Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei
2012-01-01
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering. PMID:22606025
Zhao, Daqiu; Han, Chenxia; Tao, Jun; Wang, Jing; Hao, Zhaojun; Geng, Qingping; Du, Bei
2012-01-01
Herbaceous peony (Paeonia lactiflora Pall.) is a traditional famous flower, but its poor inflorescence stem quality seriously constrains the development of the cut flower. Mechanical strength is an important characteristic of stems, which not only affects plant lodging, but also plays an important role in stem bend or break. In this paper, the mechanical strength, morphological indices and microstructure of P. lactiflora development inflorescence stems were measured and observed. The results showed that the mechanical strength of inflorescence stems gradually increased, and that the diameter of inflorescence stem was a direct indicator in estimating mechanical strength. Simultaneously, with the development of inflorescence stem, the number of vascular bundles increased, the vascular bundle was arranged more densely, the sclerenchyma cell wall thickened, and the proportion of vascular bundle and pith also increased. On this basis, cellulose and lignin contents were determined, PlCesA3, PlCesA6 and PlCCoAOMT were isolated and their expression patterns were examined including PlPAL. The results showed that cellulose was not strictly correlated with the mechanical strength of inflorescence stem, and lignin had a significant impact on it. In addition, PlCesA3 and PlCesA6 were not key members in cellulose synthesis of P. lactiflora and their functions were also different, but PlPAL and PlCCoAOMT regulated the lignin synthesis of P. lactiflora. These data indicated that PlPAL and PlCCoAOMT could be applied to improve the mechanical strength of P. lactiflora inflorescence stem in genetic engineering.
Effects of long-term hypergravity treatment on the development of inflorescence stems of arabidopsis
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Tamaoki, Daisuke; Kamisaka, Seiichiro; Yamaguchi, Takashi; Shinohara, Hironori; Kume, Atsushi; Inoue, Hiroshi
Hypergravity experiments with plants have been mostly performed using a commercial centrifuge in the dark. In order to see longer-term effect of hypergravity on the development of plant shoots, however, it is necessary to carry out the experiments in the light. In the present study, we have set up a centrifuge equipped with lighting system, which supports long-term plant growth under hypergravity condition, in order to see long-term effects of hypergravity on the development of vascular tissues of inflorescence stems. Arabidopsis plants (Arabidopsis thaliana (L.) Heynh., Col-0), which were grown under 1 G conditions for 20-23 days and having the first visible flower bud, i.e., at Arabidopsis growth stage number 5 (according to Boys et al., 2001), were selected as the plant material. These plants were exposed to hypergravity stimulus at 10 G in a direction from the shoot to root for 10 days in the continuous light. Effects of hypergravity on growth of inflorescence stems, lignin content, and morphometrical parameters of the stem tissues were examined. As a result, the length of the inflorescence stem was decreased. Cross sectional area as well as cell number, and lignin content in the stem were increased under hypergravity. The length of basal internodes of the stem was decreased under hypergravity. In conclusion, the inflorescence stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under long-term hypergravity conditions.
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Kobayashi, Mai; Tamaoki, Daisuke; Kamisaka, Seiichiro
Our previous studies have shown that hypergravity inhibits growth and promotes lignin forma-tion in inflorescence stems of Arabidopsis thaliana by up-regulation of genes involved in lignin biosynthesis (Tamaoki et al. 2006, 2009). In the present study, we have examined whether ethylene is involved in these responses using an ethylene-insensitive Arabidopsis mutant ein3-1. Our results revealed that hypergravity treatment at 300 G for 24 h significantly inhibited growth of inflorescence stems, promoted both deposition of acetyl bromide extractable lignin and gene expression involved in lignin formation in inflorescence stems of wild type plants. Growth inhibition of inflorescence stems was also observed in ein3-1. However, the effects of hypergravity on the promotion of the deposition of acetyl bromide lignin and the expression of genes involved in lignin formation were not observed in ein3-1, indicating that ethylene sig-naling is involved in the up-regulation of the expression of lignin-related genes as well as the promotion of deposition of lignin by hypergravity in Arabidopsis inflorescence stems.
Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei
2013-11-01
Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.
Gravitropism of inflorescence stems in starch-deficient mutants of Arabidopsis
NASA Technical Reports Server (NTRS)
Weise, S. E.; Kiss, J. Z.
1999-01-01
Previous studies have assayed the gravitropic response of roots and hypocotyls of wild type Arabidopsis thaliana, two reduced-starch strains, and a starchless strain. Because there have been few reports on inflorescence gravitropism, in this article, we use microscopic analyses and time-course studies of these mutants and their wild type to study gravitropism in these stems. Sedimentation of plastids was observed in endodermal cells of the wild type and reduced-starch mutants but not in the starchless mutant. In all of these strains, the short inflorescence stems (1.0-2.9 cm) were less responsive to the gravistimulus compared with the long stems (3.0-6.0 cm). In both long and short inflorescence stems, the wild type initially had the greatest response; the starchless mutant had the least response; and the reduced starch mutants exhibited an intermediate response. Furthermore, growth rates among all four strains were approximately equal. At about 6 h after reorientation, inflorescences of all strains returned to a position parallel to the gravity vector. Thus, in inflorescence stems, sedimentation of plastids may act as an accelerator but is not required to elicit a gravitropic response. Furthermore, the site of perception appears to be diffuse throughout the inflorescence stem. These results are consistent with both a plastid-based statolith model and the protoplast pressure hypothesis, and it is possible that multiple systems for gravity perception occur in plant cells.
Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Koumoto, Yasuko; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko
2016-01-01
A significant feature of plant cells is the extensive motility of organelles and the cytosol, which was originally defined as cytoplasmic streaming. We suggested previously that a three-way interaction between plant-specific motor proteins myosin XIs, actin filaments, and the endoplasmic reticulum (ER) was responsible for cytoplasmic streaming. (1) Currently, however, there are no reports of molecular components for cytoplasmic streaming other than the actin-myosin-cytoskeleton and ER-related proteins. In the present study, we found that elongated cells of inflorescence stems of Arabidopsis thaliana exhibit vigorous cytoplasmic streaming. Statistical analysis showed that the maximal velocity of plastid movements is 7.26 µm/s, which is much faster than the previously reported velocities of organelles. Surprisingly, the maximal velocity of streaming in the inflorescence stem cells was significantly reduced to 1.11 µm/s in an Arabidopsis mutant, abcb19-101, which lacks ATP BINDING CASSETTE SUBFAMILY B19 (ABCB19) that mediates the polar transport of the phytohormone auxin together with PIN-FORMED (PIN) proteins. Polar auxin transport establishes the auxin concentration gradient essential for plant development and tropisms. Deficiency of ABCB19 activity eventually caused enhanced gravitropic responses of the inflorescence stems and abnormally flexed inflorescence stems. These results suggest that ABCB19-mediated auxin transport plays a role not only in tropism regulation, but also in cytoplasmic streaming.
Inflorescence development in petunia: through the maze of botanical terminology.
Castel, Rob; Kusters, Elske; Koes, Ronald
2010-05-01
Flowering plants have developed many ways to arrange their flowers. A flower-bearing branch or system of branches is called an inflorescence. The number of flowers that an inflorescence contains ranges from a single flower to endless flower-clusters. Over the past centuries, botanists have classified inflorescences based on their morphology, which has led to an unfortunate maze of complex botanical terminology. With the rise of molecular developmental biology, research has become increasingly focused on how inflorescences develop, rather than on their morphology. It is the decisions taken by groups of stem cells at the growing tips of shoots, called meristems, on when and where to produce a flower or a shoot that specify the course of inflorescence development. Modelling is a helpful aid to follow the consequences of these decisions for inflorescence development. The so-called transient model can produce the broad inflorescence types: cyme, raceme, and panicle, into which most inflorescences found in nature can be classified. The analysis of several inflorescence branching mutants has led to a solid understanding of cymose inflorescence development in petunia (Petunia hybrida). The cyme of petunia is a distinct body plan compared with the well-studied racemes of Arabidopsis and Antirrhinum, which provides an excellent opportunity to study evolutionary developmental biology (evo-devo) related questions. However, thus far, limited use has been made of this opportunity, which may, at least in part, be due to researchers getting lost in the terminology. Some general issues are discussed here, while focusing on inflorescence development in petunia.
Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei
2013-01-01
Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize. PMID:24089437
Curvature in Arabidopsis inflorescence stems is limited to the region of amyloplast displacement
NASA Technical Reports Server (NTRS)
Weise, S. E.; Kuznetsov, O. A.; Hasenstein, K. H.; Kiss, J. Z.
2000-01-01
Gravitropic sensing in stems and stem-like organs is hypothesized to occur in the endodermis. However, since the endodermis runs the entire length of the stem, the precise site of gravisensing has been difficult to define. In this investigation of gravisensitivity in inflorescence stems of Arabidopsis, we positioned stems in a high gradient magnetic field (HGMF) on a rotating clinostat. Approximately 40% of the young, wild-type (WT) inflorescences, for all positions tested, curved toward the HGMF in the vicinity of the stem exposed to the field. In contrast, when the wedge was placed in the basal region of older inflorescence stems, no curvature was observed. As a control, the HGMF was applied to a starchless mutant, and 5% of the stems curved toward the field. Microscopy of the endodermis in the WT showed amyloplast displacement in the vicinity of the HGMF. Additional structural studies demonstrated that the basal region of WT stems experienced amyloplast displacement and, therefore, suggest this region is capable of gravity perception. However, increased lignification likely prevented curvature in the basal region. The lack of apical curvature after basal amyloplast displacement indicates that gravity perception in the base is not transmitted to the apex. Thus, these results provide evidence that the signal (and thus, response) resulting from perception in Arabidopsis inflorescence stems is spatially restricted.
Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul
2013-08-01
Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.
Kim, Joo-Young; Ryu, Jae Yong; Baek, Kon; Park, Chung-Mo
2016-01-01
In higher plants, gravitropism proceeds through three sequential steps in the responding organs: perception of gravity signals, signal transduction and asymmetric cell elongation. Light and temperature also influence the gravitropic orientation of plant organs. A series of Arabidopsis shoot gravitropism (sgr) mutants has been shown to exhibit disturbed shoot gravitropism. SGR5 is functionally distinct from other SGR members in that it mediates the early events of gravitropic responses in inflorescence stems. Here, we demonstrated that SGR5 alternative splicing produces two protein variants (SGR5α and SGR5β) in modulating the gravitropic response of inflorescence stems at high temperatures. SGR5β inhibits SGR5α function by forming non-DNA-binding heterodimers. Transgenic plants overexpressing SGR5β (35S:SGR5β) exhibit reduced gravitropic growth of inflorescence stems, as observed in the SGR5-deficient sgr5-5 mutant. Interestingly, SGR5 alternative splicing is accelerated at high temperatures, resulting in the high-level accumulation of SGR5β transcripts. When plants were exposed to high temperatures, whereas gravitropic curvature was reduced in Col-0 inflorescence stems, it was uninfluenced in the inflorescence stems of 35S:SGR5β transgenic plants and sgr5-5 mutant. We propose that the thermoresponsive alternative splicing of SGR5 provides an adaptation strategy by which plants protect the shoots from hot air under high temperature stress in natural habitats. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Yang, Bei-fen; Du, Le-shan; Li, Jun-min
2015-11-01
In order to find out how parasitic Cuscuta australis influences the growth and reproduction of Solidago canadensis, the effects of the parasitism of C. australis on the morphological, growth and reproductive traits of S. canadensis were examined and the relationships between the biomass and the contents of the secondary metabolites were analyzed. The results showed that the parasitism significantly reduced the plant height, basal diameter, root length, root diameter, root biomass, stem biomass, leaf biomass, total biomass, number of inflorescences branches, axis length of inflorescence, and number of inflorescence. In particular, plant height, number of inflorescence and the stem biomass of parasitized S. canadensis were only 1/2, 1/5 and 1/8 of non-parasitized plants, respectively. There was no significant difference of plant height, root length, stem biomass and total biomass between plants parasitized with high and low intensities. But the basal diameter, root volume, leaf biomass, root biomass, the number of inflorescences branches, axis length of inflorescence and number of inflorescence of S. canadensis parasitized with high intensity were significantly lower than those of plants parasitized with low intensity. The parasitism of C. australis significantly increased the tannins content in the root and the flavonoids content in the stem of S. canadensis. The biomass of S. canadensis was significantly negatively correlated with the tannin content in the root and the flavonoids content in the stem. These results indicated that the parasitism of C. australis could inhibit the growth of S. canadensis by changing the resources allocation patterns as well as reducing the resources obtained by S. canadensis.
Larson, Steven R; Kellogg, Elizabeth A; Jensen, Kevin B
2013-01-01
Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses, including wheat, barley, and 400-500 wild species, are usually contracted into a spike formation, with the number of flowering branches (spikelets) per node conserved within species and genera. Perennial Triticeae grasses of genus Leymus are unusual in that the number of spikelets per node varies, inflorescences may have panicle branches, and vegetative stems may form subterranean rhizomes. Leymus cinereus and L. triticoides show discrete differences in inflorescence length, branching architecture, node number, and density; number of spikelets per node and florets per spikelet; culm length and width; and perimeter of rhizomatous spreading. Quantitative trait loci controlling these traits were detected in 2 pseudo-backcross populations derived from the interspecific hybrids using a linkage map with 360 expressed gene sequence markers from Leymus tiller and rhizome branch meristems. Alignments of genes, mutations, and quantitative trait loci controlling similar traits in other grass species were identified using the Brachypodium genome reference sequence. Evidence suggests that loci controlling inflorescence and stem branch architecture in Leymus are conserved among the grasses, are governed by natural selection, and can serve as possible gene targets for improving seed, forage, and grain production.
NASA Technical Reports Server (NTRS)
Yamamoto, Kazuyoshi; Kiss, John Z.
2002-01-01
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems.
Yamamoto, Kazuyoshi; Kiss, John Z.
2002-01-01
The actin cytoskeleton is hypothesized to play a major role in gravity perception and transduction mechanisms in roots of plants. To determine whether actin microfilaments (MFs) are involved in these processes in stem-like organs, we studied gravitropism in Arabidopsis inflorescence stems and hypocotyls. Localization studies using Alexa Fluor-phalloidin in conjugation with confocal microscopy demonstrated a longitudinally and transversely oriented actin MF network in endodermal cells of stems and hypocotyls. Latrunculin B (Lat-B) treatment of hypocotyls caused depolymerization of actin MFs in endodermal cells and a significant reduction of hypocotyl growth rates. Actin MFs in Lat-B-treated inflorescence stems also were disrupted, but growth rates were not affected. Despite disruption of the actin cytoskeleton in these two organs, Lat-B-treated stems and hypocotyls exhibited a promotion of gravitropic curvature in response to reorientation. In contrast, Lat-B reduced gravitropic curvature in roots but also reduced the growth rate. Thus, in contrast to prevailing hypotheses, our results suggest that actin MFs are not a necessary component of gravitropism in inflorescence stems and hypocotyls. Furthermore, this is the first study to demonstrate a prominent actin MF network in endodermal cells in the putative gravity-perceiving cells in stems. PMID:11842170
Gómez-Mena, Concepción; Sablowski, Robert
2008-08-01
Apical meristems play a central role in plant development. Self-renewing cells in the central region of the shoot meristem replenish the cell population in the peripheral region, where organ primordia emerge in a predictable pattern, and in the underlying rib meristem, where new stem tissue is formed. While much is known about how organ primordia are initiated and their lateral boundaries established, development at the interface between the stem and the meristem or the lateral organs is poorly understood. Here, we show that the BELL-type ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) is required for proper development of the boundary between the stem and both vegetative and reproductive organs and that this role partially overlaps with that of CUP-SHAPED COTYLEDON genes. During the vegetative phase, ATH1 also functions redundantly with light-activated genes to inhibit growth of the region below the shoot meristem. Consistent with a role in inhibiting stem growth, ATH1 is downregulated at the start of inflorescence development and ectopic ATH1 expression prevents growth of the inflorescence stem by reducing cell proliferation. Thus, ATH1 modulates growth at the interface between the stem, meristem, and organ primordia and contributes to the compressed vegetative habit of Arabidopsis thaliana.
USDA-ARS?s Scientific Manuscript database
Grass inflorescence and stem branches show recognizable architectural differences among species. The inflorescence branches of Triticeae cereals and grasses including wheat, barley, and 400-500 wild species are usually contracted into a spike formation with the number of flowering branches (spikele...
Legros, S.; Mialet-Serra, I.; Caliman, J.-P.; Siregar, F. A.; Clement-Vidal, A.; Fabre, D.; Dingkuhn, M.
2009-01-01
Background and Aims Despite its simple architecture and small phenotypic plasticity, oil palm has complex phenology and source–sink interactions. Phytomers appear in regular succession but their development takes years, involving long lag periods between environmental influences and their effects on sinks. Plant adjustments to resulting source–sink imbalances are poorly understood. This study investigated oil palm adjustments to imbalances caused by severe fruit pruning. Methods An experiment with two treatments (control and complete fruit pruning) during 22 months in 2006–2008) and six replications per treatment was conducted in Indonesia. Phenology, growth of above-ground vegetative and reproductive organs, leaf morphology, inflorescence sex differentiation, dynamics of non-structural carbohydrate reserves and light-saturated net photosynthesis (Amax) were monitored. Key Results Artificial sink limitation by complete fruit pruning accelerated development rate, resulting in higher phytomer, leaf and inflorescence numbers. Leaf size and morphology remained unchanged. Complete fruit pruning also suppressed the abortion of male inflorescences, estimated to be triggered at about 16 months before bunch maturity. The number of female inflorescences increased after an estimated lag of 24–26 months, corresponding to time from sex differentiation to bunch maturity. The most important adjustment process was increased assimilate storage in the stem, attaining nearly 50 % of dry weight in the stem top, mainly as starch, whereas glucose, which in controls was the most abundant non-structural carbohydrate stored in oil palm, decreased. Conclusions The development rate of oil palm is in part controlled by source–sink relationships. Although increased rate of development and proportion of female inflorescences constituted observed adjustments to sink limitation, the low plasticity of plant architecture (constant leaf size, absence of branching) limited compensatory growth. Non-structural carbohydrate storage was thus the main adjustment process. PMID:19748908
Gan, Yinbo; Kumimoto, Rod; Liu, Chang; Ratcliffe, Oliver; Yu, Hao; Broun, Pierre
2006-06-01
As a plant shoot matures, it transitions through a series of growth phases in which successive aerial organs undergo distinct developmental changes. This process of phase change is known to be influenced by gibberellins (GAs). We report the identification of a putative transcription factor, GLABROUS INFLORESCENCE STEMS (GIS), which regulates aspects of shoot maturation in Arabidopsis thaliana. GIS loss-of-function mutations affect the epidermal differentiation of inflorescence organs, causing a premature decrease in trichome production on successive leaves, stem internodes, and branches. Overexpression has the opposite effect on trichome initiation and causes other heterochronic phenotypes, affecting flowering and juvenile-adult leaf transition and inducing the formation of rosette leaves on inflorescence stems. Genetic and gene expression analyses suggest that GIS acts in a GA-responsive pathway upstream of the trichome initiation regulator GLABROUS1 (GL1) and downstream of the GA signaling repressor SPINDLY (SPY). GIS mediates the induction of GL1 expression by GA in inflorescence organs and is antagonized in its action by the DELLA repressor GAI. The implication of GIS in the broader regulation of phase change is further suggested by the delay in flowering caused by GIS loss of function in the spy background. The discovery of GIS reveals a novel mechanism in the control of shoot maturation, through which GAs regulate cellular differentiation in plants.
Kagawa, Takatoshi; Kimura, Mitsuhiro; Wada, Masamitsu
2009-10-01
Phototropin family photoreceptors, phot1 and phot2, in Arabidopsis thaliana control the blue light (BL)-mediated phototropic responses of the hypocotyl, chloroplast relocation movement and stomatal opening. Phototropic responses in dark-grown tissues have been well studied but those in de-etiolated green plants are not well understood. Here, we analyzed phototropic responses of inflorescence stems and petioles of wild-type and phototropin mutant plants of A. thaliana. Similar to the results obtained from dark-grown seedlings, inflorescence stems and petioles in wild-type and phot2 mutant plants showed phototropic bending towards low fluence BL, while in phot1 mutant plants, a high fluence rate of BL was required. phot1 phot2 double mutant plants did not show any phototropic responses even under very high fluence rates of BL. We further studied the photoreceptive sites for phototropic responses of stems and petioles by partial tissue irradiation. The whole part of the inflorescence stem is sensitive to BL and shows phototropism, but in the petiole only the irradiated abaxial side is sensitive. Similar to dark-grown etiolated seedlings, phot1 plays a major role in phototropic responses under weak light, but phot2 functions under high fluence rate conditions in green plants.
Uchida, Naoyuki; Tasaka, Masao
2013-12-01
Plant vasculatures are complex tissues consisting of (pro)cambium, phloem, and xylem. The (pro)cambium serves as vascular stem cells that produce all vascular cells. The Arabidopsis ERECTA (ER) receptor kinase is known to regulate the architecture of inflorescence stems. It was recently reported that the er mutation enhances a vascular phenotype induced by a mutation of TDR/PXY, which plays a significant role in procambial proliferation, suggesting that ER participates in vascular development. However, detailed molecular mechanisms of the ER-dependent vascular regulation are largely unknown. Here, this work found that ER and its paralogue, ER-LIKE1, were redundantly involved in procambial development of inflorescence stems. Interestingly, their activity in the phloem was sufficient for vascular regulation. Furthermore, two endodermis-derived peptide hormones, EPFL4 and EPFL6, were redundantly involved in such regulation. It has been previously reported that EPFL4 and EPFL6 act as ligands of phloem-expressed ER for stem elongation. Therefore, these findings indicate that cell-cell communication between the endodermis and the phloem plays an important role in procambial development as well as stem elongation. Interestingly, similar EPFL-ER modules control two distinct developmental events by slightly changing their components: the EPFL4/6-ER module for stem elongation and the EPFL4/6-ER/ERL1 module for vascular development.
Identification of gravitropic response indicator genes in Arabidopsis inflorescence stems
Taniguchi, Masatoshi; Nakamura, Moritaka; Tasaka, Masao; Morita, Miyo Terao
2014-01-01
Differential organ growth during gravitropic response is caused by differential accumulation of auxin, that is, relative higher auxin concentration in lower flanks than in upper flanks of responding organs. Auxin responsive reporter systems such as DR5::GUS and DR5::GFP have usually been used as indicators of gravitropic response in roots and hypocotyls of Arabidopsis. However, in the inflorescence stems, the reporter systems don’t work well to monitor gravitropic response. Here, we aim to certify appropriate gravitropic response indicators (GRIs) in inflorescence stems. We performed microarray analysis comparing gene expression profiles between upper and lower flanks of Arabidopsis inflorescence stems after gravistimulation. Thirty genes showed > 2-fold differentially increased expression in lower flanks at 30 min, of which 19 were auxin response genes. We focused on IAA5 and IAA2 and verified whether they are appropriate GRIs by real-time qRT-PCR analyses. Transcript levels of IAA5 and IAA2 were remarkably higher in lower flanks than in upper flanks after gravistimulation. The biased IAA5 or IAA2 expression is disappeared in sgr2–1 mutant which is defective in gravity perception, indicating that gravity perception process is essential for formation of the biased gene expression during gravitropism. IAA5 expression was remarkably increased in lower flanks at 30 min after gravistimulation, whereas IAA2 expression was gradually decreased in upper flanks in a time-dependent manner. Therefore, we conclude that IAA5 is a sensitive GRI to monitor asymmetric auxin signaling caused by gravistimulation in Arabidopsis inflorescence stems. PMID:25763694
[Caloric value and energy allocation of Chloris virgata in northeast grassland].
Guo, J; Wang, R; Wang, W
2001-06-01
The rules of seasonal changes in caloric values of individual plant, stem, and leaves of Chloris virgata were similar, which had two peak values from early July to early August, and then decreased gradually. Those of inflorescence assumed U shape, and had two peak values in early August and middle September, respectively. The seasonal changes in caloric values of dead standing were irregular, and the maximum value was appeared in early August. The seasonal changes in existent energy value of the aboveground parts in Chloris virgata population presented double peak curve. The two peak values were appeared in early August and early September respectively, and the maximum value was 7381.27 kJ.m-2 in early September. The energy allocation in different seasons was leaf > stem in early July, stem > leaf > dead standing in middle July, stem > leaf > inflorescence > dead standing in August, stem > inflorescence > leaf > dead standing in early September, and stem > inflorescence > dead standing > leaf in middle September. The vertical structure of energy in the aboveground parts was that the energy value gradually increased from the earth's surface to 20 cm high, and then decreased. The maximum value, which accounted for 25.75% of energy in the aboveground parts, was appeared in the layer of 10-20 cm high. In the underground parts, the energy value progressively decreased with the increase of depth, and the maximum value, which accounted for 74.21% of energy in the underground parts, was appeared in the layer of 0-10 cm depth.
Clay, Nicole K; Nelson, Timothy
2005-06-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process.
Clay, Nicole K.; Nelson, Timothy
2005-01-01
Polar auxin transport has been implicated in the induction of vascular tissue and in the definition of vein positions. Leaves treated with chemical inhibitors of polar auxin transport exhibited vascular phenotypes that include increased vein thickness and vascularization. We describe a recessive mutant, thickvein (tkv), which develops thicker veins in leaves and in inflorescence stems. The increased vein thickness is attributable to an increased number of vascular cells. Mutant plants have smaller leaves and shorter inflorescence stems, and this reduction in organ size and height is accompanied by an increase in organ vascularization, which appears to be attributable to an increase in the recruitment of cells into veins. Furthermore, although floral development is normal, auxin transport in the inflorescence stem is significantly reduced in the mutant, suggesting that the defect in auxin transport is responsible for the vascular phenotypes. In the primary root, the veins appear morphologically normal, but root growth in the tkv mutant is hypersensitive to exogenous cytokinin. The tkv mutation was found to reside in the ACL5 gene, which encodes a spermine synthase and whose expression is specific to provascular cells. We propose that ACL5/TKV is involved in vein definition (defining the boundaries between veins and nonvein regions) and in polar auxin transport, and that polyamines are involved in this process. PMID:15894745
Seed-to-seed-to-seed growth and development of Arabidopsis in microgravity.
Link, Bruce M; Busse, James S; Stankovic, Bratislav
2014-10-01
Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves.
Spann, Timothy M; Beede, Robert H; Dejong, Theodore M
2008-02-01
We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission.
Competition for Assimilates and Fruit Position Affect Fruit Set in Indeterminate Greenhouse Tomato
Bertin, N.
1995-01-01
Localization and characterization of fruit set in winter tomato crops was investigated to determine the main internal and external controlling factors and to establish a quantitative relationship between fruit set and competition for assimilates. Individual fruit growth and development was assessed on a beef tomato cultivar during the reproductive period (first nine inflorescences). A non-destructive photograph technique was used to measure fruit growth from very early stages of their development and then calliper measurements were made on big fruits. From these measurements we determined the precise developmental stage at which fruit growth stopped. Fruit potential growth, which is defined as the growth achieved in non-limiting conditions for assimilate supply, was also assessed by this method on plants thinned to one flower per inflorescence. The latter was used to calculate the ratio between actual and potential growth, which was found to be a good index of the competition for assimilates. Time lags of fruit set were observed mainly on distal organs. When more than three flowers were left on each inflorescence, distal organs developed at the same time as proximal organs of the following inflorescence. Consequently they were submitted to a double competition within one inflorescence and among inflorescences. It was shown that, what is commonly named ‘fruit set failure’, is not an irreversible death of the organ and that a small fruit could resume growth after a delay of several weeks as soon as the first fruits ripened and thus ceased to compete for assimilates. In that case proximal fruits resumed growth before distal ones. The delayed fruits contained only few seeds but a germination test confirmed that fertilization took place before fruit set failed. Competition for assimilates was calculated during plant development by the ratio between actual and potential fruit growth. Potential growth of proximal fruits was strongly dependent on the position of the inflorescence on the stem, whereas potential growth of distal fruits was lower than or equal to that of proximal fruits of the same inflorescence and it was independent on the inflorescence position. We took into account both inflorescence and fruit positions to establish a quantitative relationship between fruit set of individual inflorescences and the ratio between actual and potential fruit growth. PMID:21247913
Seed-to-Seed-to-Seed Growth and Development of Arabidopsis in Microgravity
Link, Bruce M.; Busse, James S.
2014-01-01
Abstract Arabidopsis thaliana was grown from seed to seed wholly in microgravity on the International Space Station. Arabidopsis plants were germinated, grown, and maintained inside a growth chamber prior to returning to Earth. Some of these seeds were used in a subsequent experiment to successfully produce a second (back-to-back) generation of microgravity-grown Arabidopsis. In general, plant growth and development in microgravity proceeded similarly to those of the ground controls, which were grown in an identical chamber. Morphologically, the most striking feature of space-grown Arabidopsis was that the secondary inflorescence branches and siliques formed nearly perpendicular angles to the inflorescence stems. The branches grew out perpendicularly to the main inflorescence stem, indicating that gravity was the key determinant of branch and silique angle and that light had either no role or a secondary role in Arabidopsis branch and silique orientation. Seed protein bodies were 55% smaller in space seed than in controls, but protein assays showed only a 9% reduction in seed protein content. Germination rates for space-produced seed were 92%, indicating that the seeds developed in microgravity were healthy and viable. Gravity is not necessary for seed-to-seed growth of plants, though it plays a direct role in plant form and may influence seed reserves. Key Words: Arabidopsis—Branch—Inflorescence—Microgravity—Morphology—Seed—Space. Astrobiology 14, 866–875. PMID:25317938
NASA Astrophysics Data System (ADS)
Savidge, Rodney
Wild type (Col 0) Arabidopsis thaliana were grown in a growth chamber within the single mid-deck sized Advanced Biological Research System (ABRS) spaceflight hardware developed by NASA Kennedy Space Center. Before beginning this experiment, the plants, each rooted in individual transferable tubes containing nutrients, were cultivated hydroponically on halfstrength Hoagland's solution beneath either LED lighting similar to that provided by the ABRS growth chamber or white fluorescent lighting. The leaves of the basal whorl of plants pre-grown in ABRS lighting were small and purplish at the start of the experiment, whereas those under fluorescent lighting were larger and green. The plants were transferred to the ABRS soon after their inflorescence axes had started to elongate, and thereafter they were maintained under preset conditions (22 o C, approximately 1500 ppm CO2 , predominantly 125 µmol m-2 s-1 PAR) with pulses of water provided at 1-3 d intervals (as needed) to the module into which the root tubes were inserted. That module was pre-treated with half-strength Hoagland's nutrient solution on day 0, but no additional nutrients were provided the plants thereafter. Strong primary growth of all inflorescence stems occurred soon after initiating the ABRS experiment, and the plants began forming an overarching canopy of flowering stems beneath the LED lighting module within two weeks. After 38 days the root module was littered with seeds, siliques and abscised leaves, but all plants remained alive. Plants pre-grown in ABRS lighting were more advanced toward senescence, and leaves and stems of plants pre-grown in fluorescent lighting although greener were also acquiring a purplish hue. Microscopy revealed that the flowering stems achieved no secondary growth; however, progressive inward conversion of pith parenchyma into sclerenchyma cells did occur resulting in the inflorescence stems becoming abnormally woody.
Sun, Li-Li; Zhou, Zhong-Jing; An, Li-Jun; An, Yan; Zhao, Yong-Qin; Meng, Xiao-Fang; Steele-King, Clare; Gan, Yin-Bo
2013-07-01
Arabidopsis trichomes are large branched single cells that protrude from the epidermis. The first morphological indication of trichome development is an increase in nuclear content resulting from an initial cycle of endoreduplication. Our previous study has shown that the C2H2 zinc finger protein GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome initiation in the inflorescence organ and for trichome branching in response to gibberellic acid signaling, although GIS gene does not play a direct role in regulating trichome cell division. Here, we describe a novel role of GIS, controlling trichome cell division indirectly by interacting genetically with a key endoreduplication regulator SIAMESE (SIM). Our molecular and genetic studies have shown that GIS might indireclty control cell division and trichome branching by acting downstream of SIM. A loss of function mutation of SIM signficantly reduced the expression of GIS. Futhermore, the overexpression of GIS rescued the trichome cluster cell phenotypes of sim mutant. The gain or loss of function of GIS had no significant effect on the expression of SIM. These results suggest that GIS may play an indirect role in regulating trichome cell division by genetically interacting with SIM.
Li, Chengzhong; Tao, Jun; Zhao, Daqiu; You, Chao; Ge, Jintao
2012-01-01
Calcium is an essential element and imparts significant structural rigidity to the plant cell walls, which provide the main mechanical support to the entire plant. In order to increase the mechanical strength of the inflorescence stems of herbaceous peony, the stems are treated with calcium chloride. The results shows that preharvest sprays with 4% (w/v) calcium chloride three times after bud emergence are the best at strengthening "Da Fugui" peonies' stems. Calcium sprays increased the concentrations of endogenous calcium, total pectin content as well as cell wall fractions in herbaceous peonies stems, and significantly increased the contents of them in the top segment. Correlation analysis showed that the breaking force of the top segment of peonies' stems was positively correlated with the ratio of water insoluble pectin to water soluble pectin (R = 0.673) as well as lignin contents (R = 0.926) after calcium applications.
Vadde, Batthula Vijaya Lakshmi; Challa, Krishna Reddy; Nath, Utpal
2018-01-01
Trichomes are the first cell type to be differentiated during the morphogenesis of leaf epidermis and serve as an ideal model to study cellular differentiation. Many genes involved in the patterning and differentiation of trichome cells have been studied over the past decades, and the majority of these genes encode transcription factors that specifically regulate epidermal cell development. However, the upstream regulators of these genes that link early leaf morphogenesis with cell type differentiation are less studied. The TCP proteins are the plant-specific transcription factors involved in regulating diverse aspects of plant development including lateral organ morphogenesis by modulating cell proliferation and differentiation. Here, we show that the miR319-regulated class II TCP proteins, notably TCP4, suppress trichome branching in Arabidopsis leaves and inflorescence stem by direct transcriptional activation of GLABROUS INFLORESCENCE STEMS (GIS), a known negative regulator of trichome branching. The trichome branch number is increased in plants with reduced TCP activity and decreased in the gain-of-function lines of TCP4. Biochemical analyses show that TCP4 binds to the upstream regulatory region of GIS and activates its expression. Detailed genetic analyses show that GIS and TCP4 work in same pathway and GIS function is required for TCP4-mediated regulation of trichome differentiation. Taken together, these results identify a role for the class II TCP genes in trichome differentiation, thus providing a connection between organ morphogenesis and cellular differentiation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls
USDA-ARS?s Scientific Manuscript database
Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...
Ko, Jae-Heung; Han, Kyung-Hwan
2004-05-01
Secondary growth in the inflorescence stems of Arabidopsis plants was induced by a combination of short-day and long-day treatments. The induced stems were divided into three different stem developmental stages (i.e., immature, intermediate, and mature) with regard to secondary growth. Whole transcriptome microarrays were used to examine the changes in global gene expression occurring at the different stem developmental stages. Over 70% of the Arabidopsis transcriptome was expressed in the stem tissues. In the mature stems with secondary growth, 567 genes were upregulated 5-fold or higher and 530 were downregulated, when compared to immature stems (with no secondary growth) and 10-day old seedlings (with no inflorescence stem). The transcription phenotypes obtained from the stems at different developmental stages largely confirm the existing insights into the biochemical processes involved in the sequential events that lead to wood formation. The major difference found between the stems undergoing secondary growth and only primary growth was in the expression profiles of transcriptional regulation-and signal transduction-related genes. An analysis of several shoot apical meristem (SAM) activity-related gene expression patterns in the stems indicated that the genetic control of secondary meristem activity might be governed by a different mechanism from that of SAM. The current study established the expression patterns of many unknown genes and identified candidate genes that are involved in the genetic regulation of secondary growth. The findings described in this report should improve our understanding of the molecular mechanisms that regulate the growth and development of the stem.
Transcriptional programming during cell wall maturation in the expanding Arabidopsis stem.
Hall, Hardy; Ellis, Brian
2013-01-25
Plant cell walls are complex dynamic structures that play a vital role in coordinating the directional growth of plant tissues. The rapid elongation of the inflorescence stem in the model plant Arabidopsis thaliana is accompanied by radical changes in cell wall structure and chemistry, but analysis of the underlying mechanisms and identification of the genes that are involved has been hampered by difficulties in accurately sampling discrete developmental states along the developing stem. By creating stem growth kinematic profiles for individual expanding Arabidopsis stems we have been able to harvest and pool developmentally-matched tissue samples, and to use these for comparative analysis of global transcript profiles at four distinct phases of stem growth: the period of elongation rate increase, the point of maximum growth rate, the point of stem growth cessation and the fully matured stem. The resulting profiles identify numerous genes whose expression is affected as the stem tissues pass through these defined growth transitions, including both novel loci and genes identified in earlier studies. Of particular note is the preponderance of highly active genes associated with secondary cell wall deposition in the region of stem growth cessation, and of genes associated with defence and stress responses in the fully mature stem. The use of growth kinematic profiling to create tissue samples that are accurately positioned along the expansion growth continuum of Arabidopsis inflorescence stems establishes a new standard for transcript profiling analyses of such tissues. The resulting expression profiles identify a substantial number of genes whose expression is correlated for the first time with rapid cell wall extension and subsequent fortification, and thus provide an important new resource for plant biologists interested in gene discovery related to plant biomass accumulation.
Correlative controls of senescence and plant death in Arabidopsis thaliana (Brassicaceae).
Noodén, L D; Penney, J P
2001-11-01
Like most monocarpic plants, longevity of Arabidopsis thaliana plants is controlled by the reproductive structures; however, they appear to work differently from most dicots studied. Neither male- and female-sterility mutations (ms1-1 and bell1, respectively) nor surgical removal of the stems with inflorescences (bolts) at various stages significantly increased the longevity of individual rosette leaves, yet the mutants and treated plants lived 20-50 d longer, measured by the death of the last rosette and/or the last cauline leaf. A series of growth mutations (clv2-4, clv3-2, det3, vam1 enh, and dark green) also increased plant longevity by 20-30 d but did not delay the overall development of the plants. The mutations prolonged plant life through the production of new leaves and stems with inflorescences (bolts) rather than by extending leaf longevity. In growing stems, the newly-formed leaves may induce senescence in the older leaves; however, removal of the younger leaves did not significantly increase the life of the older leaves on the compressed stems of Arabidopsis. Since plants that produce more bolts also live longer, the reproductive load (dry weight) of the bolts did not seem to drive leaf or whole plant senescence here. The developing reproductive structures caused the death of the plant by preventing regeneration of leaves and bolts, which are green and presumably photosynthetic. They also exerted a correlative control (repression) on the development of additional reproductive structures.
Seed production estimation for mountain big sagebrush (Artemisia tridentata ssp. vaseyana)
Melissa L. Landeen; Loreen Allphin; Stanley G. Kitchen; Steven L. Petersen
2017-01-01
Seed production is an essential component of postdisturbance recovery for mountain big sagebrush (Artemisia tridentata Nutt. ssp vaseyana [Rydb] Beetle; MBS). We tested a method for rapid estimation of MBS seed production using measurements of inflorescence morphology. We measured total stem length, stem length from first branchlet to stem tip, stem diameter, fresh...
Arabidopsis Myosins XI1, XI2, and XIK Are Crucial for Gravity-Induced Bending of Inflorescence Stems
Talts, Kristiina; Ilau, Birger; Ojangu, Eve-Ly; Tanner, Krista; Peremyslov, Valera V.; Dolja, Valerian V.; Truve, Erkki; Paves, Heiti
2016-01-01
Myosins and actin filaments in the actomyosin system act in concert in regulating cell structure and dynamics and are also assumed to contribute to plant gravitropic response. To investigate the role of the actomyosin system in the inflorescence stem gravitropism, we used single and multiple mutants affecting each of the 17 Arabidopsis myosins of class VIII and XI. We show that class XI but not class VIII myosins are required for stem gravitropism. Simultaneous loss of function of myosins XI1, XI2, and XIK leads to impaired gravitropic bending that is correlated with altered growth, stiffness, and insufficient sedimentation of gravity sensing amyloplasts in stem endodermal cells. The gravitropic defect of the corresponding triple mutant xi1 xi2 xik could be rescued by stable expression of the functional XIK:YFP in the mutant background, indicating a role of class XI myosins in this process. Altogether, our results emphasize the critical contributions of myosins XI in stem gravitropism of Arabidopsis. PMID:28066484
NASA Astrophysics Data System (ADS)
Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.
2009-07-01
Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.
Gradients in Wall Mechanics and Polysaccharides along Growing Inflorescence Stems.
Phyo, Pyae; Wang, Tuo; Kiemle, Sarah N; O'Neill, Hugh; Pingali, Sai Venkatesh; Hong, Mei; Cosgrove, Daniel J
2017-12-01
At early stages of Arabidopsis ( Arabidopsis thaliana ) flowering, the inflorescence stem undergoes rapid growth, with elongation occurring predominantly in the apical ∼4 cm of the stem. We measured the spatial gradients for elongation rate, osmotic pressure, cell wall thickness, and wall mechanical compliances and coupled these macroscopic measurements with molecular-level characterization of the polysaccharide composition, mobility, hydration, and intermolecular interactions of the inflorescence cell wall using solid-state nuclear magnetic resonance spectroscopy and small-angle neutron scattering. Force-extension curves revealed a gradient, from high to low, in the plastic and elastic compliances of cell walls along the elongation zone, but plots of growth rate versus wall compliances were strikingly nonlinear. Neutron-scattering curves showed only subtle changes in wall structure, including a slight increase in cellulose microfibril alignment along the growing stem. In contrast, solid-state nuclear magnetic resonance spectra showed substantial decreases in pectin amount, esterification, branching, hydration, and mobility in an apical-to-basal pattern, while the cellulose content increased modestly. These results suggest that pectin structural changes are connected with increases in pectin-cellulose interaction and reductions in wall compliances along the apical-to-basal gradient in growth rate. These pectin structural changes may lessen the ability of the cell wall to undergo stress relaxation and irreversible expansion (e.g. induced by expansins), thus contributing to the growth kinematics of the growing stem. © 2017 American Society of Plant Biologists. All Rights Reserved.
Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T
2015-01-01
Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism.
Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T.
2015-01-01
Inflorescences of a dominant mutant of Arabidopsis Aux/IAA7, axr2, showed negative phototropism with a similar fluence response curve to the positive phototropism of wild-type stems. Application of a synthetic auxin, NAA, and an inhibitor of polar auxin transport, NPA, increased and decreased respectively the magnitude of the phototropic response in the wild type, while in axr2 application of NAA reduced the negative phototropic response and NPA had no effect. Decapitation of the apex induced a small negative phototropism in wild-type stems, and had no effect in axr2 plants. Inflorescences of the double mutants of auxin transporters, pgp1 pgp19, showed no phototropic response, while decapitation resulted in a negative phototropic response. These results suggest that negative phototropism can occur when the level of auxin or of auxin signaling is reduced to a minimal level, and that in plant axial organs the default phototropic response to unilateral blue light may be negative. Expression of axr2 protein by an endodermis-specific promoter resulted in agravitropism of inflorescences in a similar way to that of axr2, but phototropism was normal, confirming that the endodermis does not play a critical role in phototropism. PMID:25738325
DELLA genes restrict inflorescence meristem function independently of plant height.
Serrano-Mislata, Antonio; Bencivenga, Stefano; Bush, Max; Schiessl, Katharina; Boden, Scott; Sablowski, Robert
2017-09-01
DELLA proteins associate with transcription factors to control plant growth in response to gibberellin 1 . Semi-dwarf DELLA mutants with improved harvest index and decreased lodging greatly improved global food security during the 'green revolution' in the 1960-1970s 2 . However, DELLA mutants are pleiotropic and the developmental basis for their effects on plant architecture remains poorly understood. Here, we show that DELLA proteins have genetically separable roles in controlling stem growth and the size of the inflorescence meristem, where flowers initiate. Quantitative three-dimensional image analysis, combined with a genome-wide screen for DELLA-bound loci in the inflorescence tip, revealed that DELLAs limit meristem size in Arabidopsis by directly upregulating the cell-cycle inhibitor KRP2 in the underlying rib meristem, without affecting the canonical WUSCHEL-CLAVATA meristem size regulators 3 . Mutation of KRP2 in a DELLA semi-dwarf background restored meristem size, but not stem growth, and accelerated flower production. In barley, secondary mutations in the DELLA gain-of-function mutant Sln1d 4 also uncoupled meristem and inflorescence size from plant height. Our work reveals an unexpected and conserved role for DELLA genes in controlling shoot meristem function and suggests how dissection of pleiotropic DELLA functions could unlock further yield gains in semi-dwarf mutants.
DELLA genes restrict inflorescence meristem function independently of plant height
Serrano-Mislata, Antonio; Bencivenga, Stefano; Bush, Max; Schiessl, Katharina; Boden, Scott; Sablowski, Robert
2017-01-01
Summary DELLA proteins associate with transcription factors to control plant growth in response to gibberellin 1. Semi-dwarf DELLA mutants with improved harvest index and decreased lodging greatly improved global food security during the “green revolution” in the 1960-70s 2. However, DELLA mutants are pleiotropic and the developmental basis for their effects on plant architecture remains poorly understood. Here, we show that DELLA proteins have genetically separable roles in controlling stem growth and the size of the inflorescence meristem, where flowers initiate. Quantitative 3D image analysis, combined with a genome-wide screen for DELLA-bound loci in the inflorescence tip, revealed that DELLAs limit meristem size in Arabidopsis by directly up-regulating the cell cycle inhibitor KRP2 in the underlying rib meristem, without affecting the canonical WUSCHEL-CLAVATA meristem size regulators3. Mutation of KRP2 in a DELLA semi-dwarf background restored meristem size, but not stem growth, and accelerated flower production. In barley, secondary mutations in the DELLA gain of function mutant Sln1d 4 also uncoupled meristem and inflorescence size from plant height. Our work reveals an unexpected and conserved role for DELLA genes in controlling shoot meristem function and suggests how dissection of pleiotropic DELLA functions could unlock further yield gains in semi-dwarf mutants. PMID:28827519
Yu, Nan; Cai, Wen-Juan; Wang, Shucai; Shan, Chun-Min; Wang, Ling-Jian; Chen, Xiao-Ya
2010-01-01
The production and distribution of plant trichomes is temporally and spatially regulated. After entering into the flowering stage, Arabidopsis thaliana plants have progressively reduced numbers of trichomes on the inflorescence stem, and the floral organs are nearly glabrous. We show here that SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) genes, which define an endogenous flowering pathway and are targeted by microRNA 156 (miR156), temporally control the trichome distribution during flowering. Plants overexpressing miR156 developed ectopic trichomes on the stem and floral organs. By contrast, plants with elevated levels of SPLs produced fewer trichomes. During plant development, the increase in SPL transcript levels is coordinated with the gradual loss of trichome cells on the stem. The MYB transcription factor genes TRICHOMELESS1 (TCL1) and TRIPTYCHON (TRY) are negative regulators of trichome development. We show that SPL9 directly activates TCL1 and TRY expression through binding to their promoters and that this activation is independent of GLABROUS1 (GL1). The phytohormones cytokinin and gibberellin were reported to induce trichome formation on the stem and inflorescence via the C2H2 transcription factors GIS, GIS2, and ZFP8, which promote GL1 expression. We show that the GIS-dependent pathway does not affect the regulation of TCL1 and TRY by miR156-targeted SPLs, represented by SPL9. These results demonstrate that the miR156-regulated SPLs establish a direct link between developmental programming and trichome distribution. PMID:20622149
Testing the ontogenetic base for the transient model of inflorescence development.
Bull-Hereñu, Kester; Claßen-Bockhoff, Regine
2013-11-01
Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the 'transient model' successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called 'vegetativeness' (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model.
Carles, Cristel C; Choffnes-Inada, Dan; Reville, Keira; Lertpiriyapong, Kvin; Fletcher, Jennifer C
2005-03-01
The higher-plant shoot apical meristem is a dynamic structure continuously producing cells that become incorporated into new leaves, stems and flowers. The maintenance of a constant flow of cells through the meristem depends on coordination of two antagonistic processes: self-renewal of the stem cell population and initiation of the lateral organs. This coordination is stringently controlled by gene networks that contain both positive and negative components. We have previously defined the ULTRAPETALA1 (ULT1) gene as a key negative regulator of cell accumulation in Arabidopsis shoot and floral meristems, because mutations in ULT1 cause the enlargement of inflorescence and floral meristems, the production of supernumerary flowers and floral organs, and a delay in floral meristem termination. Here, we show that ULT1 negatively regulates the size of the WUSCHEL (WUS)-expressing organizing center in inflorescence meristems. We have cloned the ULT1 gene and find that it encodes a small protein containing a B-box-like motif and a SAND domain, a DNA-binding motif previously reported only in animal transcription factors. ULT1 and its Arabidopsis paralog ULT2 define a novel small gene family in plants. ULT1 and ULT2 are expressed coordinately in embryonic shoot apical meristems, in inflorescence and floral meristems, and in developing stamens, carpels and ovules. Additionally, ULT1 is expressed in vegetative meristems and leaf primordia. ULT2 protein can compensate for mutant ULT1 protein when overexpressed in an ult1 background, indicating that the two genes may regulate a common set of targets during plant development. Downregulation of both ULT genes can lead to shoot apical meristem arrest shortly after germination, revealing a requirement for ULT activity in early development.
Testing the ontogenetic base for the transient model of inflorescence development
Bull-Hereñu, Kester; Claßen-Bockhoff, Regine
2013-01-01
Backgrounds and Aims Current research in plant science has concentrated on revealing ontogenetic processes of key attributes in plant evolution. One recently discussed model is the ‘transient model’ successful in explaining some types of inflorescence architectures based on two main principles: the decline of the so called ‘vegetativeness’ (veg) factor and the transient nature of apical meristems in developing inflorescences. This study examines whether both principles find a concrete ontogenetic correlate in inflorescence development. Methods To test the ontogenetic base of veg decline and the transient character of apical meristems the ontogeny of meristematic size in developing inflorescences was investigated under scanning electron microscopy. Early and late inflorescence meristems were measured and compared during inflorescence development in 13 eudicot species from 11 families. Key Results The initial size of the inflorescence meristem in closed inflorescences correlates with the number of nodes in the mature inflorescence. Conjunct compound inflorescences (panicles) show a constant decrease of meristematic size from early to late inflorescence meristems, while disjunct compound inflorescences present an enlargement by merging from early inflorescence meristems to late inflorescence meristems, implying a qualitative change of the apical meristems during ontogeny. Conclusions Partial confirmation was found for the transient model for inflorescence architecture in the ontogeny: the initial size of the apical meristem in closed inflorescences is consistent with the postulated veg decline mechanism regulating the size of the inflorescence. However, the observed biphasic kinetics of the development of the apical meristem in compound racemes offers the primary explanation for their disjunct morphology, contrary to the putative exclusive transient mechanism in lateral axes as expected by the model. PMID:23425784
NASA Astrophysics Data System (ADS)
Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.; Gilroy, Simon
2012-07-01
The starch-statolith hypothesis is the most widely accepted model for plant gravity sensing and proposes that the sedimentation of high-density starch-filled plastids (amyloplasts) in shoot endodermal cells and root columella cells is important for gravity sensing of each organ. However, starch-deficient phosphoglucomutase (pgm-1) mutants sense gravity and show gravitropism in inflorescence stems, even though most starchless amyloplasts in this mutant fail to sediment toward the gravity vector. These results raise the questions about the role of starch in gravity sensing and the features of statolith/statocyte essential for shoot gravity sensing. To address these questions, we developed a new centrifuge microscope and analyzed two gravitropic mutants, i.e., pgm-1 and endodermal-amyloplast less 1 (eal1). All optical devices (e.g., objective lens, light source and CCD camera) and specimens were rotated on a direct-drive motor, and acquired images were wirelessly transmitted during centrifugation. Live-cell imaging during centrifugation revealed that the starchless amyloplasts sedimented to the hypergravity vector (10 and 30 g) in endodermal cells of pgm-1 stems, indicating that the density of the starchless amyloplasts is higher than that of cytoplasm. Electron micrographs of shoot endodermal cells in pgm-1 mutants suggested that the starchless amyloplast contains an organized thylakoid membrane but not starch granules, which morphologically resembles chloroplasts in the adjacent cortical cells. Therefore, the shoot amyloplasts without starch are possibly as dense as chloroplasts. We examined eal1 mutants, an allele of shoot gravitropism (sgr) 7/short-root (shr), which also have starchless amyloplasts due to abnormal differentiation of amyloplasts and show no gravitropic response at 1 g. Hypergravity up to 30 g induced little gravitropism in eal1 stems and the starchless amyloplasts failed to sediment under 30 g conditions. However, the eal1 mutants treated with latrunculin B, an actin disrupting drug, showed gravitropism under 30 g conditions, during which amyloplasts were artificially sedimented by hypergravity. These results suggest that shoot amyloplasts are intrinsically dense enough to trigger gravity sensing without starch and, rather, intracellular environments that render amyloplasts sedimentable/mobile, such as actin organization, are essential for gravity sensing in Arabidopsis inflorescence stems.
Bai, Fang; Reinheimer, Renata; Durantini, Diego; Kellogg, Elizabeth A; Schmidt, Robert J
2012-07-24
In grass inflorescences, a structure called the "pulvinus" is found between the inflorescence main stem and lateral branches. The size of the pulvinus affects the angle of the lateral branches that emerge from the main axis and therefore has a large impact on inflorescence architecture. Through EMS mutagenesis we have identified three complementation groups of recessive mutants in maize having defects in pulvinus formation. All mutants showed extremely acute tassel branch angles accompanied by a significant reduction in the size of the pulvinus compared with normal plants. Two of the complementation groups correspond to mutations in the previously identified genes, RAMOSA2 (RA2) and LIGULELESS1 (LG1). Mutants corresponding to a third group were cloned using mapped-based approaches and found to encode a new member of the plant-specific TCP (TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR) family of DNA-binding proteins, BRANCH ANGLE DEFECTIVE 1 (BAD1). BAD1 is expressed in the developing pulvinus as well as in other developing tissues, including the tassels and juvenile leaves. Both molecular and genetics studies show that RA2 is upstream of BAD1, whereas LG1 may function in a separate pathway. Our findings demonstrate that BAD1 is a TCP class II gene that functions to promote cell proliferation in a lateral organ, the pulvinus, and influences inflorescence architecture by impacting the angle of lateral branch emergence.
Michelotti, V; Giorgetti, L; Geri, C; Cionini, G; Pugliesi, C; Fambrini, M
2007-10-01
In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.
Genetic control of inflorescence architecture in legumes
Benlloch, Reyes; Berbel, Ana; Ali, Latifeh; Gohari, Gholamreza; Millán, Teresa; Madueño, Francisco
2015-01-01
The architecture of the inflorescence, the shoot system that bears the flowers, is a main component of the huge diversity of forms found in flowering plants. Inflorescence architecture has also a strong impact on the production of fruits and seeds, and on crop management, two highly relevant agronomical traits. Elucidating the genetic networks that control inflorescence development, and how they vary between different species, is essential to understanding the evolution of plant form and to being able to breed key architectural traits in crop species. Inflorescence architecture depends on the identity and activity of the meristems in the inflorescence apex, which determines when flowers are formed, how many are produced and their relative position in the inflorescence axis. Arabidopsis thaliana, where the genetic control of inflorescence development is best known, has a simple inflorescence, where the primary inflorescence meristem directly produces the flowers, which are thus borne in the main inflorescence axis. In contrast, legumes represent a more complex inflorescence type, the compound inflorescence, where flowers are not directly borne in the main inflorescence axis but, instead, they are formed by secondary or higher order inflorescence meristems. Studies in model legumes such as pea (Pisum sativum) or Medicago truncatula have led to a rather good knowledge of the genetic control of the development of the legume compound inflorescence. In addition, the increasing availability of genetic and genomic tools for legumes is allowing to rapidly extending this knowledge to other grain legume crops. This review aims to describe the current knowledge of the genetic network controlling inflorescence development in legumes. It also discusses how the combination of this knowledge with the use of emerging genomic tools and resources may allow rapid advances in the breeding of grain legume crops. PMID:26257753
Lam, Patricia; Zhao, Lifang; McFarlane, Heather E; Aiga, Mytyl; Lam, Vivian; Hooker, Tanya S; Kunst, Ljerka
2012-08-01
The cuticle is a protective layer that coats the primary aerial surfaces of land plants and mediates plant interactions with the environment. It is synthesized by epidermal cells and is composed of a cutin polyester matrix that is embedded and covered with cuticular waxes. Recently, we have discovered a novel regulatory mechanism of cuticular wax biosynthesis that involves the ECERIFERUM7 (CER7) ribonuclease, a core subunit of the exosome. We hypothesized that at the onset of wax production, the CER7 ribonuclease degrades an mRNA specifying a repressor of CER3, a wax biosynthetic gene whose protein product is required for wax formation via the decarbonylation pathway. In the absence of this repressor, CER3 is expressed, leading to wax production. To identify the putative repressor of CER3 and to unravel the mechanism of CER7-mediated regulation of wax production, we performed a screen for suppressors of the cer7 mutant. Our screen resulted in the isolation of components of the RNA-silencing machinery, RNA-DEPENDENT RNA POLYMERASE1 and SUPPRESSOR OF GENE SILENCING3, implicating RNA silencing in the control of cuticular wax deposition during inflorescence stem development in Arabidopsis (Arabidopsis thaliana).
Morita, Miyo T; Sakaguchi, Keitaro; Kiyose, Shin-Ichiro; Taira, Kensuke; Kato, Takehide; Nakamura, Moritaka; Tasaka, Masao
2006-08-01
Plants can sense the direction of gravity and change the growth orientation of their organs. To elucidate the molecular mechanisms of gravity perception and the signal transduction of gravitropism, we have characterized a number of shoot gravitropism (sgr) mutants of Arabidopsis. The sgr5-1 mutant shows reduced gravitropism in the inflorescence stem but its root and hypocotyl have normal gravitropism. SGR5 encodes a zinc finger protein with a coiled-coil motif. The SGR5-GFP fusion protein is localized in the nucleus of Arabidopsis protoplasts, suggesting that SGR5 may act as a transcription factor. Analysis of GUS expression under the control of the SGR5 promoter revealed that SGR5 is mainly expressed in the endodermis, the gravity-sensing tissue in inflorescence stems. Furthermore, the observation that endodermis-specific expression of SGR5 using the SCR promoter in the sgr5-1 mutant restores shoot gravitropism indicates that it could function in the gravity-sensing endodermal cell layer. In contrast to other sgr mutants reported previously, almost all amyloplasts in the endodermal cells of the sgr5-1 mutant sedimented in the direction of gravity. Taken together, our results suggest that SGR5 may be involved in an early event in shoot gravitropism such as gravity perception and/or a signaling process subsequent to amyloplast sedimentation as a putative transcription factor in gravity-perceptive cells.
Bortiri, Esteban; Chuck, George; Vollbrecht, Erik; Rocheford, Torbert; Martienssen, Rob; Hake, Sarah
2006-03-01
Genetic control of grass inflorescence architecture is critical given that cereal seeds provide most of the world's food. Seeds are borne on axillary branches, which arise from groups of stem cells in axils of leaves and whose branching patterns dictate most of the variation in plant form. Normal maize (Zea mays) ears are unbranched, and tassels have long branches only at their base. The ramosa2 (ra2) mutant of maize has increased branching with short branches replaced by long, indeterminate ones. ra2 was cloned by chromosome walking and shown to encode a LATERAL ORGAN BOUNDARY domain transcription factor. ra2 is transiently expressed in a group of cells that predicts the position of axillary meristem formation in inflorescences. Expression in different mutant backgrounds places ra2 upstream of other genes that regulate branch formation. The early expression of ra2 suggests that it functions in the patterning of stem cells in axillary meristems. Alignment of ra2-like sequences reveals a grass-specific domain in the C terminus that is not found in Arabidopsis thaliana. The ra2-dm allele suggests this domain is required for transcriptional activation of ra1. The ra2 expression pattern is conserved in rice (Oryza sativa), barley (Hordeum vulgare), sorghum (Sorghum bicolor), and maize, suggesting that ra2 is critical for shaping the initial steps of grass inflorescence architecture.
Johnsson, A; Solheim, B G B; Iversen, T-H
2009-01-01
In a microgravity experiment onboard the International Space Station, circumnutations of Arabidopsis thaliana were studied. Plants were cultivated on rotors under a light:dark (LD) cycle of 16 : 8 h, and it was possible to apply controlled centrifugation pulses. Time-lapse images of inflorescence stems (primary, primary axillary and lateral inflorescences) documented the effect of microgravity on the circumnutations. Self-sustained circumnutations of side stems were present in microgravity but amplitudes were mostly very small. In darkness, centrifugation at 0.8 g increased the amplitude by a factor of five to ten. The period at 0.8 g was c. 85 min, in microgravity roughly of the same magnitude. In white light the period decreased to c. 60 min at 0.8 g (microgravity value not measurable). Three-dimensional data showed that under 0.8 g side stems rotated in both clockwise and counter-clockwise directions. Circumnutation data for the main stem in light showed a doubling of the amplitude and a longer period at 0.8 g than in microgravity (c. 80 vs 60 min). For the first time, the importance of gravity in amplifying minute oscillatory movements in microgravity into high-amplitude circumnutations was unequivocally demonstrated. The importance of these findings for the modelling of gravity effects on self-sustained oscillatory movements is discussed.
Sato, Atsuko; Sasaki, Shu; Matsuzaki, Jun; Yamamoto, Kotaro T
2014-09-01
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.
Photosynthate partitioning during flowering in relation to senescence of spinach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sklensky, D.; Davies, P.J.
1990-05-01
Male spinach plants are frequently cited as a counter-example to the nutrient drain hypothesis. Photosynthate partitioning in both male and female plants was examined. Leaves just below the inflorescences in plants at various stages of flowering were labelled with {sup 14}CO{sub 2} and the photosynthate allowed to partition for three hours. The leaves, flowers and stems of the inflorescence, and the other above ground vegetative tissue were harvested. These parts were combusted in a sample oxidizer for the collection of the {sup 14}CO{sub 2}. Allocation to the male and female flowers at very early stages are similar. As the flowersmore » develop further, male flowers receive more photosynthate than do female flowers in early fruit production. Thus it is possible that nutrient drain to the flowers in male spinach plants is sufficient to account for senescence.« less
Effect of variety on content of bioactive phenolic compounds in common elder (Sambucus nigra L.).
Vrchotová, Naděžda; Dadáková, Eva; Matějíček, Aleš; Tříska, Jan; Kaplan, Jiří
2017-03-01
The inflorescence of common elder (Sambucus nigra L., Adoxaceae) is known to be rich in phenolic compounds. The content of five selected phenolic compounds (rutin, chlorogenic acid, isoquercitrin, isorhamnetin-3-O- rutinoside and dicaffeoylquinic acid) was determined in methanolic extracts from flowers and floral stems by HPLC in samples obtained from 20 varieties of S. nigra cultivated in Czech Republic. In all samples, there were determined rutin (11-54 mg/g), chlorogenic acid (23-46 mg/g), isoquercitrin (0.6-18 mg/g), isorhamnetin-3-O-rutinoside (3-10 mg/g), calculated on air-dried material. The content of dicaffeoylquinic acid was 0-13 mg/g of air-dried material. The amount of the analysed compounds in floral stems was lower than the flowers. The results are a unique set of information on the content of main phenolics in the inflorescence of cultured elderberry varieties.
Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height.
Davière, Jean-Michel; Wild, Michael; Regnault, Thomas; Baumberger, Nicolas; Eisler, Herfried; Genschik, Pascal; Achard, Patrick
2014-08-18
Regulation of plant height, one of the most important agronomic traits, is the focus of intensive research for improving crop performance. Stem elongation takes place as a result of repeated cell divisions and subsequent elongation of cells produced by apical and intercalary meristems. The gibberellin (GA) phytohormones have long been known to control stem and internodal elongation by stimulating the degradation of nuclear growth-repressing DELLA proteins; however, the mechanism allowing GA-responsive growth is only slowly emerging. Here, we show that DELLAs directly regulate the activity of the plant-specific class I TCP transcription factor family, key regulators of cell proliferation. Our results demonstrate that class I TCP factors directly bind the promoters of core cell-cycle genes in Arabidopsis inflorescence shoot apices while DELLAs block TCP function by binding to their DNA-recognition domain. GAs antagonize such repression by promoting DELLA destruction and therefore cause a concomitant accumulation of TCP factors on promoters of cell-cycle genes. Consistent with this model, the quadruple mutant tcp8 tcp14 tcp15 tcp22 exhibits severe dwarfism and reduced responsiveness to GA action. Altogether, we conclude that GA-regulated DELLA-TCP interactions in inflorescence shoot apex provide a novel mechanism to control plant height. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecology and management of tansy ragwort (Senecio jacobaea L.)
Jim Jacobs; Sharlene Sing
2009-01-01
Tansy ragwort, a member of the Asteraceae taxonomic family, is a large biennial or short-lived perennial herb native to and widespread throughout Europe and Asia. Stems can grow to a height of 5.5 feet (1.75 meters), with the lower half simple and the upper half many-branched at the inflorescence. Reproductive stems produce up to 2,500 bright golden-yellow flowers....
Saito, Chieko; Morita, Miyo T.; Kato, Takehide; Tasaka, Masao
2005-01-01
We developed an adequate method for the in vivo analysis of organelle dynamics in the gravity-perceptive cell (endodermis) of the Arabidopsis thaliana inflorescence stem, revealing behavior of amyloplasts and vacuolar membranes in those cells. Amyloplasts in the endodermis showed saltatory movements even before gravistimulation by reorientation, and these movements were confirmed as microfilament dependent. From our quantitative analysis in the wild type, the gravity-oriented movement of amyloplasts mainly occurred during 0 to 3 min after gravistimulation by reorientation, supporting findings from our previous physiological study. Even after microfilament disruption, the gravity-oriented movement of amyloplasts remained. By contrast, in zig/sgr4 mutants, where a SNARE molecule functioning in vacuole biogenesis has been disrupted, the movement of amyloplasts in the endodermis is severely restricted both before and after gravistimulation by reorientation. Here, we describe vacuolar membrane behavior in these cells in the wild-type, actin filament–disrupted, and zig/sgr4 mutants and discuss its putatively important features for the perception of gravity. We also discuss the data on the two kinds of movements of amyloplasts that may play an important role in gravitropism: (1) the leading edge amyloplasts and (2) the en mass movement of amyloplasts. PMID:15689424
Sussmilch, Frances C.; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K.; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L.
2015-01-01
As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. PMID:25804541
Liu, Juan; Franks, Robert G.; Feng, Chun-Miao; Liu, Xiang; Fu, Cheng-Xin; (Jenny) Xiang, Qiu-Yun
2013-01-01
Background and Aims LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. Methods Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT–PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. Key Results cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. Conclusions The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories. PMID:24052556
Liu, Juan; Franks, Robert G; Feng, Chun-Miao; Liu, Xiang; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun
2013-11-01
LFY homologues encode transcription factors that regulate the transition from vegetative to reproductive growth in flowering plants and have been shown to control inflorescence patterning in model species. This study investigated the expression patterns of LFY homologues within the diverse inflorescence types (head-like, umbel-like and inflorescences with elongated internodes) in closely related lineages in the dogwood genus (Cornus s.l.). The study sought to determine whether LFY homologues in Cornus species are expressed during floral and inflorescence development and if the pattern of expression is consistent with a function in regulating floral development and inflorescence architectures in the genus. Total RNAs were extracted using the CTAB method and the first-strand cDNA was synthesized using the SuperScript III first-strand synthesis system kit (Invitrogen). Expression of CorLFY was investigated by RT-PCR and RNA in situ hybridization. Phylogenetic analyses were conducted using the maximum likelihood methods implemented in RAxML-HPC v7.2.8. cDNA clones of LFY homologues (designated CorLFY) were isolated from six Cornus species bearing different types of inflorescence. CorLFY cDNAs were predicted to encode proteins of approximately 375 amino acids. The detection of CorLFY expression patterns using in situ RNA hybridization demonstrated the expression of CorLFY within the inflorescence meristems, inflorescence branch meristems, floral meristems and developing floral organ primordia. PCR analyses for cDNA libraries derived from reverse transcription of total RNAs showed that CorLFY was also expressed during the late-stage development of flowers and inflorescences, as well as in bracts and developing leaves. Consistent differences in the CorLFY expression patterns were not detected among the distinct inflorescence types. The results suggest a role for CorLFY genes during floral and inflorescence development in dogwoods. However, the failure to detect expression differences between the inflorescence types in the Cornus species analysed suggests that the evolutionary shift between major inflorescence types in the genus is not controlled by dramatic alterations in the levels of CorLFY gene transcript accumulation. However, due to spatial, temporal and quantitative limitations of the expression data, it cannot be ruled out that subtle differences in the level or location of CorLFY transcripts may underlie the different inflorescence architectures that are observed across these species. Alternatively, differences in CorLFY protein function or the expression or function of other regulators (e.g. TFL1 and UFO homologues) may support the divergent developmental trajectories.
Poyatos-Pertíñez, Sandra; Quinet, Muriel; Ortíz-Atienza, Ana; Bretones, Sandra; Yuste-Lisbona, Fernando J; Lozano, Rafael
2016-09-01
Genetic interactions of UFD gene support its specific function during reproductive development of tomato; in this process, UFD could play a pivotal role between inflorescence architecture and flower initiation genes. Tomato (Solanum lycopersicum L.) is a major vegetable crop that also constitutes a model species for the study of plant developmental processes. To gain insight into the control of flowering and floral development, a novel tomato mutant, unfinished flower development (ufd), whose inflorescence and flowers were unable to complete their normal development was characterized using double mutant and gene expression analyses. Genetic interactions of ufd with mutations affecting inflorescence fate (uniflora, jointless and single flower truss) were additive and resulted in double mutants displaying the inflorescence structure of the non-ufd parental mutant and the flower phenotype of the ufd mutant. In addition, ufd mutation promotes an earlier inflorescence meristem termination. Taken together, both results indicated that UFD is not involved in the maintenance of inflorescence meristem identity, although it could participate in the regulatory system that modulates the rate of meristem maturation. Regarding the floral meristem identity, the falsiflora mutation was epistatic to the ufd mutation even though FALSIFLORA was upregulated in ufd inflorescences. In terms of floral organ identity, the ufd mutation was epistatic to macrocalyx, and MACROCALYX expression was differently regulated depending on the inflorescence developmental stage. These results suggest that the UFD gene may play a pivotal role between the genes required for flowering initiation and inflorescence development (such as UNIFLORA, FALSIFLORA, JOINTLESS and SINGLE FLOWER TRUSS) and those required for further floral organ development such as the floral organ identity genes.
Regulatory role of AINTEGUMENTA in organ initiation and growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krizek, Beth Allyn; Lebioda, Lukasz
2005-03-01
Although several members of the plant-specific AP2/ERF family of transcription factors are important developmental regulators, many genes in this large protein family remain uncharacterized. Here, we present a phylogenetic analysis of the18 genes that make up the AP2 subgroup of this family. We report expression analyses of seven Arabidopsis genes most closely related to the floral development gene AINTEGUMENTA and show that all AINTEGUMENTA-like (AIL) genes are transcribed in multiple tissues during development. They are expressed primarily in young actively dividing tissues of a plant and not in mature leaves or stems. The spatial distribution of AIL5, AIL6, and AIL7more » mRNA in inflorescences was characterized by in situ hybridization. Each of these genes is expressed in a spatially and temporally distinct pattern within inflorescence meristems and flowers. Ectopic expression of AIL5 resulted in a larger floral organ phenotype, similar to that resulting from ectopic expression of ANT. Our results are consistent with AIL genes having roles in specification of meristematic or division-competent states.« less
Orčić, Dejan; Francišković, Marina; Bekvalac, Kristina; Svirčev, Emilija; Beara, Ivana; Lesjak, Marija; Mimica-Dukić, Neda
2014-01-15
A method for quantification of 45 plant phenolics (including benzoic acids, cinnamic acids, flavonoid aglycones, C- and O-glycosides, coumarins, and lignans) in plant extracts was developed, based on reversed phase HPLC separation of extract components, followed by tandem mass spectrometric detection. The phenolic profile of 80% MeOH extracts of the stinging nettle (Urtica dioica L.) herb, root, stem, leaf and inflorescence was obtained by using this method. Twenty-one of the investigated compounds were present at levels above the reliable quantification limit, with 5-O-caffeoylquinic acid, rutin and isoquercitrin as the most abundant. The inflorescence extracts were by far the richest in phenolics, with the investigated compounds amounting 2.5-5.1% by weight. As opposed to this, the root extracts were poor in phenolics, with only several acids and derivatives being present in significant amounts. The results obtained by the developed method represent the most detailed U. dioica chemical profile so far. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sussmilch, Frances C; Berbel, Ana; Hecht, Valérie; Vander Schoor, Jacqueline K; Ferrándiz, Cristina; Madueño, Francisco; Weller, James L
2015-04-01
As knowledge of the gene networks regulating inflorescence development in Arabidopsis thaliana improves, the current challenge is to characterize this system in different groups of crop species with different inflorescence architecture. Pea (Pisum sativum) has served as a model for development of the compound raceme, characteristic of many legume species, and in this study, we characterize the pea VEGETATIVE2 (VEG2) locus, showing that it is critical for regulation of flowering and inflorescence development and identifying it as a homolog of the bZIP transcription factor FD. Through detailed phenotypic characterizations of veg2 mutants, expression analyses, and the use of protein-protein interaction assays, we find that VEG2 has important roles during each stage of development of the pea compound inflorescence. Our results suggest that VEG2 acts in conjunction with multiple FLOWERING LOCUS T (FT) proteins to regulate expression of downstream target genes, including TERMINAL FLOWER1, LEAFY, and MADS box homologs, and to facilitate cross-regulation within the FT gene family. These findings further extend our understanding of the mechanisms underlying compound inflorescence development in pea and may have wider implications for future manipulation of inflorescence architecture in related legume crop species. © 2015 American Society of Plant Biologists. All rights reserved.
Flavonoids act as negative regulators of auxin transport in vivo in arabidopsis
NASA Technical Reports Server (NTRS)
Brown, D. E.; Rashotte, A. M.; Murphy, A. S.; Normanly, J.; Tague, B. W.; Peer, W. A.; Taiz, L.; Muday, G. K.
2001-01-01
Polar transport of the plant hormone auxin controls many aspects of plant growth and development. A number of synthetic compounds have been shown to block the process of auxin transport by inhibition of the auxin efflux carrier complex. These synthetic auxin transport inhibitors may act by mimicking endogenous molecules. Flavonoids, a class of secondary plant metabolic compounds, have been suggested to be auxin transport inhibitors based on their in vitro activity. The hypothesis that flavonoids regulate auxin transport in vivo was tested in Arabidopsis by comparing wild-type (WT) and transparent testa (tt4) plants with a mutation in the gene encoding the first enzyme in flavonoid biosynthesis, chalcone synthase. In a comparison between tt4 and WT plants, phenotypic differences were observed, including three times as many secondary inflorescence stems, reduced plant height, decreased stem diameter, and increased secondary root development. Growth of WT Arabidopsis plants on naringenin, a biosynthetic precursor to those flavonoids with auxin transport inhibitor activity in vitro, leads to a reduction in root growth and gravitropism, similar to the effects of synthetic auxin transport inhibitors. Analyses of auxin transport in the inflorescence and hypocotyl of independent tt4 alleles indicate that auxin transport is elevated in plants with a tt4 mutation. In hypocotyls of tt4, this elevated transport is reversed when flavonoids are synthesized by growth of plants on the flavonoid precursor, naringenin. These results are consistent with a role for flavonoids as endogenous regulators of auxin transport.
Transcriptional Analysis of Tendril and Inflorescence Development in Grapevine (Vitis vinifera L.)
Díaz-Riquelme, José; Martínez-Zapater, José M.; Carmona, María J.
2014-01-01
In grapevine (Vitis vinifera L.), the lateral meristem can give rise to either tendrils or inflorescences which are determined organs. To get insights into the processes of tendril and inflorescence development, we characterized the transcriptional variation taking place in both organs. The results of the global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs initially share a common transcriptional program related to cell proliferation and growth functions. In later developmental stages they showed organ specific gene expression programs related to the particular differentiation processes taking place in each organ. In this way, tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences displayed higher transcriptional activity for genes encoding transcription factors, mainly those belonging to the MADS-box gene family. The expression profiles of selected transcription factors related with inflorescence and flower meristem identity and with flower organogenesis were generally conserved with respect to their homologs in model species. Regarding tendrils, it was interesting to find that genes related with reproductive development in other species were also recruited for grapevine tendril development. These results suggest a role for those genes in the regulation of basic cellular mechanisms common to both developmental processes. PMID:24637773
Pitaksaringkarn, Weerasak; Matsuoka, Keita; Asahina, Masashi; Miura, Kenji; Sage-Ono, Kimiyo; Ono, Michiyuki; Yokoyama, Ryusuke; Nishitani, Kazuhiko; Ishii, Tadashi; Iwai, Hiroaki; Satoh, Shinobu
2014-11-01
One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K.; Dyer, John M.; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Jenks, Matthew A.
2017-01-01
We report n-6 monounsaturated primary alcohols (C26:1, C28:1, and C30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4’s principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation’s effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. PMID:28069670
Yang, Xianpeng; Zhao, Huayan; Kosma, Dylan K; Tomasi, Pernell; Dyer, John M; Li, Rongjun; Liu, Xiulin; Wang, Zhouya; Parsons, Eugene P; Jenks, Matthew A; Lü, Shiyou
2017-02-01
We report n-6 monounsaturated primary alcohols (C 26:1 , C 28:1 , and C 30:1 homologs) in the cuticular waxes of Arabidopsis (Arabidopsis thaliana) inflorescence stem, a class of wax not previously reported in Arabidopsis. The Arabidopsis cer17 mutant was completely deficient in these monounsaturated alcohols, and CER17 was found to encode a predicted ACYL-COENZYME A DESATURASE LIKE4 (ADS4). Studies of the Arabidopsis cer4 mutant and yeast variously expressing CER4 (a predicted fatty acyl-CoA reductase) with CER17/ADS4, demonstrated CER4's principal role in synthesis of these monounsaturated alcohols. Besides unsaturated alcohol deficiency, cer17 mutants exhibited a thickened and irregular cuticle ultrastructure and increased amounts of cutin monomers. Although unsaturated alcohols were absent throughout the cer17 stem, the mutation's effects on cutin monomers and cuticle ultrastructure were much more severe in distal than basal stems, consistent with observations that the CER17/ADS4 transcript was much more abundant in distal than basal stems. Furthermore, distal but not basal stems of a double mutant deficient for both CER17/ADS4 and LONG-CHAIN ACYL-COA SYNTHETASE1 produced even more cutin monomers and a thicker and more disorganized cuticle ultrastructure and higher cuticle permeability than observed for wild type or either mutant parent, indicating a dramatic genetic interaction on conversion of very long chain acyl-CoA precursors. These results provide evidence that CER17/ADS4 performs n-6 desaturation of very long chain acyl-CoAs in both distal and basal stems and has a major function associated with governing cutin monomer amounts primarily in the distal segments of the inflorescence stem. © 2017 American Society of Plant Biologists. All Rights Reserved.
Eljounaidi, K; Comino, C; Moglia, A; Cankar, K; Genre, A; Hehn, A; Bourgaud, F; Beekwilder, J; Lanteri, S
2015-10-01
Globe artichoke (Cynara cardunculus var. scolymus) belongs to the Asteraceae family, in which one of the most biologically significant class of secondary metabolites are sesquiterpene lactones (STLs). In globe artichoke the principal STL is the cynaropicrin, which contributes to approximately 80% of its characteristic bitter taste. Cynaropicrin content was assessed in globe artichoke tissues and was observed to accumulate in leaves of different developmental stages. In the receptacle, a progressive decrease was observed during inflorescence development, while the STL could not be detected in the inflorescence bracts. Almost undetectable amounts were found in the roots and inflorescence stems at the commercial stage. Cynaropicrin content was found to correlate with expression of genes encoding CcGAS, CcGAO and CcCOS, which are involved in the STL biosynthesis. A more detailed study of leaf material revealed that cynaropicrin predominantly accumulates in the trichomes, and not in the apoplastic cavity fluids. Analysis of the promoter regions of CcGAO and CcCOS revealed the presence of L1-box motifs, which confers trichome-specific expression in Arabidopsis, suggesting that cynaropicrin is not only stored but also synthesized in trichomes. A transient expression of GFP fusion proteins was performed in Nicotiana benthamiana plants: the CcGAS fluorescence signal was located in the cytoplasm while the CcGAO and CcCOS localized to the endoplasmatic reticulum. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
endodermal-amyloplast less 1 is a novel allele of SHORT-ROOT
NASA Astrophysics Data System (ADS)
Morita, Miyo T.; Saito, Chieko; Nakano, Akihiko; Tasaka, Masao
Plants can sense the direction of gravity and change the growth orientation of their organs. Arabidopsis mutants have been isolated and characterized in order to elucidate the molecular mechanisms of gravitropism. endodermal-amyloplast less 1 ( eal1) is a unique mutant that completely lacks gravitropism in inflorescence stems and exhibits reduced gravitropism in hypocotyls, whereas its roots showed normal gravitropism. Previously, it was suggested that differentiation or development of amyloplasts in shoot statocytes (endodermal cells) is affected by the eal1 mutation. Here, we have identified EAL1 as a SHORT-ROOT ( SHR) allele based on map position. Three nucleotides in the SHR coding region were deleted in the eal1 mutant, resulting in the deletion of just one amino acid. The protein encoded by the novel allele of SHR appears to have retained its function as a transcription factor since the endodermal cell layer was formed both in roots and in shoots of eal1. SCARECROW (SCR) promoter activity monitored by reporter protein expression was significantly decreased in eal1, suggesting that the activity of SHR lacking one amino acid is reduced. In addition, transcription levels of SHOOT GRAVITROPISM 5 (SGR5), which is mainly expressed in the endodermis of inflorescence stems, was markedly decreased. Together with the presence of abnormal endodermal amyloplasts in eal1, these results strongly suggest that the endodermis observed in eal1 is not sufficiently differentiated to execute shoot gravitropism.
Bioactive xanthones from the roots of Hypericum perforatum (common St John's Wort)
USDA-ARS?s Scientific Manuscript database
In contemporary western alternative medicine, extracts of the inflorescences and upper stem leaves of Hypericum perforatum L. (common St. John’s Wort; Clusiaceae) are taken orally for the treatment of mild to moderate depression and applied topically to promote wound-healing. Numerous researchers h...
Dong, Zhaobin; Jin, Weiwei
2013-01-01
Auxin has been found to control both gravitropism and inflorescence development in plant. Auxin transport has also been demonstrated to be responsible for tropism. Maize, a key agricultural crop, has distinct male (tassel) and female (ear) inflorescence, and this morphogenesis depends on auxin maximum and gradient. The classic maize mutant lazy plant1 (la1) has defective gravitropic response. The mechanism underlining maize gravitropism remains unclear. Recently, we isolated the ZmLA1 gene by map-based cloning, and our findings suggest that ZmLA1 might mediate the crosstalk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and auxin-mediated light response in maize. Here, we propose a model describing the ZmLA1-mediated complex interactions among auxin, gravity, light, and inflorescent development.
Yamburenko, Maria V; Kieber, Joseph J; Schaller, G Eric
2017-01-01
Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.
Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis
Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo
2015-01-01
Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats. PMID:26452406
Adaptive thermal control of stem gravitropism through alternative RNA splicing in Arabidopsis.
Ryu, Jae Yong; Kim, Joo-Young; Park, Chung-Mo
2015-01-01
Gravitropism is an important growth movement in response to gravity in virtually all higher plants: the roots showing positive gravitropism and the shoots showing negative gravitropism. The gravitropic orientation of plant organs is also influenced by environmental factors, such as light and temperature. It is known that a zinc finger (ZF)-containing transcription factor SHOOT GRAVITROPISM 5/INDETERMINATE DOMAIN 15 (SGR5/IDD15) mediates the early events of gravitropic responses occurring in inflorescence stems. We have recently found that SGR5 gene undergoes alternative splicing to produce 2 protein variants, the full-size SGR5α transcription factor and the truncated SGR5β form lacking functional ZF motifs. The SGR5β form inhibits SGR5α function possibly by forming nonfunctional heterodimers that are excluded from DNA binding. Notably, SGR5 alternative splicing is accelerated at high temperatures, resulting in a high-level accumulation of SGR5β proteins. Accordingly, transgenic plants overexpressing SGR5β exhibit a reduction in the negative gravitropism of inflorescence stems, as observed in the SGR5-defective mutant. It is proposed that the thermos-responsive alternative splicing of SGR5 gene provides an adaptation strategy by which plants protect the shoots from aerial heat frequently occurring in natural habitats.
Papilionoid inflorescences revisited (Leguminosae-Papilionoideae).
Prenner, Gerhard
2013-11-01
The inflorescence structure determines the spatiotemporal arrangement of the flowers during anthesis and is therefore vital for reproductive success. The Leguminosae are among the largest angiosperm plant families and they include some important crop plants. In papilionoid legumes, the raceme is the most common type of inflorescence. However, a range of other inflorescence types have evolved via various developmental processes. A (re-)investigation of inflorescences in Swainsona formosa, Cicer arietinum, Abrus precatorius, Hardenbergia violacea and Kennedia nigricans leads to new insights into reduction mechanisms and to a new hypothesis on the evolution of the papilionoid pseudoraceme. Inflorescence morphology and ontogeny were studied using scanning electron microscopy (SEM). The inflorescence in S. formosa is an umbel with a rare type of pendulum symmetry which may be triggered by the subtending leaf. Inflorescences in C. arietinum are reduced to a single flower. An early formed adaxial bulge is the sterile apex of the inflorescence (i.e. the inflorescence is open and not terminated by a flower). In partial inflorescences of A. precatorius, the axis is reduced and its meristem is relocated towards the main inflorescence. Flower initiation follows a peculiar pendulum pattern. Partial inflorescences in H. violacea and in K. nigricans show reduction tendencies. In both taxa, initiated but early reduced bracteoles are present. Pendulum symmetry in S. formosa is probably associated with distichous phyllotaxis. In C. arietinum, strong reduction tendencies are revealed. Based on studies of A. precatorius, the papilionoid pseudoraceme is reinterpreted as a compound raceme with condensed lateral axes. From an Abrus-like inflorescence, other types can be derived via reduction of flower number and synchronization of flower development. A plea is made for uniform usage of inflorescence terminology.
Papilionoid inflorescences revisited (Leguminosae-Papilionoideae)
Prenner, Gerhard
2013-01-01
Background and Aims The inflorescence structure determines the spatiotemporal arrangement of the flowers during anthesis and is therefore vital for reproductive success. The Leguminosae are among the largest angiosperm plant families and they include some important crop plants. In papilionoid legumes, the raceme is the most common type of inflorescence. However, a range of other inflorescence types have evolved via various developmental processes. A (re-)investigation of inflorescences in Swainsona formosa, Cicer arietinum, Abrus precatorius, Hardenbergia violacea and Kennedia nigricans leads to new insights into reduction mechanisms and to a new hypothesis on the evolution of the papilionoid pseudoraceme. Methods Inflorescence morphology and ontogeny were studied using scanning electron microscopy (SEM). Key Results The inflorescence in S. formosa is an umbel with a rare type of pendulum symmetry which may be triggered by the subtending leaf. Inflorescences in C. arietinum are reduced to a single flower. An early formed adaxial bulge is the sterile apex of the inflorescence (i.e. the inflorescence is open and not terminated by a flower). In partial inflorescences of A. precatorius, the axis is reduced and its meristem is relocated towards the main inflorescence. Flower initiation follows a peculiar pendulum pattern. Partial inflorescences in H. violacea and in K. nigricans show reduction tendencies. In both taxa, initiated but early reduced bracteoles are present. Conclusions Pendulum symmetry in S. formosa is probably associated with distichous phyllotaxis. In C. arietinum, strong reduction tendencies are revealed. Based on studies of A. precatorius, the papilionoid pseudoraceme is reinterpreted as a compound raceme with condensed lateral axes. From an Abrus-like inflorescence, other types can be derived via reduction of flower number and synchronization of flower development. A plea is made for uniform usage of inflorescence terminology. PMID:23235698
NASA Technical Reports Server (NTRS)
Wyatt, Sarah E.; Rashotte, Aaron M.; Shipp, Matthew J.; Robertson, Dominique; Muday, Gloria K.; Brown, C. S. (Principal Investigator)
2002-01-01
Gravity plays a fundamental role in plant growth and development, yet little is understood about the early events of gravitropism. To identify genes affected in the signal perception and/or transduction phase of the gravity response, a mutant screen was devised using cold treatment to delay the gravity response of inflorescence stems of Arabidopsis. Inflorescence stems of Arabidopsis show no response to gravistimulation at 4 degrees C for up to 3 h. However, when gravistimulated at 4 degrees C and then returned to vertical at room temperature (RT), stems bend in response to the previous, horizontal gravistimulation (H. Fukaki, H. Fujisawa, M. Tasaka [1996] Plant Physiology 110: 933-943). This indicates that gravity perception, but not the gravitropic response, occurs at 4 degrees C. Recessive mutations were identified at three loci using this cold effect on gravitropism to screen for gravity persistence signal (gps) mutants. All three mutants had an altered response after gravistimulation at 4 degrees C, yet had phenotypically normal responses to stimulations at RT. gps1-1 did not bend in response to the 4 degrees C gravity stimulus upon return to RT. gps2-1 responded to the 4 degrees C stimulus but bent in the opposite direction. gps3-1 over-responded after return to RT, continuing to bend to an angle greater than wild-type plants. At 4 degrees C, starch-containing statoliths sedimented normally in both wild-type and the gps mutants, but auxin transport was abolished at 4 degrees C. These results are consistent with GPS loci affecting an aspect of the gravity signal perception/transduction pathway that occurs after statolith sedimentation, but before auxin transport.
Ligarreto, Gustavo A; Patiño, Maria del Pilar; Magnitskiy, Stanislav V
2011-06-01
Vaccinium meridionale is a promising crop for the Andean region of South America and is currently available only in the wild. Spontaneous populations of this plant are found across the Colombian mountains, but very few published records on this plant morphology are available. A zonification study of V. meridionale was conducted in four principal areas of a low mountain forest of Colombia (Provinces of Boyacá, Cundinamarca, Santander and Nariño) in 2007. A total of 20 populations and 100 plants of V. meridionale were individually characterized and surveyed, using a list of 26 characters of morphological variables (9 quantitative and 17 qualitative characters). Our results indicated that natural populations of V. meridionale might be found in the tropical forest under a highly heterogeneous climate and microclimate conditions, at different mountain regions between 2 357 and 3 168masl. The shrubs of V. meridionale exhibited a high level of intra-population variation in several quantitative (plant height, stem diameter) and qualitative (growth habit, ramification density, presence of anthocyanins in stems) morphological characters, suggesting an environmentally induced phenotypic plasticity. Plant height, stem diameter and foliar density were the most variable morphological traits, with coefficients of variation higher than 50%. However, several quantitative characters of its reproductive potential, such as berry dimensions, rachis length and number of flowers per inflorescence, resulted with low plasticity with coefficients of variation lower than 30.2%, indicating that these characters were genetically determined. The highest correlation coefficients (p < 0.05) resulted to be between fruit length and fruit width (0.90), leaf length and leaf width (0.78), plant height and stem diameter (0.60), and inflorescence length and flowers number per inflorescence (0.57). The results suggest that an important genetic resource exists for this species in the wild. Low variation in fruit size, which constitutes a target trait for plant breeders, could be useful for selection of cultivars of V. meridionale. The results of this study could also be applied in conservation programs aimed to protect these diverse populations in the mountain forests of Colombia.
Comparative inflorescence development in selected Andean Santalales.
Suaza-Gaviria, Vanessa; González, Favio; Pabón-Mora, Natalia
2017-01-01
Loranthaceae, Santalaceae, and Viscaceae are the most diversified hemiparasitic families of Santalales in the Andes. Their partial inflorescences (PIs) vary from solitary flowers, or dichasia in most Santalales, to congested floral groups along articles in most Viscaceae. The atypical articled inflorescences in Phoradendreae (Viscaceae), a phylogenetic novelty restricted to this tribe, have been variously described as racemes, spikes, fascicles, or as intercalary inflorescences, but no developmental studies have been performed to compare them with the construction of PIs across Santalales. We used standard light microscopy and scanning electron microscopy to record the inflorescence development in members of Phoradendreae (Viscaceae) in comparison to those in species of Aetanthus, Gaiadendron, Oryctanthus, Passovia, and Peristethium (Loranthaceae) and Antidaphne (Santalaceae). Morphological and developmental comparisons as well as optimization onto a phylogenetic framework indicate that individual inflorescences in Santalales are indeterminate and are formed by axillary cymose PIs. The latter correspond to dichasia, either simple, compound, or variously reduced by abortion of lateral flowers, abortion of the terminal flower, or loss of bracteoles. Dichasia are plesiomorphic in Santalales. These results favor the interpretation that inflorescences in Phoradendreae are formed by the fusion of serial dichasia (=floral rows) with the main inflorescence axis via syndesmy. We compared this interpretation with the competing one based on the co-occurrence of collateral and serial floral buds. © 2017 Botanical Society of America.
Development of an efficient Procedure for Resist Wall Space Experiment
NASA Astrophysics Data System (ADS)
Matsumoto, Shouhei; Kumasaki, Saori; Higuchi, Sayoko; Kirihata, Kuniaki; Inoue, Yasue; Fujie, Miho; Soga, Kouichi; Wakabayashi, Kazuyuki; Hoson, Takayuki
The Resist Wall space experiment aims to examine the role of the cortical microtubule-plasma membrane-cell wall continuum in plant resistance to the gravitational force, thereby clarifying the mechanism of gravity resistance. For this purpose, we will cultivate Arabidopsis mutants defective in organization of cortical microtubules (tua6 ) or synthesis of membrane sterols (hmg1 ) as well as the wild type under microgravity and 1 g conditions in the European Modular Cultivation System on the International Space Station up to reproductive stage, and compare phenotypes on growth and development. We will also analyze cell wall properties and gene expression levels using collected materials. However, the amounts of materials collected will be severely limited, and we should develop an efficient procedure for this space experiment. In the present study, we examined the possibility of analyzing various parameters successively using the identical material. On orbit, plant materials will be fixed with RNAlater solution, kept at 4° C for several days and then frozen in a freezer at -20° C. We first examined whether the cell wall extensibility of inflorescence stems can be measured after RNAlater fixation. The gradient of the cell wall extensibility along inflorescence stems was detected in RNAlater-fixed materials as in methanol-killed ones. The sufficient amounts of RNA to analyze the gene expression were also obtained from the materials after measurement of the cell wall extensibility. Furthermore, the levels and composition of cell wall polysaccharides could be measured using the materials after extraction of RNA. These results show that we can analyze the physical and chemical properties of the cell wall as well as gene expression using the identical material obtained in the space experiments.
Modelling the dynamics of polar auxin transport in inflorescence stems of Arabidopsis thaliana
Boot, Kees J.M.; Hille, Sander C.; Libbenga, Kees R.; Peletier, Lambertus A.; van Spronsen, Paulina C.; van Duijn, Bert; Offringa, Remko
2016-01-01
The polar transport of the plant hormone auxin has been the subject of many studies, several involving mathematical modelling. Unfortunately, most of these models have not been experimentally verified. Here we present experimental measurements of long-distance polar auxin transport (PAT) in segments of inflorescence stems of Arabidopsis thaliana together with a descriptive mathematical model that was developed from these data. It is based on a general advection–diffusion equation for auxin density, as suggested by the chemiosmotic theory, but is extended to incorporate both immobilization of auxin and exchange with the surrounding tissue of cells involved in PAT, in order to account for crucial observations. We found that development of the present model assisted effectively in the analysis of experimental observations. As an example, we discuss the analysis of a quadruple mutant for all four AUX1/LAX1–LAX3 influx carriers genes. We found a drastic change in the parameters governing the exchange of PAT channels with the surrounding tissue, whereas the velocity was still of the order of magnitude of the wild type. In addition, the steady-state flux of auxin through the PAT system of the mutant did not exhibit a saturable component, as we found for the wild type, suggesting that the import carriers are responsible for the saturable component in the wild type. In the accompanying Supplementary data available at JXB online, we describe in more detail the data-driven development of the model, review and derive predictions from a mathematical model of the chemiosmotic theory, and explore relationships between parameters in our model and processes and parameters at the cellular level. PMID:26531101
An, Lijun; Zhou, Zhongjing; Su, Sha; Yan, An; Gan, Yinbo
2012-02-01
Cell differentiation generally corresponds to the cell cycle, typically forming a non-dividing cell with a unique differentiated morphology, and Arabidopsis trichome is an excellent model system to study all aspects of cell differentiation. Although gibberellic acid is reported to be involved in trichome branching in Arabidopsis, the mechanism for such signaling is unclear. Here, we demonstrated that GLABROUS INFLORESCENCE STEMS (GIS) is required for the control of trichome branching through gibberellic acid signaling. The phenotypes of a loss-of-function gis mutant and an overexpressor showed that GIS acted as a repressor to control trichome branching. Our results also show that GIS is not required for cell endoreduplication, and our molecular and genetic study results have shown that GIS functions downstream of the key regulator of trichome branching, STICHEL (STI), to control trichome branching through the endoreduplication-independent pathway. Furthermore, our results also suggest that GIS controls trichome branching in Arabidopsis through two different pathways and acts either upstream or downstream of the negative regulator of gibbellic acid signaling SPINDLY (SPY).
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.
1999-01-01
Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.
Greenwood, Julian R.; Bencivenga, Stefano; Cockram, James; Cavanagh, Colin; Swain, Steve M.
2018-01-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 (TB1) regulates inflorescence architecture in bread wheat (Triticum aestivum) by investigating lines that display a form of inflorescence branching known as “paired spikelets.” We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. PMID:29444813
Dixon, Laura E; Greenwood, Julian R; Bencivenga, Stefano; Zhang, Peng; Cockram, James; Mellers, Gregory; Ramm, Kerrie; Cavanagh, Colin; Swain, Steve M; Boden, Scott A
2018-03-01
The flowers of major cereals are arranged on reproductive branches known as spikelets, which group together to form an inflorescence. Diversity for inflorescence architecture has been exploited during domestication to increase crop yields, and genetic variation for this trait has potential to further boost grain production. Multiple genes that regulate inflorescence architecture have been identified by studying alleles that modify gene activity or dosage; however, little is known in wheat. Here, we show TEOSINTE BRANCHED1 ( TB1 ) regulates inflorescence architecture in bread wheat ( Triticum aestivum ) by investigating lines that display a form of inflorescence branching known as "paired spikelets." We show that TB1 interacts with FLOWERING LOCUS T1 and that increased dosage of TB1 alters inflorescence architecture and growth rate in a process that includes reduced expression of meristem identity genes, with allelic diversity for TB1 found to associate genetically with paired spikelet development in modern cultivars. We propose TB1 coordinates formation of axillary spikelets during the vegetative to floral transition and that alleles known to modify dosage or function of TB1 could help increase wheat yields. © 2018 American Society of Plant Biologists. All rights reserved.
Guitton, Yann; Nicolè, Florence; Moja, Sandrine; Valot, Nadine; Legrand, Sylvain; Jullien, Frédéric; Legendre, Laurent
2010-02-01
Despite the commercial importance of Lavandula angustifolia Mill. and L. x intermedia Emeric ex Loisel floral essential oils (EOs), no information is currently available on potential changes in individual volatile organic compound (VOC) content during inflorescence development. Calyces were found to be the main sites of VOC accumulation. The 20 most abundant VOCs could be separated into three sub-groups according to their patterns of change in concentration The three groups of VOCs sequentially dominated the global scent bouquet of inflorescences, the transition between the first and second groups occurring around the opening of the first flower of the inflorescence and the one between the second and third groups at the start of seed set. Changes in calyx VOC accumulation were linked to the developmental stage of individual flowers. Leaves accumulated a smaller number of VOCs which were a subset of those seen in preflowering inflorescences. Their nature and content remained constant during the growing season. Quantitative real time polymerase chain reaction assessments of the expression of two terpene synthase (TPS) genes, LaLIMS and LaLINS, revealed similar trends between their patterns of expression and those of their VOC products. Molecular and chemical analyses suggest that changes in TPS expression occur during lavender inflorescence development and lead to changes in EO composition. Both molecular data and terpene analysis support the findings that changes in biosynthesis of terpene occurred during inflorescence development.
Grass meristems II: inflorescence architecture, flower development and meristem fate.
Tanaka, Wakana; Pautler, Michael; Jackson, David; Hirano, Hiro-Yuki
2013-03-01
Plant development depends on the activity of various types of meristems that generate organs such as leaves and floral organs throughout the life cycle. Grass species produce complex inflorescences and unique flowers. The grass inflorescence is composed of different types of branches, including a specialized branch called a spikelet. The spikelet is a special unit of the inflorescence and forms one to several florets, depending on the species. In the floret, floral organs such as perianth organs, carpels and stamens are formed. In Arabidopsis, because the inflorescence meristem (IM) forms the floral meristems (FMs) directly on its flanks, the change of meristem fate is relatively simple. In contrast, in grasses, different types of meristem, such as the IM, the branch meristem (BM), the spikelet pair meristem (SPM) in some grasses, the spikelet meristem (SM) and the FM, are responsible for the elaboration of their complex inflorescences and flowers. Therefore, sequential changes of meristem fate are required, and a number of genes involved in the specification of the fate of each meristem have been identified. In this review, we focus on the following issues concerning the fate of the reproductive meristems in two grass species, maize (Zea mays) and rice (Oryza sativa): (i) meristem regulation during inflorescence development; (ii) specification and fate change of the BM and the SM; (iii) determinacy of the FM; and (iv) communication between the meristem and lateral organs.
Harder, Lawrence D.; Prusinkiewicz, Przemyslaw
2013-01-01
Background Most angiosperms present flowers in inflorescences, which play roles in reproduction, primarily related to pollination, beyond those served by individual flowers alone. An inflorescence's overall reproductive contribution depends primarily on the three-dimensional arrangement of the floral canopy and its dynamics during its flowering period. These features depend in turn on characteristics of the underlying branching structure (scaffold) that supports and supplies water and nutrients to the floral canopy. This scaffold is produced by developmental algorithms that are genetically specified and hormonally mediated. Thus, the extensive inflorescence diversity evident among angiosperms evolves through changes in the developmental programmes that specify scaffold characteristics, which in turn modify canopy features that promote reproductive performance in a particular pollination and mating environment. Nevertheless, developmental and ecological aspects of inflorescences have typically been studied independently, limiting comprehensive understanding of the relations between inflorescence form, reproductive function, and evolution. Scope This review fosters an integrated perspective on inflorescences by summarizing aspects of their development and pollination function that enable and guide inflorescence evolution and diversification. Conclusions The architecture of flowering inflorescences comprises three related components: topology (branching patterns, flower number), geometry (phyllotaxis, internode and pedicel lengths, three-dimensional flower arrangement) and phenology (flower opening rate and longevity, dichogamy). Genetic and developmental evidence reveals that these components are largely subject to quantitative control. Consequently, inflorescence evolution proceeds along a multidimensional continuum. Nevertheless, some combinations of topology, geometry and phenology are represented more commonly than others, because they serve reproductive function particularly effectively. For wind-pollinated species, these combinations often represent compromise solutions to the conflicting physical influences on pollen removal, transport and deposition. For animal-pollinated species, dominant selective influences include the conflicting benefits of large displays for attracting pollinators and of small displays for limiting among-flower self-pollination. The variety of architectural components that comprise inflorescences enable diverse resolutions of these conflicts. PMID:23243190
Hepworth, Shelley R; Klenz, Jennifer E; Haughn, George W
2006-03-01
The UNUSUAL FLORAL ORGANS (UFO) gene of Arabidopsis encodes an F-box protein required for the determination of floral-organ and floral-meristem identity. Mutation of UFO leads to dramatic changes in floral-organ type which are well-characterized whereas inflorescence defects are more subtle and less understood. These defects include an increase in the number of secondary inflorescences, nodes that alternate between forming flowers and secondary inflorescences, and nodes in which a single flower is subtended by a bract. Here, we show how inflorescence defects correlate with the abnormal development of floral primordia and establish a temporal requirement for UFO in this process. At the inflorescence apex of ufo mutants, newly formed primordia are initially bract-like. Expression of the floral-meristem identity genes LFY and AP1 are confined to a relatively small adaxial region of these primordia with expression of the bract-identity marker FIL observed in cells that comprise the balance of the primordia. Proliferation of cells in the adaxial region of these early primordia is delayed by several nodes such that primordia appear "chimeric" at several nodes, having visible floral and bract components. However, by late stage 2 of floral development, growth of the bract generally ceases and is overtaken by development of the floral primordium. This abnormal pattern of floral meristem development is not rescued by expression of UFO from the AP1 promoter, indicating that UFO is required prior to AP1 activation for normal development of floral primordia. We propose that UFO and LFY are jointly required in the inflorescence meristem to both promote floral meristem development and inhibit, in a non-cell autonomous manner, growth of the bract.
Meristem identity and phyllotaxis in inflorescence development
Bartlett, Madelaine E.; Thompson, Beth
2014-01-01
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology. PMID:25352850
Meristem identity and phyllotaxis in inflorescence development.
Bartlett, Madelaine E; Thompson, Beth
2014-01-01
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.
USDA-ARS?s Scientific Manuscript database
We report here n-6 mono-unsaturated primary alcohols (the C26:1, C28:1, and C30:1 homologues) in the cuticular waxes of Arabidopsis inflorescence stem, a class of wax compound not previously reported in Arabidopsis. Further, we used mutation and transgenic complementation analyses to demonstrate tha...
Leonard, M; Kinet, J M; Bodson, M; Havelange, A; Jacqmard, A; Bernier, G
1981-06-01
Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences.Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus.
Plackett, Andrew R G; Powers, Stephen J; Phillips, Andy L; Wilson, Zoe A; Hedden, Peter; Thomas, Stephen G
2018-06-01
Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.
Chen, Mao-Sheng; Pan, Bang-Zhen; Wang, Gui-Juan; Ni, Jun; Niu, Longjian; Xu, Zeng-Fu
2014-11-30
Jatropha curcas L. is a potential biofuel plant. Application of exogenous cytokinin (6-benzyladenine, BA) on its inflorescence buds can significantly increase the number of female flowers, thereby improving seed yield. To investigate which genes and signal pathways are involved in the response to cytokinin in J. curcas inflorescence buds, we monitored transcriptional activity in inflorescences at 0, 3, 12, 24, and 48 h after BA treatment using a microarray. We detected 5,555 differentially expressed transcripts over the course of the experiment, which could be grouped into 12 distinct temporal expression patterns. We also identified 31 and 131 transcripts in J. curcas whose homologs in model plants function in flowering and phytohormonal signaling pathways, respectively. According to the transcriptional analysis of genes involved in flower development, we hypothesized that BA treatment delays floral organ formation by inhibiting the transcription of the A, B and E classes of floral organ-identity genes, which would allow more time to generate more floral primordia in inflorescence meristems, thereby enhancing inflorescence branching and significantly increasing flower number per inflorescence. BA treatment might also play an important role in maintaining the flowering signals by activating the transcription of GIGANTEA (GI) and inactivating the transcription of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and TERMINAL FLOWER 1b (TFL1b). In addition, exogenous cytokinin treatment could regulate the expression of genes involved in the metabolism and signaling of other phytohormones, indicating that cytokinin and other phytohormones jointly regulate flower development in J. curcas inflorescence buds. Our study provides a framework to better understand the molecular mechanisms underlying changes in flowering traits in response to cytokinin treatment in J. curcas inflorescence buds. The results provide valuable information related to the mechanisms of cross-talk among multiple phytohormone signaling pathways in woody plants.
Early inflorescence development in the grasses (Poaceae)
Kellogg, Elizabeth A.; Camara, Paulo E. A. S.; Rudall, Paula J.; Ladd, Philip; Malcomber, Simon T.; Whipple, Clinton J.; Doust, Andrew N.
2013-01-01
The shoot apical meristem of grasses produces the primary branches of the inflorescence, controlling inflorescence architecture and hence seed production. Whereas leaves are produced in a distichous pattern, with the primordia separated from each other by an angle of 180°, inflorescence branches are produced in a spiral in most species. The morphology and developmental genetics of the shift in phyllotaxis have been studied extensively in maize and rice. However, in wheat, Brachypodium, and oats, all in the grass subfamily Pooideae, the change in phyllotaxis does not occur; primary inflorescence branches are produced distichously. It is unknown whether the distichous inflorescence originated at the base of Pooideae, or whether it appeared several times independently. In this study, we show that Brachyelytrum, the genus sister to all other Pooideae has spiral phyllotaxis in the inflorescence, but that in the remaining 3000+ species of Pooideae, the phyllotaxis is two-ranked. These two-ranked inflorescences are not perfectly symmetrical, and have a clear “front” and “back;” this developmental axis has never been described in the literature and it is unclear what establishes its polarity. Strictly distichous inflorescences appear somewhat later in the evolution of the subfamily. Two-ranked inflorescences also appear in a few grass outgroups and sporadically elsewhere in the family, but unlike in Pooideae do not generally correlate with a major radiation of species. After production of branches, the inflorescence meristem may be converted to a spikelet meristem or may simply abort; this developmental decision appears to be independent of the branching pattern. PMID:23898335
The evolution of sex ratio differences and inflorescence architectures in Begonia (Begoniaceae).
Twyford, Alex D; Ennos, Richard A; White, Chris D; Ali, Mobina Shaukat; Kidner, Catherine A
2014-02-01
A major benefit conferred by monoecy is the ability to alter floral sex ratio in response to selection. In monoecious species that produce flowers of a given sex at set positions on the inflorescence, floral sex ratio may be related to inflorescence architecture. We studied the loci underlying differences in inflorescence architecture between two monoecious Begonia species and related this to floral sex ratios. We performed trait comparisons and quantitative trait locus (QTL) mapping in a segregating backcross population between Central American Begonia plebeja and B. conchifolia. We focused on traits related to inflorescence architecture, sex ratios, and other reproductive traits. The inflorescence branching pattern of B. conchifolia was more asymmetric than B. plebeja, which in turn affects the floral sex ratio. Colocalizing QTLs of moderate effect influenced both the number of male flowers and the fate decisions of axillary meristems, demonstrating the close link between inflorescence architecture and sex ratio. Additional QTLs were found for stamen number (30% variance explained, VE) and pollen sterility (12.3% VE). One way in which Begonia species develop different floral sex ratios is through modifications of their inflorescence architecture. The potential pleiotropic action of QTL on inflorescence branching and floral sex ratios may have major implications for trait evolution and responses to selection. The presence of a single QTL of large effect on stamen number may allow rapid divergence for this key floral trait. We propose candidate loci for stamen number and inflorescence branching for future characterization.
Propagation protocol for production of Lomatium triternatum (Pursh) Coulter and Rose seeds
Derek Tilley; Loren St. John; Dan Ogle; Nancy Shaw; Jim Cane
2012-01-01
Nineleaf biscuit is native to western North America, occurring from northeastern California to British Columbia and east to Alberta and Colorado. Seed matures in July or August. Wildland seed is easily hand collected. The seed disarticulates readily from the stems, and very clean, small collections can be made by shaking ripened inflorescences over a bag or tarp.
A Universal Role for Inositol 1,4,5-Trisphosphate-Mediated Signaling in Plant Gravitropism1[W
Perera, Imara Y.; Hung, Chiu-Yueh; Brady, Shari; Muday, Gloria K.; Boss, Wendy F.
2006-01-01
Inositol 1,4,5-trisphosphate (InsP3) has been implicated in the early signaling events of plants linking gravity sensing to the initiation of the gravitropic response. However, at present, the contribution of the phosphoinositide signaling pathway in plant gravitropism is not well understood. To delineate the role of InsP3 in plant gravitropism, we generated Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme that specifically hydrolyzes InsP3. The transgenic plants show no significant differences in growth and life cycle compared to wild-type plants, although basal InsP3 levels are reduced by greater than 90% compared to wild-type plants. With gravistimulation, InsP3 levels in inflorescence stems of transgenic plants show no detectable change, whereas in wild-type plant inflorescences, InsP3 levels increase approximately 3-fold within the first 5 to 15 min of gravistimulation, preceding visible bending. Furthermore, gravitropic bending of the roots, hypocotyls, and inflorescence stems of the InsP 5-ptase transgenic plants is reduced by approximately 30% compared with the wild type. Additionally, the cold memory response of the transgenic plants is attenuated, indicating that InsP3 contributes to gravisignaling in the cold. The transgenic roots were shown to have altered calcium sensitivity in controlling gravitropic response, a reduction in basipetal indole-3-acetic acid transport, and a delay in the asymmetric auxin-induced β-glucuronidase expression with gravistimulation as compared to the controls. The compromised gravitropic response in all the major axes of growth in the transgenic Arabidopsis plants reveals a universal role for InsP3 in the gravity signal transduction cascade of plants. PMID:16384898
Constituents of areca chewing related to esophageal cancer risk in Taiwanese men.
Wu, M-T; Wu, D-C; Hsu, H-K; Kao, E-L; Lee, J-M
2004-01-01
Two most common types of areca chewing are noted in Taiwan: raw betel fruit with Piper betle inflorescence or folded in betel leaf. Piper betle inflorescence contains carcinogens, whereas betel leaf includes anticarcinogenic agents. One hundred and twenty-six esophageal squamous-cell-carcinoma patients and 279 healthy controls, all men, were analyzed. Areca chewers were 4.4 times (95% CI, 2.2-8.8) more likely to develop esophageal cancer than non-chewers. Sixty-five of the patients were areca chewers, of which, 61 (93.9%) chewed areca with Piper betle inflorescence, none chewed it with betel leaf and four (6.1%) chewed both. Of the 24 controls who were chewers, 10 (41.7%), three (12.5%) and 11 (45.8%) chewed areca with Piper betle inflorescence, betel leaf, and both, respectively. Multivariate analysis showed that subjects who chewed areca with Piper betle inflorescence were 24.4 times (95% CI 3.9-154.4) more likely to develop esophageal cancer than those who chewed areca with betel leaf or with both leaf and inflorescence. Our epidemiologic findings suggest parts of the same Piper plant contains carcinogenic and anticarcinogenic substances.
Gourieroux, Aude M; Holzapfel, Bruno P; McCully, Margaret E; Scollary, Geoffrey R; Rogiers, Suzy Y
2017-09-01
The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA 3 ) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.
Sporisorium reilianum Infection Changes Inflorescence and Branching Architectures of Maize1[C][W][OA
Ghareeb, Hassan; Becker, Annette; Iven, Tim; Feussner, Ivo; Schirawski, Jan
2011-01-01
Sporisorium reilianum is a biotrophic maize (Zea mays) pathogen of increasing economic importance. Symptoms become obvious at flowering time, when the fungus causes spore formation and phyllody in the inflorescences. To understand how S. reilianum changes the inflorescence and floral developmental program of its host plant, we investigated the induced morphological and transcriptional alterations. S. reilianum infection promoted the outgrowth of subapical ears, suggesting that fungal presence suppressed apical dominance. Female inflorescences showed two distinct morphologies, here termed “leafy ear” and “eary ear.” In leafy ears, all floral organs were replaced by vegetative organs. In eary ears, modified carpels enclosed a new female inflorescence harboring additional female inflorescences at every spikelet position. Similar changes in meristem fate and organ identity were observed in the tassel of infected plants, which formed male inflorescences at spikelet positions. Thus, S. reilianum triggered a loss of organ and meristem identity and a loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied by transcriptional regulation of genes proposed to regulate floral organ and meristem identity as well as meristem determinacy in maize. S. reilianum colonization also led to a 30% increase in the total auxin content of the inflorescence as well as a dramatic accumulation of reactive oxygen species. We propose a model describing the architectural changes of infected inflorescence as a consequence of transcriptional, hormonal, and redox modulation, which will be the basis for further molecular investigation of the underlying mechanism of S. reilianum-induced alteration of floral development. PMID:21653782
Evolutionary origin of the Asteraceae capitulum: Insights from Calyceraceae.
Pozner, Raúl; Zanotti, Christian; Johnson, Leigh A
2012-01-01
Phylogenies based on molecular data are revealing that generalizations about complex morphological structures often obscure variation and developmental patterns important for understanding the evolution of forms, as is the case for inflorescence morphology within the well-supported MGCA clade (Menyanthaceae + Goodeniaceae + Calyceraceae + Asteraceae). While the basal families share a basic thyrsic/thyrsoid structure of their inflorescences, Asteraceae possesses a capitulum that is widely interpreted as a racemose, condensed inflorescence. Elucidating the poorly known inflorescence structure of Calyceraceae, sister to Asteraceae, should help clarify how the Asteraceae capitulum evolved from thyrsic/thyrsoid inflorescences. The early development and structure of the inflorescence of eight species (five genera) of Calyceraceae were studied by SEM, and patterns of evolutionary change were interpreted via phylogenetic character mapping. The basic inflorescence structure of Calyceraceae is a cephalioid (a very condensed botryoid/thyrsoid). Optimization of inflorescence characters on a DNA sequence-derived tree suggests that the Asteraceae capitulum derives from a simple cephalioid through two morphological changes: loss of the terminal flower and suppression of the cymose branching pattern in the peripheral branches. Widely understood as a condensed raceme, the Asteraceae capitulum is the evolutionary result of a very reduced, condensed thyrsoid. Starting from that point, evolution worked separately only on the racemose developmental control/pattern within Asteraceae and mainly on the cymose developmental control/pattern within Calyceraceae, producing head-like inflorescences in both groups but with very different diversification potential. We also discuss possible remnants of the ancestral cephalioid structure in some Asteraceae.
AGO1 controls arabidopsis inflorescence architecture possibly by regulating TFL1 expression.
Fernández-Nohales, P; Domenech, M J; Martínez de Alba, A E; Micol, J L; Ponce, M R; Madueño, F
2014-11-01
The TERMINAL FLOWER 1 (TFL1) gene is pivotal in the control of inflorescence architecture in arabidopsis. Thus, tfl1 mutants flower early and have a very short inflorescence phase, while TFL1-overexpressing plants have extended vegetative and inflorescence phases, producing many coflorescences. TFL1 is expressed in the shoot meristems, never in the flowers. In the inflorescence apex, TFL1 keeps the floral genes LEAFY (LFY) and APETALA1 (AP1) restricted to the flower, while LFY and AP1 restrict TFL1 to the inflorescence meristem. In spite of the central role of TFL1 in inflorescence architecture, regulation of its expression is poorly understood. This study aims to expand the understanding of inflorescence development by identifying and studying novel TFL1 regulators. Mutagenesis of an Arabidopsis thaliana line carrying a TFL1::GUS (β-glucuronidase) reporter construct was used to isolate a mutant with altered TFL1 expression. The mutated gene was identified by positional cloning. Expression of TFL1 and TFL1::GUS was analysed by real-time PCR and histochemical GUS detection. Double-mutant analysis was used to assess the contribution of TFL1 to the inflorescence mutant phenotype. A mutant with both an increased number of coflorescences and high and ectopic TFL1 expression was isolated. Cloning of the mutated gene showed that both phenotypes were caused by a mutation in the ARGONAUTE1 (AGO1) gene, which encodes a key component of the RNA silencing machinery. Analysis of another ago1 allele indicated that the proliferation of coflorescences and ectopic TFL1 expression phenotypes are not allele specific. The increased number of coflorescences is suppressed in ago1 tfl1 double mutants. The results identify AGO1 as a repressor of TFL1 expression. Moreover, they reveal a novel role for AGO1 in inflorescence development, controlling the production of coflorescences. AGO1 seems to play this role through regulating TFL1 expression. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Govender, Nisha; Senan, Siju; Mohamed-Hussein, Zeti-Azura; Wickneswari, Ratnam
2018-06-15
The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
NASA Astrophysics Data System (ADS)
Sampaio, Bruno Leite; Edrada-Ebel, Ruangelie; da Costa, Fernando Batista
2016-07-01
Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.
Sampaio, Bruno Leite; Edrada-Ebel, RuAngelie; Da Costa, Fernando Batista
2016-01-01
Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant’s metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts. PMID:27383265
Sampaio, Bruno Leite; Edrada-Ebel, RuAngelie; Da Costa, Fernando Batista
2016-07-07
Tithonia diversifolia is an invasive weed commonly found in tropical ecosystems. In this work, we investigate the influence of different abiotic environmental factors on the plant's metabolite profile by multivariate statistical analyses of spectral data deduced by UHPLC-DAD-ESI-HRMS and NMR methods. Different plant part samples of T. diversifolia which included leaves, stems, roots, and inflorescences were collected from two Brazilian states throughout a 24-month period, along with the corresponding monthly environmental data. A metabolomic approach employing concatenated LC-MS and NMR data was utilised for the first time to study the relationships between environment and plant metabolism. A seasonal pattern was observed for the occurrence of metabolites that included sugars, sesquiterpenes lactones and phenolics in the leaf and stem parts, which can be correlated to the amount of rainfall and changes in temperature. The distribution of the metabolites in the inflorescence and root parts were mainly affected by variation of some soil nutrients such as Ca, Mg, P, K and Cu. We highlight the environment-metabolism relationship for T. diversifolia and the combined analytical approach to obtain reliable data that contributed to a holistic understanding of the influence of abiotic environmental factors on the production of metabolites in various plant parts.
Regulation of Black Pepper Inflorescence Quantity by Shading at Different Growth Stages.
Zu, Chao; Wu, Guiping; Li, Zhigang; Yang, Jianfeng; Wang, Can; Yu, Huan; Wu, Huasong
2016-07-01
Black pepper is a perennial plant that can bloom throughout the year. It is generally expected that pepper inflorescence quantity could be minimized at the nonfull-bloom stage. The objective of this study was to find an appropriate shading measure that could inhibit blooming at other growing stages except the full-bloom stage and did not cause any reduction in pepper yield and quality. In this study, pepper trees were shaded up to 15%, 30%, 60% and 75%, respectively, and the inflorescence quantity, photosynthetic characteristics, pepper yield and quality traits were investigated at every growing stage. The results showed that the effect of shading on pepper yield decreased as time progressed. Shading treatment did not alter the composition of piperine and volatile oil, but reduced the moisture content. Based on the correlation between photosynthetic parameter and inflorescence number, the appropriate shading intensities for regulating inflorescence quantity at different phenological stages were determined. Moreover, it was found that the regulation of inflorescence quantity could be achieved by controlling leaf temperature during recovery to filling period. This research outcome also will give us some guidelines to develop other management strategies that control leaf temperature and regulate inflorescence quantity to consequently improve pepper yield. © 2016 The American Society of Photobiology.
Badenes-Péérez, F. R.; Alfaro-Alpíízar, M. A.; Johnson, M. T.
2010-01-01
Larvae of three species of hairstreak butterflies in the subfamily Theclinae (Lepidoptera: Lycaenidae) were found feeding on developing inflorescences, flower buds, and immature fruits of the velvet tree, Miconia calvescens DC. (Myrtales: Melastomataceae) in Costa Rica. Erora opisena (Druce), Parrhasius polibetes (Cramer), and Temecla paron (Godman and Salvin) were studied in association with M. calvescens, an uncommon tree in its natural range in the neotropics and a target for biocontrol as an invader in Pacific islands. Host plant use by the three theclines was similar, with eggs being laid on inflorescences and cryptic larvae remaining there throughout development. Feeding damage by E. opisena was most abundant in pre-flowering M. calvescens, when 23% of inflorescences showed feeding damage characteristic of this species. Feeding damage by T. paron peaked at flowering, when 30% of inflorescences were affected. At field sites, E. opisena and T. paron damaged an average of 26 and 18% of each attacked inflorescence, respectively. In cage experiments, individual third- and fourth-instar larvae of E. opisena damaged an average of 24 and 21% of an inflorescence before pupating, respectively. This study provides the first host plant record for E. opisena and T. paron, the first record of P. polibetes feeding on Melastomataceae, and the first records of E. opisena and T. paron presence in Costa Rica. PMID:21265617
Roles of jasmonate signalling in plant inflorescence and flower development.
Yuan, Zheng; Zhang, Dabing
2015-10-01
Development of inflorescences and flowers in plants is controlled by the combined action of environmental and genetic signals. Investigations reveal that the phytohormone jasmonate (JA) plays a critical function in plant reproduction such as male fertility, sex determination and seed maturation. Here, we review recent progress on JA synthesis, signalling, the interplay between JAs and other hormones, and regulatory network of JA in controlling the development of inflorescence, flower and the male organ. The conserved and diversified roles of JAs in meristem transition and specification of flower organ identity and number, and multiple regulatory networks of JAs in stamen development are highlighted. Further, this review provides perspectives on future research endeavors to elucidate mechanisms underlying JAs homeostasis and transport during plant reproductive development. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu
2017-01-01
Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 (KNAT6), MYC2, SHI-RELATED SEQUENCE 5 (SRS5), SHORT VEGETATIVE PHASE (SVP), TERMINAL FLOWER 1 (TFL1), and TASSELSEED2 (TS2), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas. Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA3) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas. Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system. PMID:28144243
Chen, Mao-Sheng; Pan, Bang-Zhen; Fu, Qiantang; Tao, Yan-Bin; Martínez-Herrera, Jorge; Niu, Longjian; Ni, Jun; Dong, Yuling; Zhao, Mei-Li; Xu, Zeng-Fu
2016-01-01
Most germplasms of the biofuel plant Jatropha curcas are monoecious. A gynoecious genotype of J. curcas was found, whose male flowers are aborted at early stage of inflorescence development. To investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a comparative transcriptome analysis between gynoecious and monoecious inflorescences were performed. A total of 3,749 genes differentially expressed in two developmental stages of inflorescences were identified. Among them, 32 genes were involved in floral development, and 70 in phytohormone biosynthesis and signaling pathways. Six genes homologous to KNOTTED1-LIKE HOMEOBOX GENE 6 ( KNAT6 ), MYC2 , SHI-RELATED SEQUENCE 5 ( SRS5 ), SHORT VEGETATIVE PHASE ( SVP ), TERMINAL FLOWER 1 ( TFL1 ), and TASSELSEED2 ( TS2 ), which control floral development, were considered as candidate regulators that may be involved in sex differentiation in J. curcas . Abscisic acid, auxin, gibberellin, and jasmonate biosynthesis were lower, whereas cytokinin biosynthesis was higher in gynoecious than that in monoecious inflorescences. Moreover, the exogenous application of gibberellic acid (GA 3 ) promoted perianth development in male flowers and partly prevented pistil development in female flowers to generate neutral flowers in gynoecious inflorescences. The arrest of stamen primordium at early development stage probably causes the abortion of male flowers to generate gynoecious individuals. These results suggest that some floral development genes and phytohormone signaling pathways orchestrate the process of sex determination in J. curcas . Our study provides a basic framework for the regulation networks of sex determination in J. curcas and will be helpful for elucidating the evolution of the plant reproductive system.
Fuentes, Sara; Pires, Nuno; Østergaard, Lars
2010-08-01
The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.
The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems.
Min, Ya; Kramer, Elena M
2017-10-01
In order to explore the functional conservation of JAGGED, a key gene involved in the sculpting of lateral organs in several model species, we identified its ortholog AqJAG in the lower eudicot species Aquilegia coerulea. We analyzed the expression patterns of AqJAG in various tissues and developmental stages, and used RNAi-based methods to generate knockdown phenotypes of AqJAG. AqJAG was strongly expressed in shoot apices, floral meristems, lateral root primordia and all lateral organ primordia. Silencing of AqJAG revealed a wide range of defects in the developing stems, leaves and flowers; strongest phenotypes include severe reduction of leaflet laminae due to a decrease in cell size and number, change of adaxial cell identity, outgrowth of laminar-like tissue on the inflorescence stem, and early arrest of floral meristems and floral organ primordia. Our results indicate that AqJAG plays a critical role in controlling primordia initiation and distal growth of floral organs, and laminar development of leaflets. Most strikingly, we demonstrated that AqJAG disproportionally controls the behavior of cells with adaxial identity in vegetative tissues, providing evidence of how cell proliferation is controlled in an identity-specific manner. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Tameshige, Toshiaki; Ikematsu, Shuka; Torii, Keiko U; Uchida, Naoyuki
2017-01-01
Plant cells communicate with each other using a variety of signaling molecules. Recent studies have revealed that various types of secreted peptides, as well as phytohormones known since long ago, mediate cell-cell communication in diverse contexts of plant life. These peptides affect cellular activities, such as proliferation and cell fate decisions, through their perception by cell surface receptors located on the plasma membrane of target cells. ERECTA (ER), an Arabidopsis thaliana receptor kinase gene, was first identified as a stem growth regulator, and since then an increasing number of studies have shown that ER is involved in a wide range of developmental and physiological processes. In particular, molecular functions of ER have been extensively studied in stomatal patterning. Furthermore, the importance of ER signaling in vascular tissues of inflorescence stems, especially in phloem cells, has recently been highlighted. In this review article, first we briefly summarize the history of ER research including studies on stomatal development, then introduce ER functions in vascular tissues, and discuss its interactions with phytohormones and other receptor kinase signaling pathways. Future questions and challenges will also be addressed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Reproductive mode of Polygonum viviparum depends on environment
NASA Astrophysics Data System (ADS)
Tomita, Miki; Masuzawa, Takehiro
2010-05-01
We investigated the effects of microenvironmental conditions on the reproductive characteristics of Polygonum viviparum in the Southern Alps of Japan. We examined environmental differences and the distribution of P. viviparum at four study sites on the southeast-facing cirque of Mt Maedake. P. viviparum was found at two sites, where the humic loam layer was well developed on the soil surface. The timing of snowmelt differed considerably between these two sites. On average, the ratio of flowers to bulbils per inflorescence was low and the production of bulbils was high in the population experiencing later snowmelt. The mean maximum leaf area, number of flowers per inflorescence, and fresh weight of bulbils decreased with decreasing length of the growing season. In contrast, the number of individuals without inflorescences increased with decreasing length of the growing season. The starch content of the rhizomes of each individual was similar, regardless of the presence of flowers in the inflorescence. Within rhizomes, the starch content in the old rhizome was lower than that in the new and central portions of the rhizome. The starch content of the old rhizome was higher in individuals without inflorescences; starch appeared to be consumed for inflorescence production.
Shima, N; Xiao, L Z; Sakuramoto, F; Ichikawa, S
1997-12-12
The use of young inflorescence-bearing shoots with roots of Tradescantia clone BNL 4430 cultivated in a nutrient solution circulating (NSC) growth chamber was tested and developed as an alternative method for using Tradescantia plants in mutagenicity testings. The NSC growth chamber was designed for our requirements, based on trial cultivations of the shoots with roots in its smaller-sized prototype. The nutrient solution used was a 1/2500 Hyponex solution. The characteristics of this clone, i.e., many new shoots constantly emerging from the basal nodes one after another and its short height favorable for early flowering, made it possible to prepare many young inflorescence-bearing shoots with roots at one time. A simplified NSC cultivation system could also be developed at a lower cost, and by using it together with the NSC growth chamber, recycling of untreated materials was established for supplying steadily enough amounts of young inflorescence-bearing shoots with roots for mutagenicity testings. Compared with traditional methods of using potted plants or cuttings, the new method exhibited more stable flower production, better stamen-hair growth and a significantly lower spontaneous (background) mutation frequency, and could produce more inflorescences per space. The use of such young inflorescence-bearing shoots with roots was therefore judged to be satisfactory to serve as a new mutagenicity test system alternating with potted plants and cuttings.
Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture
Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan
2013-01-01
In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032
Ko, Jae-Heung; Han, Kyung-Hwan; Park, Sunchung; Yang, Jaemo
2004-06-01
Wood is an important raw material and environmentally cost-effective renewable source of energy. However, the molecular biology of wood formation (i.e. secondary growth) is surprisingly understudied. A novel experimental system was employed to study the molecular regulation of secondary xylem formation in Arabidopsis. First, we demonstrate that the weight carried by the stem is a primary signal for the induction of cambium differentiation and the plant hormone, auxin, is a downstream carrier of the signal for this process. We used Arabidopsis whole-transcriptome (23 K) GeneChip analysis to examine gene expression profile changes in the inflorescent stems treated for wood formation by cultural manipulation or artificial weight application. Many of the genes up-regulated in wood-forming stems had auxin responsive cis-acting elements in their promoter region, indicating auxin-mediated regulation of secondary growth. We identified 700 genes that were differentially expressed during the transition from primary growth to secondary growth. More than 40% of the genes that were up-regulated (>5x) were associated with signal transduction and transcriptional regulation. Biological significance of these regulatory genes is discussed in light of the induction and development of secondary xylem.
The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem.
Frerichs, Anneke; Thoma, Rahere; Abdallah, Ali Taleb; Frommolt, Peter; Werr, Wolfgang; Chandler, John William
2016-11-03
Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.
Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout
2014-01-01
ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601
Chen, Lih-Jen; Herrfurth, Cornelia
2016-01-01
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA. PMID:26721860
Frederickson, Megan E
2009-05-01
The evolutionary stability of mutualism is thought to depend on how well the fitness interests of partners are aligned. Because most ant-myrmecophyte mutualisms are persistent and horizontally transmitted, partners share an interest in growth but not in reproduction. Resources invested in reproduction are unavailable for growth, giving rise to a conflict of interest between partners. I investigated whether this explains why Allomerus octoarticulatus ants sterilize Cordia nodosa trees. Allomerus octoarticulatus nests in the hollow stem domatia of C. nodosa. Workers protect C. nodosa leaves against herbivores but destroy inflorescences. Using C. nodosa trees with Azteca ants, which do not sterilize their hosts, I cut inflorescences off trees to simulate sterilization by A. octoarticulatus. Sterilized C. nodosa grew faster than control trees, providing evidence for a trade-off between growth and reproduction. Allomerus octoarticulatus manipulates this trade-off to its advantage; sterilized trees produce more domatia and can house larger, more fecund colonies.
BATEMAN, RICHARD M.; RUDALL, PAULA J.
2006-01-01
• Background and Aims This study explores the previously largely ignored morphological variation that occurs among flowers within a single inflorescence. • Methods Variation in four metric parameters (labellum length and width, spur length and width) that together strongly influence pollination frequency is documented within the simple racemose inflorescences of eight individuals that represent a primary hybrid and six species of European orchids. • Key Results Regression of each parameter against the location of each flower on the inflorescence, and calculation of correlation coefficients for each pair of parameters within each inflorescence, demonstrate significant decoupling of labellum and spur development, despite the fact that they are different portions of the same floral organ. Spur length and diameter are constant across inflorescences of Dactylorhiza other than the vestigial-spurred D. viridis, whereas in other genera spur length declines in parallel with labellum dimensions. These differences are likely to reflect selection pressures or developmental constraints. Strong negative deviations from the regression line for one or more parameters are evident in occasional flowers, occurring most frequently in the lowermost and uppermost one or two flowers, and so reflecting transitions in meristematic behaviour. Thus, population-level morphometric studies are best conducted on flowers taken from approximately the mid-point of the inflorescence. Moreover, in the two relatively large inflorescences where lower flowers were removed for measurement before the upper flowers had opened, labellum size increased significantly in the flowers immediately above the excisions, suggesting that excision liberated resources that were diverted into the opening buds. Repeat measurement of all flowers from one selected inflorescence demonstrated typical measurement errors of only ± 30–80 μm, irrespective of the size of the structure studied. If flowers are not mounted and measured immediately following excision, modest negative deviations of 30–50 μm result from post-mounting shrinkage; this occurs less rapidly in the spur than in the thinner labellum, which should therefore be measured first. Variation in all four parameters among all the flowers of a single inflorescence is between 42 % and 107 % of that observed between a similar number of flowers sampled from a consistent location on different (but conspecific and coexisting) inflorescences. • Conclusions This result demonstrates the strong influence of epigenesis on flower morphology and further emphasizes the importance of (a) sampling from a consistent location within the inflorescences under comparison, (b) interpreting morphometric ordinations hierarchically, building from individuals to infraspecific taxa and species via populations, and (c) considering in any microevolutionary study the potentially profound effects of the cline in flower size within each inflorescence. PMID:17018569
Xu, Liping; Zeisler, Viktoria; Schreiber, Lukas; Gao, Jie; Hu, Kaining; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong
2017-01-01
The cuticle is composed of cutin and cuticular wax. It covers the surfaces of land plants and protects them against environmental damage. At5g02890 encodes a novel protein in Arabidopsis thaliana. In the current study, protein sequence analysis showed that At5g02890 is highly conserved in the Brassicaceae. Arabidopsis lines overexpressing At5g02890 (OE-At5g02890 lines) and an At5g02890 orthologous gene from Brassica napus (OE-Bn1 lines) exhibited glossy stems. Chemical analysis revealed that overexpression of At5g02890 caused significant reductions in the levels of wax components longer than 28 carbons (C28) in inflorescence stems, whereas the levels of wax molecules of chain length C28 or shorter were significantly increased. Transcriptome analysis indicated that nine of 11 cuticular wax synthesis-related genes with different expression levels in OE-At5g02890 plants are involved in very-long-chain fatty acid (VLCFA) elongation. At5g02890 is localized to the endoplasmic reticulum (ER), which is consistent with its function in cuticular wax biosynthesis. These results demonstrate that the overexpression of At5g02890 alters cuticular wax composition by partially blocking VLCFA elongation of C28 and higher. In addition, detailed analysis of differentially expressed genes associated with plant hormones and endogenous phytohormone levels in wild-type and OE-At5g02890 plants indicated that abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) biosynthesis, as well as polar auxin transport, were also affected by overexpression of At5g02890. Taken together, these findings indicate that overexpression of At5g02890 affects both cuticular wax biosynthesis and phytohormone homeostasis in Arabidopsis. PMID:28184233
Gnan, Sebastian; Marsh, Tom; Kover, Paula X
2017-01-01
Leaves are thought to be the primary carbon source for reproduction in plants, so a positive relationship between vegetative size and reproductive output is expected, establishing a trade-off between time to reproduction and reproductive output. A common response to higher temperatures due to climate changes is the induction of earlier transition into reproduction. Thus, in annual plants, earlier transition into flowering can potentially constrain plant size and reduce seed production. However, trade-offs between early reproduction and fitness are not always observed, suggesting mechanisms to escape the constraints of early flowering do exist. Here, we test whether inflorescence photosynthesis contribution to the reproductive output of Arabidopsis thaliana can offset the cost of early reproduction. We followed the development, growth rate and fitness of 15 accessions, and removed all rosette leaves at flowering (prior to the completion of inflorescence development or any fruit production) in half of the plants to determine the ability of inflorescences to maintain fitness in the absence of leaves. Although leaf removal significantly reduced fruit number, seed weight and plant height, even the most severely impacted accessions maintained 35% of their fitness with the inflorescence as the sole photosynthetic organ; and some accessions experienced no reduction in fitness. Differences between accessions in their ability to maintain fitness after leaf removal is best explained by earlier flowering time and the ability to maintain as many or more branches after leaf removal as in the control treatment. Although earlier flowering does constrain plant vegetative size, we found that inflorescence photosynthesis can significantly contribute to seed production, explaining why early flowering plants can maintain high fitness despite a reduction in vegetative size. Thus, plants can be released from the usually assumed trade-offs associated with earlier reproduction, and selection on inflorescence traits can mediate the impact of climate change on phenology.
Maia, A C D; Schlindwein, C
2006-07-01
Flowering, pollination ecology, and floral thermogenesis of Caladium bicolor were studied in the Atlantic Rainforest of Pernambuco, NE Brazil. Inflorescences of this species are adapted to the characteristic pollination syndrome performed by Cyclocephalini beetles. They bear nutritious rewards inside well-developed floral chambers and exhibit a thermogenic cycle which is synchronized to the activity period of visiting beetles. Heating intervals of the spadix were observed during consecutive evenings corresponding to the beginning of the female and male phases of anthesis. Highest temperatures were recorded during the longer-lasting female phase. An intense sweet odour was volatized on both evenings. Beetles of a single species, Cyclocephala celata, were attracted to odoriferous inflorescences of C. bicolor and are reported for the first time as Araceae visitors. All the inflorescences visited by C. celata developed into infructescences, whereas unvisited inflorescences showed no fruit development. Findings of previous studies in the Amazon basin of Surinam indicated that Cyclocephala rustica is a likely pollinator of C. bicolor. This leads to the assumption that locally abundant Cyclocephalini species are involved in the pollination of this species.
Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence.
Renjith, R S; Chikku, A M; Rajamohan, T
2013-10-01
To analyze the cytoprotective and antidiabetic activities as well as phytochemical composition of the immature inflorescence of Cocos nucifera belonging to the Arecaceae Family. The phytochemical screening of inflorescence was done to determine the major constituents present in Cocos nucifera inflorescence. The free radical scavenging potential of inflorescence extracts were evaluated using in vitro radical scavenging assay models. The phytochemical analyses on inflorescence showed the presence of phenolic compounds, flavonoids, resins and alkaloids. The macronutrient analyses, on the other hand, showed the presence of carbohydrate, proteins and fibers. Administration of the methanol extract of coconut inflorescence to the diabetic rats showed dose dependent reduction in hyperglycemia. The cytoprotective property of coconut inflorescence was evidenced from the acute toxicological evaluation. The levels of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were significantly decreased in the diabetic rats treated with inflorescence when compared with the diabetic control rats. The results obtained from the present study apparently proved the non-toxic nature and the cytoprotective and antihyperglycemic properties of coconut inflorescence. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat.
Boden, Scott A; Cavanagh, Colin; Cullis, Brian R; Ramm, Kerrie; Greenwood, Julian; Jean Finnegan, E; Trevaskis, Ben; Swain, Steve M
2015-01-26
The domestication of cereal crops such as wheat, maize, rice and barley has included the modification of inflorescence architecture to improve grain yield and ease harvesting(1). Yield increases have often been achieved through modifying the number and arrangement of spikelets, which are specialized reproductive branches that form part of the inflorescence. Multiple genes that control spikelet development have been identified in maize, rice and barley(2-5). However, little is known about the genetic underpinnings of this process in wheat. Here, we describe a modified spikelet arrangement in wheat, termed paired spikelets. Combining comprehensive QTL and mutant analyses, we show that Photoperiod-1 (Ppd-1), a pseudo-response regulator gene that controls photoperiod-dependent floral induction, has a major inhibitory effect on paired spikelet formation by regulating the expression of FLOWERING LOCUS T (FT)(6,7). These findings show that modulated expression of the two important flowering genes, Ppd-1 and FT, can be used to form a wheat inflorescence with a more elaborate arrangement and increased number of grain producing spikelets.
Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis.
Phillips, A L; Ward, D A; Uknes, S; Appleford, N E; Lange, T; Huttly, A K; Gaskin, P; Graebe, J E; Hedden, P
1995-07-01
Using degenerate oligonucleotide primers based on a pumpkin (Cucurbita maxima) gibberellin (GA) 20-oxidase sequence, six different fragments of dioxygenase genes were amplified by polymerase chain reaction from arabidopsis thaliana genomic DNA. One of these was used to isolate two different full-length cDNA clones, At2301 and At2353, from shoots of the GA-deficient Arabidopsis mutant ga1-2. A third, related clone, YAP169, was identified in the Database of Expressed Sequence Tags. The cDNA clones were expressed in Escherichia coli as fusion proteins, each of which oxidized GA12 at C-20 to GA15, GA24, and the C19 compound GA9, a precursor of bioactive GAs; the C20 tricarboxylic acid compound GA25 was formed as a minor product. The expression products also oxidized the 13-hydroxylated substrate GA53, but less effectively than GA12. The three cDNAs hybridized to mRNA species with tissue-specific patterns of accumulation, with At2301 being expressed in stems and inflorescences, At2353 in inflorescences and developing siliques, and YAP169 in siliques only. In the floral shoots of the ga1-2 mutant, transcript levels corresponding to each cDNA decreased dramatically after GA3 application, suggesting that GA biosynthesis may be controlled, at least in part, through down-regulation of the expression of the 20-oxidase genes.
Flowering in Xanthium strumarium
Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges
1981-01-01
Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844
Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.
Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P
1988-01-01
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.
Claßen-Bockhoff, Regine; Arndt, Melanie
2018-05-01
Flower-like inflorescences (pseudanthia) have fascinated botanists for a long time. They are explained as condensed inflorescences implying that the pseudanthium develops from an inflorescence meristem (IM). However, recent developmental studies identified a new form of reproductive meristem, the floral unit meristem (FUM). It differs from IMs by lacking acropetal growth and shares fractionation, expansion and autonomous space filling with flower meristems (FM). The similarity among FUMs and FMs raises the question how far flower-like heads originate from flower-like meristems. In the present paper, pseudanthium development in Davidia involucrata is investigated using scanning electron microscopy. D. involucrata has pincushion-shaped heads composed of densely aggregated, perianthless flowers and associated with two large showy bracts. Early developmental stages show a huge naked FUM. The FMs appear almost simultaneously and lack subtending bracts. With ongoing FUM expansion new space is generated which is immediately used by further FM fractionation. The heads have only staminate flowers or are andromonoecious with staminate and a single perfect flower in oblique position. All FMs lack perianth structures and fractionate a variable number of stamen primordia. The perfect FM is much larger than the staminate FMs and forms a syncarpous gynoecium with inferior ovary. Pseudanthium development in D. involucrata confirms the morphogenetic similarity to FMs as to acropetal growth limitation, meristem expansion and fractionation. It thus should not be interpreted as a condensed inflorescence, but as a flower equivalent. Furthermore as the FUM develops inside a bud, its development is considered to be influenced by mechanical pressure. The oblique position of the perfect flower, the developmental delay of the proximal flowers, and the variable number of stamens which were observed in the pseudanthium development, can be caused by mechanical pressure. Next to the Asteraceae, D. involucrata offers a further example of a pseudanthium originating from a FUM. More knowledge on FUMs is still needed to understand diversification and evolution of flower-like inflorescences.
Hakkim, F Lukmanul; Shankar, C Gowri; Girija, S
2007-10-31
In this study, the chemical constituents and antioxidant property of holy basil (Ocimum sanctum Linn.) field-grown plant parts (leaves, stems, and inflorescence) were compared with those of respective callus cultures induced from each explant in in vitro. The callus cultures were successfully initiated on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D) (1 mg/L) combined with different concentrations (0.1-0.5 mg/L) of kinetin as plant growth regulators. The distribution of phenolic compounds in these extracts was analyzed using reverse phase high-performance liquid chromatography with reference standards. Interestingly, rosmarinic acid (RA) was found to be the predominant phenolic acid in all callus extracts in comparison with field-grown plant parts. In this study, the antioxidant activity of the extracts was evaluated with six different in vitro antioxidant-testing systems. Their activities of scavenging superoxide anion radicals, 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals, hydrogen peroxide, chelating ferrous iron, and ferric ion reducing potential were assessed. The antioxidant activity was increased in all testing systems with increasing amounts of extract. However, at the same concentration, the callus extracts exhibited higher antioxidant activity in all of the testing systems than the extract obtained from field-grown plant parts. The data obtained from this study suggested the possibility of the isolation of a high content of RA from in vitro callus cultures rather than field-grown plant organs of holy basil.
Kim, Jeong Im; Ciesielski, Peter N.; Donohoe, Bryon S.; Chapple, Clint; Li, Xu
2014-01-01
The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3′-hydroxylase (C3′H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3′H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3′H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant’s growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant. PMID:24381065
FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture.
Bemer, Marian; van Mourik, Hilda; Muiño, Jose M; Ferrándiz, Cristina; Kaufmann, Kerstin; Angenent, Gerco C
2017-06-15
MADS-domain transcription factors are well known for their roles in plant development and regulate sets of downstream genes that have been uncovered by high-throughput analyses. A considerable number of these targets are predicted to function in hormone responses or responses to environmental stimuli, suggesting that there is a close link between developmental and environmental regulators of plant growth and development. Here, we show that the Arabidopsis MADS-domain factor FRUITFULL (FUL) executes several functions in addition to its noted role in fruit development. Among the direct targets of FUL, we identified SMALL AUXIN UPREGULATED RNA 10 (SAUR10), a growth regulator that is highly induced by a combination of auxin and brassinosteroids and in response to reduced R:FR light. Interestingly, we discovered that SAUR10 is repressed by FUL in stems and inflorescence branches. SAUR10 is specifically expressed at the abaxial side of these branches and this localized activity is influenced by hormones, light conditions and by FUL, which has an effect on branch angle. Furthermore, we identified a number of other genes involved in hormone pathways and light signalling as direct targets of FUL in the stem, demonstrating a connection between developmentally and environmentally regulated growth programs. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Tao, Yan-Bin; He, Liang-Liang; Niu, Longjian; Xu, Zeng-Fu
2016-08-01
The 1.5 kb JcAP1 promoter from the biofuel plant Jatropha curcas is predominantly active in the inflorescence buds of transgenic plants, in which the -1313/-1057 region is essential for maintaining the activity. Arabidopsis thaliana APETALA1 (AP1) is a MADS-domain transcription factor gene that functions primarily in flower development. We isolated a homolog of AP1 from Jatropha curcas (designated JcAP1), which was shown to exhibit flower-specific expression in Jatropha. JcAP1 is first expressed in inflorescence buds and continues to be primarily expressed in the sepals. We isolated a 1.5 kb JcAP1 promoter and evaluated its activity in transgenic Arabidopsis and Jatropha using the β-glucuronidase (GUS) reporter gene. In transgenic Arabidopsis and Jatropha, the inflorescence buds exhibited notable GUS activity, whereas the sepals did not. Against expectations, the JcAP1 promoter was active in the anthers of Arabidopsis and Jatropha and was highly expressed in Jatropha seeds. An analysis of promoter deletions in transgenic Arabidopsis revealed that deletion of the -1313/-1057 region resulted in loss of JcAP1 promoter activity in the inflorescence buds and increased activity in the anthers. These results suggested that some regulatory sequences in the -1313/-1057 region are essential for maintaining promoter activity in inflorescence buds and can partly suppress activity in the anthers. Based on these findings, we hypothesized that other elements located upstream of the 1.5 kb JcAP1 promoter may be required for flower-specific activation. The JcAP1 promoter characterized in this study can be used to drive transgene expression in both the inflorescence buds and seeds of Jatropha.
Sugimoto, Hiroki; Kondo, Satoshi; Tanaka, Tomoko; Imamura, Chie; Muramoto, Nobuhiko; Hattori, Etsuko; Ogawa, Ken’ichi; Mitsukawa, Norihiro; Ohto, Chikara
2014-01-01
In contrast to mammals, higher plants have evolved to express diverse protein phosphatase 2Cs (PP2Cs). Of all Arabidopsis thaliana PP2Cs, members of PP2C subfamily A, including ABI1, have been shown to be key negative regulators of abscisic acid (ABA) signalling pathways, which regulate plant growth and development as well as tolerance to adverse environmental conditions. However, little is known about the enzymatic and signalling roles of other PP2C subfamilies. Here, we report a novel Arabidopsis subfamily E PP2C gene, At3g05640, designated AtPP2CF1. AtPP2CF1 was dramatically expressed in response to exogenous ABA and was expressed in vascular tissues and guard cells, similar to most subfamily A PP2C genes. In vitro enzymatic activity assays showed that AtPP2CF1 possessed functional PP2C activity. However, yeast two-hybrid analysis revealed that AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or three SnRK2 kinases, which are ABI1-interacting proteins. This was supported by homology-based structural modelling demonstrating that the putative active- and substrate-binding site of AtPP2CF1 differed from that of ABI1. Furthermore, while overexpression of ABI1 in plants induced an ABA-insensitive phenotype, Arabidopsis plants overexpressing AtPP2CF1 (AtPP2CF1oe) were weakly hypersensitive to ABA during seed germination and drought stress. Unexpectedly, AtPP2CF1oe plants also exhibited increased biomass yield, mainly due to accelerated growth of inflorescence stems through the activation of cell proliferation and expansion. Our results provide new insights into the physiological significance of AtPP2CF1 as a candidate gene for plant growth production and for potential application in the sustainable supply of plant biomass. PMID:25038254
Broholm, Suvi K; Tähtiharju, Sari; Laitinen, Roosa A E; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2008-07-01
Several key processes in plant development are regulated by TCP transcription factors. CYCLOIDEA-like (CYC-like) TCP domain proteins have been shown to control flower symmetry in distantly related plant lineages. Gerbera hybrida, a member of one of the largest clades of angiosperms, the sunflower family (Asteraceae), is an interesting model for developmental studies because its elaborate inflorescence comprises different types of flowers that have specialized structures and functions. The morphological differentiation of flower types involves gradual changes in flower size and symmetry that follow the radial organization of the densely packed inflorescence. Differences in the degree of petal fusion further define the distinct shapes of the Gerbera flower types. To study the role of TCP transcription factors during specification of this complex inflorescence organization, we characterized the CYC-like homolog GhCYC2 from Gerbera. The expression of GhCYC2 follows a gradient along the radial axis of the inflorescence. GhCYC2 is expressed in the marginal, bilaterally symmetrical ray flowers but not in the centermost disk flowers, which are nearly radially symmetrical and have significantly less fused petals. Overexpression of GhCYC2 causes disk flowers to obtain morphologies similar to ray flowers. Both expression patterns and transgenic phenotypes suggest that GhCYC2 is involved in differentiation among Gerbera flower types, providing the first molecular evidence that CYC-like TCP factors take part in defining the complex inflorescence structure of the Asteraceae, a major determinant of the family's evolutionary success.
Campoli, Chiara; Drosse, Benedikt; Searle, Iain; Coupland, George; von Korff, Maria
2012-03-01
Variation in photoperiod response is a major factor determining plant development and the agronomic performance of crops. The genetic control of photoperiodic flowering has been elucidated in the model plant Arabidopsis, and many of the identified genes are structurally conserved in the grasses. In this study, HvCO1, the closest barley ortholog of the key photoperiod response gene CONSTANS in Arabidopsis, was over-expressed in the spring barley Golden Promise. Over-expression of HvCO1 accelerated time to flowering in long- and short-day conditions and caused up-regulation of HvFT1 mRNA under long-day conditions. However, the transgenic plants retained a response to photoperiod, suggesting the presence of photoperiod response factors acting downstream of HvCO1 transcription. Analysis of a population segregating for HvCO1 over-expression and natural genetic variation at Ppd-H1 demonstrated that Ppd-H1 acts downstream of HvCO1 transcription on HvFT1 expression and flowering. Furthermore, variation at Ppd-H1 did not affect diurnal expression of HvCO1 or HvCO2. Over-expression of HvCO1 increased transcription of the spring allele of Vrn-H1 in long- and short-day conditions, while genetic variation at Ppd-H1 did not affect Vrn-H1 expression. Over-expression of HvCO1 and natural genetic variation at Ppd-H1 accelerated inflorescence development and stem elongation. Thus, HvCO1 probably induces flowering by activating HvFT1 whilst Ppd-H1 regulates HvFT1 independently of HvCO1 mRNA, and all three genes also appear to have a strong effect in promoting inflorescence development. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier
2015-08-28
Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower(®), firstly guides the user to appropriately take an inflorescence photo using the smartphone's camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower(®) has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application's efficiency on four different devices covering a wide range of the market's spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play.
Olvera, Hilda Flores; Smets, Erik; Vrijdaghs, Alexander
2008-01-01
Background and Aims In spite of recent phylogenetic analyses for the Chenopodiaceae–Amaranthaceae complex, some morphological characters are not unambiguously interpreted, which raises homology questions. Therefore, ontogenetic investigations, emphasizing on ‘bracteoles’ in Atripliceae and flowers in Chenopodioideae, were conducted. This first paper presents original ontogenetic observations in Beta vulgaris, which was chosen as a reference species for further comparative investigation because of its unclarified phylogenetic position and its flowers with a (semi-)inferior ovary, whereas all other Chenopodiaceae–Amaranthaceae have hypogynous flowers. Methods Inflorescences and flowers were examined using scanning electron microscopy and light microscopy. Key Results Floral development starts from an inflorescence unit primordium subtended by a lateral bract. This primordium develops into a determinate axis on which two opposite lateral flowers originate, each subtended by a bracteole. On a flower primordium, first five tepal primordia appear, followed by five opposite stamen primordia. Simultaneously, a convex floral apex appears, which differentiates into an annular ovary primordium with three stigma primordia, surrounding a central, single ovule. A floral tube, which raises the outer floral whorls, envelops the ovary, resulting in a semi-inferior ovary at mature stage. Similarly, a stamen tube is formed, raising the insertion points of the stamens, and forming a staminal ring, which does not contain stomata. During floral development, the calyces of the terminal flower and of one of the lateral flowers often fuse, forming a compound fruit structure. Conclusions In Beta vulgaris, the inflorescence is compound, consisting of an indeterminate main axis with many elementary dichasia as inflorescence units, of which the terminal flower and one lateral flower fuse at a later stage. Floral parts develop starting from the outer whorl towards the gynoecium. Because of the formation of an epigynous hypanthium, the ovary becomes semi-inferior in the course of floral development. PMID:18694878
Wang, Ya-Qin; Hu, Li-Ping; Liu, Guang-Min; Zhang, De-Shuang; He, Hong-Ju
2017-07-27
Chinese kale ( Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.
USDA-ARS?s Scientific Manuscript database
Both insufficient and excessive male inflorescence size leads to a reduction in maize yield. Knowledge of the genetic architecture of male inflorescence is essential to achieve the optimum inflorescence size for maize breeding. In this study, we used approximately eight thousand inbreds, including b...
Macroevolution of panicoid inflorescences: a history of contingency and order of trait acquisition
Reinheimer, R.; Vegetti, A. C.; Rua, G. H.
2013-01-01
Background and Aims Inflorescence forms of panicoid grasses (Panicoideae s.s.) are remarkably diverse and they look very labile to human eyes; however, when performing a close inspection one can identify just a small subset of inflorescence types among a huge morphospace of possibilities. Consequently, some evolutionary constraints have restricted, to some extent, the diversification of their inflorescence. Developmental and genetic mechanisms, the photosynthetic type and plant longevity have been postulated as candidate constraints for angiosperms and panicoids in particular; however, it is not clear how these factors operate and which of these have played a key role during the grass inflorescence evolution. To gain insight into this matter the macroevolutionary aspects of panicoid inflorescences are investigated. Methods The inflorescence aspect (lax versus condensed), homogenization, truncation of the terminal spikelet, plant longevity and photosynthetic type were the traits selected for this study. Maximum likelihood and Bayesian Markov chain Monte Carlo methods were used to test different models of evolution and to evaluate the existence of evolutionary correlation among the traits. Both, models and evolutionary correlation were tested and analysed in a phylogenetic context by plotting the characters on a series of trees. For those cases in which the correlation was confirmed, test of contingency and order of trait acquisition were preformed to explore further the patterns of such co-evolution. Key Results The data reject the independent model of inflorescence trait evolution and confirmed the existence of evolutionary contingency. The results support the general trend of homogenization being a prerequisite for the loss of the terminal spikelet of the main axis. There was no evidence for temporal order in the gain of homogenization and condensation; consequently, the homogenization and condensation could occur simultaneously. The correlation between inflorescence traits with plant longevity and photosynthetic type is not confirmed. Conclusions The findings indicate that the lability of the panicoid inflorescence is apparent, not real. The results indicate that the history of the panicoids inflorescence is a combination of inflorescence trait contingency and order of character acquisition. These indicate that developmental and genetic mechanisms may be important constraints that have limited the diversification of the inflorescence form in panicoid grasses. PMID:23478945
Chen, Xinbo; Goodwin, S. Mark; Liu, Xionglun; Chen, Xinlu; Bressan, Ray A.; Jenks, Matthew A.
2005-01-01
Insertional mutagenesis of Arabidopsis (Arabidopsis thaliana) was used to identify a novel recessive mutant, designated resurrection1 (rst1), which possesses a dramatic alteration in its cuticular waxes and produces shrunken nonviable seeds due to arrested embryo development. The RST1 gene sequence associated with these phenotypes was verified by three independent, allelic, insertion mutants, designated rst1-1, rst1-2, and rst1-3, with inserts in the first exon, 12th intron, and fourth exon, respectively. These three rst1 allelic mutants have nearly identical alterations in their wax profiles and embryo development. Compared to wild type, the wax on rst1 inflorescence stems is reduced nearly 60% in total amount, has a proportional reduction in aldehydes and aldehyde metabolites, and has a proportional increase in acids, primary alcohols, and esters. Compared to wild type, the C29 alkanes on rst1 are nearly 6-fold lower, and the C30 primary alcohols are 4-fold higher. These results indicate that rst1 causes shunting of most wax precursors away from alkane synthesis and into the primary-alcohol-producing branch of the pathway. In contrast to stems, the wax on rst1 mutant leaves increased roughly 43% in amount relative to the wild type, with the major increase occurring in the C31 and C33 alkanes. Unique among known wax mutants, approximately 70% of rst1 seeds are shrunken and nonviable, with these being randomly distributed within both inflorescence and silique. Viable seeds of rst1 are slightly larger than those of wild type, and although the viable rst1 seeds contain more total triacylglycerol-derived fatty acids, the proportions of these fatty acids are not significantly different from wild type. Shrunken seeds contain 34% of the fatty acids of wild-type seeds, with proportionally more palmitic, stearic, and oleic acids, and less of the longer and more desaturated homologs. Histological analysis of aborted rst1 seeds revealed that embryo development terminates at the approximate heart-shaped stage, whereas viable rst1 and wild-type embryos develop similarly. The RST1 gene encodes a predicted 1,841-amino acid novel protein with a molecular mass of 203.6 kD and a theoretical pI of 6.21. The RST1 transcript was found in all tissues examined including leaves, flowers, roots, stems, and siliques, but accumulation levels were not correlated with the degree to which different organs appeared affected by the mutation. The new RST1 gene reveals a novel genetic connection between lipid synthesis and embryo development; however, RST1's exact role is still quite unknown. The degree to which RST1 is associated with lipid signaling in development is an important focus of ongoing studies. PMID:16183838
Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.).
Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan
2017-01-01
Lettuce ( Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce.
Inflorescence Development and the Role of LsFT in Regulating Bolting in Lettuce (Lactuca sativa L.)
Chen, Zijing; Han, Yingyan; Ning, Kang; Ding, Yunyu; Zhao, Wensheng; Yan, Shuangshuang; Luo, Chen; Jiang, Xiaotang; Ge, Danfeng; Liu, Renyi; Wang, Qian; Zhang, Xiaolan
2018-01-01
Lettuce (Lactuca sativa L.) is one of the most important leafy vegetable that is consumed during its vegetative growth. The transition from vegetative to reproductive growth is induced by high temperature, which has significant economic effect on lettuce production. However, the progression of floral transition and the molecular regulation of bolting are largely unknown. Here we morphologically characterized the inflorescence development and functionally analyzed the FLOWERING LOCUS T (LsFT) gene during bolting regulation in lettuce. We described the eight developmental stages during floral transition process. The expression of LsFT was negatively correlated with bolting in different lettuce varieties, and was promoted by heat treatment. Overexpression of LsFT could recover the late-flowering phenotype of ft-2 mutant. Knockdown of LsFT by RNA interference dramatically delayed bolting in lettuce, and failed to respond to high temperature. Therefore, this study dissects the process of inflorescence development and characterizes the role of LsFT in bolting regulation in lettuce. PMID:29403510
Risseeuw, Eddy; Venglat, Prakash; Xiang, Daoquan; Komendant, Kristina; Daskalchuk, Tim; Babic, Vivijan; Crosby, William; Datla, Raju
2013-01-01
Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants. PMID:24376756
Risseeuw, Eddy; Venglat, Prakash; Xiang, Daoquan; Komendant, Kristina; Daskalchuk, Tim; Babic, Vivijan; Crosby, William; Datla, Raju
2013-01-01
Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.
Atkins, Craig A; Emery, R J Neil; Smith, Penelope M C
2011-12-01
Phenotypes of five transgenic lines of narrow-leafed lupin (Lupinus angustifolius [L] cv Merrit) stably transformed with the isopentenyl pyrophosphate transferase (ipt) gene from Agrobacterium tumefaciens coupled to a flower-specific promoter (TP12) from Nicotiana tabacum [L.] are described. Expression of the transgene was detected in floral tissues and in shoot apical meristems on all orders of inflorescence. In each transgenic line there was significant axillary bud outgrowth at all nodes on the main stem with pronounced branch development from the more basal nodes in three of the lines. The lowest basal branches developed in a manner similar to the upper stem axillary branches on cv Merrit and bore fruits, which, in two lines, contained a significant yield of filled seeds at maturity. Senescence of the cotyledons was delayed in all lines with green cotyledons persisting beyond anthesis in one case. IPT expression increased cytokinin (CK) levels in flowers, meristem tissues and phloem exudates in a form specific manner, which was suggestive of localized flower and meristem production with significant long-distance re-distribution in phloem. The total number of fruits formed (pod set) on some transgenic lines was increased compared to cv Merrit. Grain size compared to cv Merrit was not significantly altered in transgenic lines.
Amyloplast movement and gravityperception in Arabidopsis endoderm
NASA Astrophysics Data System (ADS)
Tasaka, M.; Saito, T.; Morita, M. T.
Gravitropism of higher plant is a growth response regulating the orientation of organs elongation, which includes four sequential steps, the perception of gravistimulus, transduction of the physical stimulus to chemical signal, transmission of the signal, and differential cell elongation depending on the signal. To elucidate the molecular mechanism of these steps, we have isolated a number of Arabidopsis mutants with abnormal shoot gravitropic response. zig (zigzag)/sgr4(shoot gravitropism 4) shows little gravitropism in their shoots. Besides, their inflorescence stems elongate in a zigzag-fashion to bend at each node. ZIG encodes a SNARE, AtVTI11. sgr3 with reduced gravitropic response in inflorescence stems had a missense mutation in other SNARE, AtVAM3. These two SNAREs make a complex in the shoot endoderm cells that are gravity-sensing cells, suggesting that the vesicle transport from trans-Golgi network (TGN) to prevacuolar compartment (PVC) and/or vacuole is involved in gravitropism. Abnormal vesicular/vacuolar structures were observed in several tissues of both mutants. Moreover, SGR2 encodes phospholipase A1-like protein that resides in the vacuolar membrane. Endodermis-specific expression of these genes could complement gravitropism in each mutant. In addition, amyloplasts thought to be statoliths localized abnormally in their endoderm cells. These results strongly suggest that formation and function of vacuole in the endoderm cells are important for amyloplasts sedimentation, which is involved in the early process of shoot gravitropism. To reveal this, we constructed vertical stage microscope system to visualize the behavior of amyloplasts and vacuolar membrane in living endodermal cells. We hope to discuss the mechanism of gravity perception after showing their movements.
Genetic analysis of the role of amyloplasts in shoot gravisensing
NASA Astrophysics Data System (ADS)
Tasaka, M.; Morita, M.
Plant can change the growth direction after sensing the gravity orientation This response calls gravitropism and the initial step is the gravisensing We have isolated many Arabidopsis mutants shoot gravitropism sgr with reduced or no gravitropic response in inflorescence stems The analysis of sgr1 and sgr7 revealed that endoderm cells in the inflorescence stems were gravisensing sites zig zigzag sgr4 and sgr3 showed no or reduced gravitropism in shoot respectively and their amyloplasts thought to be statoliths did not sedimented to the orientation of gravity in the endoderm cells ZIG encoded a SNARE AtVTI11 and SGR3 encoded other SNARE AtVAM3 These two SNAREs made a complex in the shoot endoderm cells suggesting that the vesicle transport from trans-Golgi network TGN to prevacuolar compartment PVC and or vacuole was involved in the amyloplasts localization and movement The analysis to visualize amyloplasts and vacuolar membrane in living endoderm cells supported that the vacuole function was important for the amyloplasts movement Recently we have isolated many suppressor mutants of zig One of them named zig suppressor zip 1 had a point mutation in the gene encoded other SNARE of AtVTI12 This protein is a homologous to ZIG AtVTI11 and these two proteins have partially redundant functions Although wild type At VTI 12 could not rescued zig mutated AtVTI12 protein ZIP1 could almost completely play the part of ZIG In zigzip1 amyloplasts in endoderm cells sedimented normally and the shoots showed normal gravitropic response The other
Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek
2010-02-01
The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.
Sargent, Risa D.
2017-01-01
Abstract Background and Aims The study of the evolution of floral traits has generally focused on pollination as the primary driver of selection. However, herbivores can also impose selection on floral traits through a variety of mechanisms, including florivory and parasitism. Less well understood is whether floral and inflorescence architecture traits that influence a plant’s tolerance to herbivory, such as compensatory regrowth, alter pollinator-mediated selection. Methods Because herbivore damage to Lythrum salicaria meristems typically leads to an increase in the number of inflorescences and the size of the floral display, an experiment was conducted to test whether simulated herbivory (i.e. clipping the developing meristem) could alter the magnitude or direction of pollinator-mediated selection on a suite of floral and inflorescence architecture traits. Using a pollen supplementation protocol, pollen limitation was compared in the presence and absence of meristem damage in order to quantify any interaction between pollinator and herbivore-mediated selection on floral traits. Key Results Surprisingly, in spite of an obvious impact on floral display and architecture, with clipped plants producing more inflorescences and more flowers, there was no difference in pollen limitation between clipped and unclipped plants. Correspondingly, there was no evidence that imposing herbivore damage altered pollinator-mediated selection in this system. Rather, the herbivory treatment alone was found to alter direct selection on floral display, with clipped plants experiencing greater selection for earlier flowering and weaker selection for number of inflorescences when compared with unclipped plants. Conclusions These findings imply that herbivory on its own can drive selection on plant floral traits and inflorescence architecture in this species, even more so than pollinators. Specifically, herbivory can impose selection on floral traits if such traits influence a plant’s tolerance to herbivory, such as through the timing of flowering and/or the compensatory regrowth response. PMID:28369263
Nicklen, E Fleur; Wagner, Diane
2006-05-01
Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.
NAA-Induced Direct Organogenesis from Female Immature Inflorescence Explants of Date Palm.
Khierallah, Hussam S M; Bader, Saleh M; Al-Khafaji, Makki A
2017-01-01
Micropropagation has great potential for the multiplication of female and male date palms of commercially grown cultivars by using inflorescences. This approach is simple, convenient, and much faster than the conventional method of using shoot-tip explants. We describe here a stepwise micropropagation procedure using inflorescence explants of Iraqi date palm cultivar Maktoom. Cultured explants were derived from 0.5-cm-long spike segments excised from 8 to 10-cm-long spathes. About 70% formed adventitious buds on Murashige and Skoog (MS) medium supplemented with 2 mg/L naphthalene acetic acid (NAA), 4 mg/L benzylaminopurine (BAP), and 40 g/L sucrose and maintained in the dark for 16 weeks before transferring to normal light conditions. The best multiplication rate was achieved with 3 mg/L 2ip and 2 mg/L; for shoot elongation, the best medium is MS containing 0.5 mg/L BAP, 0.5 mg/L 2ip, and 1 mg/L GA 3 . Well-developed shoots were cultured for rooting in half MS medium amended with 1 mg/L NAA and 45 g/L sucrose. Plantlets with well-developed roots were successfully hardened in the greenhouse. Inflorescence explants proved to be a promising alternative explant source for micropropagation of date palm cultivars.
Aquino, Arturo; Millan, Borja; Gaston, Daniel; Diago, María-Paz; Tardaguila, Javier
2015-01-01
Grapevine flowering and fruit set greatly determine crop yield. This paper presents a new smartphone application for automatically counting, non-invasively and directly in the vineyard, the flower number in grapevine inflorescence photos by implementing artificial vision techniques. The application, called vitisFlower®, firstly guides the user to appropriately take an inflorescence photo using the smartphone’s camera. Then, by means of image analysis, the flowers in the image are detected and counted. vitisFlower® has been developed for Android devices and uses the OpenCV libraries to maximize computational efficiency. The application was tested on 140 inflorescence images of 11 grapevine varieties taken with two different devices. On average, more than 84% of flowers in the captures were found, with a precision exceeding 94%. Additionally, the application’s efficiency on four different devices covering a wide range of the market’s spectrum was also studied. The results of this benchmarking study showed significant differences among devices, although indicating that the application is efficiently usable even with low-range devices. vitisFlower is one of the first applications for viticulture that is currently freely available on Google Play. PMID:26343664
Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W
Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah
2008-01-01
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421
Towards an ontogenetic understanding of inflorescence diversity
Claßen-Bockhoff, Regine; Bull-Hereñu, Kester
2013-01-01
Backgrounds and Aims Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Methods Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Key Results Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. ‘flowering shoot systems’ (FSS), ‘inflorescences’ sensu stricto and ‘floral units’ (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While ‘inflorescence meristems’ (IMs) share acropetal primordia production with vegetative meristems, ‘floral unit meristems’ (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. Conclusions The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit part of the concept, illustrating the ontogenetic potential for character transformation in evolution. PMID:23445936
Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M
2013-01-01
N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.
Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.
2013-01-01
Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735
Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A
2016-08-01
Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained chlorophyll degradation in the parthenocarpic fruit.
Fambrini, Marco; Salvini, Mariangela; Pugliesi, Claudio
2017-03-01
The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha-LSL transcript accumulation was also detected in leaves and floral primordia at early stages of development. These results were corroborated by qRT-PCR analyses that evidenced high levels of Ha-LSL transcripts in very young leaves and disc flowers, suggesting a role of Ha-LSL for the early outgrowth of lateral primordia.
Uchida, Naoyuki; Lee, Jin Suk; Horst, Robin J; Lai, Hung-Hsueh; Kajita, Ryoko; Kakimoto, Tatsuo; Tasaka, Masao; Torii, Keiko U
2012-04-17
Multicellular organisms achieve final body shape and size by coordinating cell proliferation, expansion, and differentiation. Loss of function in the Arabidopsis ERECTA (ER) receptor-kinase gene confers characteristic compact inflorescence architecture, but its underlying signaling pathways remain unknown. Here we report that the expression of ER in the phloem is sufficient to rescue compact er inflorescences. We further identified two Epidermal Patterning Factor-like (EPFL) secreted peptide genes, EPFL4 and EPFL6/CHALLAH (CHAL), as redundant, upstream components of ER-mediated inflorescence growth. The expression of EPFL4 or EPFL6 in the endodermis, a layer adjacent to phloem, is sufficient to rescue the er-like inflorescence of epfl4 epfl6 plants. EPFL4 and EPFL6 physically associate with ER in planta. Finally, transcriptome analysis of er and epfl4 epfl6 revealed a potential downstream component as well as a role for plant hormones in EPFL4/6- and ER-mediated inflorescence growth. Our results suggest that intercell layer communication between the endodermis and phloem mediated by peptide ligands and a receptor kinase coordinates proper inflorescence architecture in Arabidopsis.
Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
Smith, Rebecca A; Schuetz, Mathias; Karlen, Steven D; Bird, David; Tokunaga, Naohito; Sato, Yasushi; Mansfield, Shawn D; Ralph, John; Samuels, A Lacey
2017-06-01
Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis ( Arabidopsis thaliana ) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important. © 2017 American Society of Plant Biologists. All Rights Reserved.
Wood reinforcement of poplar by rice NAC transcription factor
Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka
2016-01-01
Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961
Yoshihara, Takeshi; Spalding, Edgar P; Iino, Moritoshi
2013-04-01
The present study identified a family of six A. thaliana genes that share five limited regions of sequence similarity with LAZY1, a gene in Oryza sativa (rice) shown to participate in the early gravity signaling for shoot gravitropism. A T-DNA insertion into the Arabidopsis gene (At5g14090) most similar to LAZY1 increased the inflorescence branch angle to 81° from the wild type value of 42°. RNA interference lines and molecular rescue experiments confirmed the linkage between the branch-angle phenotype and the gene consequently named AtLAZY1. Time-resolved gravitropism measurements of atlazy1 hypocotyls and primary inflorescence stems showed a significantly reduced bending rate during the first hour of response. The subcellular localization of AtLAZY1 protein was investigated to determine if the nuclear localization predicted from the gene sequence was observable and important to its function in shoot gravity responses. AtLAZY1 fused to green fluorescent protein largely rescued the branch-angle phenotype of atlazy1, and was observed by confocal microscopy at the cell periphery and within the nucleus. Mutation of the nuclear localization signal prevented detectable levels of AtLAZY1 in the nucleus without affecting the ability of the gene to rescue the atlazy1 branch-angle phenotype. These results indicate that AtLAZY1 functions in gravity signaling during shoot gravitropism, being a functional ortholog of rice LAZY1. The nuclear pool of the protein appears to be unnecessary for this function, which instead relies on a pool that appears to reside at the cell periphery. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.
Dai, Can; Luo, Wen-Jie; Gong, Yan-Bing; Liu, Fan; Wang, Zheng-Xiang
2018-04-30
Understanding resource allocation to reproduction, a key factor in life history tradeoffs, has long intrigued plant ecologists. Despite the recognized importance of understanding the movement of resources among flowers following variable pollination, the patterns of resource reallocation to plant reproductive organs have not been thoroughly addressed. In this study, we aimed to empirically explore how resources redistribute within inflorescences in response to differential pollination intensities. Using a common herb, Sagittaria trifolia, we conducted supplemental and controlled pollination for single, some, or all flowers in simple and complex inflorescences, and compared their resulting fruiting probabilities, seed production, and average seed masses. Pollen supplementation of a single flower significantly increased its fruiting probability; however, the same manipulation of an inflorescence did not increase its overall reproduction. Single pollen-supplemented flowers had a higher percentage fruit set than inflorescences receiving supplemental pollination. In complex inflorescences, supplemental pollination had no effect on the reproductive success of flowers on the lateral or main branches. We provided evidence of resource reallocation from controlled to pollen-supplemented flowers in simple inflorescences; however, resources were unlikely to be reallocated between the main and lateral branches in the complex inflorescences, suggesting that flowering branches represent integrated physiological units in S. trifolia. The results also demonstrated that single-flower supplemental pollination would exaggerate pollen limitation and lead to a biased understanding of a plant's reproductive status. © 2018 Botanical Society of America.
Regulatory modules controlling maize inflorescence architecture
USDA-ARS?s Scientific Manuscript database
Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...
Sugimoto, Hiroki; Kondo, Satoshi; Tanaka, Tomoko; Imamura, Chie; Muramoto, Nobuhiko; Hattori, Etsuko; Ogawa, Ken'ichi; Mitsukawa, Norihiro; Ohto, Chikara
2014-10-01
In contrast to mammals, higher plants have evolved to express diverse protein phosphatase 2Cs (PP2Cs). Of all Arabidopsis thaliana PP2Cs, members of PP2C subfamily A, including ABI1, have been shown to be key negative regulators of abscisic acid (ABA) signalling pathways, which regulate plant growth and development as well as tolerance to adverse environmental conditions. However, little is known about the enzymatic and signalling roles of other PP2C subfamilies. Here, we report a novel Arabidopsis subfamily E PP2C gene, At3g05640, designated AtPP2CF1. AtPP2CF1 was dramatically expressed in response to exogenous ABA and was expressed in vascular tissues and guard cells, similar to most subfamily A PP2C genes. In vitro enzymatic activity assays showed that AtPP2CF1 possessed functional PP2C activity. However, yeast two-hybrid analysis revealed that AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or three SnRK2 kinases, which are ABI1-interacting proteins. This was supported by homology-based structural modelling demonstrating that the putative active- and substrate-binding site of AtPP2CF1 differed from that of ABI1. Furthermore, while overexpression of ABI1 in plants induced an ABA-insensitive phenotype, Arabidopsis plants overexpressing AtPP2CF1 (AtPP2CF1oe) were weakly hypersensitive to ABA during seed germination and drought stress. Unexpectedly, AtPP2CF1oe plants also exhibited increased biomass yield, mainly due to accelerated growth of inflorescence stems through the activation of cell proliferation and expansion. Our results provide new insights into the physiological significance of AtPP2CF1 as a candidate gene for plant growth production and for potential application in the sustainable supply of plant biomass. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Mobile epifauna on Zostera marina, and infauna of its inflorescences
NASA Astrophysics Data System (ADS)
Hellwig-Armonies, Monika
1988-06-01
The faunal colonization of the leaves and inflorescences of intertidal Zostera marina L. and of the ambient water has been studied at the Island of Sylt (North Sea). The abundance of the snail Littorina littorea L. and the isopod Jaera albifrons Leach correlates significantly with leaf surface area. This is not the case with the abundance of meiofaunal Plathelminthes, Nematoda, Copepoda, and Polychaeta. However, they increase significantly with the numbers of generative shoots in the sampled seagrass bunches. Members of these taxa inhabit the Zostera inflorescences, and average abundance increases with the degree of decay of inflorescences. This temporary microhabitat presumably offers food and shelter. Copepods and ostracods dominate in the ambient water. Planktonic calanoid copepods correlate with the amount of sampled seawater, while Ostracoda correlate with the amount of resuspended detritus suggesting that they were resuspended themselves. The study shows that some meiofaunal taxa can rapidly exploit a short-lived habitat such as the Zostera inflorescences. Juvenile polychaetes use inflorescences as a nursery.
Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan
2013-09-01
Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.
Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I
2006-10-01
A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.
Delgado Sandoval, Silvia del Carmen; Abraham Juárez, María Jazmín; Simpson, June
2012-03-01
Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.
Granado-Yela, Carlos; Balaguer, Luis; Cayuela, Luis; Méndez, Marcos
2017-04-01
Two, nonmutually exclusive, mechanisms-competition for resources and architectural constraints-have been proposed to explain the proximal to distal decline in flower size, mass, and/or femaleness in indeterminate, elongate inflorescences. Whether these mechanisms also explain unusual positional effects such as distal to proximal declines of floral performance in determinate inflorescences, is understudied. We tested the relative influence of these mechanisms in the andromonoecious wild olive tree, where hermaphroditic flowers occur mainly on apical and the most proximal positions in determinate inflorescences. We experimentally increased the availability of resources for the inflorescences by removing half of the inflorescences per twig or reduced resource availability by removing leaves. We also removed the apical flower to test its inhibitory effect on subapical flowers. The apical flower had the highest probability of being hermaphroditic. Further down, however, the probability of finding a hermaphroditic flower decreased from the base to the tip of the inflorescences. An experimental increase of resources increased the probability of finding hermaphroditic flowers at each position, and vice versa. Removal of the apical flower increased the probability of producing hermaphroditic flowers in proximal positions but not in subapical positions. These results indicate an interaction between resource competition and architectural constraints in influencing the arrangement of the hermaphroditic and male flowers within the inflorescences of the wild olive tree. Subapical flowers did not seem to be hormonally suppressed by apical flowers. The study of these unusual positional effects is needed for a general understanding about the functional implications of inflorescence architecture. © 2017 Botanical Society of America.
Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea
2014-01-01
Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400
Phosphorous Nutritional Level, Carbohydrate Reserves and Flower Quality in Olives.
Erel, Ran; Yermiyahu, Uri; Yasuor, Hagai; Cohen Chamus, Dan; Schwartz, Amnon; Ben-Gal, Alon; Dag, Arnon
2016-01-01
The olive tree is generally characterized by relatively low final fruit set consequential to a significant rate of undeveloped pistils, pistil abortion, and flower and fruitlet abscission. These processes are acknowledged to be governed by competition for resources between the developing vegetative and reproductive organs. To study the role of phosphorus (P) nutritional level on reproductive development, trees were grown under four levels of P for three years in large containers. Phosphorus nutritional level was positively related to rate of reproductive bud break, inflorescence weight, rate of hermaphrodite flowers, pistil weight, fruitlet persistence, fruit set and the consequential total number of fruits. The positive impact of P nutrition on the productivity parameters was not related to carbohydrate reserves or to carbohydrate transport to the developing inflorescence. Phosphorous deficient trees showed significant impairment of assimilation rate, and yet, carbohydrates were accumulated in inflorescences at levels comparable to or higher than trees receiving high P. In contrast to female reproductive organs, pollen viability was consistently higher in P deficient trees, possibly due to the enhanced carbohydrate availability. Overall, the positive effect of P on female reproductive development was found to be independent of the total carbohydrate availability. Hence, P is speculated to have a direct influence on reproductive processes.
Benlloch, Reyes; d'Erfurth, Isabelle; Ferrandiz, Cristina; Cosson, Viviane; Beltrán, José Pío; Cañas, Luis Antonio; Kondorosi, Adam; Madueño, Francisco; Ratet, Pascal
2006-01-01
Comparative studies help shed light on how the huge diversity in plant forms found in nature has been produced. We use legume species to study developmental differences in inflorescence architecture and flower ontogeny with classical models such as Arabidopsis thaliana or Antirrhinum majus. Whereas genetic control of these processes has been analyzed mostly in pea (Pisum sativum), Medicago truncatula is emerging as a promising alternative system for these studies due to the availability of a range of genetic tools. To assess the use of the retrotransposon Tnt1 for reverse genetics in M. truncatula, we screened a small Tnt1-mutagenized population using degenerate primers for MADS-box genes, known controllers of plant development. We describe here the characterization of mtpim, a new mutant caused by the insertion of Tnt1 in a homolog to the PROLIFERATING INFLORESCENCE MERISTEM (PIM)/APETALA1 (AP1)/SQUAMOSA genes. mtpim shows flower-to-inflorescence conversion and altered flowers with sepals transformed into leaves, indicating that MtPIM controls floral meristem identity and flower development. Although more extreme, this phenotype resembles the pea pim mutants, supporting the idea that M. truncatula could be used to complement analysis of reproductive development already initiated in pea. In fact, our study reveals aspects not shown by analysis of pea mutants: that the mutation in the AP1 homolog interferes with the specification of floral organs from common primordia and causes conversion of sepals into leaves, in addition to true conversion of flowers into inflorescences. The isolation of mtpim represents a proof of concept demonstrating that Tnt1 populations can be efficiently used in reverse genetics screenings in M. truncatula. PMID:16963524
Hacker, Jürgen; Ladinig, Ursula; Wagner, Johanna; Neuner, Gilbert
2011-01-01
Freezing patterns in the high alpine cushion plants Saxifraga bryoides, Saxifraga caesia, Saxifraga moschata and Silene acaulis were studied by infrared thermography at three reproductive stages (bud, anthesis, fruit development). The single reproductive shoots of a cushion froze independently in all four species at every reproductive stage. Ice formation caused lethal damage to the respective inflorescence. After ice nucleation, which occurred mainly in the stalk or the base of the reproductive shoot, ice propagated throughout that entire shoot, but not into neighboring shoots. However, anatomical ice barriers within cushions were not detected. The naturally occurring temperature gradient within the cushion appeared to interrupt ice propagation thermally. Consequently, every reproductive shoot needed an autonomous ice nucleation event to initiate freezing. Ice nucleation was not only influenced by minimum temperatures but also by the duration of exposure. At moderate subzero exposure temperatures (−4.3 to −7.7 °C) the number of frozen inflorescences increased exponentially. Due to efficient supercooling, single reproductive shoots remained unfrozen down to −17.4 °C (cooling rate 6 K h−1). Hence, the observed freezing pattern may be advantageous for frost survival of individual inflorescences and reproductive success of high alpine cushion plants, when during episodic summer frosts damage can be avoided by supercooling. PMID:21151351
Floral morphology and morphogenesis in Camptotheca (Nyssaceae), and its systematic significance.
Gong, Jing-Zhi; Li, Qiu-Jie; Wang, Xi; Ma, Yue-Ping; Zhang, Xiao-Hui; Zhao, Liang; Chang, Zhao-Yang; Ronse De Craene, Louis
2018-03-22
Camptotheca is endemic to China and there are limited data about the breeding system and morphogenesis of the flowers. Camptotheca is thought to be related to Nyssa and Davidia in Nyssaceae, which has sometimes been included in Cornaceae. However, molecular phylogenetic studies confirmed the inclusion of Camptotheca in Nyssaceae and its exclusion from Cornaceae. The aim of this study was to reveal developmental features of the inflorescence and flowers in Camptotheca to compare with related taxa in Cornales. Inflorescences and flowers of Camptotheca acuminata at all developmental stages were collected and studied with a scanning electron microscope and stereo microscope. Camptotheca has botryoids which are composed of several capitate floral units (FUs) that are initiated acropetally. On each FU, flowers are grouped in dyads that are initiated acropetally. All floral organs are initiated centripetally. Calyx lobes are restricted to five teeth. The hypanthium, with five toothed calyx lobes, is adnate to the ovary. The five petals are free and valvate. Ten stamens are inserted in two whorls around the central depression, in which the style is immersed. Three carpels are initiated independently but the ovary is syncarpous and unilocular. The ovule is unitegmic and heterotropous. Inflorescences are functionally andromonoecious varying with the position of the FUs on the inflorescence system. Flowers on the upper FU often have robust styles and fully developed ovules. Flowers on the lower FU have undeveloped styles and aborted ovules, and the flowers on the middle FU are transitional. Camptotheca possesses several traits that unify it with Nyssa, Mastixia and Diplopanax. Inflorescence and floral characters support a close relationship with Nyssaceae and Mastixiaceae but a distant relationship with Cornus. Our results corroborate molecular inferences and support a separate family Nyssaceae.
Regulation of organ straightening and plant posture by an actin-myosin XI cytoskeleton.
Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Kato, Takehide; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko
2015-03-23
Plants are able to bend nearly every organ in response to environmental stimuli such as gravity and light(1,2). After this first phase, the responses to stimuli are restrained by an independent mechanism, or even reversed, so that the organ will stop bending and attain its desired posture. This phenomenon of organ straightening has been called autotropism(3) and autostraightening(4) and modelled as proprioception(5). However, the machinery that drives organ straightening and where it occurs are mostly unknown. Here, we show that the straightening of inflorescence stems is regulated by an actin-myosin XI cytoskeleton in specialized immature fibre cells that are parallel to the stem and encircle it in a thin band. Arabidopsis mutants defective in myosin XI (specifically XIf and XIk) or ACTIN8 exhibit hyperbending of stems in response to gravity, an effect independent of the physical properties of the shoots. The actin-myosin XI cytoskeleton enables organs to attain their new position more rapidly than would an oscillating series of diminishing overshoots in environmental stimuli. We propose that the long actin filaments in elongating fibre cells act as a bending tensile sensor to perceive the organ's posture and trigger the straightening system.
USDA-ARS?s Scientific Manuscript database
Longan, mango and rambutan are very important fruit crops in Puerto Rico. During a disease survey in Puerto Rico conducted from 2008 to 2010, 50% of the inflorescences were affected with inflorescence wilt, flower and vascular necrosis at 70% of the fields of rambutan and longan at the USDA-ARS Rese...
Floral Initiation and Inflorescence Architecture: A Comparative View
Benlloch, Reyes; Berbel, Ana; Serrano-Mislata, Antonio; Madueño, Francisco
2007-01-01
Background A huge variety of plant forms can be found in nature. This is particularly noticeable for inflorescences, the region of the plant that contains the flowers. The architecture of the inflorescence depends on its branching pattern and on the relative position where flowers are formed. In model species such as Arabidopsis thaliana or Antirrhinum majus the key genes that regulate the initiation of flowers have been studied in detail and much is known about how they work. Studies being carried out in other species of higher plants indicate that the homologues of these genes are also key regulators of the development of their reproductive structures. Further, changes in these gene expression patterns and/or function play a crucial role in the generation of different plant architectures. Scope In this review we aim to present a summarized view on what is known about floral initiation genes in different plants, particularly dicotyledonous species, and aim to emphasize their contribution to plant architecture. PMID:17679690
Nectar regulation in Euphorbia tithymaloides L., a hummingbird-pollinated Euphorbiaceae.
Veiga Blanco, T; Galetto, L; Machado, I C
2013-09-01
Floral sexual phases can differ in nectar production and might be under selective pressure by pollinators. We studied Euphorbia tithymaloides, which has inflorescences that are initially female and then hermaphroditic. Volume and concentration of nectar were measured in both stages. Nectar production and the effect of extractions were determined using sets of bagged inflorescences; inflorescences in the hermaphroditic phase had higher values of nectar concentration, volume and sugar mass than inflorescences in the female phase. Nectar resorption was detected in senescent inflorescences. To test for homeostatic nectar regulation, artificial nectar was added and the response assessed after 24 h. The experiments showed that concentration and sugar mass are regulated within a narrow range, and the homeostatic points differ between the two sexual phases. These differences in nectar can be detected by hummingbirds, which prefer the female stage. Resorption and secretion seem to be part of a homeostatic mechanism by which nectar attributes are maintained to optimise sugar recovery. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Image analysis-based modelling for flower number estimation in grapevine.
Millan, Borja; Aquino, Arturo; Diago, Maria P; Tardaguila, Javier
2017-02-01
Grapevine flower number per inflorescence provides valuable information that can be used for assessing yield. Considerable research has been conducted at developing a technological tool, based on image analysis and predictive modelling. However, the behaviour of variety-independent predictive models and yield prediction capabilities on a wide set of varieties has never been evaluated. Inflorescence images from 11 grapevine Vitis vinifera L. varieties were acquired under field conditions. The flower number per inflorescence and the flower number visible in the images were calculated manually, and automatically using an image analysis algorithm. These datasets were used to calibrate and evaluate the behaviour of two linear (single-variable and multivariable) and a nonlinear variety-independent model. As a result, the integrated tool composed of the image analysis algorithm and the nonlinear approach showed the highest performance and robustness (RPD = 8.32, RMSE = 37.1). The yield estimation capabilities of the flower number in conjunction with fruit set rate (R 2 = 0.79) and average berry weight (R 2 = 0.91) were also tested. This study proves the accuracy of flower number per inflorescence estimation using an image analysis algorithm and a nonlinear model that is generally applicable to different grapevine varieties. This provides a fast, non-invasive and reliable tool for estimation of yield at harvest. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Tozin, Luiz R S; Marques, Marcia O M; Rodrigues, Tatiane M
2015-01-01
The essential oils from leaves and inflorescences of Lippia origanoides Kunth present aromatic and medicinal potential and have been used to treat several diseases, including melanoma. In Brazil, L. origanoides is commonly found in campo cerrado and cerrado stricto sensu, physiognomies featured mainly by the differential light conditions to which short and medium-sized plants are subjected. Our aim was to investigate the glandular trichome density and the yield and chemical composition of the essential oils in leaves and inflorescences of L. origanoides from campo cerrado and cerrado stricto sensu. For glandular density analysis, leaves and inflorescences were processed according to conventional techniques for scanning electron microscopy. The essential oils of leaves and inflorescences were obtained by hydrodistillation and identified with gas chromatography. Bracts and sepals showed the highest glandular density, followed by petals and leaves. The glandular density in the abaxial leaf surface was higher in individuals from the campo cerrado. In both populations the essential oil yield was higher in inflorescences than in leaves. The chemical composition of the essential oils varied among individuals from different areas and inside a same population. Our results demonstrated the chemical plasticity of L. origanoides suggesting the importance of monitoring its popular use.
Byzova, Marina V.; Franken, John; Aarts, Mark G.M.; de Almeida-Engler, Janice; Engler, Gilbert; Mariani, Celestina; Van Lookeren Campagne, Michiel M.; Angenent, Gerco C.
1999-01-01
A recessive mutation in the Arabidopsis STERILE APETALA (SAP) causes severe aberrations in inflorescence and flower and ovule development. In sap flowers, sepals are carpelloid, petals are short and narrow or absent, and anthers are degenerated. Megasporogenesis, the process of meiotic divisions preceding the female gametophyte formation, is arrested in sap ovules during or just after the first meiotic division. More severe aberrations were observed in double mutants between sap and mutant alleles of the floral homeotic gene APETALA2 (AP2) suggesting that both genes are involved in the initiation of female gametophyte development. Together with the organ identity gene AGAMOUS (AG) SAP is required for the maintenance of floral identity acting in a manner similar to APETALA1. In contrast to the outer two floral organs in sap mutant flowers, normal sepals and petals develop in ag/sap double mutants, indicating that SAP negatively regulates AG expression in the perianth whorls. This supposed cadastral function of SAP is supported by in situ hybridization experiments showing ectopic expression of AG in the sap mutant. We have cloned the SAP gene by transposon tagging and revealed that it encodes a novel protein with sequence motifs, that are also present in plant and animal transcription regulators. Consistent with the mutant phenotype, SAP is expressed in inflorescence and floral meristems, floral organ primordia, and ovules. Taken together, we propose that SAP belongs to a new class of transcription regulators essential for a number of processes in Arabidopsis flower development. PMID:10215627
Dt2 Is a Gain-of-Function MADS-Domain Factor Gene That Specifies Semideterminacy in Soybean[C][W
Ping, Jieqing; Liu, Yunfeng; Sun, Lianjun; Zhao, Meixia; Li, Yinghui; She, Maoyun; Sui, Yi; Lin, Feng; Liu, Xiaodong; Tang, Zongxiang; Nguyen, Hanh; Tian, Zhixi; Qiu, Lijuan; Nelson, Randall L.; Clemente, Thomas E.; Specht, James E.; Ma, Jianxin
2014-01-01
Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean. PMID:25005919
Identification and analysis of novel genes involved in gravitropism of Arabidopsis thaliana.
NASA Astrophysics Data System (ADS)
Morita, Miyo T.; Tasaka, Masao; Masatoshi Taniguchi, .
2012-07-01
Gravitropism is a continuous control with regard to the orientation and juxtaposition of the various parts of the plant body in response to gravity. In higher plants, the relative directional change of gravity is mainly suscepted in specialized cells called statocytes, followed by signal conversion from physical information into physiological information within the statocytes. We have studied the early process of shoot gravitropism, gravity sensing and signaling process, mainly by molecular genetic approach. In Arabidopsis shoot, statocytes are the endodermal cells. sgr1/scarcrow (scr) and sgr7/short-root (shr) mutants fail to form the endodermis and to respond to gravity in their inflorescence stems. Since both SGR1/SCR and SGR7/SHR are transcriptional factors, at least a subset of their downstream genes can be expected to be involved in gravitropism. In addition, eal1 (endodermal-amyloplast less 1), which exhibits no gravitropism in inflorescence stem but retains ability to form endodermis, is a hypomorphic allele of sgr7/shr. Take advantage of these mutants, we performed DNA microarray analysis and compared gene expression profiles between wild type and the mutants. We found that approx. 40 genes were commonly down-regulated in these mutants and termed them DGE (DOWN-REGULATED GENE IN EAL1) genes. DGE1 has sequence similarity to Oryza sativa LAZY1 that is involved in shoot gravitropism of rice. DGE2 has a short region homologous to DGE1. DTL (DGE TWO-LIKE}) that has 54% identity to DGE2 is found in Arabidopsis genome. All three genes are conserved in angiosperm but have no known functional domains or motifs. We analyzed T-DNA insertion for these genes in single or multiple combinations. In dge1 dge2 dtl triple mutant, gravitropic response of shoot, hypocotyl and root dramatically reduced. Now we are carrying out further physiological and molecular genetic analysis of the triple mutant.
High frequency early in vitro flowering of Dendrobium Madame Thong-In (Orchidaceae).
Sim, Guek Eng; Loh, Chiang Shiong; Goh, Chong Jin
2007-04-01
We have successfully developed a method to induce early in vitro flowering of the self-pollinated seedlings of a tropical orchid hybrid, Dendrobium Madame Thong-In. Transition of vegetative shoot apical meristem to inflorescence meristem was observed when young protocorms were cultured in modified KC liquid medium. In contrast, protocorms cultured on Gelrite-solidified medium only produced axillary shoots and roots. CW was required to trigger the transitional shoot apical meristem and BA enhanced inflorescence stalk initiation and flower bud formation. However, normal flower development was deformed in liquid medium but developed fully upon transferring to two-layered (liquid over Gelrite-solidified) medium. Under optimal condition, in vitro flowering was observed about 5 months after seed sowing. Segregation of flower colours was observed in these seedlings and seedpods formed upon artificial pollination of the in vitro flowers.
Mizuno, Shinji; Sonoda, Masatoshi; Tamura, Yayoi; Nishino, Eisho; Suzuki, Hideyuki; Sato, Takahide; Oizumi, Toshikatsu
2015-11-01
Tendrils are filamentous plant organs that coil on contact with an object, thereby providing mechanical support for climbing to reach more sunlight. Plant tendrils are considered to be modified structure of leaves, stems, or inflorescence, but the origin of cucurbit tendrils is still argued because of the complexity in the axillary organ patterning. We carried out morphological and genetic analyses of the Chiba Tendril-Less (ctl) melon (Cucumis melo) mutant, and found strong evidence that the melon tendril is a modified organ derived from a stem-leaf complex of a lateral shoot. Heterozygous (CTL/ctl) plants showed traits intermediate between tendril and shoot, and ontogenies of wild-type tendrils and mutant modified shoots coincided. We identified the CTL locus in a 200-kb region in melon linkage group IX. A single base deletion in a melon TCP transcription factor gene (CmTCP1) was detected in the mutant ctl sequence, and the expression of CmTCP1 was specifically high in wild-type tendrils. Phylogenetic analysis demonstrated the novelty of the CmTCP1 protein and the unique molecular evolution of its orthologs in the Cucurbitaceae. Our results move us closer to answering the long-standing question of which organ was modified to become the cucurbit tendril, and suggest a novel function of the TCP transcription factor in plant development.
Tanimoto, Mimi; Tremblay, Reynald; Colasanti, Joseph
2008-05-01
Plants have developed sophisticated gravity sensing mechanisms to interpret environmental signals that are vital for optimum plant growth. Loss of SHOOT GRAVITROPISM 5 (SGR5) gene function has been shown to affect the gravitropic response of Arabidopsis inflorescence stems. SGR5 is a member of the INDETERMINATE DOMAIN (IDD) zinc finger protein family of putative transcription factors. As part of an ongoing functional analysis of Arabidopsis IDD genes (AtIDD) we have extended the characterisation of SGR5, and show that gravity sensing amyloplasts in the shoot endodermis of sgr5 mutants sediment more slowly than wild type, suggesting a defect in gravity perception. This is correlated with lower amyloplast starch levels, which may account for the reduced gravitropic sensitivity in sgr5. Further, we find that sgr5 mutants have a severely attenuated stem circumnutation movement typified by a reduced amplitude and an decreased periodicity. adg1-1 and sex1-1 mutants, which contain no starch or increased starch, respectively, also show alterations in the amplitude and period of circumnutation. Together these results suggest that plant growth movement may depend on starch levels and/or gravity sensing. Overall, we propose that loss of SGR5 regulatory activity affects starch accumulation in Arabidopsis shoot tissues and causes decreased sensitivity to gravity and diminished circumnutational movements.
KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis.
Douglas, Scott J; Chuck, George; Dengler, Ronald E; Pelecanda, Lakshmi; Riggs, C Daniel
2002-03-01
Plant architecture is dictated by morphogenetic factors that specify the number and symmetry of lateral organs as well as their positions relative to the primary axis. Mutants defective in the patterning of leaves and floral organs have provided new insights on the signaling pathways involved, but there is comparatively little information regarding aspects of the patterning of stems, which play a dominant role in architecture. To this end, we have characterized five alleles of the brevipedicellus mutant of Arabidopsis, which exhibits reduced internode and pedicel lengths, bends at nodes, and downward-oriented flowers and siliques. Bends in stems correlate with a loss of chlorenchyma tissue at the node adjacent to lateral organs and in the abaxial regions of pedicels. A stripe of achlorophyllous tissue extends basipetally from each node and is positioned over the vasculature that services the corresponding lateral organ. Map-based cloning and complementation studies revealed that a null mutation in the KNAT1 homeobox gene is responsible for these pleiotropic phenotypes. Our observation that wild-type Arabidopsis plants also downregulate chlorenchyma development adjacent to lateral organs leads us to propose that KNAT1 and ERECTA are required to restrict the action of an asymmetrically localized, vasculature-associated chlorenchyma repressor at the nodes. Our data indicate that it is feasible to alter the architecture of ornamental and crop plants by manipulating these genetically defined pathways.
Yin, Dedong; Liu, Xue; Shi, Zhenying; Li, Dayong; Zhu, Lihuang
2018-01-01
The cereal crops (such as rice and maize) which belong to the grass family, are the most important grain crops for human beings, and the development of their flower and inflorescence architecture has attracted extensive attention. Although multiple genes involved in the regulation of floral and inflorescence organogenesis have been identified, the underlying molecular mechanisms are largely unknown. Previously, we identified rice depressed palea1 (dp1) mutants with defects in main structure of palea and its enhancer RETARDED PALEA1 (REP1). DP1 is an AT-hook protein while REP1 is a TCP transcription factor, both of which are important regulators of palea development. However, the relationship of these two proteins has not been elucidated yet. Here, we demonstrated that DP1 interacts physically with REP1 both in yeast and in rice protoplasts. Considering the close phylogenetic relationship between maize and rice, we further hypothesize that their orthologs in maize, BARREN STALK FASTIGIATE (BAF1) and BRANCH ANGLE DEFECTIVE 1 (BAD1), may interact physically. Subsequently, we verified their physical interaction, indicating that the interaction between AT-hook proteins and TCP proteins is conserved in rice and maize. Our findings may reveal a novel molecular mechanism of floral and inflorescence development in grasses. Copyright © 2017 Elsevier Inc. All rights reserved.
Preston, Jill C; Wang, Huai; Kursel, Lisa; Doebley, John; Kellogg, Elizabeth A
2012-01-01
• Hardened floral bracts and modifications to the inflorescence axis of grasses have been hypothesized to protect seeds from predation and/or aid seed dispersal, and have evolved multiple times independently within the family. Previous studies have demonstrated that mutations in the maize (Zea mays ssp. mays) gene teosinte glume architecture (tga1) underlie a reduction in hardened structures, yielding free fruits that are easy to harvest. It remains unclear whether the causative mutation(s) occurred in the cis-regulatory or protein-coding regions of tga1, and whether similar mutations in TGA1-like genes can explain variation in the dispersal unit in related grasses. • To address these questions TGA1-like genes were cloned and sequenced from a number of grasses and analyzed phylogenetically in relation to morphology; protein expression was investigated by immunolocalization. • TGA1-like proteins were expressed throughout the spikelet in the early development of all grasses, and throughout the flower of the grass relative Joinvillea. Later in development, expression patterns differed between Tripsacum dactyloides, maize and teosinte (Z. mays ssp. parviglumis). • These results suggest an ancestral role for TGA1-like genes in early spikelet development, but do not support the hypothesis that TGA1-like genes have been repeatedly modified to affect glume and inflorescence axis diversification. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Durbak, Amanda R.; Phillips, Kimberly A.; Pike, Sharon; O’Neill, Malcolm A.; Mares, Jonathan; Gallavotti, Andrea; Malcomber, Simon T.; Gassmann, Walter; McSteen, Paula
2014-01-01
The element boron (B) is an essential plant micronutrient, and B deficiency results in significant crop losses worldwide. The maize (Zea mays) tassel-less1 (tls1) mutant has defects in vegetative and inflorescence development, comparable to the effects of B deficiency. Positional cloning revealed that tls1 encodes a protein in the aquaporin family co-orthologous to known B channel proteins in other species. Transport assays show that the TLS1 protein facilitates the movement of B and water into Xenopus laevis oocytes. B content is reduced in tls1 mutants, and application of B rescues the mutant phenotype, indicating that the TLS1 protein facilitates the movement of B in planta. B is required to cross-link the pectic polysaccharide rhamnogalacturonan II (RG-II) in the cell wall, and the percentage of RG-II dimers is reduced in tls1 inflorescences, indicating that the defects may result from altered cell wall properties. Plants heterozygous for both tls1 and rotten ear (rte), the proposed B efflux transporter, exhibit a dosage-dependent defect in inflorescence development under B-limited conditions, indicating that both TLS1 and RTE function in the same biological processes. Together, our data provide evidence that TLS1 is a B transport facilitator in maize, highlighting the importance of B homeostasis in meristem function. PMID:25035406
Meos, Andres; Jüriado, Tiiu; Matto, Vallo; Raal, Ain
2011-05-01
Trace metal contamination is a major environmental and health problem virtually in all countries. The present study was aimed to estimate the lead content of pot marigold (Calendula officinalis L.) inflorescences and leaves collected from a nonpolluted test field. The lead content in dry pot marigold inflorescences was 9.34 ± 0.79 µg/g, in dry leaves 11.57 ± 0.47 µg/g, and in soil 0.649 ± 0.012 µg/g. The distance of pot marigold collection beds (30-220 m from the motorway) had no effect on lead content. There was a strong positive correlation between the amount of precipitations and lead content of pot marigold leaves but not inflorescences indicating the soil as primarily the source of increased lead content. In conclusion, no effect of motorway vicinity was found for pot marigold inflorescences or leaves lead content; however, as a precaution, it is not recommended to collect the plants during or just after showers.
Broholm, Suvi K.; Tähtiharju, Sari
2016-01-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. PMID:27382139
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
TG-DSC method applied to drying characteristics of areca inflorescence during drying
NASA Astrophysics Data System (ADS)
Song, Fei; Wang, Hui; Huang, Yulin; Zhang, Yufeng; Chen, Weijun; Zhao, Songlin; Zhang, Ming
2017-10-01
In this study, suitability of eight drying models available in literature on defining drying characteristics of areca inflorescence has been examined by non-linear regression analysis using the Statistic Computer Program. The coefficient of determination ( R 2 ) and the reduced chi-square (χ2) are used as indicators to evaluate the best suitable model. According to the results, the Verma et al. model gave the best results for explaining the drying characteristics of areca inflorescence. The drying process could be divided into three periods: rising rate, constant rate and the falling rate period. Fick's second law can describe the moisture transport during the food drying process that takes place in the falling rate period. The values of effective diffusivity during the drying of areca inflorescence ranged from 2.756 × 10-7 to 6.257 × 10-7 m2/s and the activation energy was tested for 35.535 kJ/mol. The heat requirement of areca inflorescence at 40-60 °C was calculated from 50.57 to 60.50 kJ/kg during the drying process.
Lokk, I É; Sokolov, D D; Remizova, M V
2011-01-01
Flowers of Ruppia are normally arranged into an open two-flowered spike, but sometimes the two lateral flowers are congenitally united with each other and form a terminal flower-like structure. This developmental abnormality resembles those described in well-investigated mutants of model organisms of developmental genetics such as Arabidopsis Antirrhinum. A study of Ruppia allows investigating morphogenetic lability of this feature in natural populations. These data will be important for understanding evolutionary transitions between open and closed inflorescences. This paper presents first data on frequencies ofterminal flower-like structures in natural populations of Ruppia maritima and first observations of their development. Vascular supply of inflorescences with free and united flowers is compared for the first time. Strong differences in frequencies of occurrence of terminal flower-like structures among examined natural populations are revealed. Data on variation of organ numbers in flowers of plants from different populations allow hypothesizing that increased size of floral primordia is a factor that plays a role in their amalgamation into ajoint primordium of a terminal structure. Vascular system of inflorescences of R. maritima with united flowers is quite similar to the vascular system of a flower and nothing contradicts a hypothesis on terminal position ofthis structure. Transversally inserted stamens in inflorescences with united flowers are usually of inverted polarity. This appears to be the first documented example of an inversion of relative polarity of stamens and carpels in angiosperms.
Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M
1998-06-01
In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development.
Zhong, Ruiqin; Kays, Stanley J; Schroeder, Betty P; Ye, Zheng-Hua
2002-01-01
Chitinase-like proteins have long been proposed to play roles in normal plant growth and development, but no mutations in chitinase-like genes have been obtained previously to support this hypothesis. In this study, we have shown that the gene responsible for the elp1 mutation in Arabidopsis encodes a chitinase-like protein (AtCTL1). Mutation of this chitinase-like gene caused ectopic deposition of lignin and aberrant shapes of cells with incomplete cell walls in the pith of inflorescence stems. The AtCTL1 gene was expressed in all organs during normal plant growth and development, but it was not induced by wounding, salicylic acid, pectin fragments, or ethylene. Consistent with its ubiquitous expression pattern, mutation of the AtCTL1 gene affected many aspects of plant growth and development, including exaggerated hook curvature, reduced length and increased diameter of hypocotyls in dark-grown seedlings, and reduced root length and increased number of root hairs in light-grown seedlings. The mutant phenotypes could be rescued partially by ethylene inhibitors, and ethylene production in the mutant was significantly greater than in the wild type. Together, these results suggest that AtCTL1, a chitinase-like gene, is essential for normal plant growth and development in Arabidopsis.
The involvement of ethylene in regulation of Arabidopsis gravitropism
NASA Astrophysics Data System (ADS)
Li, Ning; Zhu, Lin
Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow green 1, Chen et al 2005; Guo et al 2008). To address the molecular mechanism by which ethylene regulates gravitropism, a cutting-edge phosphopro-teomics approach has been adopted to discover new components involved in ethylene signaling pathways (Li et al 2009). Two putative ethylene response transcription factors: EIL1 and ERF110, have been identified to contain ethylene-regulated phosphorylation sites, the phos-phorylation status of which are ethylene treatment-dependent but EIN2-independent, strongly suggestive of the existence of novel signaling components mediating an alternative ethylene signal pathway. Combination of the time-dependent ethylene treatments with the systematic profiling of protein phosphorylation using functional phosphoproteomics among Arabidopsis ethylene response mutants is able to provide more valuable information about the molecular mechanisms underlying ethylene and gravity signaling pathways. (This work is supported by grants: RPC07/08.SC16, 661408, 661207, N HKUST627/06, DAG04/05.SC08, HKUST6105/01M, and HKUST6413/06M)
tassel-less1 encodes a boron channel protein required for inflorescence development in maize.
Leonard, April; Holloway, Beth; Guo, Mei; Rupe, Mary; Yu, GongXin; Beatty, Mary; Zastrow-Hayes, Gina; Meeley, Robert; Llaca, Victor; Butler, Karlene; Stefani, Tony; Jaqueth, Jennifer; Li, Bailin
2014-06-01
tassel-less1 (tls1) is a classical maize (Zea mays) inflorescence mutant. Homozygous mutant plants have no tassels or very small tassels, and ear development is also impaired. Using a positional cloning approach, ZmNIP3;1 (a NOD26-like intrinsic protein) was identified as the candidate gene for tls1. The ZmNIP3;1 gene is completely deleted in the tls1 mutant genome. Two Mutator-insertional TUSC alleles of ZmNIP3;1 exhibited tls1-like phenotypes, and allelism tests confirmed that the tls1 gene encodes ZmNIP3;1. Transgenic plants with an RNA interference (RNAi) construct to down-regulate ZmNIP3;1 also showed tls1-like phenotypes, further demonstrating that TLS1 is ZmNIP3;1. Sequence analysis suggests that ZmNIP3;1 is a boron channel protein. Foliar application of boron could rescue the tls1 phenotypes and restore the normal tassel and ear development. Gene expression analysis indicated that in comparison with that of the wild type or tls1 plants treated with boron, the transition from the vegetative to reproductive phase or the development of the floral meristem is impaired in the shoot apical meristem of the tls1 mutant plants. It is concluded that the tls1 mutant phenotypes are caused by impaired boron transport, and boron is essential for inflorescence development in maize. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Landrein, Benoît; Lathe, Rahul; Bringmann, Martin; Vouillot, Cyril; Ivakov, Alexander; Boudaoud, Arezki; Persson, Staffan; Hamant, Olivier
2013-05-20
The parallel alignment of stiff cellulose microfibrils in plant-cell walls mediates anisotropic growth. This is largely controlled by cortical microtubules, which drive the insertion and trajectory of the cellulose synthase (CESA) complex at the plasma membrane. The CESA interactive protein 1 (CSI1) acts as a physical linker between CESA and cortical microtubules. Here we show that the inflorescence stems of csi1 mutants exhibit subtle right-handed torsion. Because cellulose deposition is largely uncoupled from cortical microtubules in csi1, we hypothesize that strictly transverse deposition of microfibrils in the wild-type is replaced by a helical orientation of uniform handedness in the mutant and that the helical microfibril alignment generates torsion. Interestingly, both elastic and viscous models for an expanding cell predict that a net helical orientation of microfibrils gives rise to a torque. We indeed observed tilted microfibrils in csi1 cells, and the torsion was almost absent in a csi1 prc1 background with impaired cellulose synthesis. In addition, the stem torsion led to a novel bimodal and robust phyllotactic pattern in the csi1 mutant, illustrating how growth perturbations can replace one robust mathematical pattern with a different, equally robust pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.
Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun
2012-07-01
• Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Flores, J.; Chávez, S.
2015-01-01
The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product.
Feng, Nan; Song, Gaoyuan; Guan, Jiantao; Chen, Kai; Jia, Meiling; Huang, Dehua; Wu, Jiajie; Zhang, Lichao; Kong, Xiuying; Geng, Shuaifeng
2017-01-01
Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields. PMID:28515146
Lasserre, Eric; Jobet, Edouard; Llauro, Christel; Delseny, Michel
2008-12-01
An inverse genetic approach was used to gain insight into the role of AP2/ERF-type transcription factors genes during plant development in Arabidopsis thaliana. Here we show that the expression pattern of AtERF38, which is, among the organs tested, more intensively expressed in mature siliques and floral stems, is closely associated with tissues that undergo secondary cell wall modifications. Firstly, public microarray data sets analysis indicates that AtERF38 is coregulated with several genes involved in secondary wall thickening. Secondly, this was experimentally confirmed in different types of cells expressing a Pro(AtERF38)::GUS fusion: histochemical analysis revealed strong and specific GUS activity in outer integument cells of mature seeds, endodermal cells of the roots in the primary developmental stage and some sclerified cells of mature inflorescence stems. All of these cells are known or shown here to be characterized by a reinforced wall. The latter, which have not been well characterized to date in Arabidopsis and may be suberized, could benefit of the use of AtERF38 as a specific marker. We were not able to detect any phenotype in an insertion line in which ectopic expression of AtERF38 is caused by the insertion of a T-DNA in its promoter. Nevertheless, AtERF28 may be considered as a candidate regulator of secondary wall metabolism in particular cell types that are not reinforced by the typical deposition of lignin and cellulose, but that have at least in common accumulation of suberin-like lipid polyesters in their walls.
Zhao, Yafei; Zhang, Teng; Broholm, Suvi K; Tähtiharju, Sari; Mouhu, Katriina; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2016-09-01
The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems. © 2016 American Society of Plant Biologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Kamisaka, Seiichiro; Yano, Sachiko; Shimazu, Toru; Tamaoki, Daisuke; Tanigaki, Fumiaki; Kasahara, Haruo; Yashiro, Umi; Suto, Takamichi; Yamaguchi, Takashi; Kasahara, Hirokazu
2012-07-01
Gravity is an important environmental factors for growth and development of plants throughout their life cycle. We have designed an experiment, which is called Space Seed, to examine the effects of microgravity on the seed to seed life cycle of plants. We have carried out this experiment using a newly developed apparatus, which is called the Plant Experiment Unit (PEU) and installed in the Cell Biology Experiment Facility (CBEF) onboard International Space Station (ISS). The CBEF is equipped with a turntable generating artificial gravity to perform 1-G control experiment as well as micro-G experiment on board. Arabidopsis thaliana seeds sown on dry rockwool in PEUs were transported from Kennedy Space Center to the ISS Kibo module by Space Shuttle Discovery in STS-128 mission. This experiment was started on Sep. 10, 2009 and terminated on Nov. 11, 2009. Arabidopsis seeds successfully germinated, and the plants passed through both vegetative and reproductive processes, such as formation of rosette leaves, bolting of inflorescence stems, flowering, formation of siliques and seeds. Vegetative and reproductive growth were compared among micro-G plants, 1-G control, and the ground control.
Kato, Takehide; Morita, Miyo Terao; Fukaki, Hidehiro; Yamauchi, Yoshiro; Uehara, Michiko; Niihama, Mitsuru; Tasaka, Masao
2002-01-01
In higher plants, the shoot and the root generally show negative and positive gravitropism, respectively. To elucidate the molecular mechanisms involved in gravitropism, we have isolated many shoot gravitropism mutants in Arabidopsis. The sgr2 and zig/sgr4 mutants exhibited abnormal gravitropism in both inflorescence stems and hypocotyls. These genes probably are involved in the early step(s) of the gravitropic response. The sgr2 mutants also had misshapen seed and seedlings, whereas the stem of the zig/sgr4 mutants elongated in a zigzag fashion. The SGR2 gene encodes a novel protein that may be part of a gene family represented by bovine phosphatidic acid–preferring phospholipase A1 containing a putative transmembrane domain. This gene family has been reported only in eukaryotes. The ZIG gene was found to encode AtVTI11, a protein that is homologous with yeast VTI1 and is involved in vesicle transport. Our observations suggest that the two genes may be involved in a vacuolar membrane system that affects shoot gravitropism. PMID:11826297
Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.
Ikeda, Kyoko; Ito, Momoyo; Nagasawa, Nobuhiro; Kyozuka, Junko; Nagato, Yasuo
2007-09-01
Inflorescence architecture is one of the most important agronomical traits. Characterization of rice aberrant panicle organization 1 (apo1) mutants revealed that APO1 positively controls spikelet number by suppressing the precocious conversion of inflorescence meristems to spikelet meristems. In addition, APO1 is associated with the regulation of the plastchron, floral organ identity, and floral determinacy. Phenotypic analyses of apo1 and floral homeotic double mutants demonstrate that APO1 positively regulates class-C floral homeotic genes, but not class-B genes. Molecular studies revealed that APO1 encodes an F-box protein, an ortholog of Arabidopsis UNUSUAL FLORAL ORGAN (UFO), which is a positive regulator of class-B genes. Overexpression of APO1 caused an increase in inflorescence branches and spikelets. As the mutant inflorescences and flowers differed considerably between apo1 and ufo, the functions of APO1 and UFO appear to have diverged during evolution.
The natural impact of banana inflorescences (Musa acuminata) on human nutrition.
Fingolo, Catharina E; Braga, João M A; Vieira, Ana C M; Moura, Mirian R L; Kaplan, Maria Auxiliadora C
2012-12-01
Banana inflorescences are popularly known as 'navels,' and they are used in Brazil as nutritional complements. However, the nutritional value of banana inflorescences (male flowers and bracts) has never been studied. Therefore, plant material of Musa acuminata, cultivar "ouro", was collected in Rio de Janeiro state, Brazil, and then submitted to chemical procedures to determine its nutritional composition. The experiment was arranged a completely randomized design and performed in triplicate. The sample composition analysis showed percentual average value for moisture, protein, fat and ash as 8.21, 14.50, 4.04 and 14.43, respectively. The dehydrated inflorescences were found to contain a significant nutritive complement based on their high content of potassium (5008.26 mg / 100 g) and fiber 49.83% (lignin, cellulose and hemicelluloses) revealing important functional and nutritional properties. In a parallel evaluation, the anatomical study revealed key elements for the recognition of Musa acuminata when reduced to fragments.
Diel Patterns of Activity for Insect Pollinators of Two Oil Palm Species (Arecales : Arecaceae)
Frérot, Brigitte; Poveda, Roberto; Louise, Claude; Beaudoin-Ollivier, Laurence
2017-01-01
The pollination of two oil palm species, Elaeis guineensis Jacquin and Elaeis oleifera Cortés (Arecales: Arecaceae), depends on a mutualistic relation with insects, which use male inflorescences as a brood site, and visits female inflorescences lured by the emitted odor, which is similar to that of males. Although the activity of visiting the inflorescences by these insects is critical for the adequate natural pollination of the host plant, their activity is poorly documented. In the present study, we determine the diel activity of two specialized pollinator weevils (Coleoptera: Curculionidae) on inflorescences of their respective host-palm: Elaeidobius kamerunicus Faust specialized on E. guineensis, and Grasidius hybridus O’Brien and Beserra specialized on E. oleifera. The average timing of activity was studied by using passive interception traps. Then the pattern and the duration were refined by using aspiration trapping within the active period for each insect species at the male and female inflorescences. All the experiments were conducted in an Ecuadorian oil palm plantation, located close to Amazonian forest. El. kamerunicus and G. hybridus were found to be the pollinators of E. guineensis and E. oleifera, respectively. The two species differed in their diel pattern of activity: E. kamerunicus was active in the morning and G. hybridus during a short period at dusk. For both palm species, insect visits were synchronous on both male and female inflorescences. The synchronicity is discussed as a strategy to maintain the relation mutualistic between partners. These findings increase our understanding of the oil palm pollination system. PMID:28365767
Barrera-Figueroa, Blanca E; Gao, Lei; Wu, Zhigang; Zhou, Xuefeng; Zhu, Jianhua; Jin, Hailing; Liu, Renyi; Zhu, Jian-Kang
2012-08-03
MicroRNAs (miRNAs) are small RNA molecules that play important regulatory roles in plant development and stress responses. Identification of stress-regulated miRNAs is crucial for understanding how plants respond to environmental stimuli. Abiotic stresses are one of the major factors that limit crop growth and yield. Whereas abiotic stress-regulated miRNAs have been identified in vegetative tissues in several plants, they are not well studied in reproductive tissues such as inflorescences. We used Illumina deep sequencing technology to sequence four small RNA libraries that were constructed from the inflorescences of rice plants that were grown under control condition and drought, cold, or salt stress. We identified 227 miRNAs that belong to 127 families, including 70 miRNAs that are not present in the miRBase. We validated 62 miRNAs (including 10 novel miRNAs) using published small RNA expression data in DCL1, DCL3, and RDR2 RNAi lines and confirmed 210 targets from 86 miRNAs using published degradome data. By comparing the expression levels of miRNAs, we identified 18, 15, and 10 miRNAs that were regulated by drought, cold and salt stress conditions, respectively. In addition, we identified 80 candidate miRNAs that originated from transposable elements or repeats, especially miniature inverted-repeat elements (MITEs). We discovered novel miRNAs and stress-regulated miRNAs that may play critical roles in stress response in rice inflorescences. Transposable elements or repeats, especially MITEs, are rich sources for miRNA origination.
Heat Transfer during Blanching and Hydrocooling of Broccoli Florets.
Iribe-Salazar, Rosalina; Caro-Corrales, José; Hernández-Calderón, Óscar; Zazueta-Niebla, Jorge; Gutiérrez-Dorado, Roberto; Carrazco-Escalante, Marco; Vázquez-López, Yessica
2015-12-01
The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets. © 2015 Institute of Food Technologists®
Huang, Shixin; Makarem, Mohamadamin; Kiemle, Sarah N; Hamedi, Hossein; Sau, Moujhuri; Cosgrove, Daniel J; Kim, Seong H
2018-05-17
Sum frequency generation (SFG) vibrational spectroscopy can selectively detect and analyze noncentrosymmetric components interspersed in amorphous matrices; this principle has been used for studies of nanoscale structure and mesoscale assembly of cellulose in plant cell walls. However, the spectral information averaged over a large area or volume cannot provide regiospecific or tissue-specific information of different cells in plants. This study demonstrates spatially resolved SFG analysis and imaging by combining a broad-band SFG spectroscopy system with an optical microscope. The system was designed to irradiate both narrow-band 800 nm and broad-band tunable IR beams through a single reflective objective lens, but from opposite sides of the surface normal direction of the sample. The developed technique was used to reveal inhomogeneous distributions of cellulose microfibrils within single cell walls, such as cotton fibers and onion epidermis as well as among different tissues in Arabidopsis inflorescence stems and bamboo culms. SFG microscopy can be used for vibrational spectroscopic imaging of other biological systems in complement to conventional Fourier transform infrared spectroscopy and confocal Raman microscopy.
NASA Astrophysics Data System (ADS)
Fay, P. A.; Collins, H.; Polley, W.
2016-12-01
Atmospheric CO2 concentration will likely exceed 500 µL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA . Whether increased abundance translates to increased inflorescence production is poorly understood, and is important because it indicates the potential effects of CO2 enrichment on genetic variability and the potential for evolutionary change in future generations. We examined whether the responses of inflorescence production to CO2 enrichment in four C4 grasses and a C3 forb were predicted their vegetative biomass, and by soil moisture, soil nitrogen, or light availability. Inflorescence production was studied in a long-term CO2 concentration gradient spanning pre-industrial to anticipated mid-21st century values (250 - 500 µL L-1) maintained on clay, silty clay and sandy loam soils common in the U.S. Southern Plains. We expected that CO2 enrichment would increase inflorescence production, and more so with higher water, nitrogen, or light availability. However, structural equation modeling revealed that vegetative biomass was the single consistent direct predictor of flowering for all species (p < 0.001). Vegetative biomass increased, decreased, or did not respond to CO2 enrichment depending on the species. For the increasing species Sorghastrum nutans (C4 grass) and Solidago canadensis (C3 forb), direct CO2 effects on flowering were only weakly mediated by indirect effects of soil water content and soil NO3-N availability. For the decreasing species (Bouteloua curtipendula, C4 grass), the negative CO2-flowering relationship was cancelled (p = 0.39) by indirect effects of increased SWC and NO3-N on clay and silty clay soils. For the species with no CO2 response, inflorescence production was predicted only by direct water content (p < 0.0001, Schizachyrium scoparius, C4 grass) or vegetative biomass (p = 0.0009, Tridens albescens, C4 grass) effects. Light availability was unrelated to inflorescence production. Changes in inflorescence production are thus closely tied to direct and indirect effects of CO2 enrichment on vegetative biomass, and may either increase, decrease, or leave unchanged the potential for genetic variability and evolutionary change in future generations in response to global change drivers.
Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria
Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.
1988-01-01
When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870
Pollination and protection against herbivory of Nepalese Coelogyninae (Orchidaceae).
Subedi, Abishkar; Chaudhary, Ram P; van Achterberg, Cees; Heijerman, Theodoor; Lens, Frederic; Van Dooren, Tom J M; Gravendeel, Barbara
2011-07-01
Although many species in the orchid genus Coelogyne are horticulturally popular, hardly anything is known about their pollination. Pollinators of three species were observed in the field in Nepal. This information is urgently needed because many orchid species in Nepal are endangered. Whether the exudates produced by extrafloral nectaries played a role in protection against herbivory was also investigated. Pollinators of C. flaccida, C. nitida, and Otochilus albus were filmed, captured, and identified. Ant surveys and exclusion experiments were carried out. To investigate whether pollinators are needed for fruit set, plants were wrapped in mesh wire bags. Inflorescence stems were examined with microscopy. Fehling's reagent was used to detect sugars in extrafloral exudates. Coelogyne flaccida and C. nitida need pollinators to set fruit and are pollinated by wild bees identified as Apis cerana. Otochilus albus was found to be pollinated by Bombus kashmirensis. Extrafloral nectar was found to be exuded by nectary-modified stomata and contained high amounts of sugars. Different species of ants were observed collecting these exudates. A significant difference was found in damage inflicted by flower and leaf-eating beetles between C. nitida plants living in trees with ant nests and those in ant-free trees. Floral syndromes include scented and colored trap flowers without reward to their pollinators. All orchids investigated exude extrafloral nectar by nectary-modified stomata. This nectar was found to flow from the phloem to the stomata through intercellular spaces in the outer parenchymatous layer of the inflorescence.
Taketa, Shin; Mascher, Martin; Yuo, Takahisa; Beier, Sebastian; Taudien, Stefan; Morgante, Michele
2016-01-01
Inflorescence architecture in small-grain cereals has a direct effect on yield and is an important selection target in breeding for yield improvement. We analyzed the recessive mutation laxatum-a (lax-a) in barley (Hordeum vulgare), which causes pleiotropic changes in spike development, resulting in (1) extended rachis internodes conferring a more relaxed inflorescence, (2) broadened base of the lemma awns, (3) thinner grains that are largely exposed due to reduced marginal growth of the palea and lemma, and (4) and homeotic conversion of lodicules into two stamenoid structures. Map-based cloning enforced by mapping-by-sequencing of the mutant lax-a locus enabled the identification of a homolog of BLADE-ON-PETIOLE1 (BOP1) and BOP2 as the causal gene. Interestingly, the recently identified barley uniculme4 gene also is a BOP1/2 homolog and has been shown to regulate tillering and leaf sheath development. While the Arabidopsis (Arabidopsis thaliana) BOP1 and BOP2 genes act redundantly, the barley genes contribute independent effects in specifying the developmental growth of vegetative and reproductive organs, respectively. Analysis of natural genetic diversity revealed strikingly different haplotype diversity for the two paralogous barley genes, likely affected by the respective genomic environments, since no indication for an active selection process was detected. PMID:27208226
DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile.
Sawettalake, Nunchanoke; Bunnag, Sumontip; Wang, Yanwen; Shen, Lisha; Yu, Hao
2017-01-01
APETALA1 ( AP1 ) encodes a key MADS-box transcription factor that specifies the floral meristem identity on the flank of the inflorescence meristem, and determines the identity of perianth floral organs in the model plant Arabidopsis thaliana . Orchids are members of the Orchidaceae, one of the largest families of angiosperms. Although the expression patterns of a few AP1 -like genes in orchids have been reported, their actual functions in orchid reproductive development are so far largely unknown. In this study, we isolated and characterized an AP1 ortholog, DOAP1 , from Dendrobium Chao Praya Smile. DOAP1 was highly expressed in reproductive tissues, including inflorescence apices and flowers at various developmental stages. Overexpression of DOAP1 resulted in early flowering in Arabidopsis , and was able to rescue the floral organ defects of Arabidopsis ap1 mutants. Moreover, we successfully created transgenic Dendrobium Chao Praya Smile orchids overexpressing DOAP1 , which displayed earlier flowering and earlier termination of inflorescence meristems into floral meristems than wild-type orchids. Our results demonstrate that DOAP1 plays an evolutionarily conserved role in promoting flowering and floral meristem specification in the Orchidaceae family.
DOAP1 Promotes Flowering in the Orchid Dendrobium Chao Praya Smile
Sawettalake, Nunchanoke; Bunnag, Sumontip; Wang, Yanwen; Shen, Lisha; Yu, Hao
2017-01-01
APETALA1 (AP1) encodes a key MADS-box transcription factor that specifies the floral meristem identity on the flank of the inflorescence meristem, and determines the identity of perianth floral organs in the model plant Arabidopsis thaliana. Orchids are members of the Orchidaceae, one of the largest families of angiosperms. Although the expression patterns of a few AP1-like genes in orchids have been reported, their actual functions in orchid reproductive development are so far largely unknown. In this study, we isolated and characterized an AP1 ortholog, DOAP1, from Dendrobium Chao Praya Smile. DOAP1 was highly expressed in reproductive tissues, including inflorescence apices and flowers at various developmental stages. Overexpression of DOAP1 resulted in early flowering in Arabidopsis, and was able to rescue the floral organ defects of Arabidopsis ap1 mutants. Moreover, we successfully created transgenic Dendrobium Chao Praya Smile orchids overexpressing DOAP1, which displayed earlier flowering and earlier termination of inflorescence meristems into floral meristems than wild-type orchids. Our results demonstrate that DOAP1 plays an evolutionarily conserved role in promoting flowering and floral meristem specification in the Orchidaceae family. PMID:28386268
Llandres, Ana L; Rodríguez-Gironés, Miguel A
2011-02-16
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.
Hobbhahn, N; Steenhuisen, S-L; Olsen, T; Midgley, J J; Johnson, S D
2017-09-01
Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from 'pollination syndromes' can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush-like inflorescences that exhibit features of both bird and rodent pollination syndromes. We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self-compatibility and breeding system, and studied pollen dispersal using fluorescent dyes. The dark-red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male- over female-phase inflorescences, likely because of the male flowers' higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded. Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent-pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non-flying mammals. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Llandres, Ana L.; Rodríguez-Gironés, Miguel A.
2011-01-01
According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183
Wound healing activity of the inflorescence of Typha elephantina (Cattail).
Panda, Vandana; Thakur, Tejas
2014-03-01
Methanolic extracts of Typha elephantina inflorescence (TE) and its bandage were screened for wound healing by incision and excision wound models in Wistar rats. In the incision wound model, incision wounds were topically treated with TE gel (2.0% [w/w], 3.0% [w/w], and 5.0% [w/w]), Typha elephantina inflorescence bandage, and the reference standard 5.0% w/w povidone iodine for a period of 10 days. When the wounds healed thoroughly, sutures were removed on the 8th postwounding day, and the tensile strength of the skin was measured on the 10th day. In the excision wound model, excision wounds were treated with TE gel (3.0% [w/w] and 5.0% [w/w]), inflorescence bandage, and 5.0% w/w povidone iodine till the wounds completely healed. Epithelization time, wound contraction, hydroxyproline and hexosamine content of the scab, and ascorbic acid and malondialdehyde content of the plasma were determined in this model. In the incision wound model, high tensile strength of the skin of the healed wound was observed in rats treated with the TE gels and the inflorescence bandage when compared with wounded control rats. The increase in tensile strength indicates a promotion of collagen fibers and a firm knitting of the disrupted wound surfaces by collagen. In the excision wound model, higher rate of wound contraction, decreased period of epithelization, elevated hydroxyproline, hexosamine, and ascorbic acid levels, and a significant decrease in malondialdehyde content was observed in treated groups when compared with the wounded control animals. It may be concluded that the inflorescence of Typha elephantina possesses a potent wound healing activity, which may be due to an underlying antioxidant mechanism.
Alves, Edenise Segala; de Souza, Silvia Ribeiro; Pedroso, Andrea Nunes Vaz; Domingos, Marisa
2008-11-01
The aims of this study were to determine clastogenic responses of Tradescantia pallida cv. Purpurea to naphthalene (NAPH) by means of the bioassay Trad-MCN with inflorescences of T. pallida cv. Purpurea and to verify if this assay might be an indicator of the potential risk imposed in a workplace, where solid insecticide containing NAPH is usually applied. The clastogenic potential of NAPH was assessed by using static and dynamic experimental systems. In both systems, increased micronucleus frequencies were observed in inflorescences submitted to increasing concentrations of solid or gaseous NAPH. The evident clastogenicity verified in inflorescences exposed experimentally to 25-50 mg m(-3) of NAPH during 6h points to a narrow threshold of plant sensitivity, indicating risks under lower NAPH levels than the standards established by OSHA and therefore revealing its suitability for biomonitoring purposes. However, the clastogenic risk should be carefully investigated by other monitoring methods if human health is taken into consideration.
Pellegrini, Marco O. O.; Horn, Charles N.
2017-01-01
Abstract Two new and peculiar species of Heteranthera are herein described. Heteranthera catharinensis is unique in the genus due to its glomerulate, many-flowered inflorescences, in which the flowers are restricted to the base and apex of the cincinni. It also possesses the biggest flowers in the H. reniformis Ruiz & Pavón species complex, with glabrous perianth lobes, medial filament, and style. On the other hand, Heteranthera pumila is described as the smallest known species of Pontederiaceae, with its dwarf stature, petiolate leaves with especially diminute blades, inflorescences 1–2–(3)-flowered, peduncle densely covered with glandular hairs, basal bract with glandular hairs at base, and smooth seeds, rarely possessing 7–9 inconspicuous longitudinal wings. We present detailed descriptions, illustrations, comments, a distribution map, conservation assessments for the new species, and an identification key to the Brazilian species of Heteranthera s.l. Finally, we discuss inflorescence morphology and terminology in Pontederiaceae, characterizing it as thyrsoid. PMID:28794681
Bowers, Janice E.
2006-01-01
The capacity of individual branches to store water and fix carbon can have profound effects on inflorescence size and architecture, thus on floral display, pollination, and fecundity. Mixed regression was used to investigate the relation between branch length, a proxy for plant resources, and floral display of Fouquieria splendens (ocotillo), a woody, candelabraform shrub of wide distribution in arid North America. Long branches produced three times as many flowers as short branches, regardless of overall plant size. Long branches also had more complex panicles with more cymes and cyme types than short branches; thus, branch length also influenced inflorescence architecture. Within panicles, increasing the number of cymes by one unit added about two flowers, whereas increasing the number of cyme types by one unit added about 21 flowers. Because flower production is mediated by branch length, and because most plants have branches of various lengths, the floral display of individual plants necessarily encompasses a wide range of inflorescence size and structure. ?? Springer 2006.
Juntheikki-Palovaara, Inka; Tähtiharju, Sari; Lan, Tianying; Broholm, Suvi K; Rijpkema, Anneke S; Ruonala, Raili; Kale, Liga; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2014-09-01
The complex inflorescences (capitula) of Asteraceae consist of different types of flowers. In Gerbera hybrida (gerbera), the peripheral ray flowers are bilaterally symmetrical and lack functional stamens while the central disc flowers are more radially symmetrical and hermaphroditic. Proteins of the CYC2 subclade of the CYC/TB1-like TCP domain transcription factors have been recruited several times independently for parallel evolution of bilaterally symmetrical flowers in various angiosperm plant lineages, and have also been shown to regulate flower-type identity in Asteraceae. The CYC2 subclade genes in gerbera show largely overlapping gene expression patterns. At the level of single flowers, their expression domain in petals shows a spatial shift from the dorsal pattern known so far in species with bilaterally symmetrical flowers, suggesting that this change in expression may have evolved after the origin of Asteraceae. Functional analysis indicates that GhCYC2, GhCYC3 and GhCYC4 mediate positional information at the proximal-distal axis of the inflorescence, leading to differentiation of ray flowers, but that they also regulate ray flower petal growth by affecting cell proliferation until the final size and shape of the petals is reached. Moreover, our data show functional diversification for the GhCYC5 gene. Ectopic activation of GhCYC5 increases flower density in the inflorescence, suggesting that GhCYC5 may promote the flower initiation rate during expansion of the capitulum. Our data thus indicate that modification of the ancestral network of TCP factors has, through gene duplications, led to the establishment of new expression domains and to functional diversification. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Abdala-Roberts, Luis; Parra-Tabla, Víctor; Navarro, Jorge
2007-01-01
Background and Aims Although studies have shown that pollen addition and/or removal decreases floral longevity, less attention has been paid to the relationship between reproductive costs and floral longevity. In addition, the influence of reproductive costs on floral longevity responses to pollen addition and/or removal has not yet been evaluated. Here, the orchid Cohniella ascendens is used to answer the following questions. (a) Does experimental removal of flower buds in C. ascendens increase flower longevity? (b) Does pollen addition and/or removal decrease floral longevity, and does this response depend on plant reproductive resource status? Methods To study the effect of reproductive costs on floral longevity 21 plants were selected from which we removed 50 % of the developing flower buds on a marked inflorescence. Another 21 plants were not manipulated (controls). One month later, one of four flowers on each marked inflorescence received one of the following pollen manipulation treatments: control, pollinia removal, pollination without pollinia removal or pollination with pollinia removal. The response variable measured was the number of days each flower remained open (i.e. longevity). Key Results The results showed significant flower bud removal and pollen manipulation effects on floral longevity; the interaction between these two factors was not significant. Flowers on inflorescences with previously removed flower buds remained open significantly longer than flowers on control inflorescences. On the other hand, pollinated flowers closed much faster than control and removed-pollinia flowers, the latter not closing significantly faster than control flowers, although this result was marginal. Conclusions The results emphasize the strong relationship between floral longevity and pollination in orchids, as well as the influence of reproductive costs on the former. PMID:17881335
Cytological characterization of anther development in Panax ginseng Meyer.
Kim, Yu-Jin; Jang, Moon-Gi; Zhu, Lu; Silva, Jeniffer; Zhu, Xiaolei; Sukweenadhi, Johan; Kwon, Woo-Saeng; Yang, Deok-Chun; Zhang, Dabing
2016-07-01
Ginseng (Panax ginseng), a valued medicinal herb, is a slow-growing plant that flowers after 3 years of growth with the formation of a solitary terminal umbel inflorescence. However, little is known about cytological events during ginseng reproduction, such as the development of the male organ, the stamen. To better understand the mechanism controlling ginseng male reproductive development, here, we investigated the inflorescence and flower structure of ginseng. Moreover, we performed cytological analysis of anther morphogenesis and showed the common and specialized cytological events including the formation of four concentric cell layers surrounding male reproductive cells followed by subsequent cell differentiation and degeneration of tapetal cells, as well as the formation of mature pollen grains via meiosis and mitosis during ginseng anther development. Particularly, our transverse section and microscopic observations showed that the ginseng tapetal layer exhibits obvious nonsynchronous cell division evidenced by the observation of one or two tapetal layers frequently observed in one anther lobe, suggesting the unique control of cell division. To facilitate the future study on ginseng male reproduction, we grouped the anther development into 10 developmental stages according to the characterized cytological events.
Analysis of amyloplast dynamics involved in gravity sensing using a novel centrifuge microscope
NASA Astrophysics Data System (ADS)
Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo T.
Plants sense gravity and change their growth orientation, a phenomenon known as gravitropism. According to the starch-statolith hypothesis, sedimentation of high-density starch-filled plastids (amyloplasts) within endodermal cells appears to be involved in gravity sensing of Arabidop-sis shoots. Recent studies suggest, however, that amyloplasts are never static but continu-ously show dynamic and complicated movements due to interaction with vacuole/cytoskeleton. Therefore, it remains unclear what movement/state of amyloplasts is required for gravity sens-ing. To address this critical issue, we analyzed gravitropism and amyloplast dynamics under hypergravity condition where sedimentation by gravity is more dominant than other movements. Segments of Arabidopsis inflorescence stem showed a gravitropism in response to hypergrav-ity (10g) that had been applied perpendicularly to the growth axis for 30 s in a conventional centrifuge, suggesting that amyloplast dynamics during this short time period is involved in gravity sensing. Real-time imaging of amyloplasts during the 10g stimulation was performed using a novel centrifuge microscope (NSK Ltd, Japan): all optical devices including objective lens, light source (LED) and CCD camera are mounted on an AC motor, enabling bright-field imaging with a temporal resolution of 30 frames/sec during rotation. Almost all amyloplasts started to move toward 10g and some reached the one side of endodermal cell within 30 s. These results clearly support the starch-statolith hypothesis that redistribution of amyloplasts to gravity is important for gravity sensing. Furthermore, we analyzed the shoot gravitropic mutant, sgr2, that has non-sedimentable amyloplasts and shows little gravitropism at 1g. An obvious gravitropism was induced by 30g for 5 min where amyloplasts were moved to the hyper-gravity but not by 10g where amyloplasts were not moved. These results not only suggest that gravity sensing of Arabidopsis inflorescence stems is triggered by the amyloplast redistribution resulting from the directional movement to gravity, but also provide a new interpretation of sgr2 that sgr2 has a gravity-sensing mechanism, which is inactivated at 1g probably due to non-sedimentable amyloplasts.
Bianco, Matheus Saraiva; Cecílio Filho, Arthur Bernardes; de Carvalho, Leonardo Bianco
2015-01-01
Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower 'Verona' and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of each macronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg-1 in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg-1 in the inflorescence tissues, respectively.
Bianco, Matheus Saraiva; Cecílio Filho, Arthur Bernardes; de Carvalho, Leonardo Bianco
2015-01-01
Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower ‘Verona’ and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of each macronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg-1 in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg-1 in the inflorescence tissues, respectively. PMID:25856380
Cai, Hanyang; Zhao, Lihua; Wang, Lulu; Zhang, Man; Su, Zhenxia; Cheng, Yan; Zhao, Heming; Qin, Yuan
2017-06-01
Flowering plants display a remarkable diversity in inflorescence architecture, and pedicel length is one of the key contributors to this diversity. In Arabidopsis thaliana, the receptor-like kinase ERECTA (ER) mediated signaling pathway plays important roles in regulating inflorescence architecture by promoting cell proliferation. However, the regulating mechanism remains elusive in the pedicel. Genetic interactions between ERECTA signaling and the chromatin remodeling complex SWR1 in the control of inflorescence architecture were studied. Comparative transcriptome analysis was applied to identify downstream components. Chromatin immunoprecipitation and nucleosome occupancy was further investigated. The results indicated that the chromatin remodeler SWR1 coordinates with ERECTA signaling in regulating inflorescence architecture by activating the expression of PRE1 family genes and promoting pedicel elongation. It was found that SWR1 is required for the incorporation of the H2A.Z histone variant into nucleosomes of the whole PRE1 gene family and the ERECTA controlled expression of PRE1 gene family through regulating nucleosome dynamics. We propose that utilization of a chromatin remodeling complex to regulate gene expression is a common theme in developmental control across kingdoms. These findings shed light on the mechanisms through which chromatin remodelers orchestrate complex transcriptional regulation of gene expression in coordination with a developmental cue. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Whole-plant adjustments in coconut (Cocos nucifera) in response to sink-source imbalance.
Mialet-Serra, I; Clement-Vidal, A; Roupsard, O; Jourdan, C; Dingkuhn, M
2008-08-01
Coconut (Cocos nucifera L.) is a perennial tropical monocotyledon that produces fruit continuously. The physiological function of the large amounts of sucrose stored in coconut stems is unknown. To test the hypothesis that reserve storage and mobilization enable the crop to adjust to variable sink-source relationships at the scale of the whole plant, we investigated the dynamics of dry matter production, yield and yield components, and concentrations of nonstructural carbohydrate reserves in a coconut plantation on Vanuatu Island in the South Pacific. Two treatments were implemented continuously over 29 months (April 2002 to August 2004): 50% leaf pruning (to reduce the source) and 100% fruit and inflorescence pruning (to reduce the sink). The pruning treatments had little effect on carbohydrate reserves because they affected only petioles, not the main reserve pool in the stem. Both pruning treatments greatly reduced dry matter production of the reproductive compartment, but vegetative growth and development were negligibly affected by treatment and season. Leaf pruning increased radiation-use efficiency (RUE) initially, and fruit pruning greatly reduced RUE throughout the experiment. Changes in RUE were negatively correlated with leaflet soluble sugar concentration, indicating feedback inhibition of photosynthesis. We conclude that vegetative development and growth of coconut show little phenotypic plasticity, assimilate demand for growth being largely independent of a fluctuating assimilate supply. The resulting sink-source imbalances were partly compensated for by transitory reserves and, more importantly, by variable RUE in the short term, and by adjustment of fruit load in the long term. Possible physiological mechanisms are discussed, as well as modeling concepts that may be applied to coconut and similar tree crops.
Levin, J Z; Fletcher, J C; Chen, X; Meyerowitz, E M
1998-01-01
In a screen to identify novel genes required for early Arabidopsis flower development, we isolated four independent mutations that enhance the Ufo phenotype toward the production of filamentous structures in place of flowers. The mutants fall into three complementation groups, which we have termed FUSED FLORAL ORGANS (FFO) loci. ffo mutants have specific defects in floral organ separation and/or positioning; thus, the FFO genes identify components of a boundary formation mechanism(s) acting between developing floral organ primordia. FFO1 and FFO3 have specific functions in cauline leaf/stem separation and in first- and third-whorl floral organ separation, with FFO3 likely acting to establish and FFO1 to maintain floral organ boundaries. FFO2 acts at early floral stages to regulate floral organ number and positioning and to control organ separation within and between whorls. Plants doubly mutant for two ffo alleles display additive phenotypes, indicating that the FFO genes may act in separate pathways. Plants doubly mutant for an ffo gene and for ufo, lfy, or clv3 reveal that the FFO genes play roles related to those of UFO and LFY in floral meristem initiation and that FFO2 and FFO3 may act to control cell proliferation late in inflorescence development. PMID:9611175
USDA-ARS?s Scientific Manuscript database
Atmospheric CO2 concentration will likely exceed 500 uL L-1 by 2050, often increasing plant community productivity in part by increasing abundance of species favored by increased CA. Whether increased abundance translates to increased inflorescence production is poorly understood, and is important ...
Taylor, S; Hofer, J; Murfet, I
2001-01-01
Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2-mutations known to influence leaf, inflorescence, and flower development in pea-suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea.
Benelli, Giovanni; Pavela, Roman; Lupidi, Giulio; Nabissi, Massimo; Petrelli, Riccardo; Ngahang Kamte, Stephane L; Cappellacci, Loredana; Fiorini, Dennis; Sut, Stefania; Dall'Acqua, Stefano; Maggi, Filippo
2018-04-01
In the attempt to exploit the potential of the monoecious fiber hemp cv. Futura 75 in new fields besides textile, cosmetics and food industry, its crop-residue given by leaves and inflorescences was subjected to hydrodistillation to obtain the essential oils. These are niche products representing an ideal candidate for the development of natural insecticides for the control and management of mosquito vectors, houseflies and moth pests. After GC-MS analysis highlighting a safe and legal chemical profile (THC in the range 0.004-0.012% dw), the leaf and inflorescence essential oils were investigated for the insecticidal potential against three insect targets: the larvae of Culex quinquefasciatus and Spodoptera littoralis and the adults of Musca domestica. The essential oil from inflorescences, showing (E)-caryophyllene (21.4%), myrcene (11.3%), cannabidiol (CBD, 11.1%), α-pinene (7.8%), terpinolene (7.6%), and α-humulene (7.1%) as the main components, was more effective than leaf oil against these insects, with LD 50 values of 65.8 μg/larva on S. littoralis, 122.1 μg/adult on M. domestica, and LC 50 of 124.5 μl/l on C. quinquefasciatus larvae. The hemp essential oil moderately inhibited the acetylcholinesterase (AChE), which is a target enzyme in pesticide science. Overall, these results shed light on the future application of fiber hemp crop-residue for the development of effective, eco-friendly and sustainable insecticides.
A G protein alpha null mutation confers prolificacy potential in maize
Urano, Daisuke; Jackson, David; Jones, Alan M.
2015-05-06
Plasticity in plant development is controlled by environmental signals through largely unknown signalling networks. Signalling coupled by the heterotrimeric G protein complex underlies various developmental pathways in plants. The morphology of two plastic developmental pathways, root system architecture and female inflorescence formation, was quantitatively assessed in a mutant compact plant 2 (ct2) lacking the alpha subunit of the heterotrimeric G protein complex in maize. The ct2 mutant partially compensated for a reduced shoot height by increased total leaf number, and had far more ears, even in the presence of pollination signals. Lastly, the maize heterotrimeric G protein complex is importantmore » in some plastic developmental traits in maize. In particular, the maize Gα subunit is required to dampen the overproduction of female inflorescences.« less
Fidelis, Queli Cristina; Faraone, Immacolata; Russo, Daniela; Aragão Catunda, Francisco Eduardo; Vignola, Lisiana; de Carvalho, Mario Geraldo; de Tommasi, Nunziatina; Milella, Luigi
2018-01-16
The study aimed to evaluate in vitro antioxidant, anticholinesterase and antidiabetic properties of Ouratea hexasperma (A. St.-Hil.) Baill. The inflorescence methanol extract and the ethyl acetate fraction of leaves and stems reported the highest Relative Antioxidant Capacity Index (RACI), whereas the dichloromethane fraction of leaves was the best inhibitor of α-amylase and α-glucosidase. Trans-3-O-methyl-resveratrol-2-C-β-glucoside, lithospermoside, 2,5-dimethoxy-p-benzoquinone, lup-20(30)-ene-3β,28-diol, 7-O-methylgenistein, apigenin and luteolin and amentoflavone were isolated from O. hexasperma. Resveratrol derivative was isolated for the first time in Ochnaceae family. Luteolin, followed by apigenin, reported the highest Relative Antioxidant Capacity Index and they were also the best inhibitors of α-glucosidase enzyme.
Johnson, Robert L.; Stevens, Mikel R.; Johnson, Leigh A.; Robbins, Matthew D.; Anderson, Chris D.; Ricks, Nathan J.; Farley, Kevin M.
2016-01-01
Abstract Penstemon luculentus R.L.Johnson & M.R.Stevens, nom. nov. replaces Penstemon fremontii var. glabrescens Dorn & Lichvar. The varietal name glabrescens was not elevated because it was already occupied by Penstemon glabrescens Pennell, a different species. This new arrangement is supported by molecular and morphological evidence. An analysis of genetic diversity in populations of both varieties of Penstemon fremontii Torr. & A. Gray (glabrescens and fremontii) from the Piceance Basin, Colorado, using SSR (simple sequences repeats) or microsatellites markers, revealed significant genetic differentiation between the two. Penstemon fremontii var. glabrescens was also genetically different from Penstemon gibbensii Dorn and Penstemon scariosus var. garrettii (Pennell) N.H. Holmgren. The combination of hirtellous stems, glabrous leaves, non-glandular inflorescence, and long anther hairs distinguish Penstemon luculentus from other morphologically similar species. PMID:27489478
Flowering in Vitis: Conversion of tendrils into inflorescences and bunches of grapes.
Srinivasan, C; Mullins, M G
1979-01-01
Inflorescences and fruits with viable seeds were produced in place of tendrils in plants of Vitis vinifera L. cv. "Muscat of Alexandria" and in a staminate hybrid grapevine (Vitis vinifera x V. rupestris Scheele) following repeated applications of 10-20 μl of 50-200 μM 6-(benzylamino)-9-(2-tetrahydropyranyl)-9H-purine (PBA) to apices. Young leaves, shoot tips and axillary buds were removed before the PBA treatments were commenced. The number and weight of berries produced by inflorescences derived from tendrils was closely correlated with the number and area of leaves retained. When application of PBA was continued after floral initiation there was formation of fused flowers and cleistogamous pollination.
Crystalline and amorphous cellulose in the secondary walls of Arabidopsis.
Ruel, Katia; Nishiyama, Yoshiharu; Joseleau, Jean-Paul
2012-09-01
In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening.
Huang, Cheng; Zhang, Rui; Gui, Jinshan; Zhong, Yu; Li, Laigeng
2018-04-20
During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis thaliana leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related RLK 1), that is specifically expressed in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, upregulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that downregulation of AtVRLK1 promoted secondary cell wall thickening and upregulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
Amadeu, Luã S N; Sampaio, Mauricio B; Dos Santos, Flavio A M
2016-09-01
The reproduction and growth of large palms are influenced by many factors, including light and plant size, but few studies have examined smaller species (up to 2 m tall). We examined the effect of incident light and individual size on growth rates, the probability of reproduction, and the number of inflorescences of three small palm species and compared two methods for estimating canopy openness. We measured canopy openness above the crowns of 132 adult plants and in the centers of 72 subplots (10 × 10 m) where individuals were sampled. We also recorded individual size and the number of leaves and inflorescences produced in two years. Reproductive individuals of Butia paraguayensis tend to occur in illuminated microhabitats. Reproduction of Acrocomia emensis was correlated with stem diameter, but not with light. Reproduction was inversely related to individual size and light in Syagrus petraea, probably because this clonal palm invests heavily in sexual reproduction during its younger stages and clonal activity in older stages and may be adapted to the low-light conditions of the woodland understory. Growth was not predicted by light or individual size. Stronger correlations were found when incident light was measured directly above the crown, as opposed to the subplot center. The influences of light on reproduction are dependent on plant life histories, even among related and sympatric species. Light measurements directly above individual crowns provide better understanding of the reproductive effort rather than in subplot center. © 2016 Botanical Society of America.
Chang, Jia-Dong; Mantri, Nitin; Sun, Bin; Jiang, Li; Chen, Ping; Jiang, Bo; Jiang, Zhengdong; Zhang, Jialei; Shen, Jiahao; Lu, Hongfei; Liang, Zongsuo
2016-06-01
Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720μmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties. Copyright © 2016 Elsevier GmbH. All rights reserved.
Fungal pathogen complexes associated with rambutan, longan and mango diseases in Puerto Rico
USDA-ARS?s Scientific Manuscript database
Different fungi have been associated with diseased inflorescences, leaves, and fruits of mango, rambutan and longan. During a fungal disease survey conducted between 2008 and 2013 at six orchards of rambutan and longan, and one orchard of mango in Puerto Rico, symptoms such as fruit rot, infloresc...
USDA-ARS?s Scientific Manuscript database
Dried male inflorescences of breadfruit (Artocarpus altilis, Moraceae) are burned in communities throughout Oceania to repel flying insects, including mosquitoes. This study was conducted to identify chemicals responsible for mosquito deterrence. Various crude extracts were evaluated, and the most a...
Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize
Brown, Patrick J.; Upadyayula, Narasimham; Mahone, Gregory S.; Tian, Feng; Bradbury, Peter J.; Myles, Sean; Holland, James B.; Flint-Garcia, Sherry; McMullen, Michael D.; Buckler, Edward S.; Rocheford, Torbert R.
2011-01-01
We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects. PMID:22125498
Reconstructing the origin and elaboration of insect-trapping inflorescences in the Araceae1
Bröderbauer, David; Diaz, Anita; Weber, Anton
2016-01-01
Premise of the study Floral traps are among the most sophisticated devices that have evolved in angiosperms in the context of pollination, but the evolution of trap pollination has not yet been studied in a phylogenetic context. We aim to determine the evolutionary history of morphological traits that facilitate trap pollination and to elucidate the impact of pollinators on the evolution of inflorescence traps in the family Araceae. Methods Inflorescence morphology was investigated to determine the presence of trapping devices and to classify functional types of traps. We inferred phylogenetic relationships in the family using maximum likelihood and Bayesian methods. Character evolution of trapping devices, trap types, and pollinator types was then assessed with maximum parsimony and Bayesian methods. We also tested for an association of trap pollination with specific pollinator types. Key results Inflorescence traps have evolved independently at least 10 times within the Araceae. Trapping devices were found in 27 genera. On the basis of different combinations of trapping devices, six functional types of traps were identified. Trap pollination in Araceae is correlated with pollination by flies. Conclusions Trap pollination in the Araceae is more common than was previously thought. Preadaptations such as papillate cells or elongated sterile flowers facilitated the evolution of inflorescence traps. In some clades, imperfect traps served as a precursor for the evolution of more elaborate traps. Traps that evolved in association with fly pollination were most probably derived from mutualistic ancestors, offering a brood-site to their pollinators. PMID:22965851
Sasani, Shahryar; Hemming, Megan N.; Oliver, Sandra N.; Greenup, Aaron; Tavakkol-Afshari, Reza; Mahfoozi, Siroos; Poustini, Kazem; Sharifi, Hamid-Reza; Dennis, Elizabeth S.; Peacock, W. James; Trevaskis, Ben
2009-01-01
Responses to prolonged low-temperature treatment of imbibed seeds (vernalization) were examined in barley (Hordeum vulgare). These occurred in two phases: the perception of prolonged cold, which occurred gradually at low temperatures, and the acceleration of reproductive development, which occurred after vernalization. Expression of the VERNALIZATION1 gene (HvVRN1) increased gradually in germinating seedlings during vernalization, both at the shoot apex and in the developing leaves. This occurred in darkness, independently of VERNALIZATION2 (HvVRN2), consistent with the hypothesis that expression of HvVRN1 is induced by prolonged cold independently of daylength flowering-response pathways. After vernalization, expression of HvVRN1 was maintained in the shoot apex and leaves. This was associated with accelerated inflorescence initiation and with down-regulation of HvVRN2 in the leaves. The largest determinant of HvVRN1 expression levels in vernalized plants was the length of seed vernalization treatment. Daylength did not influence HvVRN1 expression levels in shoot apices and typically did not affect expression in leaves. In the leaves of plants that had experienced a saturating seed vernalization treatment, expression of HvVRN1 was higher in long days, however. HvFT1 was expressed in the leaves of these plants in long days, which might account for the elevated HvVRN1 expression. Long-day up-regulation of HvVRN1 was not required for inflorescence initiation, but might accelerate subsequent stages of inflorescence development. Similar responses to seed vernalization were also observed in wheat (Triticum aestivum). These data support the hypothesis that VRN1 is induced by cold during winter to promote spring flowering in vernalization-responsive cereals. PMID:19357429
TALE and Shape: How to Make a Leaf Different.
Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna
2013-05-06
The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.
Auxin Influx Carriers Control Vascular Patterning and Xylem Differentiation in Arabidopsis thaliana
Siligato, Riccardo; Alonso, Jose M.; Swarup, Ranjan; Bennett, Malcolm J.; Mähönen, Ari Pekka; Caño-Delgado, Ana I.; Ibañes, Marta
2015-01-01
Auxin is an essential hormone for plant growth and development. Auxin influx carriers AUX1/LAX transport auxin into the cell, while auxin efflux carriers PIN pump it out of the cell. It is well established that efflux carriers play an important role in the shoot vascular patterning, yet the contribution of influx carriers to the shoot vasculature remains unknown. Here, we combined theoretical and experimental approaches to decipher the role of auxin influx carriers in the patterning and differentiation of vascular tissues in the Arabidopsis inflorescence stem. Our theoretical analysis predicts that influx carriers facilitate periodic patterning and modulate the periodicity of auxin maxima. In agreement, we observed fewer and more spaced vascular bundles in quadruple mutants plants of the auxin influx carriers aux1lax1lax2lax3. Furthermore, we show AUX1/LAX carriers promote xylem differentiation in both the shoot and the root tissues. Influx carriers increase cytoplasmic auxin signaling, and thereby differentiation. In addition to this cytoplasmic role of auxin, our computational simulations propose a role for extracellular auxin as an inhibitor of xylem differentiation. Altogether, our study shows that auxin influx carriers AUX1/LAX regulate vascular patterning and differentiation in plants. PMID:25922946
Köllmer, Ireen; Werner, Tomáš; Schmülling, Thomas
2011-08-15
The plant hormone cytokinin rapidly alters the steady state transcript levels of a number of transcription factor genes suggesting that these might have a function in mediating cytokinin effects. Here we report the analysis of Arabidopsis thaliana plants with an altered expression level of four different cytokinin-regulated transcription factor genes. These include GATA22 (also known as CGA1/GNL), two genes coding for members of the homeodomain zip (HD zip) class II transcription factor family (HAT4, HAT22), and bHLH64. Ectopic expression of the GATA22 gene induced the development of chloroplasts in root tissue where it is normally suppressed and led to the formation of shorter and less branched roots. Overexpression of HAT22 lowered the seedlings chlorophyll content and caused an earlier onset of leaf senescence. Enhanced expression of the HAT4 gene led to severe defects in inflorescence stem development and to a decrease in root growth and branching, while hat4 insertional mutants developed a larger root system. 35S:bHLH64 transgenic plants showed a pleiotropic phenotype, consisting of larger rosettes, reduced chlorophyll content and an elongated and thickened hypocotyl. Flower development was strongly disturbed leading to sterile plants. The results are consistent with specific functions of these transcription factor genes in regulating part of the cytokinin activities and suggest their action as convergence point with other signalling pathways, particularly those of gibberellin and light. Copyright © 2011 Elsevier GmbH. All rights reserved.
High-Resolution Inflorescence Phenotyping Using a Novel Image-Analysis Pipeline, PANorama1[W][OPEN
Crowell, Samuel; Falcão, Alexandre X.; Shah, Ankur; Wilson, Zachary; Greenberg, Anthony J.; McCouch, Susan R.
2014-01-01
Variation in inflorescence development is an important target of selection for numerous crop species, including many members of the Poaceae (grasses). In Asian rice (Oryza sativa), inflorescence (panicle) architecture is correlated with yield and grain-quality traits. However, many rice breeders continue to use composite phenotypes in selection pipelines, because measuring complex, branched panicles requires a significant investment of resources. We developed an open-source phenotyping platform, PANorama, which measures multiple architectural and branching phenotypes from images simultaneously. PANorama automatically extracts skeletons from images, allows users to subdivide axes into individual internodes, and thresholds away structures, such as awns, that normally interfere with accurate panicle phenotyping. PANorama represents an improvement in both efficiency and accuracy over existing panicle imaging platforms, and flexible implementation makes PANorama capable of measuring a range of organs from other plant species. Using high-resolution phenotypes, a mapping population of recombinant inbred lines, and a dense single-nucleotide polymorphism data set, we identify, to our knowledge, the largest number of quantitative trait loci (QTLs) for panicle traits ever reported in a single study. Several areas of the genome show pleiotropic clusters of panicle QTLs, including a region near the rice Green Revolution gene SEMIDWARF1. We also confirm that multiple panicle phenotypes are distinctly different among a small collection of diverse rice varieties. Taken together, these results suggest that clusters of small-effect QTLs may be responsible for varietal or subpopulation-specific panicle traits, representing a significant opportunity for rice breeders selecting for yield performance across different genetic backgrounds. PMID:24696519
Taylor, Scott; Hofer, Julie; Murfet, Ian
2001-01-01
Isolation and characterization of two severe alleles at the Stamina pistilloida (Stp) locus reveals that Stp is involved in a wide range of developmental processes in the garden pea. The most severe allele, stp-4, results in flowers consisting almost entirely of sepals and carpels. Production of ectopic secondary flowers in stp-4 plants suggests that Stp is involved in specifying floral meristem identity in pea. The stp mutations also reduce the complexity of the compound pea leaf, and primary inflorescences often terminate prematurely in an aberrant sepaloid flower. In addition, stp mutants were shorter than their wild-type siblings due to a reduction in cell number in their internodes. Fewer cells were also found in the epidermis of the leaf rachis of stp mutants. Examination of the effects of stp-4 in double mutant combinations with af, tl, det, and veg2-2—mutations known to influence leaf, inflorescence, and flower development in pea—suggests that Stp function is independent of these genes. A synergistic interaction between weak mutant alleles at Stp and Uni indicated that these two genes act together, possibly to regulate primordial growth. Molecular analysis revealed that Stp is the pea homolog of the Antirrhinum gene Fimbriata (Fim) and of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Differences between Fim/UFO and Stp mutant phenotypes and expression patterns suggest that expansion of Stp activity into the leaf was an important step during evolution of the compound leaf in the garden pea. PMID:11158527
Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu
2017-10-01
The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.
Recent progress in the use of ‘omics technologies in brassicaceous vegetables
Witzel, Katja; Neugart, Susanne; Ruppel, Silke; Schreiner, Monika; Wiesner, Melanie; Baldermann, Susanne
2015-01-01
Continuing advances in ‘omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. ‘Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of ‘omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality. PMID:25926843
Wood, Kenneth R.; Appelhans, Marc S.; Wagner, Warren L.
2017-01-01
Abstract Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua‘i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5–)8–30 × (4–)6–11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua‘i. PMID:29033653
Wood, Kenneth R; Appelhans, Marc S; Wagner, Warren L
2017-01-01
Melicope stonei K.R. Wood, Appelhans & W.L. Wagner (section Pelea, Rutaceae), a new endemic tree species from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status, and phylogenetic placement. The new species differs from its Hawaiian congeners by its unique combination of distinct carpels and ramiflorous inflorescences arising on stems below the leaves; plants monoecious; leaf blades (5-)8-30 × (4-)6-11 cm, with abaxial surface densely tomentose, especially along midribs; and very long petioles of up to 9 cm. Since its discovery in 1988, 94 individuals have been documented and are confined to a 1.5 km 2 region of unique high canopy mesic forest. Melicope stonei represents a new Critically Endangered (CR) single island endemic species on Kaua'i.
Chizzola, Remigius
2012-11-01
The composition of the essential oil from the different above ground plant parts of Peucedanum cervaria and P. alsaticum (Apiaceae) collected in the urban area of Vienna has been studied. P. cervaria fruits and inflorescences had 1.5 and 1.8% essential oil, respectively. All the oils of P. cervaria were dominated by monoterpenes, with the main components being beta-pinene (7-58%), alpha-pinene (7-22%), sabinene (up to 22%), and beta-phellandrene with limonene (6-21%). P. alsaticum fruits afforded 0.3-0.4% essential oil. These oils were made up mainly by alpha-pinene (11-40%), sabinene (16-34%) and beta-phellandrene (12-31%). Stems and leaves produced only very small amounts of essential oil (< 0.05%). Besides monoterpenes, these oils contained also E-nerolidol (5-22%), spathulenol (up to 18%), dodecanal (up to 7.5%) and caryophyllene oxide (up to 7%).
Domingos, Sara; Fino, Joana; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F
2016-03-01
Flower-to-fruit transition depends of nutrient availability and regulation at the molecular level by sugar and hormone signalling crosstalk. However, in most species, the identities of fruit initiation regulators and their targets are largely unknown. To ascertain the main pathways involved in stenospermocarpic table grape fruit set, comprehensive transcriptional and metabolomic analyses were conducted specifically targeting the early phase of this developmental stage in 'Thompson Seedless'. The high-throughput analyses performed disclosed the involvement of 496 differentially expressed genes and 28 differently accumulated metabolites in the sampled inflorescences. Our data show broad transcriptome reprogramming of molecule transporters, globally down-regulating gene expression, and suggest that regulation of sugar- and hormone-mediated pathways determines the downstream activation of berry development. The most affected gene was the SWEET14 sugar transporter. Hormone-related transcription changes were observed associated with increased indole-3-acetic acid, stimulation of ethylene and gibberellin metabolisms and cytokinin degradation, and regulation of MADS-box and AP2-like ethylene-responsive transcription factor expression. Secondary metabolism, the most representative biological process at transcriptome level, was predominantly repressed. The results add to the knowledge of molecular events occurring in grapevine inflorescence fruit set and provide a list of candidates, paving the way for genetic manipulation aimed at model research and plant breeding. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chapman, Mark A.; Tang, Shunxue; Draeger, Dörthe; Nambeesan, Savithri; Shaffer, Hunter; Barb, Jessica G.; Knapp, Steven J.; Burke, John M.
2012-01-01
The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and, consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to specify zygomorphy in different species within the Asteraceae. PMID:22479210
Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y
2012-12-03
Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.
Cavalcanti, L H; Ferreira, I N; Bezerra, A C C; Costa, A A A
2015-11-01
The occurrence of Myxomycetes in Heliconia psittacorum L.f. inflorescences was researched within four conservation units located in Northeast Brazil, aiming at evaluating the occupation of this microhabitat in fragments of Atlantic Forest along an altitude between 30-750 m. Inflorescences attached to the plant were examined; dead flowers and bracts were collected to assemble moist chambers (368). Four families, four genera and 10 species were recorded. A preference was evidenced for a basic pH substrate and a predominance of calcareous species (5:1). The composition of the myxobiota in fragments pertaining to altitudes above 400 m was similar and differed significantly from the one found in fragments of lowland forests (<100 m). Physarum compressum and Arcyria cinerea are the most characteristic species of the studied myxobiota.
DOFT and DOFTIP1 affect reproductive development in the orchid Dendrobium Chao Praya Smile.
Wang, Yanwen; Liu, Lu; Song, Shiyong; Li, Yan; Shen, Lisha; Yu, Hao
2017-12-16
FLOWERING LOCUS T (FT) in Arabidopsis encodes the florigen that moves from leaves to the shoot apical meristem to induce flowering, and this is partly mediated by FT-INTERACTING PROTEIN 1 (FTIP1). Although FT orthologs have been identified in some flowering plants, their endogenous roles in Orchidaceae, which is one of the largest families of flowering plants, are still largely unknown. In this study, we show that DOFT and DOFTIP1, the orchid orthologs of FT and FTIP1, respectively, play important roles in promoting flowering in the orchid Dendrobium Chao Praya Smile. Expression of DOFT and DOFTIP1 increases in whole plantlets during the transition from vegetative to reproductive development. Both transcripts are present in significant levels in reproductive organs, including inflorescence apices, stems, floral buds, and open flowers. Through successful generation of transgenic orchids, we have revealed that overexpression or down-regulation of DOFT accelerates or delays flowering, respectively, while alteration of DOFT expression also greatly affects pseudobulb formation and flower development. In common with their counterparts in Arabidopsis and rice, DOFTIP1 interacts with DOFT and affects flowering time in orchids. Our results suggest that while DOFT and DOFTIP1 play evolutionarily conserved roles in promoting flowering, DOFT may have evolved with hitherto unknown functions pertaining to the regulation of storage organs and flower development in the Orchidaceae family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Floral development in Phoenix dactylifera
Darleen A. De Mason; Kenneth W. Stolte; Brent Tisserat
1982-01-01
Inflorescence primordia in the date palm (Phoenix dactylifera L.) differentiate within axillary buds in November in the Coachella Valley, California. The rachillae are initiated as small mounds without subtending bracts on the flattened apex of the rachis and are enclosed by the prophyll. A single bract subtends each flower primordium. Flower...
USDA-ARS?s Scientific Manuscript database
Sorghum (Sorghum bicolor L. Moench) cultivars and germplasm display branched inflorescence or panicle, characterized by spikelets composed of a single sessile, fertile floret that develop into viable seed and one or two adjacent sterile pedicellate florets (Monoseeded [MSD] trait). Based on total nu...
F.R. Badenes-Pérez; M.A. Alfaro-Alpízar; M.T. Johnson
2010-01-01
Larvae of three species of hairstreak butterflies in the subfamily Theclinae (Lepidoptera: Lycaenidae) were found feeding on developing inflorescences, flower buds, and immature fruits of the velvet tree, (Miconia calvescens) de Candolle (Myrtales: Melastomataceae) in Costa Rica. (Erora opisena) (Druce), (Parrhasius...
MADS-box genes in maize: Frequent targets of selection during domestication
USDA-ARS?s Scientific Manuscript database
MADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 random loci from the maize genome and investigated their involvement in maize domestication and improvement. Using n...
Zhang, Na; Yang, Li; Luo, Sha; Wang, Xutong; Wang, Wei; Cheng, Yuxin; Tian, Hainan; Zheng, Kaijie; Cai, Ling; Wang, Shucai
2018-04-13
Trichome formation in Arabidopsis is regulated by a MBW complex formed by MYB, bHLH and WD40 transcriptional factors, which can activate GLABRA2 (GL2) and the R3 MYB transcription factor genes. GL2 promotes trichome formation, whereas R3 MYBs are able to block the formation of the MBW complex. It has been reported that the C2H2 transcription factor GIS (GLABROUS INFLORESCENCE STEMS) functions upstream of the MBW activator complex to regulate trichome formation, and that the expression of TCL1 is not regulated by the MBW complex. However, gis and the R3 MYB gene mutant tcl1 (trichomeless 1) have opposite inflorescence trichome phenotypes, but their relationship in regulating trichome formation remained unknown. By generating and characterization of the gis tcl1 double mutant, we found that trichome formation in the gis tcl1double and the tcl1 single mutants were largely indistinguishable, but the trichome formation in the 35S:TCL1/gis transgenic plant was similar to that in the gis mutant. By using quantitative RT-PCR analysis, we showed that expression level of GIS was increased in the triple mutant tcl1 try cpc, but the expression level of TCL1 was not affected in the gis mutant. On the other hand, trichome morphology in both gis tcl1 and 35S:TCL1/gis plants was similar to that in the gis mutant. In summary, our results indicate that GIS may work downstream of TCL1 to regulate trichome formation, and GIS has a dominant role in controlling trichome morphology.
Genetic control of inflorescence architecture during rice domestication
Zhu, Zuofeng; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Cai, Hongwei; Xie, Daoxin; Wu, Feng; Wu, Jianzhong; Matsumoto, Takashi; Sun, Chuanqing
2013-01-01
Inflorescence architecture is a key agronomical factor determining grain yield, and thus has been a major target of cereal crop domestication. Transition from a spread panicle typical of ancestral wild rice (Oryza rufipogon Griff.) to the compact panicle of present cultivars (O. sativa L.) was a crucial event in rice domestication. Here we show that the spread panicle architecture of wild rice is controlled by a dominant gene, OsLG1, a previously reported SBP-domain transcription factor that controls rice ligule development. Association analysis indicates that a single-nucleotide polymorphism-6 in the OsLG1 regulatory region led to a compact panicle architecture in cultivars during rice domestication. We speculate that the cis-regulatory mutation can fine-tune the spatial expression of the target gene, and that selection of cis-regulatory mutations might be an efficient strategy for crop domestication. PMID:23884108
Domingos, Sara; Fino, Joana; Cardoso, Vânia; Sánchez, Claudia; Ramalho, José C; Larcher, Roberto; Paulo, Octávio S; Oliveira, Cristina M; Goulao, Luis F
2016-02-01
Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission competence acquisition, noticeably responding to independent stimuli.
[Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].
Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula
2011-01-01
The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.
Galla, Giulio; Zenoni, Sara; Marconi, Gianpiero; Marino, Giada; Botton, Alessandro; Pinosa, Francesco; Citterio, Sandra; Ruperti, Benedetto; Palme, Klaus; Albertini, Emidio; Pezzotti, Mario; Mau, Martin; Sharbel, Timothy F; De Storme, Nico; Geelen, Danny; Barcaccia, Gianni
2011-09-15
Mob1 genes are primarily involved in the cell cycle progression and mitosis exit in yeasts and animals. The function of a Mob1-like gene (At5g45550) from Arabidopsis thaliana was investigated using RNAi and immunological staining. AtMob1-like RNAi silenced lines showed a reduced radial expansion of the inflorescence stem and a reduced elongation zone of the primary root. Morphological features of plant organs were accompanied by a reduction in cell size. The fertility of AtMob1-like RNAi silenced lines was very low as seed production was strongly reduced. About 2% of the progeny of AtMob1-like RNAi silenced plants were tetraploid. The female and male sporogenesis was affected differentially. The ovules developed irregularly and one third of the megaspores and embryo sacs degenerated prematurely. Up to 20% of the ovules produced binucleated megaspores that failed to develop further, being their degeneration likely accompanied with a delayed programmed cell death. The anthers produced about 30% of aborted pollen grains, showing also a strong variation in their size. Together, the results show that Arabidopsis MOB1-like is required to regulate cell expansion and cell division, presumably by affecting the mitotic as well as the meiotic cell cycle. Copyright © 2011 Elsevier B.V. All rights reserved.
Rudall, Paula J.; Bateman, Richard M.
2010-01-01
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean ‘flower’ are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression. PMID:20047867
Rudall, Paula J; Bateman, Richard M
2010-02-12
Recent phylogenetic reconstructions suggest that axially condensed flower-like structures evolved iteratively in seed plants from either simple or compound strobili. The simple-strobilus model of flower evolution, widely applied to the angiosperm flower, interprets the inflorescence as a compound strobilus. The conifer cone and the gnetalean 'flower' are commonly interpreted as having evolved from a compound strobilus by extreme condensation and (at least in the case of male conifer cones) elimination of some structures present in the presumed ancestral compound strobilus. These two hypotheses have profoundly different implications for reconstructing the evolution of developmental genetic mechanisms in seed plants. If different flower-like structures evolved independently, there should intuitively be little commonality of patterning genes. However, reproductive units of some early-divergent angiosperms, including the extant genus Trithuria (Hydatellaceae) and the extinct genus Archaefructus (Archaefructaceae), apparently combine features considered typical of flowers and inflorescences. We re-evaluate several disparate strands of comparative data to explore whether flower-like structures could have arisen by co-option of flower-expressed patterning genes into independently evolved condensed inflorescences, or vice versa. We discuss the evolution of the inflorescence in both gymnosperms and angiosperms, emphasising the roles of heterotopy in dictating gender expression and heterochrony in permitting internodal compression.
Effect of storage temperature and time on the nutritional quality of walnut male inflorescences.
Zhang, Wen-E; Wang, Chang-Lei; Shi, Bin-Bin; Pan, Xue-Jun
2017-04-01
The objective of this study was to investigate the effect of storage temperature and time on nutrients, bioactive compounds, and antioxidant activities of walnut male inflorescences. The results showed that the moisture, saccharides, fat, protein, amino acids, ascorbic acid, phenolic and flavonoid compound contents, and antioxidant activities of walnut male inflorescences were markedly influenced by storage temperature, and different degrees of decrease in these parameters were observed during the entire storage period. Moreover, higher storage temperature had a more significant effect on the nutrients, bioactive compounds, and antioxidant activities of walnut male flowers, and the loss rate of these components at 25°C was higher than that determined at 4°C. However, the results also presented that the ash and mineral contents did not appear to be influenced significantly by the storage temperature, and slightly significant changes were observed in crude fiber throughout storage, which indicated that the influence of storage on the individual mineral and crude fiber content was minimal. Based on the findings in this study, in order to maximize nutrients concentration, walnut male inflorescences should be kept at 4°C for <6 days and be consumed as fresh as possible. Copyright © 2016. Published by Elsevier B.V.
Kite, Geoffrey C; Larsson, Sonny; Veitch, Nigel C; Porter, Elaine A; Ding, Ning; Simmonds, Monique S J
2013-04-10
LC-UV-MS analyses of inflorescence extracts of Sambucus nigra L. (elder, Adoxaceae) revealed the presence of numerous acyl spermidines, with isomers of N,N-diferuloylspermidine and N-acetyl-N,N-diferuloylspermidine being most abundant. Pollen was the main source of the acyl spermidines in the inflorescence. Three of the major acyl spermidines were isolated and their structures determined by NMR spectroscopy as N⁵,N¹⁰-di-(E,E)-feruloylspermidine and the new compounds N¹-acetyl-N⁵,N¹⁰-di-(Z,E)-feruloylspermidine and N¹-acetyl-N⁵,N¹⁰-di-(E,E)-feruloylspermidine. An isomer of N,N,N-triferuloylspermidine was also obtained and identified as N¹,N⁵,N¹⁰-tri-(E,E,E)-feruloylspermidine. In addition to stereoisomers of the isolated acyl spermidines, other acyl spermidines detected by the positive ion LC-UV-MS were isomers of N-caffeoyl-N,N-diferuloylspermidine, N-coumaroyl-N,N-diferuloylspermidine, N-caffeoyl-N-feruloylspermidine, N-coumaroyl-N-feruloylspermidine, N-acetyl-N-caffeoyl-N-feruloylspermidine, and N-acetyl-N-coumaroyl-N-feruloylspermidine. Analysis of commercial elderflower drinks showed that acyl spermidines were persistent in these processed elderflower products. Examination of inflorescence extracts from Sambucus canadensis L. (American elder) revealed the presence of acyl spermidines that were different from those of S. nigra.
Somyong, Suthasinee; Poopear, Supannee; Sunner, Supreet Kaur; Wanlayaporn, Kitti; Jomchai, Nukoon; Yoocha, Thippawan; Ukoskit, Kittipat; Tangphatsornruang, Sithichoke; Tragoonrung, Somvong
2016-06-01
Oil palm (Elaeis guineesis Jacq.) is the most productive oil-bearing crop, yielding more oil per area than any other oil-bearing crops. However, there are still efforts to improve oil palm yield, in order to serve consumer and manufacturer demand. Oil palm produces female and male inflorescences in an alternating cycle. So, high sex ratio (SR), the ratio of female inflorescences to the total inflorescences, is a favorable trait in term of increasing yields in oil palm. This study aims to understand the genetic control for SR related traits, such as fresh fruit bunch yield (FFB), by characterizing genes at FFB quantitative trait loci (QTLs) on linkage 10 (chromosome 6) and linkage 15 (chromosome 10). Published oil palm sequences at the FFB QTLs were used to develop gene-based and simple sequence repeat (SSR) markers. We used the multiple QTL analysis model (MQM) to characterize the relationship of new markers with the SR traits in the oil palm population. The RNA expression of the most linked QTL genes was also evaluated in various tissues of oil palm. We identified EgACCO1 (encoding aminocyclopropane carboxylate (ACC) oxidase) at chromosome 10 and EgmiR159a (microRNA 159a) at chromosome 6 to be the most linked QTL genes or determinants for FFB yield and/or female inflorescence number with a phenotype variance explained (PVE) from 10.4 to 15 % and suggest that these play the important roles in sex determination and differentiation in oil palm. The strongest expression of EgACCO1 and the predicted precursor of EgmiR159a was found in ovaries and, to a lesser extent, fruit development. In addition, highly normalized expression of EgmiR159a was found in female flowers. In summary, the QTL analysis and the RNA expression reveal that EgACCO1 and EgmiR159a are the potential genetic factors involved in female flower determination and hence would affect yield in oil palm. However, to clarify how these genetic factors regulate female flower determination, more investigation of their down regulation or target may be essential. Additionally, if more sex determination genes controlled by plant hormones are identified, it may possible to reveal a crosstalk of sex determination genes with hormones and environment factors.
USDA-ARS?s Scientific Manuscript database
A new cauliflower disease characterized by formation of leaf-like inflorescences and malformed flowers occurred in a seed production filed located in Yunnan, a southwest province of China. In the diseased plants, floral organs in three inner whorls (petals, carpels, and stamens) were under-develope...
Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh
Ying Wang; Paula M. Pijut
2013-01-01
Flowering control is one of the several strategies for gene containment of transgenic plants. TERMINAL FLOWER 1 (TFL1) is known to be involved in the transcriptional repression of genes for inflorescence development. Two TFL1 transcripts with different 3' UTR were cloned from black cherry (Prunus serotina...
USDA-ARS?s Scientific Manuscript database
Although recent molecular studies elucidate the genetic background leading to changed morphology of maize female inflorescence and the structure of the caryopsis during the domestication of maize (Zea mays ssp. mays) from its wild progenitor teosinte (Zea mays ssp. parviglumis), the mechanisms under...
Xu, Yi; Zhang, Xia; Li, Qi; Cheng, Zhiyuan; Lou, Haijuan; Ge, Lei; An, Hailong
2015-01-01
Brassinosteroids (BRs), known as a kind of phytohormones, play essential roles in plant growth and development. Although the studies on the BR biosynthesis and signaling are extensive in Arabidopsis, little is known in temperate cereals. In this study, bdbrd1-1, a T-DNA insertion mutant from Brachypodium distachyon, was isolated and characterized in details. The bdbrd1-1 mutant showed lots of cellular and morphogenetic defects, including shortened cell shapes, severe dwarfing, twisted leaves and sterile spikes. Sequencing the flanking fragment of the T-DNA and complementation by genomic DNA in the mutant, confirmed that the developmental defects are caused by the T-DNA insertion in BdBRD1, a possible brassinosteroid C-6 oxidase gene. Application of 24-epicastasterone could partly rescue the bdbrd1-1 dwarfing phenotype. Expression analysis of BdBRD1 suggested that bdbrd1-1 is probably a null mutant and its wild type transcript is expressed in various tissues and highest in the leaf sheaths. Meanwhile, measurements on leaf numbers of the main stems or days to the emergence of the inflorescences suggested that bdbrd1-1 is late-flowering. The late-flowering phenotype could be converted by vernalization treatment, although there lacks a typical FLC gene in B. distachyon. The current data provide an insight into the relationship between BRs biosynthesis and individual development in B. distachyon, an emerging model plant for the temperate cereals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Testing the influence of gravity on flower symmetry in five Saxifraga species.
Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus
2017-04-01
Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species-Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa-concerning six flower parameters-angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.
Convergent Evolution and the Diverse Ontogenetic Origins of Tendrils in Angiosperms.
Sousa-Baena, Mariane S; Sinha, Neelima R; Hernandes-Lopes, José; Lohmann, Lúcia G
2018-01-01
Climbers are abundant in tropical forests, where they constitute a major functional plant type. The acquisition of the climbing habit in angiosperms constitutes a key innovation. Successful speciation in climbers is correlated with the development of specialized climbing strategies such as tendrils, i.e., filiform organs with the ability to twine around other structures through helical growth. Tendrils are derived from a variety of morphological structures, e.g., stems, leaves, and inflorescences, and are found in various plant families. In fact, tendrils are distributed throughout the angiosperm phylogeny, from magnoliids to asterids II, making these structures a great model to study convergent evolution. In this study, we performed a thorough survey of tendrils within angiosperms, focusing on their origin and development. We identified 17 tendril types and analyzed their distribution through the angiosperm phylogeny. Some interesting patterns emerged. For instance, tendrils derived from reproductive structures are exclusively found in the Core Eudicots, except from one monocot species. Fabales and Asterales are the orders with the highest numbers of tendrilling strategies. Tendrils derived from modified leaflets are particularly common among asterids, occurring in Polemoniaceae, Bignoniaceae, and Asteraceae. Although angiosperms have a large number of tendrilled representatives, little is known about their origin and development. This work points out research gaps that should help guide future research on the biology of tendrilled species. Additional research on climbers is particularly important given their increasing abundance resulting from environmental disturbance in the tropics.
Testing the influence of gravity on flower symmetry in five Saxifraga species
NASA Astrophysics Data System (ADS)
Koethe, Sebastian; Bloemer, Judith; Lunau, Klaus
2017-04-01
Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species— Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.
Convergent Evolution and the Diverse Ontogenetic Origins of Tendrils in Angiosperms
Sousa-Baena, Mariane S.; Sinha, Neelima R.; Hernandes-Lopes, José; Lohmann, Lúcia G.
2018-01-01
Climbers are abundant in tropical forests, where they constitute a major functional plant type. The acquisition of the climbing habit in angiosperms constitutes a key innovation. Successful speciation in climbers is correlated with the development of specialized climbing strategies such as tendrils, i.e., filiform organs with the ability to twine around other structures through helical growth. Tendrils are derived from a variety of morphological structures, e.g., stems, leaves, and inflorescences, and are found in various plant families. In fact, tendrils are distributed throughout the angiosperm phylogeny, from magnoliids to asterids II, making these structures a great model to study convergent evolution. In this study, we performed a thorough survey of tendrils within angiosperms, focusing on their origin and development. We identified 17 tendril types and analyzed their distribution through the angiosperm phylogeny. Some interesting patterns emerged. For instance, tendrils derived from reproductive structures are exclusively found in the Core Eudicots, except from one monocot species. Fabales and Asterales are the orders with the highest numbers of tendrilling strategies. Tendrils derived from modified leaflets are particularly common among asterids, occurring in Polemoniaceae, Bignoniaceae, and Asteraceae. Although angiosperms have a large number of tendrilled representatives, little is known about their origin and development. This work points out research gaps that should help guide future research on the biology of tendrilled species. Additional research on climbers is particularly important given their increasing abundance resulting from environmental disturbance in the tropics. PMID:29666627
Avivi, Yigal; Lev-Yadun, Simcha; Morozova, Nadya; Libs, Laurence; Williams, Leor; Zhao, Jing; Varghese, George; Grafi, Gideon
2000-01-01
Class I knox genes play an important role in shoot meristem function and are thus involved in the ordered development of stems, leaves, and reproductive organs. To elucidate the mechanism underlying the expression pattern of these homeobox genes, we studied a spontaneous tomato (Lycopersicon esculentum) mutant that phenotypically resembles, though is more extreme than, transgenic plants misexpressing class I knox genes. This mutant was found to carry a recessive allele, denoted clausa:shootyleaf (clau:shl)—a newly identified allele of clausa. Mutant plants exhibited abnormal leaf and flower morphology, epiphyllus inflorescences, fusion of organs, calyx asymmetry, and navel-like fruits. Analysis by scanning electron microscopy revealed that such fruits carried ectopic ovules, various vegetative primordia, as well as “forests” of stalked glandular trichomes. In situ RNA hybridization showed a peculiar expression pattern of the class I knox gene LeT6/TKn2; expression was restricted to the vascular system and palisade layer of mature leaves and to the inner part of ovules integuments. We conclude that CLAUSA regulates various aspects of tomato plant development, at least partly, by rendering the LeT6/TKn2 gene silent in specific tissues during development. Considering the expression pattern of LeT6/TKn2 in the clausa mutant, we suggest that the control over a given homeobox gene is maintained by several different regulatory mechanisms, in a cell type-dependent manner. PMID:11027705
Reproductive phenology and pre-dispersal fruit predation in Atriplex halimus L. (Chenopodiaceae).
Romera, Prado; Fernández-Illescas, Francisca; Nieva, F Javier J; Rodríguez-Rubio, Pilar; Sánchez-Gullón, Enrique; Muñoz-Rodríguez, Adolfo F
2013-12-01
The flowering phenology pattern of Atriplex halimus was studied in a Mediterranean habitat in order to analyze protandry effectiveness. Fruit set evolution was recorded over two years and the impact of pre-dispersal predation by insects was also evaluated. The flowering phenology coincided in 2006 and 2007, starting in mid-July and reaching full flowering at the end of August in both years. Inflorescences are composed of glomerules with 8.78 ± 2.79 male flowers and 4.57 ± 2.58 female flowers, with no significant differences in position on the inflorescence. The peaks of male and female flower anthesis were reached in mid-August, but the male maximum occurred one week before the female. Plants at the start of flowering only bear male flowers, but female flowers soon appear. Fruit set starts at the end of August; all the flowers were transformed into fruit by mid-September and their development continued to the beginning of October, when fruit structures had matured and began to drop. Fruit predation started at the end of September and reached maximum intensity in mid-October. At population level, male and female flowers seemed to open in the same weeks, but at plant and glomerule level male flowers opened one week before the females. Fruit predation levels were 62.42 and 43.14% in 2006 and 2007 respectively, with no significant differences between different parts of the inflorescence. And larvae of Coleophoridae were the most abundant predators.
Floral Longevity and Nectar Secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae)
STPICZYŃSKA, MAŁGORZATA
2003-01-01
Flowering and nectar secretion were studied in Platanthera chlorantha in two years. Nectar was secreted and accumulated in this orchid’s spur, originating from part of the labellum. The nectary spur was, on average, 32 mm long. It produced 6·86 µl nectar in 1999 and 7·84 µl in 2000. The number of flowers per inflorescence and the volume of nectar secreted per flower were not correlated. Nectar secretion and flower longevity differed depending on pollination and flower position in the inflorescence. Among pairs of pollinated and unpollinated flowers there was no difference in the volume of nectar produced; however, the life span of pollinated flowers was shorter than that of unpollinated ones. Within an inflorescence, the lowest‐positioned flowers had the largest nectar production and the longest life compared with flowers positioned higher up. PMID:12805083
Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan
2016-01-01
MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango ( Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5' UTR and a 189 bp long 3' UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems' leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue -specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis . In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango.
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839
van der Linde, Karina; Kastner, Christine; Kumlehn, Jochen; Kahmann, Regine; Doehlemann, Gunther
2011-01-01
Infection of maize (Zea mays) plants with the corn smut fungus Ustilago maydis leads to the formation of large tumors on the stem, leaves and inflorescences. In this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed massive and stage-specific changes in host gene expression during disease progression. To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a virus-induced gene silencing (VIGS) system based on the brome mosaic virus (BMV) for maize. Conditions were established that allowed successful U. maydis infection of BMV-preinfected maize plants. This set-up enabled quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (qRT-PCR)-based readout. In proof-of-principle experiments, an U. maydis-induced terpene synthase was shown to negatively regulate disease development while a protein involved in cell death inhibition was required for full virulence of U. maydis. The results suggest that this system is a versatile tool for the rapid identification of maize genes that determine compatibility with U. maydis. © (2010) Max Planck Society. Journal compilation © New Phytologist Trust (2010).
Insect Pests Occurring on Dacryodes edulis (Burseraceae) in Rural Areas in Gabon.
Poligui, R N; Mouaragadja, I; Vandereycken, A; Haubruge, E; Francis, F
2014-08-01
The inventory of pests occurring on Dacryodes edulis (Burseraceae) was carried out in rural areas in Gabon during 2009 and 2010. Yellow traps and visual observations were used to record weekly pests during the tree flowering stage, in five villages. Catches from yellow traps rose to 7,296 and 1,722 insect pests in 2009 and 2010, respectively, whereas records from visual observations corresponded to 1,812 and 171 insect pests in 2009 and 2010, respectively. During both years, abundance from traps and visual monitoring was significantly different between sampling sites (p < 0.05). The difference in pests' diversity between sampling sites was not significant (p > 0.05) according to traps, but significant (p ≤ 0.04) according to visual observations in 2010. Mecocorynus loripes Chevrolat (Coleoptera: Cucurlionidae) attacked the stem of D. edulis, while Oligotrophus sp. (Diptera: Cecidomyiidae), Pseudophacopteron serrifer Malenovsky and Burckhardt (Hemiptera: Phacopteronidae), and Selenothrips rubrocinctus Giard (Thysanopera: Thripidae) attacked leaves. Pseudonoorda edulis Maes and Poligui (Lepidoptera: Crambidae) and Lobesia aeolopa Meyrick (Lepidoptera: Tortricidae) infested fruits and inflorescences, respectively. These insects are specifically linked to plant patterns, and their identification provided the first basic information for developing suitable strategies to control pests of D. edulis in Gabon, as well as in neighboring central African countries.
K B, Arun; Madhavan, Aravind; T R, Reshmitha; Thomas, Sithara; Nisha, P
2018-01-24
Colorectal cancer (CRC) is one of the leading causes of cancer death, and diet plays an important role in the etiology of CRC. Traditional medical practitioners in many South Asian countries use plantain inflorescence to treat various gastro-intestinal ailments. The aim of the present study was to investigate the anticancer effects of extracts of inflorescence of Musa paradisiaca against HT29 human colon cancer cells and elucidate the mechanism of these effects by studying the modulation of cascades of transcriptional events. In vitro assays depicted that methanol extract of Musa paradisiaca inflorescence (PIMET) was cytotoxic to HT29 cells. PIMET induced DNA damage and arrested the cell cycle at the G2/M phase. Expression studies showed that PIMET pretreatment upregulates pro-apoptotic Bcl2 and downregulates anti-apoptotic Bax proteins. Different assays showed that the deregulation of pro/antiapoptotic proteins reduces the mitochondrial membrane potential and ATP production; moreover, it enhances cytochrome c release, which triggers the apoptotic pathway, and further cleaves caspase 3 and PARP proteins, resulting in apoptosis. Changes in the protein expression profile of HT29 cells after PIMET treatment were analyzed using mass-spectrometry-based proteomics. PIMET treatment significantly altered the expression of HT29 protein; interestingly, X-linked inhibitor of apoptosis protein was also downregulated. Alteration in the expression of this protein has significant effects, leading to HT29 cell death.
Stability of agronomic and yield related traits of Jatropha curcas accessions raised from cuttings
NASA Astrophysics Data System (ADS)
Mat, Nurul Hidayah Che; Yaakob, Zahira; Ratnam, Wickneswari
2016-11-01
Monitoring stability of agronomic and yield related traits is important for prediction of crop yields. This study was a latter study for the evaluation of 295 J. curcas individuals representing 21 accessions from eight countries at Biodiesel Research Station of Universiti Kebangsaan Malaysia, Kuala Pilah planted in December 2012. In this study, 183 J. curcas individuals were selected randomly from the population and their growth performance evaluated from December 2013 to December 2014. All the individual plants were raised from cuttings. The yield related data were recorded periodically and performance of each accession was analyzed using Statistical Analysis System (SAS) 9.4. Five traits which were number of fruits per plant (NFPP), number of fruits per inflorescence (NFPI), hundred seed weight (g) (HSW), number of seeds per plant (NSPP) and yield per plant (g) (YPP) showed significant differences among the accessions after two years of planting. Maximum values for each trait were 208 cm for plant height (PH), 31 for number of branches per plant (BPP), 115 for number of inflorescence per plant (NIPP), 582 for NFPP, 7 for NFPI, 307 for number of flowers per inflorescence (NFI), 17 for number of female flowers per inflorescence (NFFPI), 91.6 g for HSW, 1647.1 for NSPP and 927.6 g for YPP. Most of the plants which had performed well in the first year were among the best performers in the second year.
Gary A. Chastagner; Kathy Riley; Norm Dart
2008-01-01
Since 2005, we have been studying the spread and development of Phytophthora ramorum at a Christmas tree farm near Los Gatos, California. This research has shown that distance from infected plants, predominantly California bay laurel (Umbellularia californica) (referred to as ?bay? throughout), is an important factor relating to...
1986-07-01
inflorescences are formed. The inflorescence is an abbre-9viated terminal raceme with pistillate flowers below staminate flowers. The 3 -IC Figure 1...Distribution and distinguishing characteristics of woolly croton (Croton capitatus): (a) flowering branch, (b) fruit, and (c) seeds 4 ovary is 3- celled ...and the capsule is 3- celled and 3-seeded except for C. monanthogynus, which is 1-seeded. When seeds mature in late fall, they are forcefully ejected
Xu, Tao; Kim, Bo Mi; Kwak, Kyung Jin; Jung, Hyun Ju; Kang, Hunseung
2016-01-01
The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development. PMID:27091878
Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...
2014-08-05
In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less
Fluid dynamics of two-dimensional pollination in Ruppia maritima
NASA Astrophysics Data System (ADS)
Musunuri, Naga; Bunker, Daniel; Pell, Susan; Pell, Fischer; Singh, Pushpendra
2016-11-01
The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritima is adsorbed on a water surface: (i) inflorescences rise above the surface and after they mature their pollen mass falls onto the surface as clumps and disperses on the surface; (ii) inflorescences remain below the surface and produce air bubbles which carry their pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined under the action of capillary forces to form pollen rafts. This increases the probability of pollination since the capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The presence of a trace amount of surfactant can disrupt the pollination process so that the pollen is not transported or captured on the water surface. National Science Foundation.
Abubacker, Maghdu Nainamohamed; Devi, Palaniyappan Kamala
2014-09-01
To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Marques, André M; Fingolo, Catharina E; Kaplan, Maria Auxiliadora C
2017-11-01
High Speed Countercurrent Chromatography (HSCCC) technique was used for the preparative isolation of the major leishmanicidal compounds from the essential oils of Piper claussenianum species in Brazil. The essential oils from inflorescences of P. claussenianum were analyzed by GC-FID and GC-MS. The enantiomeric ratio of the major constituents of the P. claussenianum essential oils were determined using a Rt-DEXsm chiral capillary column by GC-FID analysis. It was found an enantiomeric excess of (+)-(E)-nerolidol in the leaves, and (+)-linalool and (+)-(E)-nerolidol in the inflorescences essential oil. The major volatile terpenes alcohols were isolated in preparative scale from inflorescences: linalool (320.0 mg) and nerolidol (95.0 mg) in high purity level. The HSCCC, a support-free liquid-liquid partition chromatographic technique, proved to be an effective and useful method for fast isolation and purification of hydrophobic and similarly structured bioactive components from essential oils of Piper species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Auxin Synthesis-Encoding Transgene Enhances Grape Fecundity1[OA
Costantini, Elisa; Landi, Lucia; Silvestroni, Oriana; Pandolfini, Tiziana; Spena, Angelo; Mezzetti, Bruno
2007-01-01
Grape (Vitis vinifera) yield is largely dependent on the fecundity of the cultivar. The average number of inflorescences per shoot (i.e. shoot fruitfulness) is a trait related to fecundity of each grapevine. Berry number and weight per bunch are other features affecting grape yield. An ovule-specific auxin-synthesizing (DefH9-iaaM) transgene that increases the indole-3-acetic acid content of grape transgenic berries was transformed into cultivars Silcora and Thompson Seedless, which differ in the average number of inflorescences per shoots. Thompson Seedless naturally has very low shoot fruitfulness, whereas Silcora has medium shoot fruitfulness. The average number of inflorescences per shoot in DefH9-iaaM Thompson Seedless was doubled compared to its wild-type control. Berry number per bunch was increased in both transgenic cultivars. The quality and nutritional value of transgenic berries were substantially equivalent to their control fruits. The data presented indicate that auxin enhances fecundity in grapes, thus enabling to increase yield with lower production costs. PMID:17337528
An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.
Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu
2016-11-21
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.
An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development
Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu
2016-01-01
Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis. PMID:27869146
Kiselev, K V; Dubrovina, A S; Shumakova, O A; Karetin, Y A; Manyakhin, A Y
2013-03-01
KEY MESSAGE : VaCDPK3a is actively expressed in leaves, stems, inflorescences, and berries of Vitis amurensis and may act as a positive growth regulator, but is not involved in the regulation of resveratrol biosynthesis. Calcium-dependent protein kinases (CDPKs) are known to play important roles in plant development and defense against biotic and abiotic stresses. It has previously been shown that CDPK3a is the predominant CDPK transcript in cell cultures of wild-growing grapevine Vitis amurensis Rupr., which is known to possess high resistance against environmental stresses and to produce resveratrol, a polyphenol with valuable pharmacological effects. In this study, we aimed to define the full cDNA sequence of VaCDPK3a and analyze its organ-specific expression, responses to plant hormones, temperature stress and exogenous NaCl, and the effects of VaCDPK3a overexpression on biomass accumulation and resveratrol content in V. amurensis calli. VaCDPK3a was actively expressed in all analyzed V. amurensis organs and tissues and was not transcriptionally regulated by salt and temperature stresses. The highest VaCDPK3a expression was detected in young leaves and the lowest in stems. A reduction in the VaCDPK3a expression correlated with a lower rate of biomass accumulation and higher resveratrol content in calli of V. amurensis under different growth conditions. Overexpression of the VaCDPK3a gene in the V. amurensis calli significantly increased cell growth for a short period of time but did not have an effect on resveratrol production. Further subculturing of the transformed calli resulted in cell death and a decrease in expression of the endogenous VaCDPK3a. The data suggest that while VaCDPK3a acts as a positive regulator of V. amurensis cell growth, it is not involved in the signaling pathway regulating resveratrol biosynthesis and resistance to salt and temperature stresses.
Pérez-Hernández, Juan Bernardo; Rosell-García, Purificación
2008-06-01
Availability of explants with adequate embryogenic competence is one of the most important limitations for the development of regenerable cell suspensions in banana. To increase the number and ease of accessibility to potentially embryogenic explants, a novel methodology is described by which young male flower clusters isolated from adult plants are induced to form new flower buds and proliferate in vitro. Different concentrations of the plant growth regulator thidiazuron (TDZ) induced inflorescence proliferation, which could be maintained over time as a continuous source of young flower buds. Intensity of proliferation was evaluated during successive subcultures. At the third cycle of proliferation, the highest multiplication rate (2.89) was obtained on the medium containing 5 microM TDZ. Newly generated floral tissues were assessed for embryogenic competence, resulting in an average embryogenic frequency of 12.5%. The observed embryogenic capacity, together with the recurrent availability of immature flowers, allowed for the direct initiation of cell suspensions from bulked explant cultures. Regular observation and regeneration tests during the development of suspended cell cultures confirmed their embryogenic condition. Produced embryos successfully matured and germinated to regenerate hundreds of somatic in vitro plants.
Xing, Lei; Liu, Xue-Mei
2012-02-01
Birch (Betula platyphylla), an eminent tree species in Northeast and Inner Mongolia of China, has been widely used in architecture, furniture, and paper making in recent years. In order to retrieve genes involved in early development of B. platyphylla male inflorescence, RNA populations extracted from early and late developmental stage were analyzed by cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) technique. Following amplification of 256 pairs of primer combinations, ~7000 fragments were generated, of which 350 transcripts expressing more in early stage than late. Of 350 specific transcripts, 198 clear and reproducible electrophoresis bands were retrieved and sequenced successfully, 74 of them (37%) showing significant homologies to known genes after GO annotation. Majority of the predicted gene products were involved in metabolism (24.56%), cellular process (27.19%), response to stimulus (11.4%) and cell growth (8.7%). Transcripts ME56, ME108, ME206 and ME310, representing metabolism, cellular process, response to stimulus and cell growth, respectively, were selected for further study to validate cDNA-AFLP expression patterns via RT-PCR and qRT-PCR analysis. RT-PCR and qRT-PCR expression pattern results were consistent with cDNA-AFLP analysis results.
Greenwood, Julian R; Finnegan, E Jean; Watanabe, Nobuyoshi; Trevaskis, Ben; Swain, Steve M
2017-06-01
The advantages of free threshing in wheat led to the selection of the domesticated Q allele, which is now present in almost all modern wheat varieties. Q and the pre-domestication allele, q , encode an AP2 transcription factor, with the domesticated allele conferring a free-threshing character and a subcompact (i.e. partially compact) inflorescence (spike). We demonstrate that mutations in the miR172 binding site of the Q gene are sufficient to increase transcript levels via a reduction in miRNA-dependent degradation, consistent with the conclusion that a single nucleotide polymorphism in the miRNA binding site of Q relative to q was essential in defining the modern Q allele. We describe novel gain- and loss-of-function alleles of Q and use these to define new roles for this gene in spike development. Q is required for the suppression of 'sham ramification', and increased Q expression can lead to the formation of ectopic florets and spikelets (specialized inflorescence branches that bear florets and grains), resulting in a deviation from the canonical spike and spikelet structures of domesticated wheat. © 2017. Published by The Company of Biologists Ltd.
Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; Paterson, Andrew H
2015-04-19
Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved 'hotspots' in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dong; Kong, Wenqian; Robertson, Jon
Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less
Zhang, Dong; Kong, Wenqian; Robertson, Jon; ...
2015-12-01
Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less
Borah, Mukundam; Das, Swarnamoni
2017-01-01
To evaluate the antidiabetic, antihyperlipidemic, and antioxidant activities of the ethanolic extracts of the flowers and inflorescence stalk of Musa balbisiana Colla. in streptozotocin (STZ)-induced Type 1 diabetic rats. Diabetes was induced in male Wistar albino rats (150-200 g) by single intraperitoneal injection of STZ (60 mg/kg b.w. i.p.). Albino rats ( n = 25) were divided into five groups, of which five animals each. Group A (normal control) and Group B (diabetic control) received normal saline (10 ml/kg/day p.o.), whereas Group C and Group D received 250 mg/kg/day p.o. of flower and inflorescence stalk ethanolic extracts, respectively, for 2 weeks. Group E (diabetic standard) received 6 U/kg/day s.c of Neutral Protamine Hagedorn insulin. Fasting blood sugar, serum insulin, catalase (CAT), malondialdehyde (MDA), and serum lipid profile were estimated at specific intervals of time. Effect of the extracts on intestinal glucose absorption was also evaluated to know the probable mechanism of action. Diabetic control exhibited significant increase in blood glucose, serum cholesterol, triglycerides, low-density lipoprotein, serum MDA levels and decreased serum CAT, and high-density lipoprotein levels which were significantly reverted by flower and inflorescence stalk ethanolic extracts after 2 weeks. Serum insulin levels were in increased ( P < 0.05), and intestinal glucose absorption decreased significantly ( P < 0.01) in extract-treated groups. Flower and inflorescence stalk of M. balbisiana Colla. possess significant antidiabetic, antihyperlipidemic, and antioxidant activities in STZ-induced Type 1 diabetic rats.
NASA Astrophysics Data System (ADS)
Tang, Jing-Yu; Ren, Ming-Xun
2011-09-01
Intra-inflorescence variation in floral traits is important to understand the pollination function of an inflorescence and the real reproductive outputs of a plant. Ruta graveolens (Rutaceae) produce both quaternary (four petals and eight stamens) and quinary (five petals and ten stamens) flowers on the same cymes, while their pollination roles and the effects on the reproductive success remained unexplored. We experimentally examined the biomass of female versus male organs and pollen viability and stigma receptivity to explore the sex allocation patterns between the flowers. The breeding systems and reproductive outputs through either female function (seed set) or male function (pollen dispersal) were also studied for quinary and quaternary flowers to determine whether there was functional bias. The results showed that R. graveolens was protandrous, with a mixed mating system. Its stamens could slowly move one by one and only dehisce when positioning at the flower center, which could greatly enhance pollen dispersal. The first-opened quinary flower allocated significantly higher resources (dry biomass) in female organs while quaternary flowers allocated more resource in male organs. The quaternary flowers experienced higher pollen limitation in seed production but were more successful in pollen dispersal and the quinary flowers reproduced both through female and male functions. Our data suggested that quinary and quaternary flower on same inflorescence in R. graveolens functioned mainly as the sex role that most resources were allocated, which probably reflect an adaptation for floral phenology and pollination process in this plant.
Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng
2014-01-01
In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar.
Flores-Olvera, Hilda; Vrijdaghs, Alexander; Ochoterena, Helga; Smets, Erik
2011-01-01
Background and Aims Within Chenopodioideae, Atripliceae have been distinguished by two bracteoles enveloping the female flowers/fruits, whereas in other tribes flowers are described as ebracteolate with persistent perianth. Molecular phylogenetic hypotheses suggest ‘bracteoles’ to be homoplastic. The origin of the bracteoles was explained by successive inflorescence reductions. Flower reduction was used to explain sex determination. Therefore, floral ontogeny was studied to evaluate the nature of the bracteoles and sex determination in Atripliceae. Methods Inflorescences of species of Atriplex, Chenopodium, Dysphania and Spinacia oleracea were investigated using light microscopy and scanning electron microscopy. Key Results The main axis of the inflorescence is indeterminate with elementary dichasia as lateral units. Flowers develop centripetally, with first the formation of a perianth primordium either from a ring primordium or from five individual tepal primordia fusing post-genitally. Subsequently, five stamen primordia originate, followed by the formation of an annular ovary primordium surrounding a central single ovule. Flowers are either initially hermaphroditic remaining bisexual and/or becoming functionally unisexual at later stages, or initially unisexual. In the studied species of Atriplex, female flowers are strictly female, except in A. hortensis. In Spinacia, female and male flowers are unisexual at all developmental stages. Female flowers of Atriplex and Spinacia are protected by two accrescent fused tepal lobes, whereas the other perianth members are absent. Conclusions In Atriplex and Spinacia modified structures around female flowers are not bracteoles, but two opposite accrescent tepal lobes, parts of a perianth persistent on the fruit. Flowers can achieve sexuality through many different combinations; they are initially hermaphroditic, subsequently developing into bisexual or functionally unisexual flowers, with the exception of Spinacia and strictly female flowers in Atriplex, which are unisexual from the earliest developmental stages. There may be a relationship between the formation of an annular perianth primordium and flexibility in floral sex determination. PMID:21852278
Huang, Haijiao; Wang, Shan; Jiang, Jing; Liu, Guifeng; Li, Huiyu; Chen, Su; Xu, Huanwen
2014-08-01
The involvement of APETALA1 (AP1) in the flowering transition has been the focus of much research. Here, we produced Betula platyphylla × Betula pendula (birch) lines that overexpressed BpAP1 using Agrobacterium-mediated transformation; we obtained five independent 35S::BpAP1 transgenic lines. Polymerase chain reaction (PCR), Southern, northern and western analyses were used to identify the transformants. As determined by quantitative real-time PCR (qRT-PCR), BpAP1 expression in roots, shoots, leaves and terminal buds of 35S::BpAP1 transgenic lines was significantly higher than that in the wild type (WT, P < 0.01). The average height of 2-year-old 35S::BpAP1 plants was significantly lower (41.17%) than that of non-transgenic plants. In the 35S::BpAP1 lines, inflorescences emerged successively beginning 2 months after transplanting. In addition, the length-diameter ratio of fully developed male and female inflorescences were both significantly less than those of the WT (P < 0.05), i.e. the morphological characteristic was stubby. The male inflorescences emerged early, with empty, draped anthers, and pollen was rarely produced, whereas the female floret structure was not different from WT. The pistils developed normally and could accept pollen, leading to the production of hybrid progeny (F1 ). F1 plants completed flowering within only 1 year after sowing. We demonstrate that BpAP1 can be inherited through sexual reproduction. Overexpression of BpAP1 caused early flowering and dwarfism; these lines had an obviously shortened juvenile phase. These results greatly increase our understanding of the mechanisms underlying the flowering transition and enhance genetic studies of birch traits, and they open up new possibilities for the breeding of birch and other woody plants. © 2013 Scandinavian Plant Physiology Society.
Parra-Garcés, María Isabel; Caroprese-Araque, José Fernando; Arrieta-Prieto, Dagoberto; Stashenko, Elena
2010-12-01
There is an increased interest to know and scientifically validate traditional knowledge of medicinal plants. Lippia alba belongs to Verbenaceae family and has been of interest, not only because of its worldwide extensive distribution, but also for its variable use as antiviral, bactericide, citostatic, analgesic and sedative. To study this, the morphology and ontogeny of Lippia alba inflorescences and the chemical composition of its volatile secondary metabolites were analyzed during three different stages of development. Plants were collected at the experimental crop field in CENIVAM, Bucaramanga, Colombia. The inflorescence's morphology and ontogeny, and the chemical composition of volatile secondary metabolites were analyzed using a stereoscopic microscope and chromatographic and spectroscopic techniques. Fresh material corresponding to each stage was fixed in F.A.A (formol, acetic acid and alcohol), included in paraffin and cutted in transversal and longitudinal sections. Sections were stained with safranine-fastgreen, photographed and decribed. The chemical composition of volatile secondary metabolites at each ontogenic stage, was extracted by solid phase micro-extraction in the headspace mode and analyzed by gas chromatography coupled to mass spectrometry. Stage I showed a meristematic mass of cells in vegetative apex and bracts, with an outline of floral whorls. In Stage III. the stamens were adnate, epipetals and didynamous, bicarpelar and syncarpic gynoecium, with superior ovary and decurrent stigma. The main secondary metabolites detected were the bicyclosesquiphellandrene followed by carvone, limonene and trans-beta-farnesene, that constituted the 78% of the total relative amounts of compounds. Other metabolites such as beta-copaene, gamma-amorphene and cis-beta-guaiene, were reported for the first time in this study. When compared to other studies, morphological differences reported in this study are possibly related to adaptation to environmental conditions or pollinators, which let us suggest that there is no specific ontogenic pattern. Similarly, the qualitative and quantitative variations in the detected compounds could be explained because one or more of them are used as precursors of others.
Kwak, Kyung Jin; Jung, Hyun Ju; Lee, Kwang Ho; Kim, Young Soon; Kim, Won Yong; Ahn, Sung Ju; Kang, Hunseung
2012-01-01
U12 intron-specific spliceosomes contain U11 and U12 small nuclear ribonucleoproteins and mediate the removal of U12 introns from precursor-mRNAs. Among the several proteins unique to the U12-type spliceosomes, an Arabidopsis thaliana AtU11/U12-31K protein has been shown to be indispensible for proper U12 intron splicing and for normal growth and development of Arabidopsis plants. Here, we assessed the functional roles of the rice (Oryza sativa) OsU11/U12-31K protein in U12 intron splicing and development of plants. The U11/U12-31K transcripts were abundantly expressed in the shoot apical meristems (SAMs) of Arabidopsis and rice. Ectopic expression of OsU11/U12-31K in AtU11/U12-31K-defecient Arabidopsis mutant complemented the incorrect U12 intron splicing and abnormal development phenotypes of the Arabidopsis mutant plants. Impaired cell division activity in the SAMs and inflorescence stems observed in the AtU11/U12-31K-deficient mutant was completely recovered to normal by the expression of OsU11/U12-31K. Similar to Arabidopsis AtU11/U12-31K, rice OsU11/U12-31K was determined to harbor RNA chaperone activity. Collectively, the present findings provide evidence for the emerging idea that the U11/U12-31K protein is an indispensible RNA chaperone that functions in U12 intron splicing and is necessary for normal development of monocotyledonous plants as well as dicotyledonous plants.
Molecular bases for phyllomorph development in a one-leaf plant, Monophyllaea glabra.
Ishikawa, Naoko; Takahashi, Hirokazu; Nakazono, Mikio; Tsukaya, Hirokazu
2017-02-01
The aboveground part of one-leaf plants (Gesneriaceae) consists of a unique shoot-like unit called a phyllomorph, which is composed of a growing lamina and one petiolode (a stem- and petiole-like organ). The phyllomorph has three meristems: a basal meristem (BM; involved in lamina growth), a petiolode meristem (PM; required for midrib and petiolode growth), and a groove meristem (GM; contributes to inflorescence and new phyllomorph development). Although the GM has a tunica-corpus structure like a conventional shoot apical meristem (SAM), the vegetative GM of a one-leaf plant does not form any organ primordia and has been considered a defective or suppressed SAM. In this study, we evaluated the nature of the three meristems to reconsider their roles in phyllomorph development in the one-leaf species Monophyllaea glabra . Mitotic activities of meristem cells were monitored by incorporation of a thymidine analog (EdU) into DNA. Orthologs of SHOOTMERISTEMLESS ( STM ) and PHANTASTICA , ROUGH SHEATH2 , ASYMMETRIC LEAVES1 ( PHAN / RS2 / AS1 ) were isolated from M . glabra , and their expression patterns were investigated by quantitative reverse transcription polymerase chain reaction in combination with a laser microdissection technique. Mitotic activities were detected in all three phyllomorph meristems. Strong expression of the STM and PHAN / RS2 / AS1 orthologs was detected in the vegetative GM and BM, respectively. The vegetative GM is an active meristem that expresses the STM ortholog. We postulate that the GM is required for growth of a phyllomorph by providing undifferentiated cells and/or growth regulators to the BM and/or PM. © 2017 Botanical Society of America.
Floral Meristem Identity Genes Are Expressed during Tendril Development in Grapevine1
Calonje, Myriam; Cubas, Pilar; Martínez-Zapater, José M.; Carmona, María José
2004-01-01
To study the early steps of flower initiation and development in grapevine (Vitis vinifera), we have isolated two MADS-box genes, VFUL-L and VAP1, the putative FUL-like and AP1 grapevine orthologs, and analyzed their expression patterns during vegetative and reproductive development. Both genes are expressed in lateral meristems that, in grapevine, can give rise to either inflorescences or tendrils. They are also coexpressed in inflorescence and flower meristems. During flower development, VFUL-L transcripts are restricted to the central part of young flower meristems and, later, to the prospective carpel-forming region, which is consistent with a role of this gene in floral transition and carpel and fruit development. Expression pattern of VAP1 suggests that it may play a role in flowering transition and flower development. However, its lack of expression in sepal primordia, does not support its role as an A-function gene in grapevine. Neither VFUL-L nor VAP1 expression was detected in vegetative organs such as leaves or roots. In contrast, they are expressed throughout tendril development. Transcription of both genes in tendrils of very young plants that have not undergone flowering transition indicates that this expression is independent of the flowering process. These unique expression patterns of genes typically involved in reproductive development have implications on our understanding of flower induction and initiation in grapevine, on the origin of grapevine tendrils and on the functional roles of AP1-and FUL-like genes in plant development. These results also provide molecular support to the hypothesis that Vitis tendrils are modified reproductive organs adapted to climb. PMID:15247405
Padumadasa, Chayanika; Dharmadana, Durga; Abeysekera, Ajit; Thammitiyagodage, Mayuri
2016-09-05
Proanthocyanidins belong to a class of polyphenolic compounds called flavonoids and have been reported to exhibit important biological activities. The immature inflorescence of Cocos nucifera L. is used by Ayurvedic and traditional medical practitioners for the treatment of menorrhagia in Sri Lanka. Our studies have shown that the inflorescence of Cocos nucifera L. predominantly contains proanthocyanidins. To determine the antioxidant, anti-inflammatory and anticancer activities of ethyl acetate soluble proanthocyanidins (EASPA) of immature inflorescence of Cocos nucifera L. EASPA fraction of an acetone/water (7:3) extract of Cocos nucifera L. inflorescence was purified on Sephadex LH-20 and was used for the study. Antioxidant activity of EASPA was determined using DPPH and SOR scavenging assays. Anti-inflammatory activity of EASPA was determined by oxidative burst assay using chemiluminescence technique. MTT colorimetric assay was used to evaluate the cytotoxicity of EASPA to both PC3 and HeLa cells. EASPA showed radical scavenging activity against both DPPH and superoxide radicals with IC50 values of 11.02 ± 0.60 μg/mL and 26.11 ± 0.72 μg/mL. In both assays, EASPA showed less antioxidant activity than the standards used. It exhibited similar anti-inflammatory activity (IC50 = 10.31 ± 1.11 μg/mL) to ibuprofen (IC50 = 11.20 ± 1.90 μg/mL) (P ≥ 0.05). EASPA also showed stronger cytotoxic activity towards Hela cells (IC50 = 18.78 ± 0.90 μg/mL) than tamoxifen (IC50 = 28.80 ± 1.94 μg/mL) (P ≤ 0.05), while low cytotoxicity was observed against PC3 cells (IC50 = 44.21 ± 0.73 μg/mL) compared to doxorubicin (IC50 = 1.38 ± 0.16 μg/mL). EASPA showed antioxidant, anti-inflammatory and anticancer activities.
Improving Phytoremediation of Oil Spills through Organic Absorbents
NASA Astrophysics Data System (ADS)
Xie, W.
2017-12-01
Every year, oil spills around the world contaminate the environment and cost billions of dollars to clean up. Phytoremediation is a current technology for recovering environments contaminated by harmful substances, such as oil, that utilizes plants' capabilities to concentrate and metabolize the contaminants. Ranunculus, or the buttercup, has raised interest in the field of phytoremediation, being reported to grow in waste environments including municipal waste disposals. My project confirmed Ranunculus to be a suitable plant for phytoremediation. However, the Ranunculus plants throughout experiments showed a limited tolerance for oil concentration, causing the plant to wilt, thus ending the phytoremediation process. To overcome this problem, my project explored the combination of organic oil absorbents and phytoremediation. Oil absorbents can quickly fix the spilled oil in place and prevent it from further migration. In addition, and most importantly, the initial free oil concentration in contact with the roots is thus effectively decreased, which is essential for the plants to survive. Typha(cattail) inflorescence, saw dust, cotton and a commercial polymer were tested for oil absorption and Typha was deemed superior, being highly oil absorbent, inexpensive, organic and hydrophobic. Further experiments were undertaken in a small outdoor space and in the UBC Horticulture greenhouse during the winter season over the course of one year. The experiments were set up to both determine the most suitable plant for phytoremediation and test the impact of using Typha inflorescence as an absorbent. For each plant, there were three pots with Typha inflorescence and oil, with oil but no Typha inflorescence and without either. In order to measure the benefit quantitatively, naturally occurring electrical currents of the metabolic process common in phytoremediation was used as an indicator for phytoremediative activity. The main findings of the experiments were: 1. Adding Typha inflorescence greatly improved the health of the plants; 2. Ranunculus has the highest oil concentration tolerance; 3. Typha and Ranunculus is the most effective combination for the phytoremediation of waste motor oil out of the ones tested. This method has the potential to effectively remediate oil spill especially along pipelines.
Borah, Mukundam; Das, Swarnamoni
2017-01-01
Objectives: To evaluate the antidiabetic, antihyperlipidemic, and antioxidant activities of the ethanolic extracts of the flowers and inflorescence stalk of Musa balbisiana Colla. in streptozotocin (STZ)-induced Type 1 diabetic rats. Materials and Methods: Diabetes was induced in male Wistar albino rats (150–200 g) by single intraperitoneal injection of STZ (60 mg/kg b.w. i.p.). Albino rats (n = 25) were divided into five groups, of which five animals each. Group A (normal control) and Group B (diabetic control) received normal saline (10 ml/kg/day p.o.), whereas Group C and Group D received 250 mg/kg/day p.o. of flower and inflorescence stalk ethanolic extracts, respectively, for 2 weeks. Group E (diabetic standard) received 6 U/kg/day s.c of Neutral Protamine Hagedorn insulin. Fasting blood sugar, serum insulin, catalase (CAT), malondialdehyde (MDA), and serum lipid profile were estimated at specific intervals of time. Effect of the extracts on intestinal glucose absorption was also evaluated to know the probable mechanism of action. Results: Diabetic control exhibited significant increase in blood glucose, serum cholesterol, triglycerides, low-density lipoprotein, serum MDA levels and decreased serum CAT, and high-density lipoprotein levels which were significantly reverted by flower and inflorescence stalk ethanolic extracts after 2 weeks. Serum insulin levels were in increased (P < 0.05), and intestinal glucose absorption decreased significantly (P < 0.01) in extract-treated groups. Conclusion: Flower and inflorescence stalk of M. balbisiana Colla. possess significant antidiabetic, antihyperlipidemic, and antioxidant activities in STZ-induced Type 1 diabetic rats. PMID:28458426
Naqqash, Muhammad Nadir; Saeed, Qamar; Ghouri, Fozia
2016-01-01
Background: Pollination has a great effect on the yield of fruit trees. Blow flies are considered as an effective pollinator compared to hand pollination in fruit orchards. Therefore, this study was designed to evaluate the effect of different pollination methods in mango orchards. Methodology: The impact of pollination on quantity and quality of mango yield by blow flies was estimated by using three treatments, i.e., open pollinated trees, trees were covered by a net in the presence of blow flies for pollination, and trees were covered with a net but without insects. Results: The maximum number of flowers was recorded in irregular types of inflorescence, i.e., 434.80 flowers/inflorescence. Fruit setting (bud) was higher in open pollinated mango trees (i.e. 37.00/inflorescence) than enclosed pollination by blow flies (i.e. 22.34/inflorescence). The size of the mango fruit was the highest (5.06 mm) in open pollinated tree than those pollinated by blow flies (3.93 mm) and followed by without any pollinator (3.18 mm) at marble stage. We found that the maximum weight of mango fruit (201.19 g) was in open pollinated trees. Discussion: The results demonstrated that blow flies can be used as effective mango pollinators along with other flies and bees. The blow flies have shown a positive impact on the quality and quantity of mango. This study will be helpful in future and also applicable at farm level to use blow flies as pollinators that are cheap and easy to rear. PMID:27441107
Brock, Marcus T
2009-08-01
Prezygotic reproductive barriers limit interspecific gene flow between congeners. Here, I examine the strength of floral isolation and interspecific pollen-pistil barriers between an invasive apomictic, Taraxacum officinale, and the indigenous sexual alpine dandelion, Taraxacum ceratophorum. Experimental arrays of either native inflorescences or a mixture of native and exotic inflorescences were used to examine insect preference and to track movement of a pollen analog. Using hand-pollinations, conspecific and heterospecific pollen germination success on native stigmas was compared. To additionally test for interspecific pollen competition, T. ceratophorum plants received one of three possible hand-pollinations: control conspecific pollination, concomitant conspecific and heterospecific pollination (mixed), or conspecific pollen followed by heterospecific pollen 15 min later (staggered). Floral isolation was negligible as no insect preference was detected. On a presence/absence basis, florets on native inflorescences received slightly less pollen analog from heterospecific donors than from conspecific donors; however, the amount of dye particles transferred from either Taraxacum species to stigmas on recipient T. ceratophorum inflorescences was equivalent. In contrast to weak floral isolation, strong pollen germination and pollen competition barriers should reduce the potential for hybridization. Heterospecific T. officinale pollen exhibited reduced germination success on T. ceratophorum stigmas in comparison to conspecific pollen. Furthermore, a significant pollen-competition effect on the percentage of hybrid offspring was detected only when T. officinale preceded T. ceratophorum pollen by 15 min. This result indicates that conspecific pollen out-competes heterospecific pollen but further suggests that biotic and abiotic factors reducing pollen accrual rates may partially remove barriers to natural hybridization.
Arabidopsis thaliana as a model species for xylem hydraulics: does size matter?
Tixier, Aude; Cochard, Hervé; Badel, Eric; Dusotoit-Coucaud, Anaïs; Jansen, Steven; Herbette, Stéphane
2013-01-01
While Arabidopsis thaliana has been proposed as a model species for wood development, the potential of this tiny herb for studying xylem hydraulics remains unexplored and anticipated by scepticism. Inflorescence stems of A. thaliana were used to measure hydraulic conductivity and cavitation resistance, whereas light and electron microscopy allowed observations of vessels. In wild-type plants, measured and theoretical conductivity showed a significant correlation (R 2 = 0.80, P < 0.01). Moreover, scaling of vessel dimensions and intervessel pit structure of A. thaliana were consistent with structure–function relationships of woody plants. The reliability and resolution of the hydraulic methods applied to measure vulnerability to cavitation were addressed by comparing plants grown under different photoperiods or different mutant lines. Sigmoid vulnerability curves of A. thaliana indicated a pressure corresponding to 50% loss of hydraulic conductance (P 50) between –3 and –2.5MPa for short-day and long-day plants, respectively. Polygalacturonase mutants showed a higher P 50 value (–2.25MPa), suggesting a role for pectins in vulnerability to cavitation. The application of A. thaliana as a model species for xylem hydraulics provides exciting possibilities for (1) exploring the molecular basis of xylem anatomical features and (2) understanding genetic mechanisms behind xylem functional traits such as cavitation resistance. Compared to perennial woody species, however, the lesser amount of xylem in A. thaliana has its limitations. PMID:23547109
Arabidopsis thaliana as a model species for xylem hydraulics: does size matter?
Tixier, Aude; Cochard, Hervé; Badel, Eric; Dusotoit-Coucaud, Anaïs; Jansen, Steven; Herbette, Stéphane
2013-05-01
While Arabidopsis thaliana has been proposed as a model species for wood development, the potential of this tiny herb for studying xylem hydraulics remains unexplored and anticipated by scepticism. Inflorescence stems of A. thaliana were used to measure hydraulic conductivity and cavitation resistance, whereas light and electron microscopy allowed observations of vessels. In wild-type plants, measured and theoretical conductivity showed a significant correlation (R (2) = 0.80, P < 0.01). Moreover, scaling of vessel dimensions and intervessel pit structure of A. thaliana were consistent with structure-function relationships of woody plants. The reliability and resolution of the hydraulic methods applied to measure vulnerability to cavitation were addressed by comparing plants grown under different photoperiods or different mutant lines. Sigmoid vulnerability curves of A. thaliana indicated a pressure corresponding to 50% loss of hydraulic conductance (P 50) between -3 and -2.5MPa for short-day and long-day plants, respectively. Polygalacturonase mutants showed a higher P 50 value (-2.25MPa), suggesting a role for pectins in vulnerability to cavitation. The application of A. thaliana as a model species for xylem hydraulics provides exciting possibilities for (1) exploring the molecular basis of xylem anatomical features and (2) understanding genetic mechanisms behind xylem functional traits such as cavitation resistance. Compared to perennial woody species, however, the lesser amount of xylem in A. thaliana has its limitations.
Fluid dynamics of two-dimensional pollination in Ruppia (widgeon grass)
NASA Astrophysics Data System (ADS)
Musunuri, Naga; Bunker, Daniel; Pell, Susan; Fischer, Ian; Singh, Pushpendra
2015-11-01
The aim of this work is to understand the physics underlying the mechanisms of two-dimensional aquatic pollen dispersal, known as hydrophily, that have evolved in several genera of aquatic plants, including Halodule, Halophila, Lepilaena, and Ruppia. We selected Ruppia, which grows in the wetlands of the New Jersey/New York metropolitan area, for this study. We observed two mechanisms by which the pollen released from male inflorescences of Ruppia maritime is adsorbed on a water surface: 1) inflorescences rise above the water surface and after they mature their pollen mass falls onto the surface as clumps and disperses as it comes in contact with the surface; 2) inflorescences remain below the surface and produce air bubbles which carry pollen mass to the surface where it disperses. In both cases dispersed pollen masses combined with others to form pollen rafts. The formation of porous pollen rafts increases the probability of pollination since the attractive capillary force on a pollen raft towards a stigma is much larger than on a single pollen grain. The work was supported by National Science Foundation.
Heat Production in the Voodoo Lily (Sauromatum guttatum) as Monitored by Infrared Thermography.
Skubatz, H; Nelson, T A; Meeuse, B J; Bendich, A J
1991-04-01
The pattern of surface temperatures of the inflorescence of Sauromatum guttatum was investigated by using an infrared camera. The male flowers are weakly thermogenic on the first day of inflorescence opening (D-day) as well as on the next day (D + 1), reaching 0.5 to 1 degrees C above ambient temperature. The appendix (the upper sterile part of the inflorescence) is highly thermogenic on D-day, reaching 32 degrees C, and is faintly thermogenic on D + 1, reaching 1 degrees C above ambient temperature. The lower part of the spadix, close to the female flowers, is also thermogenic on D-day and D + 1, reaching a temperature similar to that of the appendix only on D + 1. Salicylic acid does not induce heat production in the lower part of the spadix, as it does in the appendix. Respiration of tissue slices obtained from the appendix shows that the capacity for cyanide-insensitive respiration is present in young and mature appendices. This alternative respiratory pathway is not, however, utilized in young appendix tissue, but is engaged during the maturation of that tissue.
Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin
2017-01-01
Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.
Symptomatology and morphology of Claviceps cyperi on yellow nut sedge in South Africa.
van der Linde, Elna J; Wehner, F C
2007-01-01
Symptoms of ergot on yellow nut sedge, germination of sclerotia of the causal organism, Claviceps cyperi, and morphology of fresh specimens of the pathogen are described for the first time. The initial symptom of infection was a black sooty layer on inflorescences of infected plants due to colonization of the ergot honeydew by Cladosporium cladosporioides. Sclerotia of C. cyperi started to develop in March and April and could be discerned as small protuberances on inflorescences in the place of seed. Mature sclerotia were purplish-black. They generally remained viable for less than a year and germinated without prior cold treatment, although exposure for 21 d to 5 C before incubation significantly increased the germination rate. Under moist conditions at 24 C in the laboratory, germination commenced within 4-8 wk. Stromata took about 12 d to mature. Mature capitula were distinctly lobulate with a perithecium embedded in each lobe and a collar-like appendage around the base. Although dimensions of sclerotia, stipes, capitula, asci and ascospores were larger than in the original description, the general morphology supports treatment of C. cyperi as a distinct species.
Stegemann, Thomas; Sievert, Christian
2017-01-01
Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites that are found in several distantly related families of the angiosperms. The first specific step in PA biosynthesis is catalyzed by homospermidine synthase (HSS), which has been recruited several times independently by duplication of the gene encoding deoxyhypusine synthase, an enzyme involved in the posttranslational activation of the eukaryotic initiation factor 5A. HSS shows highly diverse spatiotemporal gene expression in various PA-producing species. In comfrey (Symphytum officinale; Boraginaceae), PAs are reported to be synthesized in the roots, with HSS being localized in cells of the root endodermis. Here, we show that comfrey plants activate a second site of HSS expression when inflorescences start to develop. HSS has been localized in the bundle sheath cells of specific leaves. Tracer feeding experiments have confirmed that these young leaves express not only HSS but the whole PA biosynthetic route. This second site of PA biosynthesis results in drastically increased PA levels within the inflorescences. The boost of PA biosynthesis is proposed to guarantee optimal protection especially of the reproductive structures. PMID:28275146
Tzakou, Olga; Bazos, Ioannis; Yannitsaros, Artemios
2009-08-01
The essential oils from leaves and inflorescences of L. cariensis Boiss. and L. stoechas L. subsp. stoechas collected in Greece were analyzed by GC and GC/MS. In the inflorescences and leaves essential oils of L. cariensis the most abundant metabolite was camphor (51.8, 48.8% respectively), whereas in the essential oils of L. stoechas subsp. stoechas, the main constituents were fenchone (39.9, 21.0% respectively) and camphor (24.2, 26.3% respectively). Both enantiomers of camphor were present, whereas only (+) fenchone was detected.
Tähtiharju, Sari; Rijpkema, Anneke S; Vetterli, Adrien; Albert, Victor A; Teeri, Teemu H; Elomaa, Paula
2012-04-01
Plant-specific TCP domain transcription factors have been shown to regulate morphological novelties during plant evolution, including the complex architecture of the Asteraceae inflorescence that involves different types of flowers. We conducted comparative analysis of the CYCLOIDEA/TEOSINTE BRANCHED1 (CYC/TB1) gene family in Gerbera hybrida (gerbera) and Helianthus annuus (sunflower), two species that represent distant tribes within Asteraceae. Our data confirm that the CYC/TB1 gene family has expanded in Asteraceae, a condition that appears to be connected with the increased developmental complexity and evolutionary success of this large plant family. Phylogenetic analysis of the CYC/TB1 gene family revealed both shared and lineage-specific duplications in gerbera and sunflower, corresponding to the three gene lineages previously identified as specific to core eudicots: CYC1, CYC2, and CYC3. Expression analyses of early stages of flower primordia development indicated that especially within the CYC2 clade, with the greatest number of secondary gene duplications, gene expression patterns are conserved between the species and associated with flower and inflorescence development. All sunflower and gerbera CYC2 clade genes showed differential expression between developing flower types, being upregulated in marginal ray (and trans) flowers. One gene in gerbera (GhCYC3) and two in sunflower (HaCYC2d and HaCYC2c) were indicated to be strong candidates as regulators of ray flower identity, a function that is specific for Asteraceae. Our data further showed that other CYC2 clade genes are likely to have more specialized functions at the level of single flowers, including the late functions in floral reproductive organs that may be more conserved across plant families. The expression patterns of CYC1 and CYC3 clade genes showed more differences between the two species but still pointed to possible conserved functions during vegetative plant development. Pairwise protein-protein interaction assays gave the first molecular evidence that CYC/TB1-like proteins function in complexes. Compared with sunflower, the gerbera proteins showed higher capacity for dimerization, between as well as within CYC clades. Our data from two distant species within the Asteraceae suggest that the expansion and the apparent conservation of especially the CYC2 clade CYC/TB1-like genes are associated with the evolution of the increased complexity of the Asteraceae inflorescence architecture.
Food bodies in Cissus verticillata (Vitaceae): ontogenesis, structure and functional aspects
Paiva, Elder Antônio Sousa; Buono, Rafael Andrade; Lombardi, Julio Antonio
2009-01-01
Background and Aims The distinction between pearl bodies (or pearl glands) and food bodies (FBs) is not clear; neither is our understanding of what these structures really represent. The present work examined the ontogenesis, structure, ultrastructure and histochemical aspects of the protuberances in Cissus verticillata, which have been described since the beginning of the 19th century as pearl glands or pearl bodies, in order to establish a relationship between their structure and function. Methods Segments of stems and leaves in different stages of development were collected and fixed for study under light microscopy as well as electron transmission and scanning microscopy. Samples of FBs were subjected to chemical analysis using thin-layer chromatography. Key Results The FBs in C. verticillata are globose and attached to the plant by a short peduncle. These structures are present along the entire stem during primary growth, and on the inflorescence axis and the abaxial face of the leaves. The FBs were observed to be of mixed origin, with the participation of both the epidermis and the underlying parenchymatic cells. The epidermis is uniseriate with a thin cuticle, and the cells have dense cytoplasm and a large nucleus. The internal parenchymatic cells have thin walls; in the young structures these cells have dense cytoplasm with a predominance of mitochondria and plastids. In the mature FBs, the parenchymatic cells accumulate oils and soluble sugars; dictyosomes and rough endoplasmic reticulum predominate in the cytoplasm; the vacuoles are ample. Removal of the FBs appears to stimulate the formation of new ones, at the same place. Conclusions The vegetative vigour of the plant seems to influence the number of FBs produced, with more vigorous branches having greater densities of FBs. The results allow the conclusion that the structures traditionally designated pearl glands or pearl bodies in C. verticillata constitute FBs that can recruit large numbers of ants. PMID:19049986
Five vicarious genera from Gondwana: the Velloziaceae as shown by molecules and morphology
Mello-Silva, Renato; Santos, Déborah Yara A. C.; Salatino, Maria Luiza F.; Motta, Lucimar B.; Cattai, Marina B.; Sasaki, Denise; Lovo, Juliana; Pita, Patrícia B.; Rocini, Cintia; Rodrigues, Cristiane D. N.; Zarrei, Mehdi; Chase, Mark W.
2011-01-01
Background and Aims The amount of data collected previously for Velloziaceae neither clarified relationships within the family nor helped determine an appropriate classification, which has led to huge discordance among treatment by different authors. To achieve an acceptable phylogenetic result and understand the evolution and roles of characters in supporting groups, a total evidence analysis was developed which included approx. 20 % of the species and all recognized genera and sections of Velloziaceae, plus outgroups representatives of related families within Pandanales. Methods Analyses were undertaken with 48 species of Velloziaceae, representing all ten genera, with DNA sequences from the atpB-rbcL spacer, trnL-trnF spacer, trnL intron, trnH-psbA spacer, ITS ribosomal DNA spacers and morphology. Key Results Four groups consistently emerge from the analyses. Persistent leaves, two phloem strands, stem cortex divided in three regions and violet tepals support Acanthochlamys as sister to Velloziaceae s.s., which are supported mainly by leaves with marginal bundles, transfusion tracheids and inflorescence without axis. Within Velloziaceae s.s., an African Xerophyta + Talbotia clade is uniquely supported by basal loculicidal capsules; an American clade, Barbacenia s.l. + Barbaceniopsis + Nanuza + Vellozia, is supported by only homoplastic characters. Barbacenia s.l. (= Aylthonia + Barbacenia + Burlemarxia + Pleurostima) is supported by a double sheath in leaf vascular bundles and a corona; Barbaceniopsis + Nanuza + Vellozia is not supported by an unambiguous character, but Barbaceniopsis is supported by five characters, including diclinous flowers, Nanuza + Vellozia is supported mainly by horizontal stigma lobes and stem inner cortex cells with secondary walls, and Vellozia alone is supported mainly by pollen in tetrads. Conclusions The results imply recognition of five genera (Acanthochlamys (Xerophyta (Barbacenia (Barbaceniopsis, Vellozia)))), solving the long-standing controversies among recent classifications of the family. They also suggest a Gondwanan origin for Velloziaceae, with a vicariant pattern of distribution. PMID:21693665
Floral traits mediate the vulnerability of aloes to pollen theft and inefficient pollination by bees
Hargreaves, Anna L.; Harder, Lawrence D.; Johnson, Steven D.
2012-01-01
Background and Aims Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees. Methods For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology. Key Results Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape. Conclusions Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes. PMID:22278414
Rogers, Christine A.; Wayne, Peter M.; Macklin, Eric A.; Muilenberg, Michael L.; Wagner, Christopher J.; Epstein, Paul R.; Bazzaz, Fakhri A.
2006-01-01
Increasing atmospheric carbon dioxide is responsible for climate changes that are having widespread effects on biological systems. One of the clearest changes is earlier onset of spring and lengthening of the growing season. We designed the present study to examine the interactive effects of timing of dormancy release of seeds with low and high atmospheric CO2 on biomass, reproduction, and phenology in ragweed plants (Ambrosia artemisiifolia L.), which produce highly allergenic pollen. We released ragweed seeds from dormancy at three 15-day intervals and grew plants in climate-controlled glasshouses at either ambient or 700-ppm CO2 concentrations, placing open-top bags over inflorescences to capture pollen. Measurements of plant height and weight; inflorescence number, weight, and length; and days to anthesis and anthesis date were made on each plant, and whole-plant pollen productivity was estimated from an allometric-based model. Timing and CO2 interacted to influence pollen production. At ambient CO2 levels, the earlier cohort acquired a greater biomass, a higher average weight per inflorescence, and a larger number of inflorescences; flowered earlier; and had 54.8% greater pollen production than did the latest cohort. At high CO2 levels, plants showed greater biomass and reproductive effort compared with those in ambient CO2 but only for later cohorts. In the early cohort, pollen production was similar under ambient and high CO2, but in the middle and late cohorts, high CO2 increased pollen production by 32% and 55%, respectively, compared with ambient CO2 levels. Overall, ragweed pollen production can be expected to increase significantly under predicted future climate conditions. PMID:16759986
Pollinator visitation in populations of tristylous Eichhornia paniculata in northeastern Brazil.
Husband, Brian C; Barrett, Spencer C H
1992-03-01
The frequencies of floral morphs in populations of tristylous Eichhornia paniculata often deviate from the theoretical expectation of equality. This variation is associated with the breakdown of tristyly and the evolution of self-fertilization. Differences in morph frequencies could result from selection pressures due to variable levels of insect visitation to populations and contrasting foraging behavior among the floral morphs. We estimated pollinator densities in 16 populations and quantified visitation sequences to morphs in five populations of E. paniculata in northeastern Brazil. Foraging behavior among floral morphs was measured as the frequency of visits to morphs relative to their frequency in the population (preference) and number of flights between inflorescences of the same versus different morphs (constancy). Pollinator density (number/m 2 /minute) was not correlated with population size, plant density or morph diversity. Pollinator densities varied most among populations of less than 200 plants. Whether pollinators discriminated among the morphs, depended on whether they primarily collected nectar or pollen. In four populations, nectar-feeding bees (Ancyloscelis and Florilegus spp.) and butterflies showed no consistent preference or constancy among the morphs. In contrast, pollen-collecting bees (Trigona sp.) visited a lower proportion of longstyled inflorescences than expected and tended to visit more mid-and short-styled inflorescences in succession, once they were encountered. Pollinator constancy for morphs did not result from differences in inflorescence production or spatial patchiness among the morphs. Although non-random pollinator visitation to morphs in heterostylous populations could potentially affect mating and hence morph frequencies, the observed visitation patterns in this study do not provide evidence that pollinators play a major role in influencing floral morph frequencies.
Neither insects nor wind: ambophily in dioecious Chamaedorea palms (Arecaceae).
Rios, L D; Fuchs, E J; Hodel, D R; Cascante-Marín, A
2014-07-01
Pollination of Neotropical dioecious trees is commonly related to generalist insects. Similar data for non-tree species with separated genders are inconclusive. Recent studies on pollination of dioecious Chamaedorea palms (Arecaceae) suggest that species are either insect- or wind-pollinated. However, the wide variety of inflorescence and floral attributes within the genus suggests mixed pollination mode involving entomophily and anemophily. To evaluate this hypothesis, we studied the pollination of Chamaedorea costaricana, C. macrospadix, C. pinnatifrons and C. tepejilote in two montane forests in Costa Rica. A complementary morphological analysis of floral traits was carried out to distinguish species groups within the genus according to their most probable pollination mechanism. We conducted pollinator exclusion experiments, field observations on visitors to pistillate and staminate inflorescences, and trapped airborne pollen. A cluster analysis using 18 floral traits selected for their association with wind and insect pollination syndromes was carried out using 52 Chamaedorea species. Exclusion experiments showed that both wind and insects, mostly thrips (Thysanoptera), pollinated the studied species. Thrips used staminate inflorescences as brood sites and pollinated pistillate flowers by deception. Insects caught on pistillate inflorescences transported pollen, while traps proved that pollen is wind-borne. Our empirical findings clearly suggest that pollination of dioecious Chamaedorea palms is likely to involve both insects and wind. A cluster analysis showed that the majority of studied species have a combination of floral traits that allow for both pollination modes. Our pollination experiments and morphological analysis both suggest that while some species may be completely entomophilous or anemophilous, ambophily might be a common condition within Chamaedorea. Our results propose a higher diversity of pollination mechanisms of Neotropical dioecious species than previously suggested. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Zheng, Tangchun; Li, Shuang; Zang, Lina; Dai, Lijuan; Yang, Chuanping; Qu, Guan-Zheng
2014-01-01
In Arabidopsis, AP1 is a floral meristem identity gene and plays an important role in floral organ development. In this study, PsnAP1-1 and PsnAP1-2 were isolated from the male reproductive buds of poplar (Populus simonii × P. nigra), which are the orthologs of AP1 in Arabidopsis, by sequence analysis. Northern blot and qRT-PCR analysis showed that PsnAP1-1 and PsnAP1-2 exhibited high expression level in early inflorescence development of poplar. Subcellular localization showed the PsnAP1-1 and PsnAP1-2 proteins are localized in the nucleus. Overexpression of PsnAP1-1 and PsnAP1-2 in tobacco under the control of a CaMV 35S promoter significantly enhanced early flowering. These transgenic plants also showed much earlier stem initiation and higher rates of photosynthesis than did wild-type tobacco. qRT-PCR analysis further indicated that overexpression of PsnAP1-1 and PsnAP1-2 resulted in up-regulation of genes related to flowering, such as NtMADS4, NtMADS5 and NtMADS11. Overexpression of PsnAP1-1 and PsnAP1-2 in Arabidopsis also induced early flowering, but did not complement the ap1-10 floral morphology to any noticeable extent. This study indicates that PsnAP1-1 and PsnAP1-2 play a role in floral transition of poplar. PMID:25360739
Dauelsberg, Patricia; Matus, José Tomás; Poupin, María Josefina; Leiva-Ampuero, Andrés; Godoy, Francisca; Vega, Andrea; Arce-Johnson, Patricio
2011-09-15
In the present work, the effect of assisted fertilization on anatomical, morphological and gene expression changes occurring in carpels and during early stages of berry development in Vitis vinifera were studied. Inflorescences were emasculated before capfall, immediately manually pollinated (EP) and fruit development was compared to emasculated but non-pollinated (ENP) and self-pollinated inflorescences (NESP). The diameter of berries derived from pollinated flowers (EP and NESP) was significantly higher than from non-pollinated flowers (ENP) at 21 days after emasculation/pollination (DAE), and a rapid increase in the size of the inner mesocarp, together with the presence of an embryo-like structure, were observed. The expression of gibberellin oxidases (GA20ox and GA2ox), anthranilate synthase (related to auxin synthesis) and cytokinin synthase coding genes was studied to assess the relationship between hormone synthesis and early berry development, while flower patterning genes were analyzed to describe floral transition. Significant expression changes were found for hormone-related genes, suggesting that their expression at early stages of berry development (13 DAE) is related to cell division and differentiation of mesocarp tissue at a later stage (21 DAE). Expression of hormone-related genes also correlates with the expression of VvHB13, a gene related to mesocarp expansion, and with an increased repression of floral patterning genes (PISTILLATA and TM6), which may contribute to prevent floral transition inhibiting fruit growth before fertilization takes place. Copyright © 2011 Elsevier GmbH. All rights reserved.
Sotuyo, Solange; Contreras-Jiménez, José Luis; Lewis, Gwilym P
2017-01-01
A new legume species from a seasonally dry forest of the Western Río Balsas Depression, in the states of Guerrero and Michoacán, Mexico, Erythrostemon guevarafeferii , is herein described and illustrated. The new species shows morphological affinities with Erythrostemon hintonii , from which it is distinguished in having fewer leaflets per pinna, mature leaflets disposed toward the upper half of the pinnae rachises, long inflorescences on curved slender peduncles, abundant red glands on its flowers and inflorescences, and its fruit glabrous with red stipitate glands at maturity. A taxonomic key to the Río Balsas Depression species of Erythrostemon is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mack, R.N.
Artemisia tridentata on the A. tridentata-Agropyron spicatum habitat type (h.t.) annually sheds approximately 117 kg/ha of leaf and inflorescence litter as determined by collecting litter of shrubs enclosed in nylon net cages. Total available amounts of cations (kg/ha) to a depth of 1 m on this h.t. are Ca, 21,936; Mg, 4450; P, 127.2; and K, 3588. On the adjacent A. tridentata-Poa secunda h.t., approximately /sup 1///sub 2/ of the leaf litter is lost in the 1st year on the soil surface with an element mobility series of K > Mg > P = Ca. Inflorescence litter apparently decays completelymore » within 6 months after abscission.« less
N-Glycopeptide Profiling in Arabidopsis Inflorescence
Xu, Shou-Ling; Medzihradszky, Katalin F.; Wang, Zhi-Yong; ...
2016-04-11
This study presents the first large scale analysis of plant intact glycopeptides. Using wheat germ agglutinin lectin weak affinity chromatography to enrich modified peptides, followed by ETD fragmentation tandem mass spectrometry, glycan compositions on over 1100 glycopeptides from 270 proteins found in Arabidopsis inflorescence tissue were characterized. While some sites were only detected with a single glycan attached, others displayed up to 16 different glycoforms. Among the identified glycopeptides were four modified in non-consensus glycosylation motifs. Finally, while most of the modified proteins are secreted, membrane, ER or Golgi localized proteins, surprisingly N-linked sugars were detected on a protein predictedmore » to be cytosolic or nuclear.« less
Heat Production in the Voodoo Lily (Sauromatum guttatum) as Monitored by Infrared Thermography
Skubatz, Hanna; Nelson, Timothy A.; Meeuse, Bastiaan J. D.; Bendich, Arnold J.
1991-01-01
The pattern of surface temperatures of the inflorescence of Sauromatum guttatum was investigated by using an infrared camera. The male flowers are weakly thermogenic on the first day of inflorescence opening (D-day) as well as on the next day (D + 1), reaching 0.5 to 1°C above ambient temperature. The appendix (the upper sterile part of the inflorescence) is highly thermogenic on D-day, reaching 32°C, and is faintly thermogenic on D + 1, reaching 1°C above ambient temperature. The lower part of the spadix, close to the female flowers, is also thermogenic on D-day and D + 1, reaching a temperature similar to that of the appendix only on D + 1. Salicylic acid does not induce heat production in the lower part of the spadix, as it does in the appendix. Respiration of tissue slices obtained from the appendix shows that the capacity for cyanide-insensitive respiration is present in young and mature appendices. This alternative respiratory pathway is not, however, utilized in young appendix tissue, but is engaged during the maturation of that tissue. Images Figure 1 Figure 2 PMID:16668094
Caroprese Araque, José Fernando; Parra Garcés, María Isabel; Arrieta Prieto, Dagoberto; Stashenko, Elena
2011-03-01
Plants of the Verbenaceae family, like L. camara, have called the attention of researchers, not only because of its high diversity and its distribution around the world, but also for its variable use as popular medicine to treat diseases like tetanus, rheumatism and malaria, and as bactericide and insecticide. To assess this, the morphology and ontogeny of the inflorescences of Lantana camara and the chemical composition of volatile secondary metabolites were analyzed at three different ontogeny stages. Plants were collected from the experimental crop area in CENIVAM, Bucaramanga, Colombia. Fresh inflorescence stages were established and analyzed using a stereoscopic microscope, fixed in FAA and included in parafine. Transversal and longitudinal 10 microm thick sections were prepared using a rotative microtome, safranine-fastgreen stained and were observed and photographed using a light microscope. The chemical composition of volatile secondary metabolites were analyzed for each stage. The analytes, obtained from 0.7 g of plant, were isolated by solid phase micro-extraction in the headspace mode (HS-SPME) and were placed in 20 ml vials. The components were analyzed by gas chromatography coupled to mass spectrometry (GC-MS). Stage I was microscopically characterized by an immature development in which the meristematic differentiation begins with a mass of cells. In Stage II, the morphogenetic movement gives way to the formation of the respective floral sexual structures, calyx and corolla. In Stage III, the different organs are conspicuous: four stamens epipetals and didynamous, monocarpelar, biloculate and globose gynoecium, upper ovary and lateral stigma; the flowers are hermaphroditic. The main secondary metabolites detected by GC-MS were bicyclosesquiphellandrene, E-beta-farnesene, E-beta-caryophyllene, gamma-muurolene + gamma-curcumene and alpha-zingiberene. Nevertheless, this study reports for the first time in plant species alpha-gurjunene, gamma-amorphene, alpha-muurolene, sesquithujene, alpha-trans-bergamotene and trans-cadina-1,4-diene. The diversity of compounds found can be only explained by the extraction methods employed, the developmental stages and section of the plant, the geographic conditions, collection time and the genetic constitution of the evaluated species.
Predicting performance for ecological restoration: A case study using Spartina altemiflora
Travis, S.E.; Grace, J.B.
2010-01-01
The success of population-based ecological restoration relies on the growth and reproductive performance of selected donor materials, whether consisting of whole plants or seed. Accurately predicting performance requires an understanding of a variety of underlying processes, particularly gene flow and selection, which can be measured, at least in part, using surrogates such as neutral marker genetic distances and simple latitudinal effects. Here we apply a structural equation modeling approach to understanding and predicting performance in a widespread salt marsh grass, Spartina alterniflora, commonly used for ecological restoration throughout its native range in North America. We collected source materials from throughout this range, consisting of eight clones each from 23 populations, for transplantation to a common garden site in coastal Louisiana and monitored their performance. We modeled performance as a latent process described by multiple indicator variables (e.g., clone diameter, stem number) and estimated direct and indirect influences of geographic and genetic distances on performance. Genetic distances were determined by comparison of neutral molecular markers with those from a local population at the common garden site. Geographic distance metrics included dispersal distance (the minimum distance over water between donor and experimental sites) and latitude. Model results indicate direct effects of genetic distance and latitude on performance variation among the donor sites. Standardized effect strengths indicate that performance was roughly twice as sensitive to variation in genetic distance as to latitudinal variation. Dispersal distance had an indirect influence on performance through effects on genetic distance, indicating a typical pattern of genetic isolation by distance. Latitude also had an indirect effect on genetic distance through its linear relationship with dispersal distance. Three performance indicators had significant loadings on performance alone (mean clone diameter, mean number of stems, mean number of inflorescences), while the performance indicators mean stem height and mean stem width were also influenced by latitude. We suggest that dispersal distance and latitude should provide an adequate means of predicting performance in future S. alterniflora restorations and propose a maximum sampling distance of 300 km (holding latitude constant) to avoid the sampling of inappropriate ecotypes. ?? 2010 by the Ecological Society of America.
Pan, Bang-Zhen; Chen, Mao-Sheng; Ni, Jun; Xu, Zeng-Fu
2014-11-17
Jatropha curcas, whose seed content is approximately 30-40% oil, is an ideal feedstock for producing biodiesel and bio-jet fuels. However, Jatropha plants have a low number of female flowers, which results in low seed yield that cannot meet the needs of the biofuel industry. Thus, increasing the number of female flowers is critical for the improvement of Jatropha seed yield. Our previous findings showed that cytokinin treatment can increase the flower number and female to male ratio and also induce bisexual flowers in Jatropha. The mechanisms underlying the influence of cytokinin on Jatropha flower development and sex determination, however, have not been clarified. This study examined the transcriptional levels of genes involved in the response to cytokinin in Jatropha inflorescence meristems at different time points after cytokinin treatment by 454 sequencing, which gave rise to a total of 294.6 Mb of transcript sequences. Up-regulated and down-regulated annotated and novel genes were identified, and the expression levels of the genes of interest were confirmed by qRT-PCR. The identified transcripts include those encoding genes involved in the biosynthesis, metabolism, and signaling of cytokinin and other plant hormones, flower development and cell division, which may be related to phenotypic changes of Jatropha in response to cytokinin treatment. Our analysis indicated that Jatropha orthologs of the floral organ identity genes known as ABCE model genes, JcAP1,2, JcPI, JcAG, and JcSEP1,2,3, were all significantly repressed, with an exception of one B-function gene JcAP3 that was shown to be up-regulated by BA treatment, indicating different mechanisms to be involved in the floral organ development of unisexual flowers of Jatropha and bisexual flowers of Arabidopsis. Several cell division-related genes, including JcCycA3;2, JcCycD3;1, JcCycD3;2 and JcTSO1, were up-regulated, which may contribute to the increased flower number after cytokinin treatment. This study presents the first report of global expression patterns of cytokinin-regulated transcripts in Jatropha inflorescence meristems. This report laid the foundation for further mechanistic studies on Jatropha and other non-model plants responding to cytokinin. Moreover, the identification of functional candidate genes will be useful for generating superior varieties of high-yielding transgenic Jatropha.
Somatic deleterious mutation rate in a woody plant: estimation from phenotypic data
Bobiwash, K; Schultz, S T; Schoen, D J
2013-01-01
We conducted controlled crosses in populations of the long-lived clonal shrub, Vaccinium angustifolium (lowbush blueberry) to estimate inbreeding depression and mutation parameters associated with somatic deleterious mutation. Inbreeding depression level was high, with many plants failing to set fruit after self-pollination. We also compared fruit set from autogamous pollinations (pollen collected from within the same inflorescence) with fruit set from geitonogamous pollinations (pollen collected from the same plant but from inflorescences separated by several meters of branch growth). The difference between geitonogamous versus autogamous fitness within single plants is referred to as ‘autogamy depression' (AD). AD can be caused by somatic deleterious mutation. AD was significantly different from zero for fruit set. We developed a maximum-likelihood procedure to estimate somatic mutation parameters from AD, and applied it to geitonogamous and autogamous fruit set data from this experiment. We infer that, on average, approximately three sublethal, partially dominant somatic mutations exist within the crowns of the plants studied. We conclude that somatic mutation in this woody plant results in an overall genomic deleterious mutation rate that exceeds the rate measured to date for annual plants. Some implications of this result for evolutionary biology and agriculture are discussed. PMID:23778990
Hoang, Nguyen H.; Kane, Michael E.; Radcliffe, Ellen N.; Zettler, Lawrence W.; Richardson, Larry W.
2017-01-01
Background and Aims The endangered leafless ghost orchid, Dendrophylax lindenii, one of the most renowned orchids in the world, is difficult to grow under artificial conditions. Published information on asymbiotic and symbiotic (co-culture with a mycobiont) seed germination, seedling anatomy and developmental morphology of this leafless orchid is completely lacking. This information is critical for the development of efficient procedures for ghost orchid production for successful reintroduction. Methods Ghost orchid seedling early development stages were morphologically and anatomically defined to compare germination, embryo and protocorm maturation and seedling development during asymbiotic and symbiotic culture with one of two mycorrhizal strains (Dlin-379 and Dlin-394) isolated from ghost orchid roots in situ. Key Results Seeds symbiotically germinated at higher rates when cultured with fungal strain Dlin-394 than with strain Dlin-379 or asymbiotically on P723 medium during a 10-week culture period. Fungal pelotons were observed in protocorm cells co-cultured with strain Dlin-394 but not Dlin-379. Some 2-year-old seedlings produced multinode inflorescences in vitro. Production of keikis from inflorescence nodes indicated the capacity for clonal production in the ghost orchid. Conclusions Ghost orchid embryo and seedling development were characterized into seven stages. Fungal strain Dlin-394 was confirmed as a possible ghost orchid germination mycobiont, which significantly promoted seed germination and seedling development. Internal transcribed spacer sequencing data confirmed that Dlin-394 belongs within the genus Ceratobasidium. These results offer the opportunity to examine the benefits of using a mycobiont to enhance in vitro germination and possibly ex vitro acclimatization and sustainability following outplanting. PMID:28025292
Lu, Zhaogeng; Xu, Jing; Li, Weixing; Zhang, Li; Cui, Jiawen; He, Qingsong; Wang, Li; Jin, Biao
2017-01-01
Sterile and fertile flowers are an important evolutionary developmental (evo-devo) phenotype in angiosperm flowers, playing important roles in pollinator attraction and sexual reproductive success. However, the gene regulatory mechanisms underlying fertile and sterile flower differentiation and development remain largely unknown. Viburnum macrocephalum f. keteleeri, which possesses fertile and sterile flowers in a single inflorescence, is a useful candidate species for investigating the regulatory networks in differentiation and development. We developed a de novo-assembled flower reference transcriptome. Using RNA sequencing (RNA-seq), we compared the expression patterns of fertile and sterile flowers isolated from the same inflorescence over its rapid developmental stages. The flower reference transcriptome consisted of 105,683 non-redundant transcripts, of which 5,675 transcripts showed significant differential expression between fertile and sterile flowers. Combined with morphological and cytological changes between fertile and sterile flowers, we identified expression changes of many genes potentially involved in reproductive processes, phytohormone signaling, and cell proliferation and expansion using RNA-seq and qRT-PCR. In particular, many transcription factors (TFs), including MADS-box family members and ABCDE-class genes, were identified, and expression changes in TFs involved in multiple functions were analyzed and highlighted to determine their roles in regulating fertile and sterile flower differentiation and development. Our large-scale transcriptional analysis of fertile and sterile flowers revealed the dynamics of transcriptional networks and potentially key components in regulating differentiation and development of fertile and sterile flowers in Viburnum macrocephalum f. keteleeri. Our data provide a useful resource for Viburnum transcriptional research and offer insights into gene regulation of differentiation of diverse evo-devo processes in flowers. PMID:28298915
Hoang, Nguyen H; Kane, Michael E; Radcliffe, Ellen N; Zettler, Lawrence W; Richardson, Larry W
2017-02-01
The endangered leafless ghost orchid, Dendrophylax lindenii, one of the most renowned orchids in the world, is difficult to grow under artificial conditions. Published information on asymbiotic and symbiotic (co-culture with a mycobiont) seed germination, seedling anatomy and developmental morphology of this leafless orchid is completely lacking. This information is critical for the development of efficient procedures for ghost orchid production for successful reintroduction. Ghost orchid seedling early development stages were morphologically and anatomically defined to compare germination, embryo and protocorm maturation and seedling development during asymbiotic and symbiotic culture with one of two mycorrhizal strains (Dlin-379 and Dlin-394) isolated from ghost orchid roots in situ KEY RESULTS: Seeds symbiotically germinated at higher rates when cultured with fungal strain Dlin-394 than with strain Dlin-379 or asymbiotically on P723 medium during a 10-week culture period. Fungal pelotons were observed in protocorm cells co-cultured with strain Dlin-394 but not Dlin-379. Some 2-year-old seedlings produced multinode inflorescences in vitro Production of keikis from inflorescence nodes indicated the capacity for clonal production in the ghost orchid. Ghost orchid embryo and seedling development were characterized into seven stages. Fungal strain Dlin-394 was confirmed as a possible ghost orchid germination mycobiont, which significantly promoted seed germination and seedling development. Internal transcribed spacer sequencing data confirmed that Dlin-394 belongs within the genus Ceratobasidium These results offer the opportunity to examine the benefits of using a mycobiont to enhance in vitro germination and possibly ex vitro acclimatization and sustainability following outplanting. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.
Xu, Tao; Kim, Bo Mi; Kwak, Kyung Jin; Jung, Hyun Ju; Kang, Hunseung
2016-05-01
The minor U12 introns are removed from precursor mRNAs by the U12 intron-specific minor spliceosome. Among the seven ribonucleoproteins unique to the minor spliceosome, denoted as U11/U12-20K, U11/U12-25K, U11/U12-31K, U11/U12-65K, U11-35K, U11-48K, and U11-59K, the roles of only U11/U12-31K and U11/U12-65K have been demonstrated in U12 intron splicing and plant development. Here, the functional role of the Arabidopsis homolog of human U11-48K in U12 intron splicing and the development of Arabidopsis thaliana was examined using transgenic knockdown plants. The u11-48k mutants exhibited several defects in growth and development, such as severely arrested primary inflorescence stems, formation of serrated leaves, production of many rosette leaves after bolting, and delayed senescence. The splicing of most U12 introns analyzed was impaired in the u11-48k mutants. Comparative analysis of the splicing defects and phenotypes among the u11/u12-31k, u11-48k, and u11/12-65k mutants showed that the severity of abnormal development was closely correlated with the degree of impairment in U12 intron splicing. Taken together, these results provide compelling evidence that the Arabidopsis homolog of human U11-48K protein, as well as U11/U12-31K and U11/U12-65K proteins, is necessary for correct splicing of U12 introns and normal plant growth and development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Fujita, Miki; Wasteneys, Geoffrey O
2014-05-01
Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.
Pratap Sahi, Vaidurya; Cifrová, Petra; García-González, Judith; Kotannal Baby, Innu; Mouillé, Gregory; Gineau, Emilie; Müller, Karel; Baluška, František; Soukup, Aleš; Petrášek, Jan; Schwarzerová, Katerina
2017-12-25
The cytoskeleton plays an important role in the synthesis of plant cell walls. Both microtubules and actin cytoskeleton are known to be involved in the morphogenesis of plant cells through their role in cell wall building. The role of ARP2/3-nucleated actin cytoskeleton in the morphogenesis of cotyledon pavement cells has been described before. Seedlings of Arabidopsis mutants lacking a functional ARP2/3 complex display specific cell wall-associated defects. In three independent Arabidopsis mutant lines lacking subunits of the ARP2/3 complex, phenotypes associated with the loss of the complex were analysed throughout plant development. Organ size and anatomy, cell wall composition, and auxin distribution were investigated. ARP2/3-related phenotype is associated with changes in cell wall composition, and the phenotype is manifested especially in mature tissues. Cell walls of mature plants contain less cellulose and a higher amount of homogalacturonan, and display changes in cell wall lignification. Vascular bundles of mutant inflorescence stems show a changed pattern of AUX1-YFP expression. Plants lacking a functional ARP2/3 complex have decreased basipetal auxin transport. The results suggest that the ARP2/3 complex has a morphogenetic function related to cell wall synthesis and auxin transport. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bartrina, Isabel; Otto, Elisabeth; Strnad, Miroslav; Werner, Tomáš; Schmülling, Thomas
2011-01-01
The size and activity of the shoot apical meristem is regulated by transcription factors and low molecular mass signals, including the plant hormone cytokinin. The cytokinin status of the meristem depends on different factors, including metabolic degradation of the hormone, which is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. Here, we show that CKX3 and CKX5 regulate the activity of the reproductive meristems of Arabidopsis thaliana. CKX3 is expressed in the central WUSCHEL (WUS) domain, while CKX5 shows a broader meristematic expression. ckx3 ckx5 double mutants form larger inflorescence and floral meristems. An increased size of the WUS domain and enhanced primordia formation indicate a dual function for cytokinin in defining the stem cell niche and delaying cellular differentiation. Consistent with this, mutation of a negative regulator gene of cytokinin signaling, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, which is expressed at the meristem flanks, caused a further delay of differentiation. Terminal cellular differentiation was also retarded in ckx3 ckx5 flowers, which formed more cells and became larger, corroborating the role of cytokinin in regulating flower organ size. Furthermore, higher activity of the ckx3 ckx5 placenta tissue established supernumerary ovules leading to an increased seed set per silique. Together, the results underpin the important role of cytokinin in reproductive development. The increased cytokinin content caused an ~55% increase in seed yield, highlighting the relevance of sink strength as a yield factor. PMID:21224426
Sotuyo, Solange; Contreras-Jiménez, José Luis; Lewis, Gwilym P.
2017-01-01
Abstract A new legume species from a seasonally dry forest of the Western Río Balsas Depression, in the states of Guerrero and Michoacán, Mexico, Erythrostemon guevarafeferii, is herein described and illustrated. The new species shows morphological affinities with Erythrostemon hintonii, from which it is distinguished in having fewer leaflets per pinna, mature leaflets disposed toward the upper half of the pinnae rachises, long inflorescences on curved slender peduncles, abundant red glands on its flowers and inflorescences, and its fruit glabrous with red stipitate glands at maturity. A taxonomic key to the Río Balsas Depression species of Erythrostemon is included. PMID:28228685
Brenner, Wolfram G; Leuendorf, Jan Erik; Cortleven, Anne; Martin, Laetitia B B; Schaller, Hubert; Schmülling, Thomas
2017-05-17
Protein degradation by the ubiquitin-26S proteasome pathway is important for the regulation of cellular processes, but the function of most F-box proteins relevant to substrate recognition is unknown. We describe the analysis of the gene Cytokinin-induced F-box encoding (CFB, AT3G44326), identified in a meta-analysis of cytokinin-related transcriptome studies as one of the most robust cytokinin response genes. F-box domain-dependent interaction with the E3 ubiquitin ligase complex component ASK1 classifies CFB as a functional F-box protein. Apart from F-box and transmembrane domains, CFB contains no known functional domains. CFB is expressed in all plant tissues, predominantly in root tissue. A ProCFB:GFP-GUS fusion gene showed strongest expression in the lateral root cap and during lateral root formation. CFB-GFP fusion proteins were mainly localized in the nucleus and the cytosol but also at the plasma membrane. cfb mutants had no discernible phenotype, but CFB overexpressing plants showed several defects, such as a white upper inflorescence stem, similar to the hypomorphic cycloartenol synthase mutant cas1-1. Both CFB overexpressing plants and cas1-1 mutants accumulated the CAS1 substrate 2,3-oxidosqualene in the white stem tissue, the latter even more after cytokinin treatment, indicating impairment of CAS1 function. This suggests that CFB may link cytokinin and the sterol biosynthesis pathway. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Genome-wide identification and characterization of the SBP-box gene family in Petunia.
Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng
2018-03-12
SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative-to-reproductive phase transition. Petunia genome contains at least 21 SPL genes, and most of the genes are expressed in different tissues. The PhSPL genes may play conserved and diverse roles in plant growth and development, including flowering regulation, leaf initiation, axillary bud and inflorescence development. This work provides a comprehensive understanding of the SBP-box gene family in Petunia and lays a significant foundation for future studies on the function and evolution of SPL genes in petunia.
Micropropagation of onion (Allium cepa L.) from immature inflorescences.
Marinangeli, Pablo
2013-01-01
In vitro plant production by direct organogenesis from immature flower heads is an ideal approach for clonal propagation of onions (Allium cepa L.). This technique ensures genetic stability, high propagation rate, and maintains donor plant of explants with an advantage over other means of in vitro regeneration. Onion micropropagation is usually applied in breeding programs, maintenance, and multiplication of cytoplasmic-male sterile lines for hybrid production, germplasm conservation, and as a tool for the application of other biotechnologies. For in vitro culture, mature onion bulbs are induced to reproductive phase by vernalization and forced to inflorescence initiation. Immature umbels are dissected from bulbs or cut directly when they appear from the pseudostem among the leaves. Disinfected inflorescences are cultivated in BDS basal medium supplemented with 30 g/L sucrose, 0.1 mg/L naphthalene acetic acid, 1 mg/L N (6)-benzyladenine, and 8 g/L agar, pH 5.5, under 16 h photoperiod white fluorescent light (PPD: 50-70 μmol/m(2)s) for 35 days. The regenerated shoot clumps are divided and subculture under the same conditions. For bulbification phase, the individual shoots are cultured in BDS basal medium containing 90 g/L sucrose, without plant growth regulators, pH 5.5, under 16 h photoperiod. Microbulbs can be directly cultivated ex vitro without acclimation.
Effects of salt stress imposed during two growth phases on cauliflower production and quality.
Giuffrida, Francesco; Cassaniti, Carla; Malvuccio, Angelo; Leonardi, Cherubino
2017-03-01
Cultivation of cauliflower is diffused in Mediterranean areas where water salinity results in the need to identify alternative irrigation sources or management strategies. Using saline water during two growth phases (from transplanting to visible appearance of inflorescence or from appearance of inflorescence to head harvest), the present study aimed to identify the growth period that is more suitable for irrigation with low quality water in relation to cauliflower production and quality. Salinity affected cauliflower growth mainly when imposed in the first growth phase. The growth reduction depended mainly on ion-specific effects, although slight nutrient imbalances as a result of Na + and Cl - antagonisms were observed. The use of non-saline water in the first or second growth period reduced both the osmotic and toxic effects of salinity. When salinity was applied during inflorescence growth, yield was reduced because of a restriction of water accumulation in the head. The results of the present study demonstrate the possibility of producing marketable cauliflower heads under conditions of salinity by timing the application of the best quality water during the first growth phase to improve fruit quality and during the second phase to reduce the negative effects of salinity on yield. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Souer, Erik; Rebocho, Alexandra B; Bliek, Mattijs; Kusters, Elske; de Bruin, Robert A M; Koes, Ronald
2008-08-01
Angiosperms display a wide variety of inflorescence architectures differing in the positions where flowers or branches arise. The expression of floral meristem identity (FMI) genes determines when and where flowers are formed. In Arabidopsis thaliana, this is regulated via transcription of LEAFY (LFY), which encodes a transcription factor that promotes FMI. We found that this is regulated in petunia (Petunia hybrida) via transcription of a distinct gene, DOUBLE TOP (DOT), a homolog of UNUSUAL FLORAL ORGANS (UFO) from Arabidopsis. Mutation of DOT or its tomato (Solanum lycopersicum) homolog ANANTHA abolishes FMI. Ubiquitous expression of DOT or UFO in petunia causes very early flowering and transforms the inflorescence into a solitary flower and leaves into petals. Ectopic expression of DOT or UFO together with LFY or its homolog ABERRANT LEAF AND FLOWER (ALF) in petunia seedlings activates genes required for identity or outgrowth of organ primordia. DOT interacts physically with ALF, suggesting that it activates ALF by a posttranslational mechanism. Our findings suggest a wider role than previously thought for DOT and UFO in the patterning of flowers and indicate that the different roles of LFY and UFO homologs in the spatiotemporal control of floral identity in distinct species result from their divergent expression patterns.
Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica
De Paolo, Sofia; Gaudio, Luciano; Aceto, Serena
2015-01-01
TCP proteins are plant-specific transcription factors involved in many different processes. Because of their involvement in a large number of developmental pathways, their roles have been investigated in various plant species. However, there are almost no studies of this transcription factor family in orchids. Based on the available transcriptome of the inflorescence of the orchid Orchis italica, in the present study we identified 12 transcripts encoding TCP proteins. The phylogenetic analysis showed that they belong to different TCP classes (I and II) and groups (PCF, CIN and CYC/TB1), and that they display a number of conserved motifs when compared with the TCPs of Arabidopsis and Oryza. The presence of a specific cleavage site for the microRNA miRNA319, an important post-transcriptional regulator of several TCP genes in other species, was demonstrated for one transcript of O. italica, and the analysis of the expression pattern of the TCP transcripts in different inflorescence organs and in leaf tissue suggests that some TCP transcripts of O. italica exert their role only in specific tissues, while others may play multiple roles in different tissues. In addition, the evolutionary analysis showed a general purifying selection acting on the coding region of these transcripts. PMID:26531864
Analysis of the TCP genes expressed in the inflorescence of the orchid Orchis italica.
De Paolo, Sofia; Gaudio, Luciano; Aceto, Serena
2015-11-04
TCP proteins are plant-specific transcription factors involved in many different processes. Because of their involvement in a large number of developmental pathways, their roles have been investigated in various plant species. However, there are almost no studies of this transcription factor family in orchids. Based on the available transcriptome of the inflorescence of the orchid Orchis italica, in the present study we identified 12 transcripts encoding TCP proteins. The phylogenetic analysis showed that they belong to different TCP classes (I and II) and groups (PCF, CIN and CYC/TB1), and that they display a number of conserved motifs when compared with the TCPs of Arabidopsis and Oryza. The presence of a specific cleavage site for the microRNA miRNA319, an important post-transcriptional regulator of several TCP genes in other species, was demonstrated for one transcript of O. italica, and the analysis of the expression pattern of the TCP transcripts in different inflorescence organs and in leaf tissue suggests that some TCP transcripts of O. italica exert their role only in specific tissues, while others may play multiple roles in different tissues. In addition, the evolutionary analysis showed a general purifying selection acting on the coding region of these transcripts.
Karpova, I S; Korets'ka, N V; Pal'chykovs'ka, L H; Nehruts'ka, V V
2007-01-01
Isolation of lectins from extracts of the Sambucus nigra inflorescences and of pollen material have been performed using isoelectric focusing without carrier ampholytes (autofocusing). Fractions active in agglutination tests with different carbohydrate specificity were subjected to SDS-PAGE. The major lectin found in whole inflores-cences was GalNAc specific and is proposed to be a heterotetramer with subunits of about 30 and 33 kDa. It was called SNAflu-I. At least two other lectins were present in the pollen material and supposed to consist of identical subunits. Major positively charged lectin was Glc/Man specific with subunit of 26 kDa and called SNApol-I. Other pollen component (SNApol-II) was Gal specific with subunit of about 20 kDa. In order to elucidate cell targets sensitive for the S. nigra lectin's activity the combined effects of the lectins and transcriptional of phenazine origin on B. subtilis cells growth have been studied. Only SNApol-I demonstrated the antagonistic activity against these inhibitors in vivo. This lectin but not the SNAflu-I can also inhibit transcription in vitro. It is supposed that lectins from the same source may act in different directions on cell metabolism. Particularly one of the common targets may be the DNA-dependent synthesis of RNA.
Over-expression of miR158 causes pollen abortion in Brassica campestris ssp. chinensis.
Ma, Zhiming; Jiang, Jianxia; Hu, Ziwei; Lyu, Tianqi; Yang, Yang; Jiang, Jingjing; Cao, Jiashu
2017-02-01
We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.
Cawoy, Valerie; Kinet, Jean-Marie; Jacquemart, Anne-Laure
2008-01-01
Background and Aims The mechanisms of floral nectar production in buckwheat (Fagopyrum esculentum, Polygonaceae), a distylous pseudo-cereal, have received relatively little attention, prompting an investigation of the factors that regulate this process. The aim was to perform a refined study of the structures that secrete nectar and of the internal and external parameters influencing nectar volumes and sugar concentrations. Methods In order to control environmental parameters, plants were cultivated in growth rooms under controlled conditions. The structure of nectaries was studied based on histological sections from flowers and flower buds. Nectar was extracted using glass micropipettes and the sugar concentration was measured with a hand refractometer. Sugar concentration in the phloem sap was measured using the anthrone method. To test the influence of photosynthesis on nectar production, different light and defoliation treatments were applied. Key Results Unicellular trichomes were located in the epidermis at the ventral part of eight nectary glands situated on the flower receptacle alternately with stamens. Vascular bundles consisting of both phloem and xylem were identified at the boundary between a multilayered nectary parenchyma and a sub-nectary parenchyma with chloroplasts. A higher volume of nectar in thrum morphs was observed. No other difference was found in morphology or in sugar supply to inflorescences between morphs. Nectar secretion was strongly influenced by plant age and inflorescence position. Nectar volumes were higher in the upper inflorescences and during the flowering peak. Light had a dual role, (1) acting directly on reproductive structures to trigger flower opening, which conditions nectar secretion, and (2) stimulating photosynthetic activity, which regulates nectar accumulation in open flowers. Conclusions In buckwheat, nectar is secreted by trichomes and probably proceeds, at least in part, from phloem sap. Nectar secretion is strongly influenced by floral morph type, plant age, inflorescence position and light. PMID:18765442
Association of Areca Nut Chewing With Risk of Erectile Dysfunction.
Huang, Yung-Jui; Jiann, Bang-Ping
2017-09-01
Areca nut chewing has been shown to increase the risk of cardiovascular disease, but its association with erectile dysfunction (ED) has not been investigated. To investigate the association between areca nut chewing and risk of ED. Consecutive men at public health centers for oral malignancy screening or health checkup were invited to complete a questionnaire. The Sexual Health Inventory for Men (SHIM). Of the 2,652 respondents, 1,038 (mean age = 43.8 ± 11.1 years) were eligible for the areca nut chewing group and 1,090 non-areca nut chewers were selected as the age-matched control group. In the areca nut group, the mean duration of chewing was 13.2 ± 9.6 years, 61.7% consumed more than 10 portions per day, and 76.2% used it with betel leaf, 16.7% used it with betel inflorescence, and 7.1% used it with betel leaf and inflorescence. Smoking, alcohol drinking, obesity, hypertension, and diabetes were more predominant in areca nut chewers compared with controls. ED defined by self-report and by SHIM score was more prevalent in areca nut chewers than in controls (13.7% vs 9.8% and 48.7% vs 43.3%, respectively; P < .05 for the two comparisons). Areca nut use with betel inflorescence was associated with a higher risk of ED (odds ratio = 2.25, 95% confidence interval = 1.55-3.28) with a dose-dependent effect, whereas using it with betel leaf was not (odds ratio = 1.00, 95% confidence interval = 0.79-1.26) after adjustment of possible confounders. Areca nut chewing with betel inflorescence was associated with an increased risk of ED. These findings warrant further studies. Huang Y-J, Jiann B-P. Association of Areca Nut Chewing With Risk of Erectile Dysfunction. Sex Med 2017;5:e163-e168. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
PETER, CRAIG I.; JOHNSON, STEVEN D.
2006-01-01
• Background and Aims Pollination by insects that spend long periods visiting many flowers on a plant may impose a higher risk of facilitated self-pollination. Orchids and asclepiads are particularly at risk as their pollen is packaged as pollinia and so can be deposited on self-stigmas en masse. Many orchids and asclepiads have adaptations to limit self-deposition of pollinia, including gradual reconfiguration of pollinaria following removal. Here an unusual mechanism—anther cap retention—that appears to prevent self-pollination in the South African orchid Eulophia foliosa is examined. • Methods Visits to inflorescences in the field were observed and pollinators collected. Visitation rates to transplanted inflorescences were compared between a site where putative pollinators were abundant and a site where they were rare. Anther cap retention times were determined for removed pollinaria and atmospheric vapour pressure deficit was recorded concurrently. Anther cap anatomy was examined using light microscopy. • Key Results Eulophia foliosa is pollinated almost exclusively by Cardiophorus obliquemaculatus (Elateridae) beetles, which remain on the deceptive inflorescences for on average 301 s (n = 18). The anther cap that covers the pollinarium is retained for an average of 512 s (n = 24) after pollinarium removal by beetles. In all populations measured, anther cap dimensions are greater than those of the stigmatic cavity, thus precluding the deposition of self-pollinia until after the anther cap has dropped. An anatomical investigation of this mechanism suggests that differential water loss from regions of the anther cap results in opening of the anther cap flaps. This is supported by observations that as atmospheric vapour pressure deficits increased, the duration of anther cap retention was reduced. • Conclusions Flowers of E. foliosa are specialized for pollination by elaterid beetles. Retention of anther caps for a period exceeding average visit times by beetles to inflorescences appears to prevent facilitated self-pollination in E. foliosa effectively. PMID:16373371
van der Linde, Karina; Doehlemann, Gunther
2013-01-01
While in dicotyledonous plants virus-induced gene silencing (VIGS) is well established to study plant-pathogen interaction, in monocots only few examples of efficient VIGS have been reported so far. One of the available systems is based on the brome mosaic virus (BMV) which allows gene silencing in different cereals including barley (Hordeum vulgare), wheat (Triticum aestivum), and maize (Zea mays).Infection of maize plants by the corn smut fungus Ustilago maydis leads to the formation of large tumors on stem, leaves, and inflorescences. During this biotrophic interaction, plant defense responses are actively suppressed by the pathogen, and previous transcriptome analyses of infected maize plants showed comprehensive and stage-specific changes in host gene expression during disease progression.To identify maize genes that are functionally involved in the interaction with U. maydis, we adapted a VIGS system based on the Brome mosaic virus (BMV) to maize at conditions that allow successful U. maydis infection of BMV pre-infected maize plants. This setup enables quantification of VIGS and its impact on U. maydis infection using a quantitative real-time PCR (q(RT)-PCR)-based readout.
Cloning and bioinformatics analysis of CcPILS gene of Hickory (Carya cathayensis)
NASA Astrophysics Data System (ADS)
Guo, Wenbin; Yuan, Huwei; Gao, Liuxiao; Guo, Haipeng; Qiu, Lingling; Xu, Dongbin; Yan, Daoliang; Zheng, Bingsong
2017-04-01
PILS is a key auxin efflux carrier protein in the auxin signal transduction. A CcPILS gene related to hickory (Carya carthayensis) grafting process was obtained by RACE techniques. The full length of CcPILS gene was1541bp contained a 1263bp length open reading flame (ORF). The CcPILS encoded 294 amino acids with molecular weight of 46 kDa, PI 5.38 and localized at endoplasmic reticulum membrane. The gene contained a central hydrophilic loop separating two hydrophobic domains of about five transmembrane regions each. The gene of CcPILS belonged to Clade III sub-family of PILS and its sequence had high homology with Arabidopsis. Real Time RT-PCR analysis showed that the gene expressions were weakly induced in bud, inflorescence, fruit, leaf and stem, while strongly in root. The expression levels were strongly induced and reached a peak at the third day of grafting in scion and rootstock of hickory, which were 1.45 and 3.45 times higher, respectively, compared to that of control. The results indicated that CcPILS may be involved in regulating the expression of genes related to auxin signal transduction during hickory graft process.
Flavonoid Accumulation Patterns of Transparent Testa Mutants of Arabidopsis1
Peer, Wendy Ann; Brown, Dana E.; Tague, Brian W.; Muday, Gloria K.; Taiz, Lincoln; Murphy, Angus S.
2001-01-01
Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells. PMID:11402185
Flavonoid accumulation patterns of transparent testa mutants of arabidopsis
NASA Technical Reports Server (NTRS)
Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.
2001-01-01
Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.
Vaknin, Yiftach; Hadas, Rivka; Schafferman, Dan; Murkhovsky, Leonid; Bashan, Neta
2008-06-01
The potential of wild plants in Israel as sources of edible sprouts has not been investigated until now. Milk thistle (Silybum marianum L.) is native to the Mediterranean basin and is now widespread throughout the world; its young fleshy stems are traditionally eaten by the local Arab sector in Israel, and its sprouts are rich in antioxidants and have been used as a traditional medicine for diseases of the liver and biliary tract. The active extract of milk thistle, silymarin, is a mixture of flavonolignans and is a strong antioxidant that has been proved to promote liver cell regeneration, to reduce blood cholesterol and to help prevent cancer. The present objective was to investigate the potential of milk thistle as a source of edible sprouts rich in antioxidants. We found that seed germination within 3-4 days was high (96%, except for striated seeds). Exposure to light significantly reduced sprout growth and significantly increased the polyphenol content and antioxidative capacity. The polyphenol content was 30% higher in seeds originating from purple inflorescences than in those from white ones. We thus found milk thistle to be a good candidate source of healthy edible sprouts.
Lead, Cadmium, Zinc, and Copper Bioavailability in the Soil-Plant-Animal System in a Polluted Area
Angelova, Violina R.; Ivanova, Radka V.; Todorov, Jivko M.; Ivanov, Krasimir I.
2010-01-01
A comparative research study on the bioavailability of Pb, Cd, Zn, and Cu in the soil-plant-animal-system was carried out. The connection between the total quantity and the mobile forms of Pb, Cd, Zn, and Cu in soils with different levels of contamination; the transition of these metals into rapeseed; and their assimilation by rabbits fed with a food that consisted mainly of rapeseed was studied. It was established that the absorption of heavy metals by the rapeseed definitely has a selective character, as the affinity towards Zn is most strongly expressed. The accumulation of Pb, Cd, Zn, and Cu in the organs of the rapeseed occurs in the following order: inflorescences > leaves > stems. A direct connection between the quantity of the mobile forms and their accumulation in the plants was not found. The environmental contamination has a significant effect on heavy metal levels and distribution, as the largest quantity of all four elements is accumulated in the kidneys and liver. A well-expressed impact of the level of Cd contamination on the absorption of essential trace metals (Zn and Cu) and their accumulation into some of the organs of the animals was found. PMID:20191239
Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa
2017-01-01
The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous ( Pereskia lychnidiflora and Pilosocereus alensis ), non-fibrous ( Ariocarpus retusus ), and dimorphic ( Ferocactus pilosus ) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1 , as well as one or two class II paralogs of KNAT3 - KNAT4 - KNAT5 . While the KNOX gene SHOOTMERISTEMLESS ( STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus , we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora . Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species.
Reyes-Rivera, Jorge; Rodríguez-Alonso, Gustavo; Petrone, Emilio; Vasco, Alejandra; Vergara-Silva, Francisco; Shishkova, Svetlana; Terrazas, Teresa
2017-01-01
The vascular cambium is a lateral meristem that produces secondary xylem (i.e., wood) and phloem. Different Cactaceae species develop different types of secondary xylem; however, little is known about the mechanisms underlying wood formation in the Cactaceae. The KNOTTED HOMEOBOX (KNOX) gene family encodes transcription factors that regulate plant development. The role of class I KNOX genes in the regulation of the shoot apical meristem, inflorescence architecture, and secondary growth is established in a few model species, while the functions of class II KNOX genes are less well understood, although the Arabidopsis thaliana class II KNOX protein KNAT7 is known to regulate secondary cell wall biosynthesis. To explore the involvement of the KNOX genes in the enormous variability of wood in Cactaceae, we identified orthologous genes expressed in species with fibrous (Pereskia lychnidiflora and Pilosocereus alensis), non-fibrous (Ariocarpus retusus), and dimorphic (Ferocactus pilosus) wood. Both class I and class II KNOX genes were expressed in the cactus cambial zone, including one or two class I paralogs of KNAT1, as well as one or two class II paralogs of KNAT3-KNAT4-KNAT5. While the KNOX gene SHOOTMERISTEMLESS (STM) and its ortholog ARK1 are expressed during secondary growth in the Arabidopsis and Populus stem, respectively, we did not find STM orthologs in the Cactaceae cambial zone, which suggests possible differences in the vascular cambium genetic regulatory network in these species. Importantly, while two class II KNOX paralogs from the KNAT7 clade were expressed in the cambial zone of A. retusus and F. pilosus, we did not detect KNAT7 ortholog expression in the cambial zone of P. lychnidiflora. Differences in the transcriptional repressor activity of secondary cell wall biosynthesis by the KNAT7 orthologs could therefore explain the differences in wood development in the cactus species. PMID:28316604
Gourieroux, Aude M; McCully, Margaret E; Holzapfel, Bruno P; Scollary, Geoffrey R; Rogiers, Suzy Y
2016-11-01
The rachis, the structural framework of the grapevine (Vitis vinifera L.) inflorescence (and subsequent bunch), consists of a main axis and one or more orders of lateral branches with the flower-bearing pedicels at their fine tips. The rachis is crucial both for support, and transport from the shoot. Earlier suggestions that the flowers per se affect normal rachis development are investigated further in this study. Different percentages (0, 25, 50, 75 or 100) of flowers were removed manually one week before anthesis on field-grown vines. Treatment effects on subsequent rachis development (curvature, vitality, anatomy, starch deposit) were assessed. Sections, both fixed and embedded, and fresh hand-cut were observed by fluorescence and bright-field optics after appropriate staining. Emphasis was on measurement of changes in cross-sectional area of secondary xylem and phloem, and on maturation of fibres and periderm. Specific defects in rachis development were dependent on the percent and location of flower removal one week prior to anthesis. The rachises curved inwards where most of the flowers were removed. When fully de-flowered, they became progressively necrotic from the laterals back to the primary axes and from the distal to the proximal end of those axes, with a concurrent disorganisation of their anatomy. A few remaining groups of flowers prevented desiccation and abscission of the rachis axes proximal to the group, but not distally. Flower removal (50%) reduced rachis elongation, while 75% removal reduced xylem and phloem area and delayed phloem fibre and periderm development. 75% flower removal did not affect starch present in the rachis during berry development. Developing flowers affect the growth and vitality of the rachis and the development of its vascular and support structures. The extent of these effects depends on the cultivar and the number and position of flowers remaining after some are removed one week before anthesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Haberman, Amnon; Bakhshian, Ortal; Cerezo-Medina, Sergio; Paltiel, Judith; Adler, Chen; Ben-Ari, Giora; Mercado, Jose Angel; Pliego-Alfaro, Fernando; Lavee, Shimon; Samach, Alon
2017-08-01
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors. © 2017 John Wiley & Sons Ltd.
Antioxidative and antiplatelet effects of aqueous inflorescence Piper betle extract.
Lei, Daniel; Chan, Chiu-Po; Wang, Ying-Jan; Wang, Tong-Mei; Lin, Bor-Ru; Huang, Chun-Hsun; Lee, Jang-Jaer; Chen, Hsin-Ming; Jeng, Jiiang-Huei; Chang, Mei-Chi
2003-03-26
Piper betle, belonging to the Piperaceae family, is a tropical plant, and its leaf and inflorescence are popularly consumed by betel quid (BQ) chewers in Taiwan and many other South and Southeast Asian countries. However, little is known about the biochemical properties of inflorescence Piper betle (IPB) toward reactive oxygen species (ROS) and platelet functions. In the present work, aqueous IPB extract was shown to be a scavenger of H(2)O(2), superoxide radical, and hydroxyl radical with a 50% inhibitory concentration (IC(50)) of about 80, 28, and 73 microg/mL, respectively. IPB extract also prevented the hydroxyl radical induced PUC18 plasmid DNA breaks at concentrations higher than 40 microg/mL. Since ROS are crucial for platelet aggregation, we further found that IPB extract also inhibited the arachidonic acid (AA) induced and collagen-induced platelet aggregation, with an IC(50) of 207 and 335 microg/mL, respectively. IPB extract also inhibited the AA-, collagen- (>100 microg/mL of IPB), and thrombin (>250 microg/mL of IPB)-induced thromboxane B(2) (TXB(2)) production by more than 90%. However, IPB extract showed little effect on thrombin-induced aggregation. These results indicated that aqueous components of IPB are potential ROS scavengers and may prevent the platelet aggregation possibly via scavenging ROS or inhibition of TXB(2) production.
Cock, Matthew J. W.
2013-01-01
In 2006, Batrachedra nuciferae Hodges (Lepidoptera: Batrachedridae) was the first phytophagous insect to be reported from inflorescences of coconut, Cocos nucifera L. (Arecales: Arecaceae), in Trinidad, West Indies. At that time, it was suggested to be an introduced species contributing to decreasing coconut yields on the island and potentially a threat to other palms. In this preliminary study, inflorescences of coconut, seven indigenous palms, and six exotic ornamental palms were surveyed in several areas of Trinidad. Caterpillars of more than 10 species of Lepidoptera were found and reared through to the adult stage. Batrachedra nuciferae was positively identified. It was concluded that the caterpillars of B. nuciferae feed on pollen in the male flowers of coconut and palmiste or royal palm, Roystonea oleracea (Jacquin) O.F. Cook. There was no evidence that B. nuciferae bred on any of the other palms surveyed, but it is not conclusive that they do not do so. A parasitoid, Apanteles (sensu lato) sp. (Hymenoptera: Braconidae), of B. nuciferae was reared. On available information, B. nuciferae is more likely to be an indigenous species that has hitherto been overlooked than an introduced species. In view of what is known about damage-yield relationships and biological control agents, B. nuciferae is unlikely to cause yield losses to coconut, so control measures are not justified. PMID:24786569
Cock, Matthew J W
2013-01-01
In 2006, Batrachedra nuciferae Hodges (Lepidoptera: Batrachedridae) was the first phytophagous insect to be reported from inflorescences of coconut, Cocos nucifera L. (Arecales: Arecaceae), in Trinidad, West Indies. At that time, it was suggested to be an introduced species contributing to decreasing coconut yields on the island and potentially a threat to other palms. In this preliminary study, inflorescences of coconut, seven indigenous palms, and six exotic ornamental palms were surveyed in several areas of Trinidad. Caterpillars of more than 10 species of Lepidoptera were found and reared through to the adult stage. Batrachedra nuciferae was positively identified. It was concluded that the caterpillars of B. nuciferae feed on pollen in the male flowers of coconut and palmiste or royal palm, Roystonea oleracea (Jacquin) O.F. Cook. There was no evidence that B. nuciferae bred on any of the other palms surveyed, but it is not conclusive that they do not do so. A parasitoid, Apanteles (sensu lato) sp. (Hymenoptera: Braconidae), of B. nuciferae was reared. On available information, B. nuciferae is more likely to be an indigenous species that has hitherto been overlooked than an introduced species. In view of what is known about damage-yield relationships and biological control agents, B. nuciferae is unlikely to cause yield losses to coconut, so control measures are not justified.
From teosinte to maize: the catastrophic sexual transmutation.
Iltis, H H
1983-11-25
An alternative to the theory that the ear of maize (Zea mays ssp. mays) evolved from a slender female ear of a Mexican annual teosinte holds that it was derived from the central spike of a male teosinte inflorescence (tassel) which terminates the primary lateral branches. This alternative hypothesis is more consistent with morphology and explains the anomalous lack of significant genetic and biochemical differences between these taxa. Maize, the only cereal with unisexual inflorescences, evolved through a sudden epigenetic sexual transmutation involving condensation of primary branches, which brought their tassels into the zone of female expression, leading to strong apical dominance and a catastrophic shift in nutrient allocation. Initially, this quantum change may have involved no new mutations, but rather genetic assimilation under human selection of an abnormality, perhaps environmentally triggered.
Yang, Lei; Zhao, Xiaoju; Zhu, Hong; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua
2014-01-01
Trehalose (Tre) has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometry assay of cellular levels of reactive oxygen species and programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and inflorescence stem (IS), we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death, and ionic distribution. PMID:25400644
Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.
Gargul, Joanna Maria; Mibus, Heiko; Serek, Margrethe
2015-01-01
The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh.
Wang, Ying; Pijut, Paula M
2013-08-01
Flowering control is one of the several strategies for gene containment of transgenic plants. TERMINAL FLOWER 1 (TFL1) is known to be involved in the transcriptional repression of genes for inflorescence development. Two TFL1 transcripts with different 3' UTR were cloned from black cherry (Prunus serotina Ehrh.) using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Corresponding to the two TFL1 transcripts, two PsTFL1 gene sequences, 1248 bp and 1579 bp, were obtained and both contained the same 519 bp coding region which encoded a putative protein of 172 amino acid residues. The phylogenetic analysis of the amino acid sequences showed high identity of PsTFL1 to TFL1 orthologs of other Prunus species, including Yoshino cherry (Prunus × yedoensis Matsum.), peach (Prunus persica (L.) Batsch), apricot (Prunus armeniaca L.) and Japanese apricot (Prunus mume Sieb. et Zucc.). The real-time quantitative PCR detected a single copy of PsTFL1 gene sequences in the black cherry genome with two alleles. The gene expression of PsTFL1 was examined in several tissues including the stems, leaves, shoot tips, and vegetative and floral buds. The highest mRNA level was detected in shoot tips, and the lowest level in the leaves. Transgenic Arabidopsis thaliana (L.) Heynh. plants overexpressing PsTFL1 showed significantly delayed flowering. These plants also showed largely increased vegetative growth, plant height, number of nodes, trichome density, and the conversion of flower to shoot was observed at each node and shoot apex.
Khan, Madiha; Ragni, Laura; Tabb, Paul; Salasini, Brenda C.; Chatfield, Steven; Datla, Raju; Lock, John; Kuai, Xiahezi; Després, Charles; Proveniers, Marcel; Yongguo, Cao; Xiang, Daoquan; Morin, Halima; Rullière, Jean-Pierre; Citerne, Sylvie; Hepworth, Shelley R.; Pautot, Véronique
2015-01-01
In the model plant Arabidopsis (Arabidopsis thaliana), endogenous and environmental signals acting on the shoot apical meristem cause acquisition of inflorescence meristem fate. This results in changed patterns of aerial development seen as the transition from making leaves to the production of flowers separated by elongated internodes. Two related BEL1-like homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), fulfill this transition. Loss of function of these genes impairs stem cell maintenance and blocks internode elongation and flowering. We show here that pny pnf apices misexpress lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2) and KNOTTED-LIKE FROM ARABIDOPSIS THALIANA6 (KNAT6) together with ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1). Inactivation of genes in this module fully rescues pny pnf defects. We further show that BOP1 directly activates ATH1, whereas activation of KNAT6 is indirect. The pny pnf restoration correlates with renewed accumulation of transcripts conferring floral meristem identity, including FD, SQUAMOSA PROMOTER-BINDING PROTEIN LIKE genes, LEAFY, and APETALA1. To gain insight into how this module blocks flowering, we analyzed the transcriptome of BOP1-overexpressing plants. Our data suggest a central role for the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-microRNA172 module in integrating stress signals conferred in part by promotion of jasmonic acid biosynthesis. These data reveal a potential mechanism by which repression of lateral organ boundary genes by PNY-PNF is essential for flowering. PMID:26417006
Lv, Ling-Ling; Duan, Jun; Xie, Jiang-Hui; Liu, Yu-Ge; Wei, Chang-Bin; Liu, Sheng-Hui; Zhang, Jian-Xia; Sun, Guang-Ming
2012-01-01
PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcPI is 907 bp in length and contains an open reading frame of 594 bp, which encodes a protein of 197 amino acids. The molecular weight was 2.29 kDa and the isoelectric point was 9.28. The alignment showed that AcPI had a high identity with CsPIC2 (78.6%), AoPI (77.4%), OrcPI (75.7%) and HPI2 (72.4%). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses in different tissues showed that the expression pattern of AcPI was different from the B-class genes in eudicots. AcPI was expressed in all the tissues investigated. The expression level was very low in fruit stems, bracts, leaves and sepals, high in petals and carpels, and moderate in apical meristems, flesh and stamens. The qRT-PCR analyses in different stages indicated that the expression of AcPI reached the highest level at 40 days after flower inducement, when the multiple fruit and floral organs were forming. It proved the important role of AcPI in floral organs and fruit development. The 35S::AcPI transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants. PMID:22312303
Lv, Ling-Ling; Duan, Jun; Xie, Jiang-Hui; Liu, Yu-Ge; Wei, Chang-Bin; Liu, Sheng-Hui; Zhang, Jian-Xia; Sun, Guang-Ming
2012-01-01
PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of AcPI is 907 bp in length and contains an open reading frame of 594 bp, which encodes a protein of 197 amino acids. The molecular weight was 2.29 kDa and the isoelectric point was 9.28. The alignment showed that AcPI had a high identity with CsPIC2 (78.6%), AoPI (77.4%), OrcPI (75.7%) and HPI2 (72.4%). Quantitative real-time polymerase chain reaction (qRT-PCR) analyses in different tissues showed that the expression pattern of AcPI was different from the B-class genes in eudicots. AcPI was expressed in all the tissues investigated. The expression level was very low in fruit stems, bracts, leaves and sepals, high in petals and carpels, and moderate in apical meristems, flesh and stamens. The qRT-PCR analyses in different stages indicated that the expression of AcPI reached the highest level at 40 days after flower inducement, when the multiple fruit and floral organs were forming. It proved the important role of AcPI in floral organs and fruit development. The 35S::AcPI transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than wild type plants.
Zhao, Liang; Jiang, Xi-Wang; Zuo, Yun-Juan; Liu, Xiao-Lin; Chin, Siew-Wai; Haberle, Rosemarie; Potter, Daniel; Chang, Zhao-Yang; Wen, Jun
2016-01-01
Prunus is an economically important genus well-known for cherries, plums, almonds, and peaches. The genus can be divided into three major groups based on inflorescence structure and ploidy levels: (1) the diploid solitary-flower group (subg. Prunus, Amygdalus and Emplectocladus); (2) the diploid corymbose group (subg. Cerasus); and (3) the polyploid racemose group (subg. Padus, subg. Laurocerasus, and the Maddenia group). The plastid phylogeny suggests three major clades within Prunus: Prunus-Amygdalus-Emplectocladus, Cerasus, and Laurocerasus-Padus-Maddenia, while nuclear ITS trees resolve Laurocerasus-Padus-Maddenia as a paraphyletic group. In this study, we employed sequences of the nuclear loci At103, ITS and s6pdh to explore the origins and evolution of the racemose group. Two copies of the At103 gene were identified in Prunus. One copy is found in Prunus species with solitary and corymbose inflorescences as well as those with racemose inflorescences, while the second copy (II) is present only in taxa with racemose inflorescences. The copy I sequences suggest that all racemose species form a paraphyletic group composed of four clades, each of which is definable by morphology and geography. The tree from the combined At103 and ITS sequences and the tree based on the single gene s6pdh had similar general topologies to the tree based on the copy I sequences of At103, with the combined At103-ITS tree showing stronger support in most clades. The nuclear At103, ITS and s6pdh data in conjunction with the plastid data are consistent with the hypothesis that multiple independent allopolyploidy events contributed to the origins of the racemose group. A widespread species or lineage may have served as the maternal parent for multiple hybridizations involving several paternal lineages. This hypothesis of the complex evolutionary history of the racemose group in Prunus reflects a major step forward in our understanding of diversification of the genus and has important implications for the interpretation of its phylogeny, evolution, and classification.
The phylogeny of Heliconia (Heliconiaceae) and the evolution of floral presentation.
Iles, William J D; Sass, Chodon; Lagomarsino, Laura; Benson-Martin, Gracie; Driscoll, Heather; Specht, Chelsea D
2017-12-01
Heliconia (Heliconiaceae, order Zingiberales) is among the showiest plants of the Neotropical rainforest and represent a spectacular co-evolutionary radiation with hummingbirds. Despite the attractiveness and ecological importance of many Heliconia, the genus has been the subject of limited molecular phylogenetic studies. We sample seven markers from the plastid and nuclear genomes for 202 samples of Heliconia. This represents ca. 75% of accepted species and includes coverage of all taxonomic subgenera and sections. We date this phylogeny using fossils associated with other families in the Zingiberales; in particular we review and evaluate the Eocene fossil Ensete oregonense. We use this dated phylogenetic framework to evaluate the evolution of two components of flower orientation that are hypothesized to be important for modulating pollinator discrimination and pollen placement: resupination and erect versus pendant inflorescence habit. Our phylogenetic results suggest that the monophyletic Melanesian subgenus Heliconiopsis and a small clade of Ecuadorian species are together the sister group to the rest of Heliconia. Extant diversity of Heliconia originated in the Late Eocene (39Ma) with rapid diversification through the Early Miocene, making it the oldest known clade of hummingbird-pollinated plants. Most described subgenera and sections are not monophyletic, though closely related groups of species, often defined by shared geography, mirror earlier morphological cladistic analyses. Evaluation of changes in resupination and inflorescence habit suggests that these characters are more homoplasious than expected, and this largely explains the non-monophyly of previously circumscribed subgenera, which were based on these characters. We also find strong evidence for the correlated evolution of resupination and inflorescence habit. The correlated model suggests that the most recent common ancestor of all extant Heliconia had resupinate flowers and erect inflorescences. Finally, we note our nearly complete species sampling and dated phylogeny allow for an assessment of taxonomic history in terms of phylogenetic diversity. We find approximately half of the currently recognized species, corresponding to half of the phylogenetic diversity, have been described since 1975, highlighting the continued importance of basic taxonomic research and conservation initiatives to preserve both described and undiscovered species of Heliconia. Copyright © 2016 Elsevier Inc. All rights reserved.
Zuo, Yun-juan; Liu, Xiao-Lin; Chin, Siew-Wai; Haberle, Rosemarie; Potter, Daniel; Chang, Zhao-Yang; Wen, Jun
2016-01-01
Prunus is an economically important genus well-known for cherries, plums, almonds, and peaches. The genus can be divided into three major groups based on inflorescence structure and ploidy levels: (1) the diploid solitary-flower group (subg. Prunus, Amygdalus and Emplectocladus); (2) the diploid corymbose group (subg. Cerasus); and (3) the polyploid racemose group (subg. Padus, subg. Laurocerasus, and the Maddenia group). The plastid phylogeny suggests three major clades within Prunus: Prunus-Amygdalus-Emplectocladus, Cerasus, and Laurocerasus-Padus-Maddenia, while nuclear ITS trees resolve Laurocerasus-Padus-Maddenia as a paraphyletic group. In this study, we employed sequences of the nuclear loci At103, ITS and s6pdh to explore the origins and evolution of the racemose group. Two copies of the At103 gene were identified in Prunus. One copy is found in Prunus species with solitary and corymbose inflorescences as well as those with racemose inflorescences, while the second copy (II) is present only in taxa with racemose inflorescences. The copy I sequences suggest that all racemose species form a paraphyletic group composed of four clades, each of which is definable by morphology and geography. The tree from the combined At103 and ITS sequences and the tree based on the single gene s6pdh had similar general topologies to the tree based on the copy I sequences of At103, with the combined At103-ITS tree showing stronger support in most clades. The nuclear At103, ITS and s6pdh data in conjunction with the plastid data are consistent with the hypothesis that multiple independent allopolyploidy events contributed to the origins of the racemose group. A widespread species or lineage may have served as the maternal parent for multiple hybridizations involving several paternal lineages. This hypothesis of the complex evolutionary history of the racemose group in Prunus reflects a major step forward in our understanding of diversification of the genus and has important implications for the interpretation of its phylogeny, evolution, and classification. PMID:27294529
Zhou, Y-J; Xue, J-G; Wang, X-G; Zhang, X-Q
2012-11-12
Buffalograss, Buchloe dactyloides, is a dioecious species native to the Great Plains of North America. The florets at the early stages of development possess both gynoecium and androecium organ primordia but later become unisexual. Very little is known about the proteomic changes that occur when the florets change from hermaphroditism to unisexuality. We compared the protein composition of florets at the hermaphroditic stage with that at the unisexual stage. The development stage of the floret was determined by stereomicroscopic observation. Two-dimensional gel electrophoresis was used to separate the proteins extracted from female and male inflorescences. Stage- specific protein maps, with an average of about 400 spots per map, were analyzed with the protein analysis software. Eighteen spots were found to be differentially expressed between the hermaphrodite and unisexual stages. Of these, 12 were present at both stages but with a different expression value. Four specific spots appeared at the hermaphrodite stage and disappeared at the unisexual stage. Two specific protein spots were associated with female and male floret differentiation. One appears to be associated with contabescence in the female floret and the final protein appears to lead to the abortion of gynoecium in the male floret. The MALDI TOF/TOF technique was used for peptide mass fingerprinting of the differentially expressed proteins and the MASCOT software was used to search the protein database. However, only two protein spots were identified from the database. These were aldolase1 and Os05g0574400 (similar to malate dehydrogenase). This type of proteomic study can help to identify novel protein products and determine the mechanisms involved in the floral sex differentiation process in buffalo grass.
Vilela, Alejandra E.; Agüero, Paola R.; Ravetta, Damián; González-Paleo, Luciana
2016-01-01
Prosopis denudans, an extreme xerophyte shrub, is consumed by ungulates and threatened by firewood gathering, because it is one of the preferred species used by Mapuche indigenous people of Patagonia. In a scenario of uncontrolled use of vegetation, it is very difficult to develop a conservation plan that jointly protects natural resources and its users. We performed a field experiment to assess the impact of defoliation on growth, reproduction and stores of a wild population of P. denudans. We imposed four levels of defoliation (removal of 100, 66, 33 and 0% of leaves) and evaluated the short- and long-term (3 years) effects of this disturbance. Seasonal changes in shoot carbohydrates suggested that they support leaf-flush and blooming. Severely defoliated individuals also used root reserves to support growth and leaf-flush after clipping. Vegetative growth was not affected by defoliation history. Leaf mass area increased after the initial clipping, suggesting the development of structural defenses. The depletion of root reserves at the end of the first year affected inflorescence production the following spring. We conclude that P. denudans shrubs could lose up to one-third of their green tissues without affecting growth or inflorescence production. The removal of a higher proportion of leaves will diminish stores, which in turn, will reduce or completely prevent blooming and, therefore, fruit production the following seasons. Very few studies integrate conservation and plant physiology, and we are not aware, so far, of any work dealing with long-term plant carbon economy of a long-lived perennial shrub as an applied tool in conservation. These results might help the development of management strategies that consider both the use and the conservation of wild populations of P. denudans. PMID:27293747
Wu, Yuan; Wang, Yun; Mi, Xue-Fei; Shan, Jun-Xiang; Li, Xin-Min; Xu, Jian-Long; Lin, Hong-Xuan
2016-10-01
Cytokinins and gibberellins (GAs) play antagonistic roles in regulating reproductive meristem activity. Cytokinins have positive effects on meristem activity and maintenance. During inflorescence meristem development, cytokinin biosynthesis is activated via a KNOX-mediated pathway. Increased cytokinin activity leads to higher grain number, whereas GAs negatively affect meristem activity. The GA biosynthesis genes GA20oxs are negatively regulated by KNOX proteins. KNOX proteins function as modulators, balancing cytokinin and GA activity in the meristem. However, little is known about the crosstalk among cytokinin and GA regulators together with KNOX proteins and how KNOX-mediated dynamic balancing of hormonal activity functions. Through map-based cloning of QTLs, we cloned a GA biosynthesis gene, Grain Number per Panicle1 (GNP1), which encodes rice GA20ox1. The grain number and yield of NIL-GNP1TQ were significantly higher than those of isogenic control (Lemont). Sequence variations in its promoter region increased the levels of GNP1 transcripts, which were enriched in the apical regions of inflorescence meristems in NIL-GNP1TQ. We propose that cytokinin activity increased due to a KNOX-mediated transcriptional feedback loop resulting from the higher GNP1 transcript levels, in turn leading to increased expression of the GA catabolism genes GA2oxs and reduced GA1 and GA3 accumulation. This rebalancing process increased cytokinin activity, thereby increasing grain number and grain yield in rice. These findings uncover important, novel roles of GAs in rice florescence meristem development and provide new insights into the crosstalk between cytokinin and GA underlying development process.
Sinclair, Elizabeth A; Statton, John; Hovey, Renae; Anthony, Janet M; Dixon, Kingsley W; Kendrick, Gary A
2016-02-01
Organisms occupying the edges of natural geographical ranges usually survive at the extreme limits of their innate physiological tolerances. Extreme and prolonged fluctuations in environmental conditions, often associated with climate change and exacerbated at species' geographical range edges, are known to trigger alternative responses in reproduction. This study reports the first observations of adventitious inflorescence-derived plantlet formation in the marine angiosperm Posidonia australis, growing at the northern range edge (upper thermal and salinity tolerance) in Shark Bay, Western Australia. These novel plantlets are described and a combination of microsatellite DNA markers and flow cytometry is used to determine their origin. Polymorphic microsatellite DNA markers were used to generate multilocus genotypes to determine the origin of the adventitious inflorescence-derived plantlets. Ploidy and genome size were estimated using flow cytometry. All adventitious plantlets were genetically identical to the maternal plant and were therefore the product of a novel pseudoviviparous reproductive event. It was found that 87 % of the multilocus genotypes contained three alleles in at least one locus. Ploidy was identical in all sampled plants. The genome size (2 C value) for samples from Shark Bay and from a separate site much further south was not significantly different, implying they are the same ploidy level and ruling out a complete genome duplication (polyploidy). Survival at range edges often sees the development of novel responses in the struggle for survival and reproduction. This study documents a physiological response at the trailing edge, whereby reproductive strategy can adapt to fluctuating conditions and suggests that the lower-than-usual water temperature triggered unfertilized inflorescences to 'switch' to growing plantlets that were adventitious clones of their maternal parent. This may have important long-term implications as both genetic and ecological constraints may limit the ability to adapt or range-shift; this seagrass meadow in Shark Bay already has low genetic diversity, no sexual reproduction and no seedling recruitment. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
RAMOS, CARLIANNE O. C.; BORBA, EDUARDO L.; FUNCH, LÍGIA S.
2005-01-01
• Background and Aims The reproductive biology of Syngonanthus mucugensis and S. curralensis (Eriocaulaceae) was studied in areas of ‘campo rupestre’ vegetation in the Chapada Diamantina, north-eastern Brazil. These species are herbaceous and the individuals have a grouped distribution. Their leaves are united in a rosette, and their inflorescence is monoecious, of the capitulum type. The staminate and pistillate rings mature in a centripetal manner on the capitulum. • Methods A field study was conducted, including observations concerning the morphology and biology of the flowers, fruit development, insect visits and anemophily, in both S. mucugensis and S. curralensis. Experimental pollinations were also carried out to study the mating systems of S. mucugensis. • Key Results Both species flower from June to August. The staminate cycle lasts approx. 7 d, and the pistillate cycle from 3 to 4 d, with no temporal overlap between them on the same capitulum. The pollen viability of S. mucugensis was 88·6%, and 92·5% for S. curralensis. The inflorescences of both species demonstrated ultraviolet absorbance, and a sweet odour was detected during both the staminate and pistillate phases. No nectar production was ever noted, although nectaries are present. Both species were visited by numerous groups of insects, with the Diptera being the principal pollinators, especially the species of Syrphidae and Bombyliidae. There were secondary pollinators among species of Coleoptera and Hymenoptera. There was no evidence of wind pollination. Syngonanthus mucugensis is a self-compatible species, and forms fruits by agamospermy at low frequencies. • Conclusions This is apparently the first report for pollination biology and mating systems of Eriocaulaceae. Conversely to that stated by some authors, entomophily, mainly effected by species of Diptera but also by species of Coleoptera and Hymenoptera, is probably the only pollination system in these species. In spite of the monoecious inflorescences without overlap of the staminate and pistillate phases, geitonogamy may occur in S. mucugensis, as the species is self-compatible and different capitula in the same plant at different phases is common. PMID:15967774
Khomichenko, A A; Skorobogatova, I V; Karsunkina, N P; Zaĭnullin, V G
2007-01-01
The purpose of the present work was studying the possible interrelation of the hormonal status of plants and size of the genetic effects induced by an irradiation in small dozes. The frequency of somatic mutations in strings Tradescantia (a clone 02) at an irradiation in dozes up to 28 cGy was estimated. Influence radiations in a range from background up to 28 cGy on the maintenance in inflorescences Tradescantia (a clone 02) the basic groups of plant hormones is investigated: abscisic acid, cytokinin, auxin and gibberellin A3. It is shown, that small dozes of an irradiation cause extremely radical changes of hormonal balance in fabrics of inflorescences Tradescantia. Received results are discussed with attraction of the data on influence phytohormones on kinetics a cellular cycle.
Cárdenas-Rodríguez, Noemí; González-Trujano, María Eva; Aguirre-Hernández, Eva; Ruíz-García, Matilde; Sampieri, Aristides; Coballase-Urrutia, Elvia; Carmona-Aparicio, Liliana
2014-01-01
Tilia genus is commonly used around the world for its central nervous system properties; it is prepared as tea and used as tranquilizing, anticonvulsant, and analgesic. In this study, anticonvulsant activity of the Tilia americana var. mexicana inflorescences and leaves was investigated by evaluating organic and aqueous extracts (100, 300, and 600 mg/kg, i.p.) and some flavonoids in the pentylenetetrazole-induced seizures in mice. Moreover, antioxidant effect of these extracts and flavonoids was examined in an in vitro study by using spectrophotometric technique. Significant activity was observed in the methanol extract from inflorescences. An HPLC analysis of the methanol extract from inflorescences and leaves of Tilia allowed demonstrating the respective presence of some partial responsible flavonoid constituents: quercetin (20.09 ± 1.20 μg/mg and 3.39 ± 0.10 μg/mg), rutin (3.52 ± 0.21 μg/mg and 8.94 ± 0.45 μg/mg), and isoquercitrin (1.74 ± 0.01 μg/mg and 1.24 ± 0.13 μg/mg). In addition, significant but different antioxidant properties were obtained among the flavonoids and the extracts investigated. Our results provide evidence of the anticonvulsant activity of Tilia reinforcing its utility for central nervous system diseases whose mechanism of action might involve partial antioxidant effects due to the presence of flavonoids. PMID:25197430
ESPÍRITO‐SANTO, M. M.; MADEIRA, B. G.; NEVES, F. S.; FARIA, M. L.; FAGUNDES, M.; FERNANDES, G. WILSON
2003-01-01
Patterns of phenological variation and reproductive investment were studied in the dioecious shrub Baccharis dracunculifolia DC (Asteraceae), and possible consequences on survivorship were evaluated. The sex ratio was determined in a natural field population (n = 921) of B. dracunculifolia in Belo Horizonte, Brazil. Fifty‐two males and 56 females were sampled at random from this population. During the reproductive season of 1999, inflorescence production, shoot growth and mortality, and xylem water potential were recorded for each individual. The population sex ratio was male‐biased (1·27 : 1, P < 0·05), and was associated with a higher mortality of female shoots (38·4 vs. 23·1 %, P < 0·05), and individuals (17·8 vs. 11·5 %, P < 0·1), despite lower water stress in female plants. Flowering phenology also differed between the sexes, with males producing more inflorescences, and earlier, than females. Owing to fruit maturation, the number of inflorescences supported by females was higher than that supported by males later in the reproductive season. This occurred during the dry season, and drought stress may have been responsible for the greater female mortality. Thus, the male‐biased sex ratio in this population of B. dracunculifolia is probably due to different reproductive functions of males and females. Intersexual differences in reproductive phenology had consequences for plant demography. PMID:12495915
Joshi, Rohit; Sahoo, Khirod Kumar; Tripathi, Amit Kumar; Kumar, Ritesh; Gupta, Brijesh Kumar; Pareek, Ashwani; Singla-Pareek, Sneh Lata
2018-05-01
Cytokinins play a significant role in determining grain yield in plants. Cytokinin oxidases catalyse irreversible degradation of cytokinins and hence modulate cellular cytokinin levels. Here, we studied the role of an inflorescence meristem-specific rice cytokinin oxidase - OsCKX2 - in reducing yield penalty under salinity stress conditions. We utilized an RNAi-based approach to study the function of OsCKX2 in maintaining grain yield under salinity stress condition. Ultra-performance liquid chromatography-based estimation revealed a significant increase in cytokinins in the inflorescence meristem of OsCKX2-knockdown plants. To determine if there exists a correlation between OsCKX2 levels and yield under salinity stress condition, we assessed the growth, physiology and grain yield of OsCKX2-knockdown plants vis-à-vis the wild type. OsCKX2-knockdown plants showed better vegetative growth, higher relative water content and photosynthetic efficiency and reduced electrolyte leakage as compared with the wild type under salinity stress. Importantly, we found a negative correlation between OsCKX2 expression and plant productivity as evident by assessment of agronomical parameters such as panicle branching, filled grains per plant and harvest index both under control and salinity stress conditions. These results suggest that OsCKX2, via controlling cytokinin levels, regulates floral primordial activity modulating rice grain yield under normal as well as abiotic stress conditions. © 2017 John Wiley & Sons Ltd.
Zhang, Quan; Chen, Haifei; He, Mingliang; Zhao, Zhuqing; Cai, Hongmei; Ding, Guangda; Shi, Lei; Xu, Fangsen
2017-09-01
Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter-driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1-1 mutants promoted wild-type growth and rescued the bor1-1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B-efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low-B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1-homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis. © 2017 John Wiley & Sons Ltd.
Alonso-Peral, Maria M; Oliver, Sandra N; Casao, M Cristina; Greenup, Aaron A; Trevaskis, Ben
2011-01-01
The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.
Vuts, József; Woodcock, Christine M; Caulfield, John C; Powers, Stephen J; Pickett, John A; Birkett, Michael A
2018-03-08
The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Hirano, Hiro-Yuki; Tanaka, Wakana; Toriba, Taiyo
2014-01-01
Grasses bear unique flowers lacking obvious petals and sepals in special inflorescence units, the florets and the spikelet. Despite this, grass floral organs such as stamens and lodicules (petal homologs) are specified by ABC homeotic genes encoding MADS domain transcription factors, suggesting that the ABC model of eudicot flower development is largely applicable to grass flowers. However, some modifications need to be made for the model to fit grasses well: for example, a YABBY gene plays an important role in carpel specification. In addition, a number of genes are involved in the development of the lateral organs that constitute the spikelet. In this review, we discuss recent progress in elucidating the genes required for flower and spikelet development in grasses, together with those involved in fate determination of the spikelet and flower meristems.
Broyles, Steven B; Wyatt, Robert
1995-02-01
The evolution of large floral displays in hermaphroditic flowering plants has been attributed to natural selection acting to enhance male, rather than female, reproductive success. Proponents of the "pollen-donation hypothesis" have assumed that maternal resources, rather than levels of effective pollination, limit fruit set. We investigated the pollen-donation hypothesis in an experimental population of poke milkweed, Asclepias exaltata, where effective pollination did not limit fruit set. Specifically, we examined the effects of flower number per plant, and flower number per umbel on male reproductive success (number of fruits sired) and female reproductive success (number of fruits matured). In 1990, a paternity analysis was performed on fruits collected from 53 plants whose inflorescences were not manipulated. Flower number per plant was significantly correlated with male success, but not with plant gender. Flower number per plant was also significantly correlated with female success, but umbel number and stem number per plant together explained more than half (58%) the variation in female success. The percentage of fruit set was not significantly correlated with flower number per plant. Plants with large floral displays did not disproportionately increase in male reproductive success, relative to female success, as predicted by the pollen-donation hypothesis. In 1991, the effect of flower number per umbel on male and female reproductive success was investigated. Flower number per umbel was manipulated on four umbels per plant by removing flowers to leave 6, 12, or 18 flowers in each umbel. Plants with the largest umbels effectively pollinated twice as many flowers on other plants, but produced only 1.35 times as many fruits as plants with 6 and 12 flowers per umbel. Relative maleness of plants with large umbels was nearly twice that of small and medium umbels. Although these observations are consistent with the pollen-donation hypothesis at the level of umbels, they are problematic, because much of the variation in flower number per umbel exists within, rather than among, plants in natural populations. Thus, plants consist of both reproductively male (large) and female (small) inflorescences, which act to increase total reproductive success. It is therefore inappropriate to explain the evolution of large floral displays in milkweeds solely in terms of potential male reproductive success. © 1995 The Society for the Study of Evolution.
Genetic Transformation of Switchgrass
NASA Astrophysics Data System (ADS)
Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu
Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.
Genetic transformation of switchgrass.
Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu
2009-01-01
Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.
Moreau, Jean-David; Cloetens, Peter; Gomez, Bernard; Daviero-Gomez, Véronique; Néraudeau, Didier; Lafford, Tamzin A; Tafforeau, Paul
2014-02-01
A multiscale approach combining phase-contrast X-ray micro- and nanotomography is applied for imaging a Cretaceous fossil inflorescence in the resolution range from 0.75 μm to 50 nm. The wide range of scale views provides three-dimensional reconstructions from the external gross morphology of the inflorescence fragment to the finest exine sculptures of in situ pollen. This approach enables most of the characteristics usually observed under light microscopy, or with low magnification under scanning and transmission electron microscopy, to be obtained nondestructively. In contrast to previous tomography studies of fossil and extant flowers that used resolutions down to the micron range, we used voxels with a 50 nm side in local tomography scans. This high level of resolution enables systematic affinities of fossil flowers to be established without breaking or slicing specimens.
Kozyra, Małgorzata; Biernasiuk, Anna; Malm, Anna; Chowaniec, Marcin
2015-01-01
The aim of this study was to investigate phenolic acids and flavonoids in methanolic, dichloromethane, acetone and ethyl acetate extracts and fractions from inflorescences of Cirsium canum (L.). RP-HPLC analysis enabled identification of the following: chlorogenic acid, caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, syringic acid, trans-cinnamic acid, luteolin-7-glucoside, apigenin-7-glucoside, kaempferol-3-glucoside, linarin, apigenin, rutoside, luteolin and kaempferol. The antimicrobial activity of tested extracts was determined in vitro against reference microorganisms, including bacteria or fungi, belonging to yeasts. Our data showed that the tested extracts had no influence on the growth of the reference strains of Gram-negative bacteria and yeasts belonging to Candida spp. Among them, the fractions possessed the highest activity against Gram-positive bacteria, especially Streptococcus aureus and Streptococcus pneumoniae belonging to pathogens and Streptococcus epidermidis, Bacilluscereus and Bacillus subtilis belonging to opportunistic microorganisms.
Peraza-Echeverria, S; Herrera-Valencia, V A.; Kay, A -J.
2001-07-01
The extent of DNA methylation polymorphisms was evaluated in micropropagated banana (Musa AAA cv. 'Grand Naine') derived from either the vegetative apex of the sucker or the floral apex of the male inflorescence using the methylation-sensitive amplification polymorphism (MSAP) technique. In all, 465 fragments, each representing a recognition site cleaved by either or both of the isoschizomers were amplified using eight combinations of primers. A total of 107 sites (23%) were found to be methylated at cytosine in the genome of micropropagated banana plants. In plants micropropagated from the male inflorescence explant 14 (3%) DNA methylation events were polymorphic, while plants micropropagated from the sucker explant produced 8 (1.7%) polymorphisms. No DNA methylation polymorphisms were detected in conventionally propagated banana plants. These results demonstrated the usefulness of MSAP to detect DNA methylation events in micropropagated banana plants and indicate that DNA methylation polymorphisms are associated with micropropagation.
Gene Deletion in Barley Mediated by LTR-retrotransposon BARE
Shang, Yi; Yang, Fei; Schulman, Alan H.; Zhu, Jinghuan; Jia, Yong; Wang, Junmei; Zhang, Xiao-Qi; Jia, Qiaojun; Hua, Wei; Yang, Jianming; Li, Chengdao
2017-01-01
A poly-row branched spike (prbs) barley mutant was obtained from soaking a two-rowed barley inflorescence in a solution of maize genomic DNA. Positional cloning and sequencing demonstrated that the prbs mutant resulted from a 28 kb deletion including the inflorescence architecture gene HvRA2. Sequence annotation revealed that the HvRA2 gene is flanked by two LTR (long terminal repeat) retrotransposons (BARE) sharing 89% sequence identity. A recombination between the integrase (IN) gene regions of the two BARE copies resulted in the formation of an intact BARE and loss of HvRA2. No maize DNA was detected in the recombination region although the flanking sequences of HvRA2 gene showed over 73% of sequence identity with repetitive sequences on 10 maize chromosomes. It is still unknown whether the interaction of retrotransposons between barley and maize has resulted in the recombination observed in the present study. PMID:28252053
Sen, Emine; Elgin, Ufuk; Koç, Fatih; Oztürk, Faruk
2011-01-01
Foreign bodies are usually detected at the first visit. However, they may be overlooked sometimes, especially in children, and may cause some clinical conditions including unilateral relapsing conjunctivitis. A five-year-old girl was presented to the emergency clinic of our hospital with epiphora, purulent discharge, eyelid swelling, and a foreign body feeling in her right eye. The symptoms had been present for one year, and the patient was treated for relapsing conjunctivitis. In slit lamp examination performed with difficulty because of the patient's lack of cooperation, a localized edema and erythema were observed under the right eyelid. An exploration under general anesthesia was planned, and a 1.5 cm-long subconjunctival grass inflorescence was removed. An unknown subconjunctival foreign body should be considered in each patient with relapsing conjunctivitis, especially in children, even in the absence of ocular trauma.
NASA Technical Reports Server (NTRS)
Guerra, D.; Anderson, A. J.; Salisbury, F. B.
1985-01-01
Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.
Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann
2016-01-01
Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531
Qu, Guohui; Wen, Mingzhang; Guo, Jixun
2003-05-01
The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.
2016-01-01
Euphorbia rosescens is a recently described plant that is narrowly endemic to the Lake Wales Ridge. Little is known of the ecology or life history of this diminutive, deeply rooted polygamodioecious perennial. We studied 13 subpopulations of this species from 2004–2012 from five habitats, sampling monthly during its growing season. Subpopulations were stable year-to-year with annual survivals > 90%, but with considerable within-year dynamics, peaking in density in April and dying back in the fall and winter. Stem densities did not vary among subpopulations, habitats, or by subpopulation gender. Annual plant dormancy was common and decreased subsequent survival. Belowground biomass averaged almost 50 times higher than aboveground biomass. Subpopulations either consisted of entirely female individuals or a mixture of male and functionally andromonoecious individuals and these subpopulation genders remained stable across years. Overall, flowering has been dominated by female plants. Plants produced modest numbers of inflorescences (cyathia), and fruit production was very low. Although most plants survived fire by resprouting, fire decreased survival and had a short-term positive effect on floral production. Lack of fecundity and recruitment are concerns for this state-endangered species, but more information is needed on its breeding system and clonality to make specific management recommendations. PMID:27454519
Yoshioka, Y; Kurei, S; Machida, Y
2001-06-01
We screened a gene trap library of Arabidopsis thaliana and isolated a line in which a gene encoding a homologue of monofunctional aspartate kinase was trapped by the reporter gene. Aspartate kinase (AK) is a key enzyme in the biosynthsis of aspartate family amino acids such as lysine, threonine, isoleucine, and methionine. In plants, two types of AK are known: one is AK which is sensitive to feedback inhibition by threonine and carries both AK and homoserine dehydrogenase (HSD) activities. The other one is monofunctional, sensitive to lysine and synergistically S-adenosylmethionine, and has only AK activity. We concluded that the trapped gene encoded a monofunctional aspartate kinase and designated as AK-lys3, because it lacked the HSD domain and had an amino acid sequence highly similar to those of the monofunctional aspartate kinases ofA. thaliana. AK-lys3 was highly expressed in xylem of leaves and hypocotyls and stele of roots. Significant expression of this gene was also observed in trichomes after bolting. Slight expression of AK-lys3 was detected in vascular bundles and mesophyll cells of cauline leaves, inflorescence stems, sepals, petals, and stigmas. These results indicated that this aspartate kinase gene was not expressed uniformly but in a spatially specific manner.
Veloso, Josiene S; Câmara, Marcos P S; Lima, Waléria G; Michereff, Sami J; Doyle, Vinson P
2018-07-01
Anthracnose is one of the most important plant diseases globally, occurring on a wide range of cultivated and wild host species. This study aimed to identify the Colletotrichum species associated with cashew anthracnose in Brazil, determine their phylogenetic relationships and geographical distribution, and provide some insight into the factors that may be influencing community composition. Colletotrichum isolates collected from symptomatic leaves, stems, inflorescences, and fruit of cultivated and wild cashew, across four Brazilian biomes, were identified as Colletotrichum chrysophilum, Colletotrichum fragariae, Colletotrichum fructicola, Colletotrichum gloeosporioides sensu stricto, Colletotrichum queenslandicum, Colletotrichum siamense and Colletotrichum tropicale. Colletotrichum siamense was the most dominant species. The greatest species richness was associated with cultivated cashew; leaves harbored more species than the other organs; the Atlantic Forest encompassed more species than the other biomes; and Pernambuco was the most species-rich location. However, accounting for the relative abundance of Colletotrichum species and differences in sample size across strata, the interpretation of which community is most diverse depends on how species are delimited. The present study provides valuable information about the Colletotrichum/cashew pathosystem, sheds light on the causal agents identification,and highlights the impact that species delimitation can have on ecological studies of fungi. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
El-Nashar, Y I; Asrar, A A
2016-05-06
Chemical mutagenesis is an efficient tool used in mutation-breeding programs to improve the vital characters of the floricultural crops. This study aimed to estimate the effects of different concentrations of two chemical mutagens; sodium azide (SA) and diethyl sulfate (DES). The vegetative growth and flowering characteristics in two generations (M1 and M2) of calendula plants were investigated. Seeds were treated with five different concentrations of SA and DES (at the same rates) of 1000, 2000, 3000, 4000, and 5000 ppm, in addition to a control treatment of 0 ppm. Results showed that lower concentrations of SA mutagen had significant effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements in plants of both generations. Calendula plants tended to flower earlier under low mutagen concentrations (1000 ppm), whereas higher concentrations delayed flowering significantly. Positive results on seed germination, plant height, number of branches, plant fresh weight, and leaf area were observed in the M2-generation at lower concentrations of SA (1000 ppm), as well as at 4000 ppm DES on number of leaves and inflorescences. The highest total soluble protein was detected at the concentrations of 1000 ppm SA and 2000 ppm DES. DES showed higher average of acid phosphatase activity than SA. Results indicated that lower concentrations of SA and DES mutagens had positive effects on seed germination percentage, plant height, leaf area, plant fresh weight, flowering date, inflorescence diameter, and gas-exchange measurements. Thus, lower mutagen concentrations could be recommended for better floral and physio-chemical performance.
Floral Visitors of Three Asteraceae Species in a Xeric Environment in Central Mexico.
Figueroa-Castro, Dulce María; González-Tochihuitl, Guadalupe; Rivas-Arancibia, Sombra Patricia; Castaño-Meneses, Gabriela
2016-12-01
We describe the spatial variation in the structure and composition of the communities of insects visiting the inflorescences of Flaveria ramosissima Klatt, Florestina pedata (Cav.) Cass., and Parthenium bipinnatifidum (Ort.) Rollins (Asteraceae) in a xeric environment in Central Mexico. Inflorescences of the three Asteraceae were visited by a total of 96 species of Hymenoptera, Diptera, Lepidoptera, Coleoptera, and Hemiptera. Total species richness of floral visitors to the three Asteraceae and total abundance of insects of Fl. pedata and P. bipinnatifidum did not differ between low and high vegetation cover sites. Total abundance of insects visiting the inflorescences of F. ramosissima and abundance of Hymenoptera in all three Asteraceae were higher at the low vegetation coverage (LVC) site than at the high vegetation coverage (HVC) one. Diversity of insects of Fl. pedata and P. bipinnatifidum was higher at the HVC site. However, in F. ramosissima diversity was higher at the LVC site. The communities of insects of each Asteraceae were dissimilar between sites. These differences can be attributed to variation in the abundance of Lepidophora (Diptera: Bombyliidae), Miridae (Hemiptera), Melyridae (Coleoptera), Tiphiidae (Hymenoptera), Myrmecocystus mexicanus Wesmael, and Dorymyrmex grandulus (Forel) (Hymenoptera: Formicidae). The first three insect groups were sensitive to LVC, high temperature, and low humidity, whereas the last three tolerated those same environmental conditions. Changes in temperature, humidity, and resources associated with vegetation coverage seem to differentially affect each species of floral visitors of the three Asteraceae species studied. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fukuhara, Tatsundo; Tokumaru, Shin-ichiro
2014-01-01
Background and Aims Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show heterodichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, including Platycarya. Methods Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. Key results The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodichogamous–protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morphologies. Thrips pollination was suggested by the frequent presence of thrips with attached pollen grains, the scarcity of other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage. The latter contained more thrips, synchronized better with the receptive stage of female flowers of the reciprocal morph and is probably the main period of pollen export. Conclusions Platycarya strobilacea is heterodichogamous and thrips-pollinated, both of which are relatively rare conditions in angiosperms. In male spikes of P. strobilacea, there is probably a temporal decoupling of pollinator attraction and pollen export. PMID:24305967
Li, Jianjun; Wang, Zhengwei; Tan, Ken; Qu, Yufeng; Nieh, James C
2014-10-01
Social pollinators such as honey bees face attacks from predators not only at the nest, but also during foraging. Pollinating honey bees can therefore release alarm pheromones that deter conspecifics from visiting dangerous inflorescences. However, the effect of alarm pheromone and its chemical components upon bee avoidance of dangerous food sources remains unclear. We tested the responses of giant honey bee foragers, Apis dorsata, presented with alarm pheromone at a floral array. Foragers investigated the inflorescence with natural alarm pheromone, but 3.3-fold more foragers preferred to land on the 'safe' inflorescence without alarm pheromone. Using gas chromatography-mass spectrometry analysis, we identified eight chemical components in the alarm pheromone, of which three components (1-octanol, decanal and gamma-octanoic lactone) have not previously been reported in this species. We bioassayed six major compounds and found that a synthetic mixture of these compounds elicited behaviors statistically indistinguishable from responses to natural alarm pheromone. By testing each compound separately, we show that gamma-octanoic lactone, isopentyl acetate and (E)-2-decen-1-yl acetate are active compounds that elicit significant alarm responses. Gamma-octanoic lactone elicited the strongest response to a single compound and has not been previously reported in honey bee alarm pheromone. Isopentyl acetate is widely found in the alarm pheromones of sympatric Asian honey bee species, and thus alarmed A. dorsata foragers may produce information useful for conspecifics and heterospecifics, thereby broadening the effects of alarm information on plant pollination. © 2014. Published by The Company of Biologists Ltd.
Fukuhara, Tatsundo; Tokumaru, Shin-ichiro
2014-02-01
Unlike other taxa in Juglandaceae or in closely related families, which are anemophilous, Platycarya strobilacea has been suggested to be entomophilous. In Juglandaceae, Juglans and Carya show heterodichogamy, a reproductive strategy in which two morphs coexist in a population and undergo synchronous reciprocal sex changes. However, there has been no study focusing on heterodichogamy in the other six or seven genera, including Platycarya. Inflorescence architecture, sexual expression and pollination biology were examined in a P. strobilacea population in Japan. Flowering phenology was monitored daily for 24 trees in 2008 and 27 in 2009. Flower visitors and inhabitants were recorded or collected from different sexes and stages. The population of P. strobilacea showed heterodichogamous phenology with protogynous and duodichogamous-protandrous morphs. This dimorphism in dichogamy was associated with distinct inflorescence morphologies. Thrips pollination was suggested by the frequent presence of thrips with attached pollen grains, the scarcity of other insect visitors, the synchronicity of thrips number in male spikes with the maturation of female flowers, and morphological characters shared with previously reported thrips-pollinated plants. Male spikes went through two consecutive stages: bright yellow and strong-scented M1 stage, and brownish and little-scented M2 stage. The latter contained more thrips, synchronized better with the receptive stage of female flowers of the reciprocal morph and is probably the main period of pollen export. Platycarya strobilacea is heterodichogamous and thrips-pollinated, both of which are relatively rare conditions in angiosperms. In male spikes of P. strobilacea, there is probably a temporal decoupling of pollinator attraction and pollen export.
Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan
2015-01-01
The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912
Functional Analysis of SPINDLY in Gibberellin Signaling in Arabidopsis1[C][W][OA
Silverstone, Aron L.; Tseng, Tong-Seung; Swain, Stephen M.; Dill, Alyssa; Jeong, Sun Yong; Olszewski, Neil E.; Sun, Tai-ping
2007-01-01
The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-Δ17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-Δ17 phenotype but does not reduce rga-Δ17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification. PMID:17142481
Xiang, Xiang; Sha, Xiuxiu; Su, Shulan; Zhu, Zhenhua; Guo, Sheng; Yan, Hui; Qian, Dawei; Duan, Jin-Ao
2018-03-01
Salvia miltiorrhiza, a traditional Chinese medicine, is a widely used herbal medicine to treat cardiovascular and cerebrovascular diseases. In this study, ultraviolet (UV)-visible spectrophotometry and ultra-high performance liquid chromatography with triple quadrupole tandem mass spectrometry analytical methods were used for rapid quantification of polysaccharides and 21 nucleosides and amino acids in S. miltiorrhiza to determine 17 samples of different tissues from different areas. Based on the total contents, hierarchical clustering analysis and principal components analysis were performed to classify these samples. The established methods were validated with good linearity, precision, repeatability, stability, and recovery. Chemical analysis revealed a higher content of total analytes in the sample of inflorescence from Nanjing (34.17 mg/g), sample of root and rhizome from Shaanxi (34.13 mg/g) and sample of stem and leaf from Nanjing (31.14 mg/g), respectively, indicating that root and rhizome from Shaanxi and the aerial parts from Nanjing exhibited the highest quality due to their highest content. In addition, contents of nucleosides and amino acids in the aerial parts (14.67 mg/g) were much higher than that in roots and rhizomes (9.17 mg/g). This study suggested that UV-visible spectrophotometry and ultra-high performance liquid chromatography with triple quadrupole tandem mass spectrometry are effective techniques to analyze polysaccharides, nucleosides, and amino acids in plants, and they provided valuable information for the development and utilization value of the aerial parts of S. miltiorrhiza. This analysis would also provide useful information for the quality control of S. miltiorrhiza. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tian, Hainan; Wang, Xianling; Guo, Hongyan; Cheng, Yuxin; Hou, Chunjiang
2017-01-01
The NAM, ATAF1/2, and CUC (NAC) are plant-specific transcription factors that regulate multiple aspects of plant growth and development and plant response to environmental stimuli. We report here the identification of NTM1-LIKE8 (NTL8), a membrane-associated NAC transcription factor, as a novel regulator of trichome formation in Arabidopsis (Arabidopsis thaliana). From an activation-tagged Arabidopsis population, we identified a dominant, gain-of-function mutant with glabrous inflorescence stem. By using plasmid rescue and RT-PCR analyses, we found that NTL8 was tagged; thus, the mutant was named ntl8-1 Dominant (ntl8-1D). Recapitulation experiment further confirmed that the phenotype observed in the ntl8-1D mutant was caused by elevated expression of NTL8. Quantitative RT-PCR results showed that the expression level of the single-repeat R3 MYB genes TRIPTYCHON (TRY) and TRICHOMELESS1 (TCL1) was elevated in the ntl8-1D mutant. Genetic analyses demonstrated that NTL8 acts upstream of TRY and TCL1 in the regulation of trichome formation. When recruited to the promoter region of the reporter gene Gal4:GUS by a fused GAL4 DNA-binding domain, NTL8 activated the expression of the reporter gene. Chromatin immunoprecipitation results indicated that TRY and TCL1 are direct targets of NTL8. However, NTL8 did not interact with SQUAMOSA PROMOTER BINDING PROTEIN LIKE9, another transcription factor that regulates the expression of TRY and TCL1, in yeast and plant cells. Taken together, our results suggest that NTL8 negatively regulates trichome formation in Arabidopsis by directly activating the expression of TRY and TCL1. PMID:28649093
Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout
2014-01-01
To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205
Kim, Bokyung; Kim, Gyusik; Fujioka, Shozo; Takatsuto, Suguru; Choe, Sunghwa
2012-07-01
Sterols play crucial roles as membrane components and precursors of steroid hormones (e.g., brassinosteroids, BR). Within membranes, sterols regulate membrane permeability and fluidity by interacting with other lipids and proteins. Sterols are frequently enriched in detergent-insoluble membranes (DIMs), which organize molecules involved in specialized signaling processes, including auxin transporters. To be fully functional, the two methyl groups at the C-4 position of cycloartenol, a precursor of plant sterols, must be removed by bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases (3βHSD/D). To understand the role of 3βHSD/D in Arabidopsis development, we analyzed the phenotypes of knock-out mutants and overexpression lines of two 3βHSD/D genes (At1g47290 and At2g26260). Neither single nor double knock-out mutants displayed a noticeable phenotype; however, overexpression consistently resulted in plants with wrinkled leaves and short inflorescence internodes. Interestingly, the internode growth defects were opportunistic; even within a plant, some stems were more severely affected than others. Endogenous levels of BRs were not altered in the overexpression lines, suggesting that the growth defect is not primarily due to a flaw in BR biosynthesis. To determine if overexpression of the sterol biosynthetic genes affects the functions of membrane-localized auxin transporters, we subjected plants to the auxin efflux carrier inhibitor, 1-N-naphthylphthalamic acid (NPA). Where-as the gravity vectors of wild-type roots became randomly scattered in response to NPA treatment, those of the overexpression lines continued to grow in the direction of gravity. Overexpression of the two Arabidopsis 3βHSD/D genes thus appears to affect auxin transporter activity, possibly by altering sterol composition in the membranes.
Schimpl, Flávia Camila; Kiyota, Eduardo; Mayer, Juliana Lischka Sampaio; Gonçalves, José Francisco de Carvalho; da Silva, José Ferreira; Mazzafera, Paulo
2014-09-01
Guarana seeds have the highest caffeine concentration among plants accumulating purine alkaloids, but in contrast with coffee and tea, practically nothing is known about caffeine metabolism in this Amazonian plant. In this study, the levels of purine alkaloids in tissues of five guarana cultivars were determined. Theobromine was the main alkaloid that accumulated in leaves, stems, inflorescences and pericarps of fruit, while caffeine accumulated in the seeds and reached levels from 3.3% to 5.8%. In all tissues analysed, the alkaloid concentration, whether theobromine or caffeine, was higher in young/immature tissues, then decreasing with plant development/maturation. Caffeine synthase activity was highest in seeds of immature fruit. A nucleotide sequence (PcCS) was assembled with sequences retrieved from the EST database REALGENE using sequences of caffeine synthase from coffee and tea, whose expression was also highest in seeds from immature fruit. The PcCS has 1083bp and the protein sequence has greater similarity and identity with the caffeine synthase from cocoa (BTS1) and tea (TCS1). A recombinant PcCS allowed functional characterization of the enzyme as a bifunctional CS, able to catalyse the methylation of 7-methylxanthine to theobromine (3,7-dimethylxanthine), and theobromine to caffeine (1,3,7-trimethylxanthine), respectively. Among several substrates tested, PcCS showed higher affinity for theobromine, differing from all other caffeine synthases described so far, which have higher affinity for paraxanthine. When compared to previous knowledge on the protein structure of coffee caffeine synthase, the unique substrate affinity of PcCS is probably explained by the amino acid residues found in the active site of the predicted protein. Copyright © 2014 Elsevier Ltd. All rights reserved.
Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae).
Bello, M Angélica; Álvarez, Inés; Torices, Rubén; Fuertes-Aguilar, Javier
2013-11-01
Most of the diversity in the pseudanthia of Asteraceae is based on the differential symmetry and sexuality of its flowers. In Anacyclus, where there are (1) homogamous capitula, with bisexual, mainly actinomorphic and pentamerous flowers; and (2) heterogamous capitula, with peripheral zygomorphic, trimerous and long-/short-rayed female flowers, the floral ontogeny was investigated to infer their origin. Floral morphology and ontogeny were studied using scanning electron microscope and light microscope techniques. Disc flowers, subtended by paleae, initiate acropetally. Perianth and androecium initiation is unidirectional/simultaneous. Late zygomorphy occurs by enlargement of the adaxial perianth lobes. In contrast, ray flowers, subtended by involucral bracts, initiate after the proximal disc buds, breaking the inflorescence acropetal pattern. Early zygomorphy is manifested through the fusion of the lateral and abaxial perianth lobes and the arrest of the adaxials. We report atypical phenotypes with peripheral 'trumpet' flowers from natural populations. The peripheral 'trumpet' buds initiate after disc flowers, but maintain an actinomorphic perianth. All phenotypes are compared and interpreted in the context of alternative scenarios for the origin of the capitulum and the perianth identity. Homogamous inflorescences display a uniform floral morphology and development, whereas the peripheral buds in heterogamous capitula display remarkable plasticity. Disc and ray flowers follow different floral developmental pathways. Peripheral zygomorphic flowers initiate after the proximal actinomorphic disc flowers, behaving as lateral independent units of the pseudanthial disc from inception. The perianth and the androecium are the most variable whorls across the different types of flowers, but their changes are not correlated. Lack of homology between hypanthial appendages and a calyx, and the perianth double-sided structure are discussed for Anacyclus together with potential causes of its ray flower plasticity.
Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae)
Bello, M. Angélica; Álvarez, Inés; Torices, Rubén; Fuertes-Aguilar, Javier
2013-01-01
Background and Aims Most of the diversity in the pseudanthia of Asteraceae is based on the differential symmetry and sexuality of its flowers. In Anacyclus, where there are (1) homogamous capitula, with bisexual, mainly actinomorphic and pentamerous flowers; and (2) heterogamous capitula, with peripheral zygomorphic, trimerous and long-/short-rayed female flowers, the floral ontogeny was investigated to infer their origin. Methods Floral morphology and ontogeny were studied using scanning electron microscope and light microscope techniques Key Results Disc flowers, subtended by paleae, initiate acropetally. Perianth and androecium initiation is unidirectional/simultaneous. Late zygomorphy occurs by enlargement of the adaxial perianth lobes. In contrast, ray flowers, subtended by involucral bracts, initiate after the proximal disc buds, breaking the inflorescence acropetal pattern. Early zygomorphy is manifested through the fusion of the lateral and abaxial perianth lobes and the arrest of the adaxials. We report atypical phenotypes with peripheral ‘trumpet’ flowers from natural populations. The peripheral ‘trumpet’ buds initiate after disc flowers, but maintain an actinomorphic perianth. All phenotypes are compared and interpreted in the context of alternative scenarios for the origin of the capitulum and the perianth identity. Conclusions Homogamous inflorescences display a uniform floral morphology and development, whereas the peripheral buds in heterogamous capitula display remarkable plasticity. Disc and ray flowers follow different floral developmental pathways. Peripheral zygomorphic flowers initiate after the proximal actinomorphic disc flowers, behaving as lateral independent units of the pseudanthial disc from inception. The perianth and the androecium are the most variable whorls across the different types of flowers, but their changes are not correlated. Lack of homology between hypanthial appendages and a calyx, and the perianth double-sided structure are discussed for Anacyclus together with potential causes of its ray flower plasticity. PMID:23287557
Owen, Patrick L; Martineau, Louis C; Caves, Dayna; Haddad, Pierre S; Matainaho, Teatulohi; Johns, Timothy
2008-01-01
Rapid increase in the incidence of type 2 diabetes (DM2) in Papua New Guinea, coupled with compelling epidemiological evidence supporting a diabetogenic association with betel quid (BQ) chewing has lead us to investigate dietary strategies that might offer protection from developing DM2. We investigated the dietary habits of Kalo residents from coastal Central Province who are avid BQ chewers yet have a relatively low incidence of DM2 compared to the ethnically similar and adjacent Wanigelans who abstain from BQ yet have an unusually high incidence of DM2. In Kalo, guava bud (Psidium guajava L) and noni (Morinda citrifolia L) were consumed much more frequently than in Wanigela, whereas the inverse was observed for mangrove bean (Bruguiera gymnorrhiza (L) Lam.). These plants, along with BQ and its component ingredients areca nut (Areca catechu L) and Piper betle L inflorescence, were assessed for their ability to mediate insulin-dependent and insulin-independent glucose transport in cultured 3T3-L1 adipocytes. A dose-dependent inhibition of glucose uptake from methanolic extracts of BQ, areca nut and P. betle inflorescence supports previous reports of prodiabetic activity. Conversely, guava bud extract displayed significant insulin-mimetic and potentiating activity. Noni fruit, noni leaf, commercial noni juice and mangrove bean all displayed insulin-like activity but had little or no effect on insulin action. Habitual intake of guava and noni is proposed to offer better protection against DM2 development and/or betel quid diabetogenicity than cooked mangrove bean. These findings provide empirical support that DM2 risk reduction can be accomplished using traditional foods and medicines.
Wei, Junya; Liu, Debing; Liu, Guoyin; Tang, Jie; Chen, Yeyuan
2016-01-01
MADS-box transcription factor plays a crucial role in plant development, especially controlling the formation and development of floral organs. Mango (Mangifera indica L) is an economically important fruit crop, but its molecular control of flowering is largely unknown. To better understand the molecular basis of flowering regulation in mango, we isolated and characterized the MiSOC1, a putative mango orthologs for the Arabidopsis SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1/AGAMOUS-LIKE 20 (SOC1/AGL20) with homology-based cloning and RACE. The full-length cDNA (GenBank accession No.: KP404094) is 945 bp in length including a 74 bp long 5′ UTR and a 189 bp long 3′ UTR and the open reading frame was 733 bps, encoding 223 amino acids with molecular weight 25.6 kD. Both sequence alignment and phylogenetic analysis all indicated that deduced protein contained a conservative MADS-box and semi-conservative K domain and belonged to the SOC1/TM3 subfamily of the MADS-box family. Quantitative real-time PCR was performed to investigate the expression profiles of MiSOC1 gene in different tissues/organs including root, stem, leaves, flower bud, and flower. The result indicated MiSOC1 was widely expressed at different levels in both vegetative and reproductive tissues/organs with the highest expression level in the stems’ leaves and inflorescences, low expression in roots and flowers. The expression of MiSOC1 in different flower developmental stages was different while same tissue –specific pattern among different varieties. In addition, MiSOC1 gene expression was affect by ethephon while high concentration ethephon inhibit the expression of MiSOC1. Overexpression of MiSOC1 resulted in early flowering in Arabidopsis. In conclusion, these results suggest that MiSOC1 may act as induce flower function in mango. PMID:27965680
Kwiatkowska, Dorota; Routier-Kierzkowska, Anne-Lise
2009-01-01
Quantitative analysis of geometry and surface growth based on the sequential replica method is used to compare morphogenesis at the shoot apex of Anagallis arvensis in the reproductive and vegetative phases of development. Formation of three types of lateral organs takes place at the Anagallis shoot apical meristem (SAM): vegetative leaf primordia are formed during the vegetative phase and leaf-like bracts and flower primordia during the reproductive phase. Although the shapes of all the three types of primordia are very similar during their early developmental stages, areal growth rates and anisotropy of apex surface growth accompanying formation of leaf or bract primordia are profoundly different from those during formation of flower primordia. This provides an example of different modes of de novo formation of a given shape. Moreover, growth accompanying the formation of the boundary between the SAM and flower primordium is entirely different from growth at the adaxial leaf or bract primordium boundary. In the latter, areal growth rates at the future boundary are the lowest of all the apex surface, while in the former they are relatively very high. The direction of maximal growth rate is latitudinal (along the future boundary) in the case of leaf or bract primordium but meridional (across the boundary) in the case of flower. The replica method does not enable direct analysis of growth in the direction perpendicular to the apex surface (anticlinal direction). Nevertheless, the reconstructed surfaces of consecutive replicas taken from an individual apex allow general directions of SAM surface bulging accompanying primordium formation to be recognized. Precise alignment of consecutive reconstructions shows that the direction of initial bulging during the leaf or bract formation is nearly parallel to the shoot axis (upward bulging), while in the case of flower it is perpendicular to the axis (lateral bulging). In future, such 3D reconstructions can be used to assess displacement velocity fields so that growth in the anticlinal direction can be assessed. In terms of self-perpetuation, the inflorescence SAM of Anagallis differs from the SAM in the vegetative phase in that the centrally located region of slow growth is less distinct in the inflorescence SAM. Moreover, the position of this slowly growing zone with respect to cells is not stable in the course of the meristem ontogeny.
González-Domínguez, Elisa; Caffi, Tito; Ciliberti, Nicola; Rossi, Vittorio
2015-01-01
A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period (“inflorescences clearly visible” to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period (“majority of berries touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control. PMID:26457808
Pair-flowered cymes in the Lamiales: structure, distribution and origin
Weber, Anton
2013-01-01
Background and Aims In the Lamiales, indeterminate thyrses (made up of axillary cymes) represent a significant inflorescence type. However, it has been largely overlooked that there occur two types of cymes: (1) ordinary cymes, and (2) ‘pair-flowered cymes’ (PFCs), with a flower pair (terminal and front flower) topping each cyme unit. PFCs are unique to the Lamiales and their distribution, origin and phylogeny are not well understood. Methods The Lamiales are screened as to the occurrence of PFCs, ordinary cymes and single flowers (constituting racemic inflorescences). Key Results PFCs are shown to exhibit a considerable morphological and developmental diversity and are documented to occur in four neighbouring taxa of Lamiales: Calceolariaceae, Sanango, Gesneriaceae and Plantaginaceae. They are omnipresent in the Calceolariaceae and almost so in the Gesneriaceae. In the Plantaginaceae, PFCs are restricted to the small sister tribes Russelieae and Cheloneae (while the large remainder has single flowers in the leaf/bract axils; ordinary cymes do not occur). Regarding the origin of PFCs, the inflorescences of the genus Peltanthera (unplaced as to family; sister to Calceolariaceae, Sanango and Gesneriaceae in most molecular phylogenies) support the idea that PFCs have originated from paniculate systems, with the front-flowers representing remnant flowers. Conclusions From the exclusive occurrence of PFCs in the Lamiales and the proximity of the respective taxa in molecular phylogenies it may be expected that PFCs have originated once, representing a synapomorphy for this group of taxa and fading out within the Plantaginaceae. However, molecular evidence is ambiguous. Depending on the position of Peltanthera (depending in turn on the kind and number of genes and taxa analysed) a single, a double (the most probable scenario) or a triple origin appears conceivable. PMID:23884395
Ikegami, Hidetoshi; Nogata, Hitoshi; Inoue, Yoshiaki; Himeno, Shuichi; Yakushiji, Hiroshi; Hirata, Chiharu; Hirashima, Keita; Mori, Masashi; Awamura, Mitsuo; Nakahara, Takao
2013-12-16
Because the floral induction occurs in many plants when specific environmental conditions are satisfied, most plants bloom and bear fruit during the same season each year. In fig, by contrast, the time interval during which inflorescence (flower bud, fruit) differentiation occurs corresponds to the shoot elongation period. Fig trees thus differ from many species in their reproductive growth characteristics. To date, however, the molecular mechanisms underlying this unorthodox physiology of floral induction and fruit setting in fig trees have not been elucidated. We isolated a FLOWERING LOCUS T (FT)-like gene from fig and examined its function, characteristics, and expression patterns. The isolated gene, F. carica FT (FcFT1), is single copy in fig and shows the highest similarity at the amino acid level (93.1%) to apple MdFT2. We sequenced its upstream region (1,644 bp) and identified many light-responsive elements. FcFT1 was mainly expressed in leaves and induced early flowering in transgenic tobacco, suggesting that FcFT1 is a fig FT ortholog. Real-time reverse-transcription PCR analysis revealed that FcFT1 mRNA expression occurred only in leaves at the lower nodes, the early fruit setting positions. mRNA levels remained a constant for approximately 5 months from spring to autumn, corresponding almost exactly to the inflorescence differentiation season. Diurnal variation analysis revealed that FcFT1 mRNA expression increased under relative long-day and short-day conditions, but not under continuous darkness. These results suggest that FcFT1 activation is regulated by light conditions and may contribute to fig's unique fruit-setting characteristics.
Water relations and plant size aspects of flowering for Agave deserti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
1987-03-01
The percentage of rosettes of the monocarpic perennial Agave deserti that flowered annually in the north-western Sonoran Desert varied ca. 50-fold for the 8 yr considered. The number of days when the soil water potential in the root zone was above -0.5 MPa, enabling A. deserti to take up water, was approximately linearly related to the annual precipitation, which also varied considerably year-to-year. The percentage of flowering in a particular year could not be predicted from the number of wet days in that year, the year before, or 3 yr before (r/sup 2/ less than or equal to .10, Pmore » > .5), but there was a positive correlation between percentage of flowering and the number of wet days 2 yr previously (r/sup 2/ = .33, P = .1). Also, years with much flowering tended to alternate with those of little flowering (r/sup 2/ = .64, P = .05). Indeed, 95% of the annual variation in the percentage of the rosettes that flowered could be accounted for by the year-to-year alternations together with the number of wet days 2 yr before the flowering (P = .01). Although over 90% of the rosettes with inflorescences were large, averaging 66 leaves and inflorescences 4 m tall, flowering also occurred for a few small rosettes, averaging only nine leaves and inflorescences only 0.8 m tall. The small flowering rosettes were all attached to large flowering rosettes by rhizomes with living cortical cells, suggesting that a hormone or other chemical signal/condition could be passed to the small rosettes leading to their precocious flowering.« less
Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies.
Scopece, G; Schiestl, F P; Cozzolino, S
2015-03-01
Pollination systems differ in pollen transfer efficiency, a variable that may influence the evolution of flower number. Here we apply a comparative approach to examine the link between pollen transfer efficiency and the evolution of inflorescence size in food and sexually deceptive orchids. We examined pollination performance in nine food-deceptive, and eight sexually deceptive orchids by recording pollen removal and deposition in the field. We calculated correlations between reproductive success and flower number (as a proxy for resources allocated during reproductive process), and directional selection differentials were estimated on flower number for four species. Results indicate that sexually deceptive species experience decreased pollen loss compared to food-deceptive species. Despite producing fewer flowers, sexually deceptive species attained levels of overall pollination success (through male and female function) similar to food-deceptive species. Furthermore, a positive correlation between flower number and pollination success was observed in food-deceptive species, but this correlation was not detected in sexually deceptive species. Directional selection differentials for flower number were significantly higher in food compared to sexually deceptive species. We suggest that pollination systems with more efficient pollen transfer and no correlation between pollination success and number of flowers produced, such as sexual deception, may allow the production of inflorescences with fewer flowers that permit the plant to allocate fewer resources to floral displays and, at the same time, limit transpiration. This strategy can be particularly important for ecological success in Mediterranean water-deprived habitats, and might explain the high frequency of sexually deceptive species in these specialised ecosystems. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Comparative Floral Development of Mir-Grown and Ethylene-Treated, Earth-Grown Super Dwarf Wheat
NASA Technical Reports Server (NTRS)
Campbell, William F.; Salisbury, Frank B.; Bugbee, Bruce; Klassen, Steven; Naegle, Erin; Strickland, Darren T.; Bingham, Gail E.; Levinskikh, Margarita; Iljina, Galena M.; Veselova, Tatjana D.
2001-01-01
To study plant growth in microgravity, we grew Super Dwarf wheat (Triticum aestivum L.) in the Svet growth chamber onboard the orbiting Russian space station, Mir, and in identical ground control units at the Institute of BioMedical Problems in Moscow, Russia. Seedling emergence was 56% and 73% in the two root-module compartments on Mir and 75% and 90% on Earth. Growth was vigorous (produced ca. 1 kg dry mass), and individual plants produced 5 to 8 tillers on Mir compared with 3 to 5 on Earth-grown controls. Upon harvest in space and return to Earth, however, all inflorescences of the flight-grown plants were sterile. To ascertain if Super Dwarf wheat responded to the 1.1 to 1.7 micromol/mol atmospheric levels of ethylene measured on the Mir prior to and during flowering, plants on earth were exposed to 0, 1, 3, 10, and 20 micromol/mol of ethylene gas and 1200 micromol/mol CO2 from 7d after emergence to maturity. As in our Mir wheat, plant height, awn length, and the flag leaf were significantly shorter in the ethylene-exposed plants than in controls; inflorescences also exhibited 100% sterility. Scanning electron microscopic (SEM) examination of florets from Mir-grown and ethylene-treated, earth-grown plants showed that development ceased prior to anthesis, and the anthers did not dehisce. Laser scanning confocal microscopic (LSCM) examination of pollen grains from Mir and ethylene-treated plants on earth exhibited zero, one, and occasionally two, but rarely three nuclei; pollen produced in the absence of ethylene was always trinucleate, the normal condition. The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity.
OsRAMOSA2 Shapes Panicle Architecture through Regulating Pedicel Length.
Lu, Huan; Dai, Zhengyan; Li, Ling; Wang, Jiang; Miao, Xuexia; Shi, Zhenying
2017-01-01
The panicle architecture of rice is an important characteristic that influences reproductive success and yield. It is largely determined by the number and length of the primary and secondary branches. The number of panicle branches is defined by the inflorescence meristem state between determinacy and indeterminacy; for example, the maize ramosa2 ( ra2 ) mutant has more branches in its tassel through loss of spikelet determinacy. Some genes and factors influencing the number of primary and secondary branches have been studied, but little is known about the molecular mechanism underlying pedicel development, which also influences panicle architecture. We report here that rice OsRAMOSA2 ( OsRA2 ) gene modifies panicle architecture through regulating pedicel length. Ectopic expression of OsRA2 resulted in a shortened pedicel while inhibition of OsRA2 through RNA interference produced elongated pedicel. In addition, OsRA2 influenced seed morphology. The OsRA2 protein localized to the nucleus and showed transcriptional activation in yeast; in accordance with its function in pedicel development, OsRA2 mRNA was enriched in the anlagen of axillary meristems, such as primary and secondary branch meristems and the spikelet meristems of young panicles. This indicates a conserved role of OsRA2 for shaping the initial steps of inflorescence architecture. Genetic analysis revealed that OsRA2 may control panicle architecture using the same pathway as that of the axillary meristem gene LAX1 ( LAX PANICLE1 ). Moreover, OsRA2 acted downstream of RCN2 in regulating pedicel and branch lengths, but upstream of RCN2 for control of the number of secondary branches, indicating that branch number and length development in the panicle were respectively regulated using parallel pathway. Functional conservation between OsRA2 and AtLOB , and the conservation and diversification of RA2 in maize and rice are also discussed.
Baranska, Malgorzata; Schulz, Hartwig; Rosch, Petra; Strehle, Marion A; Popp, Jurgen
2004-10-01
This paper demonstrates the special potential of vibrational NIR FT Raman microspectroscopy for the study of fennel fruits, chamomile inflorescence and curcuma roots to obtain detailed information about their microstructure and chemical composition. Microscopic Raman maps of fennel fruits demonstrate that anethole, which is the main essential oil component, is present in the whole mericarp with highest concentration at the top of the fruit. In situ measurements obtained of the essential oil cells are dominated by two bands observed at 1657 cm(-1) and 1609 cm(-1) which are characteristic for anethole. Raman images of chamomile inflorescence show that spiroethers, identified by significant bands between 2150 and 2250 cm(-1), are accumulated in the middle part of the flower head. Due to the intense curcumin bands in the Raman spectrum of curcuma root, the distribution of this dyeing substance can be clearly determined; highest concentration of curcumin was observed on the core of the root.
Armas, Kaylin; Rojas, Janne; Rojas, Luis; Morales, Antonio
2012-09-01
The leaves and inflorescences of five species of Tagetes, family Asteraceae, were collected from different locations in Mérida state, Venezuela, and their essential oils analyzed by GC and GC/MS. Several differences were observed in the composition of these oils, mainly regarding the major components, which for T. caracasana were trans-ocimenone (64.3%) and cis-tagetone (13.7%), and for T. erecta, piperitone (35.9%) and terpinolene (22.2%). High amounts of trans-anethole (87.5%) and estragole (10.7%) were observed in T. filifolia, while T. subulata essential oil contained terpinolene (26.0%), piperitenone (13.1%) and limonene (10.8%). For T. patula, two different oil samples were analyzed, leaves (TPL) and inflorescences (TPI). The TPL oil showed terpinolene (20.9%) and piperitenone (14.0%) as main components, while the TPI sample was composed mainly of beta-caryophyllene (23.7%), terpinolene (15.6%) and cis-beta-ocimene (15.5%).
Three new species of Solanum (Brevantherum Clade) endemic to the Brazilian Atlantic Forest
Giacomin, Leandro L.; Stehmann, João R.
2014-01-01
Abstract Three new Brazilian species of the Brevantherum clade of Solanum (Solanaceae) are described, all closely related to the poorly known Solanum inornatum Witasek. Solanum bradei Giacomin & Stehmann, sp. nov., and Solanum kriegeri Giacomin & Stehmann, sp. nov., differ from S. inornatum in having very small deltate calyx lobes that are not accrescent in fruit. Solanum bradei is a shrub up to 1.8 m with generally pedunculate inflorescences and tiny translucent fruits, whereas Solanum kriegeri is a dwarf glabrescent plant growing on sandy soils in cloud forests, with larger fruits and sessile to subsessile inflorescence. Solanum friburgense Giacomin & Stehmann, sp. nov., has linear calyx lobes like S. inornatum, and is characterized by its 2-foliate sympodia and leaf pubescence, with trichomes concentrated on leaf veins. The species here described and illustrated are restricted to the mountain ranges of Mantiqueira and Serra do Mar in the Atlantic forests of southeastern Brazil and are all of considerable conservation concern. PMID:25009438
Onofri, Chiara; de Meijer, Etienne P M; Mandolino, Giuseppe
2015-08-01
Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knio, K M; Usta, J; Dagher, S; Zournajian, H; Kreydiyyeh, S
2008-03-01
This study investigates the potential of essential oils from commonly used medical and culinary herbs in Lebanon as an environmentally safe measure to control the seaside mosquito, Ochlerotatus caspius. The composition of essential oils extracted from parsley seeds and leaves, alpine thyme inflorescences, anis seeds, and coriander fruits were analyzed by GC-MS, and the major components of these oils were found to be thymol, sabinene, carvacrol, anethole, and linalool, respectively. Mosquito larvicidal assays were conducted to evaluate the LC(50) and LC(90) after 24 and 48h of the essential oils and their major constituents. All of the tested oils proved to have strong larvicidal activity (LC(50): 15-156ppm) against Oc. caspius fourth instars, with the most potent oil being thyme inflorescence extract, followed by parsley seed oil, aniseed oil, and then coriander fruit oil. Toxicity of each oil major constituent was also estimated and compared to a reported larvicidal compound, eugenol.
Capitate glandular trichomes of Paragutzlaffia henryi harbor new phytotoxic labdane diterpenoids.
Wang, Ying; Luo, Shi-Hong; Hua, Juan; Liu, Yan; Jing, Shu-Xi; Li, Xiao-Nian; Li, Sheng-Hong
2015-11-18
The morphology and chemical profile of the capitate glandular trichomes (CGTs) of Paragutzlaffia henryi (Acanthaceae) were investigated. Four new labdane diterpenoids named paraguhenryisins A-D (1-4), together with the known physacoztomatin (5), were localized to the CGTs using laser microdissection coupled with cryogenic (1)H NMR and HPLC analyses and were traced and isolated from the CGT extract of inflorescences. Their structures were determined by spectroscopic methods and single-crystal X-ray diffraction. Bioassays indicated significant inhibitory effect for these diterpenoids on Arabidopsis thaliana seed germination and seedling root elongation. The most potent inhibitor, paraguhenryisin C (3), was interestingly detected in both the rhizosphere soil and water rinsed inflorescences extract of P. henryi but not the roots, with average contents in the rhizosphere soil relevant to its phytotoxic EC50 values. These results suggested that phytotoxic labdane diterpenoids in the CGTs might be released into the environment as a defensive measure for P. henryi against other competitive plants.
Phenology of Racomitrium lanuginosum growing at a seasonally snow-covered site on Mt. Fuji, Japan
NASA Astrophysics Data System (ADS)
Maruo, Fumino; Imura, Satoshi
2016-12-01
We investigated the seasonality of the development of the gametangia and sporophytes of Racomitrium lanuginosum growing at a seasonally snow-covered site (ca. 2200 m altitude) on Mt. Fuji, Central Honshu, Japan. Shoots of R. lanuginosum were collected every 2 weeks during the snow-free period (June-November) in 2014. The number of inflorescences and the numbers, sizes, and developmental stages of the male and female gametangia and sporophytes were recorded. Archegonia developed quickly in early spring, but antheridia took longer to develop from the previous summer. Fertilization occurred in June and July and spore dispersal occurred in June of the following year. The archegonia took 1 month to mature, the antheridia took 7-10 months, and the sporophytes took 10 months. The development of the antheridia and sporophytes stopped during the winter when the study site was covered by snow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...
2016-03-01
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T.; Galway, Moira E.; Mansfield, Shawn D.; Hocart, Charles H.; Wasteneys, Geoffrey O.
2013-01-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1’s permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature. PMID:23532584
Fujita, Miki; Himmelspach, Regina; Ward, Juliet; Whittington, Angela; Hasenbein, Nortrud; Liu, Christine; Truong, Thy T; Galway, Moira E; Mansfield, Shawn D; Hocart, Charles H; Wasteneys, Geoffrey O
2013-05-01
Multiple cellulose synthase (CesA) subunits assemble into plasma membrane complexes responsible for cellulose production. In the Arabidopsis (Arabidopsis thaliana) model system, we identified a novel D604N missense mutation, designated anisotropy1 (any1), in the essential primary cell wall CesA1. Most previously identified CesA1 mutants show severe constitutive or conditional phenotypes such as embryo lethality or arrest of cellulose production but any1 plants are viable and produce seeds, thus permitting the study of CesA1 function. The dwarf mutants have reduced anisotropic growth of roots, aerial organs, and trichomes. Interestingly, cellulose microfibrils were disordered only in the epidermal cells of the any1 inflorescence stem, whereas they were transverse to the growth axis in other tissues of the stem and in all elongated cell types of roots and dark-grown hypocotyls. Overall cellulose content was not altered but both cell wall crystallinity and the velocity of cellulose synthase complexes were reduced in any1. We crossed any1 with the temperature-sensitive radial swelling1-1 (rsw1-1) CesA1 mutant and observed partial complementation of the any1 phenotype in the transheterozygotes at rsw1-1's permissive temperature (21°C) and full complementation by any1 of the conditional rsw1-1 root swelling phenotype at the restrictive temperature (29°C). In rsw1-1 homozygotes at restrictive temperature, a striking dissociation of cellulose synthase complexes from the plasma membrane was accompanied by greatly diminished motility of intracellular cellulose synthase-containing compartments. Neither phenomenon was observed in the any1 rsw1-1 transheterozygotes, suggesting that the proteins encoded by the any1 allele replace those encoded by rsw1-1 at restrictive temperature.
Xylem development in prunus flower buds and the relationship to deep supercooling.
Ashworth, E N
1984-04-01
Xylem development in eight Prunus species was examined and the relationship to deep supercooling assessed. Dormant buds of six species, P. armeniaca, P. avium, P. cerasus, P. persica, P. salicina, and P. sargentii deep supercooled. Xylem vessel elements were not observed within the dormant floral primordia of these species. Instead, discrete bundles containing procambial cells were observed. Vascular differentiation resumed and xylem continuity was established during the time that the capacity to deep supercool was lost. In P. serotina and P. virginiana, two species which do not supercool, xylem vessels ran the length of the inflorescence and presumably provided a conduit for the spread of ice into the bud. The results support the hypothesis that the lack of xylem continuity is an important feature of buds which deep supercool.
Paquet, Nicolas; Bernadet, Marie; Morin, Halima; Traas, Jan; Dron, Michel; Charon, Celine
2005-06-01
Poaceae species present a conserved distichous phyllotaxy (leaf position along the stem) and share common properties with respect to leaf initiation. The goal of this work was to determine if these common traits imply common genes. Therefore, homologues of the maize TERMINAL EAR1 gene in Poaceae were studied. This gene encodes an RNA-binding motif (RRM) protein, that is suggested to regulate leaf initiation. Using degenerate primers, one unique tel (terminal ear1-like) gene from seven Poaceae members, covering almost all the phylogenetic tree of the family, was identified by PCR. These genes present a very high degree of similarity, a much conserved exon-intron structure, and the three RRMs and TEL characteristic motifs. The evolution of tel sequences in Poaceae strongly correlates with the known phylogenetic tree of this family. RT-PCR gene expression analyses show conserved tel expression in the shoot apex in all species, suggesting functional orthology between these genes. In addition, in situ hybridization experiments with specific antisense probes show tel transcript accumulation in all differentiating cells of the leaf, from the recruitment of leaf founder cells to leaf margins cells. Tel expression is not restricted to initiating leaves as it is also found in pro-vascular tissues, root meristems, and immature inflorescences. Therefore, these results suggest that TEL is not only associated with leaf initiation but more generally with cell differentiation in Poaceae.
Nakamura, Moritaka; Toyota, Masatsugu; Tasaka, Masao; Morita, Miyo Terao
2011-01-01
Higher plants use the sedimentation of amyloplasts in statocytes as statolith to sense the direction of gravity during gravitropism. In Arabidopsis thaliana inflorescence stem statocyte, amyloplasts are in complex movement; some show jumping-like saltatory movement and some tend to sediment toward the gravity direction. Here, we report that a RING-type E3 ligase SHOOT GRAVITROPISM9 (SGR9) localized to amyloplasts modulates amyloplast dynamics. In the sgr9 mutant, which exhibits reduced gravitropism, amyloplasts did not sediment but exhibited increased saltatory movement. Amyloplasts sometimes formed a cluster that is abnormally entangled with actin filaments (AFs) in sgr9. By contrast, in the fiz1 mutant, an ACT8 semidominant mutant that induces fragmentation of AFs, amyloplasts, lost saltatory movement and sedimented with nearly statically. Both treatment with Latrunculin B, an inhibitor of AF polymerization, and the fiz1 mutation rescued the gravitropic defect of sgr9. In addition, fiz1 decreased saltatory movement and induced amyloplast sedimentation even in sgr9. Our results suggest that amyloplasts are in equilibrium between sedimentation and saltatory movement in wild-type endodermal cells. Furthermore, this equilibrium is the result of the interaction between amyloplasts and AFs modulated by the SGR9. SGR9 may promote detachment of amyloplasts from AFs, allowing the amyloplasts to sediment in the AFs-dependent equilibrium of amyloplast dynamics. PMID:21602290
Spagnolo, Alessandro; Larignon, Philippe; Magnin-Robert, Maryline; Hovasse, Agnès; Cilindre, Clara; Van Dorsselaer, Alain; Clément, Christophe; Schaeffer-Reiss, Christine; Fontaine, Florence
2014-01-01
Botryosphaeria dieback is a fungal grapevine trunk disease that currently represents a threat for viticulture worldwide because of the important economical losses due to reduced yield of affected plants and their premature death. Neofusicoccum parvum and Diplodia seriata are among the causal agents. Vine green stems were artificially infected with N. parvum or D. seriata at the onset of three different phenological stages (G stage (separated clusters), flowering and veraison). Highest mean lesion lengths were recorded at flowering. Major proteome changes associated to artificial infections during the three different phenological stages were also reported using two dimensional gel electrophoresis (2D)-based analysis. Twenty (G stage), 15 (flowering) and 13 (veraison) differentially expressed protein spots were subjected to nanoLC-MS/MS and a total of 247, 54 and 25 proteins were respectively identified. At flowering, a weaker response to the infection was likely activated as compared to the other stages, and some defense-related proteins were even down regulated (e.g., superoxide dismutase, major latex-like protein, and pathogenesis related protein 10). Globally, the flowering period seemed to represent the period of highest sensitivity of grapevine to Botryosphaeria dieback agent infection, possibly being related to the high metabolic activity in the inflorescences. PMID:24886812
NASA Technical Reports Server (NTRS)
Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
2003-01-01
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.
Evidence of protocarnivory in triggerplants (Stylidium spp.; Stylidiaceae).
Darnowski, D W; Carroll, D M; Płachno, B; Kabanoff, E; Cinnamon, E
2006-11-01
Australian triggerplants (Stylidium spp.; Stylidiaceae) trap small insects using mucilage-secreting glandular hairs held at various points on their inflorescence stems and flower parts. Triggerplants are generally found in habitats also containing genera of plants already accepted as carnivorous, two of which (Drosera, Byblis) use the same basic mechanism as Stylidium to trap their prey. In the herbarium, sheets of triggerplants and of accepted groups of carnivorous plants held similar numbers of trapped insects, and in the field, trapping of small prey per unit of glandular surface area was the same at a given site for triggerplants and for nearby carnivorous plants at three sites in northern Australia. Even more important, protease activity was produced by glandular regions of both triggerplants and Drosera after induction with yeast extract. A panel of negative and positive controls, including use 1) of plants grown in tissue culture, which therefore lack surface microorganisms, and 2) of protease inhibitors, shows that this activity 1) is generated by the glandular regions of the triggerplant itself, not by organisms that might reside on the surface of the plants, and 2) is due to proteases. All of this evidence taken together provides strong evidence of protocarnivory in Stylidium, something not previously suggested in the scientific literature, though the insect trapping has been noted informally. Experiments remain to be done to determine nutrient uptake, so triggerplants may well be fully carnivorous.
Erect panicle2 encodes a novel protein that regulates panicle erectness in indica rice.
Zhu, Keming; Tang, Ding; Yan, Changjie; Chi, Zhengchang; Yu, Hengxiu; Chen, Jianmin; Liang, Jiansheng; Gu, Minghong; Cheng, Zhukuan
2010-02-01
Rice (Oryza sativa L.) inflorescence (panicle) architecture is an important agronomic trait for rice breeding. A number of high-yielding japonica rice strains, characterized by an erect panicle (EP) of their architecture, have been released as commercial varieties in China. But no EP-type indica varieties are released so far. Here, we identified two allelic erect-panicle mutants in indica rice, erect panicle2-1 (ep2-1) and erect panicle2-2 (ep2-2), exhibiting the characteristic erect panicle phenotype. Both mutants were derived from spontaneous mutation. We cloned the EP2 gene by way of a map-based cloning strategy, and a transgenic complementation test rescued the phenotype of ep2-1. Anatomical investigations revealed that the ep2 mutants have more vascular bundles and a thicker stem than that of wild-type plants, explaining the panicle erectness phenotype in ep2 mutants. It was shown that EP2 was specifically expressed in the vascular bundles of internodes by GUS staining and RT-PCR. EP2 encodes a novel plant-specific protein, which localizes to the endoplasmic reticulum with unknown biochemical function. In addition, EP2 also regulates other panicle characteristics, such as panicle length and grain size, but grain number per panicle shows little change, indicating that the mutation of the ep2 gene could be applied in EP-type indica rice breeding.
Farag, Mohamed A; Sharaf Eldin, Mohamed G; Kassem, Hanaa; Abou el Fetouh, Mohamed
2013-01-01
Brassica napus L. is a crop widely grown for its oil production and other nutritional components in the seed. In addition to the seed, other organs contain a wide range of phenolic metabolites although they have not been investigated to the same extent as in seeds. To define and compare the phytochemical composition of B. napus L. organs, namely the root, stem, leaf, inflorescence and seeds. Non-targeted metabolomic analysis via UPLC-QTOF-MS was utilised in order to localise compounds belonging to various chemical classes (i.e. oxygenated fatty acids, flavonols, phenolic acids and sinapoyl choline derivatives). The vast majority of identified metabolites were flavonol glycosides that accumulated in most of the plant organs. Whereas other classes were detected predominantly in specific organs, i.e. sinapoyl cholines were present uniquely in seeds. Furthermore, variation in the accumulation pattern of metabolites from the same class was observed, particularly in the case of quercetin, kaempferol and isorhamnetin flavonols. Anti-oxidant activity, based on 2,2-diphenyl-1-picrylhdrazyl analysis was observed for all extracts, and correlated to some extent with total flavonoid content. This study provides the most complete map for polyphenol composition in B. napus L. organs. By describing the metabolites profile in B. napus L., this study provides the basis for future investigations of seeds for potential health and/or medicinal use. Copyright © 2012 John Wiley & Sons, Ltd.
WRKY13 acts in stem development in Arabidopsis thaliana.
Li, Wei; Tian, Zhaoxia; Yu, Diqiu
2015-07-01
Stems are important for plants to grow erectly. In stems, sclerenchyma cells must develop secondary cell walls to provide plants with physical support. The secondary cell walls are mainly composed of lignin, xylan and cellulose. Deficiency of overall stem development could cause weakened stems. Here we prove that WRKY13 acts in stem development. The wrky13 mutants take on a weaker stem phenotype. The number of sclerenchyma cells, stem diameter and the number of vascular bundles were reduced in wrky13 mutants. Lignin-synthesis-related genes were repressed in wrky13 mutants. Chromatin immunoprecipitation assays proved that WRKY13 could directly bind to the promoter of NST2. Taken together, we proposed that WRKY13 affected the overall development of stem. Identification of the role of WRKY13 may help to resolve agricultural problems caused by weaker stems. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Studies on the floral anatomy and scent chemistry of Titan Arum (Amorphophallus titanum, Araceae)
USDA-ARS?s Scientific Manuscript database
Titan arum (Amorphophallus titanum)is popularly known for its world's largest unbranched inflorescence. It is also commonly called 'corpse flower' or 'carrion flower' due to the characteristic, putrid odor of the bloom. The present study illustrates detailed anatomy and micromorphology of various...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES Cut Flowers § 319.74-1 Definitions. Administrator. The... accordance with § 319.6. Cut flower. The highly perishable commodity known in the commercial flower-producing industry as a cut flower, which is the severed portion of a plant, including the inflorescence and any...
Characterization of novel multi-seeded (msd) mutants of sorghum for increasing grain number
USDA-ARS?s Scientific Manuscript database
The tribe Andropogoneae of the Poaceae family exhibits highly branched inflorescence known as panicle or tassel. Characteristically, each spikelet in a panicle or tassel comprise of a combination of sessile/fertile and sterile florets. In sorghum, (Sorghum bicolor L. Moench), the existing cultivars ...
The Peanut Plant and Light: Spermidines from Peanut Flowers and Studies of their Photoisomerization
USDA-ARS?s Scientific Manuscript database
Early history and significance of the peanut crop is discussed. Annual world production of peanuts at 30 million tons makes this crop one of the most important agricultural commodities. Unusual physiology, inflorescence, and infructescence of the peanut plant make it an attractive object for scienti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xinlu; Zale, Janice; Chen, Feng
2013-01-22
Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression,more » and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient expression efficiency. Throughout these analyses, using plasmids with the hygromycin selectable marker, it was determined that 1.5 mg l-1 hygromycin was the optimal dose for genetic transformation of foxtail millet. In contrast, the nptII selectable marker appeared to yield many escapes. Three methods of transformation were employed in an attempt to produce stable transformants. An in planta transformation experiment, similar to the floral dip method used in Arabidopsis, which utilized a red fluorescent protein pporRFP from coral Porites porites and the hygromycin selectable marker, was tested using immature inflorescences. Although several plants were PCR positive using endpoint and Real-Time PCR and there was transient expression using pporRFP and GUS reporters, no plants were positive on Southern blot. Dipping in Agrobacterium may damage the anther or the pistil because seed production was significantly reduced. Agrobacterium transformation using embryogenic calli was also tested. Although hundreds of plants were regenerated from selection, none were positive using PCR. The third method was to wound germinated seeds with an Agrobacterium coated needle, but none of the plants were PCR positive. Although the Yugu1 genotype was recalcitrant to genetic transformation, several avenues of future research should be considered for foxtail millet. Calli from different foxtail millet genotypes should be screened and selected for regeneration potential, and some genotypes may be more amenable to transformation. Additional selectable markers should also be tested as hygromycin appears to be too stringent and there are too many escapes with nptII. This project has provided training for the following personnel: Dr. Xinlu Chen (postdoc), Xiaomei Liu (postdoc), Jayashree Desai (postdoc) and Kyle Berk (Undergraduate researcher). Conference presentations and peer-reviewed journal articles partly supported by this grant includes the following: 1. Baxter H., Equi R., Chen X, Berk K. and Zale J. Establishing Efficient in vitro Protocols For Foxtail Millet (Setaria italica L. cv. Yugi 1). Plant & Animal Genomes XVIII Conference XVIII, San Diego, California, January 2010 2. Chen X, Zale J and Chen F. The Regeneration and Transformation of Foxtail Millet (Setaria italica), A Model Biofuel Crop. Genomic Science Awardee Meeting IX and USDA-DOE Plant Feedstock Genomics for Bioenergy Awardee Meeting, Crystal City, Virginia, April 2011 3. Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011) The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66: 212-229.« less
Oliveira, D C; de Moraes, G J; Dias, C T S
2012-08-01
The coconut mite, Aceria guerreronis Keifer, is one of the main pests of coconut palms (Cocos nucifera) in northeastern Brazil. The objective of this study was to evaluate the levels of the coconut mite and other mites on coconut palms in the state of São Paulo and to estimate the possible role of predatory mites in the control of this pest. The effect of cultivated genotypes and sampling dates on the mite populations was also estimated. We sampled attached fruits, leaflets, inflorescences, and fallen fruits. The coconut mite was the main phytophagous mite found on attached and fallen fruits, with average densities of 110.0 and 20.5 mites per fruit, respectively. The prevalent predatory mites on attached and fallen fruits were Proctolaelaps bulbosus Moraes, Reis & Gondim Jr. and Proctolaelaps bickleyi (Bram), both Melicharidae. On leaflets, the tenuipalpids Brevipalpus phoenicis (Geijsks) and Tenuipalpus coyacus De Leon and the tetranychid Oligonychus modestus (Banks) were the predominant phytophagous mites. On both leaflets and inflorescences, the predominant predatory mites belonged to the Phytoseiidae. Neoseiulus baraki (Athias-Henriot) and Neoseiulus paspalivorus (De Leon), predators widely associated with the coconut mite in northeastern Brazil and several other countries, were not found. The low densities of the coconut mite in São Paulo could be related to prevailing climatic conditions, scarcity of coconut plantations (hampering the dispersion of the coconut mite between fields), and to the fact that some of the genotypes cultivated in the region are unfavorable for its development.
Hu, Ying-Xiong; Tao, Yan-Bin; Xu, Zeng-Fu
2017-01-01
Gibberellins (GAs) are plant hormones that play fundamental roles in plant growth and development. Gibberellin 2-oxidase (GA2ox) plays a direct role in determining the levels of bioactive GAs by catalyzing bioactive GAs or their immediate precursors to inactive forms. In this study, a GA2ox gene, designated JcGA2ox6, was isolated from Jatropha curcas. JcGA2ox6 is expressed in all tissues of adult Jatropha, with the highest expression level in male flowers and the lowest expression level in young leaves. Overexpression of JcGA2ox6 in Arabidopsis resulted in a typical dwarf phenotype, along with late flowering, smaller leaves and flowers, shorter siliques and smaller seeds. Similarly, when JcGA2ox6 was overexpressed in Jatropha, the transgenic plants exhibited a dwarf phenotype with dark-green leaves and smaller inflorescences, flowers, fruits and seeds. However, the flowering time of Jatropha was not affected by overexpression of JcGA2ox6, unlike that in the transgenic Arabidopsis. Moreover, the number of flowers per inflorescence, the weight of 10 seeds and the seed oil content were significantly decreased in transgenic Jatropha. The results indicated that overexpression of JcGA2ox6 had a great impact on the vegetative and reproductive growth of transgenic Jatropha. Furthermore, we found that the dwarf phenotype of transgenic Jatropha was caused by a decrease in endogenous bioactive GA4, which was correlated with the degree of dwarfism. PMID:29312375
Skubatz, Hanna; Howald, William N
2013-06-01
A novel NAD(P) reductase like protein (RL) belonging to a class of reductases involved in phenylpropanoid synthesis was previously purified to homogeneity from the Sauromatum guttatum appendix. The Sauromatum appendix raises its temperature above ambient temperature to ~30 °C on the day of inflorescence opening (D-day). Changes in the charge state distribution of the protein in electrospray ionization-mass spectrometry spectra were observed during the development of the appendix. RL adopted two conformations, state A (an extended state) that appeared before heat-production (D - 4 to D - 2), and state B (a compact state) that began appearing on D - 1 and reached a maximum on D-day. RL in healthy leaves of Arabidopsis is present in state A, whereas in thermogenic sporophylls of male cones of Encephalartos ferox is present in state B. These conformational changes strongly suggest an involvement of RL in heat-production. The biophysical properties of this protein are remarkable. It is self-assembled in aqueous solutions into micrometer sizes of organized morphologies. The assembly produces a broad range of cyclic and linear morphologies that resemble micelles, rods, lamellar micelles, as well as vesicles. The assemblies could also form network structures. RL molecules entangle with each other and formed branched, interconnected networks. These unusual assemblies suggest that RL is an oligomer, and its oligomerization can provide additional information needed for thermoregulation. We hypothesize that state A controls the plant basal temperature and state B allows a shift in the temperature set point to above ambient temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, H.; Chiecko, J; Punshon, T
2010-01-01
Several members of the Yellow Stripe-Like (YSL) family of proteins are transporters of metals that are bound to the metal chelator nicotianamine or the related set of mugineic acid family chelators known as phytosiderophores. Here, we examine the physiological functions of three closely related Arabidopsis (Arabidopsis thaliana) YSL family members, AtYSL1, AtYSL2, and AtYSL3, to elucidate their role(s) in the allocation of metals into various organs of Arabidopsis. We show that AtYSL3 and AtYSL1 are localized to the plasma membrane and function as iron transporters in yeast functional complementation assays. By using inflorescence grafting, we show that AtYSL1 and AtYSL3more » have dual roles in reproduction: their activity in the leaves is required for normal fertility and normal seed development, while activity in the inflorescences themselves is required for proper loading of metals into the seeds. We further demonstrate that the AtYSL1 and AtYSL2 proteins, when expressed from the AtYSL3 promoter, can only partially rescue the phenotypes of a ysl1ysl3 double mutant, suggesting that although these three YSL transporters are closely related and have similar patterns of expression, they have distinct activities in planta. In particular, neither AtYSL1 nor AtYSL2 is able to functionally complement the reproductive defects exhibited by ysl1ysl3 double mutant plants.« less
Toward a Framework for Multicultural STEM-Focused Career Interventions.
Byars-Winston, Angela
2014-12-14
Numerous federal and national commissions have called for policies, funds, and initiatives aimed at expanding the nation's science, technology, engineering, and mathematics (STEM) workforce and education investments to create a significantly larger, more diverse talent pool of individuals who pursue technical careers. Career development professionals are poised to contribute to the equity discourse about broadening STEM participation. However, few are aware of STEM-related career development matters, career opportunities and pathways, or strategies for promoting STEM pursuits. The author summarizes STEM education and workforce trends and articulates an equity imperative for broadening and diversifying STEM participation. The author then offers a multicultural STEM-focused career development framework to encourage career development professionals' knowledge and awareness of STEM education and careers and delineates considerations for practice aimed at increasing the attainment and achievement of diverse groups in STEM fields.
Toward a Framework for Multicultural STEM-Focused Career Interventions
Byars-Winston, Angela
2015-01-01
Numerous federal and national commissions have called for policies, funds, and initiatives aimed at expanding the nation's science, technology, engineering, and mathematics (STEM) workforce and education investments to create a significantly larger, more diverse talent pool of individuals who pursue technical careers. Career development professionals are poised to contribute to the equity discourse about broadening STEM participation. However, few are aware of STEM-related career development matters, career opportunities and pathways, or strategies for promoting STEM pursuits. The author summarizes STEM education and workforce trends and articulates an equity imperative for broadening and diversifying STEM participation. The author then offers a multicultural STEM-focused career development framework to encourage career development professionals' knowledge and awareness of STEM education and careers and delineates considerations for practice aimed at increasing the attainment and achievement of diverse groups in STEM fields. PMID:25750480
Developing design-based STEM education learning activities to enhance students' creative thinking
NASA Astrophysics Data System (ADS)
Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai
2018-01-01
Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.
i-STEM Summer Institute: An Integrated Approach to Teacher Professional Development in STEM
ERIC Educational Resources Information Center
Nadelson, Louis S.; Seifert, Anne; Moll, Amy J.; Coats, Bradley
2012-01-01
The importance of STEM education to societal developments provides justification for assuring K-12 teachers are prepared to teach the related content. Inservice teacher professional development is critical to achieving the goal of enhanced student knowledge of STEM. Combining the need for increased capacity to teach STEM and the extant literature…
USDA-ARS?s Scientific Manuscript database
In this study we characterized fusaria that were associated with mango malformation disease (MMD) in México. From 2002 to 2009, 141 strains were isolated from symptomatic mango inflorescences and vegetative tissues from various cultivars in eight geographically diverse states. Initially, isolates ...
USDA-ARS?s Scientific Manuscript database
Zoysia spp. are warm-season turfgrasses widely used across the southern United States in residential lawns, commercial landscapes, and golf courses for their superior heat and drought tolerances. Information regarding the population structure and levels of admixture present within U.S. germplasm col...
USDA-ARS?s Scientific Manuscript database
Many native grasses display seed shattering and other seed production problems. Basin wildrye (Leymus cinereus) and creeping wildrye (L. triticoides) are perennial Triticeae grasses native to western North America. In this study, variation in the number of florets per inflorescence, percent seed s...