesis. The administration of celecoxib along with DSS and DMH, revealed its chemopreventive efficacy in colitis as well as colon cancer. The effect of different doses of DMH on mouse colon was also investigated to obtain a minimum dose of DMH which can induce visible lesions in mice colons at a high incidence. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Choline magnesium trisalicylate in patients with aspirin-induced asthma.
Szczeklik, A; Nizankowska, E; Dworski, R
1990-05-01
Treatment of inflammatory diseases of asthmatics can be a serious problem since some patients show intolerance to aspirin and other non-steroidal, anti-inflammatory drugs that are cyclooxygenase inhibitors. Salicylates were believed to be well tolerated, but recent reports have demonstrated that diflunisal and salicylsalicylic acid can precipitate asthma attacks in aspirin-intolerant patients. This study was designed to determine the tolerance of choline magnesium trisalicylate (CMT), a nonacetylated salicylate with potent analgesic and anti-inflammatory activity, in 23 asthmatics with aspirin hypersensitivity confirmed by oral challenge. The study consisted of three phases: 1) patients received increasing doses (50-1,500 mg) of CMT under a single-blind protocol; 2) patients received either a placebo or CMT challenge in a double-blind, randomized, cross-over design; 3) patients received CMT at daily 3,000 mg doses for 1 week. Throughout the study, pulmonary function tests, peak nasal inspiratory flow, and serum salicylate and thromboxane B2 (TXB2) levels were monitored. Results showed no airway obstruction, nasal congestion or rhinorrhea after CMT. There was no significant decrease in serum TXB2 levels, indicating the absence of cyclooxygenase inhibition with CMT. We conclude that choline magnesium trisalicylate is a safe drug for treatment of different anti-inflammatory disorders in asthmatics with aspirin hypersensitivity.
Shin, Sunhee; Joo, Seong Soo; Park, Dongsun; Jeon, Jeong Hee; Kim, Tae Kyun; Kim, Jeong Seon; Park, Sung Kyeong
2010-01-01
The anti-inflammatory effects of an ethanol extract of Angelica gigas (EAG) were investigated in vitro and in vivo using croton oil-induced inflammation models. Croton oil (20 µg/mL) up-regulated mRNA expression of cyclooxygenase (COX)-I and COX-II in the macrophage cell line, RAW 264.7, resulting in the release of high concentrations of prostaglandin E2 (PGE2). EAG (1~10 µg/mL) markedly suppressed croton oil-induced COX-II mRNA expression and PGE2 production. Application of croton oil (5% in acetone) to mouse ears caused severe local erythema, edema and vascular leakage, which were significantly attenuated by oral pre-treatment with EAG (50~500 mg/kg). Croton oil dramatically increased blood levels of interleukin (IL)-6 and PGE2 without affecting tumor-necrosis factor (TNF)-α and nitric oxide (NO) levels. EAG pre-treatment remarkably lowered IL-6 and PGE2, but did not alter TNF-α or NO concentrations. These results indicate that EAG attenuates inflammatory responses in part by blocking the COX-PGE2 pathway. Therefore, EAG could be a promising candidate for the treatment of inflammatory diseases. PMID:20195064
Gao, Xiu-Ren; Adhikari, Chandar M; Peng, Long-Yun; Guo, Xiao-Gang; Zhai, Yuan-Sheng; He, Xu-Yu; Zhang, Li-Yuan; Lin, Jun; Zuo, Zhi-Yi
2009-11-01
Inflammation and platelet aggregation and activation are key processes in the initiation of a cardiovascular event. Patients with metabolic syndrome have a high risk of cardiovascular events. This study determined whether small and medium doses of aspirin have anti-inflammation and antiplatelet aggregation effects in patients with metabolic syndrome. One hundred and twenty-one consecutive patients with metabolic syndrome were randomized into three groups, receiving 100 mg/day of aspirin, 300 mg/day of aspirin or a placebo, respectively, for 2 weeks. The blood levels of thromboxane B2 (TXB2), a stable product of the platelet aggregation mediator TXA2, 6-keto-prostaglandin F1-alpha (6-keto-PGF1-alpha), a stable product of the endogenous cyclooxygenase metabolite prostaglandin I2, and inflammatory mediators including high-sensitivity C-reactive protein (hs-CRP), tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), were determined by ELISA and radioimmunoassay. The blood levels of hs-CRP, TNF-alpha, IL-6 and TXB2 were significantly decreased after 2 weeks of treatment with 300 mg/day of aspirin. Patients who received 100 mg/day of aspirin had decreased blood levels of hs-CRP and TXB2. The blood level of IL-6 in the 300 mg/day aspirin group was significantly lower than that in the other two groups after 2 weeks of therapy. Aspirin at either dose did not affect the blood level of 6-keto-PGF1-alpha. Aspirin at all doses suppresses the blood levels of inflammatory markers and the platelet aggregation mediator TXA2 in Chinese patients with metabolic syndrome. Since the suppression induced by 300 mg/day of aspirin was greater than that induced by 100 mg/day of aspirin, these data suggest that 300 mg/day of aspirin may be beneficial in decreasing the risk of cardiovascular events in Chinese patients with metabolic syndrome.
Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud
2013-01-01
We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974
Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook
2016-01-01
Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species, TNF-α: tumor necrosis factor-α.
Adebayo, Salmon A; Shai, Leshweni J; Eloff, Jacobus N
2017-01-01
To investigate the anti-inflammatory activity of different fractions and glutinol (isolated compound), using nitric oxide synthase and cyclooxygenase (COX) inhibition as an indication of anti-inflammatory activity. Anti-inflammatory activity was evaluated using an in vitro assay determining the inhibition of the activity of pro-inflammatory enzyme model. Cyclooxygenases and inducible nitric oxide synthase are crucial enzymes involved in the pathogenesis of many chronic inflammatory conditions. Sub-fraction F3.3 that was derived from n-hexane fraction of PA leaves significantly inhibited (P = 0.01) the catalytic activity of COX-2 (IC 50 = 0.67 μg/mL) better than isolated compound, glutinol (IC 50 = 1.22 μg/mL), compound 2 (CP2) (IC 50 = 1.71 μg/mL) and sub-fraction F3.3.0 (IC 50 = 1.30 μg/mL). A similar trend was observed in investigation of the inhibition of nitric oxide synthesis in RAW 264.7 cells by F3.3, glutinol, CP2 and F3.3.0. Inducible COX-2 and inducible nitric oxide synthase are among potent signalling enzymes that exacerbate inflammation. Bioactive sub-fractions (F3.3 and F3.3.0) derived from the n-hexane fraction of PA had good anti-inflammatory activity, and the isolated compound, and glutinol may be useful as a template for the development of new anti-inflammatory drugs. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.
Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O
2015-01-01
Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.
Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica
Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.
2015-01-01
Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823
Cho, Hongsik; Walker, Andrew; Williams, Jeb; Hasty, Karen A
2015-01-01
Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.
Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim
2017-12-01
Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.
Evaluation of human LOX-12 as a serum marker for breast cancer.
Singh, Abhay Kumar; Kant, Sashi; Parshad, Rajinder; Banerjee, Nirupama; Dey, Sharmistha
2011-10-22
The high concentration of prostaglandins has been associated with chronic inflammatory diseases and several types of human cancers. This is due to the over expression of inflammatory enzymes like Cyclooxygenase (COX), Lipoxygenase (LOX) etc. The aim of this study was to quantify the LOX-12 with clinicopathological parameter of breast cancer patients and its response after chemotherapy to establish serum LOX-12 as a prognostic marker. This case-controlled study was performed on 86 biopsy proven breast cancer patients. Blood and tissue samples were collected from the patients. Serum LOX-12 of the study group was quantified by Surface Plasmon Resonance (SPR) and ELISA techniques by antibody-antigen interaction strategy. A significant increase in LOX-12 levels was observed in breast cancer patients (Mean ± SD=40.54±13.61 ng/ml) as compared to healthy controls (Mean ± SD=13.42±2.4 ng/ml) (p<0.0001). Serum LOX-12 levels were significantly higher (p<0.002) in patients with lymph node involvement. More than 75% patients had shown significant (p<0.0001) reduction of LOX-12 levels after chemotherapy. This was also confirmed by ELISA. This study for the first time had co-related the quantity of serum LOX-12 with breast cancer and also with the effect of chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Mosher, Andrea A; Rainey, Kelly J; Bolstad, Seunghwa S; Lye, Stephen J; Mitchell, Bryan F; Olson, David M; Wood, Stephen L; Slater, Donna M
2013-01-01
The development of the in vitro cell culture model has greatly facilitated the ability to study gene expression and regulation within human tissues. Within the human uterus, the upper (fundal) segment and the lower segment may provide distinct functions throughout pregnancy and during labour. We have established primary cultured human myometrial cells, isolated from both upper and lower segment regions of the pregnant human uterus, and validated them for the purpose of studying human pregnancy and labour. The specific objectives of this study were to monitor the viability and characterize the expression profile using selected cellular, contractile and pregnancy associated markers in the primary cultured human myometrial cells. Labour has been described as an inflammatory process; therefore, the ability of these cells to respond to an inflammatory stimulus was also investigated. Myometrial cells isolated from paired upper segment (US) and lower segment (LS) biopsies, obtained from women undergoing Caesarean section deliveries at term prior to the onset of labour, were used to identify expression of; α smooth muscle actin, calponin, caldesmon, connexin 43, cyclo-oxygenase-2 (COX-2), oxytocin receptor, tropomyosin and vimentin, by RT-PCR and/or immunocytochemistry. Interleukin (IL)-1β was used to treat cells, subsequently expression of COX-2 mRNA and release of interleukin-8 (CXCL8), were measured. ANOVA followed by Bonferroni's multiple comparisons test was performed. We demonstrate that US and LS human myometrial cells stably express all markers examined to at least passage ten (p10). Connexin 43, COX-2 and vimentin mRNA expression were significantly higher in LS cells compared to US cells. Both cell populations respond to IL-1β, demonstrated by a robust release of CXCL8 and increased expression of COX-2 mRNA from passage one (p1) through to p10. Isolated primary myometrial cells maintain expression of smooth muscle and pregnancy-associated markers and retain their ability to respond to an inflammatory stimulus. These distinct myometrial cell models will provide a useful tool to investigate mechanisms underlying the process of human labour and the concept of functional regionalization of the pregnant uterus.
Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Gómez-Garza, Gilberto; Carrasco-Portugal, Miriam Del C; Pérez-Guillé, Beatriz; Flores-Murrieta, Francisco J; Pérez-Guillé, Gabriela; Osnaya, Norma; Juárez-Olguín, Hugo; Monroy, Maria E; Monroy, Silvia; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Patel, Sarjubhai A; Kumarathasan, Prem; Vincent, Renaud; Henríquez-Roldán, Carlos; Torres-Jardón, Ricardo; Maronpot, Robert R
2009-08-01
Residency in cities with high air pollution is associated with neuroinflammation and neurodegeneration in healthy children, young adults, and dogs. Nonsteroidal anti-inflammatory drugs may offer neuroprotection. The authors measured the plasma concentrations of 3-nitrotyrosine and the cerebro-spinal-fluid concentrations of prostaglandin E2 metabolite and the oligomeric form of amyloid derived diffusible ligand; measured the mRNA expression of cyclooxygenase-2, interleukin 1beta, CD14, and Aquaporin-4 in target brain areas; and evaluated brain MRI, cognition, and neuropathology in 8 dogs treated with a preferential cyclooxygenase-2 inhibitor (Nimesulide) versus 7 untreated litter-matched Mexico City dogs. Nimesulide significantly decreased nitrotyrosine in plasma (p < .0001), frontal gray IL1beta (p = .03), and heart IL1beta (p = .02). No effect was seen in mRNA COX2, amyloid, and PGE2 in CSF or the MRI white matter lesions. All exposed dogs exhibited olfactory bulb and frontal accumulation of Abeta(42) in neurons and blood vessels and frontal vascular subcortical pathology. White matter hyperintense MRI frontal lesions were seen in 4/6 non-treated and 6/8 treated dogs. Nonsteroidal anti-inflammatory drugs may offer limited neuroprotection in the setting of severe air pollution exposures. The search for potentially beneficial drugs useful to ameliorate the brain effects of pollution represents an enormous clinical challenge.
Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál
2011-01-01
Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471
Oxidative stress-mediated mouse liver lesions caused by Clonorchis sinensis infection.
Maeng, Sejung; Lee, Hye Won; Bashir, Qudsia; Kim, Tae Im; Hong, Sung-Jong; Lee, Tae Jin; Sohn, Woon-Mok; Na, Byoung-Kuk; Kim, Tong-Soo; Pak, Jhang Ho
2016-03-01
Clonorchis sinensis is a high-risk pathogenic helminth that strongly provokes inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma in chronically infected individuals. Chronic inflammation is associated with an increased risk of various cancers due to the disruption of redox homeostasis. Accordingly, the present study was conducted to examine the time course relationship between histopathological changes and the appearance of oxidative stress markers, including lipid peroxidation, enzymes involved in lipid peroxidation, and mutagenic DNA adducts in the livers of mice infected with C. sinensis, as well as proinflammatory cytokines in infected mouse sera. Histopathological phenotypes such as bile duct epithelial hyperplasia, periductal fibrosis, edema and inflammatory infiltration increased in infected livers in a time-dependent manner. Intense immunoreactivity of lipid peroxidation products (4-hydroxy-2-nonenal; malondialdehyde), cyclooxygenase-2, 5-lipoxygenase and 8-oxo-7,8-dihydro-2'-deoxyguanosine were concomitantly observed in these injured regions. We also found elevated expressions of cyclooxygenase-2 and 5-lipoxygenase in C. sinensis excretory-secretory product-treated cholangiocarcinoma cells. Moreover, the levels of proinflammatory cytokines such as TNF-α, ILβ-1 and IL-6 were differentially upregulated in infected sera. With regard to oxidative stress-mediated carcinogenesis, our findings suggest that C. sinensis infestation may disrupt host redox homeostasis, creating a damaging environment that favors the development of advanced hepatobiliary diseases such as clonorchiasis-associated cholangiocarcinoma. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Cyclooxygenase-2 (COX-2) plays an important role in the inflammatory response induced by physiologic and stress stimuli. Exposure to diesel exhaust particulate matter (DEP) has been shown to induce pulmonary inflammation and exacerbate asthma and chronic obstructive pulmonary dis...
Evaluation of Cyclooxygenase-2 as a Novel Target for Breast Cancer Prevention
2001-07-01
colorectal cancer. Both epidemiological and experimental data indicate that nonsteroidal anti- inflammatory drugs ( NSAIDs ), which inhibit Cox activity...constitutively expressed, COX-2 is upregulated in response anti-inflammatory drugs ( NSAIDs ) such as aspirin and to growth factors, tumour promoters and...year in the United States related to NSAID use (Singh 1998). Toxicity Size of gene 22 kb 8.3 kb associated with the use of nonselective NSAIDs was the
Kim, Yiseul; Kim, Jung Tae; Park, Joonwoo; Son, Hee Jin; Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra
2017-10-01
Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca 2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC 50 = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
The protection of meloxicam against chronic aluminium overload-induced liver injury in rats.
Yang, Yang; He, Qin; Wang, Hong; Hu, Xinyue; Luo, Ying; Liang, Guojuan; Kuang, Shengnan; Mai, Shaoshan; Ma, Jie; Tian, Xiaoyan; Chen, Qi; Yang, Junqing
2017-04-04
The present study was designed to observe the protective effect and mechanisms of meloxicam on liver injury caused by chronic aluminium exposure in rats. The histopathology was detected by hematoxylin-eosin staining. The levels of prostaglandin E2, cyclic adenosine monophosphate and inflammatory cytokines were detected by enzyme linked immunosorbent assay. The expressions of cyclooxygenases-2, prostaglandin E2 receptors and protein kinase A were measured by western blotting and immunohistochemistry. Our experimental results showed that aluminium overload significantly damaged the liver. Aluminium also significantly increased the expressions of cyclooxygenases-2, prostaglandin E2, cyclic adenosine monophosphate, protein kinase A and the prostaglandin E2 receptors (EP1,2,4) and the levels of inflammation and oxidative stress, while significantly decreased the EP3 expression in liver. The administration of meloxicam significantly improved the impairment of liver. The contents of prostaglandin E2 and cyclic adenosine monophosphate were significantly decreased by administration of meloxicam. The administration of meloxicam also significantly decreased the expressions of cyclooxygenases-2 and protein kinase A and the levels of inflammation and oxidative stress, while significantly increased the EP1,2,3,4 expressions in rat liver. Our results suggested that the imbalance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway is involved in the injury of chronic aluminium-overload rat liver. The protective mechanism of meloxicam on aluminium-overload liver injury is attributed to reconstruct the balance of cyclooxygenases-2 and downstream prostaglandin E2 signaling pathway.
Eo, Seong-Hui; Kim, Song Ja
2017-09-18
Matrix metalloproteinases (MMPs) are known to play an important role in the degradation of the extracellular matrix and the pathological progression of osteoarthritis (OA). The natural polyphenolic compound rosmarinic acid (Ros. A) has been shown to suppress the inhibitory activity of matrix metalloproteinases (MMPs). However, the effects of Ros. A on OA have not been investigated. In the current study, primary articular chondrocytes were cultured from rabbit articular cartilage and treated with Ros. A. Phenotypic characterization was performed by western blotting to assess specific markers, prostaglandin E 2 (PGE 2 ) assays, and alcian blue staining to measure sulfated-proteoglycan production. We report that in rabbit articular chondrocytes, Ros. A increased type II collagen, sulfated-proteoglycan, cyclooxygenase-2 (COX-2), and PGE 2 production in a dose- and time-dependent manner. Furthermore, Ros. A suppressed the expression of MMP-13. In addition, treatment with Ros A activated extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling pathways. Inhibition of MMP-13 enhanced Ros. A-induced type II collagen expression and sulfated-proteoglycan synthesis but COX-2 and PGE 2 production were unchanged. Ros. A-mediated up-regulation of ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which prevented induction of the associated inflammatory response. Inhibition of p38 kinase with SB203580 enhanced the increase in type II collagen expression via Ros. A-mediated down-regulation of MMP-13. Results suggest that ERK-1/2 regulates Ros. A-induced inflammation and that p38 regulates differentiation by inhibiting MMP-13 in rabbit articular chondrocytes.
Hawkey, C J
2005-01-01
The role of selective cyclooxygenase (COX)-2 inhibitors in medical practice has become controversial since evidence emerged that their use is associated with an increased risk of myocardial infarction. Selective COX-2 inhibitors were seen as successor to non-selective non-steroidal anti-inflammatory drugs, in turn successors to aspirin. The importance of pain relief means that such drugs have always attracted attention. The fact that they work through inhibition of cyclooxygenase, are widespread, and have multiple effects also means that adverse effects that were unanticipated (even though predictable) have always emerged. In this paper I therefore present an historical perspective so that the lessons of the past may be applied to the present. PMID:16227351
Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik
2016-05-15
Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. Copyright © 2016 Elsevier Inc. All rights reserved.
In vitro and in vivo assessment of meadowsweet (Filipendula ulmaria) as anti-inflammatory agent.
Katanić, Jelena; Boroja, Tatjana; Mihailović, Vladimir; Nikles, Stefanie; Pan, San-Po; Rosić, Gvozden; Selaković, Dragica; Joksimović, Jovana; Mitrović, Slobodanka; Bauer, Rudolf
2016-12-04
Meadowsweet (Filipendula ulmaria (L.) Maxim, Rosaceae) has been traditionally used in most European countries for the treatment of inflammatory diseases due to its antipyretic, analgesic, astringent, and anti-rheumatic properties. However, there is little scientific evidence on F. ulmaria anti-inflammatory effects regarding its impact on cyclooxygenases enzymatic activity and in vivo assessment of anti-inflammatory potential. This study aims to reveal the anti-inflammatory activity of methanolic extracts from the aerial parts (FUA) and roots (FUR) of F. ulmaria, both in in vitro and in vivo conditions. The characteristic phenolic compounds in F. ulmaria extracts were monitored via high performance thin layer chromatography (HPTLC). The in vitro anti-inflammatory activity of F. ulmaria extracts was evaluated using cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme assays, and an assay for determining COX-2 gene expression. The in vivo anti-inflammatory effect of F. ulmaria extracts was determined in two doses (100 and 200 mg/kg b.w.) with hot plate test and carrageenan-induced paw edema test in rats. Inflammation was also evaluated by histopathological and immunohistochemical analysis. FUA extract showed the presence of rutoside, spiraeoside, and isoquercitrin. Both F. ulmaria extracts at a concentration of 50μg/mL were able to inhibit COX-1 and -2 enzyme activities, whereby FUA extract (62.84% and 46.43% inhibition, respectively) was double as effective as the root extract (32.11% and 20.20%, respectively). Extracts hardly inhibited the level of COX-2 gene expression in THP-1 cells at a concentration of 25μg/mL (10.19% inhibition by FUA and 8.54% by FUR). In the hot plate test, both extracts in two doses (100 and 200mg/kg b.w.), exhibited an increase in latency time when compared with the control group (p<0.05). In the carrageenan-induced acute inflammation test, FUA at doses of 100 and 200mg/kg b.w., and FUR at 200mg/kg, were able to significantly reduce the mean maximal swelling of rat paw until 6h of treatment. Indomethacin, FUA, and FUR extracts significantly decreased inflammation score and this effect was more pronounced after 24h, compared to the control group (p<0.05). The observed results of in vitro and, for the first time, in vivo anti-inflammatory activity of meadowsweet extracts, provide support of the traditional use of this plant in the treatment of different inflammatory conditions. Further investigation of the anti-inflammatory compounds could reveal the mechanism of anti-inflammatory action of these extracts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fakhrudin, Nanang; Dwi Astuti, Eny; Sulistyawati, Rini; Santosa, Djoko; Susandarini, Ratna; Nurrochmad, Arief; Wahyuono, Subagus
2017-03-13
Inflammation is involved in the progression of many disorders, such as tumors, arthritis, gastritis, and atherosclerosis. Thus, the development of new agents targeting inflammation is still challenging. Medicinal plants have been used traditionally to treat various diseases including inflammation. A previous study has indicated that dichloromethane extract of P. lanceolata leaves exerts anti-inflammatory activity in an in vitro model. Here, we examined the in vivo anti-inflammatory activities of a n -hexane insoluble fraction of P. lanceolata leaves dichloromethane extract (HIFPL). We first evaluated its potency to reduce paw edema induced by carrageenan, and the expression of the proinflammatory enzyme, cyclooxygenase (COX)-2, in mice. The efficacy of HIFPL to inhibit COX-2 was also evaluated in an in vitro enzymatic assay. We further studied the effect of HIFPL on leukocytes migration in mice induced by thioglycollate. The level of chemokines facilitating the migration of leukocytes was also measured. We found that HIFPL (40, 80, 160 mg/kg) demonstrated anti-inflammatory activities in mice. The HIFPL reduced the volume of paw edema and COX-2 expression. However, HIFPL acts as an unselective COX-2 inhibitor as it inhibited COX-1 with a slightly higher potency. Interestingly, HIFPL strongly inhibited leukocyte migration by reducing the level of chemokines, Interleukine-8 (IL-8) and Monocyte chemoattractant protein-1 (MCP-1).
Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika
2017-09-02
This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH • (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC 50 value 10.9 µg/mL) and that against ABTS •+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC 50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe 2+ chelation ability (IC 50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC 50 value 3.13 µg/mL and 5.05 µg/mL, respectively).
Zielińska, Ewelina; Baraniak, Barbara; Karaś, Monika
2017-01-01
This study investigated the effect of heat treatment of edible insects on antioxidant and anti-inflammatory activities of peptides obtained by in vitro gastrointestinal digestion and absorption process thereof. The antioxidant potential of edible insect hydrolysates was determined as free radical-scavenging activity, ion chelating activity, and reducing power, whereas the anti-inflammatory activity was expressed as lipoxygenase and cyclooxygenase-2 inhibitory activity. The highest antiradical activity against DPPH• (2,2-diphenyl-1-picrylhydrazyl radical) was noted for a peptide fraction from baked cricket Gryllodes sigillatus hydrolysate (IC50 value 10.9 µg/mL) and that against ABTS•+ (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical) was the highest for raw mealworm Tenebrio molitor hydrolysate (inhibitory concentration (IC50 value) 5.3 µg/mL). The peptides obtained from boiled locust Schistocerca gregaria hydrolysate showed the highest Fe2+ chelation ability (IC50 value 2.57 µg/mL); furthermore, the highest reducing power was observed for raw G. sigillatus hydrolysate (0.771). The peptide fraction from a protein preparation from the locust S. gregaria exhibited the most significant lipoxygenase and cyclooxygenase-2 inhibitory activity (IC50 value 3.13 µg/mL and 5.05 µg/mL, respectively). PMID:28869499
Lomakin, N V; Gruzdev, A K
2011-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) represent class of medicines which is wide concerning chemical structure and mechanism of action. In the light of contradictory data on efficacy and safety of NSAID in cardiovascular patients selection of most appropriate NSAID (basing on profile of efficacy and safety) in patients receiving continuous therapy with low dose aspirin appears to be a problem. In this paper we discuss peculiarities of drug interaction between cyclooxygenase inhibitors and acetylsalicylic acid, and principles of selection of adequate NSAI.
Farombi, Ebenezer O; Adedara, Isaac A; Awoyemi, Omolola V; Njoku, Chinonye R; Micah, Gabriel O; Esogwa, Cynthia U; Owumi, Solomon E; Olopade, James O
2016-02-01
The present study investigated the antioxidant and anti-inflammatory effects of dietary protocatechuic acid (PCA), a simple hydrophilic phenolic compound commonly found in many edible vegetables, on dextran sulphate sodium (DSS)-induced ulcerative colitis and its associated hepatotoxicity in rats. PCA was administered orally at 10 mg kg(-1) to dextran sulphate sodium exposed rats for five days. The result revealed that administration of PCA significantly (p < 0.05) prevented the incidence of diarrhea and bleeding, the decrease in the body weight gain, shortening of colon length and the increase in colon mass index in DSS-treated rats. Furthermore, PCA prevented the increase in the plasma levels of pro-inflammatory cytokines, markers of liver toxicity and markedly suppressed the DSS-mediated elevation in colonic nitric oxide concentration and myeloperoxidase activity in the treated rats. Administration of PCA significantly protected against colonic and hepatic oxidative damage by increasing the antioxidant status and concomitantly decreased hydrogen peroxide and lipid peroxidation levels in the DSS-treated rats. Moreover, histological examinations confirmed PCA chemoprotection against colon and liver damage. Immunohistochemical analysis showed that PCA significantly inhibited cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in the colon of DSS-treated rats. In conclusion, the effective chemoprotective role of PCA in colitis and the associated hepatotoxicity is related to its intrinsic anti-inflammatory and anti-oxidative properties.
Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel
2014-01-01
Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970
Platas, Julia; Guillén, Maria Isabel; Gomar, Francisco; Castejón, Miguel Angel; Esbrit, Pedro; Alcaraz, Maria José
2017-05-01
Osteoarthritis (OA) is characterized by degenerative changes in the whole joint leading to physical disability in the elderly population. This condition is associated with altered bone metabolism in subchondral areas suggesting that therapeutic strategies aimed at modifying bone cell metabolism may be of interest. We have investigated the effects of several parathyroid hormone-related protein (PTHrP)-derived peptides (1-37): (N-terminal), (107-111) and (107-139) (C-terminal) on senescence features induced by inflammatory stress in human OA osteoblasts. Incubation of these primary cells with interleukin(IL)-1β led to an increased expression of senescence markers senescence-associated-β-galactosidase activity, γH2AX foci, p16, p21, p53, and caveolin-1. PTHrP (107-111) and PTHrP (107-139) significantly reduced all these parameters. Both peptides decreased the production of IL-6 and prostaglandin E2 which was the consequence of cyclo-oxygenase-2 downregulation. PTHrP (107-139) also reduced tumor necrosis factor-α release. These anti-inflammatory effects would be related to the reduction of nuclear factor-κB activation by both peptides and activator protein-1 by PTHrP (107-139). The three PTHrP peptides favored osteoblastic function although the C-terminal domain of PTHrP was more efficient than its N-terminal domain. Our data support an anti-senescence and anti-inflammatory role for the C-terminal moiety of PTHrP with potential applications in chronic inflammatory conditions such as OA. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rhodes, Lesley E; Gledhill, Karl; Masoodi, Mojgan; Haylett, Ann K; Brownrigg, Margaret; Thody, Anthony J; Tobin, Desmond J; Nicolaou, Anna
2009-11-01
Sunburn is a commonly occurring acute inflammatory process, with dermal vasodilatation and leukocyte infiltration as central features. Ultraviolet (UV) B-induced hydrolysis of membrane phospholipids releases polyunsaturated fatty acids, and their subsequent metabolism by cyclooxygenases (COXs) and lipoxygenases (LOXs) may produce potent eicosanoid mediators modulating different stages of the inflammation. Our objective was to identify candidate eicosanoids formed during the sunburn reaction in relation to its clinical and histological course. We exposed skin of healthy humans (n=32) to UVB and, for 72 h, examined expression of proinflammatory and anti-inflammatory eicosanoids using LC/ESI-MS/MS, and examined immunohistochemical expression of COX-2, 12-LOX, 15-LOX, and leukocyte markers, while quantifying clinical erythema. We show that vasodilatory prostaglandins (PGs) PGE(2), PGF(2alpha), and PGE(3) accompany the erythema in the first 24-48 h, associated with increased COX-2 expression at 24 h. Novel, potent leukocyte chemoattractants 11-, 12-, and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3(+) lymphocytes and 12- and 15-LOX expression from 24 to 72 h. Anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Sunburn is characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution.
Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner
Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin
2012-01-01
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771
Cardiovascular Toxicity of Cyclooxygenase Inhibitors and Promising Natur a l Substitutes.
Bahmani, Mahmoud; Sarrafchi, Amir; Shirzad, Hedayatollah; Asgari, Sedigheh; Rafieian-Kopaei, Mahmoud
2017-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are a group of drugs which are used for a wide variety of diseases including pain and inflammatory conditions such as osteoarthritis, rheumatoid arthritis, musculoskeletal disorders, and other comorbid complications. However, this group of drugs have undesirable effects such as peptic ulcer, bleeding and renal failure. Some of these side effects are associated with or caused by generation of oxidative stress. Following the withdrawal of a cyclo-oxygenase-2 (COX-2) inhibitor drug, rofecoxib (VIOXX®) due to cardiovascular complications, scientists suggested that natural COX-2 inhibitors might provide valuable alternatives to COX inhibitors. Although, most of medicinal plants reduce pain and inflammation in a similar manner to synthetic medications, however, they often have fewer side effects and are better tolerated. The present review other than focusing on cardiovascular and some other complications of NSAIDs, is trying to introduce the natural alternative remedies for these medications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Oliveira, Eneida S.; Colombarolli, Stella G.; Nascimento, Camila S.; Batista, Izabella C. A.; Ferreira, Jorge G. G.; Alvarenga, Daniele L. R.; de Sousa, Laís O. B.; Assis, Rafael R.; Rocha, Marcele N.; Alves, Érica A. R.; Calzavara-Silva, Carlos E.
2018-01-01
The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus-induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage. PMID:29495587
Oliveira, Eneida S; Colombarolli, Stella G; Nascimento, Camila S; Batista, Izabella C A; Ferreira, Jorge G G; Alvarenga, Daniele L R; de Sousa, Laís O B; Assis, Rafael R; Rocha, Marcele N; Alves, Érica A R; Calzavara-Silva, Carlos E
2018-02-28
The inflammatory process plays a major role in the prognosis of dengue. In this context, the eicosanoids may have considerable influence on the regulation of the Dengue virus -induced inflammatory process. To quantify the molecules involved in the cyclooxygenase and lipoxygenase pathways during Dengue virus infection, plasma levels of thromboxane A2, prostaglandin E2 and leukotriene B4; mRNA levels of thromboxane A2 synthase, prostaglandin E2 synthase, leukotriene A4 hydrolase, cyclooxygenase-2 and 5-lipoxygenase; and the levels of lipid bodies in peripheral blood leukocytes collected from IgM-positive and IgM-negative volunteers with mild dengue, and non-infected volunteers, were evaluated. Dengue virus infection increases the levels of thromboxane A2 in IgM-positive individuals as well as the amount of lipid bodies in monocytes in IgM-negative individuals. We suggest that increased levels of thromboxane A2 in IgM-positive individuals plays a protective role against the development of severe symptoms of dengue, such as vascular leakage.
Savic, Jelena; Dilber, Sanda; Milenkovic, Marina; Kotur-Stevuljevic, Jelena; Markovic, Bojan; Vladimirov, Sote; Brboric, Jasmina
2017-01-01
Nonsteriodal anti-inflammatory drugs (NSAIDs) are numerous and widely used for more than 60 years, but there is still a strong need for developing novel selective NSAIDs. The need is justified by the fact that nonselective NSAIDs can produce serious gastric side effects and that some of the selective NSAID are withdrawn due to their cardiotoxic side effects. Eight β-hydroxy-β-arylpropanoic acids, which belong to the arylpropanoic acid class of compounds, structurally similar to some nonsteroidal anti-inflammatory drugs (NSAIDs), were docked into 3D catalytic site of both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Seven out of those eight acids were synthesized using already published modification of Reformatsky reaction additionally optimized by increasing temperature. Synthesized compounds were tested in vivo in order to elucidate anti-inflammatory activity, gastric tolerability and impact on liver function of rats. Results of docking studies have indicated that all compounds have potential to selectively inhibit COX-2 isoform, but that the compounds containing polar substituents on phenyl ring are better inhibitors. Results of carrageenan-induced rat paw oedema test have shown that all compounds exhibit dose dependence and good gastric tolerability and none of the tested compounds have shown negative effect on liver function compared to ibuprofen. The compound containing polar nitro group in para position has shown the best docking results, anti-inflammatory activity, low hepatotoxicity and good gastric tolerability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Kim, Seung-Hyung; Choi, Hye-Jin; Yang, Won-Kyung; Lee, Ji-Eun; Cho, Ju-Hyun; Park, In-Jae; Park, Sunyoung; Park, Bo-Kyung; Jin, Mirim
2017-01-01
We examined the antiosteoarthritic effect of the n-hexane extract of Litsea japonica fruit flesh (LJF-HE) in a rat model of monosodium-iodoacetate- (MIA-) induced osteoarthritis. LJF-HE significantly reduced the difference in weight-bearing capabilities of the hind paws between healthy and MIA-treated rats. Histological examination of the knee joints indicated that LJF-HE suppressed cartilage and bone destruction. Additionally, there were decreases in the expression of matrix metalloproteinase-2 and metalloproteinase-9 and cyclooxygenase-2 in the joints. The serum levels of deoxypyridinoline (DPD) and osteocalcin, which are markers of bone metabolism, also decreased. Furthermore, LJF-HE significantly suppressed infiltration of inflammatory cells into the synovium and inhibited the expression of proinflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1, and IL-6 in the joints and serum. The serum levels of leukotriene B4 and lipoxygenase were also significantly lowered by LJF-HE. Finally, LJF-HE inhibited the production of nitric oxide, prostaglandin E2, IL-6, and TNF- α in lipopolysaccharide-activated macrophages, which might be associated with inhibited phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase. Our data suggest that LJF-HE has an anti-inflammatory effect and may have potential as an antiosteoarthritic agent.
Chey, W D; Eswaren, S; Howden, C W; Inadomi, J M; Fendrick, A M; Scheiman, J M
2006-03-01
To assess primary care physician perceptions of non-steroidal anti-inflammatory drug (NSAID) and aspirin-associated toxicity. A group of gastroenterologists and internal medicine physicians created a survey, which was administered via the Internet to a large number of primary care physicians from across the US. One thousand primary care physicians participated. Almost one-third of primary care physicians recommended 325 mg rather than 81 mg of aspirin/day for cardioprotection. Fifty-nine percent thought enteric-coated or buffered aspirin reduced the risk of upper gastrointestinal (GI) bleeding. Seventy-six percent believed that Helicobacter pylori infection increased the risk of NSAID ulcers but fewer than 25% tested NSAID users for this infection. More than two-thirds were aware that aspirin co-therapy decreased the GI safety benefits of the cyclo-oxygenase 2 selective NSAIDs. However, 84% felt that aspirin with a cyclo-oxygenase 2 selective NSAID was safer than aspirin with a non-selective NSAID. When presented a patient at high risk for NSAID-related GI toxicity, almost 50% of primary care physicians recommended a proton pump inhibitor and cyclo-oxygenase 2 selective NSAID. This survey has identified areas of misinformation regarding the risk-benefit of NSAIDs and aspirin and the utilization of gastroprotective strategies. Further education on NSAIDs for primary care physicians is warranted.
Micu, Mihaela C; Micu, Romeo; Ostensen, Monika
2011-09-01
Administration of nonsteroidal antiinflammatory drugs (NSAIDs) may impair fertility. The occurrence of the luteinized unruptured follicle (LUF) syndrome was assessed in women with inflammatory arthropathies exposed to NSAIDs and compared to that in nonexposed women. Fourteen patients with inflammatory rheumatic disease, 29 women with noninflammatory musculoskeletal conditions, and 449 women not exposed to NSAIDs were studied by intravaginal ultrasound monitoring for follicular development and ovulation in 1 or more menstrual cycles. Disease activity was assessed in inflammatory rheumatic disease. In 59 monitored cycles of patients with continuous NSAID exposure, 35.6% of LUF syndromes occurred compared to 3.4% of LUF syndromes in untreated women (P < 0.001). Etoricoxib was responsible for 75% of LUF syndromes in patients exposed continuously, whereas diclofenac generated 15% of LUF syndromes. An ibuprofen dosage of 1,600 mg/day did not induce LUF syndrome either at continuous periovulatory or discontinuous exposure. Interestingly, the frequency of LUF syndrome was 46.2% in patients with inactive inflammatory disease compared to 15% in patients with active disease (P = 0.023). Etoricoxib generated LUF syndrome in 94.2% of the cases with inactive disease versus 28.6% in patients with active disease (P = 0.003). NSAIDs increased the risk of the LUF syndrome, particularly in patients with inactive disease. The selective cyclooxygenase 2 (COX-2) inhibitor etoricoxib was a more potent inductor of LUF syndrome than nonselective COX inhibitors. Continuous periovulatory exposure to NSAIDs should be avoided when planning a pregnancy in patients with rheumatic diseases. Copyright © 2011 by the American College of Rheumatology.
Yoshida, Eiko; Kurita, Masaru; Eto, Komyo; Kumagai, Yoshito; Kaji, Toshiyuki
2017-12-01
Methylmercury is an environmental pollutant that exhibits neurotoxicity when ingested, primarily in the form of neuropathological lesions that localize along deep sulci and fissures, in addition to edematous and inflammatory changes in patient cerebrums. These conditions been known to give rise to a variety of ailments that have come to be collectively termed Minamata disease. Since prostaglandins I 2 and E 2 (PGI 2 and PGE 2 ) increase vascular permeability and contribute to the progression of inflammatory changes, we hypothesize that methylmercury induces the synthesis of these prostaglandins in brain microvascular endothelial cells and pericytes. To test this theory, human brain microvascular endothelial cells and pericytes were cultured and treated with methylmercury, after which the PGI 2 and PGE 2 released from endothelial cells and/or pericytes were quantified by enzyme-linked immunosorbent assay while protein and mRNA expressions in endothelial cells were analyzed by western blot analysis and real-time reverse transcription polymerase chain reaction, respectively. Experimental results indicate that methylmercury inhibits the activity of protein tyrosine phosphatase 1B, which in turn activates the epidermal growth factor receptor-p38 mitogen-activated protein kinase pathway that induces cyclooxygenase-2 expression. It was also found that the cyclic adenosine 3',5'-monophosphate pathway, which can be activated by PGI 2 and PGE 2 , is involved in methylmercury-induced cyclooxygenase-2 expression. Since it appears that protein tyrosine phosphatase 1 B serves as a sensor protein for methylmercury in these mechanisms, it is our belief that the results of the present study may provide additional insights into the molecular mechanisms responsible for edematous and inflammatory changes in the cerebrum of patients with Minamata disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Anti-inflammatory effects of a Houttuynia cordata supercritical extract
Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min-Jung; Kim, Tae-Ook; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Ki-Yon
2010-01-01
Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-α and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased TNF-α and PGE2. The suppressive activity of HSE on NO and PGE2 production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase II-PGE2 pathways. PMID:20706037
Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.
Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud
2015-04-01
Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.
Murakami, Yukio; Kawata, Akifumi; Ito, Shigeru; Katayama, Tadashi; Fujisawa, Seiichiro
2014-01-01
Phenolic compounds, particularly dihydroxybiphenyl-related compounds, possess efficient anti-oxidative and anti-inflammatory activity. We investigated the anti-inflammatory activity of 2,2'-dihydroxy-5,5'-dimethylbiphenol (p-cresol dimer), 2,2'-dihydroxy-5,5'-dimethoxybiphenol (pHA dimer), p-cresol, p-hydroxyanisole (pHA) and 2-t-butyl-4-hydroxyanisole (BHA). The cytotoxicity of the investigated compounds against RAW264.7 cells was determined using a cell counting kit (CCK-8). Their inhibitory effects on cyclooxygenase-2 (Cox2) mRNA expression stimulated by lipopolysaccharide (LPS) were determined using northern blot analysis, and their inhibition of LPS-stimulated nuclear factor-kappa B (Nf-κb) activation was evaluated using enzyme-linked immunosorbent assay-like microwell colorimetric transcription factor activity assay. The molecular orbital energy was calculated on the basis of density function theory BLYP/6-31G*. The cytotoxicity of the compounds declined in the order pHA dimer > p-cresol dimer > BHA > p-cresol > pHA. The inhibitory effect on Cox2 expression and Nf-κb activation was enhanced by p-cresol dimer and pHA dimer, particularly the former, suggesting potent anti-inflammatory activity, whereas p-cresol and pHA showed weak activity, and BHA no activity. Both p-cresol dimer and pHA dimer were highly electronegative, as determined by quantum chemical calculations. Dimerization of p-cresol and pHA enhances their anti-inflammatory activity. p-Cresol dimer and pHA dimer, particularly the former, are potent anti-inflammatory agents. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Suh, Nanjoo; Reddy, Bandaru S.; DeCastro, Andrew; Paul, Shiby; Lee, Hong Jin; Smolarek, Amanda K.; So, Jae Young; Simi, Barbara; Wang, Chung Xiou; Janakiram, Naveena B.; Steele, Vernon; Rao, Chinthalapally V.
2011-01-01
Evidence supports the protective role of non-steroidal anti-inflammatory drugs (NSAIDs) and statins against colon cancer. Experiments were designed to evaluate the efficacies atorvastatin and NSAIDs administered individually and in combination against colon tumor formation. F344 rats were fed AIN-76A diet and colon tumors were induced with azoxymethane (AOM). One week after the second AOM-treatment groups of rats were fed diets containing atorvastatin (200 ppm), sulindac (100 ppm) or naproxen (150 ppm), or their combinations with low-dose atorvastatin (100 ppm) for 45 weeks. Administration of atorvastatin at 200 ppm significantly suppressed both adenocarcinoma incidence (52% reduction, p=0.005) and multiplicity (58% reduction, p=0.008). Most importantly, colon tumor multiplicities were profoundly decreased (80–85% reduction, p<0.0001) when given low-dose atorvastatin with either sulindac or naproxen. Also, a significant inhibition of colon tumor incidence was observed when given a low-dose atorvastatin with either sulindac (p=0.001) or naproxen (p =0.0005). Proliferation markers, proliferating cell nuclear antigen, cyclin D1 and β-catenin in tumors of rats exposed to sulindac, naproxen, atorvastatin, and/or combinations showed a significant suppression. Importantly, colon adenocarcinomas from atorvastatin and NSAIDs fed animals showed reduced key inflammatory markers, inducible nitric oxide synthase and cyclooxygenase-2, phospho-p65, as well as inflammatory cytokines, TNF-α, IL-1β, and IL-4. Overall, this is the first report on the combination treatment using low-dose atorvastatin with either low dose sulindac or naproxen, which greatly suppress the colon adenocarcinoma incidence and multiplicity. Our results suggest that low-dose atorvastatin with sulindac or naproxen might potentially be useful combinations for colon cancer prevention in humans. PMID:21764859
Beavers, Kristen M; Serra, Monica C; Beavers, Daniel P; Cooke, Matthew B; Willoughby, Darryn S
2009-09-01
Aging is associated with increasing levels of systemic inflammation and oxidative stress, both of which contribute to the progression of cardiovascular disease. Attenuation of such processes via dietary intervention has significant public health implications. Soyfoods, as a source of high-quality protein and isoflavones, may improve such indices, although such effects in healthy aging women are not well delineated. The purpose of this study was to test the hypothesis that 4 weeks of daily soymilk consumption would improve systemic markers of inflammation and oxidative stress in postmenopausal women when compared with a dairy control. In September 2009, a single-blind, randomized, controlled trial was conducted on 31 postmenopausal women at Baylor University, Waco, Tex. Subjects were randomly assigned to consume 3 servings of vanilla soy (n = 16) or reduced fat dairy (n = 15) milk per day for 4 weeks. Plasma markers of inflammation (tumor necrosis factor alpha [TNF-alpha], interleukin [IL]-1beta, IL-6) and oxidative stress (superoxide dismutase [SOD], glutathione peroxidase [GPx], cyclooxygenase-2 [COX-2]) were obtained before and after supplementation. No significant differences were observed for any of the plasma inflammatory (TNF-alpha, P = .08; IL-1beta, P = .14; IL-6, P = .26) or oxidative stress (SOD, P = .68; GPx, P = .58; COX-2, P = .99) variables by dietary treatment group. Despite good dietary compliance, our study failed to show a significant effect of soymilk consumption on markers of inflammation and oxidative stress in this postmenopausal female population. Potential reasons for this nonsignificant finding are discussed, and future research directions are presented.
Favia, Angelo D; Habrant, Damien; Scarpelli, Rita; Migliore, Marco; Albani, Clara; Bertozzi, Sine Mandrup; Dionisi, Mauro; Tarozzo, Glauco; Piomelli, Daniele; Cavalli, Andrea; De Vivo, Marco
2012-10-25
Pain and inflammation are major therapeutic areas for drug discovery. Current drugs for these pathologies have limited efficacy, however, and often cause a number of unwanted side effects. In the present study, we identify the nonsteroidal anti-inflammatory drug carprofen as a multitarget-directed ligand that simultaneously inhibits cyclooxygenase-1 (COX-1), COX-2, and fatty acid amide hydrolase (FAAH). Additionally, we synthesized and tested several derivatives of carprofen, sharing this multitarget activity. This may result in improved analgesic efficacy and reduced side effects (Naidu et al. J. Pharmacol. Exp. Ther.2009, 329, 48-56; Fowler, C. J.; et al. J. Enzyme Inhib. Med. Chem.2012, in press; Sasso et al. Pharmacol. Res.2012, 65, 553). The new compounds are among the most potent multitarget FAAH/COX inhibitors reported so far in the literature and thus may represent promising starting points for the discovery of new analgesic and anti-inflammatory drugs.
Swathy, S S; Panicker, Seema; Nithya, R S; Anuja, M M; Rejitha, S; Indira, M
2010-09-01
Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 microg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 microg/100 g bwt/day) (5) QUIN (55 microg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 microg/100 g bwt/day) + Deprenyl (100 microg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.
Mastalerz, Lucyna; Januszek, Rafał; Kaszuba, Marek; Wójcik, Krzysztof; Celejewska-Wójcik, Natalia; Gielicz, Anna; Plutecka, Hanna; Oleś, Krzysztof; Stręk, Paweł; Sanak, Marek
2015-09-01
Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes. Copyright © 2015 Elsevier Inc. All rights reserved.
Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro
2014-01-01
Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages.
Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2009-12-01
Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis.
Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation
Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye
2013-01-01
Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and thrombosis. PMID:19917882
Peritumoral adipose tissue as a source of inflammatory and angiogenic factors in colorectal cancer.
Amor, S; Iglesias-de la Cruz, M C; Ferrero, E; García-Villar, O; Barrios, V; Fernandez, N; Monge, L; García-Villalón, A L; Granado, M
2016-02-01
Obesity is a risk factor for the development of human colorectal cancer (CC). The aim of this work is to report the inflammatory and angiogenic scenario in lean (BMI < 25 kg/m2) and obese (BMI > 30 kg/m2) patients with and without CC and to assess the role of peritumoral adipose tissue in CC-induced inflammation. Patients were divided in four experimental groups: obese patients with CC (OB-CC), lean patients with CC (LEAN-CC), obese patients without CC (OB), and lean patients without CC (LEAN). Plasma levels of pro-inflammatory cytokines (interleukin (IL)-6, IL-4, IL-8) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased in OB-CC patients. Peritumoral adipose tissue (TF) explants and cultured mature adipocytes secreted higher amounts of nitrites and nitrates than did control and non-tumoral (NTF) adipose tissue both alone and in response to lipopolysaccharide (LPS). Nitrite and nitrate secretion was also increased in TF explants from OB-CC patients compared with that from LEAN-CC patients. Gene expression of adiponectin, tumor necrosis factor alpha (TNF-α), insulin-like growth factor type I (IGF-I), cyclooxygenase-2 (COX-2), and peroxisome proliferator-activated receptor γ (PPAR-γ) was increased in TF explants from CC patients. LPS increased the gene expression of IL-6, IL-10, TNF-α, vascular endothelial growth factor (VEGF), and COX-2 in OB and in TF explants from OB-CC patients. COX-2 and PPAR-γ inhibition further increased LPS-induced release of nitrites and nitrates in TF explants and adipocytes from OB-CC patients. In conclusion, OB-CC patients have increased plasma levels of pro-inflammatory and angiogenic factors. TF from OB-CC patients shows an increased secretion of inflammatory markers compared with both TF from LEAN-CC and non-tumoral adipose tissue (AT) through a COX-2- and PPAR-γ-independent mechanism.
Fardet, Laurence; Nizard, Jacky; Généreau, Thierry
2002-09-28
THE FACTS: Non steroidal anti-inflammatory drugs (NSAI), except aspirin, are classically contraindicated during pregnancy. Nevertheless, they are widely used, in particular by the obstetricians. During pregnancy, the potential toxicity of these drugs is double, maternal and fetal. The maternal toxicity is comparable to that, already known in adults, with however, some particularities at the time of labor and delivery. The fetal toxicity is mainly renal and cardiovascular, with the NSAI responsible for oligoamniosis and premature closure of the arterial canal of the fetus. On the other hand, the use of these molecules during breast-feeding does not seem source of adverse events, notably in the newborn. THE VARIOUS MOLECULES: Among the family of non-selective non-steroidal anti-inflammatories, indications and adverse events of the various molecules differ considerably. Moreover, whereas the majority of these molecules are non-selective, i.e. inhibiting the two isoforms of cyclooxygenase, new therapeutics, specifically inhibiting cyclooxygenase-2, are now available. Few studies have been published concerning their prescription during pregnancy and breast-feeding and their maternal and fetal side effects remain ignored by most of the practitioners.
The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.
Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E
1996-02-01
In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes.
Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages.
Bae, Deok Sung; Kim, Young Hoon; Pan, Cheol-Ho; Nho, Chu Won; Samdan, Javzan; Yansan, Jamyansan; Lee, Jae Kown
2012-02-01
Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E(2) (PGE(2)) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).
Woodling, Nathaniel S.; Colas, Damien; Wang, Qian; Minhas, Paras; Panchal, Maharshi; Liang, Xibin; Mhatre, Siddhita D.; Brown, Holden; Ko, Novie; Zagol-Ikapitte, Irene; van der Hart, Marieke; Khroyan, Taline V.; Chuluun, Bayarsaikhan; Priyam, Prachi G.; Milne, Ginger L.; Rassoulpour, Arash; Boutaud, Olivier; Manning-Boğ, Amy B.; Heller, H. Craig
2016-01-01
Abstract Identifying preventive targets for Alzheimer’s disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer’s disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APP Swe -PS1 ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase ( Tdo2 ), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APP Swe -PS1 ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers. PMID:27190010
Jin, Meihua; Lu, Yue; Yang, Ju Hye; Jo, Tae Hyung; Park, Young In; Lee, Chong-Kil; Park, Sang-Jo; Son, Kun Ho; Chang, Hyeun Wook
2011-09-01
6-Hydroxy-2,7-dimethoxy-1,4-phenanthraquinone (PAQ) isolated from the tuberous roots of Yam (Dioscorea batatas) inhibited cyclooxygenase-2 (COX-2) and cyclooxygenase-1 (COX-1) dependent prostaglandin D(2) (PGD(2)) generation in mouse bone marrow-derived mast cells in a concentration-dependent manner with IC(50) values of 0.08 μM and 0.27 μM, respectively. In the Western blotting with specific anti-COX-2 antibodies, the decrease of the quantity of PGD(2) was accompanied by a decrease in the COX-2 protein level. But PAQ did not affect COX-1 protein level. In addition, this compound inhibited 5-lipoxygenase (5-LOX) dependent production of leukotriene C(4) in a dose-dependent manner, with an IC(50) of 0.032 μM. These results demonstrate that PAQ has a dual COX-2/5-LOX inhibitory activity. This compound also inhibited the degranulation reaction in a dose-dependent manner with an IC(50) of 2.7 μM. Thus, these results suggest that PAQ may be useful in regulating mast cell-mediated inflammatory diseases.
Oseguera-Toledo, Miguel E; de Mejia, Elvira Gonzalez; Dia, Vermont P; Amaya-Llano, Silvia L
2011-08-01
The objectives of this study were to evaluate the antioxidant capacity of protein hydrolysates of the common bean (Phaseolus vulgaris L.) varieties Negro 8025 and Pinto Durango and determine their effect on the markers of inflammation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Cell viability was determined and the percentage of viable cells was calculated and concentrations that allowed >80% cell viability were used to determine the markers of inflammation. Alcalase hydrolysates and pepsin-pancreatin hydrolysates showed the highest antioxidant capacity after 80 and 120min of hydrolysis, respectively. Alcalase hydrolysates of the common bean Pinto Durango at 120min inhibited inflammation, with IC50 values of 34.9±0.3, 13.9±0.3, 5.0±0.1 and 3.7±0.2μM, while var. Negro needed 43.6±0.2, 61.3±0.3, 14.2±0.3 and 48.2±0.1μM for the inhibition of cyclooxygenase-2 expression, prostaglandin E2 production, inducible nitric oxide synthase expression and nitric oxide production, respectively. Also, hydrolysates significantly inhibited the transactivation of NF-κB and the nuclear translocation of the NF-κB p65 subunit. In conclusion, hydrolysates from the common bean can be used to combat inflammatory and oxidative-associated diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cyclooxygenase inhibitory natural products: current status.
Jachak, Sanjay M
2006-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are of huge therapeutic benefit in the treatment of rheumatoid arthritis and various types of inflammatory conditions. The target for these drugs is cyclooxygenase (COX), a rate-limiting enzyme involved in the conversion of arachidonic acid into inflammatory prostaglandins. COX-2 selective inhibitors are believed to have the same anti-inflammatory, anti-pyretic and analgesic activities as that of nonselective inhibitor NSAIDs with little or none of the gastrointestinal side effects. Thus, in the last 6-7 years several selective COX-2 inhibitors including coxibs were discovered and introduced into clinic. Recent reports evidence that selective COX-2 inhibitor such as rofecoxib, can lead to thrombotic cardiovascular events through inhibition of prostacyclin formation in the infracted heart. This has resulted in withdrawal of rofecoxib from the clinic in September 2004. Moreover, the COX-2/COX-1 selectivity ratio is vital in the design of COX-2 inhibitory drugs, as it is clear from rofecoxib, which is more than 50-fold COX-2 selective. After looking at all above mentioned facts, natural product-based compounds seem better as these compounds are generally supposed to be devoid of severe side effects. The literature indicates that natural product-based compounds are mainly COX-1 selective. Through minor semi-synthetic changes in the structures, their selectivity towards COX-2 can be increased. The present review article addresses natural product COX inhibitors of plant and marine origin, reported during last ten years and their advantages, possible leads for further development and current status. In addition we describe our experience in the characterization, design and synthesis of potential natural COX inhibitors.
Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon
2012-01-01
Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE2. The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE2 pathways. PMID:22787488
Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda
2016-02-01
Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.
The probiotic mixture IRT5 ameliorates age-dependent colitis in rats.
Jeong, Jin-Ju; Woo, Jae-Yeon; Ahn, Young-Tae; Shim, Jae-Hun; Huh, Chul-Sung; Im, Sin-Heog; Han, Myung Joo; Kim, Dong-Hyun
2015-06-01
To investigate the anti-inflammatory effect of probiotics, we orally administered IRT5 (1×10(9)CFU/rat) for 8 weeks to aged (16 months-old) Fischer 344 rats, and measured parameters of colitis. The expression levels of the inflammatory markers' inducible NO synthase (iNOS), cyclooxygenase-2 (COX2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were higher in the colons of normal aged rats (18 months-old) than in the colons of normal young rats (6 months-old). Treatment with IRT5 suppressed the age-associated increased expression of iNOS, COX2, TNF-α, and IL-1β, and activation of NF-κB and mitogen-activated protein kinases. In a similar manner, the expression of tight junction proteins in the colon of normal aged rats was suppressed more potently than in normal young rats, and treatment of aged rats with IRT5 decreased the age-dependent suppression of tight junction proteins ZO-1, occludin, and claudin-1. Treatment with IRT5 suppressed age-associated increases in expressions of senescence markers p16 and p53 in the colon of aged rats, but increased age-suppressed expression of SIRT1. However, treatment with IRT5 inhibited age-associated increased myeloperoxidase activity in the colon. In addition, treatment with IRT5 lowered the levels of LPS in intestinal fluid and blood of aged rats, as well as the reduced concentrations of reactive oxygen species, malondialdehyde, and C-reactive protein in the blood. These findings suggest that IRT5 treatment may suppress age-dependent colitis by inhibiting gut microbiota LPS production. Copyright © 2015 Elsevier B.V. All rights reserved.
Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes.
Chen, Wei-Ping; Wu, Li-Dong
2014-01-01
We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA.
Lin, Lianjie; Sun, Yan; Wang, Dongxu; Zheng, Shihang; Zhang, Jing; Zheng, Changqing
2016-01-01
Celastrol, also named as tripterine, is a pharmacologically active ingredient extracted from the root of traditional Chinese herb Tripterygium wilfordii Hook F with potent anti-inflammatory and anti-tumor activities. In the present study, we investigated the effects of celastrol on ulcerative colitis-related colorectal cancer (UC-CRC) as well as CRC in vivo and in vitro and explored its underlying mechanisms. UC-CRC model was induced in C57BL/6 mice by administration of azoxymethane (AOM) and dextran sodium sulfate (DSS). Colonic tumor xenograft models were developed in BALB/c-nu mice by subcutaneous injection with HCT116 and HT-29 cells. Intragastric administration of celastrol (2 mg/kg/d) for 14 weeks significantly increased the survival ratio and reduced the multiplicity of colonic neoplasms compared with AOM/DSS model mice. Mechanically, celastrol treatment significantly prevented AOM/DSS-induced up-regulation of expression levels of oncologic markers including mutated p53 and phospho-p53, β-catenin and proliferating cell nuclear antigen (PCNA). In addition, treatment with celastrol inhibited inflammatory responses, as indicated by the decrease of serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, down-regulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), and inactivation of nuclear factor κB (NF-κB). Moreover, celastrol obviously suppressed epithelial-mesenchymal transition (EMT) through up-regulating E-cadherin and down-regulating N-cadherin, Vimentin and Snail. Additionally, we also demonstrated that celastrol inhibited human CRC cell proliferation and attenuated colonic xenograft tumor growth via reversing EMT. Taken together, celastrol could effectively ameliorate UC-CRC by suppressing inflammatory responses and EMT, suggesting a potential drug candidate for UC-CRC therapy. PMID:26793111
Martinez, Stephanie E.; Chen, Yufei; Ho, Emmanuel A.; Martinez, Steven A.; Davies, Neal M.
2015-01-01
Multicomponent nutraceuticals are becoming increasingly popular treatments or adjunctive therapies for osteoarthritis in veterinary medicine despite lack of evidence of efficacy for many products. The objective of this study was to evaluate the anti-inflammatory and antioxidant activities of a commercially available C-phycocyanin-based nutraceutical and select constituent ingredients in an in-vitro model of canine osteoarthritis. Normal canine articular chondrocytes were used in an in-vitro model of osteoarthritis. Inflammatory conditions were induced using interleukin-1β. The nutraceutical preparation as a whole, its individual constituents, as well as carprofen were evaluated at concentrations of 0 to 250 μg/mL for reduction of the following inflammatory mediators and indicators of catabolism of the extracellular matrix: prostaglandin E2 (PGE2), tumor necrosis factor-α (TFN-α), interleukin-6 (IL-6), metalloproteinase-3 (MMP-3), nitric oxide, and sulfated glycosaminoglycans (sGAGs). Validated, commercially available assay kits were used for quantitation of inflammatory mediators. The antioxidant capacities, as well as cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and lipoxygenase (LOX) inhibitory activities of the whole nutraceutical preparation and select constituents, were also assessed using validated commercially available assay kits. The antioxidant capacity of the nutraceutical and constituents was concentration-dependent. The nutraceutical and constituents appear to display anti-inflammatory activity primarily through the inhibition of COX-2. The nutraceutical displayed similar strength to carprofen in reducing TNF-α, IL-6, MMP-3, nitric oxide, and sGAGs at select concentration ranges. The C-phycocyanin (CPC)-based nutraceutical and constituents may be able to mediate 3 primary pathogenic mechanisms of osteoarthritis: inflammation, chondral degeneration, and oxidative stress in vitro. The nutraceutical may be clinically useful in veterinary medicine and its efficacy should be further investigated in vivo. PMID:26130858
Son, Dong Ju; Akiba, Satoshi; Hong, Jin Tae; Yun, Yeo Pyo; Hwang, Seock Yeon; Park, Young Hyun; Lee, Sung Eun
2014-01-01
PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms. PMID:25153972
Multiple Activities of Punica granatum Linne against Acne Vulgaris
Lee, Chia-Jung; Chen, Lih-Geeng; Liang, Wen-Li; Wang, Ching-Chiung
2017-01-01
Acne is a common skin condition with sebum overproduction, hyperkeratosis, Propionibacterium acnes (P. acnes) and Staphylococcus aureus, and inflammation. Punica granatum (pomegranate) is well-known for its anti-inflammatory effects; however, few studies have discussed the anti-acne effects of pomegranate. In this study, we found that pomegranate extract (PG-E) significantly reduced P. acnes-induced edema in Wistar rat ears. Therefore, an evaluation platform using multiple pathogenic mechanisms of acne was established to explore the anti-acne effects of pomegranate. Results showed that PG-E inhibited bacterial growth and lipase activity. Through a bioguided-fractionation-isolation system, four hydrolysable tannins, punicalagin (1), punicalin (2), strictinin A (3), and granatin B (4), were isolated. Compounds 1 and 2 had greater anti-bacterial activities and anti-testosterone-induced HaCaT proliferative effects than the others. Compounds 1, 3, and 4 displayed lipase inhibitory effects. Compound 4 decreased cyclooxygenase-2 expression and downregulated prostaglandin E2 production in heat-killed P. acnes-treated RAW 246.7 cells. In conclusion, PG-E is abundant in hydrolysable tannins that display multiple anti-acne capacities, including anti-bacterial, anti-lipase, anti-keratinocyte proliferation, and anti-inflammatory actions. Hence, PG-E has great potential in the application of anti-acne and skin-care products, and punicalagin (1), the most effective component in PG-E, can be employed as a quality control marker. PMID:28085116
Zhou, Huiping; Lutterodt, Herman; Cheng, Zhihong; Yu, Liangli (Lucy)
2009-01-01
Trifolirhizin, a pterocarpan flavonoid, was isolated from the roots of Sophora flavescens, and its chemical structure was confirmed by1H and 13C NMR and MS spectra. Its anti-inflammatory activity was examined in lipopolysaccharide (LPS)-stimulated mouse J774A.1 macrophages. Trifolirhizin not only dose-dependently inhibited LPS-induced expression of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but also inhibited lipopolysaccharide (LPS)-induced expression of cyclooxygenase-2 (COX-2). In addition, trifolirhizin showed in vitro inhibitory effects on the growth of human A2780 ovarian and H23 lung cancer cells. These results suggest that trifolirhizin possesses potential anti-inflammatory and anti-cancer activities. PMID:19402641
Murakami, Yukio; Kawata, Akifumi; Koh, Teho; Seki, Yuya; Tamura, Seiko; Katayama, Tadashi; Fujisawa, Seiichiro
2013-01-01
Tocopherols, which include α-, β-, γ-, and δ-tocopherol, protect cells against harmful free radicals and play an important role in preventing many human diseases such as cancer, inflammatory disorders, and ageing itself. However, the causal relationships between periodontal or oral chronic diseases and tocopherols have not been sufficiently studied. The present study investigated the inhibitory effects of these compounds on the expression of cyclooxygenase-2 (COX2) mRNA in RAW264.7 cells stimulated with lipopolysaccharide (LPS), tumor necrosis factor-α (TNFα) or fimbriae of Poryphyromonas gingivalis (Pg), an oral anaerobe. The cytotoxicity (EC₅₀) of tocopherols toward RAW cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX2 mRNA stimulated with LPS, TNFα or Pg fimbriae was investigated using real-time polymerase chain reaction (PCR). Each tocopherol had similarly low cytotoxicity. COX2 gene expression in RAW cells after exposure to the three different macrophage activators was inhibited by the tocopherols (p<0.01). Compared to α-tocopherol, β-, γ- and δ-tocopherol exhibited greater inhibitory effects (p<0.05). Tocopherols exhibit anti-inflammatory activity, and β-, γ- and δ-tocopherol have particularly more potent anti-inflammatory activity than α-tocopherol. Tocopherols may have potential utility for prevention of periodontal and chronic oral diseases.
Rehman, Muneeb U; Tahir, Mir; Khan, Abdul Quaiyoom; Khan, Rehan; Oday-O-Hamiza; Lateef, Abdul; Hassan, Syed Kazim; Rashid, Sumaya; Ali, Nemat; Zeeshan, Mirza; Sultana, Sarwat
2014-04-01
D-limonene is a naturally occurring monoterpene and has been found to posses numerous therapeutic properties. In this study, we used D-limonene as a protective agent against the nephrotoxic effects of anticancer drug doxorubicin (Dox). Rats were given D-limonene at doses of 5% and 10% mixed with diet for 20 consecutive days. Dox was give at the dose of 20 mg/kg body weight intraperitoneally. The protective effects of D-limonene on Dox-induced oxidative stress and inflammation were investigated by assaying oxidative stress biomarkers, lipid peroxidation, serum toxicity markers, proinflammatory cytokines, and expression of nuclear factor kappa B (NFκB), cyclo-oxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) and Nitrite levels. Administration of Dox (20 mg/kg body weight) in rats enhanced renal lipid peroxidation; depleted glutathione content and anti-oxidant enzymes; elevated levels of kidney toxicity markers viz. kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine; enhanced expression of NFκB, COX-2, and iNOS and nitric oxide. Treatment with D-limonene prevented oxidative stress by restoring the levels of antioxidant enzymes, further both doses of 5% and 10% showed significant decrease in inflammatory response. Both the doses of D-limonene significantly decreased the levels of kidney toxicity markers KIM-1, BUN, and creatinine. D-limonene also effectively decreased the Dox induced overexpression of NF-κB, COX-2, and iNOS and nitric oxide. Data from the present study indicate the protective role of D-limonene against Dox-induced renal damage.
Nicolaou, Anna; Estdale, Sian E; Tsatmali, Marina; Herrero, Daniel Pascual; Thody, Anthony J
2004-07-16
Prostaglandins are potent mediators of the inflammatory response and are also involved in cancer development. In this study, we show that human melanocytes and FM55 melanoma cells express cyclooxygenase-1 and -2 (COX-1 and -2) and thus have the capability to produce prostaglandins. The FM55 cells produced predominantly PGE2 and PGF2alpha, whereas the HaCaT keratinocyte cell line produced mainly PGE2. The anti-inflammatory peptide, alpha-melanocyte stimulating hormone (alpha-MSH), reduced prostaglandin production in FM55 and HaCaT cells and reversed the effect of the pro-inflammatory cytokine TNF-alpha in the former. These results indicate that melanocytes produce prostaglandins and that alpha-MSH, by inhibiting this response, may play an important role in regulating inflammatory responses in the skin.
Cyclooxygenase and lipoxygenase gene expression in the inflammogenesis of breast cancer.
Kennedy, Brian M; Harris, Randall E
2018-05-07
We examined the expression of major inflammatory genes, cyclooxygenase-1 and 2 (COX1, COX2) and arachidonate 5-lipoxygenase (ALOX5) in 1090 tumor samples of invasive breast cancer from The Cancer Genome Atlas (TCGA). Mean cyclooxygenase expression (COX1 + COX2) ranked in the upper 99th percentile of all 20,531 genes and surprisingly, the mean expression of COX1 was more than tenfold higher than COX2. Highly significant correlations were observed between COX2 with eight tumor-promoting genes (EGR2, IL6, RGS2, B3GNT5, SGK1, SLC2A3, SFRP1 and ETS2) and between ALOX5 and ten tumor promoter genes (CD33, MYOF1, NLRP1, GAB3, CD4, IFR8, CYTH4, BTK, FGR, CD37). Expression of CYP19A1 (aromatase) was significantly correlated with COX2, but only in tumors positive for ER, PR and HER2. Tumor-promoting genes correlated with the expression of COX1, COX2, and ALOX5 are known to effectively increase mitogenesis, mutagenesis, angiogenesis, cell survival, immunosuppression and metastasis in the pathogenesis of breast cancer.
Kawata, Jyunichi; Kameda, Munekazu; Miyazawa, Mitsuo
2008-04-01
The composition of the volatile oil from Lithospermi Radix, the dried roots of Lithospermum erythrorhizon (Boraginaceae), has been investigated by capillary GC and GC-MS. To investigate the anti-inflammatory activity of the oil, in-vitro inhibition of ovine cyclooxygenase-1 and 2 (COX-1 and COX-2) activity by the oil was studied. Fifty-four components of the oil were identified, representing 92.74% of the oil. The main components were 2-methylbutanoic acid (21.50%), 3-methylbutanoic acid (12.61%), 2-methylpropanoic acid (8.99%), methyl linoleate (8.76%), methyl oleate (6.27%), methyl palmitate (6.06%), and 2-methyl-2-butenoic acid (5.74%). Highly selective COX-2 inhibition was observed; at 50 microg/ml the oil inhibited 38.8% of COX-2 activity.
Adewoyin, Malik; Mohsin, Sumaiyah Megat Nabil; Arulselvan, Palanisamy; Hussein, Mohd Zobir; Fakurazi, Sharida
2015-01-01
Background Cinnamic acid (CA) is a phytochemical originally derived from Cinnamomum cassia, a plant with numerous pharmacological properties. The intercalation of CA with a nanocarrier, zinc layered hydroxide, produces cinnamate-zinc layered hydroxide (ZCA), which has been previously characterized. Intercalation is expected to improve the solubility and cell specificity of CA. The nanocarrier will also protect CA from degradation and sustain its release. The aim of this study was to assess the effect of intercalation on the anti-inflammatory capacity of CA. Methods In this study, the anti-inflammatory activity of ZCA was investigated and compared with that of nonintercalated CA. Evaluations were based on the capacity of ZCA and CA to modulate the release of nitric oxide, prostaglandin E2, interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), IL-1β, and IL-10 in lipopolysaccharide-induced RAW 264.7 cells. Additionally, the expression of proinflammatory enzymes, ie, cyclooxygenase-2, inducible nitric oxide synthase, and nuclear factor kappa B (NF-κB), were examined. Results Although both ZCA and CA downregulated nitric oxide, prostaglandin E2, tumor necrosis factor alpha, IL-1β, and IL-6, ZCA clearly displayed better activity. Similarly, expression of cyclooxygenase-2 and inducible nitric oxide synthase were inhibited in samples treated with ZCA and CA. The two compounds effectively inactivated the transcription factor NF-κB, but the anti-inflammatory cytokine, IL-10, was significantly upregulated by ZCA only. Conclusion The present findings suggest that ZCA possesses better anti-inflammatory potential than CA, while zinc layered hydroxide had little or no effect, and these results were comparable with the positive control. PMID:25995619
Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale)
van Breemen, Richard B.; Tao, Yi; Li, Wenkui
2010-01-01
Ginger roots have been used to treat inflammation and have been reported to inhibit cyclooxygenase (COX). Ultrafiltration liquid chromatography mass spectrometry was used to screen a chloroform partition of a methanol extract of ginger roots for COX-2 ligands, and 10-gingerol, 12-gingerol, 8-shogaol, 10-shogaol, 6-gingerdione, 8-gingerdione, 10-gingerdione, 6-dehydro-10-gingerol, 6-paradol, and 8-paradol bound to the enzyme active site. Purified 10-gingerol, 8-shogaol and 10-shogaol inhibited COX-2 with IC50 values of 32 μM, 17.5 μM and 7.5 μM, respectively. No inhibition of COX-1 was detected. Therefore, 10-gingerol, 8-shogaol and 10-shogaol inhibit COX-2 but not COX-1, which can explain, in part, anti-inflammatory properties of ginger. PMID:20837112
Zha, Longying; Chen, Jiading; Sun, Suxia; Mao, Limei; Chu, Xinwei; Deng, Hong; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong
2014-01-01
We and others have recently shown that soyasaponins abundant in soybeans can decrease inflammation by suppressing the nuclear factor kappa B (NF-kB)-mediated inflammation. However, the exact molecular mechanisms by which soyasaponins inhibit the NF-kB pathway have not been established. In this study in macrophages, soyasaponins (A1, A2 and I) inhibited the lipopolysaccharide (LPS)-induced release of inflammatory marker prostaglandin E2 (PGE2) to a similar extent as the NF-kB inhibitor (BAY117082). Soyasaponins (A1, A2 and I) also suppressed the LPS-induced expression of cyclooxygenase 2 (COX-2), another inflammatory marker, in a dose-dependent manner by inhibiting NF-kB activation. In defining the associated mechanisms, we found that soyasaponins (A1, A2 and I) blunted the LPS-induced IKKα/β phosphorylation, IkB phosphorylation and degradation, and NF-kB p65 phosphorylation and nuclear translocation. In studying the upstream targets of soyasaponins on the NF-kB pathway, we found that soyasaponins (A1, A2 and I) suppressed the LPS-induced activation of PI3K/Akt similarly as the PI3K inhibitor LY294002, which alone blocked the LPS-induced activation of NF-kB. Additionally, soyasaponins (A1, A2 and I) reduced the LPS-induced production of reactive oxygen species (ROS) to the same extent as the anti-oxidant N-acetyl-L-cysteine, which alone inhibited the LPS-induced phosphorylation of Akt, IKKα/β, IkBα, and p65, transactivity of NF-kB, PGE2 production, and malondialdehyde production. Finally, our results show that soyasaponins (A1, A2 and I) elevated SOD activity and the GSH/GSSG ratio. Together, these results show that soyasaponins (A1, A2 and I) can blunt inflammation by inhibiting the ROS-mediated activation of the PI3K/Akt/NF-kB pathway. PMID:25233217
Xu, Wei; Hong, Seok Jong; Zeitchek, Michael; Cooper, Garry; Jia, Shengxian; Xie, Ping; Qureshi, Hannan A; Zhong, Aimei; Porterfield, Marshall D; Galiano, Robert D; Surmeier, D James; Mustoe, Thomas A
2015-03-01
Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.
Dussossoy, E; Brat, P; Bony, E; Boudard, F; Poucheret, P; Mertz, C; Giaimis, J; Michel, A
2011-01-07
Noni fruit (Morinda citrifolia L.) juice has been used for more than 2000 years in Polynesia as a traditional folk medicine. The aim of the present study was to finely characterize noni juice from Costa Rica and to evaluate its anti-oxidative and anti-inflammatory activities. A microfiltrated noni juice was prepared with Costarican nonis. HPLC-DAD and Electro Spray Ionization Mass Spectrometric detection (HPLC-ESI-MS) were used to identify phenolic compounds and iridoids. The anti-oxidative activity of noni juice was measured in vitro by both Oxygen Radical Absorbance Capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging methods. The anti-inflammatory effects of noni juice were investigated in vitro by: measuring its effect on nitric oxide and prostaglandin E2 production by activated macrophages, evaluating its inhibitory activities on cyclooxygenase (COX)-1 and -2 and in vivo on a carrageenan-induced paw oedema model in rats. Several polyphenols belonging to the coumarin, flavonoid and phenolic acid groups, and two iridoids were identified. Noni juice demonstrated a mean range free radical scavenging capacity. Furthermore, it also reduced carrageenan-induced paw oedema, directly inhibited cyclooxygenase COX-1 and COX-2 activities and inhibited the production of nitric oxide (NO) and prostaglandins E(2) (PGE(2)) in activated J774 cells, in a dose dependent manner. This study showed that noni's biological effects include: (1) anti-oxidant properties probably associated with phenolic compounds, iridoids and ascorbic acid and (2) anti-inflammatory action through NO and PGE(2) pathways that might also be strengthened by anti-oxidant effects. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Multiple Activities of Punica granatum Linne against Acne Vulgaris.
Lee, Chia-Jung; Chen, Lih-Geeng; Liang, Wen-Li; Wang, Ching-Chiung
2017-01-12
Acne is a common skin condition with sebum overproduction, hyperkeratosis, Propionibacterium acnes ( P . acnes ) and Staphylococcus aureus , and inflammation. Punica granatum (pomegranate) is well-known for its anti-inflammatory effects; however, few studies have discussed the anti-acne effects of pomegranate. In this study, we found that pomegranate extract (PG-E) significantly reduced P . acnes -induced edema in Wistar rat ears. Therefore, an evaluation platform using multiple pathogenic mechanisms of acne was established to explore the anti-acne effects of pomegranate. Results showed that PG-E inhibited bacterial growth and lipase activity. Through a bioguided-fractionation-isolation system, four hydrolysable tannins, punicalagin ( 1 ), punicalin ( 2 ), strictinin A ( 3 ), and granatin B ( 4 ), were isolated. Compounds 1 and 2 had greater anti-bacterial activities and anti-testosterone-induced HaCaT proliferative effects than the others. Compounds 1 , 3 , and 4 displayed lipase inhibitory effects. Compound 4 decreased cyclooxygenase-2 expression and downregulated prostaglandin E₂ production in heat-killed P . acnes -treated RAW 246.7 cells. In conclusion, PG-E is abundant in hydrolysable tannins that display multiple anti-acne capacities, including anti-bacterial, anti-lipase, anti-keratinocyte proliferation, and anti-inflammatory actions. Hence, PG-E has great potential in the application of anti-acne and skin-care products, and punicalagin ( 1 ), the most effective component in PG-E, can be employed as a quality control marker.
Chen, Jingkao; Sun, Zhaowei; Jin, Minghua; Tu, Yalin; Wang, Shengnan; Yang, Xiaohong; Chen, Qiuhe; Zhang, Xiao; Han, Yifan; Pi, Rongbiao
2017-04-15
The microglia-mediated neuroinflammation plays an important role in the pathogenesis of Alzheimer's disease (AD). Advanced glycation end products (AGEs)/receptor for advanced glycation end products (RAGE) or Rho/Rho kinase (ROCK) are both involved in the development of non-specific inflammation. However, there are few reports about their effects on neuroinflammation. Here, we explored the mechanism of AGEs/RAGE/Rho/ROCK pathway underlying the non-specific inflammation and microglial polarization in BV2 cells. AGEs could activate ROCK pathway in a concentration-dependent manner. ROCK inhibitor fasudil and RAGE-specific blocker FPS-ZM1 significantly inhibited AGEs-mediated activation of BV2 cells and induction of reactive oxygen species (ROS). FPS-ZM1 and fasudil exerted their anti-inflammatory effects by downregulating inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NLRP3 and nuclear translocation of nuclear factor kappa B (NF-κB) p65. In addition, AGEs induced both M1 (CD16/32, M1 marker) and M2 (CD206, M2 marker) phenotype in BV2 cells. Fasudil and FPS-ZM1 led to a decreased M1 and increased M2 phenotype. Together, these results indicate that the AGEs/RAGE/Rho/ROCK pathway in BV2 cells could intensify the non-specific inflammation of AD, which will provide novel strategies for the development of anti-AD drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Ramkumar, Muthu; Rajasankar, Srinivasagam; Gobi, Veerapan Venkatesh; Janakiraman, Udaiyappan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin; Essa, Musthafa Mohamed; Chidambaram, Ranganathan; Chidambaram, Saravana Babu; Guillemin, Giles J.
2018-01-01
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder (NDD) associated with the loss of dopaminergic neurons in the substantia nigra and subsequently has an effect on motor function and coordination. The pathology of PD is multifactorial, in which neuroinflammation and oxidative damage are the two of the main protagonists. Objectives: The present study aims to assess the potential antioxidant and anti-inflammatory effects of demethoxycurcumin (DMC), a natural derivative of curcumin, against rotenone-induced PD in rats. Materials and Methods: Rats were randomized and divided into six groups: control, rotenone (0.5 mg/kg/day, intraperitoneal in sunflower oil) treated for 7 days, rotenone and DMC (5, 10, and 20 mg/kg b.w) cotreated, and DMC (20 mg/kg b.w) alone treated groups. Results: Based on the dopamine concentration and biochemical estimations, the effective dose of DMC was selected and the chronic study was performed. At the end of the experimental period, behavioral studies and protein expression patterns of inflammatory markers were analyzed. Rotenone treatment led to motor dysfunctions, neurochemical deficits, and oxidative stress and enhanced expressions of inflammatory markers, whereas oral administration of DMC attenuated all the above. Conclusion: Even though further research is needed to prove its efficacy in clinical trial, the results of our study showed that DMC may offer a promising and new therapeutic lead for the treatment of NDDs including PD. SUMMARY Curcumin and their derivatives have been shown to be potent neuroprotective effectDemethoxycurcumin (DMC) amolerated the rotenone induced behavioural alterationsDMC abrogated the rotenone induced dopamine deficitsDMC attenuated the rotenone induced oxidative stressDMC diminished the rotenone mediated inflammation. Abbreviations used: COX-2: Cyclooxygenase-2; DA: Dopamine; DMC: Demethoxycurcumin; DMRT: Duncan's multiple range test; GSH: Reduced glutathione; GPx: Glutathione peroxidase; IL-1 β: Interleukin-1 β; IL-6: Interleukin-6; iNOS: Inducible nitric oxide synthase; PD: Parkinson's disease; SN: Substantia nigra; SOD: Superoxide dismutase; TBARS: Thiobarbituric acid reactive substances; TNF-α: Tumor necrosis factor-α. PMID:29576695
Balakumar, C; Lamba, P; Kishore, D Pran; Narayana, B Lakshmi; Rao, K Venkat; Rajwinder, K; Rao, A Raghuram; Shireesha, B; Narsaiah, B
2010-11-01
A series of novel 8/10-trifluoromethyl-substituted-imidazo[1,2-c] quinazolines have been synthesized and evaluated in vivo (rat paw edema) for their anti-inflammatory activity and in silico (docking studies) to recognize the hypothetical binding motif of the title compounds with the cyclooxygenase isoenzymes (COX-1 and COX-2) employing GOLD (CCDC, 4.0.1 version) software. The compounds, 9b and 10b, were found to have good anti-inflammatory activity [around 80% of the standard: indomethacin]. The binding mode of the title compounds has been proposed based on the docking studies. Crown Copyright © 2010. Published by Elsevier Masson SAS. All rights reserved.
Sasaki, Yuka; Kamiyama, Shuhei; Kamiyama, Azusa; Matsumoto, Konomi; Akatsu, Moe; Nakatani, Yoshihito; Kuwata, Hiroshi; Ishikawa, Yukio; Ishii, Toshiharu; Yokoyama, Chieko; Hara, Shuntaro
2015-11-27
Prostacyclin synthase (PGIS) and microsomal prostaglandin E synthase-1 (mPGES-1) are prostaglandin (PG) terminal synthases that function downstream of inducible cyclooxygenase (COX)-2 in the PGI2 and PGE2 biosynthetic pathways, respectively. mPGES-1 has been shown to be involved in various COX-2-related diseases such as inflammatory diseases and cancers, but it is not yet known how PGIS is involved in these COX-2-related diseases. Here, to clarify the pathophysiological role of PGIS, we investigated the phenotypes of PGIS and mPGES-1 individual knockout (KO) or double KO (DKO) mice. The results indicate that a thioglycollate-induced exudation of leukocytes into the peritoneal cavity was suppressed by the genetic-deletion of PGIS. In the PGIS KO mice, lipopolysaccharide-primed pain nociception (as assessed by the acetic acid-induced writhing reaction) was also reduced. Both of these reactions were suppressed more effectively in the PGIS/mPGES-1 DKO mice than in the PGIS KO mice. On the other hand, unlike mPGES-1 deficiency (which suppressed azoxymethane-induced colon carcinogenesis), PGIS deficiency up-regulated both aberrant crypt foci formation at the early stage of carcinogenesis and polyp formation at the late stage. These results indicate that PGIS and mPGES-1 cooperatively exacerbate inflammatory reactions but have opposing effects on carcinogenesis, and that PGIS-derived PGI2 has anti-carcinogenic effects.
Malcher-Lopes, Renato; Franco, Alier; Tasker, Jeffrey G.
2008-01-01
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-derived endocannabinoid biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX2) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response. PMID:18295199
Mor, Adam; Aizman, Elizabeta; Kloog, Yoel
2012-10-01
Celecoxib (Celebrex(®)), a non-steroidal anti-inflammatory drug and selective cyclooxygenase-2 inhibitor, is widely used to treat arthritis and other inflammatory disorders. Awareness of its anti-proliferative properties has prompted another indication for its use, in preventing colon polyps in high-risk populations. Farnesylthiosalicylic acid (FTS; Salirasib(®)), designed to inhibit oncogenic Ras and currently under evaluation in phase I/II and II clinical trials, was recently shown by our group to exert anti-inflammatory effects on both lymphocytes and mast cells. Here we examined whether celecoxib combined with FTS would enhance this anti-inflammatory activity. While each drug separately inhibited Ras activation in these cells, their combination yielded more marked inhibition as well as further inhibition of ERK phosphorylation, lymphocyte adhesion, and interleukin-2 secretion. The inhibitory effects, moreover, were independent of prostaglandin E(2) secretion. These data point to the promising potential of combined treatment with celecoxib and FTS for inflammatory disorders involving lymphocytes.
Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract
2015-01-01
The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633
Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.
Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro
2013-01-01
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.
Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.
2013-01-01
Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152
Bellaver, Bruna; Souza, Débora Guerini; Souza, Diogo Onofre; Quincozes-Santos, André
2017-05-01
Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process. Here, we show that the p21 senescence-associated gene and classical astrocyte markers, such as glial fibrillary acidic protein (GFAP), vimentin, and actin, changed their expressions in adult and aged astrocytes. Age-dependent changes were also observed in glutamate transporters (glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1)) and glutamine synthetase immunolabeling and activity. Additionally, according to in vivo aging, astrocytes from adult and aged rats showed an increase in oxidative/nitrosative stress with mitochondrial dysfunction, an increase in RNA oxidation, NADPH oxidase (NOX) activity, superoxide levels, and inducible nitric oxide synthase (iNOS) expression levels. Changes in antioxidant defenses were also observed. Hippocampal astrocytes also displayed age-dependent inflammatory response with augmentation of proinflammatory cytokine levels, such as TNF-α, IL-1β, IL-6, IL-18, and messenger RNA (mRNA) levels of cyclo-oxygenase 2 (COX-2). Furthermore, these cells secrete neurotrophic factors, including glia-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), S100 calcium-binding protein B (S100B) protein, and transforming growth factor-β (TGF-β), which changed in an age-dependent manner. Classical signaling pathways associated with aging, such as nuclear factor erythroid-derived 2-like 2 (Nrf2), nuclear factor kappa B (NFκB), heme oxygenase-1 (HO-1), and p38 mitogen-activated protein kinase (MAPK), were also changed in adult and aged astrocytes and are probably related to the changes observed in senescence marker, glutamatergic metabolism, mitochondrial dysfunction, oxidative/nitrosative stress, antioxidant defenses, inflammatory response, and trophic factors release. Together, our results reinforce the role of hippocampal astrocytes as a target for understanding the mechanisms involved in aging and provide an innovative tool for studies of astrocyte roles in physiological and pathological aging brain.
Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M
2015-08-01
Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L
2017-05-01
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.
Protein markers of malignant potential in penile and vulvar lichen sclerosus.
Carlson, Bayard C; Hofer, Matthias D; Ballek, Nathaniel; Yang, Ximing J; Meeks, Joshua J; Gonzalez, Chris M
2013-08-01
Lichen sclerosus is an inflammatory skin disorder affecting anogenital areas in males and females that is associated with squamous cell carcinoma. However, there is a lack of data on the role of biomarkers for predicting lichen sclerosus progression to squamous cell carcinoma. We focused on early protein markers of squamous cell carcinoma and their expression in lichen sclerosus to improve the mechanistic and diagnostic understanding of lichen sclerosus. We performed an extensive PubMed® and MEDLINE® search for protein markers found in early stages of vulvar and penile squamous cell carcinoma, and their prevalence in associated lichen sclerosus lesions. In recent years several markers have been implicated as precursor markers for malignant transformation of lichen sclerosus into squamous cell carcinoma, including p53, Ki-67, γ-H2AX, MCM3 and cyclin D1. These proteins are up-regulated in lichen sclerosus of the vulva/penis and squamous cell carcinoma. Various levels of evidence show an association between lichen sclerosus and squamous cell carcinoma. p16 is over expressed in penile and vulvar squamous cell carcinoma associated with human papillomavirus infection but conflicting reports exist about its expression in lichen sclerosus. The angiogenesis markers vascular endothelial growth factor and cyclooxygenase-2 are expressed at higher levels, and microvessel density is increased in vulvar lichen sclerosus and squamous cell carcinoma, indicating a possible similar association in penile lichen sclerosus. Only a minority of lichen sclerosus cases are associated with squamous cell carcinoma. However, the therapeutic implications of a squamous cell carcinoma diagnosis are severe. Clinically, we lack an understanding of how to separate indolent lichen sclerosus cases from those in danger of progression to squamous cell carcinoma. Several protein markers show promise for further delineating the pathobiology of lichen sclerosus and the potential malignant transformation into squamous cell carcinoma. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Huang, Hsin-Lun; Liu, Cheng-Tzu; Chou, Ming-Chih; Ko, Chien-Hui; Wang, Chin-Kun
2015-06-01
Intestinal microflora and inflammation are associated with the risk of inflammatory bowel diseases. Noni (Morinda citrifolia L.) has various bioactivities, but its effect on colon health remains unknown. This study focused on the effects of fermented noni fruit extracts on colon microflora and inflammation of colon epithelial cells. The anti-inflammatory activities of ethanol and ethyl acetate extracts on Caco-2 cells were evaluated including interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2). The growth of Lactobacillus and Bifidobacterium species was promoted by ethanol extract. Ethyl acetate extract decreased intracellular reactive oxygen species and significantly suppressed COX-2, IL-8, and prostaglandin E2 production and neutrophil chemotaxis by suppressing the translocation of the p65 subunit. Quercetin was the main contributor to the anti-inflammatory activity. The fermented noni fruit promoted probiotic growths and downregulated the intracellular oxidation and inflammation in Caco-2 cells. These results suggest that fermented noni fruit might protect against inflammatory diseases of the colon.
Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes
Chen, Wei-Ping; Wu, Li-Dong
2014-01-01
We investigated the anti-inflammatory properties of chlorogenic acid (CGA) in interleukin-1β-induced chondrocytes. The nitric oxide (NO) and prostaglandin E2 (PGE2) were detected by Griess and Enzyme-linked immunosorbent assay (ELISA) respectively. Quantitative real-time PCR and western blot were performed to measure the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2. Our results indicate that CGA inhibited the production of NO and PGE2 as well as the expression of iNOS and COX-2 in chondrocytes. Our data suggest that CGA possess potential value in the treatment of OA. PMID:25674248
El-Hawash, Soad A M; Soliman, Raafat; Youssef, Amal M; Ragab, Hanan M A; Elzahhar, Perihan A S; El-Ashmawey, Ibrahim M; Abdel Wahab, Abeer E; Shaat, Iman A
2014-05-01
A series of substituted pyridinylpyrazole (or isoxazole) derivatives were synthesized and evaluated for their anti-inflammatory (AI) activity using formalin-induced paw edema bioassays. Their inhibitory activities of cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2) were also determined. The analgesic activity of the same compounds was evaluated using rat-tail withdrawal technique. Their antipyretic activity was also evaluated. The results revealed that compounds 4a,b, 6a, 8a, 14c and 15a exhibited significant AI and analgesic activities. Compounds 5a, 6a and 8a displayed good antipyretic activity. Compounds 14c and 15a showed good COX-2 inhibitory activity and weak inhibition of COX-1. Additionally, the most active compounds were shown to have a large safety margin (ALD50 >300-400 mg / Kg) and minimal ulcerogenic potentialities when administered orally at a dose of 300 mg/Kg. Docking studies for 14c and 15a with COX-2 showed good binding profile. Antimicrobial evaluation proved that most of the compounds exhibited distinctive activity against the gram negative bacteria, P. aeruginosa and E coli.
Puddey, I B; Beilin, L J; Vandongen, R; Banks, R; Rouse, I
1985-09-01
Attenuation of the effectiveness of antihypertensive therapy by non-steroidal anti-inflammatory (NSAI) drugs has been attributed to inhibition of systemic or renal vasodilator prostaglandin synthesis, or a combination of both. Indomethacin is a NSAI drug with both renal and extrarenal cyclo-oxygenase inhibition properties. Sulindac is a relatively selective cyclo-oxygenase inhibitor said not to affect urinary prostaglandin excretion. This study examines the relative effect on blood pressure of 4 weeks' treatment, with indomethacin 25 mg three times daily and sulindac 200 mg twice daily, in a randomized placebo controlled trial in 26 hypertensive subjects. In nine patients treated with indomethacin, supine blood pressure rose 11 mmHg systolic and 4 mmHg diastolic by the end of the first week, whereas nine subjects treated with sulindac showed a fall in blood pressure similar to the trend seen in placebo-treated subjects. Indomethacin treatment inhibited renal cyclo-oxygenase with a 78% reduction in urinary prostaglandin E2 excretion and 89% suppression of plasma renin activity. Neither measurement was affected by sulindac. Extrarenal cyclo-oxygenase activity was inhibited by both indomethacin and sulindac with serum thromboxane B2 decreasing by 96% and 69% respectively. The results suggest that the pressor effect of NSAI drugs is predominantly related to renal cyclo-oxygenase inhibition. the lack of effect of sulindac on blood pressure may make it a safer therapeutic option if NSAI drug therapy is necessary in the hypertensive patient.
Umar, Muhammad Ihtisham; Asmawi, Mohd Zaini; Sadikun, Amirin; Abdul Majid, A M S; Atangwho, Item Justin; Khadeer Ahamed, Mohamed B; Altaf, Rabia; Ahmad, Ashfaq
2014-11-01
Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures. To fractionate A. indica leaf extracts using bioactivity guided manner for identification of the active anti-inflammatory principles. Polarity-gradient sequential extracts (petroleum ether, chloroform, methanol, and water) of A. indica leaves were screened for their anti-inflammatory potential using the carrageenan-induced rat paw edema model (1 g/kg). The chloroform extract was sequentially fractionated to obtain n-hexane (F-1), n-hexane-chloroform (F-2), and chloroform (F-3) fractions and their inhibitory effect on rat paw edema was evaluated (500 mg/kg). Inhibitory effect of F-2 on granuloma formation, plasma interleukin (IL-1), and tumor necrosis factor (TNF-α) was assessed at the doses of 100, 200, and 400 mg/kg using the cotton pellet assay in rats. Three sub-fractions (SF-1, SF-2, and SF-3) were obtained upon chromatography of F-2, and their inhibitory effect on cyclooxygenase was assessed at 200 µg/mL concentration. The sub-fractions were subjected to gas chromatography-mass spectrometry (GC-MS). All the extracts showed significant anti-inflammatory effect; however, chloroform extract was the most effective against paw edema (53.25% inhibition). The three fractions of chloroform extract showed significant effect, while F-2 being the most potent (51.02%). F-2 demonstrated dose-dependent inhibition of granuloma and cytokines. Interestingly, all the sub-fractions of F-2 inhibited COX-1 and COX-2 with almost equal potential. GC-MS revealed that chemically the sub-fractions were totally different from each other. Anti-inflammatory effect of A. indica is a result of cumulative and synergistic effects of diversified constituents with varying polarities that collectively exert the effect via suppression of cyclo-oxygenases and cytokines (IL-1 and TNF-α).
Pouliot, Marc; Fiset, Marie-Elaine; Massé, Mireille; Naccache, Paul H; Borgeat, Pierre
2002-11-01
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.
Gautam, Swetlana; Rawat, Atul K.; Sammi, Shreesh R.; Roy, Subhadeep; Singh, Manjari; Devi, Uma; Yadav, Rajnish K.; Singh, Lakhveer; Rawat, Jitendra K.; Ansari, Mohd N.; Saeedan, Abdulaziz S.; Kumar, Dinesh; Pandey, Rakesh; Kaithwas, Gaurav
2018-01-01
The present study is a pursuit to define implications of dual cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) (DuCLOX-2/5) inhibition on various aspects of cancer augmentation and chemoprevention. The monotherapy and combination therapy of zaltoprofen (COX-2 inhibitor) and zileuton (5-LOX inhibitor) were validated for their effect against methyl nitrosourea (MNU) induced mammary gland carcinoma in albino wistar rats. The combination therapy demarcated significant effect upon the cellular proliferation as evidenced through decreased in alveolar bud count and restoration of the histopathological architecture when compared to toxic control. DuCLOX-2/5 inhibition also upregulated levels of caspase-3 and caspase-8, and restored oxidative stress markers (GSH, TBARs, protein carbonyl, SOD and catalase). The immunoblotting and qRT-PCR studies revealed the participation of the mitochondrial mediated death apoptosis pathway along with favorable regulation of COX-2, 5-LOX. Aforementioned combination restored the metabolic changes to normal when scrutinized through 1H NMR studies. Henceforth, the DuCLOX-2/5 inhibition was recorded to import significant anticancer effects in comparison to either of the individual treatments. PMID:29681851
Prostaglandins and Inflammation
Ricciotti, Emanuela; FitzGerald, Garret A.
2011-01-01
Prostaglandins are lipid autacoids derived from arachidonic acid. They both sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. They are generated from arachidonate by the action of cyclooxygenase (COX) isoenzymes and their biosynthesis is blocked by nonsteroidal anti-inflammatory drugs (NSAIDs), including those selective for inhibition of COX-2. Despite the clinical efficacy of NSAIDs, prostaglandins may function in both the promotion and resolution of inflammation. This review summarizes insights into the mechanisms of prostaglandin generation and the roles of individual mediators and their receptors in modulating the inflammatory response. Prostaglandin biology has potential clinical relevance for atherosclerosis, the response to vascular injury and aortic aneurysm. PMID:21508345
Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto
2017-11-01
Muscle injuries trigger an inflammatory process, releasing important biochemical markers for tissue regeneration. The use of non-steroidal anti-inflammatory drugs (NSAIDs) is the treatment of choice to promote pain relief due to muscle injury. NSAIDs exhibit several adverse effects and their efficacy is questionable. Photobiomodulation therapy (PBMT) has been demonstrated to effectively modulate inflammation induced from musculoskeletal disorders and may be used as an alternative to NSAIDs. Here, we assessed and compared the effects of different doses of PBMT and topical NSAIDs on biochemical parameters during an acute inflammatory process triggered by a controlled model of contusion-induced musculoskeletal injury in rats. Muscle injury was induced by trauma to the anterior tibial muscle of rats. After 1 h, rats were treated with PBMT (830 nm, continuous mode, 100 mW of power, 35.71 W/cm 2 ; 1, 3, and 9 J; 10, 30, and 90 s) or diclofenac sodium (1 g). Our results demonstrated that PBMT, 1 J (35.7 J/cm 2 ), 3 J (107.1 J/cm 2 ), and 9 J (321.4 J/cm 2 ) reduced the expression of tumor necrosis factor alpha (TNF-α) and cyclooxygenase-2 (COX-2) genes at all assessed times as compared to the injury and diclofenac groups (p < 0.05). The diclofenac group showed reduced levels of COX-2 only in relation to the injury group (p < 0.05). COX-2 protein expression remained unchanged with all therapies except with PBMT at a 3-J dose at 12 h (p < 0.05 compared to the injury group). In addition, PBMT (1, 3, and 9 J) effectively reduced levels of cytokines TNF-α, interleukin (IL)-1β, and IL-6 at all assessed times as compared to the injury and diclofenac groups (p < 0.05). Thus, PBMT at a 3-J dose was more effective than other doses of PBMT and topical NSAIDs in the modulation of the inflammatory process caused by muscle contusion injuries.
Rhodes, Lesley E.; Gledhill, Karl; Masoodi, Mojgan; Haylett, Ann K.; Brownrigg, Margaret; Thody, Anthony J.; Tobin, Desmond J.; Nicolaou, Anna
2009-01-01
Sunburn is a commonly occurring acute inflammatory process, with dermal vasodilatation and leukocyte infiltration as central features. Ultraviolet (UV) B-induced hydrolysis of membrane phospholipids releases polyunsaturated fatty acids, and their subsequent metabolism by cyclooxygenases (COXs) and lipoxygenases (LOXs) may produce potent eicosanoid mediators modulating different stages of the inflammation. Our objective was to identify candidate eicosanoids formed during the sunburn reaction in relation to its clinical and histological course. We exposed skin of healthy humans (n=32) to UVB and, for 72 h, examined expression of proinflammatory and anti-inflammatory eicosanoids using LC/ESI-MS/MS, and examined immunohistochemical expression of COX-2, 12-LOX, 15-LOX, and leukocyte markers, while quantifying clinical erythema. We show that vasodilatory prostaglandins (PGs) PGE2, PGF2α, and PGE3 accompany the erythema in the first 24–48 h, associated with increased COX-2 expression at 24 h. Novel, potent leukocyte chemoattractants 11-, 12-, and 8-monohydroxy-eicosatetraenoic acid (HETE) are elevated from 4 to 72 h, in association with peak dermal neutrophil influx at 24 h, and increased dermal CD3+ lymphocytes and 12- and 15-LOX expression from 24 to 72 h. Anti-inflammatory metabolite 15-HETE shows later expression, peaking at 72 h. Sunburn is characterized by overlapping sequential profiles of increases in COX products followed by LOX products that may regulate subsequent events and ultimately its resolution.—Rhodes, L. E., Gledhill, K., Masoodi, M., Haylett, A. K., Brownrigg, M., Thody, A. J., Tobin, D. J., Nicolaou, A. The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. PMID:19584301
Goat whey ameliorates intestinal inflammation on acetic acid-induced colitis in rats.
Araújo, Daline Fernandes de Souza; Guerra, Gerlane Coelho Bernardo; Júnior, Raimundo Fernandes de Araújo; Antunes de Araújo, Aurigena; Antonino de Assis, Paloma Oliveira; Nunes de Medeiros, Ariosvaldo; Formiga de Sousa, Yasmim Regis; Pintado, Maria Manuela Estevez; Gálvez, Julio; Queiroga, Rita de Cássia Ramos do Egypto
2016-12-01
Complementary or alternative medicine is of great interest for the treatment of inflammatory bowel disease, with the aim of ameliorating the side effects of the drugs commonly used or improving their efficacy. In this study, we evaluated the ability of goat whey to prevent intestinal inflammation in the experimental model of acetic acid-induced rats and compared it to sulfasalazine. Pretreatment with goat whey (1, 2, and 4g/kg) and sulfasalazine (250mg/kg) on colitic rats improved colonic inflammatory markers, including myeloperoxidase activity, leukotriene B 4 levels, as well as the production of proinflammatory cytokines IL-1β and tumor necrosis factor-α. Furthermore, the administration of goat whey significantly reduced the colonic oxidative stress by reducing malondialdehyde levels and increased total glutathione content, a potent antioxidant peptide. The histological evaluation of the colonic specimens from colitic rats confirmed these beneficial effects, as goat whey preserved the colonic tissue, especially in those rats treated with the highest dose of goat whey or with sulfasalazine. The immunohistochemistry analysis of the colonic tissue evaluation also revealed a reduction in the expression of cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-9, together with an increased expression of suppressor of cytokine signaling-1. These results suggest that goat whey exerted a preventive effect against the intestinal damage induced by acetic acid, showing a similar efficacy to that shown by sulfasalazine, therefore making it a potential treatment for human inflammatory bowel disease. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A.; Krause, James S.; Banik, Naren L.
2014-01-01
Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. In order to examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis related proteases (caspase-3 and −12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. PMID:24188094
Park, Sookyoung; Nozaki, Kenkichi; Smith, Joshua A; Krause, James S; Banik, Naren L
2014-03-01
Insulin-like growth factor-1 (IGF-1) is a neuroprotective growth factor that promotes neuronal survival by inhibition of apoptosis. To examine whether IGF-1 exerts cytoprotective effects against extracellular inflammatory stimulation, ventral spinal cord 4.1 (VSC4.1) motoneuron cells were treated with interferon-gamma (IFN-γ). Our data demonstrated apoptotic changes, increased calpain:calpastatin and Bax:Bcl-2 ratios, and expression of apoptosis-related proteases (caspase-3 and -12) in motoneurons rendered by IFN-γ in a dose-dependent manner. Post-treatment with IGF-1 attenuated these changes. In addition, IGF-1 treatment of motoneurons exposed to IFN-γ decreased expression of inflammatory markers (cyclooxygenase-2 and nuclear factor-kappa B:inhibitor of kappa B ratio). Furthermore, IGF-1 attenuated the loss of expression of IGF-1 receptors (IGF-1Rα and IGF-1Rβ) and estrogen receptors (ERα and ERβ) induced by IFN-γ. To determine whether the protective effects of IGF-1 are associated with ERs, ERs antagonist ICI and selective siRNA targeted against ERα and ERβ were used in VSC4.1 motoneurons. Distinctive morphological changes were observed following siRNA knockdown of ERα and ERβ. In particular, apoptotic cell death assessed by TUNEL assay was enhanced in both ERα and ERβ-silenced VSC4.1 motoneurons following IFN-γ and IGF-1 exposure. These results suggest that IGF-1 protects motoneurons from inflammatory insult by a mechanism involving pivotal interactions with ERα and ERβ. © 2013 International Society for Neurochemistry.
Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul
2014-01-01
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982
Anti-inflammatory effect of a human prothrombin fragment-2-derived peptide, NSA9, in EOC2 microglia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji Yeon; Kim, Tae Hyong; Kim, Soung Soo
2008-04-11
Pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E{sub 2} (PGE{sub 2}), and several cytokines (tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{beta}, and IL-6) are responsible for central nervous system (CNS) injuries that include ischemia, Alzheimer's disease, and neural death. Inhibition of these pro-inflammatory mediators would be an effective therapy to reduce the progression of neurodegenerative diseases. In this study, we examined the anti-inflammatory effects of a human prothrombin fragment-2-derived peptide, NSA9 (NSAVQLVEN), on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-activated brain microglia. NSA9 significantly inhibited the release of NO, PGE{sub 2}, and pro-inflammatory cytokines in a dose-dependent manner. Furthermore,more » NSA9 reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, which control the production of NO and PGE{sub 2}, respectively. Moreover, NSA9 suppressed the LPS-induced nuclear translocation and activation of nuclear factor-{kappa}B (NF-{kappa}B). These results suggest that NSA9 strongly inhibits the pro-inflammatory responses of microglia through the modulation of NF-{kappa}B activity.« less
Kim, Jae Cheol; Mullan, Bruce P; Black, John L; Hewitt, Robert J E; van Barneveld, Robert J; Pluske, John R
2016-01-01
This experiment was conducted to test the hypothesis that vitamin E (Vit E) and acetylsalicylic acid (ASA), a cyclooxygenase-2 (COX-2) inhibitor, will additively reduce the production of the immunosuppressive molecule prostaglandin E 2 (PGE 2 ) and hence reduce inflammatory responses in weaner pigs experimentally infected with an enterotoxigenic strain of E. coli . The experiment was conducted in a research facility with 192 individually-housed male weaner pigs (Landrace × Large White) weighing 6.6 ± 0.04 kg (mean ± SEM). The pigs were experimentally infected with an enterotoxigenic strain of E. coli and were allocated to a 2 × 3 factorial design with the respective factors being without and with 125 ppm ASA and three levels of Vit E supplementation (50, 100 or 200 IU/kg diet, dl -α-tocopheryl acetate). Acetylsalicylic acid supplementation improved average daily gain ( P < 0.05) and tended to improve feed:gain ratio ( P < 0.10) during the first 14 d after weaning. Acetylsalicylic acid supplementation also improved ( P < 0.001) amino acid utilization efficiency (as assessed by plasma urea level) and tended to decrease ( P < 0.10) PGE 2 production in the liver without affecting small intestinal histology and tight junction protein mRNA expression in the jejunal epithelium. Vitamin E supplementation greater than 100 IU/kg diet sustained both the plasma Vit E concentration ( P < 0.001) and plasma haptoglobin content ( P < 0.001) after weaning. However, there was no additive effects of the combined supplementation of ASA and Vit E on performance, intestinal barrier function and inflammatory responses of weaned pigs. Although ASA and vitamin E improved amino acid utilization efficiency and reduced acute inflammatory responses, ASA and vitamin E did not additively reduce production of PGE 2 and inflammatory responses in weaner pigs experimentally infected with an enterotoxigenic strain of E. coli .
Hinson, R M; Williams, J A; Shacter, E
1996-01-01
Injection of mineral oils such as pristane into the peritoneal cavities of BALB/c mice results in a chronic peritonitis associated with high tissue levels of interleukin 6 (IL-6). Here we show that increased prostaglandin E2 (PGE2) synthesis causes induction of IL-6 and that expression of an inducible cyclooxygenase, Cox-2, may mediate this process. Levels of both PGE2 and IL-6 are elevated in inflammatory exudates from pristane-treated mice compared with lavage samples from untreated mice. The Cox-2 gene is induced in the peritoneal macrophage fraction isolated from the mice. A cause and effect relationship between increased macrophage PGE2 and IL-6 production is shown in vitro. When peritoneal macrophages are activated with an inflammatory stimulus (polymerized albumin), the Cox-2 gene is induced and secretion of PGE2 and IL-6 increases, with elevated PGE2 appearing before IL-6. Cotreatment with 1 microM indomethacin inhibits PGE2 production by the cells and reduces the induction of IL-6 mRNA but has no effect on Cox-2 mRNA, consistent with the fact that the drug inhibits catalytic activity of the cyclooxygenase but does not affect expression of the gene. Addition of exogenous PGE2 to macrophages induces IL-6 protein and mRNA synthesis, indicating that the eicosanoid stimulates IL-6 production at the level of gene expression. PGE2-stimulated IL-6 production is unaffected by addition of indomethacin. Taken together with the earlier finding that indomethacin diminishes the elevation of IL-6 in pristane-treated mice, the results show that PGE2 can induce IL-6 production in vivo and implicate expression of the Cox-2 gene in the regulation of this cytokine. Images Fig. 2 Fig. 4 Fig. 5 Fig. 6 Fig. 8 PMID:8643498
Naglah, Ahmed M; Ahmed, Atallah F; Wen, Zhi-Hong; Al-Omar, Mohamed A; Amr, Abd El-Galil E; Kalmouch, Atef
2016-04-15
A series of new Schiff bases were synthesized by condensation of isatins with the nalidixic acid-l-amino acid hydrazides. Prior to hydrazide formation, a peptide linkage has been prepared via coupling of nalidixic acid with appropriate l-amino acid methyl esters to yield 3a-c. The chemical structures of the new Schiff bases (5b and 5d-h) were confirmed by means of IR, NMR, mass spectroscopic, and elemental analyses. The anti-inflammatory activity of these Schiff bases was evaluated via measurement of the expressed inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells model. The Schiff bases exhibited significant dual inhibitory effect against the induction of the pro-inflammatory iNOS and COX-2 proteins with variable potencies. However, they strongly down-regulated the iNOS expression to the level of 16.5% ± 7.4%-42.2% ± 19.6% compared to the effect on COX-2 expression (<56.4% ± 3.1% inhibition) at the same concentration (10 μM). The higher iNOS inhibition activity of the tested Schiff bases, relative to that of COX-2, seems to be a reflection of the combined suppressive effects exerted by their nalidixic acid, isatins (4a-c), and l-amino acid moieties against iNOS expression. These synthesized nalidixic acid-l-amino acid-isatin conjugates can be regarded as a novel class of anti-inflammatory antibacterial agents.
Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation
Khan, Shahida A.; Khan, Sarah A.; Zahran, Solafa A.; Damanhouri, Ghazi
2014-01-01
Obesity today stands at the intersection between inflammation and metabolic disorders causing an aberration of immune activity, and resulting in increased risk for diabetes, atherosclerosis, fatty liver, and pulmonary inflammation to name a few. Increases in mortality and morbidity in obesity related inflammation have initiated studies to explore different lipid mediated molecular pathways of attempting resolution that uncover newer therapeutic opportunities of anti-inflammatory components. Majorly the thromboxanes, prostaglandins, leukotrienes, lipoxins, and so forth form the group of lipid mediators influencing inflammation. Of special mention are the omega-6 and omega-3 fatty acids that regulate inflammatory mediators of interest in hepatocytes and adipocytes via the cyclooxygenase and lipoxygenase pathways. They also exhibit profound effects on eicosanoid production. The inflammatory cyclooxygenase pathway arising from arachidonic acid is a critical step in the progression of inflammatory responses. New oxygenated products of omega-3 metabolism, namely, resolvins and protectins, behave as endogenous mediators exhibiting powerful anti-inflammatory and immune-regulatory actions via the peroxisome proliferator-activated receptors (PPARs) and G protein coupled receptors (GPCRs). In this review we attempt to discuss the complex pathways and links between obesity and inflammation particularly in relation to different lipid mediators. PMID:25258478
Li, Ben; Chen, Minjun; Guo, Lin; Yun, Yang; Li, Guangke; Sang, Nan
2015-10-01
Although the health effects of sulfur dioxide (SO2) pollution in the atmospheric environment are not new, epidemiological studies and parallel experimental investigations indicate that acute SO2 exposure causes glutamate-mediated excitotoxicity and even contributes to the outcome of cerebral ischemia. Additionally, the free radical-related inflammatory responses are responsible for neuronal insults and consequent brain disorders. However, few medications are available for preventing the inflammatory responses and relieving the subsequent harmful insults from SO2 inhalation. Here, we show that endocannabinoid 2-arachidonoylglycerol (2-AG) prevents neurotoxicity from SO2 inhalation by suppressing cyclooxygenase-2 (COX-2) overexpression, and this action appears to be mediated via cannabinoid receptor 1 (CB1)-dependent mitogen-activated protein kinase/nuclear factor κB (NF-κB) signaling pathways. Furthermore, CB1-dependent peroxisome proliferator activated receptor γ (PPARγ) expression was an important modulator of the 2-AG-mediated resolution on NF-κB-coupled COX-2 elevation in response to SO2 neuroinflammation. This finding provides evidence of a possible therapeutic effect of endogenous 2-AG regulation for protecting against neurological dysfunction from SO2 inhalation in polluted areas. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Schneider, A; Harendza, S; Zahner, G; Jocks, T; Wenzel, U; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A
1999-02-01
Monocyte chemoattractant protein-1 (MCP-1) has been shown to play a significant role in the recruitment of monocytes/macrophages in experimental glomerulonephritis. Whereas a number of inflammatory mediators have been characterized that are involved in the expression of MCP-1 in renal disease, little is known about repressors of chemokine formation in vivo. We hypothesized that cyclooxygenase (COX) products influence the formation of MCP-1 and affect inflammatory cell recruitment in glomerulonephritis. The effect of COX inhibitors was evaluated in the antithymocyte antibody model and an anti-glomerular basement membrane model of glomerulonephritis. Rats were treated with the COX-1/COX-2 inhibitor indomethacin and the selective COX-2 inhibitors meloxicam and SC 58125. Animals were studied at 1 hour, 24 hours, and 5 days after induction of the disease. Indomethacin, to a lesser degree the selective COX-2 inhibitors, enhanced glomerular MCP-1 and RANTES mRNA levels. Indomethacin enhanced glomerular monocyte chemoattractant activity an the infiltration of monocytes/macrophages at 24 hours and 5 days. Our studies demonstrate that COX products may serve as endogenous repressors of MCP-1 formation in experimental glomerulonephritis. The data suggest that COX-1 and COX-2 products mediate these effects differently because the selective COX-2 inhibitors had less influence on chemokine expression.
Echizen, Kanae; Hirose, Osamu; Maeda, Yusuke; Oshima, Masanobu
2016-04-01
Cyclooxygenase-2 (COX-2) and its downstream product prostaglandin E2 (PGE2 ) play a key role in generation of the inflammatory microenvironment in tumor tissues. Gastric cancer is closely associated with Helicobacter pylori infection, which stimulates innate immune responses through Toll-like receptors (TLRs), inducing COX-2/PGE2 pathway through nuclear factor-κB activation. A pathway analysis of human gastric cancer shows that both the COX-2 pathway and Wnt/β-catenin signaling are significantly activated in tubular-type gastric cancer, and basal levels of these pathways are also increased in other types of gastric cancer. Expression of interleukin-11, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2, and CXCL5, which play tumor-promoting roles through a variety of mechanisms, is induced in a COX-2/PGE2 pathway-dependent manner in both human and mouse gastric tumors. Moreover, the COX-2/PGE2 pathway plays an important role in the maintenance of stemness with expression of stem cell markers, including CD44, Prom1, and Sox9, which are induced in both gastritis and gastric tumors through a COX-2/PGE2 -dependent mechanism. In contrast, disruption of Myd88 results in suppression of the inflammatory microenvironment in gastric tumors even when the COX-2/PGE2 pathway is activated, indicating that the interplay of the COX-2/PGE2 and TLR/MyD88 pathways is needed for inflammatory response in tumor tissues. Furthermore, TLR2/MyD88 signaling plays a role in maintenance of stemness in normal stem cells as well as gastric tumor cells. Accordingly, these results suggest that targeting the COX-2/PGE2 pathway together with TLR/MyD88 signaling, which would suppress the inflammatory microenvironment and maintenance of stemness, could be an effective preventive or therapeutic strategy for gastric cancer. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Dietary Green Pea Protects against DSS-Induced Colitis in Mice Challenged with High-Fat Diet.
Bibi, Shima; de Sousa Moraes, Luís Fernando; Lebow, Noelle; Zhu, Mei-Jun
2017-05-18
Obesity is a risk factor for developing inflammatory bowel disease. Pea is unique with its high content of dietary fiber, polyphenolics, and glycoproteins, all of which are known to be health beneficial. We aimed to investigate the impact of green pea (GP) supplementation on the susceptibility of high-fat diet (HFD)-fed mice to dextran sulfate sodium (DSS)-induced colitis. Six-week-old C57BL/6J female mice were fed a 45% HFD or HFD supplemented with 10% GP. After 7-week dietary supplementation, colitis was induced by adding 2.5% DSS in drinking water for 7 days followed by a 7-day recovery period. GP supplementation ameliorated the disease activity index score in HFD-fed mice during the recovery stage, and reduced neutrophil infiltration, mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and inflammatory markers interleukin (IL)-6, cyclooxygenase-2 (COX-2), IL-17, interferon-γ (IFN-γ), and inducible nitric oxide synthase (iNOS) in HFD-fed mice. Further, GP supplementation increased mucin 2 content and mRNA expression of goblet cell differentiation markers including Trefoil factor 3 (Tff3), Krüppel-like factor 4 (Klf4), and SAM pointed domain ETS factor 1 (Spdef1) in HFD-fed mice. In addition, GP ameliorated endoplasmic reticulum (ER) stress as indicated by the reduced expression of Activating transcription factor-6 (ATF-6) protein and its target genes chaperone protein glucose-regulated protein 78 (Grp78), the CCAAT-enhancer-binding protein homologous protein (CHOP), the ER degradation-enhancing α-mannosidase-like 1 protein (Edem1), and the X-box binding protein 1 (Xbp1) in HFD-fed mice. In conclusion, GP supplementation ameliorated the severity of DSS-induced colitis in HFD-fed mice, which was associated with the suppression of inflammation, mucin depletion, and ER stress in the colon.
Ibuprofen: from invention to an OTC therapeutic mainstay.
Rainsford, K D
2013-01-01
The discovery of ibuprofen's anti-inflammatory activity by Dr (now Professor) Stewart Adams and colleagues (Boots Pure Chemical Company Ltd, Nottingham, UK) 50 years ago represented a milestone in the development of anti-inflammatory analgesics. Subsequent clinical studies were the basis for ibuprofen being widely accepted for treating painful conditions at high anti-rheumatic doses (≤ 2400 mg/d), with lower doses (≤ 1200 mg/d for ≤ 10 days) for mild-moderate acute pain (e.g. dental pain, headache, dysmenorrhoea, respiratory symptoms and acute injury). The early observations have since been verified in studies comparing ibuprofen with newer cyclo-oxygenase-2 selective inhibitors ('coxibs'), paracetamol and other non-steroidal anti-inflammatory drugs (NSAIDs). The use of the low-dose, non-prescription, over-the-counter (OTC) drug was based on marketing approval in 1983 (UK) and 1984 (USA); and it is now available in over 80 countries. The relative safety of OTC ibuprofen has been supported by large-scale controlled studies. It has the same low gastro-intestinal (GI) effects as paracetamol (acetaminophen) and fewer GI effects than aspirin. Ibuprofen is a racemate. Its physicochemical properties and the short plasma-elimination half-life of the R(-) isomer, together with its limited ability to inhibit cyclo-oxygenase-1 (COX-1) and thus prostaglandin (PG) synthesis, compared with that of S(+)-ibuprofen, are responsible for the relatively low GI toxicity. The R(-) isomer is then converted in the body to the S(+) isomer after absorption in the GI tract. Ex vivo inhibition of COX-1 (thromboxane A(2)) and COX-2 (PGE(2)) at the plasma concentrations of S(+)-ibuprofen corresponding to those found in the plasma following ingestion of 400 mg ibuprofen in dental and other inflammatory pain models provides evidence of the anti-inflammatory mechanism at OTC dosages. R(-)-ibuprofen has effects on leucocytes, suggesting that ibuprofen has anti-leucocyte effects, which underlie its anti-inflammatory actions. Future developments include novel gastro-tolerant forms for 'at risk' patients, and uses in the prevention of neuro-inflammatory states and cancers. © 2012 Blackwell Publishing Ltd.
Lin, Yen-You; Lin, Sung-Chun; Feng, Chien-Wei; Chen, Pei-Chin; Su, Yin-Di; Li, Chi-Min; Yang, San-Nan; Jean, Yen-Hsuan; Sung, Ping-Jyun; Duh, Chang-Yih; Wen, Zhi-Hong
2015-01-01
In recent years, several marine-derived compounds have been clinically evaluated. Diterpenes are secondary metabolites from soft coral that exhibit anti-inflammatory, anti-tumor and cytotoxic activities. In the present study, we isolated a natural diterpene product, excavatolide B, from cultured Formosan gorgonian Briareum excavatum and investigated its anti-inflammatory activities. We found that excavatolide B significantly inhibited the mRNA expression of the proinflammatory mediators, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-challenged murine macrophages (RAW 264.7). We also examined the anti-inflammatory and anti-nociceptive effects of excavatolide B on intraplantar carrageenan-induced inflammatory responses. Excavatolide B was found to significantly attenuate carrageenan-induced nociceptive behaviors, mechanical allodynia, thermal hyperalgesia, weight bearing deficits and paw edema. In addition, excavatolide B inhibited iNOS, as well as the infiltration of immune cells in carrageenan-induced inflammatory paw tissue. PMID:25923315
Du, Yifeng; Kemper, Timothy; Qiu, Jiange; Jiang, Jianxiong
2016-01-01
Neuroinflammation is a common feature in nearly all neurological and some psychiatric disorders. Resembling its extraneural counterpart, neuroinflammation can be both beneficial and detrimental depending on the responding molecules. The overall effect of inflammation on disease progression is highly dependent on the extent of inflammatory mediator production and the duration of inflammatory induction. The time-dependent aspect of inflammatory responses suggests that the therapeutic time window for quelling neuroinflammation might vary with molecular targets and injury types. Therefore, it is important to define the therapeutic time window for anti-inflammatory therapeutics, as contradicting or negative results might arise when different treatment regimens are utilized even in similar animal models. Herein, we discuss a few critical factors that can help define the therapeutic time window and optimize treatment paradigm for suppressing the cyclooxygenase-2/prostaglandin-mediated inflammation after status epilepticus. These determinants should also be relevant to other anti-inflammatory therapeutic strategies for the CNS diseases. PMID:26689339
2',5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor.
Lin, C N; Lee, T H; Hsu, M F; Wang, J P; Ko, F N; Teng, C M
1997-05-01
Eleven chalcone derivatives have been tested for their inhibitory effects on platelet aggregation in rabbit platelet suspension and the activation of mast cells and neutrophils. Arachidonic acid-induced platelet aggregation was potently inhibited by almost all the compounds and some also had a potent inhibitory effect on collagen-induced platelet aggregation and cyclooxygenase. Some hydroxychalcone derivatives showed strong inhibitory effects on the release of beta-glucuronidase and lysozyme, and on superoxide formation by rat neutrophils stimulated with the peptide fMet-Leu-Phe (fMLP). We found that the anti-inflammatory effect of 2',5'-dihydroxychalcone was greater than that of trifluoperazine. 2'5'-Dihydroxy and 2',3,4,5'-tetrahydroxyl chalcones, even at low concentration (50 microM), tested in platelet-rich plasma from man almost completely inhibited secondary aggregation induced by adrenaline. These results suggest that the anti-platelet effects of the chalcones are mainly a result of inhibition of thromboxane formation.
Fajardo, Alexandra M; Piazza, Gary A
2015-07-15
Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. Copyright © 2015 the American Physiological Society.
Piazza, Gary A.
2015-01-01
Colorectal cancer (CRC) is one of the most common human malignancies and a leading cause of cancer-related deaths in developed countries. Identifying effective preventive strategies aimed at inhibiting the development and progression of CRC is critical for reducing the incidence and mortality of this malignancy. The prevention of carcinogenesis by anti-inflammatory agents including nonsteroidal anti-inflammatory drugs (NSAIDs), selective cyclooxygenase-2 (COX-2) inhibitors, and natural products is an area of considerable interest and research. Numerous anti-inflammatory agents have been identified as potential CRC chemopreventive agents but vary in their mechanism of action. This review will discuss the molecular mechanisms being studied for the CRC chemopreventive activity of NSAIDs (i.e., aspirin, sulindac, and ibuprofen), COX-2 inhibitors (i.e., celecoxib), natural products (i.e., curcumin, resveratrol, EGCG, genistein, and baicalein), and metformin. A deeper understanding of how these anti-inflammatory agents inhibit CRC will provide insight into the development of potentially safer and more effective chemopreventive drugs. PMID:26021807
Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo
2010-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.
Cyclooxygenase inhibitors are potent sensitizers of prostate tumours to hyperthermia and radiation.
Asea, A; Mallick, R; Lechpammer, S; Ara, G; Teicher, B A; Fiorentino, S; Stevenson, M A; Calderwood, S K
2001-01-01
It has previously been demonstrated that hyperthermia can activate prostaglandin synthesis and that prostaglandins are protective against hyperthermia. This study examined the use of inhibitors of prostaglandin synthesis on the response of prostate tumours to hyperthermia. The non-steroidal anti-inflammatory drugs (NSAID) ibuprofen and sulindac, known cyclooxygenase inhibitors that inhibit prostaglandin production, were effective hyperthermia sensitizers and augmented growth delay of DU-145 and PC-3 prostate tumours to combined radiation and hyperthermia treatment protocols. Pre-treatment of mice with ibuprofen and sulindac at hyperthermia sensitizing doses resulted in significant (p < 0.01) inhibition of hyperthemia-induced serum prostaglandin E2. These findings indicate that NSAID may have both sensitizing effects on prostate tumour growth and may function by inhibiting prostaglandin synthesis.
Kusunoki-Nakamoto, Fumiko; Matsukawa, Takashi; Tanaka, Masaki; Miyagawa, Toji; Yamamoto, Tomotaka; Shimizu, Jun; Ikemura, Masako; Shibahara, Junji; Tsuji, Shoji
2013-01-01
Inflammatory myofibroblastic tumor (IMT) is a disease characterized by tumorous lesions consisting of myofibroblastic spindle cells and inflammatory cells that occur primarily in the soft tissues and viscera of children and young adults. Total excision is the most effective therapy. Steroids have been used to treat unresectable lesions with some success. We herein report a case of IMT involving the frontal bone accompanied by pachymeningitis. The tumor was characterized by an aggressive clinical course that was refractory to prednisolone. Performing total excision seemed difficult. Celecoxib and methotrexate were effective treatments. Our experience suggests the efficacy of celecoxib and methotrexate as alternatives for treating unresectable IMT.
[Reversible infertility from nonsteroidal anti-inflammatory drugs].
Skomsvoll, Johan Fredrik; Rødevand, Erik; Koksvik, Hege Svean; Salvesen, Kjell Asmund; von Düring, Vidar; Rygnestad, Tarjei; Østensen, Monika
2005-06-02
Nonsteroidal anti-inflammatory drugs (NSAIDs) and selective cyclooxygenase-2 inhibitors may interfere with ovulation and the rupture of the follicle, causing reversible infertility. Literature review. Reversible infertility is shown both in animal and human studies of these drugs. As determined by ultrasound, the drugs may delay or inhibit ovulation. These findings are also confirmed by a few randomized controlled studies showing an increase in time from the luteinizing hormone surge to rupture of the follicle and an increased size of the unruptured follicle. Most of the hormone analyses show values in accordance with the ovulation/menstrual cycle. Also, two epidemiological studies have shown an association between NSAID use and spontaneous abortion. These studies have methodological weaknesses and their findings have to be elucidated in future studies. Women with fertility problems should avoid not only the selective cyclooxygenase-2 inhibitors, but also the traditional NSAIDs. However, women with rheumatic disease responding well to therapy should consult their physicians before stopping treatment. Reduced dose of a NSAID and temporary stop of drug treatment early in the menstrual cycle, or alternative drug treatment, may be a solution. NSAIDs should not be used in the last eight weeks of pregnancy.
Abraham, N S; El-Serag, H B; Hartman, C; Richardson, P; Deswal, A
2007-04-15
To assess degree of cyclooxygenase-2 (COX-2) selectivity of a non-steroidal anti-inflammatory drug (NSAID) and risk of myocardial infarction (MI) or cerebrovascular accident (CVA). Prescription fill data were linked to medical records of a merged VA-Medicare dataset. NSAIDs were categorized by Cox-2 selectivity. Incidence of CVA and MI within 180 days of index prescription was assessed using Cox-proportional hazards models adjusted for gender, race, cardiovascular and pharmacological risk factors and propensity for prescription of highly COX-2 selective NSAIDs. Of 384,322 patients (97.5% men and 85.4% white), 79.4% were prescribed a poorly selective, 16.4% a moderately selective and 4.2% a highly selective NSAID. There were 985 incident cases of MI and 586 cases of CVA in >145 870 person-years. Highly selective agents had the highest rate of MI (12.3 per 1000 person-years; [95% CI: 12.2-12.3]) and CVA (8.1 per 1000 person-years; [95% CI: 8.0-8.2]). Periods without NSAID exposure were associated with lowest risk. In adjusted models, highly selective COX-2 selective NSAIDs were associated with a 61% increase in CVA and a 47% increase in MI, when compared with poorly selective NSAIDs. The risk of MI and CVA increases with any NSAID. Highly COX-2 selective NSAIDs confer the greatest risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Som D.; Katiyar, Santosh K., E-mail: skatiyar@uab.ed; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294
Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were thenmore » euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.« less
La Maestra, Sebastiano; D’Agostini, Francesco; Izzotti, Alberto; Micale, Rosanna T.; Mastracci, Luca; Camoirano, Anna; Balansky, Roumen; Trosko, James E.; Steele, Vernon E.; De Flora, Silvio
2015-01-01
Chemoprevention provides an important strategy for cancer control in passive smokers. Due to the crucial role played by smoke-related chronic inflammation in lung carcinogenesis, of special interest are extensively used pharmacological agents, such as nonsteroidal anti-inflammatory drugs (NSAIDs). We evaluated the ability of aspirin and naproxen, inhibitors of both cyclooxygenase-1 and cyclooxygenase -2, to modulate environmental cigarette smoke (ECS)-induced lung carcinogenesis in A/J mice of both genders. Based on a subchronic toxicity study in 180 postweaning mice, we used 1600mg/kg diet aspirin and 320mg/kg diet naproxen. In the tumor chemoprevention study, using 320 mice, exposure to ECS started soon after birth and administration of NSAIDs started after weaning. At 10 weeks of life, the NSAIDs did not affect the presence of occult blood in feces. As assessed in a subset of 40 mice, bulky DNA adducts and 8-hydroxy-2′-deoxyguanosine levels were considerably increased in ECS-exposed mice and, irrespective of gender, both NSAIDs remarkably inhibited these nucleotide alterations. After exposure for 4 months followed by 5 months in filtered air, ECS induced a significant increase in the yield of surface lung tumors, the 43.7% of which were adenomas and the 56.3% were adenocarcinomas. Oct-4 (octamer-binding transcription factor 4), a marker of cell stemness, was detected in some adenocarcinoma cells. The NAIDs attenuated the yield of lung tumors, but prevention of ECS-induced lung adenomas was statistically significant only in female mice treated with aspirin, which supports a role for estrogens in ECS-related lung carcinogenesis and highlights the antiestrogenic properties of NSAIDs. PMID:26464196
Zago, Michela; Sheridan, Jared A.; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target. PMID:24086407
Zago, Michela; Sheridan, Jared A; Nair, Parameswaran; Rico de Souza, Angela; Gallouzi, Imed-Eddine; Rousseau, Simon; Di Marco, Sergio; Hamid, Qutayba; Eidelman, David H; Baglole, Carolyn J
2013-01-01
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR(-/-) ) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR(-/-) mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR(-/-) mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.
GUAN, FUQIN; WANG, HAITING; SHAN, YU; CHEN, YU; WANG, MING; WANG, QIZHI; YIN, MIN; ZHAO, YOUYI; FENG, XU; ZHANG, JIANHUA
2014-01-01
Lonimacranthoide VI, first isolated from the flower buds of Lonicera macranthoides in our previous study, is a rare chlorogenic acid ester acylated at C-23 of hederagenin. In the present study, the anti-inflammatory effects of lonimacranthoide VI were studied. Lipopolysaccharides (LPS) induced an inflammatory response through the production of prostaglandin E2 (PGE2), and these levels were reduced when lonimacranthoide VI was pre-administered. Additionally, the mechanism of the anti-inflammatory effects of lonimacranthoide VI was investigated by measuring cyclooxygenase (COX) activity and mRNA expression. The results showed that lonimacranthoide VI inhibited mRNA expression and in vitro activity of COX-2 in a dose-dependent manner, whereas only the higher lonimacranthoide VI concentration possibly reduced COX-1 expression and in vitro activity. Taken together, these results indicate that lonimacranthoide VI is an important anti-inflammatory constituent of Lonicera macranthoides and that the anti-inflammatory effect is attributed to the inhibition of PGE2 production through COX activity and mRNA expression. PMID:25054024
The cardiovascular biology of microsomal prostaglandin E synthase-1
Wang, Miao; FitzGerald, Garret A.
2011-01-01
Both traditional and purpose designed nonsteroidal anti-inflammatory drugs (NSAIDs), selective for inhibition of cyclooxygenase (COX) -2 alleviate pain and inflammation but confer a cardiovascular hazard, attributable to inhibition of COX-2 derived prostacyclin (PGI2). Deletion of microsomal PGE synthase–1 (mPGES-1), the dominant enzyme that converts the COX derived intermediate product, PGH2, to form PGE2, modulates inflammatory pain in rodents. By contrast with COX-2 deletion or inhibition, PGI2 formation is augmented in mPGES-1−/− mice an effect which may confer cardiovascular benefit, yet undermine the analgesic potential of inhibitors of this enzyme. This review will consider the cardiovascular biology of mPGES1, and the complex challenge of developing inhibitors of this enzyme. PMID:22137640
de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria
2017-01-01
AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082
Regulator of calcineurin 1 (Rcan1) has a protective role in brain ischemia/reperfusion injury
2012-01-01
Background An increase in intracellular calcium concentration [Ca2+]i is one of the first events to take place after brain ischemia. A key [Ca2+]i-regulated signaling molecule is the phosphatase calcineurin (CN), which plays important roles in the modulation of inflammatory cascades. Here, we have analyzed the role of endogenous regulator of CN 1 (Rcan1) in response to experimental ischemic stroke induced by middle cerebral artery occlusion. Methods Animals were subjected to focal cerebral ischemia with reperfusion. To assess the role of Rcan1 after stroke, we measured infarct volume after 48 h of reperfusion in Rcan1 knockout (KO) and wild-type (WT) mice. In vitro studies were performed in astrocyte-enriched cortical primary cultures subjected to 3% oxygen (hypoxia) and glucose deprivation (HGD). Adenoviral vectors were used to analyze the effect of overexpression of Rcan1-4 protein. Protein expression was examined by immunohistochemistry and immunoblotting and expression of mRNA by quantitative real-time Reverse-Transcription Polymerase Chain Reaction (real time qRT-PCR). Results Brain ischemia/reperfusion (I/R) injury in vivo increased mRNA and protein expression of the calcium-inducible Rcan1 isoform (Rcan1-4). I/R-inducible expression of Rcan1 protein occurred mainly in astroglial cells, and in an in vitro model of ischemia, HGD treatment of primary murine astrocyte cultures induced Rcan1-4 mRNA and protein expression. Exogenous Rcan1-4 overexpression inhibited production of the inflammatory marker cyclo-oxygenase 2. Mice lacking Rcan1 had higher expression of inflammation associated genes, resulting in larger infarct volumes. Conclusions Our results support a protective role for Rcan1 during the inflammatory response to stroke, and underline the importance of the glial compartment in the inflammatory reaction that takes place after ischemia. Improved understanding of non-neuronal mechanisms in ischemic injury promises novel approaches to the treatment of acute ischemic stroke. PMID:22397398
Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition
Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele
2010-01-01
The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464
Liu, Teresa T.; Grubisha, Melanie J.; Frahm, Krystle A.; Wendell, Stacy G.; Liu, Jiayan; Ricke, William A.; Auchus, Richard J.; DeFranco, Donald B.
2016-01-01
Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor β (ERβ) ligands, 5AR inhibitors could potentially limit ERβ activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERβ and TGFβ. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFβ and ERβ signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERβ action through its effect on the expression of a number of steroidogenic enzymes in the ERβ ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERβ. PMID:27226548
Molecular Basis for Cyclooxygenase Inhibition by the Non-steroidal Anti-inflammatory Drug Naproxen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duggan, Kelsey C.; Walters, Matthew J.; Musee, Joel
Naproxen ((S)-6-methoxy-{alpha}-methyl-2-naphthaleneacetic acid) is a powerful non-selective non-steroidal anti-inflammatory drug that is extensively used as a prescription and over-the-counter medication. Naproxen exhibits gastrointestinal toxicity, but its cardiovascular toxicity may be reduced compared with other drugs in its class. Despite the fact that naproxen has been marketed for many years, the molecular basis of its interaction with cyclooxygenase (COX) enzymes is unknown. We performed a detailed study of naproxen-COX-2 interactions using site-directed mutagenesis, structure-activity analysis, and x-ray crystallography. The results indicate that each of the pendant groups of the naphthyl scaffold are essential for COX inhibition, and only minimal substitutions aremore » tolerated. Mutation of Trp-387 to Phe significantly reduced inhibition by naproxen, a result that appears unique to this inhibitor. Substitution of S or CH2 for the O atom of the p-methoxy group yielded analogs that were not affected by the W387F substitution and that exhibited increased COX-2 selectivity relative to naproxen. Crystallization and x-ray analysis yielded structures of COX-2 complexed to naproxen and its methylthio analog at 1.7 and 2.3 {angstrom} resolution, respectively. The combination of mutagenesis, structure analysis, and x-ray crystallography provided comprehensive information on the unique interactions responsible for naproxen binding to COX-2.« less
Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies.
Dumusc, S D; Ontsouka, E C; Schnyder, M; Hartnack, S; Albrecht, C; Bruckmaier, R M; Burgener, I A
2014-01-01
Cyclooxygenase-2 (COX-2) is a key enzyme in the synthesis of pro-inflammatory prostaglandins and 5-lipoxygenase (5-LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). COX-2 and 5-LO are upregulated in dogs with CCE. Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food-responsive diarrhea (FRD). Prospective study. mRNA expression of COX-2, 5-LO, IL-1b, IL-4, IL-6, TNF, IL-10 and TFG-β was evaluated by quantitative real-time RT-PCR in duodenal and colonic biopsies before and after treatment. COX-2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL-1b was higher in FRD in the duodenum after treatment (P = .021). TGF-β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL-4, IL-6, TNF, and IL-10. There was a significant correlation between COX-2 and IL-1b in duodenum and colon before treatment in FRD and IBD, whereas 5-LO correlated better with IL-6 and TNF. IL-10 and TGF-β usually were correlated. COX-2 is upregulated in IBD and FRD, whereas IL-1b and TGF-β seem to be important pro- and anti-inflammatory cytokines, respectively. The use of dual COX/5-LO inhibitors could be an interesting alternative in the treatment of CCE. Copyright © 2014 by the American College of Veterinary Internal Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagahama, Yu; Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo; Obama, Takashi
2011-10-07
Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role ofmore » oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.« less
Li, Li; Yang, Yiqiu; Zheng, Jingbin; Cai, Guodi; Lee, Yongwoo; Du, Jikun
2018-02-01
Decursin, the major bioactive component of Angelica gigas Nakai, exhibited neuroprotective properties. Our previous studies showed that decursin conferred neuroprotective effects in PC12 cells induced by Amyloid-β (Aβ) 25-35 via antiapoptosis and antioxidant. In this study, the antiinflammatory effects of decursin against PC12 cells injury stimulated by Aβ 25-35 were assessed. Our results demonstrated that decursin suppressed the expression of cyclooxygenase-2 protein and prostaglandin E2 content which was stimulated by Aβ 25-35 in PC12 cells. Meanwhile, the nuclear translocation of nuclear factor-κB in Aβ 25-35 -treated PC12 cells was also inhibited by decursin. In addition, decursin suppressed phosphorylation of the two upstream pathway kinases, p38 and c-Jun N-terminal kinase. Overall, our findings indicate that decursin exerts protective effects against neuroinflammation stimulated by Aβ 25-35 in PC12 cells by abolishing cyclooxygenase-2 protein expression through inactivation of nuclear factor-κB via the upstream kinases including p38 and c-Jun N-terminal kinase. This work provides a new insight into the pharmacological mode of decursin and should facilitate its therapeutic application in treatment of inflammatory disorders. Copyright © 2017 John Wiley & Sons, Ltd.
Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A
2015-12-01
Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.
Ahmad, Sheikh Fayaz; Attia, Sabry M; Bakheet, Saleh A; Zoheir, Khairy M A; Ansari, Mushtaq Ahmad; Korashy, Hesham M; Abdel-Hamied, Hala E; Ashour, Abdelkader E; Abd-Allah, Adel R A
2015-04-01
Naringin has been reported to possess diverse pharmacological properties, including anti-arthritic and anti-inflammatory activities. The aim of the present study was to determine the potential anti-inflammatory effect of naringin in a mouse model of carrageenan-induced pleurisy. A single dose of naringin (40 and 80 mg/kg) was administered per oral (p.o.) 1 h before carrageenan (Cg) administration. Pro- and anti-inflammatory cytokines were analysed in pleural fluid. We also assessed the effects of naringin on the expression levels of iNOS, inducible cyclooxygenase isoform (COX-2), ICAM-1, MIP-2, PGE2, STAT3, TGF-β1, nuclear factor kappa B (NF-κB) and inhibitor of kappa B (IκBα) in lung tissue. The histological examinations revealed anti-inflammatory effect of naringin while Cg group deteriorated. Naringin downregulated Th1 and upregulated Th2 cytokines. Western blot analyses revealed increased protein expression of NF-κB, STAT3 and COX-2 and decreased IκBα in response to Cg treatment, which were reversed by the treatment with naringin. In the Cg group, mRNA expression levels of pro-inflammatory mediators upregulated and anti-inflammatory mediators downregulated. Naringin reversed these actions.
Chetsawang, Jirapa; Nudmamud-Thanoi, Sutisa; Phonchai, Ruchee; Abubakar, Zuroida; Govitrapong, Piyarat; Chetsawang, Banthit
2018-06-23
Methamphetamine (METH) is an addictive stimulant drug that has many negative consequences, including toxic effects to the brain. Recently, the induction of inflammatory processes has been identified as a potential contributing factor to induce neuronal cell degeneration. It has been demonstrated that the expression of inflammatory agents, such as cyclooxygenase 2 (COX-2), depends on the activation of calcineurin (CaN) and nuclear factor of activated T-cells (NFAT). Moreover, the excessive elevation in cytosolic Ca 2+ levels activates the cell death process, including calpain activation in neurons, which was diminished by the overexpression of the calpain inhibitor protein, calpastatin. However, it is unclear whether calpain mediates CaN-NFAT activation in the neurotoxic process. In the present study, we observed that the toxic high dose of METH-treated neuroblastoma SH-SY5Y cells significantly decreased cell viability but increased apoptotic cell death, the active cleaved form of calcineurin, the nuclear translocation of NFAT, and COX-2 levels. Nevertheless, these toxic effects were diminished in METH-treated calpastatin-overexpressing SH-SY5Y cells. These findings might emphasize the role of calpastatin against METH-induced toxicity by a mechanism related to calpain-dependent CaN-NFAT activation-induced COX-2 expression. Copyright © 2018. Published by Elsevier B.V.
Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio
2013-02-01
Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process. Copyright © 2013 Elsevier Inc. All rights reserved.
Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro
2012-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages. PMID:22927840
Uto, Takuhiro; Hou, De-Xing; Morinaga, Osamu; Shoyama, Yukihiro
2012-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a major bioactive compound in wasabi (Wasabia japonica), which is a typical Japanese pungent spice. Recently, in vivo and in vitro studies demonstrated that 6-MSITC has several biological properties, including anti-inflammatory, antimicrobial, antiplatelet, and anticancer effects. We previously reported that 6-MSITC strongly suppresses cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and cytokines, which are important factors that mediate inflammatory processes. Moreover, molecular analysis demonstrated that 6-MSITC blocks the expressions of these factors by suppressing multiple signal transduction pathways to attenuate the activation of transcriptional factors. Structure-activity relationships of 6-MSITC and its analogues containing an isothiocyanate group revealed that methylsulfinyl group and the length of alkyl chain of 6-MSITC might be related to high inhibitory potency. In this paper, we review the anti-inflammatory properties of 6-MSITC and discuss potential molecular mechanisms focusing on inflammatory responses by macrophages.
Hanna, Mirette; Dumas, Isabelle; Orain, Michèle; Jacob, Simon; Têtu, Bernard; Sanschagrin, François; Bureau, Alexandre; Poirier, Brigitte; Diorio, Caroline
2017-01-01
Increased levels of pro-inflammatory markers and decreased levels of anti-inflammatory markers in the breast tissue can result in local inflammation. We aimed to investigate whether local inflammation in the breast tissue is associated with age-related lobular involution, a process inversely related to breast cancer risk. Levels of eleven pro- and anti-inflammatory markers were assessed by immunohistochemistry in normal breast tissue obtained from 164 pre- and postmenopausal breast cancer patients. Involution status of the breast (degree of lobular involution and the predominant lobule type) was microscopically assessed in normal breast tissue on hematoxylin-eosin stained mastectomy slides. Multivariate generalized linear models were used to assess the associations. In age-adjusted analyses, higher levels of pro-inflammatory markers IL-6, TNF-α, CRP, COX-2, leptin, SAA1 and IL-8; and anti-inflammatory marker IL-10, were inversely associated with the prevalence of complete lobular involution (all P≤0.04). Higher levels of the pro-inflammatory marker COX-2 were also associated with lower prevalence of predominant type 1/no type 3 lobules in the breast, an indicator of complete involution, in age-adjusted analysis (P = 0.017). Higher tissue levels of inflammatory markers, mainly the pro-inflammatory ones, are associated with less involuted breasts and may consequently be associated with an increased risk of developing breast cancer. PMID:28846716
Li, Chunlong; Chen, Mengrou; Li, Xiaojie; Yang, Meifeng; Wang, Ying; Yang, Xinwang
2017-03-01
The potential application of anti-inflammatory and analgesic compounds in medication and therapeutic care have become of increasing interest. We purified and characterized two novel analgesic and anti-inflammatory peptides, VQ-5 and AQ-5, from the coelomic fluid of the earthworm (Eisenia foetida). Their primary structures were determined as VSSVQ and AMADQ, respectively. Both peptides, especially AQ-5, exhibited analgesic activity in mouse models of persistent neuropathic pain and inflammation. AQ-5 also inhibited tumor necrosis factor alpha and cyclooxygenase-2 production. The mitogen-activated protein kinase signaling pathway, which is involved in analgesic and anti-inflammatory functions, was inhibited by AQ-5. Thus, the analgesic and anti-inflammatory effects of these peptides, especially AQ-5, demonstrated their potential as candidates for the development of novel analgesic medicines. Copyright © 2017 Elsevier Inc. All rights reserved.
Natural compound cudraflavone B shows promising anti-inflammatory properties in vitro.
Hošek, Jan; Bartos, Milan; Chudík, Stanislav; Dall'Acqua, Stefano; Innocenti, Gabbriella; Kartal, Murat; Kokoška, Ladislav; Kollár, Peter; Kutil, Zsófia; Landa, Přemysl; Marek, Radek; Závalová, Veronika; Žemlička, Milan; Šmejkal, Karel
2011-04-25
Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.
Ren, Yilin; Geng, Yan; Du, Yan; Li, Wang; Lu, Zhen-Ming; Xu, Hong-Yu; Xu, Guo-Hua; Shi, Jin-Song; Xu, Zheng-Hong
2018-03-16
Inflammatory bowel disease (IBD) is a disease caused by a dysregulated immune with unknown etiology. Hericium erinaceus (H. erinaceus) is a Chinese medicinal fungus, with the effect of prevention and treatment of gastrointestinal disorders. In this study, we have tested the anti-inflammatory effect of polysaccharide of H. erinaceus (HECP, Mw: 86.67 kDa) in the model of dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. Our data indicated that HECP could improve clinical symptoms and down-regulate key markers of oxidative stresses, including nitric oxide (NO), malondialdehyde (MDA), total superoxide dismutase (T-SOD), and myeloperoxidase (MPO). HECP also suppressed the secretion of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and decreased the expression of related mRNA. Meanwhile, HECP blocked phosphorylation of nuclear factor-κB (NF-κB) p65, NF-κB inhibitor alpha (IκB-α), mitogen-activated protein kinases (MAPK) and Protein kinase B (Akt) in DSS-treated mice. Moreover, HECP reversed DSS-induced gut dysbiosis and maintained intestinal barrier integrity. In conclusion, HECP ameliorates DSS-induced intestinal injury in mice, which suggests that HECP can serve as a protective dietary nutrient against IBD. Copyright © 2018. Published by Elsevier Inc.
Sullivan, M H F; Alvi, S A; Brown, N L; Elder, M G; Bennett, P R
2002-03-01
Fetal membranes are a primary source of prostaglandins and pro-inflammatory cytokines implicated in human parturition, so the inhibition of inflammatory pathways may be of benefit in pregnancies complicated by premature labour. We have therefore investigated the effects of a cytokine-suppressant anti-inflammatory drug (CSAID) on the output of prostaglandin E(2) (PGE(2)) and interleukin (IL)-1 beta from human fetal membranes in vitro. Bacterial endotoxin increased the expression of mRNA for IL-1 beta and type-2 cyclo-oxygenase (COX-2), and there were corresponding increases in the output of IL-1 beta protein and PGE(2). The CSAID decreased IL-1 beta protein, COX-2 expression and PGE(2) output, but not mRNA for IL-1 beta, indicating a post-translational effect on the production of IL-1 beta and a transcriptional affect on COX-2, with an overall reduction in PGE(2). These findings are consistent with the effects of CSAIDs in other systems, and indicate that they are of possible use in premature labour.
Depboylu, Candan; Weihe, Eberhard; Eiden, Lee E.
2011-01-01
The simian immunodeficiency virus (SIV) macaque model resembles human HIV-AIDS and associated brain dysfunction. Altered expression of synaptic markers and transmitters in neuro-AIDS has been reported, but limited data exist for the cholinergic system and lipid mediators such as prostaglandins. Here, we analyzed cholinergic basal forebrain neurons with their telencephalic projections and the rate-limiting enzymes for prostaglandin synthesis, cyclooxygenases 1 and 2 (COX1 and 2) in brains of SIV-infected macaques with and without encephalitis and antiretroviral therapy, and uninfected controls. COX1 but not COX2 was co-expressed with markers of cholinergic phenotype, i.e. choline acetyltransferase and vesicular acetylcholine transporter (VAChT), in basal forebrain neurons of monkey, as well as human samples. COX1 was decreased in basal forebrain neurons in macaques with AIDS vs. uninfected and asymptomatic SIV-infected macaques. VAChT-positive fiber density was reduced in frontal, parietal and hippocampal-entorhinal cortex. Although brain SIV burden and associated COX1- and COX2-positive mononuclear and endothelial inflammatory reactions were mostly reversed in AIDS-diseased macaques that received 6-chloro-2′,3′-dideoxyguanosine treatment, decreased VAChT-positive terminal density and reduced cholinergic COX1 expression were not. Thus, COX1 expression is a feature of primate cholinergic basal forebrain neurons; it may be functionally important and a critical biomarker of cholinergic dysregulation accompanying lentiviral encephalopathy. These results imply that insufficiently prompt initiation of antiretroviral therapy in lentiviral infection may lead to neurostructurally unremarkable but neurochemically prominent, irreversible brain damage. PMID:22157616
Nrf2 activation protects against solar-simulated ultraviolet radiation in mice and humans
Knatko, Elena V.; Ibbotson, Sally H.; Zhang, Ying; Higgins, Maureen; Fahey, Jed W.; Talalay, Paul; Dawe, Robert S.; Ferguson, James; Huang, Jeffrey T.-J.; Clarke, Rosemary; Zheng, Suqing; Saito, Akira; Kalra, Sukirti; Benedict, Andrea L.; Honda, Tadashi; Proby, Charlotte M.; Dinkova-Kostova, Albena T.
2015-01-01
The transcription factor Nrf2 determines the ability to adapt and survive under conditions of electrophilic, oxidative and inflammatory stress by regulating the expression of elaborate networks comprising nearly 500 genes encoding proteins with versatile cytoprotective functions. In mice, disruption of Nrf2 increases susceptibility to carcinogens and accelerates disease pathogenesis. Paradoxically, Nrf2 is upregulated in established human tumors, but whether this upregulation drives carcinogenesis is not known. Here we show that the incidence, multiplicity and burden of solar-simulated UV radiation-mediated cutaneous tumors that form in SKH-1 hairless mice in which Nrf2 is genetically constitutively activated, are lower than those that arise in their wild-type counterparts. Pharmacological Nrf2 activation by topical bi-weekly applications of small (40 nmol) quantities of the potent bis(cyano enone) inducer TBE-31 has a similar protective effect against solar-simulated UV radiation in animals receiving long-term treatment with the immunosuppressive agent azathioprine. Genetic or pharmacological Nrf2 activation lowers the expression of the pro-inflammatory factors interleukin (IL)-6 and IL-1β, and cyclooxygenase (COX)-2 after acute exposure of mice to UV radiation. In healthy human subjects, topical applications of extracts delivering the Nrf2 activator sulforaphane, reduced the degree of solar-simulated UV radiation-induced skin erythema, a quantifiable surrogate end-point for cutaneous damage and skin cancer risk. Collectively, these data show that Nrf2 is not a driver for tumorigenesis even upon exposure to a very potent and complete carcinogen, and strongly suggest that the frequent activation of Nrf2 in established human tumors is a marker of metabolic adaptation. PMID:25804610
Jeon, Hee-Jin; Yeom, Yiseul; Kim, Yoo-Sun; Kim, Eunju; Shin, Jae-Ho; Seok, Pu Reum; Woo, Moon Jea; Kim, Yuri
2018-04-01
The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis factor-α, Interleukin (IL)-1β , and IL-6 , and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted.
Li, Yuhua; Fan, Lei; Sun, Yang; Zhang, Dian; Yue, Zhenggang; Niu, Yinbo; Meng, Jin; Yang, Tiehong; Liu, Wenchao; Mei, Qibing
2013-10-01
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality in developed countries. Many ingredients of apples have been proven to have anti-inflammatory and anti-carcinogenic characteristics, and show benefits for CRC prevention. The aim of this study, therefore, was to evaluate inhibitory effect of an apple oligogalactan (AOG) on pro-inflammatory endotoxin lipopolysaccharide (LPS)-activated human colon carcinoma cells HT-29 and SW-620 and investigate the possible mechanisms. The two cell lines were pretreated with AOG (0.1-1 g/L) for 30 min and then treated with 10 μg/mL LPS. Real time PCR, Western blot, electrophoretic mobility shift assay (EMSA), and ELISA were used to detect the expression and activity of cyclooxygenase-2 (COX-2), NF-κB and MAPKs pathways. AOG significantly inhibited the expression and activity of COX-2 in LPS-activated human colon carcinoma cells HT-29 and SW-620. The mechanisms of AOG-suppressed COX-2 expression may be through inhibiting the phosphorylation of MAPKs and the activation of NF-κB and AP-1. These data may provide another molecular basis for understanding how apples act to prevent CRC and indicate that AOG may be useful for treatment of colitis and prevention of carcinogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.
Verma, Nandini; Chakrabarti, Rina; Das, Rakha H; Gautam, Hemant K
2012-01-12
Shea butter is traditionally used in Africa for its anti-inflammatory and analgesic effects. In this study we explored the anti-inflammatory activities of the methanolic extract of shea butter (SBE) using lipopolysaccharide (LPS)-induced murine macrophage cell line J774. It was observed that SBE significantly reduced the levels of LPS-induced nitric oxide, Tumor necrosis factor-α (TNF-α), interleukins, 1β (IL-1β), and -12 (IL-12) in the culture supernatants in a dose dependent manner. Expression of pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were also inhibited by SBE. These anti-inflammatory effects were due to an inhibitory action of SBE on LPS-induced iNOS, COX-2, TNF-α, IL-1β, and IL-12 mRNA expressions. Moreover, SBE efficiently suppressed IκB phosphorylation and NF-κB nuclear translocation induced by LPS. These findings explain the molecular bases of shea butter's bioactivity against various inflammatory conditions and substantiate it as a latent source of novel therapeutic agents.
Li, Yi-Ching; Yeh, Chung-Hsin; Yang, Ming-Ling; Kuan, Yu-Hsiang
2012-01-01
Acute lung injury (ALI), instilled by lipopolysaccharide (LPS), is a severe illness with excessive mortality and has no specific treatment strategy. Luteolin is an anti-inflammatory flavonoid and widely distributed in the plants. Pretreatment with luteolin inhibited LPS-induced histological changes of ALI and lung tissue edema. In addition, LPS-induced inflammatory responses, including increased vascular permeability, tumor necrosis factor (TNF)-α and interleukin (IL)-6 production, and expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), were also reduced by luteolin in a concentration-dependent manner. Furthermore, luteolin suppressed activation of NFκB and its upstream molecular factor, Akt. These results suggest that the protection mechanism of luteolin is by inhibition of NFκB activation possibly via Akt.
Rescue strategies against non-steroidal anti-inflammatory drug-induced gastroduodenal damage.
Lim, Yun Jeong; Lee, Jeong Sang; Ku, Yang Suh; Hahm, Ki-Baik
2009-07-01
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed drugs worldwide, which attests to their efficacy as analgesic, antipyretic and anti-inflammatory agents as well as anticancer drugs. However, NSAID use also carries a risk of major gastroduodenal events, including symptomatic ulcers and their serious complications that can lead to fatal outcomes. The development of "coxibs" (selective cyclooxygenase-2 [COX-2] inhibitors) offered similar efficacy with reduced toxicity, but this promise of gastroduodenal safety has only partially been fulfilled, and is now dented with associated risks of cardiovascular or intestinal complications. Recent advances in basic science and biotechnology have given insights into molecular mechanisms of NSAID-induced gastroduodenal damage beyond COX-2 inhibition. The emergence of newer kinds of NSAIDs should alleviate gastroduodenal toxicity without compromising innate drug efficacy. In this review, novel strategies for avoiding NSAID-associated gastroduodenal damage will be described.
Crystallization of recombinant cyclo-oxygenase-2
NASA Astrophysics Data System (ADS)
Stevens, Anna M.; Pawlitz, Jennifer L.; Kurumbail, Ravi G.; Gierse, James K.; Moreland, Kirby T.; Stegeman, Roderick A.; Loduca, Jina Y.; Stallings, William C.
1999-01-01
The integral membrane protein, prostaglandin H 2 synthase, or cyclo-oxygenase (COX), catalyses the first step in the conversion of arachidonic acid to prostaglandins (PGs) and is the target of nonsteroidal anti-inflammatory drugs (NSAIDs). Two isoforms are known. The constitutive enzyme, COX-1, is present in most tissues and is responsible for the physiological production of PGs. The isoform responsible for the elevated production of PGs during inflammation is COX-2 which is induced specifically at inflammatory sites. Three-dimensional structures of inhibitor complexes of COX-2, and of site variants of COX-2 which mimic COX-1, provide insight into the structural basis for selective inhibition of COX-2. Additionally, structures of COX-2 mutants and complexes with the substrate can provide a clearer understanding of the catalytic mechanism of the reaction. A crystallization protocol has been developed for COX-2 which reproducibly yields diffraction quality crystals. Polyethyleneglycol 550 monomethylether (MMP550) and MgCl 2 were systematically varied and used in conjunction with the detergent β- D-octylglucopyranoside ( β-OG). As a result of many crystallization trials, we determined that the initial β-OG concentration should be held constant, allowing the salt concentration to modulate the critical micelle concentration (CMC) of the detergent. Over 25 crystal structures have been solved using crystals generated from this system. Most crystals belong to the space group P2 12 12, with lattice constants of a=180, b=134, c=120 Å in a pseudo body-centered lattice.
Allegrone, Gianna; Pollastro, Federica; Magagnini, Gianmaria; Taglialatela-Scafati, Orazio; Seegers, Julia; Koeberle, Andreas; Werz, Oliver; Appendino, Giovanni
2017-03-24
Canniprene (1), an isoprenylated bibenzyl unique to Cannabis sativa, can be vaporized and therefore potentially inhaled from marijuana. Canniprene (1) potently inhibited the production of inflammatory eicosanoids via the 5-lipoxygenase pathway (IC 50 0.4 μM) and also affected the generation of prostaglandins via the cyclooxygenase/microsomal prostaglandin E 2 synthase pathway (IC 50 10 μM), while the related spiranoid bibenzyls cannabispiranol (2) and cannabispirenone (3) were almost inactive in these bioassays. The concentration of canniprene (1) was investigated in the leaves of 160 strains of C. sativa, showing wide variations, from traces to >0.2%, but no correlation was found between its accumulation and a specific phytocannabinoid profile.
COX-2-derived endocannabinoid metabolites as novel inflammatory mediators.
Alhouayek, Mireille; Muccioli, Giulio G
2014-06-01
Cyclooxygenase-2 (COX-2) is an enzyme that plays a key role in inflammatory processes. Classically, this enzyme is upregulated in inflammatory situations and is responsible for the generation of prostaglandins (PGs) from arachidonic acid (AA). One lesser-known property of COX-2 is its ability to metabolize the endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid metabolism by COX-2 is not merely a means to terminate their actions. On the contrary, it generates PG analogs, namely PG-glycerol esters (PG-G) for 2-AG and PG-ethanolamides (PG-EA or prostamides) for AEA. Although the formation of these COX-2-derived metabolites of the endocannabinoids has been known for a while, their biological effects remain to be fully elucidated. Recently, several studies have focused on the role of these PG-G or PG-EA in vivo. In this review we take a closer look at the literature concerning these novel bioactive lipids and their role in inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Noriko; Matsumura, Fumio; Vogel, Christopher F.A.
2008-09-15
Congenital hydronephrosis is a serious disease occurring among infants and children. Besides the intrinsic genetic factors, in utero exposure to a xenobiotic, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been suggested to induce hydronephrosis in rodents owing to anatomical obstruction in the ureter. Here, we report that hydronephrosis induced in mouse pups exposed lactationally to TCDD is not associated with anatomical obstruction, but with abnormal alterations in the subepithelial mesenchyma of the ureter. In the kidneys of these pups, the expressions of a battery of inflammatory cytokines including monocyte chemoattractant protein (MCP)-1, tumor necrosis factor {alpha} (TNF{alpha}) and interleukin (IL) -1{beta} were up-regulated asmore » early as postnatal day (PND) 7. The amounts of cyclooxygenase (COX) -2 mRNA and protein as well as prostaglandin E2 (PGE{sub 2}) were conspicuously up-regulated in an arylhydrocarbon-receptor-dependent manner in the TCDD-induced hydronephrotic kidney, with a subsequent down-regulation of the gene expressions of Na{sup +} and K{sup +} transporters, NKCC2 and ROMK. Daily administration of a COX-2 selective inhibitor to newborns until PND 7 completely abrogated the TCDD-induced PGE{sub 2} synthesis and gene expressions of inflammatory cytokines and electrolyte transporters, and eventually prevented the onset of hydronephrosis. These findings suggest an essential role of COX-2 in mediating the TCDD action of inducing hydronephrosis through the functional impairment rather than the anatomical blockade of the ureter.« less
Penicillospirone from a marine isolate of Penicillium sp. (SF-5292) with anti-inflammatory activity.
Lee, Seungjun; Kim, Dong-Cheol; Park, Jin-Soo; Son, Jae-Young; Hak Sohn, Jae; Liu, Ling; Che, Yongsheng; Oh, Hyuncheol
2017-08-01
Chemical investigation of the EtOAc extract of a marine-derived fungal isolate Penicillium sp. SF-5292 yielded a new polyketide-type metabolite, penicillospirone (1). The structure of 1 was determined by analysis of spectroscopic data such as 1D and 2D NMR spectra and MS data, and the final structure including absolute configuration was unambiguously established by single-crystal X-ray diffraction analysis. In the evaluation of its anti-inflammatory effects, 1 inhibited the overproduction of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and BV2 microglia, and these inhibitory effects were correlated with the suppressive effect of 1 against overexpressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, 1 also inhibited the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-12. Overall, the anti-inflammatory effect of 1 was suggested to be mediated through the negative regulation of NF-κB pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cao, Xing-Yuan; Dong, Mei; Shen, Jian-Zhong; Wu, Bei-Bei; Wu, Cong-Ming; Du, Xiang-Dang; Wang, Zhuo; Qi, Yi-Tao; Li, Bing-Yu
2006-05-01
Macrolides have been reported to modify the host immune and inflammatory responses both in vivo and in vitro. We examined the in vitro effect of the macrolides tilmicosin and tylosin, which are only used in the veterinary clinic, on the production of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and cytokines by lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and mouse peripheral blood mononuclear cells (PBMCs). Compared with 5 microg/mL, tilmicosin and tylosin concentrations of 10 microg/mL and 20 microg/mL significantly decreased the production of 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha)), PGE(2), NO, tumour necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta and IL-6, and increased IL-10 production. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) gene expression were also significantly reduced. These results support the opinion that macrolides may exert an anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.
Tseng, Chih-Hua; Tung, Chun-Wei; Peng, Shin-I; Chen, Yeh-Long; Tzeng, Cherng-Chyi; Cheng, Chih-Mei
2018-04-28
The synthesis and anti-inflammatory effects of certain pyrazolo[4,3- c ]quinoline derivatives 2a ⁻ 2r are described. The anti-inflammatory activities of these derivatives were evaluated by means of inhibiting nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among them, 3-amino-4-(4-hydroxyphenylamino)-1 H -pyrazolo[4,3- c ]-quinoline ( 2i ) and 4-(3-amino-1 H -pyrazolo[4,3- c ]quinolin-4-ylamino)benzoic acid ( 2m ) exhibited significant inhibition of LPS-stimulated NO production with a potency approximately equal to that of the positive control, 1400 W. Important structure features were analyzed by quantitative structure⁻activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the inhibitory effects on the accumulation of nitric oxide for RAW 264.7 cells in response to LPS. In addition, our results indicated that their anti-inflammatory effects involve the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expression. Further studies on the structural optimization are ongoing.
Li, Jingfen; Yin, Yong; Wang, Lisheng; Liang, Pengyun; Li, Menghua; Liu, Xu; Wu, Lichuan; Yang, Hua
2016-11-23
In this study, a new series of 16 methyl salicylate derivatives bearing a piperazine moiety were synthesized and characterized. The in vivo anti-inflammatory activities of target compounds were investigated against xylol-induced ear edema and carrageenan-induced paw edema in mice. The results showed that all synthesized compounds exhibited potent anti-inflammatory activities. Especially, the anti-inflammatory activities of compounds M15 and M16 were higher than that of aspirin and even equal to that of indomethacin at the same dose. In addition, the in vitro cytotoxicity activities and anti-inflammatory activities of four target compounds were performed in RAW264.7 macrophages, and compound M16 was found to significantly inhibit the release of lipopolysaccharide (LPS)-induced interleukin (IL)-6 and tumor necrosis factor (TNF)-α in a dose-dependent manner. In addition, compound M16 was found to attenuate LPS induced cyclooxygenase (COX)-2 up-regulation. The current preliminary study may provide information for the development of new and safe anti-inflammatory agents.
Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis
Gandhi, Jaya; Khera, Lohit; Gaur, Nivedita; Paul, Catherine; Kaul, Rajeev
2017-01-01
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer. PMID:28400769
Poxvirus-induced alteration of arachidonate metabolism.
Palumbo, G J; Glasgow, W C; Buller, R M
1993-01-01
Recent evidence suggests that orthopoxviruses have an obligate requirement for arachidonic acid metabolites during replication in vivo and in vitro. Our report indicates that a virus family (Poxviridae) possesses multiple genes that function to regulate arachidonate metabolism. Analyses of BS-C-1 cells infected with cowpox virus or vaccinia virus detected enhanced arachidonate product formation from both the cyclooxygenase (specifically prostaglandins E2 and F2 alpha) and lipoxygenase (specifically 15-hydroxyeicosatetraenoic acid and 12-hydroxyeicosatetraenoic acid) pathways. In contrast, human parainfluenza type 3 or herpes simplex virus type 1 infections did not increase arachidonate metabolism. Results were consistent with a virus early-gene product either directly mediating or inducing a host factor that mediated the up-regulation of arachidonate metabolism, although vaccinia growth factor was not responsible. In addition, the cowpox virus 38-kDa protein-encoding gene, which is associated with inhibition of an inflammatory response, correlated with inhibition of formation of a product biochemically characteristic of (14R,15S)-dihydroxyeicosatetraenoic acid. We propose that orthopoxvirus-induced up-regulation of arachidonic acid metabolism during infection renders the infected cells susceptible to generation of inflammatory mediators from both the cyclooxygenase and the lipoxygenase pathways, and poxviruses, therefore, possess at least one gene (38K) that can alter the lipoxygenase-metabolite spectrum. PMID:8383332
Oates, Jim C; Halushka, Perry V; Hutchison, Florence N; Ruiz, Philip; Gilkeson, Gary S
2011-02-01
Proliferative lupus nephritis (LN) is marked by increased renal thromboxane (TX) A₂ production. Targeting the TXA₂ receptor or TXA₂ synthase effectively improves renal function in humans with LN and improves glomerular pathology in murine LN. This study was designed to address the following hypotheses: (1) TXA₂ production in the MRL/MpJ-Tnfrsf6(lpr)/J (MRL/lpr) model of proliferative LN is cyclooxygenase (COX)-2 dependent and (2) COX2 inhibitor therapy improves glomerular filtration rate (GFR), proteinuria, markers of innate immune response and glomerular pathology. Twenty female MRL/lpr and 20 BALB/cJ mice were divided into 2 equal treatment groups: (1) SC-236, a moderately selective COX2 inhibitor or (2) vehicle. After treatment from the age of 10 to 20 weeks, the effectiveness of inhibition of TXA₂ was determined by measuring urine TXB₂. Response endpoints measured at the age of 20 weeks were renal function (GFR), proteinuria, urine nitrate + nitrite (NO(x)) and glomerular histopathology. SC-236 therapy reduced surrogate markers of renal TXA₂ production during early, active glomerulonephritis. When this pharmacodynamic endpoint was reached, therapy improved GFR. Parallel reductions in markers of the innate immune response (urine NO(x)) during therapy were observed. However, the beneficial effect of SC-236 therapy on GFR was only transient, and renal histopathology was not improved in late disease. These data demonstrate that renal TXA2 production is COX2 dependent in murine LN and suggest that NO production is directly or indirectly COX2 dependent. However, COX2 inhibitor therapy in this model failed to improve renal pathology, making COX2 inhibition a less attractive approach for treating LN.
Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain
2005-01-01
Cyclo-oxygenases (COXs) catalyse the synthesis of PGH2 (prostaglandin H2), which serves as the common substrate for the production of PGE2, PGD2, PGF2α, prostacyclin (or PGI2) and TXs (thromboxanes). While COX-1 is the major isoform responsible for prostanoid synthesis in healthy tissues, little information is available on the contribution of constitutive COX-2 to the various prostanoid synthetic pathways under non-inflammatory conditions. To evaluate further the role of COX-2 in prostanoid biosynthesis, rats were acutely treated with the selective COX-1 inhibitor SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or the selective COX-2 inhibitors MF tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulphonyl)phenyl)-2-(5H)-furanone] and DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone]. Selected tissues were then processed for a complete analysis of their prostanoid content by liquid chromatography MS. Whereas the treatment with SC-560 caused a 60–70% inhibition in the total prostanoid content of most tissues examined, a significant decrease (35–50%) in total prostanoid content following selective COX-2 inhibition was solely detected for kidney and brain tissues. Analysis of the individual prostanoids reveals significant inhibition of 6-oxo-PGF1α, PGE2, PGD2, PGF2α and TXB2 in the kidney and inhibition of all these prostanoids with the exception of PGD2 in the forebrain. These results demonstrate that constitutively expressed COX-2 contributes to the production of prostanoids in kidney and brain for each of the PGE2, PGI2 and TXB2 pathways under non-inflammatory conditions. Approaches to modulate inflammation through specific inhibition of terminal synthases, such as mPGES-1 (microsomal PGE2 synthase-1), thus have the potential to differ from COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs with regard to effects on constitutive prostanoid synthesis and on renal function. PMID:16008526
Immunohistochemical expression of cyclooxygenase-2 (COX-2) in oral nevi and melanoma.
de Souza do Nascimento, Juliana; Carlos, Román; Delgado-Azañero, Wilson; Mosqueda Taylor, Adalberto; de Almeida, Oslei Paes; Romañach, Mário José; de Andrade, Bruno Augusto Benevenuto
2016-07-01
Cyclooxygenase-2 (COX-2) catalyses the conversion of arachidonic acid to prostaglandin, and its overexpression has been demonstrated in different malignant tumors, including cutaneous melanoma. However, no data about the expression of this protein in oral melanocytic lesions are available to date. The aim of this study was to evaluate the immunohistochemical expression of COX-2 in oral nevi and melanomas, comparing the results with correspondent cutaneous lesions. COX-2 was evaluated by immunohistochemistry in 49 oral melanocytic lesions, including 36 intramucosal nevi and 13 primary oral melanomas, and in four cutaneous nevi and eight melanomas. All cases of oral and cutaneous melanomas were positive for COX-2. On the other hand, all oral and cutaneous melanocytic nevi were negative. COX-2 is highly positive in oral melanomas and negative in oral nevi and might represent a useful marker to distinguish melanocytic lesions of the oral cavity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chattopadhyay, Pronobesh; Hazarika, Soilyadhar; Dhiman, Sunil; Upadhyay, Aadesh; Pandey, Anurag; Karmakar, Sanjeev; Singh, Lokendra
2012-01-01
Background: Vitex negundo L. (Verbenaceae) is a hardy plant widely distributed in the Indian subcontinent and used for treatment of a wide spectrum of health disorders in traditional and folk medicine, some of which have been experimentally validated. In present study, we aimed to investigate the anti-inflammatory effects of V. negundo in carrageenan-induced paw edema in rats, and to investigate the probable mechanism of anti-inflammatory action. Materials and Methods: Paw edema was produced by injecting 1% solution of carrageenan, and the paw volume was measured before and after carrageenan injection up to 5 h. V. negundo leaf oil was extracted using a Clevenger apparatus and administered by a trans-dermal route to Wistar rats and the percentage of inhibition of inflammation was observed using a Plethysmometer by comparing a compound aerosol-based formulation with 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP/kg body weight served as a standard drug whereas paraffin oil served as the placebo group. After withdrawing of blood, serum was separated and cyclooxygenase (COX)-1 and COX-2 inhibitory activities were measured by the enzyme immuno assay (EIA) method by using a COX inhibitor screening assay kit. Results and Discussion: V. negundo leaf oil significantly (P < 0.05) reduced the carrageenan-induced paw edema as compared to the placebo group (paraffin oil) and 1 mg diclofinac diethylamine BP and 7 mg methyl salicylate IP showed the maximum inhibition of paw edema as compared to the V. negundo leaf oil treated group and the control group. Also in the present study V. negundo leaf oil showed significantly (P < 0.05) inhibits COX-1 pathways rather than COX-2 pathways as compared to the V. negundo leaf oil treated group. Conclusion: It is suggested that the V. negundo leaf oil is a potent anti-inflammatory agent and acts via inhibition of COX-2 without much interfering COX-1 pathways. PMID:22923950
Peripheral analgesic sites of action of anti-inflammatory drugs.
Ferreira, S H
2002-07-01
Inflammatory signs and symptoms of redness, swelling, heat and pain are due to the effects of inflammatory mediators released during the inflammatory response. Depending on the type of injurious stimuli and the tissue involved, the array of mediators may differ but eicosanoids are involved in the genesis of inflammatory pain. They are responsible for the hypersensitisation of the nociceptors (allodynialhyperalgesia). The basic mechanism of analgesic action of nonsteroidal anti-inflammatory drugs results from the inhibition of prostaglandin synthesis (prostacyclin or PGE2), thus preventing nociceptor threshold lowering. Because there is a temporal hierarchy in the release of inflammatory mediators, there are several targets for the action of peripheral acting analgesics before and after the inhibition of prostaglandin synthesis. Blockade of the release and inhibition of inducible cyclooxygenase explain the analgesic action of glucocorticoids. Nimesulide also has an inhibitory action on the cascade of hypersensitising cytokines. Some analgesics, such as dipyrone, flurbiprofen or diclofenac, act directly upon ongoing inflammatory hypersensitisation. Those analgesics restore the nociceptor by stimulating the arginine/NO/cGMP/K(ATP) channel pathway.
Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.
Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín
2014-10-01
Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.
Sohn, Sang-Hyun; Yun, Bong-Sik; Kim, So-Young; Choi, Wahn-Soo; Jeon, Hyun-Soo; Yoo, Jun-Sik; Kim, Si-Kwan
2013-01-01
We isolated a sesquiterpene lactone from the methanol extract of the roots of Cosmos bipinnatus, namely, MDI (a mixture of dihydrocallitrisin and isohelenin). The anti-inflammatory activity of MDI was evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. MDI significantly inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2. Consistent with these results, the production of NO and prostaglandin E2 (PGE2) was suggested to be suppressed by MDI in a concentration-dependent manner (IC50 value was 0.94 and 2.88 µg mL(-1) for NO and PGE2, respectively). In addition, MDI significantly inhibited the expressions of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ and TNF-α. Furthermore, MDI attenuated DNA-binding activity of NF-κB by inhibiting the phosphorylation of IκB. These results indicate that MDI isolated from the roots of C. bipinnatus shows anti-inflammatory activity in LPS-stimulated murine macrophages by modulating the NF-κB pathway.
Sobeh, Mansour; Mahmoud, Mona F.; Petruk, Ganna; Rezq, Samar; Ashour, Mohamed L.; Youssef, Fadia S.; El-Shazly, Assem M.; Monti, Daria M.; Abdel-Naim, Ashraf B.; Wink, Michael
2018-01-01
Syzygium aqueum is widely used in folk medicine. A polyphenol-rich extract from its leaves demonstrated a plethora of substantial pharmacological properties. The extract showed solid antioxidant properties in vitro and protected human keratinocytes (HaCaT cells) against UVA damage. The extract also reduced the elevated levels of ALT, AST, total bilirubin (TB), total cholesterol (TC) and triglycerides (TG) in rats with acute CCl4 intoxication. In addition to reducing the high MDA level, the extract noticeably restored GSH and SOD to the normal control levels in liver tissue homogenates and counteracted the deleterious histopathologic changes in liver after CCl4 injection. Additionally, the extract exhibited promising anti-inflammatory activities in vitro where it inhibited LOX, COX-1, and COX-2 with a higher COX-2 selectivity than that of indomethacin and diclofenac and reduced the extent of lysis of erythrocytes upon incubation with hypotonic buffer solution. S. aqueum extract also markedly reduced leukocyte numbers with similar activities to diclofenac in rats challenged with carrageenan. Additionally, administration of the extract abolished writhes induced by acetic acid in mice and prolonged the response latency in hot plate test. Meanwhile, the identified polyphenolics from the extract showed a certain affinity for the active pockets of 5-lipoxygenase (5-LOX), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) explaining the observed anti-inflammatory activities. Finally, 87 secondary metabolites (mostly phenolics) were tentatively identified in the extract based on LC-MS/MS analyses. Syzygium aqueum displays good protection against oxidative stress, free radicals, and could be a good candidate for treating oxidative stress related diseases. PMID:29922158
Shafi, Syed; Alam, Mohammad Mahboob; Mulakayala, Naveen; Mulakayala, Chaitanya; Vanaja, G; Kalle, Arunasree M; Pallu, Reddanna; Alam, M S
2012-03-01
A focused library of novel bis-heterocycles encompassing 2-mercapto benzothiazole and 1,2,3-triazoles were synthesized using click chemistry approach. The synthesized compounds have been tested for their anti-inflammatory activity by using biochemical cyclooxygenase (COX) activity assays and carrageenan-induced hind paw edema. Among the tested compounds, compound 4d demonstrated a potent selective COX-2 inhibition with COX-2/COX-1 ratio of 0.44. Results from carrageenan-induced hind paw edema showed that compounds 4a, 4d, 4e and 4f posses significant anti-inflammatory activity as compared to the standard drug Ibuprofen. The compounds showing significant activity were further subjected to anti-nociceptive activity by writhing test. These four compounds have shown comparable activity with the standard Ibuprofen. Further ulcerogenic studies shows that none of these compounds causing gastric ulceration. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
A REVIEW OF ANTI-INFLAMMATORY AGENTS FOR SYMPTOMS OF SCHIZOPHRENIA
Keller, William R.; Kum, Lionel M.; Wehring, Heidi J.; Koola, Maju Mathew; Buchanan, Robert W.; Kelly, Deanna L.
2013-01-01
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the U.S population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as nonsteroidal anti-inflammatory agents, such as the cyclooxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia. PMID:23151612
A review of anti-inflammatory agents for symptoms of schizophrenia.
Keller, William R; Kum, Lionel M; Wehring, Heidi J; Koola, Maju Mathew; Buchanan, Robert W; Kelly, Deanna L
2013-04-01
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia.
Can, Nafiz Öncü; Çevik, Ulviye Acar; Sağlık, Begüm Nurpelin; Özkay, Yusuf; Atlı, Özlem; Baysal, Merve; Özkay, Ümide Demir; Can, Özgür Devrim
2017-08-19
The aim of this study was to investigate acetylcholinesterase (AChE), monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme inhibitory, and antimicrobial activities of a new series of 2-(4-substituted phenyl)-1-[2-(morpholin-4-yl)ethyl]-1 H -benzimidazole derivatives, for their possible use as multi-action therapeutic agents. Target compounds ( n = 15) were synthesized under microwave irradiation conditions in two steps, and their structures were elucidated by FT-IR, ¹H-NMR, 13 C-NMR and high resolution mass spectroscopic analyses. Pharmacological screening studies revealed that two of the compounds ( 2b and 2j ) have inhibitory potential on both COX-1 and COX-2 enzymes. In addition, cytotoxic and genotoxic properties of the compounds 2b , 2j and 2m were investigated via the well-known MTT and Ames tests, which revealed that the mentioned compounds are non-cytotoxic and non-genotoxic. As a concise conclusion, two novel compounds were characterized as potential candidates for treatment of frequently encountered inflammatory diseases.
Chytilová, A; Borchert, G H; Mandíková-Alánová, P; Hlaváčková, M; Kopkan, L; Khan, Md A Hye; Imig, J D; Kolář, F; Neckář, J
2015-05-01
It has been demonstrated that tumour necrosis factor-alpha (TNF-α) via its receptor 2 (TNFR2) plays a role in the cardioprotective effects of preconditioning. It is also well known that chronic hypoxia is associated with activation of inflammatory response. With this background, we hypothesized that TNF-α signalling may contribute to the improved ischaemic tolerance of chronically hypoxic hearts. Adult male Wistar rats were kept either at room air (normoxic controls) or at continuous normobaric hypoxia (CNH; inspired O2 fraction 0.1) for 3 weeks; subgroups of animals were treated with infliximab (monoclonal antibody against TNF-α; 5 mg kg(-1), i.p., once a week). Myocardial levels of oxidative stress markers and the expression of selected signalling molecules were analysed. Infarct size (tetrazolium staining) was assessed in open-chest rats subjected to acute coronary artery occlusion/reperfusion. CNH increased myocardial TNF-α level and expression of TNFR2; this response was abolished by infliximab treatment. CNH reduced myocardial infarct size from 50.8 ± 4.3% of the area at risk in normoxic animals to 35.5 ± 2.4%. Infliximab abolished the protective effect of CNH (44.9 ± 2.0%). CNH increased the levels of oxidative stress markers (3-nitrotyrosine and malondialdehyde), the expression of nuclear factor κB and manganese superoxide dismutase, while these effects were absent in infliximab-treated animals. CNH-elevated levels of inducible nitric oxide synthase and cyclooxygenase 2 were not affected by infliximab. TNF-α plays a role in the induction of ischaemia-resistant cardiac phenotype of CNH rats, possibly via the activation of protective redox signalling. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
The eicosanoid response to high dose UVR exposure of individuals prone and resistant to sunburn.
Nicolaou, Anna; Masoodi, Mojgan; Gledhill, Karl; Haylett, Ann Katarina; Thody, Anthony John; Tobin, Desmond John; Rhodes, Lesley Elizabeth
2012-02-01
High personal UVR doses can be gained during leisure activities, causing intense self-resolving inflammation (sunburn) of unprotected skin. UVR activates release of membrane fatty acids and upregulates their metabolism by cyclooxygenases (COX) and lipoxygenases (LOX) to different eicosanoids. While COX-derived prostaglandin (PG)E(2) is a potent mediator of sunburn vasodilatation, LOX-derived 15-hydroxyeicosatetraenoic acid (HETE) and its lipoxin metabolites may contribute to sunburn limitation. We explored the relationships between expression of these lipid mediators and the clinical and histological outcomes, comparing responses of individuals prone and more resistant to sunburn. An acute UVR exposure of 12 SED (standard erythema dose) was applied to buttock skin of 32 white Caucasians (n = 16 phototype I/II, n = 16 phototype III/IV), and over the subsequent 72 h assessments were made of skin erythema, immunohistochemical expression of leukocyte markers, COX-2, 12-LOX, 15-LOX and nitric oxide synthase (NOS), and eicosanoid levels by LC/ESI-MS/MS. Evidence of a significant inflammatory response was seen earlier in phototype I/II with regard to expression of erythema (4 h, p < 0.001), neutrophil infiltration (24 h, p = 0.01), epidermal COX-2 (24 h, p < 0.05) and 12-LOX (24 h, p < 0.01), and dermal eNOS (24 h, p < 0.05) proteins, although CD3+ lymphocyte infiltration showed an earlier increase in phototype III/IV (24 h, p < 0.05). Although erythema was equivalent at 72 h in both groups, phototype I/II showed higher PGE(2) accompanied by elevated 15-HETE, and a strong positive correlation was seen between these mediators (n = 18, r = 0.805, p = 0.0001). Hence anti-inflammatory eicosanoid 15-HETE may temper the pro-inflammatory milieu in sunburn, having greater influence in those prone to sunburn than those more resistant, given the same high UVR exposure conditions. This journal is © The Royal Society of Chemistry and Owner Societies 2012
Bacopa monniera (L.) wettst inhibits type II collagen-induced arthritis in rats.
Viji, V; Kavitha, S K; Helen, A
2010-09-01
Bacopa monniera (L.) Wettst is an Ayurvedic herb with antirheumatic potential. This study investigated the therapeutic efficacy of Bacopa monniera in treating rheumatoid arthritis using a type II collagen-induced arthritis rat model. Arthritis was induced in male Wistar rats by immunization with bovine type II collagen in complete Freund's adjuvant. Bacopa monniera extract (BME) was administered after the development of arthritis from day 14 onwards. The total duration of experiment was 60 days. Paw swelling, arthritic index, inflammatory mediators such as cyclooxygenase, lipoxygenase, myeloperoxidase and serum anti-collagen IgG and IgM levels were analysed in control and experimental rats. Arthritic induction significantly increased paw edema and other classical signs of arthritis coupled to upregulation of inflammatory mediators such as cyclooxygenase, lipoxygenase, neutrophil infiltration and increased anti-collagen IgM and IgG levels in serum. BME significantly inhibited the footpad swelling and arthritic symptoms. BME was effective in inhibiting cyclooxygenase and lipoxygenase activities in arthritic rats. Decreased neutrophil infiltration was evident from decreased myeloperoxidase activity and histopathological data where an improvement in joint architecture was also observed. Serum anti-collagen IgM and IgG levels were consistently decreased. Thus the study demonstrates the potential antiarthritic effect of Bacopa monniera for treating arthritis which might confer its antirheumatic activity. Copyright 2010 John Wiley & Sons, Ltd.
Jeong, Jin-Woo; Lee, Won Sup; Shin, Sung Chul; Kim, Gi-Young; Choi, Byung Tae; Choi, Yung Hyun
2013-01-01
Anthocyanins are naturally occurring polyphenols that impart bright color to fruits, vegetables and plants and have a variety of protective properties, which have generally been attributed to their antioxidant capacity. However, little is known about the molecular mechanisms underlying anti-inflammatory effects of anthocyanins related to neurodegenerative diseases. Therefore, we determined whether anthocyanins isolated from black soybean seed coats would inhibit pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglial cells. Our results showed that anthocyanins significantly inhibited LPS-induced pro-inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2, and pro-inflammatory cytokines including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, without significant cytotoxicity. Anthocyanins also downregulated excessive expression of inducible NO synthase, cyclooxygenase-2, TNF-α, and IL-1β in LPS-stimulated BV2 cells. Moreover, anthocyanins inhibited nuclear translocation of nuclear factor-kappa B (NF-κB) by reducing inhibitor of NF-κB alpha degradation as well as phosphorylating extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and Akt. These findings suggest that anthocyanins may offer substantial therapeutic potential for treating inflammatory and neurodegenerative diseases accompanied by microglial activation. PMID:23344054
Anti-inflammatory activity of copao (Eulychnia acida Phil., Cactaceae) fruits.
Jiménez-Aspee, Felipe; Alberto, Maria Rosa; Quispe, Cristina; Soriano, Maria del Pilar Caramantin; Theoduloz, Cristina; Zampini, Iris Catiana; Isla, Maria Ines; Schmeda-Hirschmann, Guillermo
2015-06-01
Copao (Eulychnia acida Phil., Cactaceae) is an endemic species occurring in northern Chile. The edible fruits of this plant are valued for its acidic and refreshing taste. Phenolic-enriched extracts from copao fruit pulp and epicarp, collected in the Elqui and Limari river valleys, were assessed by its in vitro ability to inhibit the pro-inflammatory enzymes lipoxygenase (LOX) and cyclooxygenases (COX-1 and COX-2). At 100 μg/mL, pulp extracts showed better effect towards LOX than epicarp extract, while COX-2 inhibition was observed for both epicarp and pulp samples. In general, the extracts were inactive towards COX-1. A positive correlation was observed between the anti-inflammatory activity and the main phenolic compounds found in this fruit. Copao fruits from the Limari valley, a main place of collection and commercialization, showed major activity, adding evidence on the possible health-beneficial effects of this native Chilean fruit.
Peng, Hong; Chen, Ping; Cai, Ying; Chen, Yan; Wu, Qing-Hua; Li, Yun; Zhou, Rui; Fang, Xiang
2008-03-01
Inducible cyclooxygenase (COX-2) and inflammatory cytokines play important roles in inflammatory processes of chronic obstructive pulmonary disease (COPD). Endothelin-1 (ET-1) might be also involved in the pathophysilogical processes in COPD. In the present study, we determined whether ET-1 could regulate the expression of COX-2 and alter the production of interleukin-8 (IL-8) in human pulmonary epithelial cells (A549). Induced sputum samples were collected from 13 stable COPD patients and 14 healthy subjects. The COX-2 protein, ET-1, PGE(2) and IL-8 in these sputum samples were analyzed. A549 cells were incubated with ET-1 in the presence or absence of celecoxib, a selective COX-2 inhibitor. The expression of COX-2 protein in the cell and the amounts of PGE(2) and IL-8 in the medium were measured. The levels of COX-2 protein, ET-1, PGE(2) and IL-8 were significantly increased in induced sputum from COPD patients when compared to healthy subjects. ET-1 increased the expression of COX-2 protein, as well as the production of PGE(2) in A549 cells. Increased production of PGE(2) was inhibited by celecoxib. ET-1 also increased the production of IL-8. Interestingly, ET-1-induced production of IL-8 was also inhibited by celecoxib. These findings indicate that ET-1 plays important roles in regulating COX-2 expression and production of IL-8 in A549 cells. ET-1 mediated production of IL-8 is likely through a COX-2-dependent mechanism.
Min, Sung-Won; Kim, Nam-Jae; Baek, Nam-In; Kim, Dong-Hyun
2009-09-25
Artemisia princeps Pampanini (family Asteraceae) is an herbal medicine widely used as a hepatoprotective, antioxidative, anti-inflammatory, and antibacterial agent in Korea, China, and Japan. This study aimed to elucidate the anti-inflammatory effect of the main constituents, eupatilin and jaceosidin, isolated from Artemisia princeps. We used carrageenan-induced inflammation in an air pouch on the back of mice and carrageenan-induced hind paw edema in rats to determine the anti-inflammatory effects of eupatilin and jaceosidin. Inflammatory makers, such as expression of pro-inflammatory cytokines and cyclooxygenase (COX)-2, and activation of nuclear factor-kappa B (NF-kappaB), were measured by enzyme-linked immunosorbent assays and immunoblot analyses. Eupatilin and jaceosidin blocked carrageenan-induced increase in leukocyte number and protein levels in air pouch exudates. Eupatilin and jaceosidin inhibited COX-2 expression and NF-kappaB activation, and markedly reduced TNF-alpha, IL-1beta, and prostaglandin E2 (PGE(2)) levels. They also inhibited hind paw edema induced by carrageenan. Eupatilin and jaceosidin had similar activity. These findings suggest that eupatilin and jaceosidin may reduce inflammation by inhibiting NF-kappaB activation, and that Artemisia princeps inhibits inflammation because of these constituents.
Narita, M; Shimamura, M; Imai, S; Kubota, C; Yajima, Y; Takagi, T; Shiokawa, M; Inoue, T; Suzuki, M; Suzuki, T
2008-03-18
The present study investigated whether the endogenous pro-inflammatory cytokines [interleukin (IL)-1beta and tumor necrosis factor-alpha (TNF-alpha)]-dependent expression of cyclooxygenase-2 (COX-2) mRNA within the spinal cord could be involved in the development of chronic inflammatory pain-like behaviors in mice. We demonstrated that the expression of COX-2 mRNA on the ipsilateral side of the spinal cord was significantly increased 6 h and 3 days after intraplantar injection of complete Freund's adjuvant (CFA), compared with the expression in saline-treated mice. In addition, the chronic pain-like behaviors following CFA injection were markedly suppressed by repeated intrathecal (i.t.) pre-treatment with the COX-2 inhibitor etodolac, but not with the COX-1 inhibitor mofezolac. The cytosolic level of the activated form of nuclear factor-kappa B (NF-kappaB), which is a major contributor to the induction of COX-2, on the ipsilateral side of the mouse spinal cord was also increased compared with that in the saline-treated mice. The key finding in the present study was that a single i.t. injection with either IL-1beta or TNF-alpha induced a marked increase in spinal COX-2 mRNA and persistent thermal hyperalgesia in mice. Furthermore, CFA-induced hypersensitivity to inflammatory pain was significantly reduced by repeated i.t. pre-injection of the recombinant Fc chimera of IL-1 receptor I or soluble TNF receptor I, which sequesters endogenous IL-1beta or TNF-alpha, respectively. In contrast, the expression of spinal COX-2 mRNA in CFA-treated mice was similar to that in saline-treated mice at 7 days after CFA injection. The present findings strongly indicate the early intrathecal use of the COX-2 inhibitor for the relief of chronic inflammatory pain. Furthermore, together with the result in a previous study that pro-inflammatory cytokines lead to stimulation of a NF-kappaB-dependent transcriptional pathway, these findings suggest that a spinal cytokine/NF-kappaB/COX-2 pathway may play an important role in the development, but not maintenance, of chronic pain following peripheral tissue inflammation.
Drug Targets for Cardiovascular-Safe Anti-Inflammatory: In Silico Rational Drug Studies
Shahbazi, Sajad; Sahrawat, Tammanna R.; Ray, Monalisa; Dash, Swagatika; Kar, Dattatreya; Singh, Shikha
2016-01-01
Cyclooxygenase-2 (COX-2) plays an important role in memory consolidation and synaptic activity, the most fundamental functions of the brain. It converts arachidonic acid to prostaglandin endoperoxide H2. In contrast, if over-expressed, it causes inflammation in response to cytokine, pro-inflammatory molecule, and growth factor. Anti-inflammatory agents, by allosteric or competitive inhibition of COX-2, alleviate the symptoms of inflammation. Coxib family drugs, particularly celecoxib, are the most famous anti-inflammatory agents available in the market showing significant inhibitory effect on COX-2 activity. Due to high cardiovascular risk of this drug group, recent researches are focused on the investigation of new safer drugs for anti-inflammatory diseases. Natural compounds, particularly, phytochemicals are found to be good candidates for drug designing and discovery. In the present study, we performed in silico studies to quantitatively scrutinize the molecular interaction of curcumin and its structural analogs with COX-2, COX-1, FXa and integrin αIIbβIII to investigate their therapeutic potential as a cardiovascular-safe anti-inflammatory medicine (CVSAIM). The results of both ADMET and docking study indicated that out of all the 39 compounds studied, caffeic acid had remarkable interaction with proteins involved in inflammatory response. It was also found to inhibit the proteins that are involved in thrombosis, thereby, having the potential to be developed as therapeutic agent. PMID:27258084
The Role of the Y-Located TSPY Gene in Prostatic Oncongenesis
2006-02-01
Vizantios Y, Freeman R, Sicurella C, Hammett F, Armes J, Venter D. Cyclooxygenase-2, a colorectal cancer nonsteroidal anti - inflammatory drug target, is...antibodies were detected using ap- propriate secondary antibodies (1:4,000 peroxidase conjugated Donkey anti rabbit/Sheep anti mouse [Amersham...known as ( non )dysgerminomas of the ovary and dysgenetic gonad, and ( non )germinomas of the brain. Various risk factors for these types of GCTs have beenary
Wun, Zih-Yi; Lin, Chwan-Fwu; Huang, Wen-Chung; Huang, Yu-Ling; Xu, Pei-Yin; Chang, Wei-Tien; Wu, Shu-Ju; Liou, Chian-Jiun
2013-12-01
Sophoraflavanone G (SG; 5,7,D, 2',4'-tetrahydroxy-8-lavandulylflavanone) has been isolated from Sophora flavescens and found to be effective against bacteria and to decrease cyclooxygenase (COX)-2 expression in RAW 264.7 macrophage. However, the anti-inflammatory mechanisms of SG are not well understood. RAW 264.7 cells were pretreated with various concentrations of SG (2.5-20 μM) and inflammatory responses were induced with lipopolysaccharide. Using enzyme-linked immunosorbent assay, the levels of pro-inflammatory cytokines and prostaglandin E2 (PGE2) were determined. Western blot was used to examine the protein expression of inducible nitric oxide synthase (iNOS), COX-2, and heme oxygenase-1 (HO-1). To investigate the molecular mechanism, we analyzed inflammatory-associated signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK). SG inhibited the levels of nitric oxide and PGE2 and decreased the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α. The expression of iNOS and COX-2 was also suppressed. However, SG increased HO-1 production in a concentration-dependent manner and significantly decreased MAPK activation and inhibited NF-κB subunit p65 proteins to translocate into the nucleus. These results suggest that SG has an anti-inflammatory effect, inhibiting pro-inflammatory cytokines and mediators production via interruption of the NF-κB and MAPK signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.
Antioxidant and anti-inflammatory effects of flavocoxid in high-cholesterol-fed rabbits.
El-Sheakh, Ahmed R; Ghoneim, Hamdy A; Suddek, Ghada M; Ammar, El-Sayed M
2015-12-01
Flavocoxid is a mixed extract containing baicalin and catechin, and it acts as a dual balanced inhibitor of cyclooxygenase-1 (COX-1) and COX-2 peroxidase enzyme activities with a significant inhibition of 5-lipoxygenase (5-LOX) enzyme activity in vitro. Flavocoxid downregulates gene or protein expression of several inflammatory markers and exerts also strong antioxidant activity in several experimental models. Inflammation and oxidative stress contribute in the pathogenesis of atherosclerosis. In the present study, an experimental rabbit model of hypercholesterolemia was developed and the effects of flavocoxid were evaluated. Rabbits were divided into four groups-normal control, high-cholesterol-diet (HCD)-fed group, HCD plus flavocoxid (20 mg/kg/day), or HCD plus atorvastatin (10 mg/kg/day). Blood samples were collected at the end of the experiment for measuring serum total cholesterol (TC), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD). In addition, the aorta was removed for measurement of antioxidant status, vascular reactivity, and intima/media (I/M) ratio. Elevated levels of serum TC, TGs, LDL-C, and CRP were measured in HCD group. Moreover, HCD caused a significant increase in serum and aortic MDA concomitantly with a reduction in serum and aortic GSH and SOD. Immunohistochemical staining of aortic specimens from HCD-fed rabbits revealed high expression levels of both tumor necrosis factor-alpha (TNF-α) and nuclear factor (NF)-κB. Rabbits in flavocoxid group showed significantly lower levels of serum CRP, serum, and aortic MDA and higher levels of serum HDL-C, serum, and aortic GSH and SOD compared to HCD group. HCD-induced elevations in serum TC and LDL-C did not significantly affected by flavocoxid treatment. Additionally, flavocoxid significantly enhanced rabbit aortic endothelium-dependent relaxation to acetylcholine and decreased the elevated I/M ratio. This effect was confirmed by histopathological examination of the aorta. Moreover, flavocoxid effectively suppresses the release of inflammatory markers. In conclusion, these findings demonstrated that flavocoxid would be useful in preventing oxidative stress, inflammation, and vascular dysfunction induced by HCD.
Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.
Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın
2017-10-01
Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.
2013-01-01
Background Inflammation is a common feature in the majority of cardiovascular disease, including Diabetes Mellitus (DM). Levels of pro-inflammatory markers have been found in increasing levels in serum from diabetic patients (DP). Moreover, levels of Cyclooxygenase-2 (COX-2) are increased in coronary arteries from DP. Methods Through a cross-sectional design, patients who underwent CABG were recruited. Vascular smooth muscle cells (VSMC) were cultured and COX-2 was measured by western blot. Biochemical and clinical data were collected from the medical record and by blood testing. COX-2 expression was analyzed in internal mammary artery cross-sections by confocal microscopy. Eventually, PGI2 and PGE2 were assessed from VSMC conditioned media by ELISA. Results Only a high glucose concentration, but a physiological concentration of triglycerides exposure of cultured human VSMC derived from non-diabetic patients increased COX-2 expression .Diabetic patients showed increasing serum levels of glucose, Hb1ac and triglycerides. The bivariate analysis of the variables showed that triglycerides was positively correlated with the expression of COX-2 in internal mammary arteries from patients (r2 = 0.214, P < 0.04). Conclusions We conclude that is not the glucose blood levels but the triglicerydes leves what increases the expression of COX-2 in arteries from DP. PMID:23642086
Larussa, Tiziana; Oliverio, Manuela; Suraci, Evelina; Greco, Marta; Placida, Roberta; Gervasi, Serena; Marasco, Raffaella; Imeneo, Maria; Paolino, Donatella; Tucci, Luigi; Gulletta, Elio; Fresta, Massimo; Procopio, Antonio; Luzza, Francesco
2017-01-01
Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models. The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from Escherichia coli (EC-LPS) at 1 μg/mL in the presence or absence of 3 mM OLE. The expression of cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03, respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment of UC. PMID:28420140
Larussa, Tiziana; Oliverio, Manuela; Suraci, Evelina; Greco, Marta; Placida, Roberta; Gervasi, Serena; Marasco, Raffaella; Imeneo, Maria; Paolino, Donatella; Tucci, Luigi; Gulletta, Elio; Fresta, Massimo; Procopio, Antonio; Luzza, Francesco
2017-04-15
Oleuropein (OLE) is the major phenolic secoiridoid of olive tree leaves, and its antioxidant and anti-inflammatory activities have been demonstrated in in vitro and in vivo animal models. The aim of this study was to investigate the activity of OLE in the colonic mucosa from patients with ulcerative colitis (UC). Biopsies obtained during colonoscopy from 14 patients with active UC were immediately placed in an organ culture chamber and challenged with lipopolysaccharide from Escherichia coli (EC-LPS) at 1 μg/mL in the presence or absence of 3 mM OLE. The expression of cyclooxygenase (COX)-2 and interleukin (IL)-17 was assessed in total protein extracts from treated colonic biopsies by Western blotting. Levels of IL-17 were also measured in culture supernatant by ELISA. A microscopic evaluation of the cultured biopsies was performed by conventional histology and immunohistochemistry. The expression of COX-2 and IL-17 were significantly lower in samples treated with OLE + EC-LPS compared with those treated with EC-LPS alone (0.80 ± 0.15 arbitrary units (a.u.) vs. 1.06 ± 0.19 a.u., p = 0.003, and 0.71 ± 0.08 a.u. vs. 1.26 ± 0.42 a.u., p = 0.03, respectively) as were the levels of IL-17 in culture supernatants of OLE + EC-LPS treated colonic samples (21.16 ± 8.64 pg/mL vs. 40.67 ± 9.24 pg/mL, p = 0.01). Histologically, OLE-treated colonic samples showed an amelioration of inflammatory damage with reduced infiltration of CD3, CD4, and CD20 cells, while CD68 numbers increased. The anti-inflammatory activity of OLE was demonstrated in colonic biopsies from UC patients. These new data support a potential role of OLE in the treatment of UC.
Soliman, Ahmed F; Anees, Lobna M; Ibrahim, Doaa M
2018-05-07
Despite their clinical benefits in cancer treatment, the deleterious effects on heart following chemo/radiotherapy are of increasing importance. Zingerone, a natural polyphenol, possesses multiple biological activities, such as antioxidant and anti-inflammatory. Thus, the current study was designed to assess the potential cardioprotective effects of zingerone against cisplatin or γ-radiation. Zingerone was given by intragastric intubation (25 mg/kg) daily for three successive weeks prior to the induction of cardiotoxicity using a single dose of cisplatin (20 mg/kg, i.p.) or a whole body γ-irradiation at a single dose of 6 Gy. Zingerone pre-treatment significantly reduced the abnormalities in heart histology and the increase in the cardiotoxicity indices, serum lactate dehydrogenase, and creatine kinase-MB activities, as well as plasma cardiac troponin T and B-natriuretic peptide, induced by cisplatin or γ-radiation. Further, zingerone, except for superoxide dismutase, notably ameliorated the state of oxidative stress as evidenced by a significant decrease in malondialdehyde level accompanied with a significant increase in the reduced glutathione content and catalase activity. Additionally, zingerone mitigated the increase in the inflammatory markers including serum level of tumor necrosis factor-alpha, cardiac myeloperoxidase activity, and cyclooxygenase-2 protein expression. Moreover, zingerone alleviated the elevation of caspase-3 gene expression and the prominent nuclear DNA fragmentation and attenuated the decrease in mitochondrial complexes' activities. This study sheds the light on a probable protective role of zingerone as an antioxidant, anti-inflammatory, and antiapoptotic agent against cisplatin- or γ-radiation-induced cardiotoxicity and holds a potential in regard to therapeutic intervention for chemo/radiotherapy mediated cardiac damage.
Alabi, Quadri K; Akomolafe, Rufus O; Omole, Joseph G; Adefisayo, Modinat A; Ogundipe, Olaofe L; Aturamu, Ayodeji; Sanya, Joseph O
2018-04-20
Colitis is a chronic inflammation and ulcer on the inner lining of the large intestine. For many centuries Ocimum gratissimum (OG) leaves have been used in folk medicine in Nigeria to treat inflammatory bowel diseases, however, to date, the anti-colitis effects of OG have not been scientifically proven. In this study we investigated the effects of polyphenol rich extract of Ocimum gratissimum (PREOG) leaf on colonic mucosa injury in colitis, its mechanisms, initial administration time and dosage. Dextran sodium sulfate (DSS)-induced rat colitis models was used. PREOG administration was initiated at 3 and 7 d after the model was established at doses of 200, 400 and 800 mg/kg for 7 d. 5-aminosalicylic acid (5-ASA) was used as a reference drug. The disease activity index (DAI), vascular permeability, markers of oxidative stress, granulocyte infiltration, inflammation and histopathological alteration were evaluated. Obvious colonic inflammation and mucosa injuries were observed in DSS-induced colitis groups. PREOG administration promoted repair of colonic mucosa injuries, attenuated inflammation, and decreased DAI scores in rats with colitis. PREOG also decreased the plasma concentrations of Interleukin-(IL)-6 and tumor necrosis factor (TNF)-α, and concentrations of myeloperoxidase, nitric oxide, cyclooxygenase-2 and malondialdehyde in the colon, and increased the plasma concentrations of IL-4 and IL-10 as well as the concentration of superoxide dismutase, catalase and reduced glutathione in the colon. The efficacy of PREOG was dosage dependent. In conclusion, OG repairs colonic mucosa injury in experimental colitis through its ant-inflammatory and ant-oxidant. Its efficacy related to initial administration time and dose. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Shin, Hee Jae; Pil, Gam Bang; Heo, Soo-Jin; Lee, Hyi-Seung; Lee, Jong Seok; Lee, Yeon-Ju; Lee, Jihoon; Won, Ho Shik
2016-01-01
Chemical investigation of a marine-derived fungus, Penicillium steckii 108YD142, resulted in the discovery of a new tanzawaic acid derivative, tanzawaic acid Q (1), together with four known analogues, tanzawaic acids A (2), C (3), D (4), and K (5). The structures of tanzawaic acid derivatives 1–5 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis. These compounds significantly inhibited nitric oxide (NO) production and the new tanzawaic acid Q (1) inhibited the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins and mRNA expressions in RAW 264.7 macrophages. Additionally, compound 1 reduced the mRNA levels of inflammatory cytokines. Taken together, the results of this study demonstrated that the new tanzawaic acid derivative inhibits LPS-induced inflammation. This is the first report on the anti-inflammatory activity of tanzawaic acid Q (1). PMID:26761016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, You Jin; Park, Sun Young; Kim, Sun Gun
2010-01-22
A novel {alpha}-iso-cubebenol, which has anti-inflammatory effects in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages, was isolated from the fruits of Schisandra chinensis. {alpha}-iso-cubebenol inhibited LPS-induced nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) production. Consistent with these findings, {alpha}-iso-cubebenol also reduced the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 at the protein and mRNA levels in a concentration-dependent manner. {alpha}-iso-cubebenol also inhibited LPS-induced nuclear translocation of the NF-{kappa}B p65 subunit. Furthermore, {alpha}-iso-cubebenol suppressed the phosphorylation of ERK, JNK, and p38 kinase induced by LPS. Since the novel {alpha}-iso-cubebenol blocked the production of several pro-inflammatory mediators induced by LPSmore » in macrophages, the molecule can be useful material for the development of anti-inflammatory agents against bacterial infections or endotoxin.« less
Jang, Mi; Jeong, Seung-Weon; Cho, Somi K; Ahn, Kwang Seok; Lee, Jong Hyun; Yang, Deok Chun; Kim, Jong-Chan
2014-06-01
Plant extracts have been used as a source of medicines for a wide variety of human ailments. Among the numerous traditional medicinal herbs, Psidium guajava L. (Myrtaceae), commonly known as guava, has long been used in folk medicines as a therapeutic agent for the treatment of numerous diseases in East Asian and other countries. The aim of this study was to investigate the anti-inflammatory activity of an ethanolic leaf extract of P. guajava (guava) in vitro and in vivo. Our results demonstrated that guava leaf extract (GLE) significantly inhibited lipopolysaccharide (LPS)-induced production of nitric oxide and prostaglandin E2 in a dose-dependent manner. GLE suppressed the expression and activity of both inducible nitric oxide synthase and cyclooxygenase-2 in part through the downregulation of ERK1/2 activation in RAW264.7 macrophages. Furthermore, GLE exhibited significant anti-inflammatory activity in 2 different animal models-Freund's complete adjuvant-induced hyperalgesia in the rat and LPS-induced endotoxic shock in mice.
Protective effects of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice.
Hassan, Samar M; Khalaf, Marwa M; Sadek, Sawsan A; Abo-Youssef, Amira M
2017-12-01
Currently, the outcomes of the use of cisplatin in cancer therapy is limited by nephrotoxicity. This study aims to investigate the nephroprotective role of apigenin and myricetin against cisplatin-induced nephrotoxicity in mice. Adult female Wistar Albino mice were divided into eight groups (n = 8). Group I served as normal control. Groups II, III and IV received apigenin (3 mg/kg, i.p.), myricetin (3 mg/kg, i.p.) or their combination respectively, for seven days. Group V served as positive control group, received vehicles for seven days and cisplatin (7.5 mg/kg, i.p.) for three days starting at day five. Groups VI, VII and VIII received apigenin, myricetin or their combination, respectively for seven days as well as cisplatin injection for three days starting at day five. by the end of the experimental period, a biochemical study involving, nephrotoxicity markers [serum creatinine (Cr) and blood urea nitrogen (BUN)], apoptotic marker [caspase 3], inflammatory mediators [tumour necrosis factor alpha (TNF-α), interleukin 6 (IL-6), cyclooxygenase I and II (COXI, COXII)] and oxidative stress biomarkers [malondialdehyde (MDA), reduced glutathione (GSH) and catalase] was conducted. In addition, renal histopathological alterations were evaluated. Apigenin, myricetin and their combination significantly reduced blood BUN, serum Cr, caspase-3TNF-α, IL-6, COXI and COXII, MDA levels and significantly increased GSH level and catalase activity parallel to, histopathological improvement in kidney tissues. Apigenin and myricetin exhibited a protective and promising preventive strategy against cisplatin-induced nephrotoxicity due to their antioxidant and anti-inflammatory effects.
Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel
2016-08-01
The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.
Fang, Song-Chwan; Hsu, Chin-Lin; Yen, Gow-Chin
2008-06-25
Artocarpus heterophyllus Lam is a large evergreen tree cultivated throughout Southeast Asia for its fruits. Its leaves and roots have been used for medicinal purposes. The aim of this work was to study the in vitro anti-inflammatory effects of phenolic compounds isolated from the ethyl acetate extracts of the fruits of Artocarpus heterophyllus. Three phenolic compounds were characterized as artocarpesin [5,7,2',4'-tetrahydroxy-6-(3-methylbut-3-enyl) flavone] ( 1), norartocarpetin (5,7,2',4'-tetrahydroxyflavone) ( 2), and oxyresveratrol [ trans-2,4,3',5'-tetrahydroxystilbene] ( 3) by spectroscopic methods and through comparison with data reported in the literatures. The anti-inflammatory effects of the isolated compounds ( 1- 3) were evaluated by determining their inhibitory effects on the production of proinflammatory mediators in lipopolysaccharide (LPS)-activated RAW 264.7 murine macrophage cells. These three compounds exhibited potent anti-inflammatory activity. The results indicated that artocarpesin ( 1) suppressed the LPS-induced production of nitric oxide (NO) and prostaglandin E 2 (PGE 2) through the down-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expressions. Thus, artocarpesin ( 1) may provide a potential therapeutic approach for inflammation-associated disorders.
Yoon, Ji Hye; Lim, Tae-Gyu; Lee, Kyung Mi; Jeon, Ae Ji; Kim, Su Yeon; Lee, Ki Won
2011-01-12
The present study examined the effects of tangeretin, a polymethoxylated flavonone present in citrus fruits, on ultraviolet B (UVB)-induced cyclooxygenase-2 (COX-2) expression in JB6 P+ mouse skin epidermal cells. Tangeretin suppressed UVB-induced COX-2 expression and transactivation of nuclear factor-κB and activator protein-1 in JB6 P+ cells. Moreover, tangeretin blocked UVB-induced phosphorylation of Akt and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38, and attenuated the phosphorylation of MAPK kinases 1/2, 3/6, and 4. Tangeretin also limited the endogenous generation of reactive oxygen species (ROS), thereby protecting the cells against oxidative stress. However, tangeretin did not scavenge the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and influence the nicotinamide adenine dinucleotide phosphate oxidase activity. These results suggest that the anti-inflammatory effects of tangeretin stem from its modulation of cell signaling and suppression of intracellular ROS generation. Tangeretin may have a potent chemopreventive effect in skin cancer.
Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics
Minkwitz, Susann; Schmock, Aysha; Bormann, Nicole; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian
2018-01-01
Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7), chronic ruptures (n = 6), acute ruptures (n = 13), and intact tendons (n = 4) were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR) analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL) 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2), inflammatory cells (cluster of differentaition (CD) 3, CD68, CD80, CD206), fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin), and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor) were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies. PMID:29385715
2018-01-01
BACKGROUND/OBJECTIVES The objective of this study was to investigate the effects of vitamin C on inflammation, tumor development, and dysbiosis of intestinal microbiota in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced inflammation-associated early colon cancer mouse model. MATERIALS/METHODS Male BALB/c mice were injected intraperitoneally with AOM [10 mg/kg body weight (b.w)] and given two 7-d cycles of 2% DSS drinking water with a 14 d inter-cycle interval. Vitamin C (60 mg/kg b.w. and 120 mg/kg b.w.) was supplemented by gavage for 5 weeks starting 2 d after the AOM injection. RESULTS The vitamin C treatment suppressed inflammatory morbidity, as reflected by disease activity index (DAI) in recovery phase and inhibited shortening of the colon, and reduced histological damage. In addition, vitamin C supplementation suppressed mRNA levels of pro-inflammatory mediators and cytokines, including cyclooxygenase-2, microsomal prostaglandin E synthase-2, tumor necrosis factor-α, Interleukin (IL)-1β, and IL-6, and reduced expression of the proliferation marker, proliferating cell nuclear antigen, compared to observations of AOM/DSS animals. Although the microbial composition did not differ significantly between the groups, administration of vitamin C improved the level of inflammation-related Lactococcus and JQ084893 to control levels. CONCLUSION Vitamin C treatment provided moderate suppression of inflammation, proliferation, and certain inflammation-related dysbiosis in a murine model of colitis associated-early colon cancer. These findings support that vitamin C supplementation can benefit colonic health. Long-term clinical studies with various doses of vitamin C are warranted. PMID:29629026
Patterson, Christopher C; Smith, Anne E; Yarnell, John W G; Rumley, Ann; Ben-Shlomo, Yoav; Lowe, Gordon D O
2010-04-01
Interleukin-6 (IL-6) is a key pro-inflammatory cytokine which mediates expression of several 'downstream' inflammatory markers and may play a role in atherothrombosis. However, it is not yet known whether IL-6 plays a role in mediating the associations of each marker with risk of coronary heart disease (CHD) or ischaemic stroke (IS). We examined the role of IL-6 and several "downstream" markers of inflammation (leucocyte counts, plasma and serum viscosity, fibrinogen, C-reactive protein, alpha1-antitrypsin and alpha2-macroglobulin) with risk of subsequent CHD, IS, and a combined endpoint (CHD/IS) in a population of British men. 2208 men aged 45-64 years were followed for a median of 13.4 years and 486 men had experienced a cardiovascular event. In age-adjusted analyses, most inflammatory markers were significantly associated with risk of CHD or CHD/IS, but for IS associations were weaker. On multivariable analyses, including conventional risk factors, associations of serum viscosity, alpha2-macroglobulin and leucocyte count became non-significant for CHD and CHD/IS, while no inflammatory marker retained a significant association with risk of IS. In contrast, IL-6 retained a significant association with CHD and CHD/IS and, after adjustment for IL-6, hazard ratios for downstream inflammatory markers were attenuated to non-significance. These findings suggest that IL-6 may play a role in mediating the associations of circulating inflammatory markers with risk of CHD in men. Further studies are required to assess whether this is also the case for risk of IS, and for CHD/IS in women. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Jaudszus, Anke; Gruen, Michael; Watzl, Bernhard; Ness, Christina; Roth, Alexander; Lochner, Alfred; Barz, Dagmar; Gabriel, Holger; Rothe, Michael; Jahreis, Gerhard
2013-01-01
Despite their beneficial anti-inflammatory properties, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may increase the infection risk at high doses, likely by generating an immune-depressed state. To assess the contribution of different immune cell populations to the immunomodulatory fatty acid effect, we comparatively investigated several aspects of inflammation in human T-helper (Th) cells and monocytes. Both fatty acids, but DHA to a lesser extent compared with EPA, selectively and dose-dependently reduced the percentage of cytokine-expressing Th cells in a peroxisome proliferator-activated receptor (PPAR)γ-dependent fashion, whereas the expression of the cell surface marker CD69 was unaltered on activated T cells. In monocytes, both EPA and DHA increased interleukin (IL)-10 without affecting tumor necrosis factor (TNF)-α and IL-6. Cellular incorporation of EPA and DHA occurred mainly at the expense of arachidonic acid. Concomitantly, thromboxane B (TXB)2 and leukotriene B (LTB)4 in supernatants decreased, while levels of TXB3 and LTB5 increased. This increase was independent of activation and in accordance with cyclooxygenase expression patterns in monocytes. Moreover, EPA and DHA gave rise to a variety of mono- and trihydroxy derivatives of highly anti-inflammatory potential, such as resolvins and their precursors. Our results suggest that EPA and DHA do not generally affect immune cell functions in an inhibitory manner but rather promote pro-resolving responses. PMID:23349208
Quercetin attenuates zymosan-induced arthritis in mice.
Guazelli, Carla F S; Staurengo-Ferrari, Larissa; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Ruiz-Miyazawa, Kenji W; Vicentini, Fabiana T M C; Vignoli, Josiane A; Camilios-Neto, Doumit; Georgetti, Sandra R; Baracat, Marcela M; Casagrande, Rubia; Verri, Waldiceu A
2018-06-01
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by articular lesions, recruitment of inflammatory cells and increased levels of pro-inflammatory cytokine. The intra-articular administration of zymosan is an experimental model that promotes inflammatory parameters resembling RA. Therefore, this model was used to investigate the efficacy of quercetin as a treatment of articular inflammation. Treatment with quercetin dose-dependently reduced zymosan-induced hyperalgesia, articular edema and the recruitment of neutrophils to the knee joint cavity. Histological analysis confirmed that quercetin inhibited zymosan-induced arthritis. The treatment with quercetin also inhibited zymosan-induced depletion of reduced glutathione (GSH) levels, TNFα and IL-1β production, and gp91 phox , prepro-endothelin-1 (preproET-1), and cyclooxygenase-2 mRNA expression. These molecular effects of quercetin were related to the inhibition of the nuclear factor kappa-B and induction of Nuclear factor erythroid 2- related factor (Nrf2)/home oxygenase (HO-1) pathway. Thus, quercetin exerted anti-inflammatory, analgesic and antioxidant effects in experimental arthritis, suggesting quercetin is a possible candidate for arthritis treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Philkhana, Satish Chandra; Verma, Abhishek Kumar; Jachak, Gorakhnath R; Hazra, Bibhabasu; Basu, Anirban; Reddy, D Srinivasa
2017-07-28
Nitrosporeusines A and B are two recently isolated marine natural products with novel skeleton and exceptional biological profile. Interesting antiviral activity of nitrosporeusines and promising potential in curing various diseases, evident from positive data from various animal models, led us to investigate their anti-inflammatory potential. Accordingly, we planned and synthesized nitrosporeusines A and B in racemic as well as enantiopure forms. The natural product synthesis was followed by preparation of several analogues, and all the synthesized compounds were evaluated for in vitro and in vivo anti-inflammatory potential. Among them, compounds 25, 29 and 40 significantly reduced levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines. In addition, these compounds suppressed several pro-inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), and thereby can be emerged as potent anti-inflammatory compounds. Furthermore, all possible isomers of lead compound 25 were synthesized, characterized and profiled in same set of assays and found that one of the enantiomer (-)-25a was superior among them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Anti-inflammatory activity of traditional Chinese medicinal herbs.
Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang
2011-10-01
Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB)), pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology.
La, Jun-Ho; Gebhart, G. F.
2014-01-01
Background A low-level inflammation has been hypothesized to mediate visceral hypersensitivity in functional bowel disorders that persist after or even in the absence of gut inflammation. We aimed to test the efficacy of a steroidal anti-inflammatory treatment, and identify local inflammatory molecules mediating post- and non-inflammatory colorectal hypersensitivity using two mouse models. Methods Visceromotor responses to colorectal distension were quantified as a measure of colorectal sensitivity. On day 1, mice received intracolonic saline (control), trinitrobenzenesulfonic acid (post-inflammatory on day 15), or acidified hypertonic saline (non-inflammatory). Colorectal sensitivity before (day 10) and after (day 15) four-day dexamethasone treatment was compared, and colonic gene expression of inflammatory molecules was quantified. Results Dexamethasone effectively inhibited gene expression of inflammatory molecules such as interleukin (IL)-1β and mast cell protease-1 in the colon, but did not attenuate colorectal hypersensitivity in either model. Gene expression of inflammatory molecules in the colon did not differ between control and the non-inflammatory model, but the post-inflammatory model showed increased IL-10 and tight junction protein 2, and decreased IL-6, transforming growth factor (TGF)-β, a precursor of β-endorphin, occludin, and mucin 2. While no common molecule explained colorectal hypersensitivity in these models, hypersensitivity was positively correlated with TGF-β2 mRNA in control, and with IL-1β, inhibin βA and prostaglandin E2 synthase in the dexamethasone-treated post-inflammatory model. In the non-inflammatory model, cyclooxygenase-2 mRNA was negatively correlated with colorectal sensitivity. Conclusion These results suggest that persistent functional colorectal hypersensitivity is mediated by condition-specific mediators whose gene expression in the colon is not inevitably sensitive to steroidal anti-inflammatory treatment. PMID:25307695
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-01-01
Aims Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. Main Methods We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Key Findings Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. Significance These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer. PMID:19788894
Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.
Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay
2009-11-04
Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.
Kawakami, Yuki; Nakamura, Tomomi; Hosokawa, Tomoko; Suzuki-Yamamoto, Toshiko; Yamashita, Hiromi; Kimoto, Masumi; Tsuji, Hideaki; Yoshida, Hideki; Hada, Takahiko; Takahashi, Yoshitaka
2009-01-01
Prostaglandin endoperoxide H synthase (PGHS) is a key enzyme for the synthesis of prostaglandins (PGs) which play important roles in inflammation and carcinogenesis. Because the extract from Psidium guajava is known to have a variety of beneficial effects on our body including the anti-inflammatory, antioxidative and antiproliferative activities, we investigated whether the extract inhibited the catalytic activity of the two PGHS isoforms using linoleic acid as an alternative substrate. The guava leaf extract inhibited the cyclooxygenase reaction of recombinant human PGHS-1 and PGHS-2 as assessed by conversion of linoleic acid to 9- and 13-hydroxyoctadecadienoic acids (HODEs). The guava leaf extract also inhibited the PG hydroperoxidase activity of PGHS-1, which was not affected by nonsteroidal anti-inflammatory drugs (NSAIDs). Quercetin which was one of the major components not only inhibited the cyclooxygenase activity of both isoforms but also partially inhibited the PG hydroperoxidase activity. Overexpression of human PGHS-1 and PGHS-2 in the human colon carcinoma cells increased the DNA synthesis rate as compared with mock-transfected cells which did not express any isoforms. The guava leaf extract not only inhibited the PGE(2) synthesis but also suppressed the DNA synthesis rate in the PGHS-1- and PGHS-2-expressing cells to the same level as mock-transfected cells. These results demonstrate the antiproliferative activity of the guava leaf extract which is at least in part caused by inhibition of the catalytic activity of PGHS isoforms.
Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin
2011-01-01
Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927
Barozzi, Nadia; Tett, Susan E
2008-09-24
Cross national drug utilization studies can provide information about different influences on physician prescribing. This is important for medicines with issues around safety and quality of use, like non selective non-steroidal anti-inflammatory drugs (ns-NSAIDs) and cyclo-oxygenase-2 (COX-2) inhibitors. To enable comparison of prescription medicine use across different jurisdictions with a range of population sizes, data first need to be compared within Australia to understand whether use in a smaller sub-population may be considered as representative of the total use within Australia. The aim of this study was to compare the utilization of non selective NSAID, COX-2 inhibitors and paracetamol between Queensland and Australia. Dispensing data were obtained for concession beneficiaries for Australia for ns-NSAIDs, COX-2 inhibitors and paracetamol subsidized by the PBS over the period 1997-2003. The same data were purchased for Queensland. Data were converted to Defined Daily Dose (DDD)/1000 beneficiaries/day (World Health Organization anatomical therapeutic chemical classification, 2005). Total NSAID and paracetamol consumption were similar in Australia and Queensland. Ns-NSAID use decreased sharply with the introduction of COX-2 inhibitors (from approximately 80 to 40 DDD/1000 beneficiaries/day). Paracetamol was constant (approximately 45 DDD/1000 beneficiaries/day). COX-2 inhibitors consumption was initially higher in Queensland than in the whole of Australia. Despite initial divergence in celecoxib use between Queensland and Australia, the use of ns-NSAIDs, COX-2 inhibitors and paracetamol overall, in concession beneficiaries, was comparable in Australia and Queensland.
Park, Eun-Jung; Cheenpracha, Sarot; Chang, Leng Chee; Kondratyuk, Tamara P.; Pezzuto, John M.
2011-01-01
Moringa oleifera Lamarack is commonly consumed for nutritional or medicinal properties. We recently reported the isolation and structure elucidation of novel bioactive phenolic glycosides, including 4-[(2′-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate (RBITC), which was found to suppress inducible nitric oxide synthase (iNOS) expression and nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 mouse macrophage cells. Inhibitors of proteins such as cyclooxygenase-2 (COX-2) and iNOS are potential anti-inflammatory and cancer chemopreventive agents. The inhibitory activity of RBITC on NO production (IC50 = 0.96 ± 0.23 µM) was greater than that mediated by other well-known isothiocyanates such as sulforaphane (IC50 = 2.86 ± 0.39 µM) and benzyl isothiocyanate (IC50 = 2.08 ± 0.28 µM). RBITC inhibited expression of COX-2 and iNOS at both the protein and mRNA levels. Major upstream signaling pathways involved mitogen-activated protein kinases and nuclear factor-κB (NF-κB). RBITC inhibited phosphorylation of extracellular signal regulated kinase and stress-activated protein kinase, as well as ubiquitin-dependent degradation of inhibitor κBα (IκBα). In accordance with IκBα degradation, nuclear accumulation of NF-κB, and subsequent binding to NF-κB cis-acting element, was attenuated by treatment with RBITC. These data suggest RBITC should be included in the dietary armamentarium of isothiocyanates potentially capable of mediating anti-inflammatory or cancer chemopreventive activity. PMID:21774591
Cyclooxygenase-2 expression in the eyes of cats with and without uveitis.
Sim, Zhi Hui; Pinard, Chantale L; Plattner, Brandon L; Bienzle, Dorothee
2018-01-01
OBJECTIVE To characterize the distribution and intensity of cyclooxygenase (COX)-2 expression in the eyes of cats with and without uveitis and to determine whether COX-2 expression is correlated with severity of inflammation. SAMPLES Archived ocular tissue specimens from 51 cats with and 10 cats without ocular disease. PROCEDURES Specimens from only 1 eye were evaluated for each cat. Specimens were stained with H&E stain or immunohistochemical stain for detection of COX-2 and reviewed. For each eye, the type, severity, and distribution of inflammation and the distribution and intensity of COX-2 expression were determined for the uvea and other ocular tissues. Correlation between COX-2 expression and inflammation severity was also assessed. RESULTS COX-2 was not expressed in any nondiseased eye. Of the 51 diseased eyes, 20 had histologic evidence of lymphocytic-plasmacytic uveitis, 13 had neutrophilic uveitis, 11 had diffuse iris melanoma with uveitis, and 7 had diffuse iris melanoma without uveitis. Of the 44 eyes with uveitis, COX-2 was detected in the uvea of 16, including 11 eyes with lymphocytic-plasmacytic uveitis, 4 with neutrophilic uveitis, and 1 with diffuse iris melanoma-induced uveitis. Inflammation was severe, moderate, or mild in 10, 5, and 1 of those eyes, respectively. Cyclooxygenase-2 was detected in the cornea of 21 eyes with uveitis and 1 eye with diffuse iris melanoma without uveitis. Uveitis severity was positively correlated with COX-2 expression in both the uvea and cornea. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that COX-2 is an inflammatory mediator in feline uveitis but not diffuse iris melanoma.
Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M
2015-12-01
Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Palm, F; Walter, I; Nowotny, N; Budik, S; Helmreich, M; Aurich, C
2013-01-01
In most mammalian species, progestins have a major function in maintaining pregnancy. In humans, the physiologic initiation of parturition bears similarities with inflammatory processes and anti-inflammatory effects of progestins have been suggested to postpone birth until term. To examine if comparable effects exist in the horse, mares were treated with the synthetic progestin altrenogest from day 280 of gestation until parturition (N = 5) or were left untreated as controls (N = 7). Tissue from the amnion (AMN), allantochorion (AC), and endometrium (EM) was collected at foaling and mRNA expression of interleukin (IL)-6 and -8, cyclooxygenase 2 (COX2), estrogen receptor (ER) α, progesterone receptor, and oxytocin receptor (OTR) was analyzed. Leukocytes, steroid receptors, COX2, and OTR were also investigated by histology and immunohistochemistry. Expression of mRNA for IL-6 was higher in AMN and EM versus AC (P < 0.01). Expression of IL-8 was higher in AMN than AC and EM (P < 0.001). Steroid receptors and OTR were highly expressed in EM but not in AMN and AC (P < 0.001). Expression of COX2 was most pronounced in AC whereas IL expression was not upregulated in AC. No differences in mRNA expression existed between altrenogest-treated and control animals. Endometrial polymorphonuclear leukocytes were increased in altrenogest-treated mares. Epithelial cells of all tissues, except AC chorionic villi stained progesterone receptor-positive. Staining for ER was more pronounced in the amnion facing epithelium of the AC in altrenogest-treated versus control animals (P < 0.01). In conclusion, COX2 is highly expressed in the AC. The fetal membranes thus might play a role in the onset of labor in the horse. Altrenogest did not affect gene expression in the AMN, AC, and EM but had localized effects on inflammatory cells and ER expression. No anti-inflammatory effects of altrenogest in healthy, late pregnant pony mares could be detected. Copyright © 2013 Elsevier Inc. All rights reserved.
Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo
2011-04-01
It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.
Roulis, Manolis; Nikolaou, Christoforos; Kotsaki, Elena; Kaffe, Eleanna; Karagianni, Niki; Koliaraki, Vasiliki; Salpea, Klelia; Ragoussis, Jiannis; Aidinis, Vassilis; Martini, Eva; Becker, Christoph; Herschman, Harvey R.; Vetrano, Stefania; Danese, Silvio; Kollias, George
2014-01-01
Tumor progression locus-2 (Tpl2) kinase is a major inflammatory mediator in immune cell types recently found to be genetically associated with inflammatory bowel diseases (IBDs). Here we show that Tpl2 may exert a dominant homeostatic rather than inflammatory function in the intestine mediated specifically by subepithelial intestinal myofibroblasts (IMFs). Mice with complete or IMF-specific Tpl2 ablation are highly susceptible to epithelial injury-induced colitis showing impaired compensatory proliferation in crypts and extensive ulcerations without significant changes in inflammatory responses. Following epithelial injury, IMFs sense innate or inflammatory signals and activate, via Tpl2, the cyclooxygenase-2 (Cox-2)-prostaglandin E2 (PGE2) pathway, which we show here to be essential for the epithelial homeostatic response. Exogenous PGE2 administration rescues mice with complete or IMF-specific Tpl2 ablation from defects in crypt function and susceptibility to colitis. We also show that Tpl2 expression is decreased in IMFs isolated from the inflamed ileum of IBD patients indicating that Tpl2 function in IMFs may be highly relevant to human disease. The IMF-mediated mechanism we propose also involves the IBD-associated genes IL1R1, MAPK1, and the PGE2 receptor-encoding PTGER4. Our results establish a previously unidentified myofibroblast-specific innate pathway that regulates intestinal homeostasis and may underlie IBD susceptibility in humans. PMID:25316791
Harizi, Hedi; Juzan, Monique; Moreau, Jean-François; Gualde, Norbert
2003-01-01
PGs produced from arachidonic acid by the action of cyclooxygenase enzymes play a pivotal role in the regulation of both inflammatory and immune responses. Because leukotriene B4 (LTB4), a product of 5-lipoxygenase (5-LO) pathway, can exert numerous immunoregulatory and proinflammatory activities, we examined the effects of PGs on LTB4 release from dendritic cells (DC) and from peritoneal macrophages. In concentration-dependent manner, PGE1 and PGE2 inhibited the production of LTB4 from DC, but not from peritoneal macrophage, with an IC50 of 0.04 microM. The same effect was observed with MK-886, a 5-LO-activating protein (FLAP)-specific inhibitor. The decreased release of LTB4 was associated with an enhanced level of IL-10. Furthermore, the inhibition of LTB4 synthesis by PGs was significantly reversed by anti-IL-10, suggesting the involvement of an IL-10-dependent mechanism. Hence, we examined the effects of exogenous IL-10 on the 5-LO pathway. We demonstrate that IL-10 suppresses the production of LTB4 from DC by inhibiting FLAP protein expression without any effect on 5-LO and cytosolic phospholipase A2. Taken together, our results suggest links between DC cyclooxygenase and 5-LO pathways during the inflammatory response, and FLAP is a key target for the PG-induced IL-10-suppressive effects.
Goldman, Aaron; Chen, Hwu Dau Rw; Roesly, Heather B.; Hill, Kimberly A.; Tome, Margaret E.; Dvorak, Bohuslav; Bernstein, Harris
2011-01-01
Barrett's esophagus (BE) is a premalignant condition, where normal squamous epithelium is replaced by intestinal epithelium. BE is associated with an increased risk of developing esophageal adenocarcinoma (EAC). However, the BE cell of origin is not clear. We hypothesize that BE tissue originates from esophageal squamous cells, which can differentiate to columnar cells as a result of repeated exposure to gastric acid and bile acids, two components of refluxate implicated in BE pathology. To test this hypothesis, we repeatedly exposed squamous esophageal HET1A cells to 0.2 mM bile acid (BA) cocktail at pH 5.5 and developed an HET1AR-resistant cell line. These cells are able to survive and proliferate after repeated 2-h treatments with BA at pH 5.5. HET1AR cells are resistant to acidification and express markers of columnar differentiation, villin, CDX2, and cytokeratin 8/18. HET1AR cells have increased amounts of reactive oxygen species, concomitant with a decreased level and activity of manganese superoxide dismutase compared with parental cells. Furthermore, HET1AR cells express proteins and activate signaling pathways associated with inflammation, cell survival, and tumorigenesis that are thought to contribute to BE and EAC development. These include STAT3, NF-κB, epidermal growth factor receptor (EGFR), cyclooxygenase-2, interleukin-6, phosphorylated mammalian target of rapamycin (p-mTOR), and Mcl-1. The expression of prosurvival and inflammatory proteins and resistance to cell death could be partially modified by inhibition of STAT3 signaling. In summary, our study shows that long-term exposure of squamous cells to BA at acidic pH causes the cells to display the same characteristics and markers as BE. PMID:21127259
Li, Bin; Choi, Hee-Jin; Lee, Dong-Sung; Oh, Hyuncheol; Kim, Youn-Chul; Moon, Jin-Young; Park, Won-Hwan; Park, Sun-Dong; Kim, Jai-Eun
2014-01-01
Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.
Cha, Ji Young; Jung, Ji Yun; Jung, Jae Yup; Lee, Jong Rok; Cho, Il Je; Ku, Sae Kwang; Byun, Sung Hui; Ahn, Yong-Tae; Lee, Chul Won; Kim, Sang Chan; An, Won G.
2013-01-01
Pyungwi-san (PWS) is a traditional basic herbal formula. We investigated the effects of PWS on induction of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), pro-inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)) and nuclear factor-kappa B (NF-κB) as well as mitogen-activated protein kinases (MAPKs) in lipopolysaccharide-(LPS-) induced Raw 264.7 cells and on paw edema in rats. Treatment with PWS (0.5, 0.75, and 1 mg/mL) resulted in inhibited levels of expression of LPS-induced COX-2, iNOS, NF-κB, and MAPKs as well as production of prostaglandin E2 (PGE2), nitric oxide (NO), IL-6, and TNF-α induced by LPS. Our results demonstrate that PWS possesses anti-inflammatory activities via decreasing production of pro-inflammatory mediators through suppression of the signaling pathways of NF-κB and MAPKs in LPS-induced macrophage cells. More importantly, results of the carrageenan-(CA-) induced paw edema demonstrate an anti-edema effect of PWS. In addition, it is considered that PWS also inhibits the acute edematous inflammations through suppression of mast cell degranulations and inflammatory mediators, including COX-2, iNOS and TNF-α. Thus, our findings may provide scientific evidence to explain the anti-inflammatory properties of PWS in vitro and in vivo. PMID:23533508
Synthesis and anti-inflammatory activity of some benzofuran and benzopyran-4-one derivatives.
Ragab, Fatma Abd El-Fattah; Eid, Nahed Mahmoud; Hassan, Ghaneya Sayed; Nissan, Yassin Mohammed
2012-01-01
New series of furosalicylic acids 3a-c, furosalicylanilides 6a-n, furobenzoxazines 8a-f, 1-benzofuran-3-arylprop-2-en-1-ones 12a,b, 6-(aryl-3-oxoprop-1-enyl)-4H-chromen-4-ones 16a-c and 6-[6-aryl-2-thioxo-2,5-dihydropyrimidin-4-yl]-4H-chromen-4-ones 17a-c were synthesized. Anti-inflammatory activity evaluation was performed using carrageenan-induced paw edema model in rats and prostaglandin E(2) (PGE(2)) synthesis inhibition activity. Some of the tested compounds revealed comparable activity with less ulcerogenic effect than Diclofenac at a dose 100 mg/kg. All the synthesized compounds were docked on the active site of cyclooxygenase-2 (COX-2) enzyme and most of them showed good interactions with the amino acids of the active site comparable to the interactions exhibited by Diclofenac.
de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro
2014-01-01
A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090
Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Lim, Chiyeon; Kim, Jung-Hoon; Kim, Hyungwoo; Cho, Su-In
2016-01-01
The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues.
Yun, Chanyong; Jung, Youngchul; Chun, Wonjoo; Yang, Beodeul; Ryu, Junghyun; Cho, Su-In
2016-01-01
The leaves of Artemisia argyi Lev. et Vant. and A. princeps Pamp. are well known medicinal herbs used to treat patients in China, Japan, and Korea with skin problems such as eczema and itching, as well as abdominal pain and dysmenorrhoea. We investigated the anti-inflammatory effects of Artemisia leaf extract (ALE) using CD mice and Raw 264.7 cells. The effects of ALE on histopathological changes and cytokine production in ear tissues were assessed in mice with CD induced by 1-fluoro-2,4-dinitrobenzene (DNFB). Moreover, the anti-inflammatory effects on production levels of prostaglandin E2 (PGE2) and nitric oxide (NO) and expression levels of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) were investigated in Raw 264.7 cells. Topical application of ALE effectively prevented ear swelling induced by repeated DNFB application. ALE prevented epidermal hyperplasia and infiltration of immune cells and lowered the production of interferon- (IFN-) gamma (γ), tumour necrosis factor- (TNF-) alpha (α), and interleukin- (IL-) 6 in inflamed tissues. In addition, ALE inhibited expression of COX-2 and iNOS and production of NO and PGE2 in Raw 264.7 cells. These results indicate that Artemisia leaf can be used as a therapeutic agent for inflammatory skin diseases and that its anti-inflammatory effects are closely related to the inhibition of inflammatory mediator release from macrophages and inflammatory cytokine production in inflamed tissues. PMID:27647952
2015-01-01
The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983
Benzer, Fulya; Kandemir, Fatih Mehmet; Ozkaraca, Mustafa; Kucukler, Sefa; Caglayan, Cuneyt
2018-02-01
Doxorubicin (DXR) is a highly effective drug for chemotherapy. However, cardiotoxicity reduces its clinical utility in humans. The present study aimed to assess the ameliorative effect of curcumin against DXR-induced cardiotoxicity in rats. Rats were subjected to oral treatment of curcumin (100 and 200 mg/kg body weight) for 7 days. Cardiotoxicity was induced by single intraperitoneal injection of DXR (40 mg/kg body weight) on the 5th day and the rats sacrificed on 8th day. Curcumin ameliorated DXR-induced lipid peroxidation, glutathione depletion, decrease in antioxidant (superoxide dismutase, catalase, and glutathione peroxidase) enzyme activities, and cardiac toxicity markers (CK-MB, LDH, and cTn-I). Curcumin also attenuated activities of Caspase-3, cyclooxygenase-2, inducible nitric oxide synthase, and levels of nuclear factor kappa-B, tumor necrosis factor-α, and interleukin-1β, and cardiac tissue damages that were induced by DXR. Moreover, curcumin decreased the expression of 8-OHdG and 3,3'-dityrosine. This study demonstrated that curcumin has a multi-cardioprotective effect due to its antioxidant, anti-inflammatory, and antiapoptotic properties. © 2018 Wiley Periodicals, Inc.
Water avoidance stress induces frequency through cyclooxygenase-2 expression: a bladder rat model.
Yamamoto, Keisuke; Takao, Tetsuya; Nakayama, Jiro; Kiuchi, Hiroshi; Okuda, Hidenobu; Fukuhara, Shinichiro; Yoshioka, Iwao; Matsuoka, Yasuhiro; Miyagawa, Yasushi; Tsujimura, Akira; Nonomura, Norio
2012-02-01
Water avoidance stress is a potent psychological stressor and it is associated with visceral hyperalgesia, which shows degeneration of the urothelial layer mimicking interstitial cystitis. Cyclooxygenase-2 inhibitors have been recognized to ameliorate frequency both in clinical and experimental settings. We investigated the voiding pattern and cyclooxygenase-2 expression in a rat bladder model of water avoidance stress. After being subjected to water avoidance stress or a sham procedure, rats underwent metabolic cage analysis and cystometrography. Real time reverse transcription polymerase chain reaction was carried out to examine cyclooxygenase-2 messenger ribonucleic acid in bladders of rats. Protein expression of cyclooxygenase-2 was analyzed with immunohistochemistry and western blotting. Furthermore, the effects of the cyclooxygenase-2 inhibitor, etodolac, were investigated by carrying out cystometrography, immunohistochemistry and western blotting. Metabolic cage analysis and cystometrography showed significantly shorter intervals and less volume of voiding in water avoidance stress rats. Significantly higher expression of cyclooxygenase-2 messenger ribonucleic acid was verified by reverse transcription polymerase chain reaction. Immunohistochemistry and western blotting showed significantly higher cyclooxygenase-2 protein levels in water avoidance stress bladders. Furthermore, immunohistochemistry showed high cyclooxygenase-2 expression exclusively in smooth muscle cells. All water avoidance stress-induced changes were reduced by cyclooxygenase-2 inhibitor pretreatment. Chronic stress might cause frequency through cyclooxygenase-2 gene upregulation in bladder smooth muscle cells. Further study of cyclooxygenase-2 in the water avoidance stress bladder might provide novel therapeutic modalities for interstitial cystitis. © 2011 The Japanese Urological Association.
NSAIDs: the Emperor’s new dogma?
Bjarnason, I; Takeuchi, K; Simpson, R
2003-01-01
The spectacular marketing success of the selective cyclooxygenase 2 (COX-2) inhibitors is largely based on efficacy comparable with conventional non-steroidal anti-inflammatory drugs (NSAIDs) with vastly improved gastrointestinal safety. The additional key to the marketing success is the purity and simplicity of the message—that is, COX-1 inhibition causes the gastrointestinal side effects of NSAIDs (COX-1 dogma) while COX-2 blocking confers the therapeutic benefits (COX-2 dogma). Adherence to the COX dogmas with development of COX-2 selective agents has undoubtedly benefited many patients, but ironically their scientific basis is now seriously challenged by experimentation. PMID:12912873
Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.
Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O
2017-06-01
Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Kelly A; Goetting, Valerie S; Tell, Lisa A
2015-10-01
Changes in inflammatory marker concentrations or activity can be used to monitor health and disease condition of domestic animals but have not been applied with the same frequency to wildlife. We measured concentrations or activity of six inflammatory markers (ceruloplasmin, haptoglobin, mannan-binding lectin-dependent complement [MBL/complement], unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC), and plasma iron) in apparently healthy and sick or injured Red-tailed Hawks (Buteo jamaicensis). Haptoglobin and ceruloplasmin activities were consistently elevated in sick or injured hawks (2.1 and 2.5 times higher, respectively), and plasma iron concentrations decreased (0.46 times lower), relative to those of healthy birds. There were no differences between healthy and unhealthy hawks in TIBC and UIBC concentrations or MBL/complement activity. Therefore, haptoglobin, ceruloplasmin, and plasma iron would be useful inclusions in a panel of inflammatory markers for monitoring health in raptors.
Karthikeyan, Ramasamy; Kanimozhi, Govindasamy; Prasad, Nagarajan Rajendra; Agilan, Balupillai; Ganesan, Muthusamy; Mohana, Shanmugham; Srithar, Gunaseelan
2016-08-01
Ultraviolet B (UVB) irradiation alters multiple molecular pathways in the skin, thereby inducing skin damage. Human dermal fibroblasts (HDFa) were subjected to single UVB-irradiation (18mJ/cm(2)) resulting in reactive oxygen species (ROS) generation, oxidative DNA damage and upregulation of nuclear factor kappa B (NF-κB) expression. Further, it has been observed that there was a significant cytokine production (TNF-α and IL-6) in UVB irradiated HDFa cells. Our results show that 7-hydroxycoumarin (7-OHC) prevents UVB-induced activation of NF-κB thereby subsequently preventing the overexpression of TNF-α and IL-6 in HDFa cells. Further, 7-OHC prevents UVB-induced activation of cyclooxygenase-2 (COX-2) expression, an inflammatory mediator in skin cells. Moreover, 7-OHC inhibited mRNA expression pattern of matrix metalloproteinases (MMP-1 and MMP-9) in UVB irradiated skin cells. Furthermore, 7-OHC restored antioxidant status, thereby scavenging the excessively generated ROS; consequently preventing the oxidative DNA damage. It has also been noticed that 7-OHC prevents UVB mediated DNA damage through activation of DNA repair enzymes such as XRCC1 and HOGG1. In this study, we treated HDFa cells with 7-OHC before and after UVB irradiation and we found that pretreatment showed better results when compared to posttreatment. Further, 7-OHC showed 9.8416 sun protection factor (SPF) value and it absorbs photons in the UVB wavelength rage. Thus, it has been concluded that sunscreen property, free radical scavenging potential and prevention of NF-κB activation play a role for photoprotective property of 7-OHC. Copyright © 2016 Elsevier B.V. All rights reserved.
Associations are well established between particulate matter (PM) and increased human mortality and morbidity. The association between fine PM sources and lung inflammatory markers IL-8, COX-2, and HO-1 was evaluated in this study.
Li, Xiao-Jun; Yang, Yan-Jing; Li, Yu-Sang; Zhang, Wei Kevin; Tang, He-Bin
2016-02-17
Frankincense oil and water extracts (FOE, FWE) have long been used for external treatment of inflammation and pain. The present study was conducted to identify the active ingredients responsible for the anti-inflammatory and analgesic effects and to determine the underlying mechanisms. The compositions of FOE and FWE were identified and compared by GC-MS. The anti-inflammatory and analgesic activities of the two extracts and their possible active ingredients (α-pinene, linalool, and 1-octanol) were evaluated and compared in a xylene-induced ear edema model and a formalin-inflamed hind paw model. Inflammatory infiltrates and cyclooxygenase-2 (COX-2) expression in hind paw skin were investigated by histological staining. The contents of α-pinene, linalool, and 1-octanol in FOE were much higher than those in FWE. Mice treated with FOE exhibited greater and faster lessening of swelling and pain than mice treated with FWE. The combination of the three components had more potent pharmacological effects on hind paw inflammation and COX-2 overexpression than the three components used alone. These findings suggest that topical application of FOE or its active ingredients (including α-pinene, linalool, and 1-octanol) exhibit significantly anti-inflammatory and analgesic effects through inhibiting nociceptive stimulus-induced inflammatory infiltrates and COX-2 overexpression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rattner, B.A.; Whitehead, M.A.; Gasper, G.; Meteyer, C.U.; Link, W.A.; Taggart, M.A.; Meharg, A.A.; Pattee, O.H.; Pain, D.J.
2008-01-01
The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose 0.1?0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.
Malik, Arif; Arooj, Mahwish; Butt, Tariq Tahir; Zahid, Sara; Zahid, Fatima; Jafar, Tassadaq Hussain; Waquar, Sulayman; Gan, Siew Hua; Ahmad, Sarfraz; Mirza, Muhammad Usman
2018-01-01
Background The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats. Materials and methods Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied. Results Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents. Conclusion Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects. PMID:29872266
Wilson, Jack H; Criss, Amy H; Spangler, Sean A; Walukevich, Katherine; Hewett, Sandra
2017-10-01
Nonsteroidal anti-inflammatory drugs work by non-selectively inhibiting cyclooxygenase enzymes. Evidence indicates that metabolites of the cyclooxygenase pathway play a critical role in the process of learning and memory. We evaluated whether acute naproxen treatment impairs short-term working memory, episodic memory, or semantic memory in a young, healthy adult population. Participants received a single dose of placebo or naproxen (750 mg) in random order separated by 7-10 days. Two hours following administration, participants completed five memory tasks. The administration of acute high-dose naproxen had no effect on memory in healthy young adults.
Nonsteroidal Anti-Inflammatory Drugs and the Kidney
Hörl, Walter H.
2010-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result. PMID:27713354
Rofecoxib modulates multiple gene expression pathways in a clinical model of acute inflammatory pain
Wang, Xiao-Min; Wu, Tian-Xia; Hamza, May; Ramsay, Edward S.; Wahl, Sharon M.; Dionne, Raymond A.
2007-01-01
New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A2 and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2. PMID:17070997
Identification of novel Cyclooxygenase-2-dependent genes in Helicobacter pylori infection in vivo
Walduck, Anna K; Weber, Matthias; Wunder, Christian; Juettner, Stefan; Stolte, Manfred; Vieth, Michael; Wiedenmann, Bertram; Meyer, Thomas F; Naumann, Michael; Hoecker, Michael
2009-01-01
Background Helicobacter pylori is a crucial determining factor in the pathogenesis of benign and neoplastic gastric diseases. Cyclooxygenase-2 (Cox-2) is the inducible key enzyme of arachidonic acid metabolism and is a central mediator in inflammation and cancer. Expression of the Cox-2 gene is up-regulated in the gastric mucosa during H. pylori infection but the pathobiological consequences of this enhanced Cox-2 expression are not yet characterized. The aim of this study was to identify novel genes down-stream of Cox-2 in an in vivo model, thereby identifying potential targets for the study of the role of Cox- 2 in H. pylori pathogenesis and the initiation of pre- cancerous changes. Results Gene expression profiles in the gastric mucosa of mice treated with a specific Cox-2 inhibitor (NS398) or vehicle were analysed at different time points (6, 13 and 19 wk) after H. pylori infection. H. pylori infection affected the expression of 385 genes over the experimental period, including regulators of gastric physiology, proliferation, apoptosis and mucosal defence. Under conditions of Cox-2 inhibition, 160 target genes were regulated as a result of H. pylori infection. The Cox-2 dependent subset included those influencing gastric physiology (Gastrin, Galr1), epithelial barrier function (Tjp1, connexin45, Aqp5), inflammation (Icam1), apoptosis (Clu) and proliferation (Gdf3, Igf2). Treatment with NS398 alone caused differential expression of 140 genes, 97 of which were unique, indicating that these genes are regulated under conditions of basal Cox-2 expression. Conclusion This study has identified a panel of novel Cox-2 dependent genes influenced under both normal and the inflammatory conditions induced by H. pylori infection. These data provide important new links between Cox-2 and inflammatory processes, epithelial repair and integrity. PMID:19317916
Ishola, Ismail O.; Olusayero, Abayomi Micheal; Ochieng, Charles O.
2014-01-01
Abstract Unripe fruit of Annona muricata Linn. (Annonaceae) (soursop) is used in traditional African medicine for the treatment of neuralgia, rheumatism, and arthritic pain. This study sought to investigate the analgesic and anti-inflammatory effects of lyophilized fruit extract of Annona muricata (AM) in rodents. The analgesic activity was evaluated using the mouse writhing, formalin, and hot-plate tests while the anti-inflammatory action was investigated using the carrageenan-induced rat paw edema and xylene-induced ear edema tests. Pretreatment with AM (50, 100, and 200 mg/kg, p.o.) produced dose-dependent (P<.001) inhibition of writhes and formalin-induced pain in the late phase. AM and morphine produced time-course increase in pain threshold in hot-plate test. However, the analgesic effect elicited by AM was reversed (P<.05) by naloxone pretreatment. Similarly, the time-dependent increase in paw circumference induced by carrageenan was inhibited by AM treatment with peak effect (0.23±0.10 cm; P<.001, 200 mg/kg; 6 h), which was comparatively similar to that of diclofenac treated. Further, the xylene-induced ear edema was significantly reduced by AM (50 or 100 mg/kg) pretreatment; however, the anti-inflammatory effect elicited by AM was prevented by pretreatment of mice with NG-nitro-l-arginine (20 mg/kg, i.p., nitric-oxide synthase inhibitor) 15 min before AM (200 mg/kg, p.o.). The in vitro cyclooxygenase assay also showed that AM produced concentration-dependent inhibition of both cyclooxygenase (COX)-1 and COX-2 activity by 39.44%±0.05% and 55.71%±0.12%, respectively, at 100 μg/mL. In conclusion, A. muricata possesses analgesic effect through interaction with opioidergic pathway and anti-inflammatory property through inhibition of chemical mediators of inflammation. PMID:25133801
Synthesis and biological evaluation of loxoprofen derivatives.
Yamakawa, Naoki; Suemasu, Shintaro; Matoyama, Masaaki; Tanaka, Ken-Ichiro; Katsu, Takashi; Miyata, Keishi; Okamoto, Yoshinari; Otsuka, Masami; Mizushima, Tohru
2011-06-01
Non-steroidal anti-inflammatory drugs (NSAIDs) achieve their anti-inflammatory actions through an inhibitory effect on cyclooxygenase (COX). Two COX subtypes, COX-1 and COX-2, are responsible for the majority of COX activity at the gastrointestinal mucosa and in tissues with inflammation, respectively. We previously suggested that both gastric mucosal cell death due to the membrane permeabilization activity of NSAIDs and COX-inhibition at the gastric mucosa are involved in NSAID-induced gastric lesions. We have also reported that loxoprofen has the lowest membrane permeabilization activity among the NSAIDs we tested. In this study, we synthesized a series of loxoprofen derivatives and examined their membrane permeabilization activities and inhibitory effects on COX-1 and COX-2. Among these derivatives, 2-{4'-hydroxy-5-[(2-oxocyclopentyl)methyl]biphenyl-2-yl}propanoate 31 has a specificity for COX-2 over COX-1. Compared to loxoprofen, oral administration of 31 to rats produced fewer gastric lesions but showed an equivalent anti-inflammatory effect. These results suggest that 31 is likely to be a therapeutically beneficial and safer NSAID. Copyright © 2011. Published by Elsevier Ltd.
Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells
NASA Technical Reports Server (NTRS)
Tjandrawinata, R. R.; Dahiya, R.; Hughes-Fulford, M.
1997-01-01
Prostaglandins are synthesized from arachidonic acid by the enzyme cyclo-oxygenase. There are two isoforms of cyclooxygenases: COX-1 (a constitutive form) and COX-2 (an inducible form). COX-2 has recently been categorized as an immediate-early gene and is associated with cellular growth and differentiation. The purpose of this study was to investigate the effects of exogenous dimethylprostaglandin E2 (dmPGE2) on prostate cancer cell growth. Results of these experiments demonstrate that administration of dmPGE2 to growing PC-3 cells significantly increased cellular proliferation (as measured by the cell number), total DNA content and endogenous PGE2 concentration. DmPGE2 also increased the steady-state mRNA levels of its own inducible synthesizing enzyme, COX-2, as well as cellular growth to levels similar to those seen with fetal calf serum and phorbol ester. The same results were observed in other human cancer cell types, such as the androgen-dependent LNCaP cells, breast cancer MDA-MB-134 cells and human colorectal carcinoma DiFi cells. In PC-3 cells, the dmPGE2 regulation of the COX-2 mRNA levels was both time dependent, with maximum stimulation seen 2 h after addition, and dose dependent on dmPGE2 concentration, with maximum stimulation seen at 5 microg ml(-1). The non-steroidal anti-inflammatory drug flurbiprofen (5 microM), in the presence of exogenous dmPGE2, inhibited the up-regulation of COX-2 mRNA and PC-3 cell growth. Taken together, these data suggest that PGE2 has a specific role in the maintenance of human cancer cell growth and that the activation of COX-2 expression depends primarily upon newly synthesized PGE2, perhaps resulting from changes in local cellular PGE2 concentrations.
Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: a pilot study.
Matejčíková, Z; Mareš, J; Přikrylová Vranová, H; Klosová, J; Sládková, V; Doláková, J; Zapletalová, J; Kaňovský, P
2015-02-01
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Autoimmune inflammation is common in the early stages of MS. This stage is followed by the neurodegenerative process. The result of these changes is axon and myelin breakdown. Although MS is according to McDonald's revised diagnostic criteria primarily a clinical diagnosis, paraclinical investigation methods are an important part in the diagnosis of MS. In common practice, magnetic resonance imaging of the brain and spinal cord, examination of cerebrospinal fluid (CSF) and examination of visual evoked potentials are used. There are an increasing number of studies dealing with biomarkers in CSF and their role in the diagnosis and treatment of MS. We hypothesized that the levels of some markers could be changed in MS in comparison with controls. We studied five inflammatory markers [interleukin-6 (IL-6), interleukin-8, interleukin-10 (IL-10), beta-2-microglobulin, orosomucoid]. CSF and serum levels of inflammatory markers were assessed in 38 patients with newly diagnosed MS meeting McDonald's revised diagnostic criteria and in 28 subjects as a control group (CG). Levels of beta-2-microglobulin and interleukin-8 in CSF were found to be significantly higher in MS patients in comparison to CG (p < 0.001 resp. p = 0.007). No differences in other CSF markers (IL-6, IL-10 and orosomucoid) and serum levels of all markers between both groups were found. The levels of two studied inflammatory markers were found to be increased at the time of first clinical symptoms of MS. Research on the role of inflammatory and neurodegenerative markers in MS should continue.
Liu, Linna; Liu, Zhenxiong; Zhang, Tian; Shi, Lei; Zhang, Wenjuan; Zhang, Yan
2015-06-01
The most common conventional therapy for inflammatory bowel disease in clinical practice involves the use of nonsteroidal anti-inflammatory drugs, such as 5-amino salicylic acid. However, a high dose of 5-amino salicylic acid may bring about severe side effects. Chinese people have used Rheum tanguticum as a folk remedy for gastrointestinal disease for two thousand years. Our group has isolated R. tanguticum polysaccharide 1 from R. tanguticum and verified that it can attenuate 2,4,6-trinitrobenzene sulfonic acid-induced colitis in murines/rats. The present study aims to evaluate whether the addition of R. tanguticum polysaccharide 1 can improve efficacy and limit subsequent side effects of conventional treatment (5-amino salicylic acid) in rats with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Sixty Sprague-Dawley male rats were randomized into five groups and treated with (1) saline (saline, 0.2 mL/day × 5, p. o.), (2) 2,4,6-trinitrobenzene sulfonic acid alone (saline, 0.2 mL/day × 5, p. o.), (3) 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid (5-amino salicylic acid, 75 mg/kg/day × 5, p.o), (4) 2,4,6-trinitrobenzene sulfonic acid + R. tanguticum polysaccharide 1 (R. tanguticum polysaccharide 1, 200 mg/kg/day × 5, p. o.), and (5) 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 (5-amino salicylic acid, 25 mg/kg/day × 5, p.o; R. tanguticum polysaccharide 1, 200 mg/kg/day × 5, p. o.). All the rats were sacrificed on the 6th day after treatment using an overdose of anesthesia. A histological assessment was performed using semiquantitative scores; nuclear factor-kappa B and tumor necrosis factor-α were measured with Western blot, cyclooxygenase 1 and cyclooxygenase 2 protein expressions were investigated by RT-polymerase chain reaction, and prostoglandin E2 and inducible nitric oxide synthase productions were investigated by ELISA. The extent and severity of histological signs were attenuated significantly in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group. Treatment with R. tanguticum polysaccharide 1 plus 5-amino salicylic acid markedly decreased nuclear factor-kappa Bp65 and tumor necrosis factor-α protein expressions. R. tanguticum polysaccharide 1 and 5-amino salicylic acid had no effect on cyclooxygenase 1 protein expression, but inhibited the overexpression of the cyclooxygenase 2 protein. After treatment with 5-amino salicylic acid and R. tanguticum polysaccharide 1, the prostoglandin E2 level increased significantly and the inducible nitric oxide synthase level decreased considerably in the 2,4,6-trinitrobenzene sulfonic acid + 5-amino salicylic acid + R. tanguticum polysaccharide 1 group compared with the 2,4,6-trinitrobenzene sulfonic acid alone group. These results demonstrate that combined therapy with R. tanguticum polysaccharide 1 and low-dose 5-amino salicylic acid had more favorable effects on 2,4,6-trinitrobenzene sulfonic acid-induced colitis in rats, and its effects may be associated with inhibiting nuclear factor-kappa Bp65 protein expression and tumor necrosis factor-α production, resulting in a decrease of cyclooxygenase 2 and inducible nitric oxide synthase protein expressions. Georg Thieme Verlag KG Stuttgart · New York.
Takahashi, Mami; Mutoh, Michihiro; Ishigamori, Rikako; Fujii, Gen; Imai, Toshio
2013-03-01
Chronic inflammation is known to be a risk for many cancers, including pancreatic cancer. Heavy alcohol drinking and cigarette smoking are major causes of pancreatitis, and epidemiological studies have shown that smoking and chronic pancreatitis are risk factors for pancreatic cancer. Meanwhile, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) are elevated in pancreatitis and pancreatic cancer tissues in humans and in animal models. Selective inhibitors of iNOS and COX-2 suppress pancreatic cancer development in a chemical carcinogenesis model of hamsters treated with N-nitrosobis(2-oxopropyl)amine (BOP). In addition, hyperlipidemia, obesity, and type II diabetes are also suggested to be associated with chronic inflammation in the pancreas and involved in pancreatic cancer development. We have shown that a high-fat diet increased pancreatic cancer development in BOP-treated hamsters, along with aggravation of hyperlipidemia, severe fatty infiltration, and increased expression of adipokines and inflammatory factors in the pancreas. Of note, fatty pancreas has been observed in obese and/or diabetic cases in humans. Preventive effects of anti-hyperlipidemic/anti-diabetic agents on pancreatic cancer have also been shown in humans and animals. Taking this evidence into consideration, modulation of inflammatory factors by anti-inflammatory agents will provide useful data for prevention of pancreatic cancer.
Kim, Eun-Kyung; Tang, Yujiao; Cha, Kwang-Suk; Choi, Heeri; Lee, Chun Bok; Yoon, Jin-Hwan; Kim, Sang Bae; Kim, Jong-Shik; Kim, Jong Moon; Han, Weon Cheol; Choi, Suck-Jun; Lee, Sangmin; Choi, Eun-Ju; Kim, Sang-Hyun
2015-01-01
Abstract The present study aimed to examine the anti-inflammatory effects and potential mechanism of action of Artemisia asiatica Nakai (A. asiatica Nakai) extract in activated murine macrophages. A. asiatica Nakai extract showed dose-dependent suppression of lipopolysaccharide (LPS)-induced nitric oxide, inducible nitric oxide synthase, and cyclooxygenase-2 activity. It also showed dose-dependent inhibition of nuclear factor-κB (NF-κB) translocation from the cytosol to the nucleus and as an inhibitor of NF-κB-alpha phosphorylation. The extract's inhibitory effects were found to be mediated through NF-κB inhibition and phosphorylation of extracellular signal-regulated kinase 1/2 and p38 in LPS-stimulated J774A.1 murine macrophages, suggesting a potential mechanism for the anti-inflammatory activity of A. asiatica Nakai. To our knowledge, this is the first report of the anti-inflammatory effects of A. asiatica Nakai on J774A.1 murine macrophages; these results may help develop functional foods possessing an anti-inflammatory activity. PMID:26061361
Murakami, Yukio; Kawata, Akifumi; Seki, Yuya; Koh, Teho; Yuhara, Kenji; Maruyama, Takehisa; Machino, Mamoru; Ito, Shigeru; Kadoma, Yoshinori; Fujisawa, Seiichiro
2012-01-01
The anti-inflammatory activity of magnolol and related compounds is currently a focus of interest. In the present study, the inhibitory effects of these compounds on cyclooxygenase (COX-2) expression and nuclear factor-kappa B (NF-κB) activation were investigated in RAW264.7 macrophage-like cells stimulated with the fimbriae of Porphyromonas gingivalis, an oral anaerobe. The cytotoxicity of magnolol, honokiol, eugenol and bis-eugenol against RAW264.7 cells was determined using a cell counting kit (CCK-8). The regulatory effect of these compounds on the expression of COX-2 mRNA, stimulated by exposure to the fimbriae was investigated by real-time polymerase chain reaction (PCR). NF-κB activation was evaluated by enzyme-linked immunosorbent assay (ELISA)-like microwell colorimetric transcription factor activity assay (Trans-AM) and western blot analysis. The radical-scavenging activity was determined using the induction period method in the methyl methacrylate-azobisisobutyronitrile (AIBN) polymerization system under nearly anaerobic conditions. The phenolic bond dissociation enthalpy (BDE) and orbital energy were calculated at the density functional theory (DFT) B3LYP/6-31G* level. The cytotoxicity against RAW264.7 cells declined in the order bis-eugenol>eugenol> honokiol>magnolol, whereas the radical-scavenging activity declined in the order honokiol, bis-eugenol>magnolol> eugenol. Magnolol and honokiol significantly inhibited the fimbria-induced expression of COX-2 at non-cytotoxic concentrations. Both the fimbria-stimulated binding of NF-κB to its consensus sequence and phosphorylation-dependent proteolysis of inhibitor κB-α were markedly inhibited by magnilol and honokiol, whereas eugenol and bis-eugenol did not inhibit COX-2 expression and NF-κB activation. Magnolol and honokiol possessed a high electronegativity (χ) value. Magnolol and honokiol exhibit antioxidative activity, low cytotoxicity, and anti-inflammatory activity. These compounds may be capable of preventing chronic inflammatory diseases induced by oral bacteria.
Yamada, Hidetoshi; Kikuchi, Sayaka; Inui, Tomoki; Takahashi, Hideyuki; Kimura, Ken-ichi
2014-01-01
Background Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained. Methods and Findings Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS)-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNF-α production in our test system. We isolated gentiolactone as an inhibitor of TNF-α production from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport. Conclusions Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots. PMID:25423092
Kim, Young-Sang; Ahn, Chang-Bum; Je, Jae-Young
2016-07-01
Anti-inflammatory Mytilus edulis hydrolysates (MEHs) were prepared by peptic hydrolysis and MEH was further fractionated into three fractions based on molecular weight, namely >5kDa, 1-5kDa, and <1kDa. The >5kDa peptide fraction exerted the highest nitric oxide (NO) inhibitory activity and inhibited prostaglandin E2 (PGE2) secretion in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Pretreatment with the >5kDa peptide fraction markedly inhibited LPS-stimulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein and gene expressions. Stimulation by LPS induced the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and -1β (IL-1β), whereas co-treatment with the >5kDa peptide fraction suppressed pro-inflammatory cytokine production. The >5kDa peptide fraction inhibited the translocation of NF-κB (nuclear factor-kappa B) through the prevention of IκBα (inhibitory factor kappa B alpha) phosphorylation and degradation and also inhibited the MAPK signaling pathway in LPS-stimulated RAW264.7 macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic.
Masferrer, J L; Zweifel, B S; Manning, P T; Hauser, S D; Leahy, K M; Smith, W G; Isakson, P C; Seibert, K
1994-01-01
We have examined the role of cyclooxygenase 2 (COX-2) in a model of inflammation in vivo. Carrageenan administration to the subcutaneous rat air pouch induces a rapid inflammatory response characterized by high levels of prostaglandins (PGs) and leukotrienes in the fluid exudate. The time course of the induction of COX-2 mRNA and protein coincided with the production of PGs in the pouch tissue and cellular infiltrate. Carrageenan-induced COX-2 immunoreactivity was localized to macrophages obtained from the fluid exudate as well as to the inner surface layer of cells within the pouch lining. Dexamethasone inhibited both COX-2 expression and PG synthesis in the fluid exudate but failed to inhibit PG synthesis in the stomach. Furthermore, NS-398, a selective COX-2 inhibitor, and indomethacin, a nonselective COX-1/COX-2 inhibitor, blocked proinflammatory PG synthesis in the air pouch. In contrast, only indomethacin blocked gastric PG and, additionally, produced gastric lesions. These results suggest that inhibitors of COX-2 are potent antiinflammatory agents which do not produce the typical side effects (e.g., gastric ulcers) associated with the nonselective, COX-1-directed antiinflammatory drugs. Images PMID:8159730
Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.
Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P
2011-07-01
Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.
Vondrichova, Tereza; de Capretz, Annika; Parikh, Hemang; Frenander, Christofer; Asman, Peter; Aberg, Magnus; Groop, Leif; Hallengren, Bengt; Lantz, Mikael
2007-06-01
Inflammation and adipogenesis are two parallel processes with increased activity in severe Graves' ophthalmopathy. The aim of this work was to define target genes for therapeutic intervention in adipogenesis and inflammation in Graves' ophthalmopathy. Orbital tissue was obtained from patients with ophthalmopathy in acute or chronic phase undergoing orbital surgery to study gene expression followed by the study of potential intervention mechanisms in preadipocytes. Clinic of Endocrinology, University Hospital, Malmö, Sweden. Patients in acute severe or in chronic phase of ophthalmopathy. Lateral orbital decompression in acute phase and restorative surgery in chronic phase. In vitro treatment of preadipocytes with rosiglitazone and diclofenac. Gene expression in intraorbital tissue or preadipocytes and differentiation of preadipocytes. A marker of adipose tissue, stearoyl-coenzyme A desaturase (SCD), and the proinflammatory gene, cyclooxygenase-2 (COX-2), were overexpressed in patients in active phase compared to the chronic phase of ophthalmopathy. In growth-arrested preadipocytes stimulated with rosiglitazone, COX-2 expression increased temporarily within 1 hour and decreased to undetectable levels after 48 hours. In contrast, SCD and peroxisome proliferator-activated receptor-gamma (PPAR-gamma) expression increased continuously from day 2 to day 7 during adipogenesis. Diclofenac, an inhibitor of cyclooxygenases with antagonistic effects on PPAR-gamma, reduced the number of mature adipocytes by approximately 50%. We conclude that inflammation and adipogenesis decrease with a decrease in activity of ophthalmopathy and that the nonsteroidal antiinflammatory drug diclofenac inhibits adipogenesis. This may represent a putative future treatment of endocrine ophthalmopathy.
Kang, Hyunju; Kim, Hyeyoung
2017-06-01
Helicobacter pylori is a dominant bacterium living in the human gastric tissues. In H. pylori -infected tissues, the infiltrated inflammatory cells produce reactive oxygen species (ROS), leading to gastric inflammation with production of various mediators. According to numerous epidemiological studies, dietary carotenoids may prevent gastric inflammation due to their antioxidant properties. Recent studies showed that antioxidant and anti-inflammatory effects of astaxanthin and β-carotene may contribute to inhibition of H. pylori -induced gastric inflammation. Astaxanthin changes H. pylori -induced activation of T helper cell type 1 response towards T helper cell type 2 response in the infected tissues. Astaxanthin inhibits the growth of H. pylori . Even though astaxanthin reduces H. pylori -induced gastric inflammation, it does not reduce cytokine levels in the infected tissues. β-Carotene suppresses ROS-mediated inflammatory signaling, including mitogen-activated protein kinases and redox-sensitive transcription factors, and reduces expression of inflammatory mediators, including interleukin-8, inducible nitric oxide synthase, and cyclooxygenase-2 in the infected tissues. Therefore, consumption of astaxanthin- and β-carotene-rich foods may be beneficial to prevent H. pylori -induced gastric inflammation. This review will summarize anti-inflammatory mechanisms of astaxanthin and β-carotene in H. pylori -mediated gastric inflammation.
Ma, Li-Li; Xing, Guo-Ping; Yu, Yin; Liang, Hui; Yu, Tian-Xia; Zheng, Wei-Hong; Lai, Tian-Bao
2015-01-01
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and may represent a promising target for treatment. Sulforaphane exerts protective effects in a rat model of focal cerebral ischemia/reperfusion injury by alleviating brain edema. However, the possible mechanisms of sulforaphane after cerebral ischemia/reperfusion injury have not been fully elucidated. Therefore, in the present study, we investigated the effect of sulforaphane on inflammatory reaction and the potential molecular mechanisms in cerebral ischemia rats. We found that sulforaphane significantly attenuated the blood-brain barrier (BBB) disruption; decreased the levels of pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β; reduced the nitric oxide (NO) levels and inducible nitric oxide synthase (iNOS) activity; inhibited the expression of iNOS and cyclooxygenase-2 (COX-2). In addition, sulforaphane inhibits the expression of p-NF-κB p65 after focal cerebral ischemia-reperfusion injury. Taken together, our results suggest that sulforaphane suppresses the inflammatory response via inhibiting the NF-κB signaling pathway in a rat model of focal cerebral ischemia, and sulforaphane may be a potential therapeutic agent for the treatment of cerebral ischemia injury.
Lipid profiles, inflammatory markers, and insulin therapy in youth with type 2 diabetes
USDA-ARS?s Scientific Manuscript database
Data regarding atherogenic dyslipidemia and the inflammation profile in youth with type 2 diabetes is limited and the effect of insulin therapy on these variables has not previously been studied in youth. We determined the impact of insulin therapy on lipid and inflammatory markers in youth with poo...
Impact of traditional therapies and biologics on cardiovascular diseases in rheumatoid arthritis.
Boyer, Jean-Frédéric; Cantagrel, Alain; Constantin, Arnaud
2008-07-01
In chronic inflammatory diseases such as rheumatoid arthritis (RA), systemic inflammation appears as an independent risk factor, contributing to increased cardiovascular mortality. This high cardiovascular mortality reveals the existence of accelerated atherosclerosis, the pathogenesis of which may be associated with traditional risk factors such as smoking, hypertension, dyslipidemia, deterioration of insulin sensitivity, and less traditional risk factors such as hyperhomocysteinemia, inflammatory conditions and endothelial dysfunction. Control of systemic inflammation theoretically provides a means of preventing this higher cardiovascular mortality among RA patients. In this review we address the question of the impact of anti-rheumatic drugs currently used in RA, such as non-steroidal anti-inflammatory drugs (e.g. non-selective or cyclooxygenase-2 selective inhibitors), steroidal anti-inflammatory drugs (glucocorticoids), traditional disease-modifying anti-rheumatic drugs (e.g. methotrexate) or biologics (e.g. anti-tumour necrosis factor alpha anti-tumour necrosis factor alpha) on cardiovascular diseases in RA patients. We also discuss the specific mechanisms involved in the differential cardiovascular effects of these therapeutic agents.
2015-01-01
The cyclooxygenase enzymes (COX-1 and COX-2) are the therapeutic targets of nonsteroidal anti-inflammatory drugs (NSAIDs). Neutralization of the carboxylic acid moiety of the NSAID indomethacin to an ester or amide functionality confers COX-2 selectivity, but the molecular basis for this selectivity has not been completely revealed through mutagenesis studies and/or X-ray crystallographic attempts. We expressed and assayed a number of divergent secondary shell COX-2 active site mutants and found that a COX-2 to COX-1 change at position 472 (Leu in COX-2, Met in COX-1) reduced the potency of enzyme inhibition by a series of COX-2-selective indomethacin amides and esters. In contrast, the potencies of indomethacin, arylacetic acid, propionic acid, and COX-2-selective diarylheterocycle inhibitors were either unaffected or only mildly affected by this mutation. Molecular dynamics simulations revealed identical equilibrium enzyme structures around residue 472; however, calculations indicated that the L472M mutation impacted local low-frequency dynamical COX constriction site motions by stabilizing the active site entrance and slowing constriction site dynamics. Kinetic analysis of inhibitor binding is consistent with the computational findings. PMID:26704937
Lee, Jeong-Oog; Kim, Mi-Yeon
2015-01-01
Luteolin is a flavonoid identified as a major anti-inflammatory component of Artemisia asiatica. Numerous reports have demonstrated the ability of luteolin to suppress inflammation in a variety of inflammatory conditions. However, its exact anti-inflammatory mechanism has not been fully elucidated. In the present study, the anti-inflammatory mode of action in activated macrophages of luteolin from Artemisia asiatica was examined by employing immunoblotting analysis, a luciferase reporter gene assay, enzyme assays, and an overexpression strategy. Luteolin dose-dependently inhibited the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) and diminished the levels of mRNA transcripts of inducible NO synthase (iNOS), tumor necrosis factor- (TNF-) α, and cyclooxygenase-2 (COX-2) in lipopolysaccharide- (LPS-) and pam3CSK-treated macrophage-like RAW264.7 cells without displaying cytotoxicity. Luteolin displayed potent NO-inhibitory activity and also suppressed the nuclear translocation of NF-κB (p65 and p50) via blockade of Src and Syk, but not other mitogen-activated kinases. Overexpression of wild type Src and point mutants thereof, and molecular modelling studies, suggest that the ATP-binding pocket may be the luteolin-binding site in Src. These results strongly suggest that luteolin may exert its anti-inflammatory action by suppressing the NF-κB signaling cascade via blockade of ATP binding in Src and Syk. PMID:26236111
Redox and non-redox mechanism of in vitro cyclooxygenase inhibition by natural quinones.
Landa, Premysl; Kutil, Zsofia; Temml, Veronika; Vuorinen, Anna; Malik, Jan; Dvorakova, Marcela; Marsik, Petr; Kokoska, Ladislav; Pribylova, Marie; Schuster, Daniela; Vanek, Tomas
2012-03-01
In this study, ten anthra-, nine naphtho-, and five benzoquinone compounds of natural origin and five synthetic naphthoquinones were assessed, using an enzymatic in vitro assay, for their potential to inhibit cyclooxygenase-1 and -2 (COX-1 and COX-2), the key enzymes of the arachidonic acid cascade. IC₅₀ values comparable with COX reference inhibitor indomethacin were recorded for several quinones (primin, alkannin, diospyrin, juglone, 7-methyljuglone, and shikonin). For some of the compounds, we suggest the redox potential of quinones as the mechanism responsible for in vitro COX inhibition because of the quantitative correlation with their pro-oxidant effect. Structure-relationship activity studies revealed that the substitutions at positions 2 and 5 play the key roles in the COX inhibitory and pro-oxidant actions of naphthoquinones. In contrast, the redox mechanism alone could not explain the activity of primin, embelin, alkannin, and diospyrin. For these four quinones, molecular modeling suggested similar binding modes as for conventional nonsteroidal anti-inflammatory drugs (NSAIDs). © Georg Thieme Verlag KG Stuttgart · New York.
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-09-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.
Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan
2009-01-01
AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008
Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients.
Chacón, Pedro; Vega, Antonio; Monteseirín, Javier; El Bekay, Rajaa; Alba, Gonzalo; Pérez-Formoso, José Luis; Msartínez, Alberto; Asturias, Juan A; Pérez-Cano, Ramón; Sobrino, Francisco; Conde, José
2005-08-01
Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of COX-2 expression is responsible for increased PG release during inflammatory conditions and is thought to be also involved in allergic states. In this study, we demonstrate that in human T, B and natural killer lymphocytes from allergic patients, COX-2 expression became induced upon cell challenge with specific allergens and that this process is presumably IgE dependent and occurs after CD23 receptor ligation. This induction took place at both mRNA and protein levels and was accompanied by PGD2 release. IgE-dependent lymphocyte treatment elicited, in parallel, an activation of the MAPK p38 and extracellular signal-regulated kinase 1/2, an enhancement of calcineurin (CaN) activity, and an increase of the DNA-binding activity of the nuclear factor of activated T cells and of NF-kappaB, with a concomitant decrease in the levels of the cytosolic inhibitor of kappaB, IkappaB. In addition, specific chemical inhibitors of MAPK, such as PD098059 and SB203580, as well as MG-132, an inhibitor of proteasomal activity, abolished allergen-induced COX-2 up-regulation, suggesting that this process is mediated by MAPK and NF-kappaB. However, induction of COX-2 expression was not hampered by the CaN inhibitor cyclosporin A. We also examined the effect of a selective COX-2 inhibitor, NS-398, on cytokine production by human lymphocytes. Treatment with NS-398 severely diminished the IgE-dependently induced production of IL-8 and TNF-alpha. These results underscore the relevant role of lymphocyte COX-2 in allergy and suggest that COX-2 inhibitors may contribute to the improvement of allergic inflammation through the reduction of inflammatory mediator production by human lymphocytes.
Catella-Lawson, F; McAdam, B; Morrison, B W; Kapoor, S; Kujubu, D; Antes, L; Lasseter, K C; Quan, H; Gertz, B J; FitzGerald, G A
1999-05-01
Conventional nonsteroidal anti-inflammatory drugs inhibit both cyclooxygenase (Cox) isoforms (Cox-1 and Cox-2) and may be associated with nephrotoxicity. The present study was undertaken to assess the renal effects of the specific Cox-2 inhibitor, MK-966. Healthy older adults (n = 36) were admitted to a clinical research unit, placed on a fixed sodium intake, and randomized under double-blind conditions to receive the specific Cox-2 inhibitor, MK-966 (50 mg every day), a nonspecific Cox-1/Cox-2 inhibitor, indomethacin (50 mg t.i.d.), or placebo for 2 weeks. All treatments were well tolerated. Both active regimens were associated with a transient but significant decline in urinary sodium excretion during the first 72 h of treatment. Blood pressure and body weight did not change significantly in any group. The glomerular filtration rate (GFR) was decreased by indomethacin but was not changed significantly by MK-966 treatment. Thromboxane biosynthesis by platelets was inhibited by indomethacin only. The urinary excretion of the prostacyclin metabolite 2,3-dinor-6-keto prostaglandin F1alpha was decreased by both MK-966 and indomethacin and was unchanged by placebo. Cox-2 may play a role in the systemic biosynthesis of prostacyclin in healthy humans. Selective inhibition of Cox-2 by MK-966 caused a clinically insignificant and transient retention of sodium, but no depression of GFR. Inhibition of both Cox isoforms by indomethacin caused transient sodium retention and a decline in GFR. Our data suggest that acute sodium retention by nonsteroidal anti-inflammatory drugs in healthy elderly subjects is mediated by the inhibition of Cox-2, whereas depression of GFR is due to inhibition of Cox-1.
Narayanan, Bhagavathi A; Reddy, Bandaru S; Bosland, Maarten C; Nargi, Dominick; Horton, Lori; Randolph, Carla; Narayanan, Narayanan K
2007-10-01
Nonsteroidal anti-inflammatory drugs mediate anticancer effects by modulating cyclooxygenase-2 (COX-2)-dependent and/or COX-2-independent mechanism(s); however, the toxicity issue is a concern with single agents at higher doses. In this study, we determined the combined effect of celecoxib, a COX-2 inhibitor, along with exisulind (sulindac sulfone/Aptosyn) at low doses in prostate cancer. We used a sequential regimen of N-methyl-N-nitrosourea + testosterone to induce prostate cancer in Wistar-Unilever rats. Following carcinogen treatment, celecoxib and exisulind individually and their combination at low doses were given in NIH-07 diet for 52 weeks. We determined the incidence of prostatic intraepithelial neoplasia, adenocarcinomas, rate of tumor cell proliferation, and apoptosis. Immunohistochemical and Western blot analysis were done to determine COX-2, epidermal growth factor receptor (EGFR), Akt, androgen receptor, and cyclin D1 expression. Serum prostaglandin E2 and tumor necrosis factor-alpha levels were determined using enzyme immunoassay/ELISA assays. The rats that received celecoxib in combination with exisulind at low doses showed a significant decrease in prostatic intraepithelial neoplasia and adenocarcinomas as well as an enhanced rate of apoptosis. An overall decrease in COX-2, EGFR, Akt, androgen receptor, and cyclin D1 expression was found associated with tumor growth inhibition. Reduced serum levels of COX-2 protein, prostaglandin E2, and tumor necrosis factor-alpha indicated anti-inflammatory effects. A strong inhibition of total and phosphorylated form of EGFR (Tyr(992) and Tyr(845)) and Akt (Ser(473)) was significant in rats given with these agents in combination. In this study, we show for the first time that the combination of celecoxib with exisulind at low doses could prevent prostate carcinogenesis by altering key molecular events.
Mi, Wen-Li; Mao-Ying, Qi-Liang; Liu, Qiong; Wang, Xiao-Wei; Wang, Yan-Qing; Wu, Gen-Cheng
2008-09-30
Electroacupuncture (EA) can effectively control the exaggerated pain in humans with inflammatory disease and animals with experimental inflammatory pain. However, there have been few investigations on the effect of co-administration of EA and analgesics and the underlying synergistic mechanism. Using behavioral test, RT-PCR analysis, enzyme immunoassay (EIA) and enzyme-linked immunosorbent assay (ELISA), the present study demonstrated that (1) Unilateral intra-articular injection of complete Freund's adjuvant (CFA) produced a constant hyperalgesia and an up-regulation of the prostaglandin E(2) (PGE(2)) level as well as the tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 levels in the spinal cord; (2) Celecoxib, a selective inhibitor of cyclooxygenase-2 (COX-2), at a dose of 2, 10, and 20 mg/kg (twice daily, p.o.), presented a dose-dependent anti-hyperalgesic effect; (3) Repeated EA stimulation of ipsilateral 'Huan-Tiao' (GB30) and 'Yang-Ling-Quan' (GB34) acupoints significantly suppressed CFA-induced hyperalgesia, and markedly inhibited the CFA-induced increase of the level of PGE(2) as well as IL-1beta, IL-6, and TNF-alpha in the spinal cord; (4) EA combined with low dose of celecoxib (2 mg/kg, twice daily, p.o.) greatly enhanced the anti-hyperalgesic effects of EA, with a synergistic reversing effect on CFA-induced up-regulation of spinal PGE(2), but not on the IL-1beta, IL-6, or TNF-alpha. These data indicated that repeated EA combined with low dose of celecoxib produced synergistic anti-hyperalgesic effect in the CFA-induced monoarthritic rats, which could be made possible by regulating the activity of spinal COX, hence the spinal PGE(2) level. Thus, this combination may provide an effective strategy for pain management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrashekar, Naveenkumar; Selvamani, Asokkumar; Subramanian, Raghunandhakumar
2012-05-15
The objective of the present study is to investigate the therapeutic efficacy of baicalein (BE) on inflammatory cytokines, which is in line with tumor invasion factors and antioxidant defensive system during benzo(a)pyrene [B(a)P] (50 mg/kg body weight) induced pulmonary carcinogenesis in Swiss albino mice. After experimental period, increased levels of total and differential cell count in bronchoalveolar lavage fluid were observed. Accompanied by marked increase in immature mast cell by toluidine blue staining and mature mast cell by safranin–alcian blue staining in B(a)P-induced lung cancer bearing animals. Protein expression levels studied by immunohistochemistry and immunoblot analysis of cytokines such asmore » tumor necrosis factor-α, interleukin-1β and inducible nitric oxide synthase were also found to be significantly increased in lung cancer bearing animals. B(a)P-exposed mice lung exhibits activated expression of nuclear transcription factor kappa-B as confirmed by immunofluorescence and immunoblot analysis. Administration of BE (12 mg/kg body weight) significantly counteracted all the above deleterious changes. Moreover, assessment of tumor invasion factors on protein levels by immunoblot and mRNA expression levels by RT-PCR revealed that BE treatment effectively negates B(a)P-induced upregulated expression of matrix metalloproteinase-2, matrix metalloproteinase-9 and cyclo-oxygenase-2. Further analysis of lipid peroxidation markers such as thiobarbituric acid reactive substances, hydro-peroxides and antioxidants such as glutathione-S-transferase and reduced glutathione in lung tissue was carried out to substantiate the antioxidant effect of BE. The chemotherapeutic effect observed in the present study is attributed to the potent anti-inflammatory and antioxidant potential by BE against pulmonary carcinogenesis. -- Highlights: ► BE treatment protects from inflammatory cells and mast-cells accumulation in lungs. ► BE altered the expressions of TNF-α, IL-1β, i-NOS and NF-κBp65 at protein levels. ► BE modulates the expressions of MMP-2, MMP-9 and COX-2 at protein and mRNA levels. ► BE decreases LPO levels and enhances antioxidant status.« less
Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan
2016-12-01
Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.
Briaviolides K–N, New Briarane-Type Diterpenoids from Cultured Octocoral Briareum violaceum
Xu, Jing-Hao; Lai, Kuei-Hung; Su, Yin-Di; Chang, Yu-Chia; Peng, Bo-Rong; Wen, Zhi-Hong
2018-01-01
Four new briarane diterpenoids, briaviolides K–N (1–4), have been obtained from the cultured-type octocoral Briareum violaceum. Using a spectroscopic approach, the structures of briaranes 1–4 were identified. This study employed an in vitro model of lipopolysaccharide (LPS)-induced inflammation in the murine macrophage RAW 264.7 cell line, and found that among the four briaranes, briarane 2 possessed anti-inflammatory activity against inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expressions in cells. In addition, principal component analysis using the chemical global positioning system (ChemGPS) for natural products (ChemGPS-NP) was employed in order to analyze the structure-activity relationship (SAR), and the results indicated that the ring conformation of the compound has a leading role in suppressing the expressions of pro-inflammatory iNOS and COX-2 proteins in macrophages. PMID:29495481
Inhibition of homodimerization of toll-like receptor 4 by 6-shogaol.
Ahn, Sang-Il; Lee, Jun-Kyung; Youn, Hyung-Sun
2009-02-28
Toll-like receptors (TLRs) play a critical role in sensing microbial components and inducing innate immune and inflammatory responses by recognizing invading microbial pathogens. Lipopolysaccharide-induced dimerization of TLR4 is required for the activation of downstream signaling pathways including nuclear factor-kappa B (NF-kappaB). Therefore, TLR4 dimerization may be an early regulatory event in activating ligand-induced signaling pathways and induction of subsequent immune responses. Here, we report biochemical evidence that 6-shogaol, the most bioactive component of ginger, inhibits lipopolysaccharide-induced dimerization of TLR4 resulting in the inhibition of NF-kappaB activation and the expression of cyclooxygenase-2. Furthermore, we demonstrate that 6-shogaol can directly inhibit TLR-mediated signaling pathways at the receptor level. These results suggest that 6-shogaol can modulate TLR-mediated inflammatory responses, which may influence the risk of chronic inflammatory diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Adrienne T.; Joseph, Laurie B.; Casillas, Robert P.
Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 {mu}M) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase,more » thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A{sub 4} (LTA{sub 4}) hydrolase and leukotriene C{sub 4} (LTC{sub 4}) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA{sub 4} hydrolase and LTC{sub 4} synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.« less
Current concepts regarding pharmacologic treatment of rheumatoid and osteoarthritis.
Wildy, K S; Wasko, M C
2001-05-01
Treating patients with osteoarthritis (OA) and rheumatoid arthritis (RA) remains challenging; however, new agents offer the chance for an improved quality of life. As an alternative to traditional nonsteroidal anti-inflammatories, cyclooxygenase-2 inhibitors provide pain relief for OA and RA patients with possible fewer side effects. Otherwise, OA patients may opt for topical agents, injections, or supplements. Rheumatoid arthritis research has led to an improved understanding of the inflammatory cascade and an appreciation of the early tissue destruction. A new treatment philosophy has thus emerged along with the development of new biologic agents; the latter, along with combination therapy and a new disease modifying antirheumatic drug, leflunomide, have greatly expanded the chances for disease control in RA patients.
[Effect of paracetamol (acetaminophen) on blood pressure in patients with coronary heart disease].
Sudano, I; Roas, S; Flammer, A J; Noll, G; Ruschitzka, F
2012-06-06
Analgesic drugs, non-steroidal anti-inflammatory drugs and paracetamol (acetaminophen) in particular, belong to the most widely prescribed therapeutic agents. Beside their efficacy in pain relief, these drugs were recently linked to increased cardiovascular risk. Indeed, epidemiological and clinical studies showed that non-selective non-steroidal anti-inflammatory drugs, as well as selective cyclooxygenase-2 inhibitors both may increase blood pressure and cardiovascular events. However, the effect of paracetamol (acetaminophen) on blood pressure and cardiovascular health should not be neglected, too. Unfortunately, long-term randomized controlled trials appropriately powered to evaluate cardiovascular outcomes are lacking. This review summarizes the available data about the effect of paracetamol in particular, on blood pressure and other cardiovascular outcomes.
NASA Astrophysics Data System (ADS)
Mulatsari, E.; Mumpuni, E.; Herfian, A.
2017-05-01
Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.
Yang, Xiu-Li; Kim, Chi Kyung; Kim, Tae Jung; Sun, Jing; Rim, Doeun; Kim, Young-Ju; Ko, Sang-Bae; Jang, Hyunduk; Yoon, Byung-Woo
2016-02-01
The aim of this study was to investigate whether fimasartan, a novel angiotensin II receptor blocker, modulates hemolysate-induced inflammation in astrocytes. We stimulated astrocytes with hemolysate to induce hemorrhagic inflammation in vitro. Astrocytes were pretreated with fimasartan and then incubated with hemolysate at different durations. Anti-inflammatory cell signaling molecules including Akt, extracellular signal regulated kinase (ERK), NFκB and cyclooxygenase-2 (COX-2) were assessed by western blotting. Pro-inflammatory mediators were evaluated by real-time RT-PCR and ELISA. The stimulation by hemolysate generated a robust activation of inflammatory signaling pathways in astrocytes. Hemolysate increased the phosphorylation of Akt at 1 h, and ERK1/2 at 20 min compared with the control group and promoted the degradation of IκBα. Pretreated fimasartan significantly decreased hemolysate-induced phosphorylation of Akt and ERK1/2. In addition, fimasartan also suppressed NFκB-related inflammatory pathways induced by hemolysate, including reduction of the gene expression of NFκB, and decreased nuclear translocation of NFκB and degradation of IκB. This reduction of inflammatory upstream pathways decreased the expression of inflammatory end-products: COX-2 and interleukin-1 (IL-1β). Furthermore, the expression of COX-2 was attenuated by both Akt inhibitor (LY294002) and ERK inhibitor (U0126), and IκBα degradation was suppressed by LY294002. These results demonstrate that pretreatment with fimasartan to astrocytes suppresses the inflammatory responses induced by hemolysate. Akt, ERK and NFκB were associated with hemolysate-induced COX-2 and IL-1β expression. Based on these mechanisms, fimasartan could be a candidate anti-inflammatory regulator for the treatment of intracerebral hemorrhage.
Ueki, Takuro; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho
2012-01-01
Extract from fruits of Nandina domestica THUNBERG (NDE) has been used to improve cough and breathing difficulty in Japan for many years. To explore whether NDE may alleviate respiratory inflammation, we investigated its effect on expression of cyclooxygenase-2 (COX-2) and production of prostaglandin E₂ (PGE₂) in human pulmonary epithelial A549 cells in culture. Treatment with lipopolysaccharide (LPS; 6 µg/mL) resulted in an increase of COX-2 expression and PGE₂ production in A549 cells. Both the LPS-induced COX-2 expression and PGE₂ production were significantly inhibited by NDE (1-10 µg/mL) in a concentration-dependent manner. NDE did not affect COX-1 expression nor COX activity. These results suggest that NDE downregulates LPS-induced COX-2 expression and inhibits PGE₂ production in pulmonary epithelial cells. Furthermore, higenamine and nantenine, two major constituents responsible for tracheal relaxing effect of NDE, did not mimic the inhibitory effect of NDE on LPS-induced COX-2 expression in A549 cells. To identify active constituent(s) of NDE responsible for the anti-inflammatory effect, NDE was introduced in a polyaromatic absorbent resin column and stepwise eluted to yield water fraction, 20% methanol fraction, 40% methanol fraction, 99.8% methanol fraction, and 99.5% acetone fraction. However, none of these five fractions alone inhibited LPS-induced COX-2 expression. On the other hand, exclusion of water fraction from NDE abolished the inhibitory effect of NDE on LPS-induced COX-2 expression. These results suggest that constituent(s) present in water fraction is required but not sufficient for the anti-inflammatory activity of NDE, which may result from interactions among multiple constituents.
Cronin-Fenton, Deirdre P; Pedersen, Lars; Lash, Timothy L; Friis, Søren; Baron, John A; Sørensen, Henrik T
2010-01-01
Non-steroidal anti-inflammatory drugs (NSAIDs) prevent the growth of mammary tumours in animal models. Two population-based case-control studies suggest a reduced risk of breast cancer associated with selective cyclooxygenase-2 (sCox-2) inhibitor use, but data regarding the association between breast cancer occurrence and use of non-selective NSAIDs are conflicting. We conducted a population-based case-control study using Danish healthcare databases to examine if use of NSAIDs, including sCox-2 inhibitors, was associated with a reduced risk of breast cancer. We included 8,195 incident breast cancer cases diagnosed in 1991 through 2006 and 81,950 population controls. Overall, we found no reduced breast cancer risk in ever users (>2 prescriptions) of sCox-2 inhibitors (odds ratio (OR) = 1.08, 95% confidence interval (95% CI) = 0.99, 1.18), aspirin (OR = 0.98, 95% CI = 0.90-1.07), or non-selective NSAIDs OR = 1.04, (95% CI = 0.98, 1.10)). Recent use (>2 prescriptions within two years of index date) of sCox-2 inhibitors, aspirin, or non-selective NSAIDs was likewise not associated with breast cancer risk (Ors = 1.06 (95% CI = 0.96, 1.18), 0.96 (95% CI = 0.87, 1.06) and 0.99 (95% CI = 0.85, 1.16), respectively). Risk estimates by duration (<10, 10 to 15, 15+ years) or intensity (low/medium/high) of NSAID use were also close to unity. Regardless of intensity, shorter or long-term NSAID use was not significantly associated with breast cancer risk. Overall, we found no compelling evidence of a reduced risk of breast cancer associated with use of sCox-2 inhibitors, aspirin, or non-selective NSAIDs.
Shaya, Fadia T; Blume, Steven
2005-01-01
To determine whether race is a predictor of a patient's likelihood of being prescribed selective cyclooxygenase-2 inhibitors (COX-2s) versus other nonsteroidal anti-inflammatory agents (NSAIDs) in Medicaid managed care plans (MCO). All medical and prescription claims for Medicaid MCO enrollees receiving at least one prescription for a COX-2 or NSAID between January 2000 and June 2002 were retrieved. Selected for study were adults claiming at least one COX-2 prescription or NSAID prescription with a minimum 30 days of supply after June 2000; having 60 total days of supply or more over the study period was also required for study inclusion. The probability of being prescribed a COX-2 was estimated as a logistic function of patient age, gender, race, city/suburban/rural residence, and history of rheumatoid arthritis, osteoarthritis, chronic back pain, acute pains, gastrointestinal problems, use of anticoagulants or corticosteroids, and comorbidities. Of the 16,868 enrollees meeting the selection criteria, 4,005 (24%) were prescribed a COX-2 and 12,863 another NSAID. Half of those studied were African American, three-quarters were female, and a third were 50-64 years old. After adjusting for confounders, odds of a COX-2 prescription were a third less for African Americans and other races compared to Caucasians (OR, 0.67; 95% confidence intervals, 0.62-0.73). Patient race is a significant predictor of COX-2 prescriptions in the Medicaid population, even after adjusting for other demographic and clinical variables. Cost to the patient was not a factor, as the patient copayment was 1 US dollar for any prescription.
Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity.
Jasson, Fiona; Nagy, Istvan; Knol, Anne Chantal; Zuliani, Thomas; Khammari, Amir; Dréno, Brigitte
2013-09-01
Acne is a chronic inflammatory illness of the pilosebaceous follicle where innate immunity plays a central role. In acne, the density of Propionibacterium acnes is increased in the pilosebaceous unit. We hypothesized that the severity of acne is not only dependent on the proliferation of P. acnes but also dependent on the pro-inflammatory potential of P. acnes strains and consequently constitutes potential triggering factor for acne scarring. We investigated pro-inflammatory potential of five different strains of P. acnes and P. avidum in skin explants and the preventive effect of zinc gluconate. The expression of immune markers was studied by immunohistochemistry, RT-qPCR and ELISA. P. acnes strains modulate differently the expression of immune markers both at gene and at protein levels. P. acnes type III had the highest pro-inflammatory potential by up-regulating the expression of PAR-2, TNF-alpha, MMP-13 and TIMP-2, whereas P. avidum had the weakest by up-regulating only MMP-13 and TIMP-2. Preincubation of zinc gluconate, which is a modulator of innate immunity, down-regulates the expression of most immune markers induced by P. acnes, PAR-2, TIMP-2, up-regulates MMP-1, TIMP-1. Our results demonstrate that different P. acnes strains have different inflammatory potential targeting markers of cutaneous innate immunity, and that inflammatory potential can be down-regulated by zinc gluconate. As such, the inflammatory potential of P. acnes strains on acne skin may influence the severity of inflammatory acne lesions and scars. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections. PMID:25184525
Kumar, Lokender; Chhibber, Sanjay; Harjai, Kusum
2014-01-01
Antibiotic-induced endotoxin release is associated with high mortality rate even when appropriate antibiotics are used for the treatment of severe infections in intensive care units. Since liver is involved in systemic clearance and detoxification of endotoxin hence it becomes a primary target organ for endotoxin mediated inflammation. Currently available anti-inflammatory drugs give rise to serious side effects. Hence, there is an urgent need for safe and effective anti-inflammatory therapy. It is likely that anti-inflammatory phytochemicals and neutraceutical agents may have the potential to reduce the endotoxin mediated inflammation and complications associated with endotoxin release. Keeping this in mind, the present study was planned to evaluate the hepatoprotective potential of zingerone (active compound of zingiber officinale) against liver inflammation induced by antibiotic mediated endotoxemia. The selected antibiotics capable of releasing high content of endotoxin were employed for their in vivo efficacy in P.aeruginosa peritonitis model. Released endotoxin induced inflammation and zingerone as co-anti-inflammatory therapy significantly reduced inflammatory response. Improved liver histology and reduced inflammatory markers MDA, RNI, MPO, tissue damage markers (AST, ALT, ALP) and inflammatory cytokines (MIP-2, IL-6 and TNF-α) were indicative of therapeutic potential of zingerone. The mechanism of action of zingerone may be related to significant inhibition of the mRNA expression of inflammatory markers (TLR4, RelA, NF-kB2, TNF- α, iNOS, COX-2) indicating that zingerone interferes with cell signalling pathway and suppresses hyper expression of cell signaling molecules of inflammatory pathway. Zingerone therapy significantly protected liver from endotoxin induced inflammatory damage by down regulating biochemical as well as molecular markers of inflammation. In conclusion, this study provides evidence that zingerone is a potent anti-inflammatory phytomedicine against hepatic inflammation induced by antibiotic mediated endotoxemia. These results thus suggest that zingerone treatment can be used as a co-therapy with antibiotics to reduced endotoxin induced inflammation during treatment of severe P.aeruginosa infections.
A binding site for non-steroidal anti-inflammatory drugs in FAAH
Bertolacci, Laura; Romeo, Elisa; Veronesi, Marina; Magotti, Paola; Albani, Clara; Dionisi, Mauro; Lambruschini, Chiara; Scarpelli, Rita; Cavalli, Andrea; Vivo, Marco De; Piomelli, Daniele; Garau, Gianpiero
2013-01-01
In addition to inhibiting the cyclooxygenasemediated biosynthesis of prostanoids, various widely used non-steroidal anti-inflammatory drugs (NSAIDs) enhance endocannabinoid signaling by blocking the anandamidedegrading membrane enzyme, fatty acid amide hydrolase (FAAH). The X-ray structure of FAAH in complex with the NSAID carprofen, along with studies of site-directed mutagenesis, enzyme activity assays, and nuclear magnetic resonance, now reveal the molecular details of this interaction, providing information that may guide the design of dual FAAH-cyclooxygenase inhibitors with superior analgesic efficacy. PMID:23240907
Reduced COX-2 expression in aged mice is associated with impaired fracture healing.
Naik, Amish A; Xie, Chao; Zuscik, Michael J; Kingsley, Paul; Schwarz, Edward M; Awad, Hani; Guldberg, Robert; Drissi, Hicham; Puzas, J Edward; Boyce, Brendan; Zhang, Xinping; O'Keefe, Regis J
2009-02-01
The cellular and molecular events responsible for reduced fracture healing with aging are unknown. Cyclooxygenase 2 (COX-2), the inducible regulator of prostaglandin E(2) (PGE(2)) synthesis, is critical for normal bone repair. A femoral fracture repair model was used in mice at either 7-9 or 52-56 wk of age, and healing was evaluated by imaging, histology, and gene expression studies. Aging was associated with a decreased rate of chondrogenesis, decreased bone formation, reduced callus vascularization, delayed remodeling, and altered expression of genes involved in repair and remodeling. COX-2 expression in young mice peaked at 5 days, coinciding with the transition of mesenchymal progenitors to cartilage and the onset of expression of early cartilage markers. In situ hybridization and immunohistochemistry showed that COX-2 is expressed primarily in early cartilage precursors that co-express col-2. COX-2 expression was reduced by 75% and 65% in fractures from aged mice compared with young mice on days 5 and 7, respectively. Local administration of an EP4 agonist to the fracture repair site in aged mice enhanced the rate of chondrogenesis and bone formation to levels observed in young mice, suggesting that the expression of COX-2 during the early inflammatory phase of repair regulates critical subsequent events including chondrogenesis, bone formation, and remodeling. The findings suggest that COX-2/EP4 agonists may compensate for deficient molecular signals that result in the reduced fracture healing associated with aging.
Brazilian medicinal plants with corroborated anti-inflammatory activities: a review.
Ribeiro, Victor Pena; Arruda, Caroline; Abd El-Salam, Mohamed; Bastos, Jairo Kenupp
2018-12-01
Inflammatory disorders are common in modern life, and medicinal plants provide an interesting source for new compounds bearing anti-inflammatory properties. In this regard, Brazilian medicinal plants are considered to be a promising supply of such compounds due to their great biodiversity. To undertake a review on Brazilian medicinal plants with corroborated anti-inflammatory activities by selecting data from the literature reporting the efficacy of plants used in folk medicine as anti-inflammatory, including the mechanisms of action of their extracts and isolated compounds. A search in the literature was undertaken by using the following Web tools: Web of Science, SciFinder, Pub-Med and Science Direct. The terms 'anti-inflammatory' and 'Brazilian medicinal plants' were used as keywords in search engine. Tropicos and Reflora websites were used to verify the origin of the plants, and only the native plants of Brazil were included in this review. The publications reporting the use of well-accepted scientific protocols to corroborate the anti-inflammatory activities of Brazilian medicinal plants with anti-inflammatory potential were considered. We selected 70 Brazilian medicinal plants with anti-inflammatory activity. The plants were grouped according to their anti-inflammatory mechanisms of action. The main mechanisms involved inflammatory mediators, such as interleukins (ILs), nuclear factor kappa B (NF-κB), prostaglandin E2 (PGE2), cyclooxygenase (COX) and reactive oxygen species (ROS). The collected data on Brazilian medicinal plants, in the form of crude extract and/or isolated compounds, showed significant anti-inflammatory activities involving different mechanisms of action, indicating Brazilian plants as an important source of anti-inflammatory compounds.
Sekhon-Loodu, Satvir; Ziaullah; Rupasinghe, H P Vasantha
2015-03-01
Phloridzin or phlorizin (PZ) is a predominant phenolic compound found in apple and also used in various natural health products. Phloridzin shows poor absorption and cellular uptake due to its hydrophilic nature. The aim was to investigate and compare the effect of docosahexaenoic acid (DHA) ester of PZ (PZ-DHA) and its parent compounds (phloridzin and DHA), phloretin (the aglycone of PZ) and cyclooxygenase inhibitory drugs (diclofenac and nimesulide) on production of pro-inflammatory biomarkers in inflammation-induced macrophages by lipopolysaccharide (LPS)-stimulation. Human THP-1 monocytes were seeded in 24-well plates (5×10(5)/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1μg/mL) for 48h to induce macrophage differentiation. After 48h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4h, followed by the LPS-stimulation (18h). Pre-exposure of PZ-DHA ester was more effective in reducing tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) protein levels compared to DHA and nimesulide. However, diclofenac was the most effective in reducing prostaglandin (PGE2) level by depicting a dose-dependent response. However, PZ-DHA ester and DHA were the most effective in inhibiting the activation of nuclear factor-kappa B (NF-κB) among other test compounds. Our results suggest that PZ-DHA ester might possess potential therapeutic activity to treat inflammation related disorders such as type 2 diabetes, asthma, atherosclerosis and inflammatory bowel disease. Copyright © 2015 Elsevier B.V. All rights reserved.
Shu, Zunpeng; Xing, Na; Wang, Qiuhong; Li, Xinli; Xu, Bingqing; Li, Zhenyu; Kuang, Haixue
2016-01-01
This study was designed to determine whether the 50% EtOH fraction from AB-8 macroporous resin fractionation of a 70% EtOH extract of P. Alkekengi (50-EFP) has antibacterial and/or anti-inflammatory activity both in vivo and in vitro and to investigate the mechanism of 50-EFP anti-inflammatory activity. Additionally, this study sought to define the chemical composition of 50-EFP. Results indicated that 50-EFP showed significant antibacterial activity in vitro and efficacy in vivo. Moreover, 50-EFP significantly reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor alpha (TNF-α), interleukin 1 (IL-1), and interleukin 6 (IL-6) production in lipopolysaccharide- (LPS-) stimulated THP-1 cells. Nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) in THP-1 cells were suppressed by 50-EFP, which inhibited nuclear translocation of p65. Consistent with this anti-inflammatory activity in vitro, 50-EFP reduced inflammation in both animal models. Finally, seventeen compounds (8 physalins and 9 flavones) were isolated as major components of 50-EFP. Our data demonstrate that 50-EFP has antibacterial and anti-inflammatory activities both in vitro and in vivo. The anti-inflammatory effect appears to occur, at least in part, through the inhibition of nuclear translocation of p65. Moreover, physalins and flavones are probably the active components in 50-EFP that exert antibacterial and anti-inflammatory activities. PMID:27057196
Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung
2010-01-01
Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.
Brainard, Benjamin M; Meredith, Craig P; Callan, Mary Beth; Budsberg, Steven C; Shofer, Francis S; Driessen, Bernd; Otto, Cynthia M
2007-03-01
To determine the effects of nonsteroidal anti-inflammatory drugs of various cyclooxygenase selectivities on hemostasis and prostaglandin expression in dogs. 8 client-owned dogs with clinical signs of osteoarthritis. Dogs received aspirin (5 mg/kg, PO, q 12 h), carprofen (4 mg/kg, PO, q 24 h), deracoxib (2 mg/kg, PO, q 24 h), and meloxicam (0.1 mg/kg, PO, q 24 h) for 10 days each, with an interval of at least 14 days between treatments. On days 0 and 10, blood was collected for platelet aggregation assays, thrombelastography, and measurement of lipopolysaccharide-stimulated prostaglandin E(2), platelet thromboxane B(2) (TXB(2)), and free serum TXB(2) and 6-keto-prostaglandin F (PGF)-1alpha concentrations. Platelet aggregation decreased after treatment with aspirin and carprofen, whereas significant changes from baseline were not detected for the other drugs tested. Thrombelastograms obtained after treatment with carprofen revealed decreased maximum amplitude and alpha-angle, suggesting hypocoagulability. Maximum amplitude and coagulation index increased after treatment with deracoxib. Plasma concentrations of prostaglandin E(2) decreased after treatment with carprofen or deracoxib, and platelet TXB(2) production increased after treatment with aspirin. Serum concentrations of the prostacyclin metabolite 6-keto-PGF-1alpha did not change significantly after treatment with any of the drugs, although the ratio of free TXB(2) to 6-keto-PGF-1alpha decreased slightly after treatment with carprofen and increased slightly after treatment with deracoxib. At the dosages tested, treatment with meloxicam affected platelet function minimally in dogs with osteoarthritis. Treatment with carprofen decreased clot strength and platelet aggregation. Clot strength was increased after treatment with deracoxib.
Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D
2010-01-01
BACKGROUND AND PURPOSE Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. EXPERIMENTAL APPROACH Rats were given CER (80 µg·kg−1 for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg−1 i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B4 and prostaglandin (PG)E2; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. KEY RESULTS Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B4 and prostaglandin E2 levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. CONCLUSIONS AND IMPLICATIONS Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. PMID:20977452
Enhanced Anti-Inflammatory Activities by the Combination of Luteolin and Tangeretin.
Funaro, Antonietta; Wu, Xian; Song, Mingyue; Zheng, Jinkai; Guo, Shanshan; Rakariyatham, Kanyasiri; Rodriguez-Estrada, Maria Teresa; Xiao, Hang
2016-05-01
Dietary components in combination may act synergistically and produce enhanced biological activities. Herein, we investigated the anti-inflammatory effects of 2 flavonoids, that is luteolin (LUT) and tangeretin (TAN) in combination. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages were treated with noncytotoxic concentrations of LUT, TAN, and their combinations. The results showed that LUT/TAN in combination produced synergistic inhibitory effects on LPS-stimulated production of nitric oxide (NO). ELISA results demonstrated that LUT/TAN in combination caused stronger suppression on the LPS-induced overexpression of proinflammatory mediators, such as prostaglandin E2 (PGE2 ), interleukin (IL)-1β, and IL-6 than LUT or TAN alone. Immunoblotting and Real-Time PCR analyses showed that LUT/TAN combination significantly decreased LPS-induced protein and mRNA expression of inducible nitric oxide synthase and cyclooxygenase-2. These inhibitory effects of the combination treatment were stronger than those produced by LUT or TAN alone. Overall, our results demonstrated for the first time that combination of LUT and TAN produced synergistic anti-inflammatory effects in LPS-stimulated RAW 264.7 macrophages. © 2016 Institute of Food Technologists®
Anti-inflammatory effects of phenolic crude extracts from five fractions of Corchorus Olitorius L.
Yan, Yeong-Yu; Wang, Yue-Wen; Chen, Su-Lin; Zhuang, Shu-Ru; Wang, Chin-Kun
2013-06-01
Corchorus olitorius L. is grown in Taiwan during summer. Tender leaves are crushed and washed by running water before eating. Five fractions including crude phenolic extracts (using 80 per cent aqueous acetone) of whole plant, leaf, stem, washed leaf (WL) and dried water washing material (WW) were used in this study. Linoleic acid autoxidation inhibitions on all fractions were higher than that on α-tocopherol. Except for WL and WW, other fractions also showed DPPH radical scavenging efficiency. The effect of all fractions on the regulation of inflammatory responses in lipopolysaccharide (LPS)-stimulated J774A.1 macrophage cells was investigated. All fractions diminished LPS-induced protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Nitric oxide (NO) and prostaglandin E2 (PGE(2)), downstream products, were also suppressed in dose-dependent manners, except for WL and WW. Oxidative modification and loss of leaf phenolics after kneading and washing greatly affected DPPH radical scavenging and inflammatory responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun
2015-06-01
Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.
The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging.
Luo, Cheng; Urgard, Egon; Vooder, Tõnu; Metspalu, Andres
2011-08-01
Oxidative stress and inflammation are constant features of many chronic diseases and complications, and have been linked to carcinogenesis. Cyclooxygenase 2 (COX-2), a rate-limiting enzyme for the synthesis of prostaglandins, plays important roles in physiology and pathology, but has been a source of controversy within the scientific and clinical community. However, recent work has shown that nuclear factor erythroid-2-related factor-2 (Nrf2) confers protection against oxidative stress. Furthermore, COX-2-dependent electrophile oxo-derivative (EFOX) molecules have been shown to act as anti-inflammatory mediators via activation of the Nrf2-dependent antioxidant response element (ARE). These studies have provided more insight into COX-2-mediated events. The function of all tissues, especially epithelial and endothelial tissues, declines with age, leading to the production of reactive oxygen species (ROS). COX-2 expression increases with aging in most tissues, due in part to ROS, chemical reactions, physical shearing, and dietary molecules. Here we discuss new findings related to COX-2 inflammatory and anti-inflammatory responses. Taken together, we hypothesize that COX-2 levels increase during the aging process because increasing levels of ROSs necessitate the involvement of COX-2-dependent EFOXs for anti-inflammation and Nrf2/ARE signaling for antioxidation. We also propose that COX-2 may act as an intrinsic biological aging clock due to its role in balancing inflammatory and anti-inflammatory responses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Preethi, Korengath Chandran; Kuttan, Girija; Kuttan, Ramadasan
2009-02-01
Calendula officinalis flower extract possessed significant anti-inflammatory activity against carrageenan and dextran-induced acute paw edema. Oral administration of 250 and 500 mg/kg body weight Calendula extract produced significant inhibition (50.6 and 65.9% respectively) in paw edema of animals induced by carrageenan and 41.9 and 42.4% respectively with inflammation produced by dextran. In chronic anti-inflammatory model using formalin, administration of 250 and 500 mg/kg body weight Calendula extract produced an inhibition of 32.9 and 62.3% respectively compared to controls. TNF-alpha production by macrophage culture treated with lipopolysaccharide (LPS) was found to be significantly inhibited by Calendula extract. Moreover, increased levels of proinflammatory cytokines IL- 1beta, IL-6, TNF-alpha and IFN-gamma and acute phase protein, C- reactive protein (CRP) in mice produced by LPS injection were inhibited significantly by the extract. LPS induced cyclooxygenase-2 (Cox-2) levels in mice spleen were also found to be inhibited by extract treatment. The results showed that potent anti-inflammatory response of C. officinalis extract may be mediated by the inhibition of proinflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis.
Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M
2010-10-01
Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.
Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.
Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei
2017-06-05
The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As 2 O 3 )-treated (7.5 mg/kg) group, a middle As 2 O 3 -treated (15 mg/kg) group, and a high As 2 O 3 -treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As 2 O 3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P < 0.05). Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.
Jin, Jeong Ho; Kim, Ju Sun; Kang, Sam Sik; Son, Kun Ho; Chang, Hyun Wook; Kim, Hyun Pyo
2010-02-17
The roots of Sophora flavescens have long been used in Chinese medicine for the treatment of fever, inflammatory disorders, ulcers and skin burns. Sophora flavescens contains flavonoids and alkaloids. This study was conducted to develop a plant-based anti-inflammatory agent focused on chronic inflammatory disorders. To accomplish this, the alkaloid-free prenylated flavonoid-enriched fraction (PFS) of rhizomes of Sophora flavescens was prepared and its in vitro and in vivo anti-inflammatory activities were then evaluated for the first time. The inhibitory activity of PFS on PGE(2), NO, IL-6 and TNF-alpha production of lipopolysaccharide (LPS)-treated RAW 264.7 cells was measured. Additionally, adjuvant-induced arthritis in rats was used as an animal model of chronic inflammation to establish the in vivo anti-inflammatory effects of PFS. PFS inhibited cyclooxygenase-2 (COX-2)-catalyzed PGE(2) and inducible nitric oxide synthase (iNOS)-catalyzed NO production by lipopolysaccharide (LPS)-treated RAW 264.7 cells at 10-50 microg/ml, and these effects primarily occurred via COX-2 inhibition and iNOS down-regulation, respectively. PFS also inhibited IL-6 and TNF-alpha production. When tested against adjuvant-induced arthritis in rats (chronic inflammation), PFS strongly inhibited arthritic inflammation when administered orally at doses of 10-100mg/kg/day. In addition, PFS administered orally potently inhibited acetic acid-induced writhing in mice. Our results suggest that PFS inhibits chronic inflammatory response and the inhibition of proinflammatory molecules such as COX-2, iNOS and IL-6 may contribute, at least in part, to the anti-inflammatory activity in vivo. Overall, these results indicate that PFS from Sophora flavescens may have the potential for treatment of chronic inflammatory disorders such as rheumatoid arthritis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Núñez, Belen; Sauleda, Jaume; Garcia-Aymerich, Judith; Noguera, Aina; Monsó, Eduard; Gómez, Federico; Barreiro, Esther; Marín, Alicia; Antó, Josep Maria; Agusti, Alvar
2016-07-01
The origin of systemic inflammation in chronic obstructive pulmonary disease (COPD) patients remains to be defined, but one of the most widely accepted hypothesis is the 'spill over' of inflammatory mediators from the lung to the circulation. To evaluate the relationship between pulmonary and systemic inflammation in COPD quantifying several inflammatory markers in sputum and serum determined simultaneously. Correlations between various inflammatory variables (TNF-α, IL6, IL8) in sputum and serum were evaluated in 133 patients from the PAC-COPD cohort study. A secondary objective was the evaluation of relationships between inflammatory variables and lung function. Inflammatory markers were clearly higher in sputum than in serum. No significant correlation was found (absolute value, r=0.03-0.24) between inflammatory markers in blood and in sputum. There were no significant associations identified between those markers and lung function variables, such as FEV1, DLCO and PaO2 neither. We found no correlation between pulmonary and systemic inflammation in patients with stable COPD, suggesting different pathogenic mechanisms. Copyright © 2016 SEPAR. Published by Elsevier Espana. All rights reserved.
Lu, Sheng-Hua; Hsu, Wen-Lin; Chen, Tso-Hsiao; Chou, Tz-Chong
2015-12-01
Magnolol isolated from Magnolia officinalis, a Chinese medical herb, exhibits an anti-inflammatory activity and a protective effect against periodontitis. The inflammation caused by lipopolysaccharide (LPS) from Porphyromonas gingivalis (P. gingivalis) has been considered a key inducer in the development of periodontitis. In this study, we investigated whether magnolol inhibits P. gingivalis LPS-evoked inflammatory responses in RAW 264.7 macrophages and the involvement of heme oxygenase-1 (HO-1). Magnolol significantly activated p38 MAPK, Nrf-2/HO-1 cascade and reactive oxygen species (ROS) formation. Notably, the Nrf-2 activation and HO-1 induction by magnolol were greatly diminished by blocking p38 MAPK activity and ROS production. Furthermore, in P. gingivalis LPS-stimulated macrophages, magnolol treatment remarkably inhibited the inflammatory responses evidenced by suppression of pro-inflammatory cytokine, prostaglandin E2, nitrite formation, and the expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as NF-κB activation accompanied by a significant elevation of Nrf-2 nuclear translocation and HO-1 expression/activity. However, inhibiting HO-1 activity with tin protoporphyrin IX markedly reversed the anti-inflammatory effects of magnolol. Collectively, these findings provide a novel mechanism by which magnolol inhibits P. gingivalis LPS-induced inflammation in macrophages is at least partly mediated by HO-1 activation, and thereby promoting its clinical use in periodontitis. Copyright © 2015 Elsevier B.V. All rights reserved.
Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.
Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V
2011-10-17
To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.
Singh, Udai P.; Singh, Narendra P.; Singh, Balwan; Hofseth, Lorne J.; Price, Robert L.; Nagarkatti, Mitzi
2010-01-01
Inflammatory bowel disease is a chronic, relapsing, and tissue-destructive disease. Resveratrol (3,4,5-trihydroxy-trans-stilbene), a naturally occurring polyphenol that exhibits beneficial pleiotropic health effects, is recognized as one of the most promising natural molecules in the prevention and treatment of chronic inflammatory disease and autoimmune disorders. In the present study, we investigated the effect of resveratrol on dextran sodium sulfate (DSS)-induced colitis in mice and found that it effectively attenuated overall clinical scores as well as various pathological markers of colitis. Resveratrol reversed the colitis-associated decrease in body weight and increased levels of serum amyloid A, tumor necrosis factor-α, interleukin (IL-6), and IL-1β. After resveratrol treatment, the percentage of CD4+ T cells in mesenteric lymph nodes (MLN) of colitis mice was restored to normal levels, and there was a decrease in these cells in the colon lamina propria (LP). Likewise, the percentages of macrophages in MLN and the LP of mice with colitis were decreased after resveratrol treatment. Resveratrol also suppressed cyclooxygenase-2 (COX-2) expression induced in DSS-exposed mice. Colitis was associated with a decrease in silent mating type information regulation-1 (SIRT1) gene expression and an increase in p-inhibitory κB expression and nuclear transcription factor-κB (NF-κB) activation. Resveratrol treatment of mice with colitis significantly reversed these changes. This study demonstrates for the first time that SIRT1 is involved in colitis, functioning as an inverse regulator of NF-κB activation and inflammation. Furthermore, our results indicate that resveratrol may protect against colitis through up-regulation of SIRT1 in immune cells in the colon. PMID:19940103
Kupffer cell ablation attenuates cyclooxygenase-2 expression after trauma and sepsis.
Keller, Steve A; Paxian, Marcus; Lee, Sun M; Clemens, Mark G; Huynh, Toan
2005-03-01
Prostaglandins, synthesized by cyclooxygenase (COX), play an important role in the pathophysiology of inflammation. Severe injuries result in immunosuppression, mediated, in part, by maladaptive changes in macrophages. Herein, we assessed Kupffer cell-mediated cyclooxygenase-2 (COX-2) expression on liver function and damage after trauma and sepsis. To ablate Kupffer cells, Sprague Dawley rats were treated with gadolinium chloride (GdCl3) 48 and 24 h before experimentation. Animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). Controls received sham operations. After 24 h, liver samples were obtained, and mRNA and protein expression were determined by PCR, Western blot, and immunohistochemistry. Indocyanine-Green (ICG) clearance and plasma alanine aminotransferase (ALT) levels were determined to assess liver function and damage, respectively. One-way analysis of variance (ANOVA) with Student-Newman-Keuls test was used to assess statistical significance. After CLP alone, FFx+CLP, and GdCl3+FFx+CLP, clearance of ICG decreased. Plasma ALT levels increased in parallel with severity of injury. Kupffer cell depletion attenuated the increased ALT levels after FFx+CLP. Femur fracture alone did not alter COX-2 protein compared with sham. By contrast, COX-2 protein increased after CLP and was potentiated by sequential stress. Again, Kupffer cell depletion abrogated the increase in COX-2 after sequential stress. Immunohistochemical data confirmed COX-2 positive cells to be Kupffer cells. In this study, sequential stress increased hepatic COX-2 protein. Depletion of Kupffer cells reduced COX-2 and attenuated hepatocellular injuries. Our data suggest that Kupffer cell-dependent pathways may contribute to the inflammatory response leading to increased mortality after sequential stress.
Piplani, Honit; Vaish, Vivek; Sanyal, Sankar Nath
2012-11-01
The marine ecosystem is a unique and enormously rich source of natural products with potential chemopreventive applications in cancer. In the present study, we explored the chemopreventive role and the molecular mechanism of Dolastatin, a linear peptide from an Indian Ocean mollusk, and Celecoxib, a well-established cyclooxygenase-2 (COX-2) inhibitor in an individual as well as in a combination regimen in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced colon carcinogenesis in a rat model. After a 6-week treatment with DMH, morphological analysis revealed a marked occurrence of preneoplastic features in the colonic mucosa, whereas histologically well-characterized dysplasia and hyperplasia were observed in DMH-treated animals. Simultaneous administration of Celecoxib and Dolastatin reduced these features significantly. DMH treatment affected the number of apoptotic cells in colonic enterocytes, which reverted to the normal level with the use of Celecoxib and Dolastatin. Inflammation remains the dominant molecular mechanism in the development of multiple plaque lesions, the carcinogenic lesions in a DMH-induced process that may be mediated by COX-2. Western blot and immunofluorescence analysis revealed a higher expression of COX-2 and nuclear factor-κB, the transcription factors responsible for proinflammatory proteins such as TNFα, and also the inducible nitric oxide synthase in the DMH group, which was further recovered significantly with the use of Celecoxib and Dolastatin. In-silico molecular docking analysis of Dolastatin as a ligand with various regulatory proteins suggests that although the peptide failed to dock to COX-2, it successfully did so with inducible nitric oxide synthase, thereby indicating the potential of this inflammatory protein as a molecular anticancer target in colon carcinogenesis.
Fiorentino, T V; Hribal, M L; Perticone, M; Andreozzi, F; Sciacqua, A; Perticone, F; Sesti, G
2015-04-01
We aimed to evaluate the inflammatory profile of individuals with prediabetes defined by HbA1c levels, according to the new American Diabetes Association criteria, and to determine the ability of HbA1c to identify individuals with subclinical inflammation independently of the contribution of other metabolic parameters such as fasting, 1- or 2-h post-load glucose (PG) levels. High sensitivity C-reactive protein (hsCRP), erythrocyte sedimentation rate (ESR), fibrinogen, white blood cells (WBC) count and complement C3 (C3) were assessed, and oral glucose tolerance test (OGTT) was performed in 711 adults. Subjects were stratified into three groups according to their HbA1c levels. Poor agreement existed between HbA1c and 2-h PG criteria for identification of individuals with prediabetes (κ coefficient = 0.300). As compared with subjects having HbA1c <5.7 % (39 mmol/mol), individuals with prediabetes (HbA1c 5.7-6.4 %, [39-46 mmol/mol]) exhibited a significant increase of the concentration of five inflammatory markers (hsCRP, ESR, fibrinogen, WBC count, C3) as well as of a cluster of inflammatory markers, as measured by an inflammatory score after adjusting for sex, age, smoking, fasting, 1- and 2-h PG levels. In multiple regression models including sex, age, body mass index, smoking habit, fasting, 1- and 2-h PG levels, and HOMA index, HbA1c levels were significant independent contributors to each of the five inflammatory markers examined. These data suggest that HbA1c is a reliable marker of glucose homeostasis, and may identify individuals at increased risk of diabetes with unfavorable inflammatory profile independently from fasting and 2-h PG levels.
Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders.
von Haehling, Stephan; Schefold, Joerg C; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D
2009-10-01
Chronic heart failure is viewed as a state of chronic inflammation. Many inflammatory markers have been shown to be up-regulated in patients who have this condition, but the markers' roles in clinical decision making have not yet been fully elucidated. A panel of biomarkers is likely to have a strong impact on patient management. Inflammatory biomarkers are interesting candidates that could answer specific clinical questions on their own or complement a multi-marker approach. This article provides a broad overview of several inflammatory biomarkers, including the pro-inflammatory cytokines tumor necrosis factor-alpha, interleukin (IL)-6, IL-1, IL-18, and the soluble receptors TNFR-1, TNFR-2, IL-6R, and gp130. In addition to these acute phase reactants, several adhesion molecules, and lipopolysaccharide-signaling pathways are discussed.
PAR-2 regulates dental pulp inflammation associated with caries.
Lundy, F T; About, I; Curtis, T M; McGahon, M K; Linden, G J; Irwin, C R; El Karim, I A
2010-07-01
Protease-activated receptors (PARs) are G-protein-coupled receptors that are activated enzymatically by proteolysis of an N-terminal domain. The cleavage and activation of PARs by serine proteases represent a novel mechanism by which such enzymes could influence the host inflammatory response. The aim of this study was to determine whether PAR-2 expression and activation were increased in dental caries. Using immunohistochemistry, we showed PAR-2 to be localized to pulp cells subjacent to caries lesions, but minimally expressed by healthy pulp tissue. Trypsin and the PAR-2 agonist (PAR2-AP) activated PAR-2 in an in vitro functional assay. Endogenous molecules present in pulp cell lysates from carious teeth specifically activated PAR-2, but those from healthy teeth failed to do so. The activation of PAR-2 in vitro was shown to increase the expression of the pro-inflammatory mediator cyclo-oxygenase-2 (COX-2), providing a mechanism whereby PAR-2 could modulate pulpal inflammation.
Borrelli, Francesca; Aviello, Gabriella; Romano, Barbara; Orlando, Pierangelo; Capasso, Raffaele; Maiello, Francesco; Guadagno, Federico; Petrosino, Stefania; Capasso, Francesco; Di Marzo, Vincenzo; Izzo, Angelo A
2009-11-01
Inflammatory bowel disease affects millions of individuals; nevertheless, pharmacological treatment is disappointingly unsatisfactory. Cannabidiol, a safe and non-psychotropic ingredient of marijuana, exerts pharmacological effects (e.g., antioxidant) and mechanisms (e.g., inhibition of endocannabinoids enzymatic degradation) potentially beneficial for the inflamed gut. Thus, we investigated the effect of cannabidiol in a murine model of colitis. Colitis was induced in mice by intracolonic administration of dinitrobenzene sulfonic acid. Inflammation was assessed both macroscopically and histologically. In the inflamed colon, cyclooxygenase-2 and inducible nitric oxide synthase (iNOS) were evaluated by Western blot, interleukin-1beta and interleukin-10 by ELISA, and endocannabinoids by isotope dilution liquid chromatography-mass spectrometry. Human colon adenocarcinoma (Caco-2) cells were used to evaluate the effect of cannabidiol on oxidative stress. Cannabidiol reduced colon injury, inducible iNOS (but not cyclooxygenase-2) expression, and interleukin-1beta, interleukin-10, and endocannabinoid changes associated with 2,4,6-dinitrobenzene sulfonic acid administration. In Caco-2 cells, cannabidiol reduced reactive oxygen species production and lipid peroxidation. In conclusion, cannabidiol, a likely safe compound, prevents experimental colitis in mice.
Pleiotropic genes for metabolic syndrome and inflammation
Kraja, Aldi T.; Chasman, Daniel I.; North, Kari E.; Reiner, Alexander P.; Yanek, Lisa R.; Kilpeläinen, Tuomas O.; Smith, Jennifer A.; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D.; Feitosa, Mary F.; Tekola-Ayele, Fasil; Chu, Audrey Y.; Nolte, Ilja M.; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A.; Sun, Yan V.; Ritchie, Marylyn D.; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A.; Im, Hae Kyung; Schnabel, Renate B.; Jørgensen, Torben; Jørgensen, Marit E.; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P.; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G.; Franco, Oscar H.; Ikram, M. Arfan; Richards, J. Brent; Rotimi, Charles; Wilson, James G.; Lange, Leslie; Ganesh, Santhi K.; Nalls, Mike; Rasmussen-Torvik, Laura J.; Pankow, James S.; Coresh, Josef; Tang, Weihong; Kao, W.H. Linda; Boerwinkle, Eric; Morrison, Alanna C.; Ridker, Paul M.; Becker, Diane M.; Rotter, Jerome I.; Kardia, Sharon L.R.; Loos, Ruth J.F.; Larson, Martin G.; Hsu, Yi-Hsiang; Province, Michael A.; Tracy, Russell; Voight, Benjamin F.; Vaidya, Dhananjay; O’Donnell, Christopher; Benjamin, Emelia J.; Alizadeh, Behrooz Z.; Prokopenko, Inga; Meigs, James B.; Borecki, Ingrid B.
2014-01-01
Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation. PMID:24981077
Pleiotropic genes for metabolic syndrome and inflammation.
Kraja, Aldi T; Chasman, Daniel I; North, Kari E; Reiner, Alexander P; Yanek, Lisa R; Kilpeläinen, Tuomas O; Smith, Jennifer A; Dehghan, Abbas; Dupuis, Josée; Johnson, Andrew D; Feitosa, Mary F; Tekola-Ayele, Fasil; Chu, Audrey Y; Nolte, Ilja M; Dastani, Zari; Morris, Andrew; Pendergrass, Sarah A; Sun, Yan V; Ritchie, Marylyn D; Vaez, Ahmad; Lin, Honghuang; Ligthart, Symen; Marullo, Letizia; Rohde, Rebecca; Shao, Yaming; Ziegler, Mark A; Im, Hae Kyung; Schnabel, Renate B; Jørgensen, Torben; Jørgensen, Marit E; Hansen, Torben; Pedersen, Oluf; Stolk, Ronald P; Snieder, Harold; Hofman, Albert; Uitterlinden, Andre G; Franco, Oscar H; Ikram, M Arfan; Richards, J Brent; Rotimi, Charles; Wilson, James G; Lange, Leslie; Ganesh, Santhi K; Nalls, Mike; Rasmussen-Torvik, Laura J; Pankow, James S; Coresh, Josef; Tang, Weihong; Linda Kao, W H; Boerwinkle, Eric; Morrison, Alanna C; Ridker, Paul M; Becker, Diane M; Rotter, Jerome I; Kardia, Sharon L R; Loos, Ruth J F; Larson, Martin G; Hsu, Yi-Hsiang; Province, Michael A; Tracy, Russell; Voight, Benjamin F; Vaidya, Dhananjay; O'Donnell, Christopher J; Benjamin, Emelia J; Alizadeh, Behrooz Z; Prokopenko, Inga; Meigs, James B; Borecki, Ingrid B
2014-08-01
Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation. Copyright © 2014 Elsevier Inc. All rights reserved.
Tyagi, Amit K; Aggarwal, Bharat B
2016-01-01
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting. PMID:27013544
Di Girolamo, G; Franchi, A; De Los Santos, A R; Martí, M L; Farina, M; Fernández de Gimeno, M A
2001-01-01
Lysine clonixinate (LC) is a nonsteroidal anti-inflammatory drug (NSAID) with good gastrointestinal tolerance. Treatment with LC at levels equivalent to those found in plasma following therapeutic doses resulted in significant inhibition of both cyclooxygenase 2 (COX-2) and production of 5 hydroxy-eicosatetraeonic acid (5-HETE) and slightly affected levels of cyclooxygenase 1 (COX-1) in in vitro studies carried out on human tissues. This study deals with the in vivo effect of the drug on human colon segments. Experiment 1: Five patients about to undergo hemicholectomy due to colon neoplasia were treated preoperatively with a continuous infusion of LC, to achieve a steady-state concentration between 4 and 6 mg/ml. Human colon segments from the five patients and from another five control patients receiving no treatment with [14C]-arachidonic acid were incubated. Human colon segments treated with LC showed significant inhibition of PGE2, the only prostaglandin (PG) synthesised by the tissue, as well as of 5-HETE. Experiment 2: Fifteen patients received an i.v. bolus of LC 100 mg (n1 = 5); LC 200 mg (n2 = 5) or indomethacin (INDO) 50 mg (n3 = 5). Both doses of LC showed greater inhibition of PGE2 synthesis than the INDO bolus. Both NSAIDs studied proved to have different effects on the production of 5-HETE; while treatment with LC elicited significant inhibition, levels with INDO remained unchanged. Western blotting analysis showed expression of both COX isoforms in colon segments, COX-2 levels being 20% higher. Both types of in vivo studies conducted continuous infusion and i.v. bolus, revealed that LC exerted significant inhibition of basal synthesis of PGE2 and 5-HETE.
El Agaty, Sahar M
2018-03-08
To assess the effect of vitamin D 2 and to elucidate the underlying mechanisms on acute myocardial injury induced by isoproterenol (ISO) in diabetic rats. Rats were divided into control rats, diabetic rats (DM), diabetic rats received ISO (DM-ISO), and diabetic rats pretreated with vitamin D 2 and received ISO (DM-D 2 -ISO). Vitamin D 2 pretreatment significantly decreased fasting glucose and myocardial malondialdehyde, associated with increased insulin, myocardial glutathione and superoxide dismutase in DM-D 2 -ISO versus DM-ISO. The serum triglycerides, total cholesterol, and LDL were significantly decreased, along with increased HDL and adiponectin. Poly-ADP ribose polymerase, cyclooxygenase-2, tumour necrosis factor alpha, interleukin-6, caspase-3, BAX, and p53 were significantly downregulated in myocardium of DM-D 2 -ISO versus DM-ISO. Histological studies showed diminished inflammatory cells infiltration in myocardium of DM-D 2 -ISO versus DM-ISO. Vitamin D 2 ameliorates hyperglycaemia, dyslipidaemia, redox imbalance, inflammatory and apoptotic processes, protecting the myocardium of diabetic rats against acute myocardial infarction.
Liu, Y-W; Ong, W-K; Su, Y-W; Hsu, C-C; Cheng, T-H; Tsai, Y-C
2016-06-01
Lactic acid bacteria (LAB) with anti-inflammatory effects may be beneficial to the prevention or treatment for inflammation-related diseases, such as inflammatory bowel diseases. In an in vitro assay, heat-killed Lactobacillus brevis K65 (K65) reduced lipopolysaccharide-induced production of nitric oxide, tumour necrosis factor (TNF)-α and prostaglandin E2 in RAW 264.7 cells. In RAW 264.7 cells stably expressing an ind=ucible nitric oxide synthase (iNOS) reporter, viable K65 showed greater inhibition of iNOS production than its heat-killed form. In order to further examine the in vivo anti-inflammatory effect of K65, viable K65 was orally administered to BALB/c mice before and during the period of dextran sulphate sodium (DSS)-induced ulcerative colitis (UC). K65 improved UC symptoms, including reduced the levels of the pro-inflammatory cytokines, TNF-α, interleukin (IL)-6 and IL-1β, and lowered the activity of myeloperoxidase. Furthermore, K65 inhibited TNF-α, cyclo-oxygenase 2, forkhead box P3, and Toll-like receptor 4 mRNA expression in the colonic tissue of DSS-induced UC mice. Taken together, K65, a LAB with in vitro anti-inflammatory activity showed preventive effects on mice with DSS-induced UC by lowering the expression of inflammatory molecules.
Yang, Yanyan; Hyun Moh, Sang; Yu, Tao; Gwang Park, Jae; Hyo Yoon, Deok; Woong Kim, Tae; Hwan Kim, Seong; Lee, Sukchan; Hong, Sungyoul; Youl Cho, Jae
2012-10-11
Osbeckia stellata Buch.-Ham. ex D.Don is traditionally prescribed to treat various inflammatory diseases. However, how this plant is able to modulate inflammatory responses is unknown. This study explored the anti-inflammatory effects of 99% methanol extracts of O. stellata (Os-ME). The anti-inflammatory effect of Os-ME was evaluated by measuring the levels of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells and by determining gastric inflammatory lesions in mice induced by HCl/ethanol (EtOH). The molecular mechanisms of the inhibitions were elucidated by analyzing the activation of transcription factors, upstream signaling cascade, and the kinase activities of target enzymes. Os-ME dose-dependently diminished the release of NO and PGE(2), and suppressed the expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Os-ME clearly inhibited the translocation of c-Rel, a subunit of nuclear factor κB (NF-κB), and c-Fos, a subunit of activator protein-1 (AP-1), and their regulatory upstream enzymes including Src, Syk, and IRAK1. Interestingly, orally administered Os-ME ameliorated acute inflammatory symptoms and suppressed the activation of Src, Syk, and IRAK1 induced by HCl/EtOH treatment in mouse stomach. Os-ME can be considered as an orally available anti-inflammatory herbal remedy with Src/Syk/NF-κB and IRAK1/AP-1 inhibitory properties. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38
Yi, Young-Su
2017-01-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777
JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.
Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl
2017-05-01
Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young Nam; Kim, Dae Won; Jo, Hyo Sang
Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB)more » and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.« less
Vértiz-Hernández, Ángel Antonio; Martínez-Morales, Flavio; Valle-Aguilera, Roberto; López-Sánchez, Pedro; Villalobos-Molina, Rafael; Pérez-Urizar, José
2015-01-01
Cyclooxygenase-2 selective inhibitors have been developed to alleviate pain and inflammation; however, the use of a selective cyclooxygenase-2 inhibitor is associated with mild edema, hypertension, and cardiovascular risk. To evaluate, in an experimental model in normotensive rats, the effect of treatment with parecoxib in comparison with diclofenac and aspirin and L-NAME, a non-selective nitric oxide synthetase, on mean arterial blood pressure, and cyclooxygenase-1 and -2 messenger RNA and protein expression in aortic tissue. Rats were treated for seven days with parecoxib (10 mg/kg/day), diclofenac (3.2 mg/kg/day), aspirin (10 mg/kg/day), or L-NAME (10 mg/kg/day). Mean arterial blood pressure was evaluated in rat tail; cyclooxygenase-1 and -2 were evaluated by reverse transcription-polymerase chain reaction and Western blot analysis in aortic tissue. Parecoxib and L-NAME, but not aspirin and diclofenac, increased mean arterial blood pressure by about 50% (p < 0.05) without changes in cardiac frequency. Messenger RNA cyclooxygenase-1 expression in aortic tissue was not modified with any drug (p < 0.05). L-NAME and parecoxib treatment decreased messenger RNA cyclooxygenase-2 and cyclooxygenase-2 (p < 0.05). While cyclooxygenase-1 protein decreased with the three drugs tested but not with L-NAME (p < 0.05), the cyclooxygenase-2 protein decreased only with aspirin and parecoxib (p < 0.05). Parecoxib increases the blood pressure of normotensive rats by the suppression of COX-2 gene expression, which apparently induced cardiovascular control.
2012-01-01
Background This study aims to investigate anti-inflammatory effect of ethanolic extract of Myagropsis myagroides (EMM) in the lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and the phorbol 12-myristate 13-acetate (PMA)-induced ear edema in mice, and to clarify its underlying molecular mechanisms. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blotting. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunocytochemistry and reporter gene assay, respectively. PMA-induced mouse ear edema was used as the animal model of inflammation. Anti-inflammatory compounds in EMM were isolated using high-performance liquid chromatography and identified by nuclear magnetic resonance. Results EMM significantly inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a dose-dependent manner and suppressed the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. EMM strongly suppressed nuclear translocation of NF-κB by preventing degradation of inhibitor of κB-α as well as by inhibiting phosphorylation of Akt and MAPKs. EMM reduced ear edema in PMA-induced mice. One of the anti-inflammatory compounds in EMM was identified as 6,6’-bieckol. Conclusions These results suggest that the anti-inflammatory properties of EMM are associated with the down-regulation of iNOS, COX-2, and pro-inflammatory cytokines through the inhibition of NF-κB pathway in LPS-stimulated macrophages. PMID:23031211
Kong, Weimin; Hooper, Kirsten M; Ganea, Doina
2016-03-01
Prostaglandins and leukotrienes, bioactive mediators generated by cyclooxygenases (COX) and 5-lipoxygenase (5-LO) from arachidonic acid, play an essential role in neuroinflammation. High levels of LTB4 and PGE2 and increased expression of COX and 5-LO, as well as high expression of PGE2 receptors were reported in multiple sclerosis (MS) patients and in experimental autoimmune encephalomyelitis (EAE). Prostaglandins and leukotrienes have an interdependent and compensatory role in EAE, which led to the concept of therapy using dual COX/5-LO inhibitors. The plant derived flavocoxid, a dual COX/5-LO inhibitor with anti-inflammatory and antioxidant properties, manufactured as a prescription pharmaconutrient, was reported to be neuroprotective in models of transient ischemic stroke and brain injury. The present study is the first report on prophylactic and therapeutic effects of flavocoxid in EAE. The beneficial effects correlate with reduced expression of proinflammatory cytokines and of COX2 and 5-LO in spinal cords and spleens of EAE mice. The protective mechanisms include: 1. reduction in expression of MHCII/costimulatory molecules and production of proinflammatory cytokines; 2. promotion of the M2 phenotype including IL-10 expression and release by macrophages and microglia; 3. inhibition of Th1 and Th17 differentiation through direct effects on T cells. The direct inhibitory effect on Th1/Th17 differentiation, and promoting the development of M2 macrophages and microglia, represent novel mechanisms for the flavocoxid anti-inflammatory activity. As a dual COX/5-LO inhibitor with antioxidant properties, flavocoxid might be useful as a potential therapeutic medical food agent in MS patients. Copyright © 2015. Published by Elsevier Inc.
Polito, F; Bitto, A; Irrera, N; Squadrito, F; Fazzari, C; Minutoli, L; Altavilla, D
2010-11-01
Acute pancreatitis is an autodigestive process resulting in acute inflammation of the pancreas. Accumulating evidence indicates the essential contribution of cyclooxygenase (COX)-2 and 5-lipoxygenase (5-LOX) to acute pancreatitis. We studied the effects of flavocoxid, a plant-derived dual inhibitor of COX-2 and 5-LOX, in a model of caerulein (CER)-induced acute pancreatitis. Rats were given CER (80 µg·kg⁻¹ for each of four injections at hourly intervals) or vehicle (Sham-CER). Animals were then randomized to receive flavocoxid (20 mg·kg⁻¹ i.p.) or vehicle, 30 min after the first CER injection. Two hours after the last CER injection, we evaluated damage to the pancreas by histological methods; serum levels of amylase, lipase, leukotriene (LT)B₄ and prostaglandin (PG)E₂ ; pancreatic expression of COX-2 and 5-LOX and tumour necrosis factor-α (TNF-α) gene expression by real-time polymerase chain reaction. Caerulein induced inflammatory changes in the pancreas and raised values of the other variables measured. In CER-treated animals, but not in those given saline, flavocoxid inhibited COX-2 and 5-LOX expression, reduced serum levels of lipase and amylase and the degree of pancreatic oedema. Treatment with flavocoxid blunted the increased pancreatic TNF-α mRNA expression, serum leukotriene B₄ and prostaglandin E₂ levels, and protected against histological damage in terms of vacuolization and leukocyte infiltration. Our results confirm the key role of both COX-2 and 5-LOX in the inflammatory response to acute pancreatitis. Flavocoxid may provide a potential therapeutic approach to the treatment of patients at high risk of developing this life-threatening condition. © 2010 The Authors. British Journal of Pharmacology © 2010 The British Pharmacological Society.
Murakami, A; Nakamura, Y; Torikai, K; Tanaka, T; Koshiba, T; Koshimizu, K; Kuwahara, S; Takahashi, Y; Ogawa, K; Yano, M; Tokuda, H; Nishino, H; Mimaki, Y; Sashida, Y; Kitanaka, S; Ohigashi, H
2000-09-15
The intake of citrus fruits has been suggested as a way to prevent the development of some types of human cancer. Nitric oxide (NO) is closely associated with the processes of epithelial carcinogenesis. We attempted a search for NO generation inhibitors in Citrus unshiu. The active constituent was traced by an activity-guiding separation. NO and superoxide (O2-) generation was induced by a combination of lipopolysaccharide and IFN-gamma in mouse macrophage RAW 264.7 cells, and by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated human promyelocyte HL-60, respectively. Expression of inducible NO synthase and cyclooxygenase 2 proteins were detected by Western blotting. The in vivo anti-inflammatory and antitumor promoting activities were evaluated by topical TPA application to ICR mouse skin with measurement of edema formation, epidermal thickness, leukocyte infiltration, hydrogen peroxide production, and the rate of proliferating cell nuclear antigen-stained cells. As a result, nobiletin, a polymethoxyflavonoid, was identified as an inhibitor of both NO and O2- generation. Nobiletin significantly inhibited two distinct stages of skin inflammation induced by double TPA application [first stage priming (leukocyte infiltration) and second stage activation (oxidative insult by leukocytes)] by decreasing the inflammatory parameters. It also suppressed the expression of cyclooxygenase-2 and inducible NO synthase proteins and prostaglandin E2 release. Nobiletin inhibited dimethylbenz[a]anthracene (0.19 micromol)/TPA (1.6 nmol)-induced skin tumor formation at doses of 160 and 320 nmol by reducing the number of tumors per mouse by 61.2% (P < 0.001) and 75.7% (P < 0.001), respectively. The present study suggests that nobiletin is a functionally novel and possible chemopreventive agent in inflammation-associated tumorigenesis.
Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2016-01-01
This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820
Casolini, Paola; Catalani, Assia; Zuena, Anna R; Angelucci, Luciano
2002-05-01
Brain aging as well as brain degenerative processes with accompanying cognitive impairments are generally associated with hyperactivity of the hypothalamus-pituitary-adrenal axis, the end product of which, the glucocorticoid hormone, has been warranted the role of cell damage primum movens ("cascade hypothesis"). However, chronic inflammatory activity occurs in the hippocampus of aged rats as well as in the brain of Alzheimer's disease patients. The concomitant increase in the secretion of the glucocorticoid hormone, the endogenous anti-inflammatory and pro-inflammatory markers, has prompted us to investigate the two phenomena in the aging rat, and to work out its meaning. This study shows that: (I) interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and prostaglandin E(2) (PGE(2)) increase with age in the rats hippocampus, and (II) chronic oral treatment with celecoxib, a selective cycloxygenase-2 (COX-2) inhibitor, is able to contrast the age-dependent increase in hippocampal levels of pro-inflammatory markers and circulating anti-inflammatory corticosterone, provided that it is started at an early stage of aging. Under these conditions, age-related impairments in cognitive ability may be ameliorated. Taken together, these results indicate that there is a natural tendency to offset the age-dependent increase in brain inflammatory processes via the homeostatic increase of the circulating glucocorticoid hormone. Copyright 2002 Wiley-Liss, Inc.
Adesso, Simona; Autore, Giuseppina; Quaroni, Andrea; Popolo, Ada; Severino, Lorella; Marzocco, Stefania
2017-12-11
Fusarium mycotoxins are fungal metabolites whose ability to affect cereal grains as multi-contaminants is progressively increasing. The trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON) are often found in almost all agricultural commodities worldwide. They are able to affect animal and human health, including at the intestinal level. In this study, NIV, both alone and in combination with DON, induced inflammation and increased the inflammatory response induced by lipopolysaccharide (LPS) plus Interferon-γ (IFN) in the non-tumorigenic intestinal epithelial cell line (IEC-6). The inflammatory response induced by NIV and DON involves tumor necrosis factor-α (TNF-α) production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, nitrotyrosine formation, reactive oxygen species (ROS) release, Nuclear Factor-κB (NF-κB), Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and inflammasome activation. The pro-inflammatory effect was strongly induced by NIV and by the mycotoxin mixture, when compared to DON alone. Mechanistic studies indicate a pivotal role for ROS in the observed pro-inflammatory effects induced by mycotoxins. In this study, the interactions between NIV and DON point out the importance of their food co-contamination, further highlighting the risk assessment process that is of growing concern.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium.
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-08-10
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage.
Paclitaxel-induced lung injury and its amelioration by parecoxib sodium
Liu, Wen-jie; Zhong, Zhong-jian; Cao, Long-hui; Li, Hui-ting; Zhang, Tian-hua; Lin, Wen-qian
2015-01-01
To investigate the mechanism of paclitaxel-induced lung injury and its amelioration by parecoxib sodium. In this study, rats were randomly divided into: the control group (Con); the paclitaxel chemotherapy group (Pac); the paclitaxel+ parecoxib sodium intervention group (Pac + Pare); and the parecoxib sodium group (Pare). We observed changes in alveolar ventilation function, alveolar-capillary membrane permeability, lung tissue pathology and measured the levels of inflammatory cytokines and cyclooxygenase-2 (Cox-2) in lung tissue, the expression of tight junction proteins (Zo-1 and Claudin-4). Compared with the Con group, the lung tissue of the Pac group showed significantly increased expression of Cox-2 protein (p < 0.01), significant lung tissue inflammatory changes, significantly increased expression of inflammatory cytokines, decreased expression of Zo-1 and Claudin-4 proteins (p < 0.01), increased alveolar-capillary membrane permeability (p < 0.01), and reduced ventilation function (p < 0.01). Notably, in Pac + Pare group, intraperitoneal injection of parecoxib sodium led to decreased Cox-2 and ICAM-1 levels and reduced inflammatory responses, the recovered expression of Zo-1 and Claudin-4, reduced level of indicators reflecting the high permeability state, and close-to-normal levels of ventilation function. Intervention by the Cox-2-specific inhibitor parecoxib sodium can block this damage. PMID:26256764
EFFECT OF THREE DIFFERENT SIZED FRACTIONS OF OUTDOOR PM ON INFLAMMATORY MARKERS IN VIVO
C A J Dick', P Singh2, P. Evansky3, S Becker3 and M I Gilmour3.
'Center For Environmental Medicine and Lung Biology, UNC, Chapel Hill, NC 27599 2NCSU, Raleigh, NC 'Experimental Toxicolog...
Wang, Peng; Li, Xiao-Tao; Sun, Lei; Shen, Lei
2013-01-01
In the present study, we investigated the anti-inflammatory activity of water-soluble polysaccharide of Agaricus blazei Murill (WSP-AbM) on ovariectomized osteopenic rats. The rats were administered orally WSP-AbM (200 mg/kg BW) for 8 weeks. Subsequent serum maleic dialdehyde (MDA) level, total antioxidant status (TAOS), nuclear factor kappa B (NF-κB) level, polymorphonuclear (PMN) cells level, interleukin-1β (IL-1β) level, inducible nitric oxide synthase (iNOS) level, tumor necrosis factor-α (TNF-α) level, adhesion molecule (ICAM-1), and cyclooxygenase-2 (COX-2) were determined by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry, respectively. WSP-AbM administration markedly (P < 0.05) decreased serum IL-1β and TNF-α levels and the expressions of ICAM-1, COX-2, and iNOS NF-κB compared with OVX rats. WSP-AbM administration alsomarkedly (P < 0.05) decreased PMN infiltration. In conclusion, we observed that WSP-AbM supplementation had anti-inflammatory effects in a model of osteoporosis disease. PMID:24348690
The Molecular Basis for Dual Fatty Acid Amide Hydrolase (FAAH)/Cyclooxygenase (COX) Inhibition.
Palermo, Giulia; Favia, Angelo D; Convertino, Marino; De Vivo, Marco
2016-06-20
The design of multitarget-directed ligands is a promising strategy for discovering innovative drugs. Here, we report a mechanistic study that clarifies key aspects of the dual inhibition of the fatty acid amide hydrolase (FAAH) and the cyclooxygenase (COX) enzymes by a new multitarget-directed ligand named ARN2508 (2-[3-fluoro-4-[3-(hexylcarbamoyloxy)phenyl]phenyl]propanoic acid). This potent dual inhibitor combines, in a single scaffold, the pharmacophoric elements often needed to block FAAH and COX, that is, a carbamate moiety and the 2-arylpropionic acid functionality, respectively. Molecular modeling and molecular dynamics simulations suggest that ARN2508 uses a noncovalent mechanism of inhibition to block COXs, while inhibiting FAAH via the acetylation of the catalytic Ser241, in line with previous experimental evidence for covalent FAAH inhibition. This study proposes the molecular basis for the dual FAAH/COX inhibition by this novel hybrid scaffold, stimulating further experimental studies and offering new insights for the rational design of novel anti-inflammatory agents that simultaneously act on FAAH and COX. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Bengmark, Stig
2006-01-01
The world suffers a tsunami of chronic diseases, and a typhoon of acute illnesses, many of which are associated with the inappropriate or exaggerated activation of genes involved in inflammation. Finding therapeutic agents which can modulate the inflammatory reaction is the highest priority in medical research today. Drugs developed by the pharmaceutical industry have thus far been associated with toxicity and side effects, which is why natural substances are of increasing interest. A literature search (PubMed) showed almost 1500 papers dealing with curcumin, most from recent years. All available abstracts were read. Approximately 300 full papers were reviewed. Curcumin, a component of turmeric, has been shown to be non-toxic, to have antioxidant activity, and to inhibit such mediators of inflammation as NFkappaB, cyclooxygenase-2 (COX-2), lipooxygenase (LOX), and inducible nitric oxide synthase (iNOS). Significant preventive and/or curative effects have been observed in experimental animal models of a number of diseases, including arteriosclerosis, cancer, diabetes, respiratory, hepatic, pancreatic, intestinal and gastric diseases, neurodegenerative and eye diseases. Turmeric, an approved food additive, or its component curcumin, has shown surprisingly beneficial effects in experimental studies of acute and chronic diseases characterized by an exaggerated inflammatory reaction. There is ample evidence to support its clinical use, both as a prevention and a treatment. Several natural substances have greater antioxidant effects than conventional vitamins, including various polyphenols, flavonoids and curcumenoids. Natural substances are worth further exploration both experimentally and clinically.
You, Sixiang; Nakanishi, Eri; Kuwata, Hiroko; Chen, Jihua; Nakasone, Yasushi; He, Xi; He, Jianhua; Liu, Xiangxin; Zhang, Shirui; Zhang, Bin; Hou, De-Xing
2013-11-01
Garlic is used for both culinary and medicinal purposes by many cultures. The garlic organosulfur compounds (GOSCs) are thought to be bioactive components. This study aims to clarify the antiinflammatory effects and molecular mechanisms of GOSCs in both cell and animal models. RAW264.7 cells were treated with six kinds of GOSCs to screen their influence on cyclooxygenase-2 and inducible nitric oxide synthase expression by Western blotting. Prostaglandin E2 and nitrite were measured by ELISA and Griess reaction, respectively. Cytokines in culture medium were assayed by the multiplex technology. Proteins were detected by Western blotting. Mouse paw edema was induced by LPS. The results revealed that diallyl trisulfide (DATS) was a strongest inhibitor for cyclooxygenase and inducible nitric oxide synthase among GOSCs, and reduced the levels of LPS-induced IL-6, IL-10, IL-12(p70), KC, MCP-1, and TNF-α. Cellular signaling analysis revealed that DATS downregulated AKT1/TGF-β-activated kinase-mediated mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways. Furthermore, DATS activated Nrf2-mediated expression of HO-1 and NQO1 and reduced LPS-induced intracellular reactive oxygen species, which may contribute to suppress inflammatory mediator production. Finally, in vivo data demonstrated that DATS attenuated LPS-induced mouse paw edema. DATS as a potential inhibitor revealed antiinflammatory effect in both cell and animal models by downregulating AKT1/TGF-β-activated kinase-mediated NFκB and MAPK signaling pathways. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease
Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Abul Khair, Salema B; Haque, M Emdadul
2015-01-01
Parkinson’s disease (PD) is a chronic, progressive, and the second most common form of neurodegenerative disorders. In order to explore novel agents for the treatment of PD, in the current study, we have evaluated the neuroprotective efficacy of ferulic acid (FA) using rotenone (ROT)-induced rat model of PD. ROT was administered 2.5 mg/kg body weight to male Wistar rats for 4 weeks to induce the PD. Since PD is progressive and chronic in nature, the paradigm for evaluating FA was based on chronic administration for 4 weeks at the dose of 50 mg/kg, 30 minutes prior to ROT administration. ROT administration caused significant reduction in endogenous antioxidants such as superoxide dismutase, catalase, and glutathione. ROT challenge-induced lipid peroxidation evidenced by increased malondialdehyde following perturbation of antioxidant defense. Apart from oxidative stress, ROT also activated proinflammatory cytokines and enhanced inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase. The immunofluorescence analysis revealed a significant increase in the number of activated microglia and astrocytes accompanied by a significant loss of dopamine (DA) neurons in the substantia nigra pars compacta area upon ROT injection. However, treatment with FA rescued DA neurons in substantia nigra pars compacta area and nerve terminals in the striatum from the ROT insult. FA treatment also restored antioxidant enzymes, prevented depletion of glutathione, and inhibited lipid peroxidation. Following treatment with FA, the inflammatory mediators such as cyclooxygenase-2 and inducible nitric oxide synthase and proinflammatory cytokines were also reduced. Further, the results were supported by a remarkable reduction of Iba-1 and GFAP hyperactivity clearly suggests attenuation of microglial and astrocytic activation. Results of our study suggest that FA has promising neuroprotective effect against degenerative changes in PD, and the protective effects are mediated through its antioxidant and anti-inflammatory properties. PMID:26504373
Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts.
Francišković, Marina; Gonzalez-Pérez, Raquel; Orčić, Dejan; Sánchez de Medina, Fermín; Martínez-Augustin, Olga; Svirčev, Emilija; Simin, Nataša; Mimica-Dukić, Neda
2017-08-01
The purpose of this work was to determine the chemical profile of stinging nettle and to provide an insight into the mechanisms by which it ameliorates the immune response. Qualitative and quantitative liquid chromatography tandem mass spectrometry analyses indicated that phenolic acids (5-O-caffeoylquinic acid as dominant) and flavonol glycosides (rutin, isoquercitrin, and kaempferol 3-O-glucoside) are present in the aerial parts, while lignans (secoisolariciresinol, 9,9'-bisacetyl-neo-olivil and their glucosides) were detected in the root. Herb and root extracts expressed selective inhibition toward cyclooxygenase and lipoxygenase branches in human platelets: root extracts were better at inhibiting thromboxane production, while herb extracts were more specific toward inhibition of 12-lipoxygenase pathway. Stinging nettle extracts mildly increased monocyte chemoattractant protein-1 and growth-related oncogene release from nonstimulated intestinal epithelial cells, stimulating MyD88/NF-κB/p38 signaling, hence preserving the epithelial integrity and enhancing intestinal steady-state defense. Additionally, root extract reduced lipopolysaccharide-induced monocyte chemoattractant protein-1/growth-related oncogene secretion and cyclooxygenase-2 expression in intestinal epithelial cells, thus showing the potential protective effect against tissue damage caused by inflammation processes. These observations suggest that stinging nettle is an interesting candidate for the development of phytopharmaceuticals or dietary supplements for cotreatment of various inflammatory diseases, particularly inflammatory bowel diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Platelet cyclooxygenase expression in normal dogs.
Thomason, J; Lunsford, K; Mullins, K; Stokes, J; Pinchuk, L; Wills, R; McLaughlin, R; Langston, C; Pruett, S; Mackin, A
2011-01-01
Human platelets express both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Variation in COX-2 expression could be a mechanism for variable response to aspirin. The hypotheses were that circulating canine platelets express COX-1 and COX-2, and that aspirin alters COX expression. The objective was to identify changes in platelet COX expression and in platelet function caused by aspirin administration to dogs. Eight female, intact hounds. A single population, repeated measures design was used to evaluate platelet COX-1 and COX-2 expression by flow cytometry before and after aspirin (10 mg/kg Q12h for 10 days). Platelet function was analyzed via PFA-100(®) (collagen/epinephrine), and urine 11-dehydro-thromboxane B(2) (11-dTXB(2)) was measured and normalized to urinary creatinine. Differences in COX expression, PFA-100(®) closure times, and urine 11-dTXB(2 ): creatinine ratio were analyzed before and after aspirin administration. Both COX-1 and COX-2 were expressed in canine platelets. COX-1 mean fluorescent intensity (MFI) increased in all dogs, by 250% (range 63-476%), while COX-2 expression did not change significantly (P = 0.124) after aspirin exposure, with large interindividual variation. PFA-100(®) closure times were prolonged and urine 11-dTXB(2) concentration decreased in all dogs after aspirin administration. Canine platelets express both COX isoforms. After aspirin exposure, COX-1 expression increased despite impairment of platelet function, while COX-2 expression varied markedly among dogs. Variability in platelet COX-2 expression should be explored as a potential mechanism for, or marker of, variable aspirin responsiveness. Copyright © 2011 by the American College of Veterinary Internal Medicine.
2014-01-01
Background Excessive pro-inflammatory cytokine production from activated microglia contributes to neurodegenerative diseases, thus, microglial inactivation may delay the progress of neurodegeneration by attenuating the neuroinflammation. Among 5 selected brown algae, we found the highest antioxidant and anti-neuroinflammatory activities from Myagropsis myagroides ethanolic extract (MME) in lipopolysaccharide (LPS)-stimulated BV-2 cells. Methods The levels of nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines were measured by Griess assay and enzyme linked immunesorbent assay. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs), and Akt were measured using Western blot. Nuclear translocation and transcriptional activation of nuclear factor-κB (NF-κB) were determined by immunefluorescence and reporter gene assay, respectively. Results MME inhibited the expression of iNOS and COX-2 at mRNA and protein levels, resulting in reduction of NO and PGE2 production. As a result, pro-inflammatory cytokines were reduced by MME. MME also inhibited the activation and translocation of NF-κB by preventing inhibitor κB-α (IκB-α) degradation. Moreover, MME inhibited the phosphorylation of extracellular signal regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs). Main anti-inflammatory compound in MME was identified as sargachromenol by NMR spectroscopy. Conclusions These results indicate that the anti-inflammatory effect of sargachromenol-rich MME on LPS-stimulated microglia is mainly regulated by the inhibition of IκB-α/NF-κB and ERK/JNK pathways. PMID:25005778
An in vitro test system for compounds that modulate human inflammatory macrophage polarization.
Shiratori, Hiromi; Feinweber, Carmen; Luckhardt, Sonja; Wallner, Nadja; Geisslinger, Gerd; Weigert, Andreas; Parnham, Michael J
2018-06-16
Macrophages undergo activation by pathophysiological stimuli to pro-inflammatory and bactericidal, or wound-healing and anti-inflammatory phenotypes, termed M1 or M2, respectively. Dysregulation of the M1-M2 balance is often associated with inflammatory diseases. Therefore, mechanisms of macrophage polarization may reveal new drug targets. We profiled six compounds with claimed modulatory effects on macrophage polarization using peripheral blood monocyte-derived macrophages. Based on the distinct mRNA or protein expression in macrophages stimulated either with M1 [lipopolysaccharide (LPS) + interferon-γ, IFNγ] or M2 interleukin-4 (IL-4) stimuli, we selected a combination of M1 (IL1β, tumor necrosis factor-α,TNFα, CC chemokine receptor 7, CCR7 and CD80) and M2 (chemokine (C-C motif) ligand 22, CCL22, CD200R and mannose receptor C type 1, MRC1) markers to monitor drug effects on "M1 polarization" or cells "pre-polarized to M1". Azithromycin (25-50μM), tofacitinib (2.5-5μM), hydroxychloroquine (40µg/ml) and pioglitazone (15-60μM) exhibit an anti-inflammatory profile because they downregulated M1 markers and upregulated some M2 markers when given both before and after M1 polarization. Lovastatin given before M1 polarization downregulated M1 marker genes but enhanced the M1 phenotype in macrophages pre-polarized with LPS and IFNγ. Methotrexate (1.25-5μM) did not modulate macrophage polarization. We have, thus, established a test system suitable to identify novel compounds or repurposed drugs that modulate inflammatory macrophage plasticity. Compounds with potential to reduce expression of molecules involved in inflammatory T cell activation (IL-1β, TNFα, CD80), while enhancing production of a major chemokine involved in recruitment of Tregs (CCL22) may be of interest for treating chronic inflammatory diseases. Copyright © 2018. Published by Elsevier B.V.
1990-02-21
effect of glucocorticoids. Nature 287:147-149, 1980. 14. Peters-Goldmen M, Bathon J, Flores R, Hirata F, Newcombe DS. Gluco-orticoid inhibition of...steroids reduce tissue PG synthetase activity and enhance PG breakdown. Nature 288:269-270, 1980. 16. Adamus WH, Stoner RD, Adams DG, Slatkin DN
Mechanism of Cutaneous Vesication
1994-02-17
mitochondria, site of the citric acid cycle, based on the time-course studies (King and Monteiro-Riviere, 1990; King et al., 1992). Detriment of the glucose...dermis ............................... 98 31. Passive Topical Kinetic Model ........................................................... 99 32. IPPSF... acid (AA) metabolism by cyclooxygenase and lipoxygenase enzymes are known to be potent inflammatory mediators present in many skin diseases. The skin
Wang, Qingsong; He, Yuhu; Shen, Yujun; Zhang, Qianqian; Chen, Di; Zuo, Caojian; Qin, Jing; Wang, Hui; Wang, Junwen; Yu, Ying
2014-01-01
Inadequate vitamin D status has been linked to increased risk of type 2 diabetes and cardiovascular disease. Inducible cyclooxygenase (COX) isoform COX-2 has been involved in the pathogenesis of such chronic inflammatory diseases. We found that the active form of vitamin D, 1,25(OH)2D produces dose-dependent inhibition of COX-2 expression in murine macrophages under both basal and LPS-stimulated conditions and suppresses proinflammatory mediators induced by LPS. Administration of 1,25(OH)2D significantly alleviated local inflammation in a carrageenan-induced paw edema mouse model. Strikingly, the phosphorylation of both Akt and its downstream target IκBα in macrophages were markedly suppressed by 1,25(OH)2D in the presence and absence of LPS stimulation through up-regulation of THEM4 (thioesterase superfamily member 4), an Akt modulator protein. Knockdown of both vitamin D receptor and THEM4 attenuated the inhibitory effect of 1,25(OH)2D on COX-2 expression in macrophages. A functional vitamin D-responsive element in the THEM4 promoter was identified by chromatin immunoprecipitation and luciferase reporter assay. Our results indicate that vitamin D restrains macrophage-mediated inflammatory processes by suppressing the Akt/NF-κB/COX-2 pathway, suggesting that vitamin D supplementation might be utilized for adjunctive therapy for inflammatory disease. PMID:24619416
Nishikawa, Hirokazu; Shirano, Michinori; Kasamatsu, Yu; Morimura, Ayumi; Iida, Ko; Kishi, Tomomi; Goto, Tetsushi; Okamoto, Saki; Ehara, Eiji
2016-01-01
To assess relationships of inflammatory markers and 2 related clinical factors with blood culture results, we retrospectively investigated inpatients' blood culture and blood chemistry findings that were recorded from January to December 2014 using electronic medical records and analyzed the data of 852 subjects (426 culture-positive and 426 culture-negative). Results suggested that the risk of positive blood culture statistically increased as inflammatory marker levels and the number of related factors increased. Concerning the effectiveness of inflammatory markers, when the outcome definition was also changed for C-reactive protein (CRP), the odds ratio had a similar value, whereas when the outcome definition of blood culture positivity was used for procalcitonin (PCT), the greatest effectiveness of that was detected. Therefore, the current results suggest that PCT is more useful than CRP as an auxiliary indication of bacterial infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Jiang, Fan; Guan, Haining; Liu, Danyi; Wu, Xi; Fan, Mingcheng; Han, Jianchun
2017-03-22
Sea buckthorn has long been used as a functional food to regulate cholesterol, relieve angina, and diminish inflammation. Flavonoids are one of the main active components in sea buckthorn. We investigated the effects of sea buckthorn flavonoid (SF) treatment on two pathways that mediate inflammation, the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways, to explore the anti-inflammatory activity of SFs in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-induced over-production of nitric oxide (NO) and prostaglandin E2 (PGE 2 ) was inhibited by SFs through a mechanism related to the modulatory effects of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) genes. Additionally, SFs downregulated the production and mRNA expression of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β. Moreover, SFs inhibited the phosphorylation of the p38 and stress-activated protein kinase/jun amino-terminal kinase (SAPK/JNK) MAPK pathways, and they reduced the nuclear translocation of NF-κB to prevent its activation by blocking the phosphorylation and degradation of inhibitor protein of NF-κB α (IκB-α). Based on these findings, SFs may exert their inhibitory effects on inflammation by regulating the release of inflammatory mediators through the MAPK and NF-κB pathways. SFs highlight the potential benefits of using functional foods with anti-inflammatory actions to combat inflammatory diseases.
Abdelwahab, Siddig Ibrahim; Hassan, Loiy Elsir Ahmed; Sirat, Hasnah Mohd; Yagi, Sakina M Ahmed; Koko, Waleed S; Mohan, Syam; Taha, Manal Mohamed Elhassan; Ahmad, Syahida; Chuen, Cheah Shiau; Narrima, Putri; Rais, Mohd Mustafa; Hadi, A Hamid A
2011-12-01
The in vivo and in vitro mechanistic anti-inflammatory actions of cucurbitacin E (CE) (Citrullus lanatus var. citroides) were examined. The results showed that LPS/INF-γ increased NO production in RAW264.7 macrophages, whereas L-NAME and CE curtailed it. CE did not reveal any cytotoxicity on RAW264.7 and WRL-68 cells. CE inhibited both COX enzymes with more selectivity toward COX-2. Intraperitoneal injection of CE significantly suppressed carrageenan-induced rat's paw edema. ORAC and FRAP assays showed that CE is not a potent ROS scavenger. It could be concluded that CE is potentially useful in treating inflammation through the inhibition of COX and RNS but not ROS. Copyright © 2011 Elsevier B.V. All rights reserved.
Shin, Hye-Sun; Kang, Seong-Il; Ko, Hee-Chul; Park, Deok-Bae; Kim, Se-Jae
2017-03-01
Obesity is characterized by a state of chronic low-grade inflammation and insulin resistance, which are aggravated by the interaction between hypertrophic adipocytes and macrophages. In this study, we investigated the effects of tangeretin on inflammatory changes and glucose uptake in a coculture of hypertrophic adipocytes and macrophages. Tangeretin decreased nitric oxide production and the expression of interleukin (IL)-6, IL-1β, tumor necrosis factor-α, inducible nitric oxide synthase, and cyclooxygenase-2 in a coculture of 3T3-L1 adipocytes and RAW 264.7 cells. Tangeretin also increased glucose uptake in the coculture system, but did not affect the phosphorylation of insulin receptor substrate (IRS) and Akt. These results suggest that tangeretin improves insulin resistance by attenuating obesity-induced inflammation in adipose tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noordhuis, Maartje G.; Eijsink, Jasper J.H.; Roossink, Frank
2011-02-01
The aim of this study was to systematically review the prognostic and predictive significance of cell biological markers in cervical cancer patients primarily treated with (chemo)radiation. A PubMed, Embase, and Cochrane literature search was performed. Studies describing a relation between a cell biological marker and survival in {>=}50 cervical cancer patients primarily treated with (chemo)radiation were selected. Study quality was assessed, and studies with a quality score of 4 or lower were excluded. Cell biological markers were clustered on biological function, and the prognostic and predictive significance of these markers was described. In total, 42 studies concerning 82 cell biologicalmore » markers were included in this systematic review. In addition to cyclooxygenase-2 (COX-2) and serum squamous cell carcinoma antigen (SCC-ag) levels, markers associated with poor prognosis were involved in epidermal growth factor receptor (EGFR) signaling (EGFR and C-erbB-2) and in angiogenesis and hypoxia (carbonic anhydrase 9 and hypoxia-inducible factor-1{alpha}). Epidermal growth factor receptor and C-erbB-2 were also associated with poor response to (chemo)radiation. In conclusion, EGFR signaling is associated with poor prognosis and response to therapy in cervical cancer patients primarily treated with (chemo)radiation, whereas markers involved in angiogenesis and hypoxia, COX-2, and serum SCC-ag levels are associated with a poor prognosis. Therefore, targeting these pathways in combination with chemoradiation may improve survival in advanced-stage cervical cancer patients.« less
Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul
2012-01-01
KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E(2) (PGE(2)). Consistent with the inhibitory effect on PGE(2), KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.
Oh, You-Chang; Cho, Won-Kyung; Jeong, Yun Hee; Im, Ga Young; Kim, Aeyung; Hwang, Youn-Hwan; Kim, Taesoo; Song, Kwang Hoon; Ma, Jin Yeul
2012-01-01
KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) as well as nitric oxide (NO) and prostaglandin E2 (PGE2). Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9) in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB) and represses the activity of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS. PMID:23243447
The Anti-Inflammatory Activity of Boron Derivatives in Rodents
Hall, Iris H.; Burnham, Bruce S.; Chen, Shang Y.; Sood, Anup; Spielvogel, Bernard F.; Morse, Karen W.
1995-01-01
Acyclic amine-carboxyboranes were effective anti-inflammatory agents in mice at 8 mg/kg x 2. These amine-carboxyboranes were more effective than the standard indomethacin at 8 mg/kg x 2, pentoxifylline at 50 mg/kg x 2, and phenylbutazone at 50 mg/kg x 2. The heterocyclic amine derivatives as well as amine-carbamoylboranes, carboalkoxyboranes, and cyanoboranes were generally less active. However, selected aminomethyl-phosphonate-N-cyanoboranes demonstrated greater than 60% reduction of induced inflammation. The boron compounds were also active in the rat induced edema, chronic arthritis, and pleurisy screens, demonstrating activity similar to the standard indomethacin. The compounds were effecive in reducing local pain and decreased the tail flick reflex to pain. The derivatives which demonstrated good anti-inflammatory activity were effective inhibitors of hydrolytic lysosomal, and proteolytic enzyme activities with IC50 50 values equal to -6M in mouse macrophages, human leukocytes, and Be Sal osteofibrolytic cells. In these same cell lines, the agents blocked prostaglandin cyclooxygenase activity with IC50 values of -6M. In mouse macrophage and human leukocytes, 5′ lipoxygenase activity was also inhibited by the boron derivatives with IC50 values of 10-6M. These IC50 values for inhibition of these enzyme activities are consistent with published values of known anti-inflammatory agents which target these enzymes. PMID:18472741
Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.
2010-01-01
Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445
Kim, Jaeyong; Kim, Heesook; Choi, Hakjoon; Jo, Ara; Kang, Huwon; Yun, Hyojeong; Im, Sojeong; Choi, Chulyung
2018-01-01
The fruit of Stauntonia hexaphylla is commonly used as a traditional anthelmintic in Korea, Japan, and China. However, its anti-inflammatory activity and the underlying mechanisms have not been studied systematically. In the present study, we examined the anti-inflammatory activities of an aqueous extract of S. hexaphylla fruit (SHF) in lipopolysaccharide (LPS)-activated RAW 264.7 cells. The SHF extract contained anti-inflammatory compounds, such as neochlorogenic acid, chlorogenic acid, and cryptochlorogenic acid. The extract inhibited protein levels of inducible nitric oxide synthase and the activity of cyclooxygenase enzyme, with concomitant reductions in the production of nitric oxide and prostaglandin E2 in LPS-activated RAW 264.7 cells. Additionally, the SHF extract reduced the production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The SHF extract attenuated LPS-induced nuclear factor-κB (NF-κB) activation by decreasing the phosphorylation of its inhibitor, IκBα. Furthermore, the SHF extract showed a significant anti-inflammatory effect in vivo by reducing the volume of carrageenan-induced paw edema in rats. Our results suggest that the SHF extract exerts potential anti-inflammatory properties against LPS-activated RAW 254.7 cells, and in an animal model of inflammation. PMID:29361789
2009-01-01
Background Medicinal plants represent alternative means for the treatment of several chronic diseases, including inflammation. The genus Ranunculus, a representative of the Ranunculaceae family, has been reported to possess anti-inflammatory, analgesic, antiviral, antibacterial, antiparasitic and antifungal activities, possibly due to the presence of anemonin and other. Different studies have shown the occurrence of unusual fatty acids (FAs) in Ranunculaceae; however, their therapeutic role has not been investigated. The purpose of this study is to characterize potential anti-inflammatory bioactivities in Ranunculus constantinopolitanus D'Urv., traditionally used in Eastern Mediterranean folk medicine. Methods The aerial part of R. constantinopolitanus was subjected to methanol (MeOH) extraction and solvent fractionation. The bioactive fraction (I.2) was further fractionated using column chromatography, and the biologically active subfraction (Y2+3) was identified using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The effects of I.2 and Y2+3 on cell viability were studied in mouse mammary epithelial SCp2 cells using trypan blue exclusion method. To study the anti-inflammatory activities of I.2 and Y2+3, their ability to reduce interleukin (IL)-6 levels was assessed in endotoxin (ET)-stimulated SCp2 cells using enzyme-linked immunosorbent assay (ELISA). In addition, the ability of Y2+3 to reduce cyclooxygenase (COX)-2 expression was studied in IL-1-treated mouse intestinal epithelial Mode-K cells via western blotting. Data were analyzed by one-way analysis of variance (ANOVA), Student-Newman-Keuls (SNK), Tukey HSD, two-sample t-test and Dunnett t-tests for multiple comparisons. Results The chloroform fraction (I.2) derived from crude MeOH extract of the plant, in addition to Y2+3, a FA mix isolated from this fraction and containing palmitic acid, C18:2 and C18:1 isomers and stearic acid (1:5:8:1 ratio), reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA) and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio), Y2+3 exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y2+3 also reduced COX-2 expression in IL-1-treated Mode-K cells. Conclusion Our studies demonstrate the existence of potential anti-inflammatory bioactivities in R. constantinopolitanus and attribute them to a FA mix in this plant. PMID:19917107
Fostok, Sabreen F; Ezzeddine, Rima A; Homaidan, Fadia R; Al-Saghir, Jamal A; Salloum, Ralph G; Saliba, Najat A; Talhouk, Rabih S
2009-11-16
Medicinal plants represent alternative means for the treatment of several chronic diseases, including inflammation. The genus Ranunculus, a representative of the Ranunculaceae family, has been reported to possess anti-inflammatory, analgesic, antiviral, antibacterial, antiparasitic and antifungal activities, possibly due to the presence of anemonin and other. Different studies have shown the occurrence of unusual fatty acids (FAs) in Ranunculaceae; however, their therapeutic role has not been investigated. The purpose of this study is to characterize potential anti-inflammatory bioactivities in Ranunculus constantinopolitanus D'Urv., traditionally used in Eastern Mediterranean folk medicine. The aerial part of R. constantinopolitanus was subjected to methanol (MeOH) extraction and solvent fractionation. The bioactive fraction (I.2) was further fractionated using column chromatography, and the biologically active subfraction (Y2+3) was identified using infrared (IR) spectroscopy, nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The effects of I.2 and Y2+3 on cell viability were studied in mouse mammary epithelial SCp2 cells using trypan blue exclusion method. To study the anti-inflammatory activities of I.2 and Y2+3, their ability to reduce interleukin (IL)-6 levels was assessed in endotoxin (ET)-stimulated SCp2 cells using enzyme-linked immunosorbent assay (ELISA). In addition, the ability of Y2+3 to reduce cyclooxygenase (COX)-2 expression was studied in IL-1-treated mouse intestinal epithelial Mode-K cells via western blotting. Data were analyzed by one-way analysis of variance (ANOVA), Student-Newman-Keuls (SNK), Tukey HSD, two-sample t-test and Dunnett t-tests for multiple comparisons. The chloroform fraction (I.2) derived from crude MeOH extract of the plant, in addition to Y2+3, a FA mix isolated from this fraction and containing palmitic acid, C18:2 and C18:1 isomers and stearic acid (1:5:8:1 ratio), reduced ET-induced IL-6 levels in SCp2 cells without affecting cell viability or morphology. When compared to fish oil, conjugated linoleic acid (CLA) and to individual FAs as palmitic, linoleic, oleic and stearic acid or to a mix of these FAs (1:5:8:1 ratio), Y2+3 exhibited higher potency in reducing ET-induced IL-6 levels within a shorter period of time. Y2+3 also reduced COX-2 expression in IL-1-treated Mode-K cells. Our studies demonstrate the existence of potential anti-inflammatory bioactivities in R. constantinopolitanus and attribute them to a FA mix in this plant.
Li, Xiao-Hong; McGrath, Kristine C Y; Tran, Van H; Li, Yi-Ming; Duke, Colin C; Roufogalis, Basil D; Heather, Alison K
2013-01-01
Introduction. Hepatic inflammation underlies the pathogenesis of chronic diseases such as insulin resistance and type 2 diabetes mellitus. S-[6]-Gingerol has been shown to have anti-inflammatory properties. Important inflammatory mediators of interleukins include nuclear factor κ B (NF κ B) and cyclooxygenase 2 (COX2). We now explore the mechanism of anti-inflammatory effects of S-[6]-gingerol in liver cells. Methods. HuH7 cells were stimulated with IL1β to establish an in vitro hepatic inflammatory model. Results. S-[6]-Gingerol attenuated IL1β-induced inflammation and oxidative stress in HuH7 cells, as evidenced by decreasing mRNA levels of inflammatory factor IL6, IL8, and SAA1, suppression of ROS generation, and increasing mRNA levels of DHCR24. In addition, S-[6]-gingerol reduced IL1β-induced COX2 upregulation as well as NF κ B activity. Similar to the protective effects of S-[6]-gingerol, both NS-398 (a selective COX2 inhibitor) and PDTC (a selective NF κ B inhibitor) suppressed mRNA levels of IL6, IL8, and SAA1. Importantly, PDTC attenuated IL1β-induced overexpression of COX2. Of particular note, the protective effect of S-[6]-gingerol against the IL1β-induced inflammatory response was similar to that of BHT, an ROS scavenger. Conclusions. The findings of this study demonstrate that S-[6]-gingerol protects HuH7 cells against IL1β-induced inflammatory insults through inhibition of the ROS/NF κ B/COX2 pathway.
Khandaker, Golam M.; Zammit, Stanley; Lewis, Glyn; Jones, Peter B.
2014-01-01
Objective Schizophrenia is associated with atopy and increased inflammatory markers. We report a population-based longitudinal study of the associations between childhood atopic disorders, subsequent serum inflammatory markers, interleukin 6 (IL-6) and C-reactive protein (CRP), and the risk of psychotic experiences (PEs). Method PEs were assessed at age 13 years (n = 6785). Presence of clinician-diagnosed atopic disorders (asthma and eczema) was determined from parent-completed questionnaires at age 10 years (n = 7814). Serum IL-6 and CRP were measured at age 9 years (n = 5076). Logistic regression examined the association between (1) atopy and PEs, (2) inflammatory markers and PEs, and (3) mediating effects of inflammatory markers on the atopy–PEs association. Linear regression examined the association between atopy and inflammatory markers. Age, gender, social class, ethnicity and body mass index were included as potential confounders. Results At age 10 years, about 14% of the sample was reported to have asthma, 12% eczema, and 7% both asthma and eczema. Compared with children with no atopy, risk of PEs at age 13 years was increased for all of these groups; adjusted odds ratios (95% CI) were, respectively, 1.39 (1.10–1.77), 1.33 (1.04–1.69), and 1.44 (1.06–1.94). Atopy was associated with increased serum IL-6 and CRP; however, this did not mediate association between atopy and PEs. Inflammatory markers were not associated with later PEs. Conclusion Childhood atopic disorders increase the risk of psychotic experiences in adolescence. Follow-up of these individuals will be useful to determine the effect of atopy and inflammation on different trajectories of early-life PEs. PMID:24268471
Khandaker, Golam M; Zammit, Stanley; Lewis, Glyn; Jones, Peter B
2014-01-01
Schizophrenia is associated with atopy and increased inflammatory markers. We report a population-based longitudinal study of the associations between childhood atopic disorders, subsequent serum inflammatory markers, interleukin 6 (IL-6) and C-reactive protein (CRP), and the risk of psychotic experiences (PEs). PEs were assessed at age 13 years (n=6785). Presence of clinician-diagnosed atopic disorders (asthma and eczema) was determined from parent-completed questionnaires at age 10 years (n=7814). Serum IL-6 and CRP were measured at age 9 years (n=5076). Logistic regression examined the association between (1) atopy and PEs, (2) inflammatory markers and PEs, and (3) mediating effects of inflammatory markers on the atopy-PEs association. Linear regression examined the association between atopy and inflammatory markers. Age, gender, social class, ethnicity and body mass index were included as potential confounders. At age 10 years, about 14% of the sample was reported to have asthma, 12% eczema, and 7% both asthma and eczema. Compared with children with no atopy, risk of PEs at age 13 years was increased for all of these groups; adjusted odds ratios (95% CI) were, respectively, 1.39 (1.10-1.77), 1.33 (1.04-1.69), and 1.44 (1.06-1.94). Atopy was associated with increased serum IL-6 and CRP; however, this did not mediate association between atopy and PEs. Inflammatory markers were not associated with later PEs. Childhood atopic disorders increase the risk of psychotic experiences in adolescence. Follow-up of these individuals will be useful to determine the effect of atopy and inflammation on different trajectories of early-life PEs. © 2013. Published by Elsevier B.V. All rights reserved.
Wu, Shu-Ju
2015-09-01
This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.
Zhao, Feng; Wang, Lu; Liu, Ke
2009-04-21
Arctigenin, a bioactive constituent from dried seeds of Arctium lappa L. (Compositae) which has been widely used as a Traditional Chinese Medicine for dispelling wind and heat included in Chinese Pharmacophere, was found to exhibit anti-inflammatory activities but its molecular mechanism remains unknown yet. To investigate the anti-inflammatory mechanism of arctigenin. Cultured macrophage RAW 264.7 cells and THP-1 cells were used for the experiments. Griess assay was used to evaluate the inhibitory effect of arctigenin on the overproduction of nitric oxide (NO). ELISA was used to determine the level of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6). The inhibitory effect on the enzymatic activity of cyclooxygenase-2 (COX-2) was tested by colorimetric method. Western blot was used to detect the expression of inducible nitric oxide synthase (iNOS) and COX-2. Arctigenin suppressed lipopolysaccharide (LPS)-stimulated NO production and pro-inflammatory cytokines secretion, including TNF-alpha and IL-6 in a dose-dependent manner. Arctigenin also strongly inhibited the expression of iNOS and iNOS enzymatic activity, whereas the expression of COX-2 and COX-2 enzymatic activity were not affected by arctigenin. These results indicated that potent inhibition on NO, TNF-alpha and IL-6, but not COX-2 expression and COX-2 activity, might constitute the anti-inflammatory mechanism of arctigenin. Arctigenin suppressed the overproduction of NO through down-regulation of iNOS expression and iNOS enzymatic activity in LPS-stimulated macrophage.
Ono, N; Yamasaki, Y; Yamamoto, N; Sunami, A; Miyake, H
1986-11-01
The possible mechanism of the anti-inflammatory activity of proglumetacin maleate (PGM), a new indomethacin (IND) derivative interacting with arachidonic acid (AA) metabolism, was investigated to elucidate the contributions of PGM itself and its two major metabolites, desproglumideproglumetacin maleate (DPP) and IND. PGM caused much less inhibition of PGE2 formation by sheep seminal vesicle microsomes (IC50 = 310 microM) and TXB2 formation by a washed rabbit platelet suspension (IC50 = 6.3 microM) than IND. DPP also caused less inhibition of cyclooxygenase than IND. Moreover, PGM had less effect on sodium arachidonate (SAA)-induced rat platelet aggregation ex vivo and AA-induced sudden death in rabbits than IND. These results show that PGM has anti-inflammatory activity after its conversion to the active metabolite IND. However, the inhibitory effects of PGM and DPP were as strong as that of IND on SAA- or collagen-induced rabbit platelet aggregation in vitro. These activities are considered to be associated with platelet membrane interaction. Moreover, unlike IND, PGM (IC50 = 1.5 microM) and DPP (IC50 = 16.3 microM) strongly inhibited 5-HETE formation by the cytosol of guinea pig polymorphonuclear leukocytes. This unique activity of PGM on 5-lipoxygenase may contribute to its anti-inflammatory activity.
Hua, Kuo-Feng; Yang, Tzu-Jung; Chiu, Huan-Wen; Ho, Chen-Lung
2014-06-01
The essential oil from Liquidambar formosana leaves (EOLF) was demonstrated to exhibit anti-inflammatory activity in mouse macrophages. EOLF reduced nitrite oxide generation, secretion levels of tumor necrosis factor-alpha and interleukin-6, and expression levels of prointerleukin-beta, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-activated mouse macrophages. EOLF also reduced NLRP3 inflammasome-derived interleukin-1beta secretion. The underlying mechanisms for the EOLF-mediated anti-inflammatory activity were (1) reduction of LPS-induced reactive oxygen species generation; (2) reduction of LPS-induced activation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 MAP kinase; (3) reduction of LPS-induced nuclear factor-kappaBeta activation. Furthermore, 25 compounds were identified in the EOLF using GC-FID and GC-MS and the major compounds were terpinen-4-ol (32.0%), beta-pinene (18.0%), gamma-terpinene (13.8%), and alpha-terpinene (9.7%). We found that LPS-induced nitrite oxide generation was inhibited significantly by terpinen-4-ol. Our results indicated that EOLF has anti-inflammatory activity and may provide a molecular rationale for future therapeutic interventions in immune modulation.
Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives.
Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek
2017-11-20
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold has gained considerable scientific interest in medicinal chemistry owing to its simple chemistry, ease in synthesizing a variety of derivatives and exhibiting a broad range of promising pharmacological activities by modulating several molecular targets. A number of natural and (semi-) synthetic chalcone derivatives have demonstrated admirable anti-inflammatory activity due to their inhibitory potential against various therapeutic targets like Cyclooxygenase (COX), Lipooxygenase (LOX), Interleukins (IL), Prostaglandins (PGs), Nitric Oxide Synthase (NOS), Leukotriene D4 (LTD4), Nuclear Factor-κB (NF- κB), Intracellular Cell Adhesion Molecule-1 (ICAM-1), Vascular Cell Adhesion Molecule-1 (VCAM-1), Monocyte Chemoattractant Protein-1 (MCP-1) and TLR4/MD-2, etc. The chalcone scaffold with hydroxyl, methoxyl, carboxyl, prenyl group and/or heterocyclic ring substitution like thiophene/furan/indole showed promising anti-inflammatory activity. In this review, a comprehensive study (from the year 1991 to 2016) on multi-targets of inflammatory interest, related inflammation reactions and their treatment by chalcone-based inhibitors acting on various molecular targets entailed in inflammation, Structure-Activity Relationships (SARs), Mechanism of Actions (MOAs), and patents are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction.
Shim, Sehwan; Kim, Sokho; Choi, Dea-Seung; Kwon, Young-Bae; Kwon, Jungkee
2011-11-01
Ginger extracts have been reported to have anti-inflammatory, anti-oxidant, and anti-cancer effects. [6]-shogaol is one of the most bioactive components of ginger rhizomes. This study assessed the [6]-shogaol's ability to protect cultured primary rat astrocytes against lipopolysaccharide (LPS)-induced inflammation. [6]-shogaol was shown to suppress the release of pro-inflammatory cytokines and decreased the level of inducible nitric oxide syntheses (iNOS), cyclooxygenase-2 (COX-2), and phospho-NF-kB in LPS-treated astrocytes. Furthermore, [6]-shogaol treatment markedly up-regulated histone H3 acetylation and suppressed histone deacetylase (HDAC)1 expression. In addition, [6]-shogaol treatment also increased the expression of heat-shock protein (HSP)70. The neuroprotective, neurotrphic, and anti-inflammatory properties of [6]-shogaol may be translated to improvements in neurological performance. [6]-Shogaol's ability to inhibit HDAC was comparable to that of commonly used HDAC inhibitors Trichostatin A and MS275. Taken together, our results suggest that [6]-shogaol can significantly attenuate a variety of neuroinflammatory responses by inducing HSP70, that is associated with HDAC inhibition in cortical astrocytes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Physalis angulata extract exerts anti-inflammatory effects in rats by inhibiting different pathways.
Bastos, G N T; Silveira, A J A; Salgado, C G; Picanço-Diniz, D L W; do Nascimento, J L M
2008-07-23
Physalis angulata is a popular medicine used in Brazil due to its anti-inflammatory effects, but the pharmacological mechanisms underlying these actions remain to be better understood. In the present work, lyophilized aqueous extract from the roots of Physalis angulata Linneu (AEPa) was used to control the inflammatory response induced by the injection of 1% carrageenan into subcutaneous rat's air pouches. Adenosine deaminase (ADA) activity, nitrite level, and prostaglandin E(2) (PGE(2)) level were used to evaluate the action of inflammatory mediators. Tumor growth factor-beta (TGF-beta) level was used as a bioindicator of immunomodulatory response. Rats were injected with vehicle, indomethacin, or AEPa (0.5 mg/kg, 1 mg/kg, and 5 mg/kg i.p.), 1h before carrageenan administration. AEPa at 0.5 mg/kg had no effect. However, 1mg/kg of AEPa showed significant anti-inflammatory effects, decreasing exudate volume, total number of inflammatory cells, ADA activity, nitrite level, and PGE(2) level in 50%, 41%, 20%, 60%, and 41%, respectively. The anti-inflammatory effects of 5 mg/kg AEPa appeared to be more effective than those of 1 mg/kg AEPa (84%, 80%, 43%, 70%, and 75%, respectively). In addition, TGF-beta level was upregulated to 9700 pg/ml after 5mg/kg AEPa, in comparison with 160 pg/ml in the vehicle-treated group, and 137 pg/ml in the indomethacin-treated group. The results indicate that AEPa exerts powerful anti-inflammatory and immunomodulatory activities, interfering with the cyclooxygenase pathway, lymphocyte proliferation, NO, and TGF-beta production.
Margulis, Vitaly; Shariat, Shahrokh F; Ashfaq, Raheela; Thompson, Melissa; Sagalowsky, Arthur I; Hsieh, Jer-Tsong; Lotan, Yair
2007-03-01
We compared the differential expression of cyclooxygenase-2 in normal bladder tissue, primary bladder transitional cell carcinoma and transitional cell carcinoma metastases to lymph nodes, and determined whether cyclooxygenase-2 expression is associated with molecular alterations commonly found in bladder transitional cell carcinoma and clinical outcomes after radical cystectomy. Immunohistochemical staining for cyclooxygenase-2, survivin (Novus Biologicals, Littleton, Colorado), p21, p27, pRB, p53, MIB-1, Bax, Bcl-2, cyclin D(1) (Dakotrade mark), cyclin E (Oncogene, Cambridge, Massachusetts) and caspase-3 (Cell Signaling, Beverley, Massachusetts) was performed on archival bladder specimens from 9 subjects who underwent cystectomy for benign causes, 21 patients who underwent transurethral resection and 157 consecutive patients after radical cystectomy, and on 41 positive lymph nodes. Cyclooxygenase-2 was expressed in none of the 9 normal bladder specimens (0%), 52% of transurethral resection specimens, 62% of cystectomy specimens and 80% of lymph nodes involved with transitional cell carcinoma. Cyclooxygenase-2 expression was associated with higher pathological stage, lymphovascular invasion and metastases to lymph nodes (p=0.001, 0.045 and 0.002, respectively). Cyclooxygenase-2 expression was associated with altered expression of p53 (p=0.039), pRB (p=0.025), cyclin D1 (p=0.034) and caspase-3 (p=0.014). On univariate analysis cyclooxygenase-2 expression was associated with an increased risk of disease recurrence and bladder cancer specific mortality (p=0.0189 and 0.0472, respectively). However, on multivariate analysis only pathological stage and metastases to lymph nodes were associated with disease recurrence (p<0.001 and <0.001) and survival (p<0.001 and 0.015, respectively). Cyclooxygenase-2 is not expressed in normal bladder urothelium. Cyclooxygenase-2 over expression is associated with pathological and molecular features of biologically aggressive disease, suggesting a role for cyclooxygenase-2 in bladder cancer development and invasion.
Huang, Wen-Chung; Wu, Ling-Yu; Hu, Sindy; Wu, Shu-Ju
2018-06-30
Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE 2 , COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.
Leliebre-Lara, Vivian; Pferschy-Wenzig, Eva-Maria; Widowitz, Ute; Ortmann, Sabine; Lima, Clara Nogueiras; Bauer, Rudolf
2015-01-01
In vitro anti-inflammatory activity of 4 extracts with different polarity from the basidiomycete Navisporus floccosus was evaluated by determination of the inhibition of prostaglandin E2 formation catalyzed by purified cyclooxygenase (COX)-1 and COX-2 enzymes, and of the inhibition of leukotriene (LT) B4 formation in human polymorphonuclear leukocytes. The n-hexane extract showed the highest activity in all 3 assays. Through analysis by gas chromatography coupled with mass spectrometry (GC-MS), 9 fatty acids and fatty acid esters were identified as the major constituents of this extract. As several of them also showed inhibitory activity in the COX and LTB4 formation assays, it can be assumed that the unsaturated as well as the saturated fatty acids, and maybe also the fatty acid esters, present in the extract synergistically contribute to its in vitro anti-inflammatory activity.
CD40 engagement on dendritic cells induces cyclooxygenase-2 and EP2 receptor via p38 and ERK MAPKs.
Harizi, Hedi; Limem, Ilef; Gualde, Norbert
2011-02-01
We have previously reported that cyclooxygenase (COX)-2-derived prostaglandin (PG)E2 critically regulates dendritic cell (DC) inflammatory phenotype and function through EP2/EP4 receptor subtypes. As genes activated by CD40 engagement are directly relevant to inflammation, we examined the effects of CD40 activation on inflammatory PGs in murine bone marrow-derived DC (mBM-DC). We showed for the first time that activation of mBM-DC with agonist anti-CD40 monoclonal antibody (anti-CD40 mAb) dose dependently induces the synthesis of significant amounts of PGE2 via inducible expression of COX-2 enzyme, as NS-398, a COX-2-selective inhibitor reduces this upregulation. In contrast to lipopolysaccharide, which upregulates mBM-DC surface levels of EP2 and EP4 receptors, CD40 crosslinking on mBM-DC increases EP2, but not EP4, receptor expression. Flow cytometry analysis and radioligand-binding assay showed that EP2 was the major EP receptor subtype, which binds to PGE2 at the surface of anti-CD40-activated mBM-DC. Upregulation of COX-2 and EP2 levels by CD40 engagement was accompanied by dose-dependent phosphorylation of p38 and ERK1/2 mitogen-activated protein kinase (MAPK) and was abrogated by inhibitors of both pathways. Collectively, we demonstrated that CD40 engagement on mBM-DC upregulates COX-2 and EP2 receptor expression through activation of p38 and ERK1/2 MAPK signaling. Triggering the PGE2/EP2 pathway by anti-CD40 mAb resulted on the induction of Th2 immune response. Thus, CD40-induced production of PGE2 by mBM-DC could represent a negative feedback mechanism involving EP2 receptor and limiting the propagation of Th1 responses. Blocking CD40 pathway may represent a novel therapeutic pathway of inhibiting COX-2-derived prostanoids in chronically inflamed tissues (that is, arthritis).
Waist-to-height ratio as a marker of low-grade inflammation in obese children and adolescents.
Caminiti, Carolina; Armeno, Marisa; Mazza, Carmen S
2016-05-01
The epidemic of childhood obesity is associated with early atherosclerosis. Several reports have related this event to low-grade inflammation described in obesity. CRP and IL6 are markers that correlate with adiposity. The waist-to-height ratio (WtHR) is an anthropometric marker associated with insulin resistance and inflammation. The objective of this study was to assess the correlation between WtHR, metabolic complications and pro-inflammatory factors in obese children and adolescents. Weight, height, waist circumference, glycemia, insulin, CRP, TNF-α and IL-6 were measured in the baseline sample in 280 patients 6-19 years of age with overweight or obesity (OW/OB) and 112 normal-weight controls. Logistic regression was performed using WtHR as an independent variable. p>0.05 STATA11. Mean WtHR was 0.6±0.06 in OW/OB and 0.43±0.02 in controls (p<0.01). WtHR was increased in 93% of the OW/OB vs. 2% of the controls. In the OW/OB inflammatory markers were significantly increased (p<0.01) compared to the controls (CRP 2.2 vs. 0.8; Il-6 2.9 vs. 2.1; and TNF-α 6.2 vs. 5.5). In the WtHR>0.5, insulin resistence and inflammatory markers were significantly increased (p<0.01) compared to the WtHR<0.5 (HOMA 3.4 vs. 1.4; CRP 2.3 vs. 0.6; Il-6 2.9 vs. 2.1; and TNF-α 6.4 vs. 5.55). In logistic regression, a significant independent association was found between WtHR with CRP (OR1.47), IL6 (OR1.60) and TNF-α (OR1.79). Obese children and adolescents have high inflammatory markers that may increase cardiovascular risk. WtHR is associated with low-grade inflammation and may be considered a relevant anthropometric marker in the clinical practice.
Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents
Kondratyuk, Tamara P.; Park, Eun-Jung; Yu, Rui; van Breemen, Richard B.; Asolkar, Ratnakar N.; Murphy, Brian T.; Fenical, William; Pezzuto, John M.
2012-01-01
Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC50 values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC50 values of >48.6, 15.1, and 8.0 μM, respectively). PGE2 production was blocked with greater efficacy (IC50 values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects. PMID:22412812
Cárdeno, A; Sánchez-Hidalgo, M; Aparicio-Soto, M; Sánchez-Fidalgo, S; Alarcón-de-la-Lastra, C
2014-06-01
Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However, the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are not well defined. The present study was designed to evaluate the potential anti-inflammatory mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFκB) and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFκB translocation. This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated murine macrophages.
Mogana, R; Teng-Jin, K; Wiart, C
2013-01-01
The barks and leaves extracts of Canarium patentinervium Miq. (Burseraceae Kunth.) were investigated for cyclooxygenase (COX) and 5-lipoxygenase (LOX) inhibition via in vitro models. The corresponding antioxidative power of the plant extract was also tested via nonenzyme and enzyme in vitro assays. The ethanolic extract of leaves inhibited the enzymatic activity of 5-LOX, COX-1, and COX-2 with IC50 equal to 49.66 ± 0.02 μg/mL, 0.60 ± 0.01 μg/mL, and 1.07 ± 0.01 μg/mL, respectively, with selective COX-2 activity noted in ethanolic extract of barks with COX-1/COX-2 ratio of 1.22. The ethanol extract of barks confronted oxidation in the ABTS, DPPH, and FRAP assay with EC50 values equal to 0.93 ± 0.01 μg/mL, 2.33 ± 0.02 μg/mL, and 67.00 ± 0.32 μg/mL, respectively, while the ethanol extract of leaves confronted oxidation in β-carotene bleaching assay and superoxide dismutase (SOD) assay with EC50 value of 6.04 ± 0.02 μg/mL and IC50 value of 3.05 ± 0.01 μg/mL. The ethanol extract acts as a dual inhibitor of LOX and COX enzymes with potent antioxidant capacity. The clinical significance of these data is quite clear that they support a role for Canarium patentinervium Miq. (Burseraceae Kunth.) as a source of lead compounds in the management of inflammatory diseases.
Sampaio, Tuane Bazanella; Marcondes Sari, Marcel Henrique; Pesarico, Ana Paula; Mantovani, Anderson Carboni; Zeni, Gilson; Nogueira, Cristina Wayne
2018-01-15
Parkinson's disease (PD) is a dopaminergic neurodegenerative disorder, which presents motor and non-motor symptoms. 7-Fluoro-1,3-diphenylisoquinoline (FDPI) is an isoquinoline compound with antioxidant and antidepressant properties. This study investigated whether FDPI reverses motor and non-motor symptoms in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). It was also assessed the anti-inflammatory mechanisms in FDPI pharmacological action. C57Bl/6 male adult mice received four MPTP (20mg/kg, intraperitoneal) or saline (vehicle) injections to induce an acute PD model. FDPI (10mg/kg, intragastric) was daily administered to mice from the 2nd to 9th day after the induction and mice performed the behavioral tests on the 8th and 9th days. Striatum samples were collected for biochemical and molecular analyses. The results of the rotarod and challenging beam tests demonstrated that the administration of FDPI attenuated the impairments in balance and coordination of mice induced by MPTP. The FDPI reversed the short-term memory deficit and depressive-like behavior induced by MPTP in mice. FDPI attenuated the reduction in the striatal tyrosine hydroxylase levels, and it reversed the increase in the cyclooxygenase-2 levels and myeloperoxidase activity caused by MPTP in mice. Therefore, FDPI reversed motor and non-motor symptoms induced by an acute PD model and its restorative effects seem to be mediated by an anti-inflammatory action associated with a modulation of the striatal cyclooxygenase-2 levels and myeloperoxidase activity. Copyright © 2017 Elsevier B.V. All rights reserved.
The preventive effect of Rofecoxib in postoperative intraperitoneal adhesions.
Aldemir, M; Oztürk, H; Erten, C; Büyükbayram, H
2004-02-01
Previous studies showed that nonsteroidal anti-inflammatory (NSAI) drugs suppressed prostaglandin synthesis and were able to prevent adhesion formation following surgical trauma to the peritoneum. The selective suppression inflammatory cascade may prevent adhesion formation. Therefore, we planned this study to experimentally evaluate the effects of Rofecoxib, the selective cyclo-oxygenase-2 inhibitor, in postoperative intraperitoneal adhesions in an animal model. Male Sprague-Dawley rats were divided into three groups of 10. All rats underwent midline laparotomy under ketamine anaesthesia (25 mg/kg im). In group 1 (n = 10), the sham operation group (SG); abdominal walls were closed without any process after 2 minutes. In Group 2 (n = 10), the control group (CG); standard serosal damage was constituted and the abdominal wall was closed. In group 3 (n = 10), the COX-2 group (COXG), after serosal damage, the abdominal wall was closed. A 12 mg/kg/day dose of was given orally to the rats during one week. On the 7th postoperative day, all rats were sacrificed and intra-abdominal adhesions were evaluated both macroscopically and microscopically. Macroscopically, no serious adhesion formations were seen in the SG. Multiple adhesion formations of the CG were significantly more than those of the SG (p < 0.0001). It was determined that adhesions of the COXG diminished (p < 0.0001) when macromorphological adhesion scale results of the COXG were compared with those of the CG. The adhesion scores of the CG were compared microscopically with those of the COXG and granulation tissue formation and fibrosis in the COXG were found to be significantly less than those of the CG (respectively p = 0.002, p < 0.0001). We were of the opinion that Rofecoxib, the selective cyclo-oxygenase inhibitor, was effective in the prevention of postoperative peritoneal adhesions.
Can anesthetic-analgesic technique during primary cancer surgery affect recurrence or metastasis?
Byrne, Kathryn; Levins, Kirk J; Buggy, Donal J
2016-02-01
Mortality among cancer patients is more commonly due to the effects of metastasis and recurrence as opposed to the primary tumour. Various perioperative factors have been implicated in tumour growth, including anesthetic agents and analgesia techniques. In this narrative review, we integrate this information to present a summary of the best available evidence to guide the conduct of anesthesia for primary cancer surgery. We conducted a search of the PubMed database up to May 31, 2015 to identify relevant literature using the search terms "anesthesia and metastases", "anesthetic drugs and cancer", "volatile anesthetic agents and cancer", and "anesthetic technique and cancer". There is conflicting evidence regarding volatile agents; however, the majority of studies are in vitro, suggesting that these agents are associated with enhanced expression of tumourigenic markers as well as both proliferation and migration of cancer cells. Nitrous oxide has not been shown to have any effect on cancer recurrence. Local anesthetic agents may reduce the incidence of cancer recurrence through systemic anti-inflammatory action in addition to direct effects on the proliferation and migration of cancer cells. Nonsteroidal anti-inflammatory drugs affect cancer cells via inhibition of cyclooxygenase 2 (COX-2), which leads to reduced resistance of the cancer cell to apoptosis and reduced production of prostaglandins by cancer cells. Nonsteroidal anti-inflammatory drugs also suppress the cancer cell growth cycle through effects independent of COX-2 inhibition. Opioids have been shown to inhibit the function of natural killer cells and to stimulate cancer cell proliferation through effects on angiogenesis and tumour cell signalling pathways. Supplemental oxygen at the time of surgery has a proangiogenic effect on micrometastases, while the use of perioperative dexamethasone does not affect overall rates of cancer survival. Current laboratory research suggests that perioperative interventions may impact recurrence or metastasis through effects on cancer cell signalling, the immune response, or modulation of the neuroendocrine stress response. Further evidence is awaited from prospective randomized-controlled trials. Meanwhile, with limited data upon which to make strong recommendations, anesthesiologists should seek optimal anesthesia and analgesia for their patients based on individual risk-benefit analysis and best available evidence on outcomes other than cancer recurrence.
Burnett, B P; Jia, Q; Zhao, Y; Levy, R M
2007-09-01
A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.
2005-01-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) are highly effective in treating the pain and inflammation associated with osteoarthritis and rheumatoid arthritis, but it is well recognized that these agents are associated with substantial gastrointestinal toxicity. Treatment guidelines suggest that patients with one or more risk factors for NSAID associated ulcers should be prescribed preventive treatment. However, well over 80% of such patients may not receive an appropriate therapeutic intervention. Multiple strategies are available to reduce the risk for NSAID associated gastrointestinal complications. First, risk may be reduced by using non-NSAID analgesics. Second, use of the minimum effective dose of the NSAID may reduce risk. Third, co-therapy with a proton pump inhibitor or misoprostol may be desirable in at-risk patients. Use of cyclo-oxygenase-2 inhibitors may also reduce the risk for gastrointestinal events, although this benefit is eliminated in patients who receive aspirin, and cyclo-oxygenase-2 inhibitors may increase cardiovascular adverse events. The optimal management of NSAID related gastrointestinal complications must be based on the individual patient's risk factors for gastrointestinal and cardiovascular disease, as well as on the efficacy and tolerability of both the NSAID and accompanying gastroprotective agent. PMID:16168078
Uddin, Md. Jashim; Werfel, Thomas A.; Crews, Brenda C.; Gupta, Mukesh K.; Kavanaugh, Taylor E.; Kingsley, Philip J.; Boyd, Kelli; Marnett, Lawrence J.; Duvall, Craig L.
2016-01-01
Cyclooxygenase-2 (COX-2) is expressed in virtually all solid tumors and its overexpression is a hallmark of inflammation. Thus, it is a potentially powerful biomarker for the early clinical detection of inflammatory disease and human cancers. We report a reactive oxygen species (ROS) responsive micellar nanoparticle, PPS-b-POEGA, that solubilizes the first fluorescent COX-2-selective inhibitor fluorocoxib A (FA) for COX-2 visualization in vivo. Pharmacokinetics and biodistribution of FA-PPS-b-POEGA nanoparticles (FA-NPs) were assessed after a fully-aqueous intravenous (i.v.) administration in wild-type mice and revealed 4 – 8 h post-injection as an optimal fluorescent imaging window. Carrageenan-induced inflammation in the rat and mouse footpads and 1483 HNSCC tumor xenografts were successfully visualized by FA-NPs with fluorescence up to 10-fold higher than that of normal tissues. The targeted binding of the FA cargo was blocked by pretreatment with the COX-2 inhibitor indomethacin, confirming COX-2-specific binding and local retention of FA at pathological sites. Our collective data indicate that FA-NPs are the first i.v.-ready FA formulation, provide high signal-to-noise in inflamed, premalignant, and malignant tissues, and will uniquely enable clinical translation of the poorly water-soluble FA compound. PMID:27043768
Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria.
Danz, H; Stoyanova, S; Wippich, P; Brattström, A; Hamburger, M
2001-07-01
Various extracts prepared from the traditional dye and medicinal plant Isatis tinctoria L. were submitted to a broad in vitro screening against 16 anti-inflammatory targets. Dichloromethane (DCM) extracts from dried leaves showed a marked cyclooxygenase (COX) inhibitory activity with a preferential effect on COX-2 catalysed prostaglandin synthesis. A supercritical fluid extraction (SFE) procedure employing CO2-modifier mixtures was developed by which the bioactivity profile and chromatographic fingerprint of the DCM extract could be reproduced. High-resolution activity directed on-line identification of the COX-2 inhibitory principle, using a combination of LC-DAD-MS with a microtitre-based bioassay, led to the identification of tryptanthrin (1) as the constituent responsible for essentially all COX-2 inhibitory activity in the crude extract. Following on-line identification, 1 was isolated at preparative scale and its structure confirmed by comparison with synthetic tryptanthrin. In an assay with lipopolysaccharide stimulated Mono Mac 6 cells, tryptanthrin (1) was of comparable potency (IC50 = 64 nM) than the preferential COX-2 inhibitors nimesulide (IC50 = 39 nM) and NS 398 (IC50 = 2 nM). The SFE extract and 1 showed no cytotoxicity in Mono Mac 6 and RAW 264.7 cells when tested at 100 microg/ml and 10 microM, respectively.
El-Naga, Reem N
2015-12-05
Gastric ulcer is a common gastrointestinal disorder affecting many people all over the world. Absolute ethanol (5 ml/kg) was used to induce gastric ulceration in rats. Apocynin (50 mg/kg) was given orally one hour before the administration of absolute ethanol. Omeprazole (20 mg/kg) was used as a standard. Interestingly, apocynin pre-treatment provided 93.5% gastroprotection against ethanol-induced ulceration. Biochemically, gastric mucin content was significantly increased with apocynin pre-treatment. This finding was further supported by alcian blue staining of stomach sections obtained from the different treated groups. Also, gastric juice volume and acidity were significantly reduced. Apocynin significantly ameliorated ethanol-induced oxidative stress by replenishing reduced glutathione and superoxide dismutase levels as well as reducing elevated malondialdehyde levels in gastric tissues. Besides, ethanol-induced pro-inflammatory response was significantly decreased by apocynin pre-treatment via reducing elevated levels of pro-inflammatory markers; interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and inducible nitric oxide synthase. Additionally, caspase-3 tissue level was significantly reduced in apocynin pre-treated group. Interestingly, NADPH oxidase-1 (NOX-1) and NOX-4 up-regulation was shown to be partially involved in the pathogenesis of ethanol-induced gastric ulceration and was significantly reversed by apocynin pre-treatment. Gastroprotective properties of apocynin were confirmed by histopathological examination. It is worth mentioning that apocynin was superior in all aspects except gastric mucin content parameter where it was significantly increased by 13.5 folds in the omeprazole pre-treated group. This study was the first to show that apocynin is a promising gastroprotective agent against ethanol-induced gastric ulceration, partially via its anti-oxidant, anti-inflammatory, anti-apoptotic effects as well as down-regulating NOX-1 and NOX-4 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Du, Jun-Ying; Fang, Jian-Qiao; Liang, Yi; Fang, Jun-Fan
2014-09-01
Electroacupuncture (EA) has a substantial analgesic effect on inflammatory pain induced by complete Freund's adjuvant (CFA). The activation of the c-Jun N-terminal kinase 1/2 (JNK1/2) signal transduction pathway in the spinal cord is associated with inflammatory pain. However, the relationship between EA's analgesic effect and the JNK1/2 signal transduction pathway in the inflammatory pain remain unclear. In the present study, we used the established rat model of CFA-induced inflammatory pain to investigate the role of the spinal JNK1/2 pathway in EA-mediated analgesia. We observed a decrease in paw withdrawal thresholds and an increase in paw edema at 1 and 3 days after injecting CFA into the right hindpaw. CFA, 3 days after injection, upregulated expression of phospho-c-Jun N-terminal kinase1/2 (p-JNK1/2) protein and its downstream targets, the transcriptional regulators p-c-Jun and activator protein-1 (AP-1), as well as cyclooxygenase-2 (COX-2) and the transient receptor potential vanilloid 1 (TRPV1). EA significantly alleviated CFA-induced inflammatory pain. In addition, EA reduced p-JNK1/2 protein levels and COX-2 mRNA expressions, a degree of down-regulated p-c-Jun protein level and AP-1 DNA binding activity in the spinal dorsal horn of CFA-administered animals, but it had no effect on TRPV1 mRNA expression. Furthermore, EA and the JNK inhibitor SP600125 synergistically inhibited CFA-induced hyperalgesia and suppressed the COX-2 mRNA expression in the spinal dorsal horn. Our findings indicate that EA alleviates inflammatory pain behavior, at least in part, by reducing COX-2 expression in the spinal cord via the JNK1/2 signaling pathway. Inactivation of the spinal JNK1/2 signal transduction pathway maybe the potential mechanism of EA's antinociception in the inflammatory pain model. Copyright © 2014 Elsevier Inc. All rights reserved.
Fernandes, Elizabeth S; Passos, Giselle F; Medeiros, Rodrigo; da Cunha, Fernanda M; Ferreira, Juliano; Campos, Maria M; Pianowski, Luiz F; Calixto, João B
2007-08-27
This study evaluated the anti-inflammatory properties of two sesquiterpenes isolated from Cordia verbenacea's essential oil, alpha-humulene and (-)-trans-caryophyllene. Our results revealed that oral treatment with both compounds displayed marked inhibitory effects in different inflammatory experimental models in mice and rats. alpha-humulene and (-)-trans-caryophyllene were effective in reducing platelet activating factor-, bradykinin- and ovoalbumin-induced mouse paw oedema, while only alpha-humulene was able to diminish the oedema formation caused by histamine injection. Also, both compounds had important inhibitory effects on the mouse and rat carrageenan-induced paw oedema. Systemic treatment with alpha-humulene largely prevented both tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta) generation in carrageenan-injected rats, whereas (-)-trans-caryophyllene diminished only TNFalpha release. Furthermore, both compounds reduced the production of prostaglandin E(2) (PGE(2)), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) expression, induced by the intraplantar injection of carrageenan in rats. The anti-inflammatory effects of alpha-humulene and (-)-trans-caryophyllene were comparable to those observed in dexamethasone-treated animals, used as positive control drug. All these findings indicate that alpha-humulene and (-)-trans-caryophyllene, derived from the essential oil of C. verbenacea, might represent important tools for the management and/or treatment of inflammatory diseases.
P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.
Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo
2012-07-01
Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.
Žekonis, Gediminas; Žekonis, Jonas; Gleiznys, Alvydas; Noreikienė, Viktorija; Balnytė, Ingrida; Šadzevičienė, Renata; Narbutaitė, Julija
2016-01-01
Background Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. Material/Methods In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients’ periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. Results Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. Conclusions 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues. PMID:27743448
α-Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease.
Reifen, Ram; Karlinsky, Anna; Stark, Aliza H; Berkovich, Zipi; Nyska, Abraham
2015-12-01
Studies suggest that consumption of omega-3 (n-3) polyunsaturated fatty acids (PUFA) plays a protective role in inflammatory bowel disease; however, the use of plant-derived oils rich in α-linolenic acid (ALA) has not been widely investigated. The aims of this study were to test the effects of two different sources of (n-3) PUFA, fish and plant-derived oils, in two animal models of experimental colitis and to determine whether the (n-3) PUFA-enriched diets could ameliorate the inflammatory status. Rats were fed diets rich in corn, fish or sage oil with or without vitamin A supplementation for 3weeks then colitis was induced by adding dextran sodium sulfate to the drinking water or by injecting 2,4,6-trinitrobenzene sulfonic acid. We show that colitic rats fed the sage oil diets had a lower inflammatory response, improved histological repair and had less necrotic damage in the mucosa when compared to the corn and fish oil groups. Colonic damage and myeloperoxidase activity were significantly lower. Colonic mRNA levels of pro-inflammatory genes including interleukin IL-6, cyclooxygenase 2 and tumor necrosis factor α were markedly down-regulated in rats fed fish and sage oils compared to control. These results were supported by experiments in the human colonic epithelial cell line Caco-2, where ALA supplementation was shown to be effective in inhibiting inflammation induced by IL-1β by down-regulating mRNA levels of pro-inflammatory genes including IL-8, COX2 and inducible nitric oxide synthase. Taken together, these results suggest that plant-derived oil rich in ALA could ameliorate the inflammatory damage in colitis. Copyright © 2015 Elsevier Inc. All rights reserved.
Cheng, Brian Chi-Yan; Ma, Xiao-Qing; Kwan, Hiu-Yee; Tse, Kai-Wing; Cao, Hui-Hui; Su, Tao; Shu, Xin; Wu, Zheng-zhi; Yu, Zhi-ling
2014-05-14
A herbal formula (RL) consisting of Rosae Multiflorae Fructus (Yingshi) and Lonicerae Japonicae Flos (Jinyinhua) has been traditionally used to treat inflammatory disorders. This study aims to investigate the anti-inflammatory mode and mechanism of action of the ethanol extract of RL so as to provide a pharmacological basis for the use of RL in treating inflammatory diseases. RL consisting of Yingshi and Jinyinhua (in 5:3 ratio) was extracted using absolute ethanol. We investigated its effects on nitric oxide (NO), interleukin-6 (IL-6), tumour necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NFκB) in mouse RAW 264.7 macrophages activated with lipopolysaccharide (LPS). RL could decrease the secretion of NO, IL-6 and TNF-α into the culture medium and the cellular protein levels of iNOS and COX-2, which were associated with the reduction of the phosphorylation/activation of JNK and p38, and the inhibition of the transcriptional activity of NF-κB. The present study demonstrated an inhibitory effect of RL on the inflammatory mediators regulated by the NF-κB and MAPK signalling pathways in LPS-stimulated RAW 264.7 macrophages, providing a pharmacological basis for RL in the control of inflammatory disorders. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Timmers, Michael A; Guerrero-Medina, Jorge L; Esposito, Debora; Grace, Mary H; Paredes-López, Octavio; García-Saucedo, Pedro A; Lila, Mary Ann
2015-12-09
Extracts of Styrax ramirezii Greenm., a fruit traditionally valued for health and wellness in Mexico, were analyzed phytochemically and evaluated for antioxidant and anti-inflammatory activity. Six norneolignans were identified by HPLC-TOF-MS, and the two major compounds were isolated for further evaluation. The effects of the isolated norneolignans, egonol and homoegonol, on lipopolysaccharide (LPS)-induced nitric oxide (NO) production, reactive oxygen species (ROS) production, and biomarkers of inflammation were evaluated. Of the tested compounds, egonol potently inhibited the production of NO and also significantly reduced the release of ROS. Consistent with these observations, the mRNA expression levels of inducible nitric oxide synthase (iNOS) (0.668 ± 0.108), cyclooxygenase-2 (COX-2) (0.553 ± 0.007), interleukin-1β (IL-1β) (0.093 ± 0.005), and interleukin-6 (IL-6) (0.298 ± 0.076) were reduced by egonol. The activity for both egonol and homoegonol increased in a concentration-dependent manner. These results suggest the potential of S. ramirezii Greenm. fruit to contribute to a healthy diet, rich in antioxidant and anti-inflammatory compounds.
Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun
2014-01-01
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4+ T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy. PMID:24905997
Dang, Shipeng; Xu, Huanbai; Xu, Congfeng; Cai, Wei; Li, Qian; Cheng, Yiji; Jin, Min; Wang, Ru-Xing; Peng, Yongde; Zhang, Yi; Wu, Changping; He, Xiaozhou; Wan, Bing; Zhang, Yanyun
2014-07-01
Mesenchymal stem cell (MSC)-based therapy is a promising approach to treat various inflammatory disorders including multiple sclerosis. However, the fate of MSCs in the inflammatory microenvironment is largely unknown. Experimental autoimmune encephalomyelitis (EAE) is a well-studied animal model of multiple sclerosis. We demonstrated that autophagy occurred in MSCs during their application for EAE treatment. Inflammatory cytokines, e.g., interferon gamma and tumor necrosis factor, induced autophagy in MSCs synergistically by inducing expression of BECN1/Beclin 1. Inhibition of autophagy by knockdown of Becn1 significantly improved the therapeutic effects of MSCs on EAE, which was mainly attributable to enhanced suppression upon activation and expansion of CD4(+) T cells. Mechanistically, inhibition of autophagy increased reactive oxygen species generation and mitogen-activated protein kinase 1/3 activation in MSCs, which were essential for PTGS2 (prostaglandin-endoperoxide synthase 2 [prostaglandin G/H synthase and cyclooxygenase]) and downstream prostaglandin E2 expression to exert immunoregulatory function. Furthermore, pharmacological treatment of MSCs to inhibit autophagy increased their immunosuppressive effects on T cell-mediated EAE. Our findings indicate that inflammatory microenvironment-induced autophagy downregulates the immunosuppressive function of MSCs. Therefore, modulation of autophagy in MSCs would provide a novel strategy to improve MSC-based immunotherapy.
Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent.
Rupasinghe, H P Vasantha; Boehm, Mannfred M A; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R
2015-06-02
Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography-Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 10⁵/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank's buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor.
Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee
2017-01-06
In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.
Anti-Inflammatory Activity of Haskap Cultivars is Polyphenols-Dependent
Rupasinghe, H. P. Vasantha; Boehm, Mannfred M. A.; Sekhon-Loodu, Satvir; Parmar, Indu; Bors, Bob; Jamieson, Andrew R.
2015-01-01
Haskap (Lonicera caerulea L.) berries have long been used for their health promoting properties against chronic conditions. The current study investigated the effect of Canadian haskap berry extracts on pro-inflammatory cytokines using a human monocytic cell line THP-1 derived macrophages stimulated by lipopolysaccharide. Methanol extracts of haskap from different growing locations in Canada were prepared and characterized for their total phenolic profile using colorimetric assays and liquid chromatography—Mass spectrometry (UPLC-MS/MS). Human THP-1 monocytes were seeded in 24-well plates (5 × 105/well) and treated with phorbol 12-myristate 13-acetate (PMA, 0.1 μg/mL) for 48 h to induce macrophage differentiation. After 48 h, the differentiated macrophages were washed with Hank’s buffer and treated with various concentrations of test compounds for 4 h, followed by the lipopolysaccharide (LPS)-stimulation (18 h). Borealis cultivar showed the highest phenolic content, flavonoid content and anthocyanin content (p < 0.05). A negative correlation existed between the polyphenol concentration of the extracts and pro-inflammatory cytokines: Interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), prostaglandin (PGE2), and cyclooxygenase-2 (COX-2) enzyme. Borealis exhibited comparable anti-inflammatory effects to COX inhibitory drug, diclofenac. The results showed that haskap berry polyphenols has the potential to act as an effective inflammation inhibitor. PMID:26043379
Nokhbehsaim, Marjan; Deschner, Birgit; Winter, Jochen; Bourauel, Christoph; Jäger, Andreas; Jepsen, Søren; Deschner, James
2012-02-01
Enamel matrix derivative (EMD) used to promote periodontal regeneration has been shown to exert anti-inflammatory effects. This in vitro study was performed to investigate if the anti-inflammatory actions of EMD are modulated by the local cellular environment, such as inflammation or occlusal, i.e., biomechanical, loading. Human periodontal ligament cells were seeded on BioFlex plates and incubated with EMD under normal, inflammatory, and biomechanical loading conditions for 1 and 6 days. In order to mimic inflammatory and biomechanical loading conditions in vitro, cells were stimulated with interleukin (IL)-1β and exposed to dynamic tensile strain, respectively. The gene expression of IL-1β, IL-1 receptor antagonist (IL-1RN), IL-6, IL-8, IL-10, and cyclooxygenase (COX)-2 was analyzed by real-time RT-PCR and the IL-6 protein synthesis by enzyme-linked immunoassay. For statistical analysis, Student's t test, ANOVA, and post-hoc comparison tests were applied (p < 0.05). EMD downregulated significantly the expression of IL-1β and COX-2 at 1 day and of IL-6, IL-8, and COX-2 at 6 days in normal condition. In an inflammatory environment, the anti-inflammatory actions of EMD were significantly enhanced at 6 days. In the presence of low biomechanical loading, EMD caused a downregulation of IL-1β and IL-8, whereas high biomechanical loading significantly abrogated the anti-inflammatory effects of EMD at both days. Neither IL-1RN nor IL-10 was upregulated by EMD. These data suggest that high occlusal forces may abrogate anti-inflammatory effects of EMD and should, therefore, be avoided immediately after the application of EMD to achieve best healing results.
Inflammatory Mediators in Xanthelasma Palpebrarum: Histopathologic and Immunohistochemical Study.
Govorkova, Maria S; Milman, Tatyana; Ying, Gui-Shuang; Pan, Wei; Silkiss, Rona Z
To evaluate the expression of inflammatory mediators in xanthelasma palpebrarum. In this retrospective histopathologic case-control study, xanthelasma specimens obtained from the private practice and pathology archives of 1 author (R.Z.S.) were analyzed and compared with the blepharoplasty tissues from age- and sex-matched controls. Paraffin-embedded tissue sections were stained with hematoxylin-eosin and CD3, CD20, CD163, cyclooxygenase-1, inducible nitric oxide synthase, matrix metallopeptidase-9, and myeloperoxidase antibodies. Immunostaining was quantified by light microscopy and with a computerized image analysis system of scanned images. Hematoxylin-eosin-stained preparations of xanthelasma specimens demonstrated significantly more intense chronic lymphocytic infiltrate when compared with the control blepharoplasty tissues (p < 0.001). Immunohistochemical studies revealed more intense CD3+ T cell and CD163+ histiocytic infiltrate (11% vs. 5%; p = 0.02 and 28% vs. 5%; p = 0.003, respectively) and increased expression of cyclooxygenase-1 (44% vs. 20% expressing cells; p < 0.001 and 21% vs. 9% strongly expressing cells; p = 0.008) and inducible nitric oxide synthase (43% vs. 26% expressing cells; p = 0.03 and 42% vs. 25% strongly expressing cells; p = 0.02) in xanthelasma specimens compared with control tissues. The inflammatory milieu in xanthelasma appears to be analogous to descriptions of the early stages of cardiac atherosclerotic plaque formation. These findings may contribute to the understanding of xanthelasma pathogenesis and to the development of potential targeted therapies.
Anti-Inflammatory Activities of Cinnamomum cassia Constituents In Vitro and In Vivo
Liao, Jung-Chun; Deng, Jeng-Shyan; Chiu, Chuan-Sung; Hou, Wen-Chi; Huang, Shyh-Shyun; Shie, Pei-Hsin; Huang, Guang-Jhong
2012-01-01
We have investigated the anti-inflammatory effects of Cinnamomum cassia constituents (cinnamic aldehyde, cinnamic alcohol, cinnamic acid, and coumarin) using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) and carrageenan (Carr)-induced mouse paw edema model. When RAW264.7 macrophages were treated with cinnamic aldehyde together with LPS, a significant concentration-dependent inhibition of nitric oxide (NO), tumor necrosis factor (TNF-α), and prostaglandin E2 (PGE2) levels productions were detected. Western blotting revealed that cinnamic aldehyde blocked protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear transcription factor kappa B (NF-κB), and IκBα, significantly. In the anti-inflammatory test, cinnamic aldehyde decreased the paw edema after Carr administration, and increased the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in the paw tissue. We also demonstrated cinnamic aldehyde attenuated the malondialdehyde (MDA) level and myeloperoxidase (MPO) activity in the edema paw after Carr injection. Cinnamic aldehyde decreased the NO, TNF-α, and PGE2 levels on the serum level after Carr injection. Western blotting revealed that cinnamic aldehyde decreased Carr-induced iNOS, COX-2, and NF-κB expressions in the edema paw. These findings demonstrated that cinnamic aldehyde has excellent anti-inflammatory activities and thus has great potential to be used as a source for natural health products. PMID:22536283
Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis.
Márquez, Lucía; Pérez-Nievas, Beatriz G; Gárate, Icíar; García-Bueno, Borja; Madrigal, José Lm; Menchén, Luis; Garrido, Gabino; Leza, Juan C
2010-10-21
To investigate the effect of aqueous extract from Mangifera indica L. (MIE) on dextran sulfate sodium (DSS)-induced colitis in rats. MIE (150 mg/kg) was administered in two different protocols: (1) rectally, over 7 d at the same time as DSS administration; and (2) once daily over 14 d (by oral gavage, 7 d before starting DSS, and rectally for 7 d during DSS administration). General observations of clinical signs were performed. Anti-inflammatory activity of MIE was assessed by myeloperoxidase (MPO) activity. Colonic lipid peroxidation was determined by measuring the levels of thiobarbituric acid reactive substances (TBARS). Reduced glutathione (GSH) levels, expression of inflammatory related mediators [inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, respectively] and cytokines [tumor necrosis factor (TNF)-α and TNF receptors 1 and 2] in colonic tissue were also assessed. Interleukin (IL)-6 and TNF-α serum levels were also measured. The results demonstrated that MIE has anti-inflammatory properties by improvement of clinical signs, reduction of ulceration and reduced MPO activity when administered before DSS. In addition, administration of MIE for 14 d resulted in an increase in GSH and reduction of TBARS levels and iNOS, COX-2, TNF-α and TNF R-2 expression in colonic tissue, and a decrease in IL-6 and TNF-α serum levels. MIE has anti-inflammatory activity in a DSS-induced rat colitis model and preventive administration (prior to DSS) seems to be a more effective protocol.
Neves Miranda, Valter Paulo; Gouveia Peluzio, Maria do Carmo; Rodrigues de Faria, Eliana; Castro Franceschini, Sylvia do Carmo; Eloiza Priore, Silvia
2015-05-01
The evaluation of inflammatory markers during adolescence can monitor different stages and manifestation of chronic diseases in adulthood. The control of the subclinical inflammation process through changes in lifestyle, especially in the practice of physical activity and dietary education can mitigate the effects of risk factors that trigger the process of atherosclerosis. To do a critical review regarding inflammatory markers as a risk factor of cardiovascular disease in relation to body composition, physical activity and assessment of nutritional status of adolescents. A literature review was performed in the following electronic databases: PUBMED, SCIELO and CONCHRANE COLLECTION. The following associated terms were used "inflammation AND cardiovascular diseases AND nutritional status OR body composition OR physical activity". There were topics created for the discussion of subjects: obesity and risk factors for cardiovascular disease during adolescence; expression of inflammatory markers in adolescence; development of cardiovascular disease with inflammatory markers, and finally, inflammatory markers, physical activity and nutritional evaluation. It was observed that the inflammatory markers may manifest in adolescence and be related to risk factors for cardiovascular diseases. Physical activity and nutritional evaluation featured as non-pharmacological measures to control the incidence of inflammatory markers and cardiovascular risk factor. Intervention studies may clarify how the adoption of a more proper lifestyle can influence the inflammatory process. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Han, Chunchao; Guo, Jianyou
2012-06-01
The purpose of the present study was to investigate the antibacterial and anti-inflammatory activity of Angelica sinensis extract (AE), Sophora flavescens extract (SE), and herb pair A. sinensis and S. flavescens extract (HPE). Endotoxin-induced uveitis (EIU) was induced in rats by a footpad injection of lipopolysaccharide. The anti-inflammatory potential of AE, SE, and HPE in the regulation of nuclear factor kappa B (NF-κB), maleic dialdehyde (MDA), polymorphonuclear cells (PMN), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α), adhesion molecule (ICAM-1), and cyclooxygenase-2 (COX-2) was determined by ELISA and immunohistochemistry. HPE showed strong antibacterial activity at all tested concentrations (1.25, 2.5, and 5 μg/ml) to Escherichia coli, Staphylococcus aureus, and Shigella Castellani and Chalmers. HPE significantly inhibited EIU-induced upregulation of NF-κB activation and the production of IL-1β, TNF-α, iNOS, ICAM-1, and COX-2. Moreover, HPE suppressed MDA and infiltration of PMN. The study supports the hypothesis that the antipimple and anti-eczema activities of Dangguikushen compound recipe are attributed to herb pairs, A. sinensis and S. flavescens, used in combination.
Tan, Cong-ping; Hou, Yun-hua
2014-04-01
Obesity, characterized as a state of low-level inflammation, is a powerful determinant influencing the development of insulin resistance and progression to type 2 diabetes. The purpose of the present study was to investigate the anti-inflammatory activity of fucoxanthin in experimental high-fat-diet-induced obesity in mice and antioxidant activity in PC12 cells under oxidative stress situation. The anti-inflammatory potential of fucoxanthin in the regulation of maleic dialdehyde (MDA), polymorphonuclear cells (PMNs), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), and cyclooxygenase-2 (COX-2) was determined by ELISA. Fucoxanthin significantly inhibited obesity-induced upregulation of the production of IL-1β, TNF-α, iNOS, and COX-2. Moreover, fucoxanthin suppressed MDA and infiltration of PMNs. The protective effects were associated with lack of hypertrophy and crown-like structures in mammary gland. At the same time, fucoxanthin showed an advantage of antioxidant activity in PC12 cells under oxidative stress situation. These results suggest that supplementation of fucoxanthin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.
Methotrexate in Atherogenesis and Cholesterol Metabolism
Coomes, Eric; Chan, Edwin S. L.; Reiss, Allison B.
2011-01-01
Methotrexate is a disease-modifying antirheumatic drug commonly used to treat inflammatory conditions such as rheumatoid arthritis which itself is linked to increased cardiovascular risk. Treatments that target inflammation may also impact the cardiovascular system. While methotrexate improves cardiovascular risk, inhibition of the cyclooxygenase (COX)-2 enzyme promotes atherosclerosis. These opposing cardiovascular influences may arise from differing effects on the expression of proteins involved in cholesterol homeostasis. These proteins, ATP-binding cassette transporter (ABC) A1 and cholesterol 27-hydroxylase, facilitate cellular cholesterol efflux and defend against cholesterol overload. Methotrexate upregulates expression of cholesterol 27-hydroxylase and ABCA1 via adenosine release, while COX-2 inhibition downregulates these proteins. Adenosine, acting through the A2A and A3 receptors, may upregulate proteins involved in reverse cholesterol transport by cAMP-PKA-CREB activation and STAT inhibition, respectively. Elucidating underlying cardiovascular mechanisms of these drugs provides a framework for developing novel cardioprotective anti-inflammatory medications, such as selective A2A receptor agonists. PMID:21490773
Mizukami, Kazuhiro; Murakami, Kazunari; Yamauchi, Mika; Matsunari, Osamu; Ogawa, Ryo; Nakagawa, Yoshifumi; Okimoto, Tadayoshi; Kodama, Masaaki; Fujioka, Toshio
2013-05-01
Non-steroidal anti-inflammatory drugs have the potential to injure the mucosa of the upper digestive tract and small bowel, whereas celecoxib (a selective cyclooxygenase-2 inhibitor) has less influence on the entire digestive tract mucosa. The present study was conducted to compare the extents of small bowel mucosal injury induced by celecoxib and loxoprofen (the most frequently used non-steroidal anti-inflammatory drugs in Japan). Ten healthy adult males were given celecoxib (200 mg/day, Group C) and loxoprofen (180 mg/day, Group L) in a cross-over design for 14 days, and the influence of each drug on small bowel mucosa was evaluated by comparing pre- and post-treatment capsule endoscopy findings. We measured the percentage of patients with small bowel mucosal injury following administration of these drugs as primary endpoint. Additionally, mean number of small bowel mucosal injuries per subject was analyzed as secondary endpoint. The percentage of subjects experiencing small bowel mucosal injury as primary endpoint was 10% in Group C and 70% in Group L after treatment. This magnitude of the difference of between Group C and Group L was statistically significant (P = 0.031). The number of small bowel mucosal injuries as secondary endpoint differed significantly between the two groups, and the influence of celecoxib on small bowel injury was less than that of loxoprofen. These results indicate that celecoxib has less influence on small bowel mucosa than loxoprofen and can be used safely. © 2012 The Authors. Digestive Endoscopy © 2012 Japan Gastroenterological Endoscopy Society.
Potential Anti-Inflammatory Treatment of Ischemic Heart Disease
Hodzic, Enisa
2018-01-01
Introduction Ischemic heart disease (IHD) is clinical manifestation of chronic inflammatory progressive pathological process of atherosclerosis in coronary arteries. IHD is the leading cause of morbidity and mortality in the world. The question is whether it is possible to improve and direct the therapeutic treatment of IHD patients in the treatment of the inflammatory process in the atherosclerotic leasions. Material and Methods A prospective, comparative, analytica,clinically applicable, open-type study was performed. The study was conducted on 80 subjects with controlled biohumoral markers: troponin, CK, CK MB, BNP; markers of atherogenesis: LDL and homocystein; inflammatory markers: CRP, amyloid, cytokines IL-2, IL-6,TNF-alpha. The experimental group of 38 respondents had in addition to the conventional IHD treatment with: ampicillin (which included organosulfur compounds), cyancobalamin, vitamin B complex (B1, B2 and B6) and folacin. A control group of 42 respondents did not have this additional treatment. Results Major adverse cardic events (MACE) such as postinfarctic angina pectoris and repeated infarction, need for surgical interventions of myocardial revascularization, signs of cardiac insufficiency and death were observed during the one-year period. There was no correlation between the IL-2, IL-6 and TNF-alpha, as well as CK, CKMB and troponin and MACE in one-year follow-up. There was a strong positive correlation between MACE and CRP (p = 0,0002) and amyloid (p = 0,0005) as inflamatory markers; a strong positive correlation between MACE and homocysteine as an atherogenic marker (p = 0,0002, and amoderate positive correlation between MACE and BNP (p = 0.0403) as ischemic marker and marker of cardiac insufficiency. The echocardiographically monitored systolic function showed a moderate difference in the groups with average higher values in the experimantal group (p = 0.0282). Conclusion The applied treatment exhibited a moderate positive effect on the systolic function of LV and significantly reduced the MACE in the work compared to the control group (p <0.0001), and demonstrated a potential anti-inflammatory effect. PMID:29736096
Mazzocca, Augustus D; McCarthy, Mary Beth R; Intravia, Jessica; Beitzel, Knut; Apostolakos, John; Cote, Mark P; Bradley, James; Arciero, Robert A
2013-04-01
The purpose of this study was to quantify the extent of the anti-inflammatory effect of platelet-rich plasma (PRP) in a controlled in vitro environment. Through the stimulation of human umbilical vein endothelial cells with inflammatory cytokines (tumor necrosis factor α and interferon γ), cell adhesion molecule expression (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) and PRP's anti-inflammatory effect can be measured. PRP was produced from 3 individuals using a single-spin (PRPLP) process. Treatment groups include negative (unstimulated) controls, positive (stimulated) controls, ketorolac tromethamine, methylprednisolone, PRP, ketorolac-PRP, and methylprednisolone-PRP. A fluorescence assay of the cellular inflammation markers was measured by the BioTek Synergy HT plate reader (BioTek Instruments, Winooski, VT) at 0, 1, 2, and 5 days. At days 2 and 5, methylprednisolone treatment showed a 2.1- to 5.8-fold reduction (P < .05) in inflammation markers over PRP. In addition, PRP and ketorolac showed a 1.4- to 2.5-fold reduction (P < .05) in cellular inflammation markers over the control. There was no statistically significant difference between ketorolac and PRP. Although PRP and ketorolac reduced cellular inflammation markers (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) compared with control, neither caused as great a reduction as methylprednisolone. Although PRP and ketorolac did not produce as significant a reduction in cellular inflammation markers as methylprednisolone, they reduced cellular inflammation compared with the control. These agents may have clinical application as injectable anti-inflammatory medications. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
The Response of Human Macrophages to β-Glucans Depends on the Inflammatory Milieu
Montero, Olimpio; Hugo, Etzel; Rodríguez, Mario; Domingo, Esther; Alonso, Sara
2013-01-01
Background β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. Principal Findings Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. Conclusions These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent on M-CSF and dectin-1 B isoform expression that mainly signals through the dectin-1 B/spleen tyrosine kinase/cytosolic phospholipase A2 route. PMID:23637950
Leitão, Renata Ferreira de Carvalho; Brito, Gerly Anne de Castro; Miguel, Emilio de Castro; Guedes, Paulo Marcos Matta; de Araújo, Aurigena Antunes
2016-01-01
Aim To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV) in rats with ethanol-induced liver injury. Methods Liver injury was induced by gavage administration of alcohol (7 g/kg) for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL)-1β, IL-10, and tumor necrosis factor (TNF)-α level as well as for myeloperoxidase (MPO) activity and malonyldialdehyde (MDA) and glutathione (GSH) levels. Serum aspartate aminotransferase (AST) activity and liver triglyceride (TG) levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2), receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL), suppressor of cytokine signalling (SOCS1), the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1), intercellular adhesion molecule 1 (ICAM-1), superoxide dismutase (SOD-1), and glutathione peroxidase (GPx-1) expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed. Results CARV treatment (5 mg/kg) during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01), ALT (p < 0.01), TG (p < 0.001), MPO (p < 0.001), MDA (p < 0.05), and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05), and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001) and GSH (p < 0.05), compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05), while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05) and decreasing expression of IL-1β and NF-κB (both, p < 0.05). Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI), procollagen type III (PCIII), and NF-κB were decreased in the alcohol-CARV 5 mg/kg group relative to the alcohol-only group. Conclusions CARV can reduce the stress oxidative, inflammatory response and fibrosis in ethanol-induced liver injury in a rat model by downregulating signalling of Kuppfer cells and hepatic stellate cells (HSCs) through suppression of inflammatory cytokines. PMID:26891124
Wannamethee, S Goya; Whincup, Peter H; Thomas, Mary C; Sattar, Naveed
2009-10-01
To examine the relationship between dietary fiber and the risk of type 2 diabetes in older men and the role of hepatic and inflammatory markers. The study was performed prospectively and included 3,428 nondiabetic men (age 60-79 years) followed up for 7 years, during which there were 162 incident cases of type 2 diabetes. Low total dietary fiber (lowest quartile < or =20 g/day) was associated with increased risk of diabetes after adjustment for total calorie intake and potential confounders (relative risk -1.47 [95% CI 1.03-2.11]). This increased risk was seen separately for both low cereal and low vegetable fiber intake. Dietary fiber was inversely associated with inflammatory markers (C-reactive protein, interleukin-6) and with tissue plasminogen activator and gamma-glutamyl transferase. Adjustment for these markers attenuated the increased risk (1.28 [0.88-1.86]). Dietary fiber is associated with reduced diabetes risk, which may be partly explained by inflammatory markers and hepatic fat deposition.
Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy.
Zheng, Ling; Howell, Scott J; Hatala, Denise A; Huang, Kun; Kern, Timothy S
2007-02-01
It has been previously reported that aspirin inhibited the development of diabetic retinopathy in diabetic animals, raising the possibility that anti-inflammatory drugs may have beneficial effects on diabetic retinopathy. To further explore this, we compared effects of oral consumption of three different salicylate-based drugs (aspirin, sodium salicylate, and sulfasalazine) on the development of early stages of diabetic retinopathy in rats. These three drugs differ in their ability to inhibit cyclooxygenase but share an ability to inhibit nuclear factor-kappaB (NF-kappaB). Diabetes of 9-10 months duration significantly increased the number of TUNEL (transferase-mediated dUTP nick-end labeling)-positive capillary cells and acellular (degenerate) capillaries in the retinal vasculature, and all three salicylate-based drugs inhibited this cell death and formation of acellular capillaries without altering the severity of hyperglycemia. In short-term diabetes (2-4 months), all three salicylates inhibited the diabetes-induced loss of neuronal cells from the ganglion cell layer. Oral aspirin (as a representative of the salicylate family) inhibited diabetes-induced increase in NF-kappaB DNA-binding affinity in electrophoretic mobility shift assay and transcription factor array in nuclear extract isolated from whole retina. All three salicylates inhibited the diabetes-induced translocation of p50 (a subunit of NF-kappaB) into nuclei of retinal vascular endothelial cells of the isolated retinal vasculature, as well as of p50 and p65 into nuclei of cells in the ganglion cell layer and inner nuclear layer on whole-retinal sections. Sulfasalazine (also as a representative of the salicylates) inhibited the diabetes-induced upregulation of several inflammatory gene products, which are regulated by NF-kappaB, including vascular cell adhesion molecule, intracellular adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 in whole-retinal lysate. Salicylates, in doses administrated in our experiments, inhibited NF-kappaB and perhaps other transcription factors in the retina, were well tolerated, and offered new tools to investigate and inhibit the development of diabetic retinopathy.
Buhrmann, Constanze; Mobasheri, Ali; Matis, Ulrike; Shakibaei, Mehdi
2010-01-01
Osteoarthritis (OA) and rheumatoid arthritis (RA) are characterised by joint inflammation and cartilage degradation. Although mesenchymal stem cell (MSC)-like progenitors are resident in the superficial zone of articular cartilage, damaged tissue does not possess the capacity for regeneration. The high levels of pro-inflammatory cytokines present in OA/RA joints may impede the chondrogenic differentiation of these progenitors. Interleukin (IL)-1β activates the transcription factor nuclear factor-κB (NF-κB), which in turn activates proteins involved in matrix degradation, inflammation and apoptosis. Curcumin is a phytochemical capable of inhibiting IL-1β-induced activation of NF-κB and expression of apoptotic and pro-inflammatory genes in chondrocytes. Therefore, the aim of the present study was to evaluate the influence of curcumin on IL-1β-induced NF-κB signalling pathway in MSCs during chondrogenic differentiation. MSCs were either cultured in a ratio of 1:1 with primary chondrocytes in high-density culture or cultured alone in monolayer with/without curcumin and/or IL-1β. We demonstrate that although curcumin alone does not have chondrogenic effects on MSCs, it inhibits IL-1β-induced activation of NF-κB, activation of caspase-3 and cyclooxygenase-2 in MSCs time and concentration dependently, as it does in chondrocytes. In IL-1β stimulated co-cultures, four-hour pre-treatment with curcumin significantly enhanced the production of collagen type II, cartilage specific proteoglycans (CSPGs), β1-integrin, as well as activating MAPKinase signaling and suppressing caspase-3 and cyclooxygenase-2. Curcumin treatment may help establish a microenvironment in which the effects of pro-inflammatory cytokines are antagonized, thus facilitating chondrogenesis of MSC-like progenitor cells in vivo. This strategy may support the regeneration of articular cartilage.
Yoo, Sae-Rom; Seo, Chang-Seob; Lee, Na-Ri; Shin, Hyeun-Kyoo; Jeong, Soo-Jin
2015-01-01
Objective: Xanthii fructus (Compositae) is a traditional herbal medicine used for treating headache, toothache, pruritus, empyema, and rhinitis. In this study of the quality control of X. fructus, we performed simultaneous analysis of nine marker compounds: Protocatechuic acid (1), chlorogenic acid (2), caffeic acid (3), 4,5-dicaffeoylquinic acid (4), ferulic acid (5), 3,5-dicaffeoylquinic acid (6), 1,3-dicaffeoylquinic acid (7), 1,4-dicaffeoylquinic acid (8), and 4,5-dicaffeoylquinic acid (9). Materials and Methods: Nine components were separated using reversed-phase SunFire™ C18 analytical column and analyzed using high-performance liquid chromatography. We examined the biological effects of the nine marker compounds by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: Among the nine marker compounds, eight significantly inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor-alpha (TNF-α) production. 1, 3, 5 had significant inhibitory effects on LPS-induced prostaglandin E2 (PGE2) production in RAW 264.7 cells. None of the tested marker compounds had a significant effect on interleukin-6 production in LPS-treated RAW 264.7 cells. Our data demonstrated that each marker compound from X. fructus exerts anti-inflammatory activity by targeting different inflammation-related pathways such as the TNF-α or PGE2 pathway. Conclusion: Further experiments using in vitro and in vivo models are needed to identify the mechanisms responsible for the anti-inflammatory properties of each marker compound. SUMMARY Simultaneous analysis of nine phenylpropanoids in the Xanthii fructus was established using HPLC-PDA system.1,4-dicaffeoylquinic acid significantly inhibited LPS-stimulated TNF-a production.Protocatechuic acid, caffeic acid and ferulic acid had significant inhibitory effects on LPS-induced PGE2 production in RAW 264.7 cells. PMID:27013799
Reddy, Shridhivya A; Shelar, Sandeep B; Dang, Truong-Minh; Lee, Baxter Neng-Cun; Yang, Hong; Ong, Siew-Min; Ng, Hui-Li; Chui, Wai-Keung; Wong, Siew-Cheng; Chew, Eng-Hui
2015-02-01
Sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)-butane], an aliphatic isothiocyanate (ITC) naturally derived from cruciferous vegetables and largely known for its chemopreventive potential also appears to possess anti-inflammatory potential. In this study, structural analogs of SF {compound 1 [1-isothiocyanato-4-(methylcarbonyl)-butane] and 2 [1-isothiocyanato-3-(methylcarbonyl)-propane]} containing a carbonyl group in place of the sulfinyl group in SF, were evaluated for their anti-inflammatory activities. In RAW 264.7 cells, the ITCs at non-toxic concentrations caused an inhibition of NO and prostaglandin E2 (PGE2) release through suppressing expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as a reduction in matrix metalloproteinase-9 (MMP-9) expression, secretion and gelatinolytic activity. Further work performed on human monocytes isolated from blood of healthy donors revealed that the ITCs not only suppressed the expression and release of pro-inflammatory mediators IL-1β, IL-6, TNF-α and MMP-9, but also suppressed their antibody-independent phagocytic and chemotactic migratory abilities. These anti-inflammatory activities were mediated through suppression of the NF-κB and MAPK signaling pathways. In addition, the ITCs were revealed to interact with the cysteines in inhibitor of nuclear factor-κB kinase β subunit (IKKβ), which could contribute at least partly to the suppression of NF-κB signaling. In conclusion, results obtained in this study provide deeper insights into the anti-inflammatory properties of SF and its methylcarbonyl analogs and the underlying mechanisms. These compounds thus serve as promising candidates for clinical applications in controlling inflammatory conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Remmel, Liina; Tillmann, Vallo; Mengel, Eva; Kool, Pille; Purge, Priit; Lätt, Evelin; Jürimäe, Jaak
2018-05-01
To investigate the differences in the pattern of changes in serum inflammatory cytokines measured annually over a 24-month period, between less active and more active overweight boys. In total, 25 pubertal overweight boys were divided by their moderate to vigorous physical activity (MVPA) levels into 2 groups: less active group (LAG; n = 10; MVPA < 60 min/d) and more active group (MAG; n = 15; MVPA > 60 min/d). Physical activity was measured by 7-day accelerometry. Serum concentration of 13 inflammatory cytokines [interleukin (IL)-2, IL-4, IL-6, IL-8, IL-10, IL-1α, IL-1β, vascular endothelial growth factor, interferon-γ, tumor necrosis factor-α, monocyte chemotactic protein-1, epidermal growth factor, and C-reactive protein] was measured at baseline (T0), after 12 months (T1), and after 24 months (T2) from fasting blood samples. Serum IL-6 level was significantly higher [LAG: 1.27 (0.86, 1.98) pg/mL; MAG: 0.80 (0.52, 0.84) pg/mL] at T0 and IL-8 level [LAG: 10.26 (8.80, 11.64) pg/mL; MAG: 7.42 (6.10, 9.54) pg/mL] at T2 in LAG compared with MAG. The changes over the study period varied between different inflammatory markers. None of the slopes of any measured markers were statistically different between the LAG and MAG, although the slopes of interferon-γ and IL-10 tended to be different between the groups. The pattern of changes over the study period varied between different inflammatory markers, but these changes were not different between the MVPA groups. More longitudinal studies are needed to investigate whether IL-6, IL-8, IL-10, and interferon-γ would be the choice of inflammatory markers to study the associations between obesity and physical activity in future.
Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young
2010-05-01
Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. Copyright 2010 Elsevier B.V. All rights reserved.
Gapeyev, A B; Mikhailik, E N; Chemeris, N K
2008-04-01
Using a model of acute zymosan-induced footpad edema in NMRI mice, the frequency and power dependence of anti-inflammatory effect of low-intensity extremely high-frequency electromagnetic radiation (EHF EMR) was found. Single whole-body exposure of animals to EHF EMR at the intensity of 0.1 mW/cm(2) for 20 min at 1 h after zymosan injection reduced both the footpad edema and local hyperthermia on average by 20% at the frequencies of 42.2, 51.8, and 65 GHz. Some other frequencies from the frequency range of 37.5-70 GHz were less effective or not effective at all. At fixed frequency of 42.2 GHz and intensity of 0.1 mW/cm(2), the effect had bell-shaped dependence on exposure duration with a maximum at 20-40 min. Reduction of intensity to 0.01 mW/cm(2) resulted in a change of the effect dependence on exposure duration to a linear one. Combined action of cyclooxygenase inhibitor sodium diclofenac and EHF EMR exposure caused a partial additive effect of decrease in footpad edema. Combined action of antihistamine clemastine and EHF EMR exposure caused a dose-dependent abolishment of the anti-inflammatory effect of EHF EMR. The results obtained suggest that arachidonic acid metabolites and histamine are involved in realization of anti-inflammatory effects of low-intensity EHF EMR. (c) 2007 Wiley-Liss, Inc.
Park, Sun Young; Jin, Mei Ling; Yi, Eun Hye; Kim, Yoon; Park, Geuntae
2018-06-08
Acute and chronic inflammatory diseases are associated with excessive inflammation due to the accumulation of pro-inflammatory mediators and cytokines produced by macrophages. In the present study, we investigated the anti-inflammatory properties of neochlorogenic acid (nCGA) from Lonicera japonica on lipopolysaccharide (LPS)-activated inflammation in macrophages and participation of the AMPK/Nrf2 pathway. nCGA pretreatment significantly reduced the production of nitric oxide, prostaglandin E 2 , TNF-α, reactive oxygen species, IL-1β, and IL-6 by LPS-activated macrophages. Moreover, both transcript and protein levels of inducible nitric oxide synthase and cyclooxygenase-2 were reduced by nCGA in LPS-activated macrophages. nCGA inhibited NF-κB activation by attenuating IKKα/β and IκBα phosphorylation in LPS-stimulated macrophages. Moreover, nCGA attenuated LPS-elevated JAK-1, STAT-1, and MAPK phosphorylation. We further evaluated the possible role of nCGA in the induction of AMPK/Nrf2 signal pathways required for the protein expression of HO-1 and NQO-1. nCGA induced AMPK activation via phosphorylation of LKB1 and CaMKII and by the inhibitory phosphorylation of GSK3β. It stimulated the overexpression of Nrf2/ARE-regulated downstream proteins, such as NQO-1 and HO-1. Furthermore, the anti-inflammatory effects of nCGA were attenuated in macrophages subjected to siRNAs specific for HO-1, NQO-1, Nrf2, and AMPK. Accordingly, these results indicate that nCGA, as an AMPK/Nrf2 signal activator, prevents excessive macrophage-mediated responses associated with acute and chronic inflammatory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Use of a balanced dual cyclooxygenase-1/2 and 5-lypoxygenase inhibitor in experimental colitis.
Pallio, Giovanni; Bitto, Alessandra; Pizzino, Gabriele; Galfo, Federica; Irrera, Natasha; Minutoli, Letteria; Arcoraci, Vincenzo; Squadrito, Giovanni; Macrì, Antonio; Squadrito, Francesco; Altavilla, Domenica
2016-10-15
Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) play an important role in inflammatory bowel diseases (IBDs). We investigated the effects of flavocoxid, a dual COX/LOX inhibitor, in experimental colitis induced with either dinitrobenzenesulfonic acid (DNBS) or dextrane sulphate sodium (DSS) In the first model, colitis was induced in rats by a single intra-colonic instillation (25mg in 0.8ml 50% ethanol) of DNBS; after 24h animals were randomized to receive orally twice a day, flavocoxid (10mg/kg), zileuton (50mg/kg), or celecoxib (5mg/kg). Sham animals received 0.8ml of saline by a single intra-colonic instillation. Rats were killed 4 days after induction and samples were collected for analysis. In the second model, colitis was induced in rats by the administration of 8% DSS dissolved in drinking water; after 24h animals were randomized to the same above reported treatments. Sham animals received standard drinking water. Rats were killed 5 days after induction and samples were collected for analysis. Flavocoxid, zileuton and celecoxib improved weight loss, reduced colonic myeloperoxydase activity, macroscopic and microscopic damage, and TNF-α serum levels. Flavocoxid and celecoxib also reduced malondialdheyde, 6-keto PGF1α and PGE-2 levels while flavocoxid and zileuton decreased LTB-4 levels. In addition, flavocoxid treatment improved histological features and apoptosis as compared to zileuton and celecoxib; moreover only flavocoxid reduced TXB2, thus avoiding an imbalance in eicosanoids production. Our results show that flavocoxid has protective effect in IBDs and may represents a future safe treatment for inflammatory bowel diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Byun, So-Young; Kim, Dan-Bi; Kim, Eunjung
2015-08-01
An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD. Copyright © 2015 Elsevier Inc. All rights reserved.