Sample records for inflow control device

  1. Effect of inflow control on inlet noise of a cut-on fan. [in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Glaser, F. W.

    1980-01-01

    The control of turbulence and other inflow disturbances in anechoic chambers for static turbofan noise studies was studied. A cut-on, high tip speed fan stage was acoustically tested with three configurations of an inflow control device in an anechoic chamber. Although this was a cut-on design, rotor inflow interaction appeared to be a much stronger source of blade passing tone radiated from the inlet than rotor stator interaction for the 1.6 mean rotor chord separation. Aft external suction applied to the area where the inflow control device joined the inlet produced a further reduction in blade passing tone, suggesting that disturbances in the forward flow on the outside of the inlet were superimposed on the inlet boundary layer and were a significant source of tone noise.

  2. Comparison of several inflow control devices for flight simulation of fan tone noise using a JT15D-1 engine

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Jones, W. L.; Heidelberg, L. J.; Homyak, L.

    1980-01-01

    To enable accurate simulation of in-flight fan tone noise during ground static tests, four devices intended to reduce inflow disturbances and turbulence were tested with a JT15D-1 turbofan engine. These inflow control devices (ICD's) consisted of honeycomb/screen structures mounted over the engine inlet. The ICD's ranged from 1.6 to 4 fan diameters in size, and differed in shape and fabrication method. All the ICD's significantly reduced the BPF tone in the far-field directivity patterns, but the smallest ICD's apparently introduced propagating modes which could be recognized by additional lobes in the speeds; at supersonic fan tip speed the smallest ICD's had some measurable loss, but the largest had no loss. Data from a typical transducer show that the unsteady inflow distortion modes (turbulence) were eliminated or significantly reduced when either of the ICD's was installed. However, some steady inflow distortion modes remained.

  3. A compact inflow control device for simulating flight fan noise

    NASA Technical Reports Server (NTRS)

    Homyak, L.; Mcardle, J. G.; Heidelberg, L. J.

    1983-01-01

    Inflow control device (ICD's) of various shapes and sizes have been used to simulate inflight fan tone noise during ground static tests. A small, simple inexpensive ICD design was optimized from previous design and fabrication techniques. This compact two-fan-diameter ICD exhibits satisfactory acoustic performance characteristics without causing noise attenuation or redirection. In addition, it generates no important new noise sources. Design and construction details of the compact ICD are discussed and acoustic performance test results are presented.

  4. Passive control of a biventricular assist device with compliant inflow cannulae.

    PubMed

    Gregory, Shaun David; Pearcy, Mark John; Timms, Daniel

    2012-08-01

    Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  5. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  6. Variation of fan tone steadiness for several inflow conditions

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.

    1978-01-01

    An amplitude probability density function analysis technique for quantifying the degree of fan noise tone steadiness has been applied to data from a fan tested under a variety of inflow conditions. The test conditions included typical static operation, inflow control by a honeycomb/screen device and forward velocity in a wind tunnel simulating flight. The ratio of mean square sinusoidal-to-random signal content in the fundamental and second harmonic tones was found to vary by more than an order-of-magnitude. Some implications of these results concerning the nature of fan noise generation mechanisms are discussed.

  7. Evaluation of two inflow control devices for flight simulation of fan noise using a JT15D engine

    NASA Technical Reports Server (NTRS)

    Jones, W. L.; Mcardle, J. G.; Homyak, L.

    1979-01-01

    The program was developed to accurately simulate flight fan noise on ground static test stands. The results generally indicated that both the induct and external ICD's were effective in reducing the inflow turbulence and the fan blade passing frequency tone generated by the turbulence. The external ICD was essentially transparent to the propagating fan tone but the induct ICD caused attenuation under most conditions.

  8. Pringle's Maneuver With a Releasable Insulok Band.

    PubMed

    Chang, Yu-Chung

    2015-10-01

    Currently, there are many conventional instruments being applied to perform hepatic inflow control, the Pringle's maneuver, distal to the hepatic hilum during hepatic resections. We wondered if a commonly used Insulok band can be added. Insulok band is a plastic tying device molded in one piece with an excellent cam-lock mechanism. We have applied releasable Insulok band to the Pringle's maneuver in 10 partial hepatectomy cases, which are not suitable for application of Chang's needle. After opening the lesser omentum, the band was passed through the Winslow foramen to the lesser sac, and the portal triad was occluded by locking the band. During the intermittent reperfusion period, this Insulok band allowed easy and fast control of hepatic inflow with its simple releasable locking device. Single inflow block was used on 6 cases while repeated block on 4 cases for partial hepatectomy. The average ischemic time was 15.2 ± 8.2 minutes with an interval of 5 minutes. There was neither procedure-related morbidity nor mortality. No patient had developed postoperative hepatic failure or prolonged liver dysfunction. The efficacy of bleeding control was excellent and the average blood loss during Pringle's maneuver was 6 ± 12.6 mL. Furthermore, locking and unlocking of the Insulok band each took only 5 seconds. Releasable Insulok band is a simpler, faster, cheaper, and safe alternative to the conventional methods for blocking hepatic inflow in Pringle's maneuver, especially in those cases not suitable for using the Chang's needle. © The Author(s) 2014.

  9. Turbomachinery noise studies of the AiResearch QCGAT engine with inflow control

    NASA Technical Reports Server (NTRS)

    Mcardle, J. G.; Homyak, L.; Chrulski, D. D.

    1981-01-01

    The AiResearch Quiet Clean General Aviation Turbofan engine was tested on an outdoor test stand to compare the acoustic performance of two inflow control devices (ICD's) of similar design, and three inlet lips of different external shape. Only small performance differences were found. Far-field directivity patterns calculated by applicable existing analyses were compared with the measured tone and broadband patterns. For some of these comparisons, tests were made with an ICD to reduce rotor/inflow disturbance interaction noise, or with the acoustic suppression panels in the inlet or bypass duct covered with aluminum tape to determine hard wall acoustic performance. The comparisons showed that the analytical expressions used predict many directivity pattern features and trends, but can deviate in shape from the measured patterns under certain engine operating conditions. Some patterns showed lobes from modes attributable to rotor/engine strut interaction sources.

  10. Use and Complications of Operative Control of Arterial Inflow in Combat Casualties with Traumatic Lower-extremity Amputations Caused by Improvised Explosive Devices

    DTIC Science & Technology

    2013-08-01

    explosive devices Henrietta Poon, MRCS, Jonathan J. Morrison, MRCS, Jon C. Clasper, DPhil, FRCSEd(Orth), Mark J. Midwinter, MD, FRCS, and Jan O. Jansen...the IP group, compared with the EP, although this does not achieve statistical significance, likely owing to a lack of power within the study. The war

  11. Ventricular Assist Device implant (AB 5000) prototype cannula: In vitro assessment of MRI issues at 3-Tesla

    PubMed Central

    Shellock, Frank G; Valencerina, Samuel

    2008-01-01

    Purpose To evaluate MRI issues at 3-Tesla for a ventricular assist device (VAD). Methods The AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached (Abiomed, Inc., Danvers, MA) was evaluated for magnetic field interactions, heating, and artifacts at 3-Tesla. MRI-related heating was assessed with the device in a gelled-saline-filled, head/torso phantom using a transmit/received RF body coil while performing MRI at a whole body averaged SAR of 3-W/kg for 15-min. Artifacts were assessed for the main metallic component of this VAD (atrial cannula) using T1-weighted, spin echo and gradient echo pulse sequences. Results The AB5000 Ventricle with the prototype In-Flow Cannula and Out-Flow Cannula attached showed relatively minor magnetic field interactions that will not cause movement in situ. Heating was not excessive (highest temperature change, +0.8°C). Artifacts may create issues for diagnostic imaging if the area of interest is in the same area or close to the implanted metallic component of this VAD (i.e., the venous cannula). Conclusion The results of this investigation demonstrated that it would be acceptable for a patient with this VAD (AB5000 Ventricle with a prototype Nitinol wire-reinforced In-Flow Cannula and Out-Flow Cannula attached) to undergo MRI at 3-Tesla or less. Notably, it is likely that the operation console for this device requires positioning a suitable distance (beyond the 100 Gauss line or in the MR control room) from the 3-Tesla MR system to ensure proper function of the VAD. PMID:18495028

  12. An experimental investigation of two large annular diffusers with swirling and distorted inflow

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.

    1980-01-01

    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.

  13. Development of energy-saving devices for a full slow-speed ship through improving propulsion performance

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hun; Choi, Jung-Eun; Choi, Bong-Jun; Chung, Seok-Ho; Seo, Heung-Won

    2015-06-01

    Energy-saving devices for 317K VLCC have been developed from a propulsion standpoint. Two ESD candidates were designed via computational tools. The first device WAFon composes of flow-control fins adapted for the ship wake to reduce the loss of rotational energy. The other is WAFon-D, which is a WAFon with a duct to obtain additional thrust and to distribute the inflow velocity on the propeller plane uniform. After selecting the candidates from the computed results, the speed performances were validated with model-tests. The hydrodynamic characteristics of the ESDs may be found in improved hull and propulsive efficiencies through increased wake fraction.

  14. In vitro performance and principles of anti-siphoning devices.

    PubMed

    Freimann, Florian Baptist; Kimura, Takaoki; Stockhammer, Florian; Schulz, Matthias; Rohde, Veit; Thomale, Ulrich-Wilhelm

    2014-11-01

    Anti-siphon devices (ASDs) of various working principles were developed to overcome overdrainage-related complications associated with ventriculoperitoneal shunting. We aimed to provide comparative data on the pressure and flow characteristics of six different types of ASDs (gravity-assisted, membrane-controlled, and flow-regulated) in order to achieve a better understanding of these devices and their potential clinical application. We analyzed three gravity-dependent ASDs (ShuntAssistant [SA], Miethke; Gravity Compensating Accessory [GCA], Integra; SiphonX [SX], Sophysa), two membrane-controlled ASDs (Anti-Siphon Device [IASD], Integra; Delta Chamber [DC], Medtronic), and one flow-regulated ASD (SiphonGuard [SG], Codman). Defined pressure conditions within a simulated shunt system were generated (differential pressure 10-80 cmH2O), and the specific flow and pressure characteristics were measured. In addition, the gravity-dependent ASDs were measured in defined spatial positions (0-90°). The flow characteristics of the three gravity-assisted ASDs were largely dependent upon differential pressure and on their spatial position. All three devices were able to reduce the siphoning effect, but each to a different extent (flow at inflow pressure: 10 cmH2O, siphoning -20 cmH2O at 0°/90°: SA, 7.1 ± 1.2*/2.3 ±  0.5* ml/min; GCA, 10.5 ± 0.8/3.4 ± 0.4* ml/min; SX, 9.5 ± 1.2*/4.7 ± 1.9* ml/min, compared to control, 11.1 ± 0.4 ml/min [*p < 0.05]). The flow characteristics of the remaining ASDs were primarily dependent upon the inflow pressure effect (flow at 10 cmH2O, siphoning 0 cmH2O/ siphoning -20cmH2O: DC, 2.6 ± 0.1/ 4 ± 0.3* ml/min; IASD, 2.5 ± 0.2/ 0.8 ± 0.4* ml/min; SG, 0.8 ± 0.2*/ 0.2 ± 0.1* ml/min [*p < 0.05 vs. control, respectively]). The tested ASDs were able to control the siphoning effect within a simulated shunt system to differing degrees. Future comparative trials are needed to determine the type of device that is superior for clinical application.

  15. The effect of active control on the performance and wake characteristics of an axial-flow Marine Hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Vanness, Katherine; Stewart, Andy; Polagye, Brian; Aliseda, Alberto

    2016-11-01

    Turbulence-induced unsteady forcing on turbines extracting power from river, tidal, or ocean currents will affect performance, wake characteristics, and structural integrity. A laboratory-scale axial-flow turbine, 0 . 45 m in diameter, incorporating rotor speed sensing and independent blade pitch control has been designed and tested with the goal of increasing efficiency and/or decreasing structural loading. Laboratory experiments were completed in a 1 m wide, 0.75 m deep open-channel flume at moderate Reynolds number (Rec =6104 -2105) and turbulence intensity (T . I . = 2 - 10 %). A load cell connecting the hub to the shaft provided instantaneous forces and moments on the device, quantifying turbine performance under unsteady inflow and for different controls. To mitigate loads, blade pitch angles were controlled via individual stepper motors, while a six-axis load cell mounted at the root of one blade measured instantaneous blade forces and moments, providing insights into variable loading due to turbulent inflow and blade-tower interactions. Wake characteristics with active pitch control were compared to fixed blade pitch and rotor speed operation. Results are discussed in the context of optimization of design for axial-flow Marine Hydrokinetic turbines.

  16. Aerodynamic robustness in owl-inspired leading-edge serrations: a computational wind-gust model.

    PubMed

    Rao, Chen; Liu, Hao

    2018-06-08

    Owls are a master to achieve silent flight in gliding and flapping flights under natural turbulent environments owing to their unique wing morphologies. While the leading-edge serrations are recently revealed, as a passive flow control micro-device, to play a crucial role in aerodynamic force production and sound suppression [25], the characteristics of wind-gust rejection associated with leading-edge serrations remain unclear. Here we address a large-eddy simulation (LES)-based study of aerodynamic robustness in owl-inspired leading-edge serrations, which is conducted with clean and serrated wing models through mimicking wind-gusts under a longitudinal fluctuation in free-stream inflow and a lateral fluctuation in pitch angle over a broad range of angles of attack (AoAs) over 0° ≤ Φ ≤ 20°. Our results show that the leading-edge serration-based passive flow control mechanisms associated with laminar-turbulent transition work effectively under fluctuated inflow and wing pitch, indicating that the leading-edge serrations are of potential gust fluctuation rejection or robustness in aerodynamic performance. Moreover, it is revealed that the tradeoff between turbulent flow control (i.e., aero-acoustic suppression) and force production in the serrated model holds independently to the wind-gust environments: poor at lower AoAs but capable of achieving equivalent aerodynamic performance at higher AoAs > 15o compared to the clean model. Our results reveal that the owl-inspired leading-edge serrations can be a robust micro-device for aero-acoustic control coping with unsteady and complex wind environments in biomimetic rotor designs for various fluid machineries. © 2018 IOP Publishing Ltd.

  17. Numerical modeling of the near-field hydraulics of water wells.

    PubMed

    Houben, Georg J; Hauschild, Sarah

    2011-01-01

    Numerical flow models can be a useful tool for dimensioning water wells and to investigate the hydraulics in their near-field. Fully laminar flow can be assumed for all models calculated up to the screen. Therefore models can be used to predict--at least qualitatively, neglecting turbulent losses inside the well--the spatial distribution of inflow into the well and the overall hydraulic performance of different combinations of aquifer parameters and technical installations. Models for both horizontal (plan view) and vertical flow (cross section) to wells were calculated for a variety of setups. For the latter, this included variations of hydraulic conductivity of the screen, pump position, and aquifer heterogeneity. Models of suction flow control devices showed that they indeed can homogenize inflow, albeit at the cost of elevated entrance losses. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  18. Glue Embolization of a Blunt Traumatic Hepatic Arteriovenous Fistula under Inflow and Outflow Control.

    PubMed

    Mine, Takahiko; Murata, Satoru; Yasui, Daisuke; Yokota, Hiroyuki; Tajima, Hiroyuki; Kumita, Shin-ichiro

    2016-01-01

    We report on a rare case of blunt traumatic hepatic arteriovenous fistula arising from a pseudoaneurysm in a 35-year-old woman. Transarterial embolization was performed with n-butyl-2-cyanoacrylate, under inflow control with loose coil packing within the pseudoaneurysm and outflow control by balloon occlusion of the hepatic vein. A promising therapeutic outcome was achieved without any serious adverse events. Thus, the combination of these techniques to control inflow and outflow was successfully used to treat this rare hepatic vascular injury.

  19. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcher, Levi; Thomson, Jim; Talbert, Joe

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  20. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  1. A computational fluid dynamics (CFD) study of WEB-treated aneurysms: Can CFD predict WEB "compression" during follow-up?

    PubMed

    Caroff, Jildaz; Mihalea, Cristian; Da Ros, Valerio; Yagi, Takanobu; Iacobucci, Marta; Ikka, Léon; Moret, Jacques; Spelle, Laurent

    2017-07-01

    Recent reports have revealed a worsening of aneurysm occlusion between WEB treatment baseline and angiographic follow-up due to "compression" of the device. We utilized computational fluid dynamics (CFD) in order to determine whether the underlying mechanism of this worsening is flow related. We included data from all consecutive patients treated in our institution with a WEB for unruptured aneurysms located either at the middle cerebral artery or basilar tip. The CFD study was performed using pre-operative 3D rotational angiography. From digital subtraction follow-up angiographies patients were dichotomized into two groups: one with WEB "compression" and one without. We performed statistical analyses to determine a potential correlation between WEB compression and CFD inflow ratio. Between July 2012 and June 2015, a total of 22 unruptured middle cerebral artery or basilar tip aneurysms were treated with a WEB device in our department. Three patients were excluded from the analysis and the mean follow-up period was 17months. Eleven WEBs presented "compression" during follow-up. Interestingly, device "compression" was statistically correlated to the CFD inflow ratio (P=0.018), although not to aneurysm volume, aspect ratio or neck size. The mechanisms underlying the worsening of aneurysm occlusion in WEB-treated patients due to device compression are most likely complex as well as multifactorial. However, it is apparent from our pilot study that a high arterial inflow is, at least, partially involved. Further theoretical and animal research studies are needed to increase our understanding of this phenomenon. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. USEPA PAST AND PLANNED RESEARCH ON CONTROL OF INFILTRATION/INFLOW

    EPA Science Inventory

    From the mid 1960s-1980s, the USEPA conducted a series of research, development and demonstration projects on the characterization, cause and consequence, and control of infiltartion/inflow (I/I) in sanitary sewers under the Storm and Combined Sewer pollution Control Research pro...

  3. Sprinkler head revisited: momentum, forces, and flows in Machian propulsion

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2011-09-01

    Many experimenters, starting with Ernst Mach in 1883, have reported that if a device alternately sucks in and then expels a surrounding fluid, it moves in the same direction as if it only expelled fluid. This surprising phenomenon, which we call Machian propulsion, is explained by conservation of momentum: the outflow efficiently transfers momentum away from the device and into the surrounding medium, while the inflow can do so only by viscous diffusion. However, many previous theoretical discussions have focused instead on the difference in the shapes of the outflow and the inflow. Whereas the argument based on conservation is straightforward and complete, the analysis of the shapes of the flows is more subtle and requires conservation in the first place. Our discussion covers three devices that have usually been treated separately: the reverse sprinkler (also called the inverse, or Feynman sprinkler), the putt-putt boat, and the aspirating cantilever. We then briefly mention some applications of Machian propulsion, ranging from microengineering to astrophysics.

  4. Design changes in continuous-flow left ventricular assist devices and life-threatening pump malfunctions.

    PubMed

    Soltani, Sajjad; Kaufmann, Friedrich; Vierecke, Juliane; Kretzschmar, Alexandra; Hennig, Ewald; Stein, Julia; Hetzer, Roland; Krabatsch, Thomas; Potapov, Evgenij V

    2015-06-01

    The implantable continuous-flow left ventricular assist devices (LVADs) HeartMate II (HM II) and HeartWare HVAD (HW) underwent design modifications. The impact of these changes on life-threatening pump malfunctions was evaluated. We retrospectively analysed pump malfunctions due to thrombosis or cable damage in patients supported with primarily implanted HM II (n = 191) and HW (n = 347), separated into patients supported with the old and new pump designs. In 2010, the cable strain relief of the HM II device was improved (132 patients with old and 79 with new) and sealed grafts were introduced (68 patients with sealed inflow connector and outflow graft and 125 without). In 2011, titanium sintering of the inflow cannula of HW pumps was introduced (137 patients with a non-sintered and 210 with a sintered inflow cannula). The median support time was 1.12 (0-6.1) years for all HM II and 0.59 (0-4.2) years for all HW patients. The cumulative rate of events per patient-year (EPPY) was 0.11 in HM II patients, compared with 0.09 EPPY in HW patients (P = 0.32). After introduction of the new cable design, incidence of cable damage in HM II patients dropped from 0.06 to 0 EPPY (P = 0.03), whereas pump thrombosis increased from 0.02 to 0.14 EPPY (P < 0.001) after the sealed graft was introduced. Pump thrombosis occurred in 4% of patients supported with HW with a sintered inflow cannula vs 15% with a non-sintered pump; the incidence changed from 0.10 to 0.07 EPPY in sintered pumps (P = 0.45). Kaplan-Meier analysis showed no differences over a period of 2.5 years for events when the HM II cohort with sealed graft and new cable design (n = 68) was compared with the HW group with a sintered cannula (P = 0.14). The modified cable strain relief of the HM II pump and the sintering of the inflow cannula of the HW pump demonstrated a significant reduction in the incidence of life-threatening pump-related complications, whereas the sealed inflow connector and outflow graft seem to be associated with a higher incidence of pump thrombosis. However, the overall incidence of pump-related complications after the latest design changes was similar for both pumps over a 2.5-year period. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  5. The importance of steady and dynamic inflow on the stability of rotor-body systems

    NASA Technical Reports Server (NTRS)

    Peters, David A.

    1988-01-01

    The induced flow field of a rotor responds in a dynamic fashion to oscillations in rotor lift. This was long known to affect the stability and control derivatives of the rotor. More recently, however, it was also shown that this dynamic inflow also affects rotor and rotor-body aeroelastic stability. Thus, both the steady and unsteady inflow have pronounced effects on air resonance. Recent theoretical developments were made in the modeling of dynamic inflow, and these were verified experimentally. Thus, there is now a simple, verified dynamic inflow model for use in dynamic analyses.

  6. Control of Inflow Distortion in a Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Biedron, Robert T.

    2002-01-01

    The scarf inlet has the potential to reduce aircraft inlet noise radiation to the ground by reflecting it into the space above the engine. Without forward motion of the engine, the non-symmetry of the inlet causes inflow distortion which generates noise that is greater than the noise reduction of the scarf. However, acoustic evaluations of aircraft engines are often done on static test stands. A method to reduce inflow distortion by boundary layer suction is proposed and evaluated using a model of a high bypass ratio engine located in an anechoic chamber. The design goal of the flow control system is to make the inflow to the inlet circumferentially uniform and to eliminate reversed flow. This minimizes the inflow distortion and allows for acoustic evaluation of the scarf inlet on a static test stand. The inlet boundary layer suction effectiveness is evaluated both by aerodynamic and by acoustic measurements. Although the design goal is not met, the control system is found to have a beneficial effect on the engine operation, reducing blade stall and speed variation. This is quantified by two acoustic benefits, reduction both of the variability of tone noise and of the low frequency wideband noise due to the inflow distortion. It is felt that a compromise in the manufacture of the control hardware contributes to the inability of the control system to perform as expected from the analysis. The control system with sufficient authority is felt to have the potential to permit reliable acoustic testing in a static configuration of engines with non-symmetric inlets. Because the control system can improve operation of the engine, it may also have the potential to reduce noise and vibration and enhance engine longevity during low speed ground operations in the terminal area.

  7. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study

    PubMed Central

    Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai

    2015-01-01

    Purpose Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Methods Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Results Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Conclusions Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm. PMID:26398847

  8. Flow rate of transport network controls uniform metabolite supply to tissue

    PubMed Central

    Meigel, Felix J.

    2018-01-01

    Life and functioning of higher organisms depends on the continuous supply of metabolites to tissues and organs. What are the requirements on the transport network pervading a tissue to provide a uniform supply of nutrients, minerals or hormones? To theoretically answer this question, we present an analytical scaling argument and numerical simulations on how flow dynamics and network architecture control active spread and uniform supply of metabolites by studying the example of xylem vessels in plants. We identify the fluid inflow rate as the key factor for uniform supply. While at low inflow rates metabolites are already exhausted close to flow inlets, too high inflow flushes metabolites through the network and deprives tissue close to inlets of supply. In between these two regimes, there exists an optimal inflow rate that yields a uniform supply of metabolites. We determine this optimal inflow analytically in quantitative agreement with numerical results. Optimizing network architecture by reducing the supply variance over all network tubes, we identify patterns of tube dilation or contraction that compensate sub-optimal supply for the case of too low or too high inflow rate. PMID:29720455

  9. USEPA RESEARCH ON INFILTRATION/INFLOW CONTROL

    EPA Science Inventory

    From the late 60's to early 80's, the USEPA conducted a series of research, development, and demonstration projects on the characterization, cause and consequence, and control of infiltation/inflow (I/I) in both sanitary and combined sewers. The research effort was driven by the ...

  10. USEPA RESEARCH ON INFILTRATION/INFLOW CONTROL

    EPA Science Inventory

    From the late 60's to early 80's, the USEPA conducted a series of research, development, and demonsration projects on the characterization, cause and consequence, and control of infiltation/inflow (I/I) in both sanitary and combined sewers. The research effort was driven by the n...

  11. Isolating the Effects of the Warming Trend from the General Climate Change in Water Resources: California Case

    NASA Astrophysics Data System (ADS)

    Wang, J.; Yin, H.; Chung, F.

    2008-12-01

    While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.

  12. Delayed aneurysm rupture due to residual blood flow at the inflow zone of the intracranial paraclinoid internal carotid aneurysm treated with the Pipeline embolization device: Histopathological investigation

    PubMed Central

    Ikeda, Hiroyuki; Kikuchi, Takayuki; Ando, Mitsushige; Chihara, Hideo; Arai, Daisuke; Hattori, Etsuko; Miyamoto, Susumu

    2015-01-01

    Cerebral aneurysm rupture is a serious complication that can occur after flow diverter (FD) placement, but the underlying mechanisms remain unclear. We encountered a case in which direct stress on the aneurysm wall caused by residual blood flow at the inflow zone near the neck during the process of thrombosis after FD placement appeared associated with aneurysm rupture. The patient was a 67-year-old woman with progressive optic nerve compression symptoms caused by a large intracranial paraclinoid internal carotid aneurysm. The patient had undergone treatment with a Pipeline embolization device (PED) with satisfactory adherence between the PED and vessel wall. Surgery was completed without complications, and optic nerve compression symptoms improved immediately after treatment. Postoperative clinical course was satisfactory, but the patient suddenly died 34 days postoperatively. Autopsy confirmed the presence of subarachnoid hemorrhage caused by rupture of the internal carotid aneurysm that had been treated with PED. Although the majority of the aneurysm lumen including the outflow zone was thrombosed, a non-thrombosed area was observed at the inflow zone. Perforation was evident in the aneurysm wall at the inflow zone near the neck, and this particular area of aneurysm wall was not covered in thrombus. Macrophage infiltration was not seen on immunohistochemical studies of the aneurysm wall near the perforation. A hemodynamically unstable period during the process of complete thrombosis of the aneurysm lumen after FD placement may be suggested, and blood pressure management and appropriate management with antiplatelet therapy may be important. PMID:26500232

  13. Predicting the Inflow Distortion Tone Noise of the NASA Glenn Advanced Noise Control Fan with a Combined Quadrupole-Dipole Model

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    A combined quadrupole-dipole model of fan inflow distortion tone noise has been extended to calculate tone sound power levels generated by obstructions arranged in circumferentially asymmetric locations upstream of a rotor. Trends in calculated sound power level agreed well with measurements from tests conducted in 2007 in the NASA Glenn Advanced Noise Control Fan. Calculated values of sound power levels radiated upstream were demonstrated to be sensitive to the accuracy of the modeled wakes from the cylindrical rods that were placed upstream of the fan to distort the inflow. Results indicate a continued need to obtain accurate aerodynamic predictions and measurements at the fan inlet plane as engineers work towards developing fan inflow distortion tone noise prediction tools.

  14. Label-free in-flow detection of single DNA molecules using glass nanopipettes.

    PubMed

    Gong, Xiuqing; Patil, Amol V; Ivanov, Aleksandar P; Kong, Qingyuan; Gibb, Thomas; Dogan, Fatma; deMello, Andrew J; Edel, Joshua B

    2014-01-07

    With the view of enhancing the functionality of label-free single molecule nanopore-based detection, we have designed and developed a highly robust, mechanically stable, integrated nanopipette-microfluidic device which combines the recognized advantages of microfluidic systems and the unique properties/advantages of nanopipettes. Unlike more typical planar solid-state nanopores, which have inherent geometrical constraints, nanopipettes can be easily positioned at any point within a microfluidic channel. This is highly advantageous, especially when taking into account fluid flow properties. We show that we are able to detect and discriminate between DNA molecules of varying lengths when motivated through a microfluidic channel, upon the application of appropriate voltage bias across the nanopipette. The effects of applied voltage and volumetric flow rates have been studied to ascertain translocation event frequency and capture rate. Additionally, by exploiting the advantages associated with microfluidic systems (such as flow control and concomitant control over analyte concentration/presence), we show that the technology offers a new opportunity for single molecule detection and recognition in microfluidic devices.

  15. Intraoperative bronchoscopic visualization of left ventricular assist device thrombus.

    PubMed

    Yost, Gardner; Bhat, Geetha; Modi, Sejal; Pappas, Pat; Tatooles, Antone

    2016-07-01

    Despite advancements in left ventricular assist device (LVAD) design and clinical management, device thrombosis remains a pertinent complication. Limited imaging makes precise visualization of clot location and shape very challenging. We report the usage of videobronchoscopic exploration of explanted LVADs for direct visualization of clot in two patients. This technique is a rapid and inexpensive means of improving our understanding of LVAD clot formation and may be useful in surgical exploration of inflow and outflow tracts during LVAD exchange. © The Author(s) 2015.

  16. 46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF INFLOW CONTROLLER WITH ORIGINAL CAPACITOR BANK. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  17. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    NASA Astrophysics Data System (ADS)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  18. Performance characterization of a cross-flow hydrokinetic turbine in sheared inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbush, Dominic; Polagye, Brian; Thomson, Jim

    2016-12-01

    A method for constructing a non-dimensional performance curve for a cross-flow hydrokinetic turbine in sheared flow is developed for a natural river site. The river flow characteristics are quasi-steady, with negligible vertical shear, persistent lateral shear, and synoptic changes dominated by long time scales (days to weeks). Performance curves developed from inflow velocities measured at individual points (randomly sampled) yield inconclusive turbine performance characteristics because of the spatial variation in mean flow. Performance curves using temporally- and spatially-averaged inflow velocities are more conclusive. The implications of sheared inflow are considered in terms of resource assessment and turbine control.

  19. Natural and management influences on freshwater inflows and salinity in the San Francisco Estuary at monthly to interannual scales

    USGS Publications Warehouse

    Knowles, Noah

    2002-01-01

    Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.

  20. Variability of hydrologic regimes and morphology in constructed open-ditch channels

    USGS Publications Warehouse

    Strock, J.S.; Magner, J.A.; Richardson, W.B.; Sadowsky, M.J.; Sands, G.R.; Venterea, R.T.; ,

    2004-01-01

    Open-ditch ecosystems are potential transporters of considerable loads of nutrients, sediment, pathogens and pesticides from direct inflow from agricultural land to small streams and larger rivers. Our objective was to compare hydrology and channel morphology between two experimental open-ditch channels. An open-ditch research facility incorporating a paired design was constructed during 2002 near Lamberton, MN. A200-m reach of existing drainage channel was converted into a system of four parallel channels. The facility was equipped with water level control devices and instrumentation for flow monitoring and water sample collection on upstream and downstream ends of the system. Hydrographs from simulated flow during year one indicated that paired open-ditch channels responded similarly to changes in inflow. Variability in hydrologic response between open-ditches was attributed to differences in open-ditch channel bottom elevation and vegetation density. No chemical, biological, or atmospheric measurements were made during 2003. Potential future benefits of this research include improved biological diversity and integrity of open-ditch ecosystems, reduce flood peaks and increased flow during critical low-flow periods, improved and more efficient nitrogen retention within the open-ditch ecosystem, and decreased maintenance cost associated with reduced frequency of open-ditch maintenance.

  1. Optimal control of hydroelectric facilities

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi

    This thesis considers a simple yet realistic model of pump-assisted hydroelectric facilities operating in a market with time-varying but deterministic power prices. Both deterministic and stochastic water inflows are considered. The fluid mechanical and engineering details of the facility are described by a model containing several parameters. We present a dynamic programming algorithm for optimizing either the total energy produced or the total cash generated by these plants. The algorithm allows us to give the optimal control strategy as a function of time and to see how this strategy, and the associated plant value, varies with water inflow and electricity price. We investigate various cases. For a single pumped storage facility experiencing deterministic power prices and water inflows, we investigate the varying behaviour for an oversimplified constant turbine- and pump-efficiency model with simple reservoir geometries. We then generalize this simple model to include more realistic turbine efficiencies, situations with more complicated reservoir geometry, and the introduction of dissipative switching costs between various control states. We find many results which reinforce our physical intuition about this complicated system as well as results which initially challenge, though later deepen, this intuition. One major lesson of this work is that the optimal control strategy does not differ much between two differing objectives of maximizing energy production and maximizing its cash value. We then turn our attention to the case of stochastic water inflows. We present a stochastic dynamic programming algorithm which can find an on-average optimal control in the face of this randomness. As the operator of a facility must be more cautious when inflows are random, the randomness destroys facility value. Following this insight we quantify exactly how much a perfect hydrological inflow forecast would be worth to a dam operator. In our final chapter we discuss the challenging problem of optimizing a sequence of two hydro dams sharing the same river system. The complexity of this problem is magnified and we just scratch its surface here. The thesis concludes with suggestions for future work in this fertile area. Keywords: dynamic programming, hydroelectric facility, optimization, optimal control, switching cost, turbine efficiency.

  2. Development of an inflow controlled environmental flow regime for a Norwegian river

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Harby, Atle; Linnansaari, Tommi; Ugedal, Ola

    2010-05-01

    For most regulated rivers in Norway the common environmental flow regime is static and shows very little variation over the year. Recent research indicate that flow regimes that follow the natural inflow variation can meet the ecological and social demands for water in a better way. The implementation of a variable environmental flow regime provides many challenges both related to defining flow for various species and user groups in the river, but also due to practical implementation, legislation and control. A inflow controlled flow regime is developed for a Norwegian river regulated for hydro power as a pilot study. The regime should meet ecological demands from Atlantic salmon and brown trout, recreational use of water and visual impression of the river. This should be achieved preferably without altering the energy production in the hydro power system. The flow regime is developed for wet, dry and normal discharge conditions based on unregulated inflow to the catchment. The development of the seasonal flow requirements for various targets identified is done using a modification of the Building Block Method. Several options are tested regarding the integration of the flow regime into the operational strategy of the hydropower plant, both using real time prognosis of inflow and combinations with historical data. An important topic in selecting the release strategy is how it meets current Norwegian legislation and how well future documentation and environmental control can be carried out. An evaluation protocol is also proposed for the flow regime to test if the ecological targets are met.

  3. Characteristics of Nitrogen Balances of Large-scale Stock Farms and Reduction of Environmental Nitrogen Loads

    NASA Astrophysics Data System (ADS)

    Hattori, Toshihiro; Takamatsu, Rieko

    We calculated nitrogen balances on farm gate and soil surface on large-scale stock farms and discussed methods for reducing environmental nitrogen loads. Four different types of public stock farms (organic beef, calf supply and daily cows) were surveyed in Aomori Prefecture. (1) Farm gate and soil surface nitrogen inflows were both larger than the respective outflows on all types of farms. Farm gate nitrogen balance for beef farms were worse than that for dairy farms. (2) Soil surface nitrogen outflows and soil nitrogen retention were in proportion to soil surface nitrogen inflows. (3) Reductions in soil surface nitrogen retention were influenced by soil surface nitrogen inflows. (4) In order to reduce farm gate nitrogen retention, inflows of formula feed and chemical fertilizer need to be reduced. (5) In order to reduce soil surface nitrogen retention, inflows of fertilizer need to be reduced and nitrogen balance needs to be controlled.

  4. An Overview of Recent Phased Array Measurements at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.

    2008-01-01

    A review of measurements made at the NASA Glenn Research Center using an OptiNAV Array 48 phased array system is provided. Data were acquired on a series of round convergent and convergent-divergent nozzles using the Small Hot Jet Acoustic Rig. Tests were conducted over a range of jet operating conditions, including subsonic and supersonic and cold and hot jets. Phased array measurements were also acquired on a Williams International FJ44 engine. These measurements show how the noise generated by the engine is split between the inlet-radiated and exhaust-radiated components. The data also show inlet noise being reflected off of the inflow control device used during the test.

  5. Quantification of mine-drainage inflows to Little Cottonwood Creek, Utah, using a tracer-injection and synoptic-sampling study

    USGS Publications Warehouse

    Kimball, B.; Runkel, R.; Gerner, L.

    2001-01-01

    Historic mining in Little Cottonwood Canyon in Utah has left behind many mine drainage tunnels that discharge water to Little Cottonwood Creek. To quantify the major sources of mine drainage to the stream, synoptic sampling was conducted during a tracer injection under low flow conditions (September 1998). There were distinct increases in discharge downstream from mine drainage and major tributary inflows that represented the total surface and subsurface contributions. The chemistry of stream water determined from synoptic sampling was controlled by the weathering of carbonate rocks and mine drainage inflows. Buffering by carbonate rocks maintained a high pH throughout the study reach. Most of the metal loading was from four surface-water inflows and three subsurface inflows. The main subsurface inflow was from a mine pool in the Wasatch Tunnel. Natural attenuation of all the metals resulted in the formation of colloidal solids, sorption of some metals, and accumulation onto the streambed. The deposition on the streambed could contribute to chronic toxicity for aquatic organisms. Information from the study will help to make decisions about environmental restoration.

  6. Progress in the development of a transcutaneously powered axial flow blood pump ventricular assist system.

    PubMed

    Parnis, S M; Conger, J L; Fuqua, J M; Jarvik, R K; Inman, R W; Tamez, D; Macris, M P; Moore, S; Jacobs, G; Sweeney, M J; Frazier, O H

    1997-01-01

    Development of the Jarvik 2000 intraventricular assist system for long-term support is ongoing. The system integrates the Jarvik 2000 axial flow blood pump with a microprocessor based automatic motor controller to provide response to physiologic demands. Nine devices have been evaluated in vivo (six completed, three ongoing) with durations in excess of 26 weeks. Instrumented experiments include implanted transit-time ultrasonic flow probes and dual micromanometer LV/AoP catheters. Treadmill exercise and heart pacing studies are performed to evaluate control system response to increased heart rates. Pharmacologically induced cardiac dysfunction studies are performed in awake and anesthetized calves to demonstrate control response to simulated heart failure conditions. No deleterious effects or events were encountered during any physiologic studies. No hematologic, renal, hepatic, or pulmonary complications have been encountered in any study. Plasma free hemoglobin levels of 7.0 +/- 5.1 mg/dl demonstrate no device related hemolysis throughout the duration of all studies. Pathologic analysis at explant showed no evidence of thromboembolic events. All pump surfaces were free of thrombus except for a minimal ring of fibrin, (approximately 1 mm) on the inflow bearing. Future developments for permanent implantation will include implanted physiologic control systems, implanted batteries, and transcutaneous energy and data transmission systems.

  7. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  8. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  9. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  10. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  11. 40 CFR 125.60 - Primary or equivalent treatment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... relatively high (although nonexcessive) inflow and infiltration; relatively high soluble to insoluble BOD... applicant's control shall not include less concentrated wastewater due to excessive inflow and infiltration... infiltration) is less than 275 gallons per capita per day. (2) In no event shall averaging on a less frequent...

  12. Time Periodic Control of a Multi-Blade Helicopter.

    DTIC Science & Technology

    1988-05-01

    part of an element of p X rotor inflow ratio; Langrangian multiplier; Poincare exponent H rotor inflow ratio with respect to the hub *P plane A...and a $ complex conjugate pair in the right- half plane resulting from ( the longitudinal velocity and pitch coupling. Without a horizontal tail, the ... Poincare Exponents . . .. 182 VI. Controller Gains ...... ................ 184 viii I ’Q List of Symbols Listed below are the principal symbols used in this

  13. Spontaneous delayed migration/shortening of the pipeline embolization device: report of 5 cases.

    PubMed

    Chalouhi, N; Tjoumakaris, S I; Gonzalez, L F; Hasan, D; Pema, P J; Gould, G; Rosenwasser, R H; Jabbour, P M

    2013-12-01

    Five patients were found to have spontaneous delayed migration/shortening of their Pipeline Embolization Devices on follow-up angiography. The device migrated proximally in 4 patients and distally in 1 patient. One patient had a subarachnoid hemorrhage and died as a result of migration of the Pipeline Embolization Device, and another patient presented with complete MCA occlusion and was left severely disabled. Mismatch in arterial diameter between inflow and outflow vessels was a constant finding. Migration of the Pipeline Embolization Device was managed conservatively, with additional placement of the device, or with parent vessel occlusion. Obtaining complete expansion of the embolization device by using a longer device, increasing vessel coverage, using adjunctive aneurysm coiling, and avoiding dragging and stretching of the device are important preventive measures. Neurointerventionalists should be aware of this potentially fatal complication and take all necessary preventive measures.

  14. Optimal water depth management on river-fed National Wildlife Refuges in a changing climate

    USGS Publications Warehouse

    Nicol, Samuel; Griffith, Brad; Austin, Jane; Hunter, Christine M.

    2014-01-01

    The prairie pothole region (PPR) in the north-central United States and south-central Canada constitutes the most important waterfowl breeding area in North America. Projected long-term changes in precipitation and temperature may alter the drivers of waterfowl abundance: wetland availability and emergent vegetation cover. Previous studies have focused on isolated wetland dynamics, but the implications of changing precipitation on managed, river-fed wetlands have not been addressed. Using a structured decision making (SDM) approach, we derived optimal water management actions for 20 years at four river-fed National Wildlife Refuges (NWRs) in North and South Dakota under contrasting increasing/decreasing (+/−0.4 %/year) inflow scenarios derived from empirical trends. Refuge pool depth is manipulated by control structures. Optimal management involves setting control structure heights that have the highest probability of providing a desired mix of waterfowl habitat, given refuge capacities and inflows. We found optimal seasonal control structure heights for each refuge were essentially the same under increasing and decreasing inflow trends of 0.4 %/year over the next 20 years. Results suggest managed pools in the NWRs receive large inflows relative to their capacities. Hence, water availability does not constrain management; pool bathymetry and management tactics can be greater constraints on attaining management objectives than climate-mediated inflow. We present time-dependent optimal seasonal control structure heights for each refuge, which are resilient to the non-stationary precipitation scenarios we examined. Managers can use this information to provide a desired mixture of wildlife habitats, and to re-assess management objectives in reserves where pool bathymetry prevents attaining the currently stated objectives.

  15. A design procedure for fan inflow control structures

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1980-01-01

    Significant differences exist in the noise generated by engine in flight and engines operating on the test stand. It was observed that these differences can be reduced by use of an inflow control structure (ICS) in the static test configuration. The results of the second phase of a three phase program are described and the results of a test program conducted to assess and modify various theoretical models, leading to the development of an ICS design system is summarized.

  16. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    NASA Astrophysics Data System (ADS)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  17. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    NASA Astrophysics Data System (ADS)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  18. Increased carboxyhemoglobin level during liver resection with inflow occlusion.

    PubMed

    Godai, Kohei; Hasegawa-Moriyama, Maiko; Kuniyoshi, Tamotsu; Matsunaga, Akira; Kanmura, Yuichi

    2013-04-01

    Controlling stress responses associated with ischemic changes due to bleeding and ischemia/reperfusion injury is essential for anesthetic management. Endogenous carboxyhemoglobin (COHb) is produced in the oxidative degradation of heme proteins by the stress-response enzyme heme oxygenase. Although the COHb level is elevated in critically ill patients, changes in endogenous COHb during anesthesia have not been well investigated. Therefore, we evaluated changes in endogenous COHb levels in patients undergoing liver resections with inflow occlusion. Levels of COHb were significantly increased after the Pringle maneuver. The inflow occlusion time in patients with increased COHb after the Pringle maneuver (∆COHb > 0.3 %) was significantly longer than in patients without increased COHb (∆COHb < 0.3 %) (P = 0.01). In addition, COHb changes were correlated with inflow occlusion time (P = 0.005, R(2) = 0.21). Neither total blood loss, transfusion volume of packed red blood cells, operation time, nor anesthetic time differed between patients with and without increased COHb. The results indicated that endogenous COHb levels were increased by inflow occlusion in patients undergoing liver resections, which suggests that changes in COHb may correlate with hepatic ischemia/reperfusion injury induced by inflow occlusion.

  19. Estimating Inflows to Lake Okeechobee Using Climate Indices: A Machine Learning Modeling Approach

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Ahmad, S.

    2008-12-01

    The operation of regional water management systems that include lakes and storage reservoirs for flood control and water supply can be significantly improved by using climate indices. This research is focused on forecasting Lag 1 annual inflow to Lake Okeechobee, located in South Florida, using annual oceanic- atmospheric indices of Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO), and El Nino-Southern Oscillations (ENSO). Support Vector Machine (SVM) and Least Square Support Vector Machine (LSSVM), belonging to the class of data driven models, are developed to forecast annual lake inflow using annual oceanic-atmospheric indices data from 1914 to 2003. The models were trained with 80 years of data and tested for 10 years of data. Based on Correlation Coefficient, Root Means Square Error, and Mean Absolute Error model predictions were in good agreement with measured inflow volumes. Sensitivity analysis, performed to evaluate the effect of individual and coupled oscillations, revealed a strong signal for AMO and ENSO indices compared to PDO and NAO indices for one year lead-time inflow forecast. Inflow predictions from the SVM models were better when compared with the predictions obtained from feed forward back propagation Artificial Neural Network (ANN) models.

  20. Estimating ground-water inflow to lakes in central Florida using the isotope mass-balance approach

    USGS Publications Warehouse

    Sacks, Laura A.

    2002-01-01

    The isotope mass-balance approach was used to estimate ground-water inflow to 81 lakes in the central highlands and coastal lowlands of central Florida. The study area is characterized by a subtropical climate and numerous lakes in a mantled karst terrain. Ground-water inflow was computed using both steady-state and transient formulations of the isotope mass-balance equation. More detailed data were collected from two study lakes, including climatic, hydrologic, and isotopic (hydrogen and oxygen isotope ratio) data. For one of these lakes (Lake Starr), ground-water inflow was independently computed from a water-budget study. Climatic and isotopic data collected from the two lakes were similar even though they were in different physiographic settings about 60 miles apart. Isotopic data from all of the study lakes plotted on an evaporation trend line, which had a very similar slope to the theoretical slope computed for Lake Starr. These similarities suggest that data collected from the detailed study lakes can be extrapolated to the rest of the study area. Ground-water inflow computed using the isotope mass-balance approach ranged from 0 to more than 260 inches per year (or 0 to more than 80 percent of total inflows). Steady-state and transient estimates of ground-water inflow were very similar. Computed ground-water inflow was most sensitive to uncertainty in variables used to calculate the isotopic composition of lake evaporate (isotopic compositions of lake water and atmospheric moisture and climatic variables). Transient results were particularly sensitive to changes in the isotopic composition of lake water. Uncertainty in ground-water inflow results is considerably less for lakes with higher ground-water inflow than for lakes with lower ground-water inflow. Because of these uncertainties, the isotope mass-balance approach is better used to distinguish whether ground-water inflow quantities fall within certain ranges of values, rather than for precise quantification. The lakes fit into three categories based on their range of ground-water inflow: low (less than 25 percent of total inflows), medium (25-50 percent of inflows), and high (greater than 50 percent of inflows). The majority of lakes in the coastal lowlands had low ground-water inflow, whereas the majority of lakes in the central highlands had medium to high ground-water inflow. Multiple linear regression models were used to predict ground-water inflow to lakes. These models help identify basin characteristics that are important in controlling ground-water inflow to Florida lakes. Significant explanatory variables include: ratio of basin area to lake surface area, depth to the Upper Floridan aquifer, maximum lake depth, and fraction of wetlands in the basin. Models were improved when lake water-quality data (nitrate, sodium, and iron concentrations) were included, illustrating the link between ground-water geochemistry and lake chemistry. Regression models that considered lakes within specific geographic areas were generally poorer than models for the entire study area. Regression results illustrate how more simplified models based on basin and lake characteristics can be used to estimate ground-water inflow. Although the uncertainty in the amount of ground-water inflow to individual lakes is high, the isotope mass-balance approach was useful in comparing the range of ground-water inflow for numerous Florida lakes. Results were also helpful in understanding differences in the geographic distribution of ground-water inflow between the coastal lowlands and central highlands. In order to use the isotope mass-balance approach to estimate inflow for multiple lakes, it is essential that all the lakes are sampled during the same time period and that detailed isotopic, hydrologic, and climatic data are collected over this same period of time. Isotopic data for Florida lakes can change over time, both seasonally and interannually, primarily because of differ

  1. Comparative Evaluation of Flow Quantification across the Atrioventricular Valve in Patients with Functional Univentricular Heart after Fontan's Surgery and Healthy Controls: Measurement by 4D Flow Magnetic Resonance Imaging and Streamline Visualization.

    PubMed

    She, Hoi Lam; Roest, Arno A W; Calkoen, Emmeline E; van den Boogaard, Pieter J; van der Geest, Rob J; Hazekamp, Mark G; de Roos, Albert; Westenberg, Jos J M

    2017-01-01

    To evaluate the inflow pattern and flow quantification in patients with functional univentricular heart after Fontan's operation using 4D flow magnetic resonance imaging (MRI) with streamline visualization when compared with the conventional 2D flow approach. Seven patients with functional univentricular heart after Fontan's operation and twenty-three healthy controls underwent 4D flow MRI. In two orthogonal two-chamber planes, streamline visualization was applied, and inflow angles with peak inflow velocity (PIV) were measured. Transatrioventricular flow quantification was assessed using conventional 2D multiplanar reformation (MPR) and 4D MPR tracking the annulus and perpendicular to the streamline inflow at PIV, and they were validated with net forward aortic flow. Inflow angles at PIV in the patient group demonstrated wide variation of angles and directions when compared with the control group (P < .01). The use of 4D flow MRI with streamlines visualization in quantification of the transatrioventricular flow had smaller limits of agreement (2.2 ± 4.1 mL; 95% limit of agreement -5.9-10.3 mL) when compared with the static plane assessment from 2DFlow MRI (-2.2 ± 18.5 mL; 95% limit of agreement agreement -38.5-34.1 mL). Stronger correlation was present in the 4D flow between the aortic and trans-atrioventricular flow (R 2 correlation in 4D flow: 0.893; in 2D flow: 0.786). Streamline visualization in 4D flow MRI confirmed variable atrioventricular inflow directions in patients with functional univentricular heart with previous Fontan's procedure. 4D flow aided generation of measurement planes according to the blood flood dynamics and has proven to be more accurate than the fixed plane 2D flow measurements when calculating flow quantifications. © 2016 Wiley Periodicals, Inc.

  2. Evaluating the Implications of Climate Phenomenon Indices in Supporting Reservoir Operation Using the Artificial Neural Network and Decision-Tree Methods: A Case Study on Trinity Lake in Northern California

    NASA Astrophysics Data System (ADS)

    Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for all kinds of purposes, including residential and industrial water supply, flood control, hydropower, and irrigation, etc. Efficient reservoir operation requires that policy makers and operators understand how reservoir inflows, available storage, and discharges are changing under different climatic conditions. Over the last decade, the uses of Artificial Intelligence and Data Mining (AI & DM) techniques in assisting reservoir management and seasonal forecasts have been increasing. Therefore, in this study, two distinct AI & DM methods, Artificial Neural Network (ANN) and Random Forest (RF), are employed and compared with respect to their capabilities of predicting monthly reservoir inflow, managing storage, and scheduling reservoir releases. A case study on Trinity Lake in northern California is conducted using long-term (over 50 years) reservoir operation records and 17 known climate phenomenon indices, i.e. PDO and ENSO, etc., as predictors. Results show that (1) both ANN and RF are capable of providing reasonable monthly reservoir storage, inflow, and outflow prediction with satisfactory statistics, and (2) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow and outflow. It is also found that reservoir storage has a consistent high autocorrelation effect, while inflow and outflow are more likely to be influenced by climate conditions. Using a Gini diversity index, RF method identifies that the reservoir discharges are associated with Southern Oscillation Index (SOI) and reservoir inflows are influenced by multiple climate phenomenon indices during different seasons. Furthermore, results also show that, during the winter season, reservoir discharges are controlled by the storage level for flood-control purposes, while, during the summer season, the flood-control operation is not as significant as that in the winter. With regard to the suitability of the AI & DM methods in support of reservoir operation, the Decision Tree method is suggested for future reservoir studies because of its transparency and non-parametric features over the "black-box" style ANN regression model.

  3. Spatial distribution of heavy metals in the surface soil of source-control stormwater infiltration devices - Inter-site comparison.

    PubMed

    Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine

    2017-02-01

    Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Differential right ventricular regional function and the effect of pulmonary hypertension: three-dimensional echo study.

    PubMed

    Calcutteea, Avin; Chung, Robin; Lindqvist, Per; Hodson, Margaret; Henein, Michael Y

    2011-06-01

    The right ventricle is multicompartmental in orientation. To assess the normal differential function of the right ventricular (RV) inflow, apical and outflow compartments, also their inter-relations and the response to pulmonary arterial hypertension (PAH). 45 people were studied--16 controls and 29 patients with left-sided heart failure, 15 without (group 1) and 14 with (group 2) secondary PAH, using two-dimensional (2D) and 3D echocardiography in addition to conventional Doppler techniques. There was a strong correlation between RV inlet diameter (2D) and end-diastolic volume (3D) (r=0.69, p<0.001) and between tricuspid annular plane systolic excursion and RV ejection fraction (3D) (r=0.71, p<0.001). In controls and patients, the apical ejection fraction was less than the inflow and outflow (controls: p<0.01 and p<0.01, group 1: p<0.05 and p<0.01 and group 2: p<0.05 and p<0.01, respectively). Ejection fraction was reduced in patients (inflow: p<0.001 for both, apical: p<0.01 for both and outflow tract: p<0.05 for both). In controls, the inflow compartment reached the minimum volume 20 ms before the outflow and apex but in group 2 it was simultaneous. Isovolumic contraction and relaxation times were prolonged in patients (Group 1: p=0.02 and p<0.01 and Group 2: p=0.01 for both). Peak RV ejection time correlated with the rate of outflow volume fall in controls but with the apex in group 2 (r=0.6, p<0.05). The right ventricle has distinct features for the inflow, apical and outflow tract compartments, with different extent of contribution to the overall systolic function. In PAH, the right ventricle becomes one dyssynchronous compartment, which itself may have perpetual effect on overall cardiac dysfunction.

  5. Pinpoint Delivery of Molecules by Using Electron Beam Addressing Virtual Cathode Display.

    PubMed

    Hoshino, Takayuki; Yoshioka, Moto; Wagatsuma, Akira; Miyazako, Hiroki; Mabuchi, Kunihiko

    2018-03-01

    Electroporation, a physical transfection method to introduce genomic molecules in selective living cells, could be implemented by microelectrode devices. A local electric field generated by a finer electrode can induces cytomembrane poration in the electrode vicinity. To employ fine, high-speed scanning electrodes, we developed a fine virtual cathode pattern, which was generated on a cell adhesive surface of 100-nm-thick SiN membrane by inverted-electron beam lithography. The SiN membrane works as both a vacuum barrier and the display screen of the virtual cathode. The kinetic energy of the incident primary electrons to the SiN membrane was completely blocked, whereas negative charges and leaking electric current appeared on the surface of the dielectric SiN membrane within a region of 100 nm. Locally controlled transmembrane molecular delivery was demonstrated on adhered C2C12 myoblast cells in a culturing medium with fluorescent dye propidium iodide (PI). Increasing fluorescence of pre-diluted PI indicated local poration and transmembrane inflow at the virtual cathode position, as well as intracellular diffusion. The transmembrane inflows depended on beam duration time and acceleration voltage. At the post-molecular delivery, a slight decrease in intracellular PI fluorescence intensity indicates membrane recovery from the poration. Cell viability was confirmed by time-lapse cell imaging of post-exposure cell migration.

  6. Development of reversible vas deferens occlusive device: IV. Rigid prosthetic devices.

    PubMed

    Drueschke, E E; Zaneveld, L J; Burns, M; Rodzen, R; Wingfield, J R; Maness, J H

    1975-01-01

    Different types of rigid, reversible, vas deferens occlusive devices were developed and evaluated in 14 unilaterally vasectomized dogs. All prosthetic devices had molded silicone rubber bodies, and rigid inflow and outflow tubes. Various techniques for the removal of the vas luminal epithelium, and for the preparation of porous ceramic and etched stainless steel surfaces to encourage tissue ingrowth into the prosthetic device end tubues were attempted. The devices differed in their methods of achieving occlusion. One device used a "rotary stem valve" which had a C-section rotating mechanism; the others used the "shuttle stem valve" which possessed an occlusive element that moved transverse to the axis of flow in the device, thus occluding the device when the stem was depressed. The rotarystem valve was implanted by means of a longitudinal incision. The remaining 13 shuttle stem devices were placed in the vas using either a longitudinal or a transverse implantation. Inno case was sperm transport through the prosthetic devices obtained for more than a few ejaculations.

  7. Seminar Proceedings Coastal and Inland Water Quality 22nd Held in Las Vegas, Nevada on 6-7 February 1990

    DTIC Science & Technology

    1990-05-01

    controls Sediment covers Herbicides and algicides Operational/Structural Techniques: Rule curve modification Inflow routing Supplemental releases...withdrawal 3 3 4 Localized mixing 1 0 0 Drawdown and planting 1 0 11 Hypolimnetic withdrawal 0 0 1 Inflow diversion 1 0 0 Destratification 1 1 0 Algicide and

  8. Retention time and flow patterns in Lake Marion, South Carolina, 1984

    USGS Publications Warehouse

    Patterson, G.G.; Harvey, R.M.

    1995-01-01

    In 1984, six dye tracer tests were made on Lake Marion to determine flow patterns and retention times under conditions of high and low flow. During the high-flow tests, with an average inflow of about 29,000 cubic feet per second, the approximate travel time through the lake for the peak tracer concentration was 14 days. The retention time was about 20 days. During the low-flow tests, with an average inflow of about 9,000 cubic feet per second, the approximate travel time was 41 days, and the retention time was about 60 days. The primary factors controlling movement of water in the lake are lake inflow and outflow. The tracer cloud moved consistently downstream, slowing as the lake widened. Flow patterns in most of the coves, and in some areas along the northeastern shore, are influenced more by tributary inflow than by factors attributable to water from the main body of the lake.

  9. PRESSURE SENSING DEVICE

    DOEpatents

    Pope, K.E.

    1959-12-15

    This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.

  10. Challenging the distributed temperature sensing technique for estimating groundwater discharge to streams through controlled artificial point source experiment

    NASA Astrophysics Data System (ADS)

    Lauer, F.; Frede, H.-G.; Breuer, L.

    2012-04-01

    Spatially confined groundwater discharge can contribute significantly to stream discharge. Distributed fibre optic temperature sensing (DTS) of stream water has been successfully used to localize- and quantify groundwater discharge from this type "point sources" (PS) in small first-order streams. During periods when stream and groundwater temperatures differ PS appear as abrupt step in longitudinal stream water temperature distribution. Based on stream temperature observation up- and downstream of a point source and estimated or measured groundwater temperature the proportion of groundwater inflow to stream discharge can be quantified using simple mixing models. However so far this method has not been quantitatively verified, nor has a detailed uncertainty analysis of the method been conducted. The relative accuracy of this method is expected to decrease nonlinear with decreasing proportions of lateral inflow. Furthermore it depends on the temperature differences (ΔT) between groundwater and surface water and on the accuracy of temperature measurement itself. The latter could be affected by different sources of errors. For example it has been shown that a direct impact of solar radiation on fibre optic cables can lead to errors in temperature measurements in small streams due to low water depth. Considerable uncertainty might also be related to the determination of groundwater temperature through direct measurements or derived from the DTS signal. In order to directly validate the method and asses it's uncertainty we performed a set of artificial point source experiments with controlled lateral inflow rates to a natural stream. The experiments were carried out at the Vollnkirchener Bach, a small head water stream in Hessen, Germany in November and December 2011 during a low flow period. A DTS system was installed along a 1.2 km sub reach of the stream. Stream discharge was measured using a gauging flume installed directly upstream of the artificial PS. Lateral inflow was simulated using a pumping system connected to a 2 m3 water tank. Pumping rates were controlled using a magnetic inductive flowmeter and kept constant for a time period of 30 minutes to 1.5 hours depending on the simulated inflow rate. Different temperatures of lateral inflow were adjusted by heating the water in the tank (for summer experiments a cooling by ice cubes could be realized). With this setup, different proportions of lateral inflow to stream flow ranging from 2 to 20%, could be simulated for different ΔT's (2-7° C) between stream- and inflowing water. Results indicate that the estimation of groundwater discharge through DTS is working properly, but that the method is very sensitive to the determination of the PS groundwater temperature. The span of adjusted ΔT and inflow rates of the artificial system are currently used to perform a thorough uncertainty analysis of the DTS method and to derive thresholds for detection limits.

  11. Monitour: Tracking global routes of electronic waste.

    PubMed

    Lee, David; Offenhuber, Dietmar; Duarte, Fábio; Biderman, Assaf; Ratti, Carlo

    2018-02-01

    Many nations seek to control or prevent the inflow of waste electronic and electrical equipment, but such flows are difficult to track due to undocumented, often illegal global trade in e-waste. We apply wireless GPS location trackers to this problem, detecting potential cases of non-compliant recycling operations in the United States as well as the global trajectories of exported e-waste. By planting hidden trackers inside discarded computer monitors and printers, we tracked dozens of devices being sent overseas to various ports in Asia, flows likely unreported in official trade data. We discuss how location tracking enables new ways to monitor, regulate, and enforce rules on the international movement of hazardous electronic waste materials, and the limitations of such methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Test of a non-physical barrier consisting of light, sound, and bubble screen to block upstream movement of sea lamprey in an experimental raceway

    USGS Publications Warehouse

    Miehls, Scott M.; Johnson, Nicholas S.; Hrodey, Pete J.

    2017-01-01

    Control of the invasive Sea Lamprey Petromyzon marinus is critical for management of commercial and recreational fisheries in the Laurentian Great Lakes. Use of physical barriers to block Sea Lampreys from spawning habitat is a major component of the control program. However, the resulting interruption of natural streamflow and blockage of nontarget species present substantial challenges. Development of an effective nonphysical barrier would aid the control of Sea Lampreys by eliminating their access to spawning locations while maintaining natural streamflow. We tested the effect of a nonphysical barrier consisting of strobe lights, low-frequency sound, and a bubble screen on the movement of Sea Lampreys in an experimental raceway designed as a two-choice maze with a single main channel fed by two identical inflow channels (one control and one blocked). Sea Lampreys were more likely to move upstream during trials when the strobe light and low-frequency sound were active compared with control trials and trials using the bubble screen alone. For those Sea Lampreys that did move upstream to the confluence of inflow channels, no combination of stimuli or any individual stimulus significantly influenced the likelihood that Sea Lampreys would enter the blocked inflow channel, enter the control channel, or return downstream.

  13. Sensory-based expert monitoring and control

    NASA Astrophysics Data System (ADS)

    Yen, Gary G.

    1999-03-01

    Field operators use their eyes, ears, and nose to detect process behavior and to trigger corrective control actions. For instance: in daily practice, the experienced operator in sulfuric acid treatment of phosphate rock may observe froth color or bubble character to control process material in-flow. Or, similarly, (s)he may use acoustic sound of cavitation or boiling/flashing to increase or decrease material flow rates in tank levels. By contrast, process control computers continue to be limited to taking action on P, T, F, and A signals. Yet, there is sufficient evidence from the fields that visual and acoustic information can be used for control and identification. Smart in-situ sensors have facilitated potential mechanism for factory automation with promising industry applicability. In respond to these critical needs, a generic, structured health monitoring approach is proposed. The system assumes a given sensor suite will act as an on-line health usage monitor and at best provide the real-time control autonomy. The sensor suite can incorporate various types of sensory devices, from vibration accelerometers, directional microphones, machine vision CCDs, pressure gauges to temperature indicators. The decision can be shown in a visual on-board display or fed to the control block to invoke controller reconfigurration.

  14. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow can modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields.

  15. Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Conlin, William; Yu, Paulo; Durgesh, Vibhav

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.

  16. Chesapeake Bay Low Freshwater Inflow Study. Appendix B. Plan Formulation. Appendix C. Hydrology. Appendix D. Hydraulic Model Test.

    DTIC Science & Technology

    1984-09-01

    are: I. Pursue a highly conservative policy toward alterations in the quantity of freshwater inflow, recognizing the high biological value of Chesapeake...particular area. Regional development policies could be implemented to control growth patterns and associated water uses. Or, regulations could...changes in other relevant variables such as technology, consumer behavior, unanticipated shifts in agricultural irrigation policy or demands for water

  17. In vivo experimental testing of a microaxial blood pump for right ventricular support.

    PubMed

    Christiansen, Stefan; Perez-Bouza, Alberto; Reul, Helmut; Autschbach, Rüdiger

    2006-02-01

    The incidence of isolated right ventricular (RV) failure is rare in postcardiotomy patients, but high in patients undergoing implantation of a left ventricular assist device or cardiac transplantation. Therefore, we have developed a new microaxial flow device and report on our first in vivo animal trials. Six healthy adult female sheep weighing 80-90 kg underwent implantation of the microaxial blood pump for partial unloading of the right ventricle. This pump is a miniaturized rotary blood pump with a diameter of only 6.4 mm and a weight of 11 g. The inner volume of the pump is limited to 12 mL, and the inner artificial blood contacting surface is 65 cm(2). The pump consists of a rotor driven by an incorporated brushless direct current motor, the housing of the rotor, the inflow cage, the outflow cannula, and the driveline. At the maximum speed of 32,500 rotations/min, a flow of 6 L/min can be delivered. The inflow and outflow conduit were anastomosed to the right atrium and the main pulmonary artery, respectively. Hemodynamic and echocardiographic data as well as blood samples were measured over the whole test period of 7 days. The hearts and lungs as well as the pump were explanted for a thorough examination at the end of the trial. Systemic arterial blood pressures remained unchanged during the entire test period. RV cardiac output was diminished significantly as demonstrated by the echocardiographic studies. The number of platelets decreased perioperatively, but recovered within the test period. The free hemoglobin was not enhanced postoperatively indicating no significant hemolysis. Liver function was only slightly impaired due to operative reasons (increase in bilirubin on the first postoperative day but normalization within the test period). The pathologic examination revealed some clots at the inflow cage and fibrin depositions on the impeller as well as on the inner surface of the outflow graft without an impairment of pump function. Our results demonstrate that this newly developed microaxial blood pump is a promising device for RV support, but it cannot be driven without any anticoagulation.

  18. Hurricane Balloon Observations in the Hurricane Inflow Layer

    NASA Astrophysics Data System (ADS)

    Businger, S.; Johnson, R.; Ellis, R.; Talbot, R.

    2005-12-01

    Four autonomous NOAA smart balloons have been prepared at NOAA's Air Resources Lab Field Research Division. The balloons will be released from the northwest corner of Puerto Rico during August and September 2005 into the inflow of tropical cyclones passing just to the north or south of the island. Ballast control allows the balloons to be positioned low in the atmosphere in the inflow of the storms. Observations will include aspirated temperature and humidity, barometric pressure, GPS position, rain rate, ozone, downward IR temperature, and solar radiation. The observations will be transmitted in real time via satellite cellular telephone and posted to the web. Preliminary results of the analysis of the balloon data sets will be presented, including energy content of the inflow air, estimates of surface fluxes, and evidence of organized eddies. Solar cells will help prolong battery life. If a balloon survives an eye-wall penetration, data on the energy content and ozone concentrations of the boundary layer air in the eye will be presented.

  19. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. II. Nutrient loading, submarine light, and seagrasses

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter; Wan, Yongshan; Sun, Detong

    2014-12-01

    Short- and long-term changes in estuarine biogeochemical and biological attributes are consequences of variations in both the magnitude and composition of freshwater inputs. A common conceptualization of estuaries depicts nutrient loading from coastal watersheds as the stressor that promotes algal biomass, decreases submarine light penetration, and degrades seagrass habitats. Freshwater inflow depresses salinity while simultaneously introducing colored dissolved organic matter (color or CDOM) which greatly reduces estuarine light penetration. This is especially true for sub-tropical estuaries. This study applied a model of the Caloosahatchee River Estuary (CRE) in southwest Florida to explore the relationships between freshwater inflow, nutrient loading, submarine light, and seagrass survival. In two independent model series, the loading of dissolved inorganic nitrogen and phosphorus (DIN and DIP) was reduced by 10%, 20%, 30%, and 50% relative to the base model case from 2002 to 2009 (2922 days). While external nutrient loads were reduced by lowering inflow (Q0) in the first series (Q0 series), reductions were accomplished by decreasing the incoming concentrations of DIN and DIP in the second series (NP Series). The model also was used to explore the partitioning of submarine light extinction due to chlorophyll a, CDOM, and turbidity. Results suggested that attempting to control nutrient loading by decreasing freshwater inflow could have minor effects on water column concentrations but greatly influence submarine light and seagrass biomass. This is because of the relative importance of Q0 to salinity and submarine light. In general, light penetration and seagrass biomass decreased with increased inflow and CDOM. Increased chlorophyll a did account for more submarine light extinction in the lower estuary. The model output was used to help identify desirable levels of inflow, nutrient loading, water quality, salinity, and submarine light for seagrass in the lower CRE. These findings provide information essential to the development of a resource-based approach to improve the management of both freshwater inflow and estuarine biotic resources.

  20. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  1. Design and experimental evaluation of compact radial-inflow turbines

    NASA Technical Reports Server (NTRS)

    Fredmonski, A. J.; Huber, F. W.; Roelke, R. J.; Simonyi, S.

    1991-01-01

    The application of a multistage 3D Euler solver to the aerodynamic design of two compact radial-inflow turbines is presented, along with experimental results evaluating and validating the designs. The objectives of the program were to design, fabricate, and rig test compact radial-inflow turbines with equal or better efficiency relative to conventional designs, while having 40 percent less rotor length than current traditionally-sized radial turbines. The approach to achieving these objectives was to apply a calibrated 3D multistage Euler code to accurately predict and control the high rotor flow passage velocities and high aerodynamic loadings resulting from the reduction in rotor length. A comparison of the advanced compact designs to current state-of-the-art configurations is presented.

  2. Contribution of sediment fluxes and transformations to the summer nitrogen budget of an Upper Mississippi River backwater system

    USGS Publications Warehouse

    James, W.F.; Richardson, W.B.; Soballe, D.M.

    2008-01-01

    Routing nitrate through backwaters of regulated floodplain rivers to increase retention could decrease loading to nitrogen (N)-sensitive coastal regions. Sediment core determinations of N flux were combined with inflow-outflow fluxes to develop mass balance approximations of N uptake and transformations in a flow-controlled backwater of the Upper Mississippi River (USA). Inflow was the dominant nitrate source (>95%) versus nitrification and varied as a function of source water concentration since flow was constant. Nitrate uptake length increased linearly, while uptake velocity decreased linearly, with increasing inflow concentration to 2 mg l-1, indicating limitation of N uptake by loading. N saturation at higher inflow concentration coincided with maximum uptake capacity, 40% uptake efficiency, and an uptake length 2 times greater than the length of the backwater. Nitrate diffusion and denitrification in sediment accounted for 27% of the backwater nitrate retention, indicating that assimilation by other biota or denitrification on other substrates were the dominant uptake mechanisms. Ammonium export from the backwater was driven by diffusive efflux from the sediment. Ammonium increased from near zero at the inflow to a maximum mid-lake, then declined slightly toward the outflow due to uptake during transport. Ammonium export was small compared to nitrate retention. ?? 2007 Springer Science+Business Media B.V.

  3. Predicted and Measured Modal Sound Power Levels for a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    Refinements have been made to a method for estimating the modal sound power levels of a ducted fan ingesting distorted inflow. By assuming that each propagating circumferential mode consists only of a single radial mode (the one with the highest cut-off ratio), circumferential mode sound power levels can be computed for a variety of inflow distortion patterns and operating speeds. Predictions from the refined theory have been compared to data from an experiment conducted in the Advanced Noise Control Fan at NASA Glenn Research Center. The inflow to the fan was distorted by inserting cylindrical rods radially into the inlet duct. The rods were placed at an axial location one rotor chord length upstream of the fan and arranged in both regular and irregular circumferential patterns. The fan was operated at 2000, 1800, and 1400 rpm. Acoustic pressure levels were measured in the fan inlet and exhaust ducts using the Rotating Rake fan mode measurement system. Far field sound pressure levels were also measured. It is shown that predicted trends in circumferential mode sound power levels closely match the experimental data for all operating speeds and distortion configurations tested. Insight gained through this work is being used to develop more advanced tools for predicting fan inflow distortion tone noise levels.

  4. Impact of Inflow Conditions on Coherent Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Yu, Paulo; Durgesh, Vibhav; Johari, Hamid

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.

  5. Devices for Emergency Hypothermia and Military Applications

    DTIC Science & Technology

    2004-09-01

    was cooled 6.10C. BenchProto, 2 L/min Flow Rate, Ambient Bag and Evaporator 30 25 20 ýPatient I 15 Inflow•. Outflow 210- I- 5- 0 50 100 150 200 250...Ambient 30 25 S20 SPatient 1 a15- Inflow Outflow E 10- 5 0 , 15 35 55 75 95 115 135 155 Time (sec) Figure 5 Filename: Appendix U.doc Page 5 of 7 M-to-M

  6. Imaging the cardiac blood flow during CPR with EBCT in an animal model

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Schuster, Antonius H.; Pallwein-Prettner, Leo; Kleinsasser, Axel; Loeckinger, Alexander; Hoermann, Christoph; zur Nedden, Dieter

    2002-04-01

    There are open questions concerning the hemodynamics during cardiopulmonary resuscitation (CPR). The purpose was to evaluate a model of the blood flow during CPR in specified anatomic regions. After cardiac arrest, one intubated swine under full intensive care supervision was scanned during CPR using an automated resuscitation device. CT scans were performed with an EBCT in the 50ms modus at eight levels, therefore covering most of the heart and pulmonary vessels. 50ml contrast agent was administered with 10ml/sec and a delay of five seconds to visualize the contrast agent passage through the heart and pulmonary circulation. The gray-value changes in previously specified ROIs were directly correlated with the resuscitation device position in respect to the thorax. The effects of CPR on the blood flow could be visualized dynamically by quantifying the contrast enhancement. The increase of gray values could be estimated with different delays, depending on the anatomical situation. The inflow and outflow dependent on thumper dynamics could be estimated. At the onset of contrast medium inflow, turbulence could be visualized in the right ventricle, which are caused by the inhomogeneous contrast medium distribution. Triggered EBCT during CPR offers the opportunity to study regional blood flow depending on chest compression.

  7. Real-time Control of sewer pumps by using ControlNEXT to smooth inflow at Waste Water Treatment Plant Garmerwolde

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Nooijen, Ronald; Kooij, Kees; Postma, Bokke

    2016-04-01

    The Garmerwolde waste water treatment plant (WWTP) in the Groningen area of the Netherlands, receives waste water from a large area. That waste water is collected from many sewer systems and transported to the WWTP through pressurized pipes. The supply of waste water to the WWTP is relatively low and very irregular during dry-weather conditions, resulting in a random pattern of flows. This irregularity is the effect of the local control of the pumps, where the pumps are individually operated as an on/off control based on the water levels in the connected sewer system. The influent may change from zero to high values in a few minutes. The treatment processes at the WWTP are negatively influenced by this irregularity, which ends in high costs for energy and use of chemicals. The ControlNEXT central control system is used to control the 5 largest pump stations, such that the total inflow at the WWTP becomes much smoother. This results in a reduction of operational costs of about 10%. The control algorithm determines whether the actual condition is dry or wet, based on real-time radar precipitation images and the rainfall forecast product HiRLAM. All actual data is also collected and validated, like water levels, pump operations and pump availability. This data management is done using Delft-FEWS. If the situation is identified as "wet", the sewer systems are emptied as far as possible to create maximum storage. If the situation is "dry" (and of course there is a dead band between dry and wet), the pumps are operated such that the total inflow into the WWTP is smoothed. This is done with a Greedy algorithm, developed by Delft University of Technology. The algorithm makes a plan for the next 24 hours (as the daily inflow has a typical daily pattern) and generally stores some water volume in the sewer systems during the day to be able to continue operations during the night. The pumps are controlled with a time step of 5 minutes, where ControlNEXT manages the communication of pump operation setpoints to the SCADA system. In case of failing communication, backup procedures are programmed in the PLC of the pump stations. In that case the old on/off operation based on local water levels will be used. The system has been operational since January 2016 and has been monitored since then. In addition to monitoring the positive effect on the inflow at the WWTP, an important issue is the possible sedimentation in the sewer systems. This will be monitored too.

  8. HiFiVS Modeling of Flow Diverter Deployment Enables Hemodynamic Characterization of Complex Intracranial Aneurysm Cases

    PubMed Central

    Xiang, Jianping; Damiano, Robert J.; Lin, Ning; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Meng, Hui

    2016-01-01

    Object Flow diversion via Pipeline Embolization Device (PED) represents the most recent advancement in endovascular therapy of intracranial aneurysms. This exploratory study aims at a proof of concept for an advanced device-modeling tool in conjunction with computational fluid dynamics (CFD) to evaluate flow modification effects by PED in real treatment cases. Methods We performed computational modeling of three PED-treated complex aneurysm cases. Case I had a fusiform vertebral aneurysm treated with a single PED. Case II had a giant internal carotid artery (ICA) aneurysm treated with 2 PEDs. Case III consisted of two tandem ICA aneurysms (a and b) treated by a single PED. Our recently developed high fidelity virtual stenting (HiFiVS) technique was used to recapitulate the clinical deployment process of PEDs in silico for these three cases. Pre- and post-treatment aneurysmal hemodynamics using CFD simulation was analyzed. Changes in aneurysmal flow velocity, inflow rate, and wall shear stress (WSS) (quantifying flow reduction) and turnover time (quantifying stasis) were calculated and compared with clinical outcome. Results In Case I (occluded within the first 3 months), the aneurysm experienced the most drastic aneurysmal flow reduction after PED placement, where the aneurysmal average velocity, inflow rate and average WSS was decreased by 76.3%, 82.5% and 74.0%, respectively, while the turnover time was increased to 572.1% of its pre-treatment value. In Case II (occluded at 6 months), aneurysmal average velocity, inflow rate and average WSS were decreased by 39.4%, 38.6%, and 59.1%, respectively, and turnover time increased to 163.0%. In Case III, Aneurysm III-a (occluded at 6 months) experienced decrease by 38.0%, 28.4%, and 50.9% in aneurysmal average velocity, inflow rate and average WSS, respectively and increase to 139.6% in turnover time, which was quite similar to Aneurysm II. Surprisingly, the adjacent Aneurysm III-b experienced more substantial flow reduction (decrease by 77.7%, 53.0%, and 84.4% in average velocity, inflow rate and average WSS, respectively, and increase to 213.0% in turnover time) than Aneurysm III-a, which qualitatively agreed with angiographic observation at 3-month follow-up. However, Aneurysm III-b remained patent at both 6 months and 9 months. A closer examination of the vascular anatomy of Case III revealed blood draining to the ophthalmic artery off Aneurysm III-b, which may have prevented its complete thrombosis. Conclusion This proof-of-concept study demonstrates that HiFiVE modeling of flow diverter deployment enables detailed characterization of hemodynamic alteration by PED placement. Post-treatment aneurysmal flow reduction may be correlated with aneurysm occlusion outcome. However, predicting aneurysm treatment outcome by flow diverters also requires consideration of other factors including vascular anatomy. PMID:26090829

  9. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic.

    PubMed

    Thornalley, David J R; Elderfield, Harry; McCave, I Nick

    2009-02-05

    The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.

  10. 40 CFR 35.2120 - Infiltration/Inflow.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...

  11. 40 CFR 35.2120 - Infiltration/Inflow.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...

  12. 40 CFR 35.2120 - Infiltration/Inflow.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...

  13. 40 CFR 35.2120 - Infiltration/Inflow.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/Inflow. 35.2120 Section 35... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... infiltration/inflow. For combined sewers, inflow is not considered excessive in any event. (b) Inflow. If the...

  14. Hydrology of the Floral City Pool of Tsala Apopka Lake, west-central Florida

    USGS Publications Warehouse

    Bradner, L.A.

    1988-01-01

    Tsala Apopka Lake, in west-central Florida, has an area of about 19,000 acres and is divided into three water-management pools, with the Floral City Pool, the most upgradient. The Floral City Pool, which has a surface area of approximately 4,750 acres, contains an extensive combination of lakes, wetlands, and connecting canals. The Pool receives inflow from the Withlacoochee River through two canals. Outflow is through one manmade canal and one natural slough. Canal flow is partially controlled by manmade structures. A cumulative deficit of 19.4 inches of rainfall from August 1984 through May 1985 reduced surface-water inflow to the Floral City Pool to about 0.5 cu ft/sec by May 1985. During May 1985, pool levels declined approximately 0.04 ft/day. By the end of May, there was no observable outflow. From June 1985 through September 1985, 39.8 inches of rainfall caused above-average inflow to the Floral City Pool and a pool-level increase of 6.2 ft. The inflow of 340 CFS nearly equaled the outflow of 338 CFS by the end of September. (USGS)

  15. Full-Scale Field Test of Wake Steering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  16. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  17. Modeling ecosystem processes with variable freshwater inflow to the Caloosahatchee River Estuary, southwest Florida. I. Model development

    NASA Astrophysics Data System (ADS)

    Buzzelli, Christopher; Doering, Peter H.; Wan, Yongshan; Sun, Detong; Fugate, David

    2014-12-01

    Variations in freshwater inflow have ecological consequences for estuaries ranging among eutrophication, flushing and transport, and high and low salinity impacts on biota. Predicting the potential effects of the magnitude and composition of inflow on estuaries over a range of spatial and temporal scales requires reliable mathematical models. The goal of this study was to develop and test a model of ecosystem processes with variable freshwater inflow to the sub-tropical Caloosahatchee River Estuary (CRE) in southwest Florida from 2002 to 2009. The modeling framework combined empirically derived inputs of freshwater and materials from the watershed, daily predictions of salinity, a box model for physical transport, and simulation models of biogeochemical and seagrass dynamics. The CRE was split into 3 segments to estimate advective and dispersive transport of water column constituents. Each segment contained a sub-model to simulate changes in the concentrations of organic nitrogen and phosphorus (ON and OP), ammonium (NH4+), nitrate-nitrite (NOx-), ortho-phosphate (PO4-3), phytoplankton chlorophyll a (CHL), and sediment microalgae (SM). The seaward segment also had sub-models for seagrasses (Halodule wrightii and Thalassia testudinum). The model provided realistic predictions of ON in the upper estuary during wet conditions since organic nitrogen is associated with freshwater inflow and low salinity. Although simulated CHL concentrations were variable, the model proved to be a reliable predictor in time and space. While predicted NOx- concentrations were proportional to freshwater inflow, NH4+ was less predictable due to the complexity of internal cycling during times of reduced freshwater inflow. Overall, the model provided a representation of seagrass biomass changes despite the absence of epiphytes, nutrient effects, or sophisticated translocation in the formulation. The model is being used to investigate the relative importance of colored dissolved organic matter (CDOM) vs. CHL in submarine light availability throughout the CRE, assess if reductions in nutrient loads are more feasible by controlling freshwater quantity or N and P concentrations, and explore the role of inflow and flushing on the fates of externally and internally derived dissolved and particulate constituents.

  18. Wind tunnel data of the analysis of heat pipe and wind catcher technology for the built environment.

    PubMed

    Calautit, John Kaiser; Chaudhry, Hassam Nasarullah; Hughes, Ben Richard

    2015-12-01

    The data presented in this article were the basis for the study reported in the research articles entitled 'Climate responsive behaviour heat pipe technology for enhanced passive airside cooling' by Chaudhry and Hughes [10] which presents the passive airside cooling capability of heat pipes in response to gradually varying external temperatures and related to the research article "CFD and wind tunnel study of the performance of a uni-directional wind catcher with heat transfer devices" by Calautit and Hughes [1] which compares the ventilation performance of a standard roof mounted wind catcher and wind catcher incorporating the heat pipe technology. Here, we detail the wind tunnel test set-up and inflow conditions and the methodologies for the transient heat pipe experiment and analysis of the integration of heat pipes within the control domain of a wind catcher design.

  19. Meridional Flow Variations in Cycles 23 and 24: Active Latitude Control of Sunspot Cycle Amplitudes

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Upton, Lisa

    2013-01-01

    We have measured the meridional motions of magnetic elements observed in the photosphere over sunspot cycles 23 and 24 using magnetograms from SOHO/MDI and SDO/HMI. Our measurements confirm the finding of Komm, Howard, and Harvey (1993) that the poleward meridional flow weakens at cycle maxima. Our high spatial and temporal resolution analyses show that this variation is in the form of a superimposed inflow toward the active latitudes. This inflow is weaker in cycle 24 when compared to the inflow in 23, the stronger cycle. This systematic modulation of the meridional flow should also modulate the amplitude of the following sunspot cycle through its influence on the Sun's polar fields. The observational evidence and the theoretical consequences (similar to those of Cameron and Schussler (2012)) will be described.

  20. A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia.

    PubMed

    Song, J C; Sun, Y M; Yang, L Q; Zhang, M Z; Lu, Z J; Yu, W F

    2010-10-01

    In this study, we compared liver function tests after hepatectomy with inflow occlusion as a function of propofol versus sevoflurane anesthesia. One hundred patients undergoing elective liver resection with inflow occlusion were randomized into a sevoflurane group or a propofol group. General anesthesia was induced with 3 μg/kg fentanyl, 0.2 mg/kg cisatracurium, and target-controlled infusion of propofol, set at a plasma target concentration of 4 to 6 μg/mL, or sevoflurane initially started at 8%. Anesthesia was maintained with target-controlled infusion of propofol (2-4 μg/mL) or sevoflurane (1.5%-2.5%). The primary end point was postoperative liver injury assessed by peak values of liver transaminases. Transaminase levels peaked between the first and the third postoperative day. Peak alanine aminotransferase was 504 and 571 U/L in the sevoflurane group and the propofol group, respectively. Peak aspartate aminotransferase was 435 U/L after sevoflurane and 581 U/L in the propofol group. There were no significant differences in peak alanine aminotransferase or peak aspartate aminotransferase between groups. Other liver function tests including bilirubin and alkaline phosphatase, and peak values of white blood cell counts and creatinine, were also not different between groups. Sevoflurane and propofol anesthetics resulted in similar patterns of liver function tests after hepatectomy with inflow occlusion. These data suggest that the 2 anesthetics are equivalent in this clinical context.

  1. Acceleration rate of mitral inflow E wave: a novel transmitral doppler index for assessing diastolic function.

    PubMed

    Badkoubeh, Roya Sattarzadeh; Tavoosi, Anahita; Jabbari, Mostafa; Parsa, Amir Farhang Zand; Geraeli, Babak; Saadat, Mohammad; Larti, Farnoosh; Meysamie, Ali Pasha; Salehi, Mehrdad

    2016-06-10

    We performed comprehensive transmitral and pulmonary venous Doppler echocardiographic studies to devise a novel index of diastolic function. This is the first study to assess the utility of the acceleration rate (AR) of the E wave of mitral inflow as a primary diagnostic modality for assessing diastolic function. Study group consisted of 84 patients (53 + 11 years) with left ventricle (LV) diastolic dysfunction and 34 healthy people (35 ± 9 years) as control group, who were referred for clinically indicated two-dimensional transthoracic echocardiogram (TTE) during 2012 and 2013 to Imam Hospital. Normal controls were defined as patients without clinical evidence of cardiac disease and had normal TTE. LV diastolic function was determined according to standardized protocol of American Society of Echocardiography (ASE). As our new parameter, AR of E wave of mitral inflow was also measured in all patients. It was represented by the slope of the line between onset of E wave and peak of it. Correlation between AR of E wave and LV diastolic function grade was measured using the Spearman correlation coefficient. Receiver operating characteristic (ROC) curve was used to determine the sensitivity and specificity of AR of E wave in diagnosing LV diastolic dysfunction in randomly selected two-thirds of population then its derived cutoff was evaluated in rest of the population. The institutional review board of the hospital approved the study protocol. All participants gave written informed consent. This investigation was in accordance with the Declaration of Helsinki. The mean value of AR was 1010 ± 420 cm/s(2) in patients whereas the mean value for the normal controls was 701 ± 210 cm/s(2). There was a strong and graded relation between AR of E wave of mitral inflow and LV diastolic function grade (Spearman P ≤0.0001, rs =0.69). ROC curve analysis revealed that AR of E wave of mitral inflow =750 cm/s(2) predicted moderate or severe LV diastolic dysfunction with 89 % sensitivity and 89 % specificity (area under curve [AUC] = 0.903, P <0.0001). Application of this cutoff on test group showed 96 % sensitivity and 77 % specificity with AUC = 0.932 and P <0.0001. AR of E wave of mitral inflow could be used for assessment of diastolic function, especially moderate or severe diastolic dysfunction. However, before its clinical application, external validation should be considered.

  2. Magnetic resonance characterization of septal bounce: findings of blood impact physiology.

    PubMed

    Angheloiu, George O; Rayarao, Geetha; Williams, Ronald; Yamrozik, June; Doyle, Mark; Biederman, Robert W W

    2015-01-01

    'Septal bounce' is a pathognomonic sign of constrictive pericarditis (CP). The objectives of the study are to resolve the etiology of the septal bounce, to generate septal bounce-related diagnostic tools, and to prove that its presence is related to the mechanical interaction between the atrioventricular inflow and the inter-ventricular septum. We compared steady state free precession four-chamber images between 11 CP patients and 11 controls via cardiac magnetic resonance. The septal bounce was composed of two movements observed during every cardiac cycle, simultaneous with the rapid filling and atrial systole respectively. Three parameters (measured at end-systole) were generated: right ventricular (RV) clamp (compression ratio of the RV)-greater in CP (0.88 ± 0.03) than controls (0.85 ± 0.03, p = 0.02), tri-septal angle between the tricuspid valve annulus plane and the interventricular septum (81° ± 9° vs. 91° ± 7°, p = 0.01), and impact angle between the tricuspid inflow vector and septum (8.6° ± 8.7° vs. 0° ± 6.6°, p = 0.01). The accuracy, positive predictive value, sensitivity and specificity of these parameters in differentiating CP from controls ranged from 100 to 82 %. A forth parameter-septal flow ratio, gauging the proportion of tricuspid inflow impacting the septum, was markedly higher in CP than controls (0.38 ± 0.19 vs. 0.01 ± 0.03, p < 0.0001) with 100 % sensitivity, specificity, positive and negative predictive value. The septal bounce consists of two sequential movements during each cardiac cycle, is time-related with the rapid ventricular filling and atrial systole, and likely represents a result of the tricuspid blood inflow impacting the interventricular septum. Four septal bounce-derived parameters have a good accuracy in differentiating CP from volunteers.

  3. Scenario-based fitted Q-iteration for adaptive control of water reservoir systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over recent years, mathematical models have largely been used to support planning and management of water resources systems. Yet, the increasing uncertainties in their inputs - due to increased variability in the hydrological regimes - are a major challenge to the optimal operations of these systems. Such uncertainty, boosted by projected changing climate, violates the stationarity principle generally used for describing hydro-meteorological processes, which assumes time persisting statistical characteristics of a given variable as inferred by historical data. As this principle is unlikely to be valid in the future, the probability density function used for modeling stochastic disturbances (e.g., inflows) becomes an additional uncertain parameter of the problem, which can be described in a deterministic and set-membership based fashion. This study contributes a novel method for designing optimal, adaptive policies for controlling water reservoir systems under climate-related uncertainty. The proposed method, called scenario-based Fitted Q-Iteration (sFQI), extends the original Fitted Q-Iteration algorithm by enlarging the state space to include the space of the uncertain system's parameters (i.e., the uncertain climate scenarios). As a result, sFQI embeds the set-membership uncertainty of the future inflow scenarios in the action-value function and is able to approximate, with a single learning process, the optimal control policy associated to any scenario included in the uncertainty set. The method is demonstrated on a synthetic water system, consisting of a regulated lake operated for ensuring reliable water supply to downstream users. Numerical results show that the sFQI algorithm successfully identifies adaptive solutions to operate the system under different inflow scenarios, which outperform the control policy designed under historical conditions. Moreover, the sFQI policy generalizes over inflow scenarios not directly experienced during the policy design, thus alleviating the risk of mis-adaptation, namely the design of a solution fully adapted to a scenario that is different from the one that will actually realize.

  4. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...

  5. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...

  6. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...

  7. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...

  8. 40 CFR 35.927-1 - Infiltration/inflow analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Infiltration/inflow analysis. 35.927-1... Infiltration/inflow analysis. (a) The infiltration/inflow analysis shall demonstrate the nonexistence or possible existence of excessive infiltration/inflow in the sewer system. The analysis should identify the...

  9. In Vivo Evaluation of Active and Passive Physiological Control Systems for Rotary Left and Right Ventricular Assist Devices.

    PubMed

    Gregory, Shaun D; Stevens, Michael C; Pauls, Jo P; Schummy, Emma; Diab, Sara; Thomson, Bruce; Anderson, Ben; Tansley, Geoff; Salamonsen, Robert; Fraser, John F; Timms, Daniel

    2016-09-01

    Preventing ventricular suction and venous congestion through balancing flow rates and circulatory volumes with dual rotary ventricular assist devices (VADs) configured for biventricular support is clinically challenging due to their low preload and high afterload sensitivities relative to the natural heart. This study presents the in vivo evaluation of several physiological control systems, which aim to prevent ventricular suction and venous congestion. The control systems included a sensor-based, master/slave (MS) controller that altered left and right VAD speed based on pressure and flow; a sensor-less compliant inflow cannula (IC), which altered inlet resistance and, therefore, pump flow based on preload; a sensor-less compliant outflow cannula (OC) on the right VAD, which altered outlet resistance and thus pump flow based on afterload; and a combined controller, which incorporated the MS controller, compliant IC, and compliant OC. Each control system was evaluated in vivo under step increases in systemic (SVR ∼1400-2400 dyne/s/cm(5) ) and pulmonary (PVR ∼200-1000 dyne/s/cm(5) ) vascular resistances in four sheep supported by dual rotary VADs in a biventricular assist configuration. Constant speed support was also evaluated for comparison and resulted in suction events during all resistance increases and pulmonary congestion during SVR increases. The MS controller reduced suction events and prevented congestion through an initial sharp reduction in pump flow followed by a gradual return to baseline (5.0 L/min). The compliant IC prevented suction events; however, reduced pump flows and pulmonary congestion were noted during the SVR increase. The compliant OC maintained pump flow close to baseline (5.0 L/min) and prevented suction and congestion during PVR increases. The combined controller responded similarly to the MS controller to prevent suction and congestion events in all cases while providing a backup system in the event of single controller failure. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreck, S. J.; Schepers, J. G.

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  11. Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida

    USGS Publications Warehouse

    Lee, T.M.

    1996-01-01

    Transient groundwater interactions and lake stage were simulated for Lake Barco, an acidic seepage lake in the mantled karst of north central Florida. Karst subsidence features affected groundwater flow patterns in the basin and groundwater fluxes to and from the lake. Subsidence features peripheral to the lake intercepted potential groundwater inflow and increased leakage from the shallow perimeter of the lake bed. Simulated groundwater fluxes were checked against net groundwater flow derived from a detailed lake hydrologic budget with short-term lake evaporation computed by the energy budget method. Discrepancies between modeled and budget-derived net groundwater flows indicated that the model underestimated groundwater inflow, possibly contributed to by transient water table mounding near the lake. Recharge from rainfall reduced lake leakage by 10 to 15 times more than it increased groundwater inflow. As a result of the karst setting, the contributing groundwater basin to the lake was 2.4 ha for simulated average rainfall conditions, compared to the topographically derived drainage basin area of 81 ha. Short groundwater inflow path lines and rapid travel times limit the contribution of acid-neutralizing solutes from the basin, making Lake Barco susceptible to increased acidification by acid rain.

  12. A review of circulation and mixing studies of San Francisco Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.

    1987-01-01

    A description of the major characteristics and remaining unknowns of circulation and mixing in San Francisco Bay has been constructed from a review of published studies. From a broad perspective San Francisco Bay is an ocean-river mixing zone with a seaward flow equal to the sum of the river inflows less evaporation. Understanding of circulation and mixing within the bay requires quantification of freshwater inflows and ocean-bay exchanges, characterization of source-water variations, and separation of the within-bay components of circulation and mixing processes. Description of net circulation and mixing over a few days to a few months illustrates best the interactions of major components. Quantification of tidal circulation and mixing is also necessary because net circulation and mixing contain a large tide-induced component, and because tidal variations are dominant in measurements of stage, currents, and salinity. The discharge of the Sacramento-San Joaquin Delta into Suisun Bay is approximately 90 percent of the freshwater inflow to San Francisco Bay. Annual delta discharge is characterized by a winter season of high runoff and a summer season of low runoff. For the period 1956 to 1985 the mean of monthly discharges exceeded 1,000 cubic meters per second (35,000 cubic feet per second) for the months of December through April, whereas for July through October, it was less than 400 cubic meters per second (14,000 cubic feet per second). The months of November, May, and June commonly were transition months between these seasons. Large year-to-year deviations from this annual pattern have occurred frequently. Much less is known about the ocean-bay exchange process. Net exchanges depend on net seaward flow in the bay, tidal amplitude, and longshore coastal currents, but exchanges have not yet been measured successfully. Source-water variations are ignored by limiting discussion of mixing to salinity. The bay is composed of a northern reach, which is strongly influenced by delta discharge, and South Bay, a tributary estuary which responds to conditions in Central Bay. In the northern reach net circulation is characterized by the river-induced seaward, flow and a resulting gravitational circulation in the channels, and by a tide- and wind-induced net horizontal circulation. A surface layer of relatively fresh water in Central Bay generated by high delta discharges can induce gravitational circulation in South Bay. During low delta discharges South Bay has nearly the same salinity as Central Bay and is characterized by tide- and wind-induced net horizontal circulation. Several factors control the patterns of circulation and mixing in San Francisco Bay. Viewing circulation and mixing over different time-periods and at different geographic scales causes the influences of different factors to be emphasized. The exchange between the bay and coastal ocean and freshwater inflows determine the year-to-year behavior of San Francisco Bay as a freshwater-saltwater mixing zone. Within the bay, exchanges between the embayments control variations over a season. Circulation and mixing patterns within the embayments and the magnitude of river-induced seaward flow influence the between-bay exchanges. The within-bay patterns are in turn determined by tides, winds, and freshwater inflows. Because freshwater inflow is the only factor that can be managed, a major study focus is estimation of inflow-related effects. Most questions relate to the patterns of freshwater inflow necessary to protect valuable resources whose welfare is dependent on conditions in the bay. Among the important questions being addressed are: --What quantity of freshwater inflow is necessary to prevent salt intrusion into the Sacramento-San Joaquin Delta, and what salinity distributions in the bay would result from various inflow patterns? --What quantity of freshwater inflow is sufficient to flush pollutants through the bay? Knowledge of circul

  13. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  14. Left ventricular assist device exchange: the Toronto General Hospital experience.

    PubMed

    Tsubota, Hideki; Ribeiro, Roberto V P; Billia, Filio; Cusimano, Robert J; Yau, Terrence M; Badiwala, Mitesh V; Stansfield, William E; Rao, Vivek

    2017-08-01

    As support times for left ventricular assist devices (LVADs) become longer, several complications requiring device exchange may occur. To our knowledge, this is the first Canadian report regarding implantable LVAD exchange. We retrospectively reviewed the cases of consecutive, unique patients implanted with an LVAD between June 2006 and October 2015 at Toronto General Hospital. In total, 122 patients were impanted with an LVAD during the study period. Eight patients required LVAD exchange, and 1 patient had 2 replacements (9 of 122, 7.3%). There were 7 HeartMate II (HMII), 1 HVAD and 1 DuraHeart pumps exchanged. Two of these exchanges occurred early at the time of initial implant, whereas 7 occurred late (range 8-623 d). Six exchanges were made owing to pump thrombosis. Of the 3 exchanges made for other causes, 1 HMII exchange was owing to a driveline fracture, 1 DuraHeart patient had early inflow obstruction requiring exchange to HMII at the initial implant, and the third had a suspected inflow obstruction with no evidence of thrombosis at the time of the procedure. The mean support time before exchange was 225 days, and time from exchange to transplant, death or ongoing support was 245 days. Three patients were successfully bridged to transplant, and at the time of data collection 2 were supported awaiting transplant. Three patients died after a mean duration of 394.3 days (range 78-673 d) of support postreplacement. Four cases were successfully performed using a subcostal approach. Pump thrombosis is the most common cause for LVAD exchange, which can be performed with acceptable morbidity and mortality. The subcostal approach may be the preferred procedure for an HMII exchange when indicated.

  15. A High-Resolution Record of Warm Water Inflow and Iceberg Calving in Upernavik Isfjord During the Past 150 Years.

    NASA Astrophysics Data System (ADS)

    Vermassen, F.; Andresen, C. S.; Sabine, S.; Holtvoeth, J.; Cordua, A. E.; Wangner, D. J.; Dyke, L. M.; Kjaer, K. H.; Kokfelt, U.; Haubner, K.

    2016-12-01

    There is a growing body of evidence demonstrating that changes in warm water inflow to Greenlandic fjords are linked to the rapid retreat of marine-terminating outlet glaciers. This process is thought to be responsible for a substantial component of the increased mass loss from the Greenland Ice Sheet over the last two decades. Sediment cores from glaciated fjords provide high-resolution sedimentological and biological proxy records which can be used to evaluate the interplay of warm water inflow and glacier calving over recent time scales. In this study, multiple short cores ( 2 m) from Upernavik Isfjord, West Greenland, were analysed to establish a multi-proxy record of glacier behaviour and oceanographic conditions that spans the past 150 years. The down-core variation in the amount of ice-rafted debris reveals periods of increased glacier calving, and biomarker proxies are used to reconstruct variability in the inflow of warm, Atlantic-sourced water to the fjord. Measurements of the sortable silt grain size are used to reconstruct bottom-current strength; periods of vigorous current flow are assumed to be due to enhanced warm water inflow. Finally, a record of glacier terminus position changes, derived from historical observations and satellite imagery, allows comparison of our new proxy records with the retreat of the ice margin from 1849 onwards. We use these data to assess the relative importance of mechanisms controlling the (rapid) retreat of marine-terminating glaciers in Upernavik Isfjord.

  16. DSM-flux: A new technology for reliable Combined Sewer Overflow discharge monitoring with low uncertainties.

    PubMed

    Maté Marín, Ainhoa; Rivière, Nicolas; Lipeme Kouyi, Gislain

    2018-06-01

    In the past ten years, governments from the European Union have been encouraged to collect volume and quality data for all the effluent overflows from separated stormwater and combined sewer systems that result in a significant environmental impact on receiving water bodies. Methods to monitor and control these flows require improvements, particularly for complex Combined Sewer Overflow (CSO) structures. The DSM-flux (Device for Stormwater and combined sewer flows Monitoring and the control of pollutant fluxes) is a new pre-designed and pre-calibrated channel that provides appropriate hydraulic conditions suitable for measurement of overflow rates and volumes by means of one water level gauge. In this paper, a stage-discharge relation for the DSM-flux is obtained experimentally and validated for multiple inflow hydraulic configurations. Uncertainties in CSO discharges and volumes are estimated within the Guide to the expression of Uncertainty in Measurement (GUM) framework. Whatever the upstream hydraulic conditions are, relative uncertainties are lower than 15% and 2% for the investigated discharges and volumes, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes

    NASA Astrophysics Data System (ADS)

    Tian, Pei; Xu, Xinyi; Pan, Chengzhong; Hsu, Kuolin; Yang, Tiantian

    2017-05-01

    Limited information has isolated the impacts of rainfall on rill formation and erosion on steep hillslopes where upslope inflow simultaneously exists. Field simulation experiments were conducted on steep hillslopes (26°) under rainfall (60 mm h-1), inflow (6, 12, 18, 24, 30, 36 L min-1 m-1), and combination of rainfall and inflow to explore the impacts of rainfall on rill formation, and the interaction between rainfall and inflow on soil erosion. Rainfall decreased soil infiltration rate (10%-26%) mainly due to soil crust by raindrop impact. Rainfall strengthened rill formation, which behaved in the increment in rill width (5%-26%), length (4%-22%), and depth (3%-22%), but this increment decreased as inflow rates increased. Additionally, the contribution of rainfall on rill formation was most significant at the initial stage, followed by the final stage and active period of rill development. Rainfall increased rill erosion (8%-80%) and interrill erosion (36%-64%), but it played a dominant role in increasing interrill erosion under relatively high inflow rates. The most sensitive hydrodynamic parameter to soil erosion was shear stress and stream power under inflow and 'inflow + rainfall' conditions, respectively. For the lowest inflow rate, the reduction in soil loss by interaction between rainfall and inflow accounted for 20% of total soil loss, indicating a negative interaction. However, such interaction became positive with increasing inflow rates. The contribution rate to rill erosion by the interaction was greater than that of interrill erosion under relatively low inflow rates. Our results provide a better understanding of hillslope soil erosion mechanism.

  18. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform.

    PubMed

    Hoganson, David M; Pryor, Howard I; Bassett, Erik K; Spool, Ira D; Vacanti, Joseph P

    2011-02-21

    There is no technology available to support failing lung function for patients outside the hospital. An implantable lung assist device would augment lung function as a bridge to transplant or possible destination therapy. Utilizing biomimetic design principles, a microfluidic vascular network was developed for blood inflow from the pulmonary artery and blood return to the left atrium. Computational fluid dynamics analysis was used to optimize blood flow within the vascular network. A micro milled variable depth mold with 3D features was created to achieve both physiologic blood flow and shear stress. Gas exchange occurs across a thin silicone membrane between the vascular network and adjacent alveolar chamber with flowing oxygen. The device had a surface area of 23.1 cm(2) and respiratory membrane thickness of 8.7 ± 1.2 μm. Carbon dioxide transfer within the device was 156 ml min(-1) m(-2) and the oxygen transfer was 34 ml min(-1) m(-2). A lung assist device based on tissue engineering architecture achieves gas exchange comparable to hollow fiber oxygenators yet does so while maintaining physiologic blood flow. This device may be scaled up to create an implantable ambulatory lung assist device.

  19. Towards an improved mechanistic understanding of major saltwater inflows into the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Höflich, Katharina; Lehmann, Andreas; Myrberg, Kai

    2017-04-01

    The Baltic Sea is a semi-enclosed water body connected to the North Sea only via the shallow and narrow Danish Straits. Of special importance to the salinity and oxygen dynamics of the Baltic Sea are major Baltic inflows (or highly saline barotropic inflows), that are the only process to effectively ventilate water masses below the permanent halocline. Their occurrence is typically explained by a sequence of easterly winds over a period of several weeks followed by westerly gales during which the highly saline Kattegat water is pushed over the entrance sills. While this explanation is accurate in a descriptive sense, it does not necessarily serve as sufficient explanation for the occurrence of major Baltic inflows. Recently, attempts were made to understand major Baltic inflows in the context of large barotropic inflows and it was found that a sequence of easterly and westerly circulation types forces not only major Baltic inflows but large barotropic inflows in general. Thus, clarification on the factors that are exclusive to the formation of major Baltic inflows is needed. Based on a realistic numerical ocean model setup of the Baltic Sea system and for the period 1979-2015 we investigate on the important ingredients to the occurrence of major Baltic inflows. The analysis is based on the complete set of large barotropic inflows, and both atmospheric and oceanic factors are covered. We find that both, the salinity in the transition area between the North Sea and Baltic Sea, as well as details in the atmospheric circulation during the event, are of importance to the occurrence of major Baltic inflows. Even though excess river runoff is often held responsible for the occurrence of stagnation periods (i.e. extended periods without the occurrence of major Baltic inflows), attempts to classify its role were not made. Therefore, sensitivity experiments with the strong major Baltic inflow of December 2014 were performed, where river runoff and salinity in the transition area are investigated in more detail. Finally, insights into the ingredients to effective major Baltic inflows are synthesized into a flow-chart diagram in which an improved mechanistic understanding of major Baltic inflows is outlined.

  20. Inflow forecasting model construction with stochastic time series for coordinated dam operation

    NASA Astrophysics Data System (ADS)

    Kim, T.; Jung, Y.; Kim, H.; Heo, J. H.

    2014-12-01

    Dam inflow forecasting is one of the most important tasks in dam operation for an effective water resources management and control. In general, dam inflow forecasting with stochastic time series model is possible to apply when the data is stationary because most of stochastic process based on stationarity. However, recent hydrological data cannot be satisfied the stationarity anymore because of climate change. Therefore a stochastic time series model, which can consider seasonality and trend in the data series, named SARIMAX(Seasonal Autoregressive Integrated Average with eXternal variable) model were constructed in this study. This SARIMAX model could increase the performance of stochastic time series model by considering the nonstationarity components and external variable such as precipitation. For application, the models were constructed for four coordinated dams on Han river in South Korea with monthly time series data. As a result, the models of each dam have similar performance and it would be possible to use the model for coordinated dam operation.Acknowledgement This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-NH-12-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.

  1. Evaluation of the Multi-Chambered Treatment Train, a retrofit water-quality management device

    USGS Publications Warehouse

    Corsi, Steven R.; Greb, Steven R.; Bannerman, Roger T.; Pitt, Robert E.

    1999-01-01

    This paper presents the results of an evaluation of the benefits and efficiencies of a device called the Multi-Chambered Treatment Train (MCTT), which was installed below the pavement surface at a municipal maintenance garage and parking facility in Milwaukee, Wisconsin. Flow-weighted water samples were collected at the inlet and outlet of the device during 15 storms, and the efficiency of the device was based on reductions in the loads of 68 chemical constituents and organic compounds. High reduction efficiencies were achieved for all particulate-associated constituents, including total suspended solids (98 percent), total phosphorus (88 percent), and total recoverable zinc (91 percent). Reduction rates for dissolved fractions of the constituents were substantial, but somewhat lower (dissolved solids, 13 percent; dissolved phosphorus, 78 percent; dissolved zinc, 68 percent). The total dissolved solids load, which originated from road salt storage, was more than four times the total suspended solids load. No appreciable difference was detected between particle-size distributions in inflow and outflow samples.

  2. The total artificial heart for biventricular heart failure and beyond.

    PubMed

    Kasirajan, Vigneshwar; Tang, Daniel G; Katlaps, Gundars J; Shah, Keyur B

    2012-05-01

    Treatment options for late-stage biventricular heart failure are limited but include medical therapy with intravenous inotropes, biventricular assist devices (Bi-VADs) and the total artificial heart (TAH). In this manuscript, we review the indications, surgical techniques and outcomes for the TAH. The TAH offers biventricular replacement, rather than 'assistance', as the device is placed orthotopically after excision of the entire ventricular myocardium and all four native valves. In contrast to patients with Bi-VADs, patients with the TAH have no postoperative inotrope requirements, arrhythmias or inflow/outflow cannulae-related complications. Additionally, patients participate in rehabilitation early after device placement and the development of a portable drive may facilitate hospital discharge in the USA. Furthermore, total heart replacement may be ideal for heart failure associated with unique anatomical and mechanical complications. The TAH is an effective therapeutic option for the treatment of patients dying of heart failure who may not be suitable candidates for left ventricular assist devices.

  3. Effect of transient liquid flow on retention characteristics of screen acquisition systems. [design of Space Shuttle feed system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1977-01-01

    A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.

  4. Identification of the inflow zone of unruptured cerebral aneurysms: comparison of 4D flow MRI and 3D TOF MRA data.

    PubMed

    Futami, K; Sano, H; Misaki, K; Nakada, M; Ueda, F; Hamada, J

    2014-07-01

    The hemodynamics of the inflow zone of cerebral aneurysms may be a key factor in coil compaction and recanalization after endovascular coil embolization. We performed 4D flow MR imaging in conjunction with 3D TOF MRA and compared their ability to identify the inflow zone of unruptured cerebral aneurysms. This series comprised 50 unruptured saccular cerebral aneurysms in 44 patients. Transluminal color-coded 3D MRA images were created by selecting the signal-intensity ranges on 3D TOF MRA images that corresponded with both the luminal margin and the putative inflow. 4D flow MR imaging demonstrated the inflow zone and yielded inflow velocity profiles for all 50 aneurysms. In 18 of 24 lateral-projection aneurysms (75%), the inflow zone was located distally on the aneurysmal neck. The maximum inflow velocity ranged from 285 to 922 mm/s. On 4D flow MR imaging and transluminal color-coded 3D MRA studies, the inflow zone of 32 aneurysms (64%) was at a similar location. In 91% of aneurysms whose neck section plane angle was <30° with respect to the imaging section direction on 3D TOF MRA, depiction of the inflow zone was similar on transluminal color-coded 3D MRA and 4D flow MR images. 4D flow MR imaging can demonstrate the inflow zone and provide inflow velocity profiles. In aneurysms whose angle of the neck-section plane is obtuse vis-a-vis the imaging section on 3D TOF MRA scans, transluminal color-coded 3D MRA may depict the inflow zone reliably. © 2014 by American Journal of Neuroradiology.

  5. Modeling the effect of control on the wake of a utility-scale turbine via large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Annoni, Jennifer; Seiler, Pete; Sotiropoulos, Fotis

    2014-06-01

    A model of the University of Minnesota EOLOS research turbine (Clipper Liberty C96) is developed, integrating the C96 torque control law with a high fidelity actuator line large- eddy simulation (LES) model. Good agreement with the blade element momentum theory is obtained for the power coefficient curve under uniform inflow. Three different cases, fixed rotor rotational speed ω, fixed tip-speed ratio (TSR) and generator torque control, have been simulated for turbulent inflow. With approximately the same time-averaged ω, the time- averaged power is in good agreement with measurements for all three cases. Although the time-averaged aerodynamic torque is nearly the same for the three cases, the root-mean-square (rms) of the aerodynamic torque fluctuations is significantly larger for the case with fixed ω. No significant differences have been observed for the time-averaged flow fields behind the turbine for these three cases.

  6. Combined technetium radioisotope penile plethysmography and xenon washout: A technique for evaluating corpora cavernosal inflow and outflow during early tumescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, A.N.; Graham, M.M.

    1991-03-01

    Combined technetium radioisotope penile plethysmography and xenon washout is a new technique that measures both corporal arterial inflow and venous sinusoidal outflow during early tumescence in patients with erectile dysfunction. Fourteen patients were studied using 99mTc-RBCs to measure inflow and 133Xe or 127Xe in saline to measure outflow. Tumescence was induced by injecting papaverine intracorporally. Peak corporal rates corrected for inflow (r = 0.88) and uncorrected for outflow (r = 0.91) and change in volume over 2 min centered around peak inflow (r = 0.96) all correlated with angiography. Outflow measurements did not correlate with intracorporal resistance. Thus, outflow ratesmore » alone could not be used to predict venous sinusoidal competence. Normal inflow rate is greater than 20 ml/min; probable normal 12-20; indeterminate inflow 7-12; and abnormal inflow less than 7 ml/min. Technetium-99m radioisotope penile plethysmography and xenon washout can be performed together and both provide a method for simultaneously evaluating the relationship between corporal inflow and outflow rates in patients with erectile dysfunction.« less

  7. Physical, chemical, and biological aspects of the Duwamish River Estuary, King County, Washington, 1963-67

    USGS Publications Warehouse

    Santos, John F.; Stoner, J.D.

    1972-01-01

    This report describes the significant results to 1967 of a comprehensive study that began in 1963 to evaluate what changes take place in an estuary as the loads .of raw and partially treated industrial and municipal wastes are replaced by effluent from a secondary treatment plant. The study area is the Duwamish River estuary, about 18.3 river kilometers long. At mean sea level the estuary has a water-surface area of about 1 square mile and a mean width of 440 feet. At the lowest and highest recorded tides, the volume of the estuary is about 205 and 592 million cubic feet, respectively. The estuary is well stratified (salt-wedge type) at fresh-water inflows greater than 1,000 cfs (cubic feet per second), but when inflow rates are less than 1,000 cfs the lower 5.6 kilometers of the estuary grades into the partly mixed type. The crosschannel salinity distribution is uniform for a given location and depth. Salinity migration is controlled by tides and fresh-water inflow. At fresh-water inflow rates greater than 1,000 cfs, water in the upper 8.4 kilometers of the estuary is always fresh regardless of tide. At inflow rates less than 600 cfs and tide heights greater than 10 feet; some salinity has been detected 16.1 kilometers above the mouth of the estuary. Studies using a fluorescent dye show that virtually no downward mixing into the salt wedge occurs; soluble pollutants introduced at the upper end of the estuary stay in the surface layer (5-15 ft thick). On the basis of dye studies when fresh-water inflow is less than 400 cfs, it is estimated that less than 10 percent of a pollutant will remain in the estuary a minimum of 7 days. Longitudinal dispersion coefficients for the surface layer have been determined to be on the order of 100-400 square feet per second. Four water-quality stations automatically monitor DO (dissolved oxygen), water temperature, pH, and specific conductance; at one station solar radiation also is measured. DO concentration in the surface layer decreases almost linearly in a downstream direction. Minimum DO concentration in the surface layer is usually greater than 4 rag/1 (milligrams per liter). The smallest DO values are consistently recorded in the bottom layer at the station 7.7 kilometers above the mouth; monthly means of less than 3 mg/1 of DO have occurred at this point. Manual sampling shows that the DO sag in the bottom layer oscillates between 7.7 and 10.4 kilometers above the mouth of the estuary. Multiple-regression analysis shows that the surface DO content can be estimated from the fresh-water inflow and water temperature. Tidal exchange and fresh-water inflow indirectly control the bottom DO content. Information available from previous studies failed to indicate a progressive decrease in DO content during the period 1949-56, but data from the present study suggest a slight general decrease in the annual minimum DO concentrations in both the upper and lower layers. Average nitrate concentration in fresh water at station 16.2 has increased progressively since 1964, by amounts greater than those which can be attributed to the Renton Treatment Plant, 4.3 kilometers upstream from station 16.2. The BOD (biochemical oxygen demand) in both surface and bottom layers is generally less than 4 rag/1 of oxygen, but values greater than 6 rag/1 have been measured during a period of phytoplankton bloom. Phytoplankton blooms can occur during periods of minimum tidal exchange and fresh-water inflows of less than 300 cfs if solar radiation and water temperature are optimum. Nutrients (nitrogen and phosphorus compounds) do not control the occurrence of a bloom, because sufficient quantities of these nutrients are always present. Nutrients in the treated effluent may increase the biomass of the bloom. Trace-element studies have not defined any role that these elements may play in algal growth. The inflowing fresh water contains principally calcium and bicarbonate and has a dissolved-solids content ra

  8. Simultaneous Right and Left Heart Real-Time, Free-Breathing CMR Flow Quantification Identifies Constrictive Physiology

    PubMed Central

    Thavendiranathan, Paaladinesh; Verhaert, David; Walls, Michael C.; Bender, Jacob A.; Rajagopalan, Sanjay; Chung, Yiu-Cho; Simonetti, Orlando P.; Raman, Subha V.

    2015-01-01

    OBJECTIVES The purpose of this study was to evaluate the ability of a novel cardiac magnetic resonance (CMR) real-time phase contrast (RT-PC) flow measurement technique to reveal the discordant respirophasic changes in mitral and tricuspid valve in flow indicative of the abnormal hemodynamics seen in constrictive pericarditis (CP). BACKGROUND Definitive diagnosis of CP requires identification of constrictive hemodynamics with or without pericardial thickening. CMR to date has primarily provided morphological assessment of the pericardium. METHODS Sixteen patients (age 57 ± 13 years) undergoing CMR to assess known or suspected CP and 10 controls underwent RT-PC that acquired simultaneous mitral valve and tricuspid valve inflow velocities over 10 s of unrestricted breathing. The diagnosis of CP was confirmed via clinical history, diagnostic imaging, cardiac catheterization, intraoperative findings, and histopathology. RESULTS Ten patients had CP, all with increased pericardial thickness (6.2 ± 1.0 mm). RT-PC imaging demonstrated discordant respirophasic changes in atrioventricular valve inflow velocities in all CP patients, with mean ± SD mitral valve and tricuspid valve inflow velocity variation of 46 ± 20% and 60 ± 15%, respectively, compared with 16 ± 8% and 24 ± 11% in patients without CP (p < 0.004 vs. patients with CP for both) and 17 ± 5% and 31 ± 13% in controls (p < 0.001 vs. patients with CP for both). There was no difference in atrioventricular valve inflow velocity variation between patients without CP compared with controls (p > 0.3 for both). Respiratory variation exceeding 25% across the mitral valve yielded a sensitivity of 100%, a specificity of 100%, and an area under the receiver-operating characteristic curve of 1.0 to detect CP physiology. Using a cutoff of 45%, variation of transtricuspid valve velocity had a sensitivity of 90%, a specificity of 88%, and an area under the receiver-operating characteristic curve of 0.98. CONCLUSIONS Accentuated and discordant respirophasic changes in mitral valve and tricuspid valve inflow velocities characteristic of CP can be identified noninvasively with RT-PC CMR. When incorporated into existing CMR protocols for imaging pericardial morphology, RT-PC CMR provides important hemodynamic evidence with which to make a definite diagnosis of CP. PMID:22239888

  9. Unconventional Rotor Power Response to Yaw Error Variations

    DOE PAGES

    Schreck, S. J.; Schepers, J. G.

    2014-12-16

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  10. Reverse Flood Routing with the Lag-and-Route Storage Model

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.

    2010-09-01

    This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.

  11. Use of frequency analysis and the extended streamflow prediction procedure to estimate evacuation dates for the joint-use pool of Pueblo Reservoir, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Nickless, R.C.

    1994-01-01

    Part of the storage space of Pueblo Reservoir consists of a 65,950 acre-foot joint-use pool (JUP) that can be used to provide additional conservation capacity from November 1 to April 14; however, the JUP must be evacuated by April 15 and used only for flood-control capacity until November 1. A study was completed to determine if the JUP possibly could be used for conservation storage for any number of days from April 15 through May 14 under certain hydrologic conditions. The methods of the study were: (1) Frequency analysis of recorded daily mean discharge data for streamflow-gaging stations upstream and downstream from Pueblo Reservoir, and (2) Implementation of the extended streamflow prediction (ESP) procedure for the Arkansas River basin upstream from the reservoir. The frequency analyses enabled estimation of daily discharges at selected exceedance probabilities (EP's), including the 0.01 EP that was used in design of the flood- storage capacity of Pueblo Reservoir. The ESP procedure enabled probabilistic forecasts of inflow volume to the reservoir for April 15 through May 14. Daily discharges derived from the frequency analyses were routed through Pueblo Reservoir to estimate evacuation dates of the JUP for different reservoir inflow volumes; the estimates indicated a relation between the inflow volume and the JUP evacuation date. To apply the study results, only a ESP forecast of the April 15-May 14 reservoir inflow volume is needed. Study results indicate the JUP possibly could be used as late as May 5 depending on the forecast inflow volume.

  12. Assessment of Folsom Lake Watershed response to historical and potential future climate scenarios

    USGS Publications Warehouse

    Carpenter, Theresa M.; Georgakakos, Konstantine P.

    2000-01-01

    An integrated forecast-control system was designed to allow the profitable use of ensemble forecasts for the operational management of multi-purpose reservoirs. The system ingests large-scale climate model monthly precipitation through the adjustment of the marginal distribution of reservoir-catchment precipitation to reflect occurrence of monthly climate precipitation amounts in the extreme terciles of their distribution. Generation of ensemble reservoir inflow forecasts is then accomplished with due account for atmospheric- forcing and hydrologic- model uncertainties. These ensemble forecasts are ingested by the decision component of the integrated system, which generates non- inferior trade-off surfaces and, given management preferences, estimates of reservoir- management benefits over given periods. In collaboration with the Bureau of Reclamation and the California Nevada River Forecast Center, the integrated system is applied to Folsom Lake in California to evaluate the benefits for flood control, hydroelectric energy production, and low flow augmentation. In addition to retrospective studies involving the historical period 1964-1993, system simulations were performed for the future period 2001-2030, under a control (constant future greenhouse-gas concentrations assumed at the present levels) and a greenhouse-gas- increase (1-% per annum increase assumed) scenario. The present paper presents and validates ensemble 30-day reservoir- inflow forecasts under a variety of situations. Corresponding reservoir management results are presented in Yao and Georgakakos, A., this issue. Principle conclusions of this paper are that the integrated system provides reliable ensemble inflow volume forecasts at the 5-% confidence level for the majority of the deciles of forecast frequency, and that the use of climate model simulations is beneficial mainly during high flow periods. It is also found that, for future periods with potential sharp climatic increases of precipitation amount and to maintain good reliability levels, operational ensemble inflow forecasting should involve atmospheric forcing from appropriate climatic periods.

  13. Status, trends, and changes in freshwater inflows to bay systems in the Corpus Christi Bay National Estuary Program study area

    USGS Publications Warehouse

    Asquith, W.H.; Mosier, J. G.; Bush, P.W.

    1997-01-01

    The watershed simulation model Hydrologic Simulation Program—Fortran (HSPF) was used to generate simulated flow (runoff) from the 13 watersheds to the six bay systems because adequate gaged streamflow data from which to estimate freshwater inflows are not available; only about 23 percent of the adjacent contributing watershed area is gaged. The model was calibrated for the gaged parts of three watersheds—that is, selected input parameters (meteorologic and hydrologic properties and conditions) that control runoff were adjusted in a series of simulations until an adequate match between model-generated flows and a set (time series) of gaged flows was achieved. The primary model input is rainfall and evaporation data and the model output is a time series of runoff volumes. After calibration, simulations driven by daily rainfall for a 26-year period (1968–93) were done for the 13 watersheds to obtain runoff under current (1983–93), predevelopment (pre-1940 streamflow and pre-urbanization), and future (2010) land-use conditions for estimating freshwater inflows and for comparing runoff under the three land-use conditions; and to obtain time series of runoff from which to estimate time series of freshwater inflows for trend analysis.

  14. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...

  15. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...

  16. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...

  17. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...

  18. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... excessive infiltration/inflow. A determination of whether excessive infiltration/inflow exists may take into... excessive infiltration/inflow exists. It will consist of: (1) Certification by the State agency, as appropriate; and, when necessary, (2) An infiltration/inflow analysis; and, if appropriate, (3) A sewer system...

  19. Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3

    NASA Astrophysics Data System (ADS)

    Sorooshian, Armin; Shingler, T.; Crosbie, E.; Barth, M. C.; Homeyer, C. R.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Thornhill, K. L.; Ziemba, L. D.; Blake, D. R.; Fried, A.

    2017-04-01

    We examine three case studies during the Deep Convective Clouds and Chemistry (DC3) field experiment when storm inflow and outflow air were sampled for aerosol subsaturated hygroscopicity and the real part of refractive index (n) with a Differential Aerosol Sizing and Hygroscopicity Probe (DASH-SP) on the NASA DC-8. Relative to inflow aerosol particles, outflow particles were more hygroscopic (by 0.03 based on the estimated κ parameter) in one of the three storms examined. Two of three "control" flights with no storm convection reveal higher κ values, albeit by only 0.02, at high altitude (> 8 km) versus < 4 km. Entrainment modeling shows that measured κ values in the outflow of the three storm flights are higher than predicted values (by 0.03-0.11) based on knowledge of κ values from the inflow and clear air adjacent to the storms. This suggests that other process(es) contributed to hygroscopicity enhancements such as secondary aerosol formation via aqueous-phase chemistry. Values of n were higher in the outflow of two of the three storm flights, reaching as high as 1.54. More statistically significant differences were observed in control flights (no storms) where n decreased from 1.50-1.52 (< 4 km) to 1.49-1.50 (> 8 km). Chemical data show that enhanced hygroscopicity was coincident with lower organic mass fractions, higher sulfate mass fractions, and higher O:C ratios of organic aerosol. Refractive index did not correlate as well with available chemical data. Deep convection is shown to alter aerosol radiative properties, which has implications for aerosol effects on climate.

  20. Benefit of early inflow exclusion during living donor liver transplantation for unresectable hepatoblastoma.

    PubMed

    Uchida, Hajime; Fukuda, Akinari; Sasaki, Kengo; Hirata, Yoshihiro; Shigeta, Takanobu; Kanazawa, Hiroyuki; Nakazawa, Atsuko; Miyazaki, Osamu; Nosaka, Shunsuke; Mali, Vidyadhar Padmakar; Sakamoto, Seisuke; Kasahara, Mureo

    2016-11-01

    Hepatoblastoma (HB) is a highly malignant primary liver tumor in children. Although liver transplantation (LT) is an effective treatment for unresectable HB with good long-term outcomes, post-transplant survival is mainly affected by recurrence, despite adjuvant chemotherapy. Novel strategies are needed to improve the outcomes in patients undergoing LT for unresectable HB. Twelve children received LT for unresectable HB. In 9 patients, we applied early exclusion of hepatic inflow (hepatic artery and portal vein) and creation of a temporary portocaval shunt during LT. There were differences in the duration of and the blood loss during operation as compared with previously reports. The estimated glomerular filtration rate was well preserved at 3, 6, and 12months and the latest follow-up after LT, and the recurrence-free survival was 88.9%. Early inflow control during LT for unresectable HB may benefit recurrence-free survival by minimizing blood loss and tumor dissemination, preserving renal function and allowing early adjuvant chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comparative hydraulics of two fishery research circular tanks and recommendations for control of experimental bias

    USGS Publications Warehouse

    Odeh, M.; Schrock, R.M.; Gannam, A.

    2003-01-01

    Hydraulic characteristics inside two research circular tanks (1.5-m and 1.2-m diameter) with the same volume of water were studied to understand how they might affect experimental bias by influencing the behavior and development of juvenile fish. Water velocities inside each tank were documented extensively and flow behavior studied. Surface inflow to the 1.5-m tank created a highly turbulent and aerated surface, and produced unevenly distributed velocities within the tank. A low-flow velocity, or "dead" zone, persisted just upstream of the surface inflow. A single submerged nozzle in the 1.2-m tank created uniform flow and did not cause undue turbulence or introduce air. Flow behavior in the 1.5-m tank is believed to have negatively affected the feeding behavior and physiological development of a group of juvenile fall chinook salmon, Oncorhynchus tshawytscha. A new inflow nozzle design provided comparable flow behavior regardless of tank size and water depth. Maintaining similar hydraulic conditions inside tanks used for various biological purposes, including fish research, would minimize experimental bias caused by differences in flow behavior. Other sources of experimental bias are discussed and recommendations given for reporting and control of experimental conditions in fishery research tank experiments.

  2. Dynamics of a single flexible filament in a flowing soap film

    NASA Astrophysics Data System (ADS)

    Chen, Chaonan; Feng, Shunshan; Zhou, Tong

    2016-11-01

    The interactions between flexible plates and surrounding fluids like two-dimensional flag-in-wind problems are important physical phenomena. Here we use a spandex filament with one end fixed flapping in gravity-driven soap film device which can be regarded as a quasi-two-dimensional flow tunnel. A silk filament had been used previously to demonstrate three stable dynamical states: stretched-straight, flapping, and bistable states. The similar phenomena occured for a spandex filament while the bifurcation conditions seem to be different compared with a silk filament, as the critical filament length is longer and critical inflow velocity is higher than that for a silk filament. In the experiment, we considered some representative parameters (filament length, inflow velocity, and bending stiffness of the filament) to study their effects on the stability of the filament and its bifurcation conditions. An interface-tracking ALE finite element method was then conducted to reproduce the experiment and investigate more details about effects of these parameters. which are significant to reveal the underlying mechanism of flag-in-wind problem. Corresponding Author. Email:zhoutong@bit.edu.cn.

  3. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  4. Multiple Perforations of the Sinus Floor During Maxillary Sinus Floor Augmentation to Provide Access to the Bone Marrow Space: A Technical Report.

    PubMed

    Ulm, Christian; Bertl, Kristina; Strbac, Georg D; Esfandeyari, Azadeh; Stavropoulos, Andreas; Zechner, Werner

    2017-12-01

    Sinus floor augmentation is a routinely used surgical technique for increasing the bone height/volume of the atrophic posterior maxilla. Optimal integration of the implanted augmentation material within the newly formed bone will-at least partly-depend on adequate vascularization to ensure sufficient recruitment of osteoblast and osteoclast precursor cells. The present technical note describes a modification intended to facilitate increased blood inflow into the augmented space. After preparation of the lateral window and elevation of the Schneiderian membrane, the cortical bone of the sinus floor is perforated several times either by using a piezoelectric device or a microsurgical handpiece with the corresponding tip or bur; these perforations should extend into the trabecular bone. The experiences with this modified technique after 12 patients are presented and discussed. It is expected that by means of this relatively simple technique, increased blood and cell inflow into the augmented space is achieved. This may, in turn, enhance new bone formation and improve the integration of the augmentation material.

  5. Eddylicious: A Python package for turbulent inflow generation

    NASA Astrophysics Data System (ADS)

    Mukha, Timofey; Liefvendahl, Mattias

    2018-01-01

    A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.

  6. Rotatable seal assembly

    DOEpatents

    Logan, Clinton M.; Garibaldi, Jack L.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  7. Experiments on identification and control of inflow disturbances in contracting streams

    NASA Technical Reports Server (NTRS)

    Lee, A. H.; Nagib, H. M.; Tan-Atichat, J.; Wittwer, D. M.

    1982-01-01

    Vorticity from all surfaces and isolated objects in the vicinity of the fan intake, including the outside surfaces of the fan housing, were identified as the major sources for disturbances leading to blade passing frequency noise. The previously proposed mechanism based on atmospheric turbulence is refuted. Flow visualization and hot wire techniques were used in three different facilities to document the evolution of various types of disturbances, including the details of the mean flow and turbulence characteristics. The results suggest that special attention must be devoted to the design of the inlet and that geometric modeling may not lead to adequate simulation of the in flight characteristics. While honeycomb type flow manipulators appear to be effective in reducing some of the disturbances, higher pressure drop devices that generate adequate turbulence, for mixing of isolated nonuniformities, may be necessary to suppress the remaining disturbances. The results are also applicable to the design of inlets of open return wind tunnels and similar flow facilities.

  8. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  9. 43. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 GALLON PER MINUTE INFLOW CONTROLLER WITH NEW PROGRAMMER, LOCATED ALONG THE NATCHEZ SECTION OF THE MODEL. NOTE CONTROL BUILDING AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  10. Simulated peak inflows for glacier dammed Russell Fiord, near Yakutat, Alaska

    USGS Publications Warehouse

    Neal, Edward G.

    2004-01-01

    In June 2002, Hubbard Glacier advanced across the entrance to 35-mile-long Russell Fiord creating a glacier-dammed lake. After closure of the ice and moraine dam, runoff from mountain streams and glacial melt caused the level in ?Russell Lake? to rise until it eventually breached the dam on August 14, 2002. Daily mean inflows to the lake during the period of closure were estimated on the basis of lake stage data and the hypsometry of Russell Lake. Inflows were regressed against the daily mean streamflows of nearby Ophir Creek and Situk River to generate an equation for simulating Russell Lake inflow. The regression equation was used to produce 11 years of synthetic daily inflows to Russell Lake for the 1992-2002 water years. A flood-frequency analysis was applied to the peak daily mean inflows for these 11 years of record to generate a 100-year peak daily mean inflow of 235,000 cubic feet per second. Regional-regression equations also were applied to the Russell Lake basin, yielding a 100-year inflow of 157,000 cubic feet per second.

  11. Low-Altitude Reconnection Inflow-Outflow Observations During a 2010 November 3 Solar Eruption

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.a; Holman, Gordon; Reeves, Katharine K.; Seaton, Daniel B.; McKenzie, David E.; Su, Yang

    2012-01-01

    For a solar flare occurring on 2010 November 3, we present observations us- ing several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from approximately 150 - 690 km s-1 with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appears to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high- temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be approximately 10(exp 2) km s-1 with outflow speeds ranging from approximately 10(exp 2) - 10(exp 33 km s-1 indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops presumably exiting the reconnection site.

  12. LOW-ALTITUDE RECONNECTION INFLOW-OUTFLOW OBSERVATIONS DURING A 2010 NOVEMBER 3 SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Sabrina L.; Holman, Gordon; Su, Yang

    For a solar flare occurring on 2010 November 3, we present observations using several SDO/AIA extreme-ultraviolet (EUV) passbands of an erupting flux rope followed by inflows sweeping into a current sheet region. The inflows are soon followed by outflows appearing to originate from near the termination point of the inflowing motion-an observation in line with standard magnetic reconnection models. We measure average inflow plane-of-sky speeds to range from {approx}150 to 690 km s{sup -1} with the initial, high-temperature inflows being the fastest. Using the inflow speeds and a range of Alfven speeds, we estimate the Alfvenic Mach number which appearsmore » to decrease with time. We also provide inflow and outflow times with respect to RHESSI count rates and find that the fast, high-temperature inflows occur simultaneously with a peak in the RHESSI thermal light curve. Five candidate inflow-outflow pairs are identified with no more than a minute delay between detections. The inflow speeds of these pairs are measured to be {approx}10{sup 2} km s{sup -1} with outflow speeds ranging from {approx}10{sup 2} to 10{sup 3} km s{sup -1}-indicating acceleration during the reconnection process. The fastest of these outflows are in the form of apparently traveling density enhancements along the legs of the loops rather than the loop apexes themselves. These flows could possibly either be accelerated plasma, shocks, or waves prompted by reconnection. The measurements presented here show an order of magnitude difference between the retraction speeds of the loops and the speed of the density enhancements within the loops-presumably exiting the reconnection site.« less

  13. U.S. Department of Energy Reference Model Program RM1: Experimental Results.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device withmore » counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.« less

  14. Water Use in Wetland Kalo Cultivation in Hawai`i

    USGS Publications Warehouse

    Gingerich, Stephen B.; Yeung, Chiu W.; Ibarra, Tracy-Joy N.; Engott, John A.

    2007-01-01

    Ten cultivation areas (8 windward, 2 leeward) were selected for a kalo water-use study, primarily on the basis of the diversity of environmental and agricultural conditions under which wetland kalo is grown and landowner permission and availability. Flow and water-temperature data were collected at the lo`i complex level and at the individual lo`i level. To ensure that flow and temperature data collected at different lo`i reflect similar irrigation conditions (continuous flooding of the mature crop), only lo`i with crops near the harvesting stage were selected for water-temperature data collection. The water need for kalo cultivation varies depending on the crop stage. In this study, data were collected during the dry season (June-October), when water requirements for cooling kalo approach upper limits. Flow measurements generally were made during the warmest part of the day, and temperature measurements were made every 15 minutes at each site for about a two-month period. Flow and temperature data were collected from kalo cultivation areas on four islands - Kaua`i, O`ahu, Maui, and Hawai`i. The average inflow value for the 19 lo`i complexes measured in this study is 260,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the 17 windward sites is 270,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the two leeward sites is 150,000 gallons per acre per day. The average inflow value measured for six individual lo`i is 350,000 gallons per acre per day, and the median inflow value is 270,000 gallons per acre per day. The average inflow value for the five windward lo`i is 370,000 gallons per acre per day, and the median inflow value is 320,000 gallons per acre per day. The inflow value for the one leeward lo`i is 210,000 gallons per acre per day. These inflow values are consistent with previously reported values for inflow and are significantly higher than values generally estimated for water consumption during kalo cultivation. These measurements of inflow are important for future considerations of water-use requirements for successful kalo cultivation. Of the 17 lo`i complexes where water inflow temperature was measured, only 3 had inflow temperatures that rose above 27 ?C, the threshold temperature above which wetland kalo is more susceptible to fungi and associated rotting diseases. The coldest mean inflow temperature was 20.0 ?C and the warmest inflow temperature was 24.9 ?C. All 15 of the sites where outflow temperatures were measured had some temperatures greater than 27 ?C. Outflow temperatures exceeded 27 ?C between 2.5 percent and about 40 percent of the time. Mean outflow temperatures ranged from 23.0 ?C to 26.7 ?C.

  15. The long-term salinity field in San Francisco Bay

    USGS Publications Warehouse

    Uncles, R.J.; Peterson, D.H.

    1996-01-01

    Data are presented on long-term salinity behaviour in San Francisco Bay, California. A two-level, width averaged model of the tidally averaged salinity and circulation has been written in order to interpret the long-term (days to decades) salinity variability. The model has been used to simulate daily averaged salinity in the upper and lower levels of a 51 segment discretization of the Bay over the 22-yr period 1967-1988. Monthly averaged surface salinity from observations and monthly-averaged simulated salinity are in reasonable agreement. Good agreement is obtained from comparison with daily averaged salinity measured in the upper reaches of North Bay. The salinity variability is driven primarily by freshwater inflow with relatively minor oceanic influence. All stations exhibit a marked seasonal cycle in accordance with the Mediterranean climate, as well as a rich spectrum of variability due to extreme inflow events and extended periods of drought. Monthly averaged salinity intrusion positions have a pronounced seasonal variability and show an approximately linear response to the logarithm of monthly averaged Delta inflow. Although few observed data are available for studies of long-term salinity stratification, modelled stratification is found to be strongly dependent on freshwater inflow; the nature of that dependence varies throughout the Bay. Near the Golden Gate, stratification tends to increase up to very high inflows. In the central reaches of North Bay, modelled stratification maximizes as a function of inflow and further inflow reduces stratification. Near the head of North Bay, lowest summer inflows are associated with the greatest modelled stratification. Observations from the central reaches of North Bay show marked spring-neap variations in stratification and gravitational circulation, both being stronger at neap tides. This spring-neap variation is simulated by the model. A feature of the modelled stratification is a hysteresis in which, for a given spring-neap tidal range and fairly steady inflows, the stratification is higher progressing from neaps to springs than from springs to neaps. The simulated responses of the Bay to perturbations in coastal sea salinity and Delta inflow have been used to further delineate the time-scales of salinity variability. Simulations have been performed about low inflow, steady-state conditions for both salinity and Delta inflow perturbations. For salinity perturbations a small, sinusoidal salinity signal with a period of 1 yr has been applied at the coastal boundary as well as a pulse of salinity with a duration of one day. For Delta inflow perturbations a small, sinusoidally varying inflow signal with a period of 1 yr has been superimposed on an otherwise constant Delta inflow, as well as a pulse of inflow with a duration of one day. Perturbations is coastal salinity dissipate as they move through the Bay. Seasonal perturbations require about 40-45 days to propagate from the coastal ocean to the Delta and to the head of South Bay. The response times of the model to perturbations in freshwater inflow are faster than this in North Bay and comparable in South Bay. In North Bay, time-scales are consistent with advection due to lower level, up-estuary transport of coastal salinity perturbations; for inflow perturbations, faster response times arise from both upper level, down-estuary advection and much faster, down-estuary migration of isohalines in response to inflow volume continuity. In South Bay, the dominant time-scales are governed by tidal dispersion.

  16. Fate and transport of pathogens in lakes and reservoirs.

    PubMed

    Brookes, Justin D; Antenucci, Jason; Hipsey, Matthew; Burch, Michael D; Ashbolt, Nicholas J; Ferguson, Christobel

    2004-07-01

    Outbreaks of water-borne disease via public water supplies continue to be reported in developed countries even though there is increased awareness of, and treatment for, pathogen contamination. Pathogen episodes in lakes and reservoirs are often associated with rain events, and the riverine inflow is considered to be major source of pathogens. Consequently, the behaviour of these inflows is of particular importance in determining pathogen transport and distribution. Inflows are controlled by their density relative to that of the lake, such that warm inflows will flow over the surface of the lake as a buoyant surface flow and cold, dense inflows will sink beneath the lake water where they will flow along the bathymetry towards the deepest point. The fate of pathogens is determined by loss processes including settling and inactivation by temperature, UV and grazing. The general trend is for the insertion timescale to be shortest, followed by sedimentation losses and temperature inactivity. The fate of Cryptosporidium due to UV light inactivation can occur at opposite ends of the scale, depending on the location of the oocysts in the water column and the extinction coefficient for UV light. For this reason, the extinction coefficient for UV light appears to be a vitally important parameter for determining the risk of Cryptosporidium contamination. For risk assessment of pathogens in supply reservoirs, it is important to understand the role of hydrodynamics in determining the timescale of transport to the off-take relative to the timescale of inactivation. The characteristics of the riverine intrusion must also be considered when designing a sampling program for pathogens. A risk management framework is presented that accounts for pathogen fate and transport for reservoirs.

  17. Myocardial Blood Flow Distribution during Ischemia-Induced Coronary Vasodilation in the Unanesthetized Dog

    PubMed Central

    Bache, Robert J.; Cobb, Frederick R.; Greenfield, Joseph C.

    1974-01-01

    This study was designed to determine whether coronary vasodilation distal to a flow-limiting coronary artery stenosis could result in redistribution of myocardial blood flow to produce subendocardial underperfusion. Studies were performed in 10 awake dogs chronically prepared with electromagnetic flow-meters and hydraulic occluders on the left circumflex coronary artery. Regional myocardial blood flow was measured using radionuclide-labeled microspheres, 7-10 μm in diameter, injected into the left atrium. A 5-s coronary artery occlusion was followed by reactive hyperemia with excess inflow of arterial blood effecting 375±20% repayment of the blood flow debt incurred during occlusion. When, after a 5-s occlusion, the occluder was only partially released to hold arterial inflow to the preocclusion level for 20 s before complete release, the delayed reactive hyperemia was augmented (mean blood flow repayment = 610±45%, P < 0.01). This augmentation of the reactive hyperemia suggested that ischemia was continuing during the interval of coronary vasodilation when coronary inflow was at the preocclusion level. Measurements of regional myocardial blood flow demonstrated that endocardial flow slightly exceeded epicardial flow during control conditions. When arterial inflow was limited to the preocclusion rate during vasodilation after a 5-s total coronary artery occlusion, however, flow to the subepicardial myocardium was increased at the expense of underperfusion of the subendocardial myocardium. Thus, in the presence of a flow-limiting proximal coronary artery stenosis, ischemia-induced coronary vasodilation resulted in redistribution of myocardial blood flow with production of subendocardial ischemia in the presence of a net volume of arterial inflow which, if properly distributed, would have been adequate to prevent myocardial ischemia. Images PMID:4279928

  18. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  19. Effects of ventricular rate and regularity on the velocity and magnitude of left atrial appendage flow in atrial fibrillation

    PubMed Central

    Obel, O A; Luddington, L; Maarouf, N; Aytemir, K; Ekwall, C; Malik, M; Camm, A J

    2005-01-01

    Objective: To prospectively determine whether ventricular rate and regularity are significant determinants of the velocity and magnitude of left atrial appendage (LAA) flow. Design and patients: 12 patients with atrial fibrillation (AF), high degree atrioventricular block, and indwelling permanent pacemakers were studied. Setting: Cardiology department of a tertiary referral centre. Interventions: Pacing was triggered by an external programmable transcutaneous device. Patients were paced at 60, 120, and 150 beats/min in both regular and irregular rhythm. LAA flow velocity and magnitude were assessed with transoesophageal Doppler echocardiography. Main outcome measures: Peak and mean LAA inflow and outflow velocity, and time-velocity interval (TVI) of LAA flow. Results: Increasing ventricular rate was associated with significantly lower peak inflow (p < 0.01), peak outflow (p < 0.05), mean inflow (p < 0.01), and mean outflow (p < 0.05) velocities and with a lower TVI of LAA filling and emptying velocities (p < 0.01). This effect was noted at rates of 60 beats/min compared with both 120 and 150 beats/min. At a pacing rate of 120 beats/min there was a significantly higher total TVI when pacing at a regular than at an irregular rhythm (40.16 (14.6) cm v 30.74 (10.9) cm, p < 0.05). Conclusions: In this study, LAA filling velocities in patients in AF were significantly influenced by paced ventricular rate and to a much lesser extent ventricular rhythm. These results suggest that rapid ventricular rates may predispose to stasis in the LAA in AF. PMID:15894771

  20. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States

    DOE PAGES

    Naz, Bibi S.; Kao, Shih -Chieh; Ashfaq, Moetasim; ...

    2017-11-15

    The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. While previous efforts focused on the effects of reservoirs on downstream discharge, the effects of climate change on reservoir inflows in upstream areas are not well understood. We evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 178 headwater basins across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble ofmore » global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. The results projected an increase in the likelihood of flood risk by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States and increased drought risk by 11% for subbasins upstream of hydropower reservoirs across the western United States. Increased risk of both floods and droughts can potentially make reservoirs across CONUS more vulnerable to future climate conditions. In conclusion, this study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.« less

  1. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naz, Bibi S.; Kao, Shih -Chieh; Ashfaq, Moetasim

    The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. While previous efforts focused on the effects of reservoirs on downstream discharge, the effects of climate change on reservoir inflows in upstream areas are not well understood. We evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 178 headwater basins across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble ofmore » global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. The results projected an increase in the likelihood of flood risk by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States and increased drought risk by 11% for subbasins upstream of hydropower reservoirs across the western United States. Increased risk of both floods and droughts can potentially make reservoirs across CONUS more vulnerable to future climate conditions. In conclusion, this study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.« less

  2. Evaluation of the biological and hydraulic performance of the portable floating fish collector at Cougar Reservoir and Dam, Oregon, September 2015–January 2016

    USGS Publications Warehouse

    Beeman, John W.; Evans, Scott D.; Haner, Philip V.; Hansel, Hal C.; Hansen, Amy C.; Hansen, Gabriel S.; Hatton, Tyson W.; Kofoot, Eric E.; Sprando, Jamie M.

    2016-11-28

    The biological and hydraulic performance of a portable floating fish collector (PFFC) located in the cul-de-sac of Cougar Dam and Reservoir, Oregon, was evaluated during 2015–16. The PFFC, first commissioned in May 2014, was modified during winter 2014–15 to address several deficiencies identified during operation and testing in 2014. These modifications included raising the water inflow structures to reduce the depth and volume of inflow to improve the internal hydraulic profiles, and moving the anchors so the PFFC could be positioned closer to the existing reservoir outlet, a water temperature control tower. The PFFC was positioned about 18 meters (m) upstream of the intake of the water temperature control tower and faced into the prevailing water current. Like several floating surface collectors operating in the Pacific Northwest at the time, the PFFC used pumps to draw water and fish over an inclined plane, past dewatering screens, and into a collection area. The portable and experimental nature of the PFFC required a smaller size, shallower entrance (about 2.5-m deep), and smaller inflow rate (72 cubic feet per second [ft3/s] inflow during the Low treatment, 122 ft3/s during the High treatment) than other collectors in the region.The collection of the target species, juvenile Chinook salmon (Oncorhynchus tshawytscha), during 2015–16 was an order of magnitude larger than in 2014. Subyearling-age Chinook salmon comprised most of the catch (2,616 subyearling compared to 258 yearling) and was greatest during the spring during the High inflow treatment. Bycatch consisted predominantly of cyprinids and centrarchids. Trap mortality (fish found dead in the trap) of juvenile Chinook salmon, at 9.2 percent of the subyearlings and 5.0 percent of yearlings, was about 30 percent of the level in 2014. Fish mortality from handling the live catch was about 1 percent.Data from fish tagged with passive integrated transponder (PIT) tags and those with acoustic+PIT tags released near the head of the reservoir indicated the catch rates of the PFFC were low. Eight of the 1,497 PIT-tagged fish and 5 of the 534 acoustic+PIT-tagged fish were collected by the PFFC. Fish collection efficiencies—the number collected by the PFFC out of the number detected at the head of the forebay (FCEFB) or in the cul-de-sac (FCECDS)—were 0.002 and 0.003 during the Low treatment and 0.008 and 0.009 during the High treatment. The low FCEs were attributed to the following factors:Few acoustic+PIT-tagged fish were detected within 10 m of the PFFC entrance,Most fish were detected between the stern of the PFFC and the entrance to the tower,Fish depths commonly were several times greater than the PFFC entrance depth, andSurface water temperatures were warm.The data suggest that the shallow entrance and low inflow rate reduced fish guidance near the PFFC entrance and the hydraulic characteristics resulting from the outflow plumes (and perhaps water entering the temperature control tower) attracted fish to that area. Catch of juvenile Chinook salmon likely would increase if the collector entrance were deepened, the inflow rate were increased, and measures were taken to constrain fish presence to the area upstream of the trap entrance.

  3. Numerical and in-situ investigations of water hammer effects in Drava river Kaplan turbine hydropower plants

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Gregorc, B.; Gale, J.

    2012-11-01

    This paper deals with critical flow regimes that may induce unacceptable water hammer in Kaplan turbine hydropower plants. Water hammer analysis should be performed for normal, emergency and catastrophic operating conditions. Hydropower plants with Kaplan turbines are usually comprised of relatively short inlet and outlet conduits. The rigid water hammer theory can be used for this case. For hydropower plants with long penstocks the elastic water hammer should be used. Some Kaplan turbine units are installed in systems with long open channels. In this case, water level oscillations in the channels should be carefully investigated. Computational results are compared with results of measurements in recently rehabilitated seven Drava river hydroelectric power plants in Slovenia. Water hammer in the six power plants is controlled by appropriate adjustment of the wicket gates and runner blades closing/opening manoeuvres. Due to very long inflow and outflow open channels in Zlatoličje HPP a special vaned pressure regulating device attenuates extreme pressures in Kaplan turbine flow-passage system and controls unsteady flow in both open channels. Comparisons of results include normal operating regimes. The agreement between computed and measured results is reasonable.

  4. Experimental investigation of supersonic flow over elliptic surface

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghu; Yi, Shihe; He, Lin; Zhu, Yangzhu; Chen, Zhi

    2013-11-01

    The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow

  5. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2011-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  6. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  7. Measurement of Unsteady Blade Surface Pressure on a Single Rotation Large Scale Advanced Prop-fan with Angular and Wake Inflow at Mach Numbers from 0.02 to 0.70

    NASA Technical Reports Server (NTRS)

    Bushnell, P.; Gruber, M.; Parzych, D.

    1988-01-01

    Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.

  8. An original valveless artificial heart providing pulsatile flow tested in mock circulatory loops.

    PubMed

    Tozzi, Piergiorgio; Maertens, Audrey; Emery, Jonathan; Joseph, Samuel; Kirsch, Matthias; Avellan, François

    2017-11-24

    We present the test bench results of a valveless total artificial heart that is potentially compatible with the pediatric population. The RollingHeart is a valveless volumetric pump generating pulsatile flow. It consists of a single spherical cavity divided into 4 chambers by 2 rotating disks. The combined rotations of both disks produce changes in the volumes of the 4 cavities (suction and ejection). The blood enters/exits the spherical cavity through 4 openings that are symmetrical to the fixed rotation axis of the first disk.Mock circulatory system: The device pumps a 37% glycerin solution through 2 parallel circuits, simulating the pulmonary and systemic circulations. Flow rates are acquired with a magnetic inductive flowmeter, while pressure sensors collect pressure in the left and right outflow and inflow tracts.In vitro test protocol: The pump is run at speeds ranging from 20 to 180 ejections per minute. The waveform of the pressure generated at the inflow and outflow of the 4 chambers and the flow rate in the systemic circulation are measured. At an ejection rate of 178 min-1, the RollingHeart pumps 5.3 L/min for a systemic maximal pressure gradient of 174 mmHg and a pulmonary maximal pressure gradient of 75 mmHg. The power input was 14 W, corresponding to an efficiency of 21%. The RollingHeart represents a new approach in the domain of total artificial heart. This preliminary study endorses the feasibility of a single valveless device acting as a total artificial heart.

  9. Value of Seasonal Fuzzy-based Inflow Prediction in the Jucar River Basin

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Macian-Sorribes, H.

    2016-12-01

    The development and application of climate services in Integrated Water Resources Management (IWRM) is said to add important benefits in terms of water use efficiency due to an increase ability to foresee future water availability. A method to evaluate the economic impact of these services is presented, based on the use of hydroeconomic modelling techniques (hydroeconomic simulation) to compare the net benefits from water use in the system with and without the inflow forecasting. The Jucar River Basin (Spain) has been used as case study. Operating rules currently applied in the basin were assessed using fuzzy rule-based (FRB) systems via a co-development process involving the system operators. These operating rules use as input variable the hydrological inflows in several sub-basins, which need to be foreseen by the system operators. The inflow forecasting mechanism to preview water availability in the irrigation season (May-September) relied on fuzzy regression in which future inflows were foreseen based on past inflows and rainfall in the basin. This approach was compared with the current use of the two past year inflows for projecting the future inflow. For each irrigation season, the previewed inflows were determined using both methods and their impact on the system operation assessed through a hydroeconomic DSS. Results show that the implementation of the fuzzy inflow forecasting system offers higher economic returns. Another advantage of the fuzzy approach regards to the uncertainty treatment using fuzzy numbers, which allow us to estimate the uncertainty range of the expected benefits. Consequently, we can use the fuzzy approach to estimate the uncertainty associated with both the prediction and the associated benefits.

  10. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal rate constant for water indicating significant sediment resuspension episodes. It appears that these sediment resuspension events are aperiodic and control the loading and the chemical retention capability of Piedmont Pond for N,P,TOC. These calculated rate constants reflect the differing internal loading processes for each component and suggest means and mechanisms for the use of ponds in water quality management.

  11. Discharge between San Antonio Bay and Aransas Bay, southern Gulf Coast, Texas, May-September 1999

    USGS Publications Warehouse

    East, Jeffery W.

    2001-01-01

    Along the Gulf Coast of Texas, many estuaries and bays are important habitat and nurseries for aquatic life. San Antonio Bay and Aransas Bay, located about 50 and 30 miles northeast, respectively, of Corpus Christi, are two important estuarine nurseries on the southern Gulf Coast of Texas (fig. 1). According to the Texas Parks and Wildlife Department, “Almost 80 percent of the seagrasses [along the Texas Gulf Coast] are located in the Laguna Madre, an estuary that begins just south of Corpus Christi Bay and runs southward 140 miles to South Padre Island. Most of the remaining seagrasses, about 45,000 acres, are located in the heavily traveled San Antonio, Aransas and Corpus Christi Bay areas” (Shook, 2000).Population growth has led to greater demands on water supplies in Texas. The Texas Water Development Board, the Texas Parks and Wildlife Department, and the Texas Natural Resource Conservation Commission have the cooperative task of determining inflows required to maintain the ecological health of the State’s streams, rivers, bays, and estuaries. To determine these inflow requirements, the three agencies collect data and conduct studies on the need for instream flows and freshwater/ saline water inflows to Texas estuaries.To assist in the determination of freshwater inflow requirements, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, conducted a hydrographic survey of discharge (flow) between San Antonio Bay and Aransas Bay during the period May–September 1999. Automated instrumentation and acoustic technology were used to maximize the amount and quality of data that were collected, while minimizing personnel requirements. This report documents the discharge measured at two sites between the bays during May–September 1999 and describes the influences of meteorologic (wind and tidal) and hydrologic (freshwater inflow) conditions on discharge between the two bays. The movement of water between the bays is controlled primarily by prevailing winds, tidal fluctuations, and freshwater inflows. An adequate understanding of mixing and physical exchange in the estuarine waters is fundamental to the assessment of the physical, chemical, and biological processes governing the aquatic system.

  12. A review of dynamic inflow and its effect on experimental correlations

    NASA Technical Reports Server (NTRS)

    Gaonkar, G. H.; Peters, D. A.

    1985-01-01

    A review is given of the relationship between experimental data and the development of modern dynamic-inflow theory. Some of the most interesting data, first presented 10 years ago at the Dynamic Specialist's Meeting, is now reviewed in light of the newer theories. These pure blade-flapping data correlate very well with analyses that include the new dynamic inflow theory, thus verifying the theory. Experimental data are also presented for damping with coupled inplane and body motions. Although inclusion of dynamic inflow is often required to correlate this coupled data, the data cannot be used to verify any particular dynamic inflow theory due to the uncertainties in modeling the inplane degree of freedom. For verification, pure flapping is required. However, the coupled data do show that inflow is often important in such computations.

  13. Simulation and evaluation of pollution load reduction scenarios for water environmental management: a case study of inflow river of Taihu Lake, China.

    PubMed

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-09-09

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of "Treatment after Pollution" has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives.

  14. AMELIA CESTOL Test: Acoustic Characteristics of Circulation Control Wing with Leading-and Trailing-Edge Slot Blowing

    NASA Technical Reports Server (NTRS)

    Horne, Clifton; Burnside, Nathan J.

    2013-01-01

    Aeroacoustic measurements of the 11 % scale full-span AMELIA CESTOL model with leading- and trailing-edge slot blowing circulation control (CCW) wing were obtained during a recent test in the Arnold Engineering Development Center 40- by 80-Ft. Wind Tunnel at NASA Ames Research Center, Sound levels and spectra were acquired with seven in-flow microphones and a 48-element phased microphone array for a variety of vehicle configurations, CCW slot flow rates, and forward speeds, Corrections to the measurements and processing are in progress, however the data from selected configurations presented in this report confirm good measurement quality and dynamic range over the test conditions, Array beamform maps at 40 kts tunnel speed show that the trailing edge flap source is dominant for most frequencies at flap angles of 0deg and 60deg, The overall sound level for the 60deg flap was similar to the 0deg flap for most slot blowing rates forward of 90deg incidence, but was louder by up to 6 dB for downstream angles, At 100 kts, the in-flow microphone levels were louder than the sensor self-noise for the higher blowing rates, while passive and active background noise suppression methods for the microphone array revealed source levels as much as 20 dB lower than observed with the in-flow microphones,

  15. Simulation and Evaluation of Pollution Load Reduction Scenarios for Water Environmental Management: A Case Study of Inflow River of Taihu Lake, China

    PubMed Central

    Zhang, Ruibin; Qian, Xin; Zhu, Wenting; Gao, Hailong; Hu, Wei; Wang, Jinhua

    2014-01-01

    In the beginning of the 21st century, the deterioration of water quality in Taihu Lake, China, has caused widespread concern. The primary source of pollution in Taihu Lake is river inflows. Effective pollution load reduction scenarios need to be implemented in these rivers in order to improve the water quality of Taihu Lake. It is important to select appropriate pollution load reduction scenarios for achieving particular goals. The aim of this study was to facilitate the selection of appropriate scenarios. The QUAL2K model for river water quality was used to simulate the effects of a range of pollution load reduction scenarios in the Wujin River, which is one of the major inflow rivers of Taihu Lake. The model was calibrated for the year 2010 and validated for the year 2011. Various pollution load reduction scenarios were assessed using an analytic hierarchy process, and increasing rates of evaluation indicators were predicted using the Delphi method. The results showed that control of pollution from the source is the optimal method for pollution prevention and control, and the method of “Treatment after Pollution” has bad environmental, social and ecological effects. The method applied in this study can assist for environmental managers to select suitable pollution load reduction scenarios for achieving various objectives. PMID:25207492

  16. Rotatable seal assembly. [Patent application; rotating targets

    DOEpatents

    Logan, C.M.; Garibaldi, J.L.

    1980-11-12

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an O-ring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers.

  17. Turboexpanders for OTEC power plants

    NASA Astrophysics Data System (ADS)

    Holm, J.

    1981-12-01

    Centripetal (radial inflow) turboexpanders are well adapted to energy conservation schemes. A mini OTEC demonstration program, completed in 1979, uses a closed ammonia cycle to drive a 50 kw turboexpander generator unit. The turboexpander, which incorporates mechanical designs of low temperature and high speed machinery, has very high levels of reliability and efficiency. Stiff shaft designs have eliminated shaft and bearing criticals in the entire operating range. Rotor resonance problems are almost totally eliminated, and thrust bearing problems can be accurately monitored and controlled. Condensing streams and dust in gas can also be handled without erosion. Designs for radial inflow turboexpanders in sizes up to 70 MWe are presently available for use in OTEC and other power plants.

  18. Determining the effects of freshwater inflow on benthic macrofauna in the Caloosahatchee Estuary, Florida.

    PubMed

    Palmer, Terence A; Montagna, Paul A; Chamberlain, Robert H; Doering, Peter H; Wan, Yongshan; Haunert, Kathleen M; Crean, Daniel J

    2016-07-01

    Florida legislation requires determining and implementing an appropriate range and frequency of freshwater inflows that will sustain a fully functional estuary. Changes in inflow dynamics to the Caloosahatchee Estuary, Florida have altered salinity regimes that, in turn, have altered the ecological integrity of the estuary. The purpose of this current project is to determine how changes in freshwater inflows affect water quality, and in turn, benthic macrofauna, spatially within the Caloosahatchee Estuary and between multiyear wet and dry periods. Thirty-four benthic species were identified as being indicator species for salinity zones, and the estuary was divided into 4 zones based on differences in community structure within the estuary. Community structure had the highest correlations with water quality parameters that were common indicators of freshwater conditions resulting from inflows. A significant relationship between salinity and diversity occurs both spatially and temporally because of increased numbers of marine species as salinities increase. A salinity-based model was used to estimate inflow during wet and dry periods for each of the macrofauna community zones. The approach used here (identifying bioindicators and community zones with corresponding inflow ranges) is generic and will be useful for developing targets for managing inflow in estuaries worldwide. Integr Environ Assess Manag 2016;12:529-539. © 2015 SETAC. © 2015 SETAC.

  19. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also modelling systems to enable the user to link the effect of changes in urban sewage systems with specific quality, energy consumption, CO(2) emission, and ecological improvements of the receiving water.

  20. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    PubMed

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.

  1. An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Saleh, F.

    2017-12-01

    Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.

  2. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    PubMed

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  3. Nanoscale Surface Plasmonics Sensor With Nanofluidic Control

    NASA Technical Reports Server (NTRS)

    Wei, Jianjun; Singhal, Sameer; Waldeck, David H.; Kofke, Matthew

    2013-01-01

    Conventional quantitative protein assays of bodily fluids typically involve multiple steps to obtain desired measurements. Such methods are not well suited for fast and accurate assay measurements in austere environments such as spaceflight and in the aftermath of disasters. Consequently, there is a need for a protein assay technology capable of routinely monitoring proteins in austere environments. For example, there is an immediate need for a urine protein assay to assess astronaut renal health during spaceflight. The disclosed nanoscale surface plasmonics sensor provides a core detection method that can be integrated to a lab-on-chip device that satisfies the unmet need for such a protein assay technology. Assays based upon combinations of nanoholes, nanorings, and nanoslits with transmission surface plasmon resonance (SPR) are used for assays requiring extreme sensitivity, and are capable of detecting specific analytes at concentrations as low as picomole to femtomole level in well-controlled environments. The device operates in a transmission mode configuration in which light is directed at one planar surface of the array, which functions as an optical aperture. The incident light induces surface plasmon light transmission from the opposite surface of the array. The presence of a target analyte is detected by changes in the spectrum of light transmitted by the array when a target analyte induces a change in the refractive index of the fluid within the nanochannels. This occurs, for example, when a target analyte binds to a receptor fixed to the walls of the nanochannels in the array. Independent fluid handling capability for individual nanoarrays on a nanofluidic chip containing a plurality of nanochannel arrays allows each array to be used to sense a different target analyte and/or for paired arrays to analyze control and test samples simultaneously in parallel. The present invention incorporates transmission mode nanoplasmonics and nanofluidics into a single, microfluidically controlled device. The device comprises one or more arrays of aligned nanochannels that are in fluid communication with inflowing and outflowing fluid handling manifolds that control the flow of fluid through the arrays. The array acts as an aperture in a plasmonic sensor. Fluid, in the form of a liquid or a gas and comprising a sample for analysis, is moved from an inlet manifold through the nanochannel array, and out through an exit manifold. The fluid may also contain a reagent used to modify the interior surfaces of the nanochannels, and/or a reagent required for the detection of an analyte.

  4. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application.

    PubMed

    Qamar, Adnan; Bull, Joseph L

    2017-08-01

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier-Stokes computations, coupled with convection-diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan-Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude ([Formula: see text]), and amplitude of cylinder oscillation ([Formula: see text]). Results are computed for [Formula: see text], Sc = 1000, Re = 5 and 10, [Formula: see text] and 0.7 and 0.25 [Formula: see text][Formula: see text][Formula: see text] 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in [Formula: see text] results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological concerns of platelet activation and injury to red blood cells due to cylinder oscillation are negligible.

  5. Experimental investigation of the noise emission of axial fans under distorted inflow conditions

    NASA Astrophysics Data System (ADS)

    Zenger, Florian J.; Renz, Andreas; Becher, Marcus; Becker, Stefan

    2016-11-01

    An experimental investigation on the noise emission of axial fans under distorted inflow conditions was conducted. Three fans with forward-skewed fan blades and three fans with backward-skewed fan blades and a common operating point were designed with a 2D element blade method. Two approaches were adopted to modify the inflow conditions: first, the inflow turbulence intensity was increased by two different rectangular grids and second, the inflow velocity profile was changed to an asymmetric characteristic by two grids with a distinct bar stacking. An increase in the inflow turbulence intensity affects both tonal and broadband noise, whereas a non-uniform velocity profile at the inlet influences mainly tonal components. The magnitude of this effect is not the same for all fans but is dependent on the blade skew. The impact is greater for the forward-skewed fans than for the backward-skewed and thus directly linked to the fan blade geometry.

  6. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices, the saturation becomes delayed. In addition, for decreased vertical spacing of micro-cylinders (R = 40 μm) falling below the diameter-length "2R," the SO2 absorption (mso2 ') only gets slower. We provide extensive analysis of two-phase transport phenomena in terms of interactive shear-stress, pressure, and characteristic time-ratio "Tr" of advection-diffusion processes, for varied G/R, Re, and liquid phase Peclet number "Pel" (96 ≤ Pel ≤ 1333), to present a better insight into the governing physics.

  7. Analysis of baroreflex sensitivity during undulation pump ventricular assist device support.

    PubMed

    Liu, Hongjian; Shiraishi, Yasuyuki; Zhang, Xiumin; Song, Hojin; Saijo, Yoshifumi; Baba, Atsushi; Yambe, Tomoyuki; Abe, Yusuke; Imachi, Kou

    2009-07-01

    The aim of this study was to examine the baroreflex sensitivity (BRS), which involves the autonomic nervous system, in a goat with a chronically implanted undulation pump ventricular assist device (UPVAD). The UPVAD involved transforming the rotation of a brushless DC motor into an undulating motion by a disc attached via a special linking mechanism, and a jellyfish valve in the outflow cannula to prevent diastolic backflow. The pump was implanted into the thoracic cavity of a goat by a left thoracotomy, and the inflow and outflow cannulae were sutured to the apex of the left ventricle and to the descending aorta, respectively. The driving cable was wired percutaneously to an external controller. Electrocardiogram and hemodynamic waveforms were recorded at a sampling frequency of 1 kHz. BRS was determined when awake by the slope of the linear regression of R-R interval against mean arterial pressure changes, which were induced by the administration of methoxamine hydrochloride, both with continuous driving of the UPVAD as well as without assistance. BRS values during the UPVAD support and without assistance were 1.60 +/- 0.30 msec/mm Hg and 0.98 +/- 0.22 msec/mm Hg (n = 5, P < 0.05), respectively. BRS was significantly improved during left ventricular assistance. Therefore, UPVAD support might decrease sympathetic nerve activity and increase parasympathetic nerve activity to improve both microcirculation and organ function.

  8. Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Ji Sung; Koo, Eunmo; Jin, Emilia Kyung

    Here, we performed a suite of flow simulations for a 12-wind-turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low-level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large-eddy simulation technique with an actuator-line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocitymore » deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. In order to observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.« less

  9. Large-eddy simulations of wind-farm wake characteristics associated with a low-level jet

    DOE PAGES

    Na, Ji Sung; Koo, Eunmo; Jin, Emilia Kyung; ...

    2017-11-17

    Here, we performed a suite of flow simulations for a 12-wind-turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low-level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large-eddy simulation technique with an actuator-line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocitymore » deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. In order to observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.« less

  10. Noise reducing screen devices for in-flow pressure sensors

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric (Inventor); Liu, Sandy (Inventor); Jaeger, Stephen (Inventor); Horne, W. Clifton (Inventor)

    1997-01-01

    An acoustic sensor assembly is provided for sensing acoustic signals in a moving fluid such as high speed fluid stream. The assembly includes one or more acoustic sensors and a porous, acoustically transparent screen supported between the moving fluid stream and the sensor and having a major surface disposed so as to be tangent to the moving fluid. A layer of reduced velocity fluid separating the sensor from the porous screen. This reduced velocity fluid can comprise substantially still air. A foam filler material attenuates acoustic signals arriving at the assembly from other than a predetermined range of incident angles.

  11. Seasonal variation of fecal indicator bacteria in storm events within the US stormwater database.

    PubMed

    Pan, Xubin; Jones, Kim D

    2012-01-01

    Bacteria are one of the major causes of surface water impairments in the USA. Over the past several years, best management practices, including detention basins, manufactured devices, grass swales, filters and bioretention cells have been used to remove bacteria and other pollutants from stormwater runoff. However, there are data gaps in the comprehensive studies of bacteria concentrations in stormwater runoff. In this paper, the event mean concentration (EMC) of fecal indicator bacteria (Enterococcus, Escherichia coli, fecal Streptococcus group bacteria, and fecal coliform) across the USA was retrieved from the international stormwater best management practices database to analyze the seasonal variations of inflow and outflow event mean concentrations and removal efficiencies. The Kruskal-Wallis test was employed to determine the seasonal variations of bacteria indicator concentrations and removals, and the two-sample Kolmogorov-Smirnov test was used for comparing different seasonal outcomes. The results indicate that all the inflow EMC of FIB in stormwater runoff is above the water quality criteria. The seasonal differences of fecal Streptococcus group bacteria and fecal coliform are significant. Summer has the potential to increase the bacteria EMC and illustrate the seasonal differences.

  12. Chesapeake Bay Low Freshwater Inflow Study. Phase II. MAP FOLIO. Biota Assessment.

    DTIC Science & Technology

    1982-05-01

    conditions. These were: 1) Base Average -- average freshwater inflow conditions. by increased water consumption projected for the year 2020. 3) Base Drought...RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS. 1963- A TAI m - ii J May 1982 Chesapeake Bay Low Freshwater Inflow Study Phase II Biota Assessment Map...A PERIOD ZOVERED change was found to CIESAPEAKE BAY LOW FRESHWATER INFLOW STUDY FINAL BIOTA ASSESSMENT PHASE II: FINAL REPORT MAP FOLIO s PERFORMING

  13. Ventricular flow dynamics with varying LVAD inflow cannula lengths: In-silico evaluation in a multiscale model.

    PubMed

    Liao, Sam; Neidlin, Michael; Li, Zhiyong; Simpson, Benjamin; Gregory, Shaun D

    2018-04-27

    Left ventricular assist devices are associated with thromboembolic events, which are potentially caused by altered intraventricular flow. Due to patient variability, differences in apical wall thickness affects cannula insertion lengths, potentially promoting unfavourable intraventricular flow patterns which are thought to be correlated to the risk of thrombosis. This study aimed to present a 3D multiscale computational fluid dynamic model of the left ventricle (LV) developed using a commercial software, Ansys, and evaluate the risk of thrombosis with varying inflow cannula insertion lengths in a severely dilated LV. Based on a HeartWare HVAD inflow cannula, insertion lengths of 5, 19, 24 and 50 mm represented cases of apical hypertrophy, typical ranges of apical thicknesses and an experimental length, respectively. The risk of thrombosis was evaluated based on blood washout, residence time, instantaneous blood stagnation and a pulsatility index. By introducing fresh blood to displace pre-existing blood in the LV, after 5 cardiac cycles, 46.7%, 45.7%, 45.1% and 41.8% of pre-existing blood remained for insertion lengths of 5, 19, 24 and 50 mm, respectively. Compared to the 50 mm insertion, blood residence time was at least 9%, 7% and 6% higher with the 5, 19 and 24 mm insertion lengths, respectively. No instantaneous stagnation at the apex was observed directly after the E-wave. Pulsatility indices adjacent to the cannula increased with shorter insertion lengths. For the specific scenario studied, a longer insertion length, relative to LV size, may be advantageous to minimise thrombosis by increasing LV washout and reducing blood residence time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells

    NASA Technical Reports Server (NTRS)

    Helgerson, S. L.; Stoeckenius, W.

    1985-01-01

    The roles of bacteriorhodopsin (bR), halorhodopsin (hR), and the H(+)-ATPase in the proton uptake in intact cells are examined. The Halobacterium halobium strains and solutions utilized in the experiment, and the techniques for measuring extracellular pH changes and intracellular K(+) concentrations are described. It is observed that in Halobacterium halobium strain R1, containing bR and hR, the light-driven proton uptake is divided into three transient inflows superimposed on the larger proton outflow. Under anaerobic conditions early proton uptake consists of an inflow which can be blocked with Dio-9 and a second inflow that can be eliminated by low concentrations (less than 125 nm) of triphenyltin chloride (TPT). The effects of Dio-9 and TPT on the passive proton-hydroxyl permeability of the cell membrane are investigated. A third transient light-driven proton flow observed at later times of illumination is studied. The data reveal that the first proton inflow correlates with proton dependent ATP synthesis; the second inflow is a passive uptake through an unidentified channel in response to electrogenic chloride pumping by bR and/or hR; and the third inflow correlates with the Na(+)/H(+) antiporter function.

  15. Influence of dynamic inflow on the helicopter vertical response

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.

    1986-01-01

    A study was conducted to investigate the effects of dynamic inflow on rotor-blade flapping and vertical motion of the helicopter in hover. Linearized versions of two dynamic inflow models, one developed by Carpenter and Fridovich and the other by Pitt and Peters, were incorporated in simplified rotor-body models and were compared for variations in thrust coefficient and the blade Lock number. In addition, a comparison was made between the results of the linear analysis, and the transient and frequency responses measured in flight on the CH-47B variable-stability helicopter. Results indicate that the correlations are good, considering the simplified model used. The linear analysis also shows that dynamic inflow plays a key role in destabilizing the flapping mode. The destabilized flapping mode, along with the inflow mode that the dynamic inflow introduces, results in a large initial overshoot in the vertical acceleration response to an abrupt input in the collective pitch. This overshoot becomes more pronounced as either the thrust coefficient or the blade Lock number is reduced. Compared with Carpenter's inflow model, Pitt's model tends to produce more oscillatory responses because of the less stable flapping mode predicted by it.

  16. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    NASA Astrophysics Data System (ADS)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long simulation times. Therefore, the integration of analytic method and numerical modeling is very important to adapt the analytic formula to the specific hydrogeological structure. The study was carried out through a parametrical modeling, so that groundwater flow was simulated with the DEM Model UDEC 2D, considering different geometrical (tunnel depth and radius) and hydrogeological settings (piezometrical). The influence of geo-structural setting (as dip and dip direction of discontinuities, with reference to their permeability) on tunnel drainage process was quantified. The simulations are aimed to create a sufficient data set of tunnel inflows, in different geological-structural setting, enabling a quantitative comparison between numerical and the well-known analytic formulas (i.e. Goodman and El Tani equations). Results of this comparison point out the following aspects: - the geological-structural setting critical for hydrogeological risk in tunnel corresponds to joints having low dip (close to 0°) that favour the drainage processes and the increasing of the tunnel inflow; - the rock mass anisotropy strongly influences both the tunnel inflow and the water table drawdown; - the reliability of analytic formulas for the tunnel inflow assessment in discontinuous rock masses depends on the geostractural setting; actually the analytic formulas overestimate the tunnel inflow and this overestimation is bigger for geostructural setting having discontinuities with higher dips. Finally, using the results of parametrical modeling, the previous cited analytic formulas were corrected to point out an empirical equation that gives the tunnel inflow as a function of the different geological-structural setting, with particular regard to: - the horizontal component of discontinuities, - the hydraulic conductivity anisotropy ratio, - the orientation of the hydraulic conductivity tensor. The obtained empirical equation allows a first evaluation of the tunnel inflow, in which joint characteristics are taken into account, very useful to identify the areas where in-depth studies are required. References Cesano D., Bagtzoglou A.C., Olofsson B. (2003). Quantifying fractured rock hydraulic heterogeneity and groundwater inflow prediction in underground excavations: the heterogeneity index. Tunneling and Underground Space Technology, 18, pp. 19-34. El Tani M. (2003). Circular tunnel in a semi-infinite aquifer. Tunnelling and Groundwater Space Technology, 18, pp. 49-55. Goodman R.E., Moye D.G., Van Schalkwyk A., Javandel I. (1965). Ground water inflow during tunnel driving. Eng. Geol., 2, pp. 39-56. Hwang J-H., Lu C-C. (2007). A semi-analytical method for analyzing the tunnel water inflow. Tunneling and Underground Space Technology, 22, pp. 39-46. Itasca (2001). UDEC, User's guide. Itasca Consultino Group Inc., Minneapolis, Minnesota. Knutsson G., Olofsson B., Cesano D. (1996). Prognosis of groundwater inflows and drawdown due to the construction of rock tunnels in heterogeneous media. Res. Proj. Rep. Kungl Tekniska, Stokholm. Park K-H., Owatsiriwong A., Lee G-G. (2008). Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: a revisit. Tunnelling and Underground Space Technology, 23, pp. 206-209. Perrochet P., Dematteis A. (2007). Modelling Transient Discharge into a Tunnel Drilled in Heterogeneous Formation. Ground Water, 45(6), pp. 786-790.

  17. A durability study of a paracorporeal pulsatile electro-mechanical pneumatic biventricular assist device.

    PubMed

    Choi, Hyuk; Lee, Heung-Man; Nam, Kyoung Won; Choi, Jaesoon; Lee, Jung-Joo; Kim, Ho Chul; Song, Seung Joon; Ahn, Chi Bum; Son, Ho Sung; Lim, Choon Hak; Son, Kuk Hui; Park, Yong Doo; Jeong, Gi Seok; Sun, Kyung

    2011-06-01

    In 2002, the paracorporeal pulsatile electro-mechanical pneumatic ventricular assist device (VAD) began to be developed by the Korea Artificial Organ Center at Korea University under a Health & Medical Technology Research and Development program which finished in 2008. In vitro durability testing was conducted on the paracorporeal pulsatile pneumatic VAD to determine device durability and to evaluate device failures. The 1- and 2-year reliability of the paracorporeal pulsatile pneumatic VAD was shown to be 91.2% and 54.9%, respectively, with an 80% confidence level. Failure modes were analyzed using fault tree analysis, with customized software continuously acquiring data during the test period. After this period, 21 in vivo animal tests were done, with 14 cases of left atrium to left ventricle (LV) inflow cannulation (36Fr)/outflow grafting to descending aorta, and seven cases of apex cannulation of LV to descending aorta (12 mm). The longest postoperative day (182 days) in Korea was recently recorded in in vivo animal testing (bovine, 90 kg, male, 3.5-4.0 L/min flow rate, and 55 bpm). © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  18. Liquid inflow to a baffled cylindrical tank during weightlessness

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.

    1972-01-01

    An experimental investigation was conducted in which the behavior of liquid inflow to a cylindrical tank containing inlet baffles was observed during weightlessness. A single tank radius (2 cm), inlet radius (0.2 cm), and liquid (ethanol)were used. The inlet end of the tank was hemispherical with a 30 deg convergent inlet. All the baffle configurations tested were cylindrically symmetric and mounted coaxially with the tank within the hemispherical end. Both stable and unstable inflow behavior were observed using each baffle. It was found that, depending on which of the baffles was used, the critical inflow velocity at which a transition to unstable inflow began was from 2.5 to 12 times greater than the corresponding velocity in an unbaffled tank.

  19. Radial Inflow Turboexpander Redesign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William G. Price

    2001-09-24

    Steamboat Envirosystems, LLC (SELC) was awarded a grant in accordance with the DOE Enhanced Geothermal Systems Project Development. Atlas-Copco Rotoflow (ACR), a radial expansion turbine manufacturer, was responsible for the manufacturing of the turbine and the creation of the new computer program. SB Geo, Inc. (SBG), the facility operator, monitored and assisted ACR's activities as well as provided installation and startup assistance. The primary scope of the project is the redesign of an axial flow turbine to a radial inflow turboexpander to provide increased efficiency and reliability at an existing facility. In addition to the increased efficiency and reliability, themore » redesign includes an improved reduction gear design, and improved shaft seal design, and upgraded control system and a greater flexibility of application« less

  20. SSOAP - A USEPA Toolbox for Sanitary Sewer Overflow Analysis and Control Planning - Presentation

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) has identified a need to use proven methodologies to develop computer tools that help communities properly characterize rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems and develop sanitary sewer...

  1. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alterantives to sewerline rehabilitation for infiltration/inflow (I/I) and ...

  2. Control Strategy for Storm-Generated Sanitary Sewer Overflows

    EPA Science Inventory

    This presentation covers a strategy for the abatement of pollution from sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alternatives to sewerline rehabilitation for infiltration/inflow (I/I) and associated ...

  3. THE EFFECT OF FRESHWATER INFLOW ON NET ECOSYSTEM METABOLISM IN LAVACA BAY, TEXAS

    EPA Science Inventory

    Estuaries and other coastal ecosystems depend on freshwater inflow to maintain the gradients in environmental characteristics that define these transitional water bodies. Freshwater inflow (FWI) rates in many estuaries are changing due to changing land use patterns, water divers...

  4. Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model

    NASA Astrophysics Data System (ADS)

    Pianosi, F.; Soncini-Sessa, R.

    2009-10-01

    Stochastic dynamic programming has been extensively used as a method for designing optimal regulation policies for water reservoirs. However, the potential of this method is dramatically reduced by its computational burden, which often forces to introduce strong approximations in the model of the system, especially in the description of the reservoir inflow. In this paper, an approach to partially remedy this problem is proposed and applied to a real world case study. It foresees solving the management problem on-line, using a reduced model of the system and the inflow forecast provided by a dynamic model. By doing so, all the hydrometeorological information that is available in real-time is fully exploited. The model here proposed for the inflow forecasting is a nonlinear, heteroscedastic model that provides both the expected value and the standard deviation of the inflow through dynamic relations. The effectiveness of such model for the purpose of the reservoir regulation is evaluated through simulation and comparison with the results provided by conventional homoscedastic inflow models.

  5. Effects of nearshore recharge on groundwater interactions with a lake in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie M.

    2000-01-01

    The recharge and discharge of groundwater were investigated for a lake basin in the mantled karst terrain of central Florida to determine the relative importance of transient groundwater inflow to the lake water budget. Variably saturated groundwater flow modeling simulated water table responses observed beneath two hillsides radiating outward from the groundwater flow‐through lake. Modeling results indicated that transient water table mounding and groundwater flow reversals in the nearshore region following large daily rainfall events generated most of the net groundwater inflow to the lake. Simulated daily groundwater inflow was greatest following water table mounding near the lake, not following subsequent peaks in the water level of upper basin wells. Transient mounding generated net groundwater inflow to the lake, that is, groundwater inflow in excess of the outflow occurring through the deeper lake bottom. The timing of the modeled net groundwater inflow agreed with an independent lake water budget; however, the quantity was considerably less than the budget‐derived value.

  6. Application of system identification to analytic rotor modeling from simulated and wind tunnel dynamic test data, part 2

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Banerjee, D.

    1977-01-01

    An introduction to aircraft state and parameter identification methods is presented. A simplified form of the maximum likelihood method is selected to extract analytical aeroelastic rotor models from simulated and dynamic wind tunnel test results for accelerated cyclic pitch stirring excitation. The dynamic inflow characteristics for forward flight conditions from the blade flapping responses without direct inflow measurements were examined. The rotor blades are essentially rigid for inplane bending and for torsion within the frequency range of study, but flexible in out-of-plane bending. Reverse flow effects are considered for high rotor advance ratios. Two inflow models are studied; the first is based on an equivalent blade Lock number, the second is based on a time delayed momentum inflow. In addition to the inflow parameters, basic rotor parameters like the blade natural frequency and the actual blade Lock number are identified together with measurement bias values. The effect of the theoretical dynamic inflow on the rotor eigenvalues is evaluated.

  7. An application of small-gap equations in sealing devices

    NASA Technical Reports Server (NTRS)

    Vionnet, Carlos A.; Heinrich, Juan C.

    1993-01-01

    The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.

  8. An application of small-gap equations in sealing devices

    NASA Astrophysics Data System (ADS)

    Vionnet, Carlos A.; Heinrich, Juan C.

    1993-11-01

    The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel, sliding surfaces has been actively pursued in the last decades. This subject includes lubrication applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft seals. In the present work we analyze numerically the flow of lubricant fluid through a micro-gap of sealing devices. The first stage of this study is carried out assuming that a 'small-gap' parameter delta attains an extreme value in the Navier-Stokes equations. The precise meaning of small-gap is achieved by the particular limit delta = 0 which, within the bounds of the hypotheses, predicts transport of lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the penalty function approximation in the finite element method are presented. In particular, the influence of inflow and outflow boundary conditions, and their impact in the simulated flow, are discussed.

  9. PERKAT RV: first in vivo data of a novel right heart assist device.

    PubMed

    Kretzschmar, Daniel; Lauten, Alexander; Schubert, Harald; Bischoff, Sabine; Schulze, Christian; Ferrari, Markus W

    2018-04-06

    Mechanical right ventricular (RV) support offers a treatment option for critically ill patients with RV failure (RVF). We developed an assist device for rapid percutaneous implantation. The aim of the present study was to investigate the implantation procedure, haemodynamic performance and possible side effects of the novel right ventricular assist device - PERKAT RV - in an animal model. The PERkutane KATheterpumptechnologie RV (PERKAT RV) device consists of a nitinol chamber covered by foil containing inflow valves. An outlet tube is attached to its distal part. The system is designed for 18 Fr percutaneous implantation. The chamber is unfolded in the inferior vena cava while the outlet tube bypasses the right heart with the tip in the pulmonary trunk. An IABP balloon is placed inside. Balloon deflation generates blood flow into the chamber; during inflation, blood is guided into the pulmonary arteries. Acute RVF was induced by venous injection of Sephadex in seven sheep for evaluation of the device. The PERKAT RV was able to improve haemodynamics immediately generating a median increase in cardiac output of 59%. Longer pump support was evaluated in a second study. Four sheep were supported for eight hours without any problems. The percutaneous implantation and explantation of the PERKAT RV device was possible in the designed way. The sheep studies proved beneficial haemodynamic effects in acute RVF. The system offers easy and safe treatment in acute RVF.

  10. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales.

    PubMed

    Schiro, Kathleen A; Ahmed, Fiaz; Giangrande, Scott E; Neelin, J David

    2018-05-01

    A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014-2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation-buoyancy relation across the tropics. Deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.

  11. Configuring calendar variation based on time series regression method for forecasting of monthly currency inflow and outflow in Central Java

    NASA Astrophysics Data System (ADS)

    Setiawan, Suhartono, Ahmad, Imam Safawi; Rahmawati, Noorgam Ika

    2015-12-01

    Bank Indonesia (BI) as the central bank of Republic Indonesiahas a single overarching objective to establish and maintain rupiah stability. This objective could be achieved by monitoring traffic of inflow and outflow money currency. Inflow and outflow are related to stock and distribution of money currency around Indonesia territory. It will effect of economic activities. Economic activities of Indonesia,as one of Moslem country, absolutely related to Islamic Calendar (lunar calendar), that different with Gregorian calendar. This research aims to forecast the inflow and outflow money currency of Representative Office (RO) of BI Semarang Central Java region. The results of the analysis shows that the characteristics of inflow and outflow money currency influenced by the effects of the calendar variations, that is the day of Eid al-Fitr (moslem holyday) as well as seasonal patterns. In addition, the period of a certain week during Eid al-Fitr also affect the increase of inflow and outflow money currency. The best model based on the value of the smallestRoot Mean Square Error (RMSE) for inflow data is ARIMA model. While the best model for predicting the outflow data in RO of BI Semarang is ARIMAX model or Time Series Regression, because both of them have the same model. The results forecast in a period of 2015 shows an increase of inflow money currency happened in August, while the increase in outflow money currency happened in July.

  12. An investigation of the environment surrounding supercell thunderstorms using wind profiler data

    NASA Astrophysics Data System (ADS)

    Thornhill, Kenneth Lee, II

    1998-12-01

    One of the cornerstones of severe thunderstorm research has been quantifying the relationship between the ambient vertical wind profile and the environment of a supercell thunderstorm. Continual refinement of that understanding will lead to the ability to distinguish between tornadic and non-tornadic supercells. Recently, studies have begun to show the importance of the mid-level winds (about 3-6 km), in addition to the normally analyzed 0-3 km inflow layer winds. The 32 wind profilers of the NOAA Profiler Network provide a new source of wind field data that is of higher temporal and spatial resolution that the normally used radiosonde soundings. Continuous raw wind field data (u, v, and w) is now available every 6 minutes, with a quality controlled hourly averaged wind field data set also available. In this work, a 6-minute quality control algorithm is presented and utilized. This 6-minute quality controlled wind data can be used to calculate predictive parameters such as storm relative environmental helicity, Bulk Richardson Number shear, and positive mean shear, indices that are normally calculated only for the inflow layer. In addition, the time series evolution of the mean midlevel winds and the mean vertical winds can also be examined. This present work concentrates on the 1994 and 1995 spring tornado seasons in the central plains of the United States. Combining the data from the NOAA Profiler Network with the data collected from the Verification of the Origins of Rotation in Tornadoes Experiment, the time series evolution of the several indices mentioned above are examined for the winds above the inflow layer in an attempt to add to the current understanding of the relationship between the vertical wind profile and the environment of tornadic and non-tornadic supercell thunderstorms.

  13. A MODFLOW Infiltration Device Package for Simulating Storm Water Infiltration.

    PubMed

    Jeppesen, Jan; Christensen, Steen

    2015-01-01

    This article describes a MODFLOW Infiltration Device (INFD) Package that can simulate infiltration devices and their two-way interaction with groundwater. The INFD Package relies on a water balance including inflow of storm water, leakage-like seepage through the device faces, overflow, and change in storage. The water balance for the device can be simulated in multiple INFD time steps within a single MODFLOW time step, and infiltration from the device can be routed through the unsaturated zone to the groundwater table. A benchmark test shows that the INFD Package's analytical solution for stage computes exact results for transient behavior. To achieve similar accuracy by the numerical solution of the MODFLOW Surface-Water Routing (SWR1) Process requires many small time steps. Furthermore, the INFD Package includes an improved representation of flow through the INFD sides that results in lower infiltration rates than simulated by SWR1. The INFD Package is also demonstrated in a transient simulation of a hypothetical catchment where two devices interact differently with groundwater. This simulation demonstrates that device and groundwater interaction depends on the thickness of the unsaturated zone because a shallow groundwater table (a likely result from storm water infiltration itself) may occupy retention volume, whereas a thick unsaturated zone may cause a phase shift and a change of amplitude in groundwater table response to a change of infiltration. We thus find that the INFD Package accommodates the simulation of infiltration devices and groundwater in an integrated manner on small as well as large spatial and temporal scales. © 2014, National Ground Water Association.

  14. May 1984-Aril 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in Tributary Streams--Basic Data Report

    DTIC Science & Technology

    1985-01-01

    Open-File Report 85-498 MAY 1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN...AND SUBTITLE May 1984-Apr 1985 Water Budget of Reelfoot Lake With Estimates of Sediment Inflow and Concentrations of Pesticides in Bottom Material in...1984-APRIL 1985 WATER BUDGET OF REELFOOT LAKE WITH ESTIMATES OF SEDIMENT INFLOW AND CONCENTRATIONS OF PESTICIDES IN BOTTOM MATERIAL IN TRIBUTARY

  15. Need to improve SWMM's subsurface flow routing algorithm for green infrastructure modeling

    EPA Science Inventory

    SWMM can simulate various subsurface flows, including groundwater (GW) release from a subcatchment to a node, percolation out of storage units and low impact development (LID) controls, and rainfall derived inflow and infiltration (RDII) at a node. Originally, the subsurface flow...

  16. Wind Farm LES Simulations Using an Overset Methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas; Yellapantula, Shashank

    2017-11-01

    Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.

  17. An Experimental Study of Fan Inflow Distortion Tone Noise

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2010-01-01

    The tone noise generated when a fan ingests circumferentially distorted flow was studied by an experiment conducted with the Advanced Noise Control Fan at the NASA Glenn Research Center. The inflow was distorted by inserting cylindrical rods radially into the duct. The rods were arranged in circumferentially irregular patterns in three of the five configurations tested. Rods were held in place using a mounting ring with 30 equally spaced holes placed at an axial location one rotor chordlength upstream of the fan. Acoustic pressure was measured in the inlet and exhaust duct of the fan using the Rotating Rake fan tone measurement system. Sound power levels, calculated from the measured data, were plotted as a function of circumferential mode. An analytic description of the unsteady pressure distribution at the interaction plane between the stationary rods and the fan rotor is presented in a form suitable for representing the circumferentially irregularly placed rods. Terms in the analytical description for sound power were proven to be useful in determining the dominant circumferential modes measured in the experiment and the differences in mode power level between the configurations tested. Insight gained through this work will be useful in the development of tools to compute fan inflow distortion tone noise.

  18. Validation of the Predicted Circumferential and Radial Mode Sound Power Levels in the Inlet and Exhaust Ducts of a Fan Ingesting Distorted Inflow

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    2012-01-01

    Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory.

  19. Aeroelastic loads and stability investigation of a full-scale hingeless rotor

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; Johnson, Wayne

    1991-01-01

    An analytical investigation was conducted to study the influence of various parameters on predicting the aeroelastic loads and stability of a full-scale hingeless rotor in hover and forward flight. The CAMRAD/JA (Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, Johnson Aeronautics) analysis code is used to obtain the analytical predictions. Data are presented for rotor blade bending and torsional moments as well as inplane damping data obtained for rotor operation in hover at a constant rotor rotational speed of 425 rpm and thrust coefficients between 0.0 and 0.12. Experimental data are presented from a test in the wind tunnel. Validation of the rotor system structural model with experimental rotor blade loads data shows excellent correlation with analytical results. Using this analysis, the influence of different aerodynamic inflow models, the number of generalized blade and body degrees of freedom, and the control-system stiffness at predicted stability levels are shown. Forward flight predictions of the BO-105 rotor system for 1-G thrust conditions at advance ratios of 0.0 to 0.35 are presented. The influence of different aerodynamic inflow models, dynamic inflow models and shaft angle variations on predicted stability levels are shown as a function of advance ratio.

  20. Novel Use of a Pneumatic Compression Device for Haemostasis of Haemodialysis Fistula Access Catheterisation Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Reilly, Michael K., E-mail: moreilly1@mater.ie; Ryan, David; Sugrue, Gavin

    PurposeTransradial pneumatic compression devices can be used to achieve haemostasis following radial artery puncture. This article describes a novel technique for acquiring haemostasis of arterio-venous haemodialysis fistula access sites without the need for suture placement using one such compression device.Materials and MethodsA retrospective review of fistulograms with or without angioplasty/thrombectomy in a single institution was performed. 20 procedures performed on 12 patients who underwent percutaneous intervention of failing or thrombosed arterio-venous fistulas (AVF) had 27 puncture sites. Haemostasis was achieved using a pneumatic compression device at all access sites. Procedure details including size of access sheath, heparin administration and complicationsmore » were recorded.ResultsTwo diagnostic fistulograms, 14 fistulograms and angioplasties and four thrombectomies were performed via access sheaths with an average size (±SD) of 6 Fr (±1.12). IV unfractionated heparin was administered in 11 of 20 procedures. Haemostasis was achieved in 26 of 27 access sites following 15–20 min of compression using the pneumatic compression device. One case experienced limited bleeding from an inflow access site that was successfully treated with reinflation of the device for a further 5 min. No other complication was recorded.ConclusionsHaemostasis of arterio-venous haemodialysis fistula access sites can be safely and effectively achieved using a pneumatic compression device. This is a technically simple, safe and sutureless technique for acquiring haemostasis after AVF intervention.« less

  1. The assessment of corruption impact on the inflow of foreign direct investment

    NASA Astrophysics Data System (ADS)

    Gasanova, Ayshan; Medvedev, Alexander N.; Komotskiy, Evgeny I.

    2017-06-01

    The aim of this paper is to investigate the impact of corruption on the inflow of foreign direct investment (FDI). The data, taken from official sources, Transparency International and the Heritage Foundation, have been treated in a special program "Deductor Studio Academic" by the method of Machine Learning (cluster analysis using Kohonen Self-Organizing Maps). There was composed a Kohonen map, in which the countries were divided into 4 clusters: countries with low levels of corruption and high level of FDI inflow, countries with low level of corruption and FDI above average, countries with average level of corruption and the average level of FDI, and countries with high level of corruption and low level of FDI. The research has shown that corruption influences the investment attractiveness of the host country. This means that in countries where the level of corruption is low and economic environment is attractive, the level of foreign direct investment is high, and in those countries where the level of corruption is high and and economic attractiveness is low - the level of investment is low. However, the study identified countries which have high level of corruption and high FDI inflow - China, India, Brazil and Russia (BRIC countries). These countries are the exception from the rule due to the wide domestic market, cheap labour, the wealth of natural resources - all these factors increase the investment attractiveness of these countries. It was found that corruption in BRIC countries has similarity being a controlled and predictable phenomenon. This allows calculating the cost of corruption for accounting it in business projects.

  2. Gain-loss study of lower San Pedro Creek and the San Antonio River, San Antonio, Texas, May-October 1999

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2002-01-01

    Five streamflow gain-loss measurement surveys were made along lower San Pedro Creek and the San Antonio River from Mitchell Street to South Loop 410 east of Kelly Air Force Base in San Antonio, Texas, during May–October 1999. All of the measurements were made during dry periods, when stormwater runoff was not occurring and effects of possible bank storage were minimized. San Pedro Creek and the San Antonio River were divided into six subreaches, and streamflow measurements were made simultaneously at the boundaries of these subreaches so that streamflow gains or losses and estimates of inflow from or outflow to shallow ground water could be quantified for each subreach. There are two possible sources of ground-water inflow to lower San Pedro Creek and the San Antonio River east of Kelly Air Force Base. One source is direct inflow of shallow ground water into the streams. The other source is ground water that enters tributaries that flow into the San Antonio River. The estimated mean direct inflow of ground water to the combined San Pedro Creek and San Antonio River study reach was 3.0 cubic feet per second or 1.9 million gallons per day. The mean tributary inflow of ground water was estimated to be 1.9 cubic feet per second or 1.2 million gallons per day. The total estimated inflow of shallow ground water was 4.9 cubic feet per second or 3.2 million gallons per day. The amount of inflow from springs and seeps (estimated by observation) is much less than the amount of direct ground-water inflow estimated from the gain-loss measurements. Therefore, the presence of springs and seeps might not be a reliable indicator of the source of shallow ground water entering the river. Most of the shallow ground water that enters the San Antonio River from tributary inflow enters from the west side, through Concepcion Creek, inflows near Riverside Golf Course, and Six-Mile Creek. 

  3. Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of tributary inflow by basin or area and by surface water or groundwater are presented in this report and itemized by subreaches in tabular form. Total estimated average annual tributary inflow to the Colorado River between Hoover Dam and Mexico, excluding the measured tributaries, is 96,000 acre-ft or about 1% of the 7.5 million acre-ft/yr of Colorado River water apportioned to the States in the lower Colorado River basin. About 62% of the tributary inflow originates in Arizona, 30% in California, and 8% in Nevada. Tributary inflow is a small component in the water budget for the river. Most of the quantities of unmeasured tributary inflow were estimated in previous studies and were based on mean annual precipitation for 1931-60. Because mean annual precipitation for 1951-80 did not differ significantly from that of 1931-60, these tributary inflow estimates are assumed to be valid for use in 1984. Measured average annual runoff per unit drainage area on the Bill Williams River has remained the same. Surface water inflow from unmeasured tributaries is infrequent and is not captured in surface reservoirs in any of the States; it flows to the Colorado River gaging stations. Estimates of groundwater inflow to the Colorad River valley. Average annual runoff can be used in a water budget; although in wet years, runoff may be large enough to affect the calculation of consumptive use and to be estimated from hydrographs for the Colorado River valley are based on groundwater recharge estimates in the bordering areas, which have not significantly changed through time. In most areas adjacent to the Colorado River valley, groundwater pumpage is small and pumping has not significantly affected the quantity of groundwater discharged to the Colorado River valley. In some areas where groundwater pumpage exceeds the quantity of groundwater discharge and water levels have declined, the quantity of discharge probably has decreased and groundwater inflow to the Colorado River valley will eventually be reduced if not stopped completely. Groundwater discharged at springs below Hoover Dam is unused and flows directly to the Colorado River. (Lantz-PTT)

  4. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  5. Time Series Analysis and Forecasting of Wastewater Inflow into Bandar Tun Razak Sewage Treatment Plant in Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Abunama, Taher; Othman, Faridah

    2017-06-01

    Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.

  6. Radial inflow gas turbine engine with advanced transition duct

    DOEpatents

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  7. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    USGS Publications Warehouse

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from Sheridan Lake for the historical pass-through operating system. Two inflow components (stream inflow and precipitation) and one outflow component (evaporation) were considered. The hydrologic budget uses monthly time steps within a computational year that includes two 6-month periods - May through October, for which evaporation is accounted for, and November through April, when evaporation is considered negligible. Results indicate that monthly evaporation rates can substantially exceed inflow during low-flow periods, and potential exists for outflows to begin approaching zero-flow conditions substantially prior to the onset of zero-inflow conditions, especially when daily inflow and evaporation are considered. Results also indicate that September may be the month for greatest potential benefit for enhancing fish habitat and other ecosystem values in downstream reaches of Spring Creek with managed releases of cool water. Computed monthly outflows from Sheridan Lake for September are less than 1.0 ft3/s for 8 of the 44 years (18 percent) and are less than 2.0 ft3/s for 14 of the 44 years (32 percent). Conversely, none of the computed outflows for May are less than 2.0 ft3/s. A short-term (July through September 2007) data set was used to calculate daily evaporation from Sheridan Lake and to evaluate the applicability of published pan coefficients. Computed values of pan coefficients of approximately 1.0 and 1.1 for two low-flow periods are larger than the mean annual pan coefficient of 0.74 for the area that is reported in the literature; however, the computed values are consistent with pan coefficients reported elsewhere for similar late summer and early fall periods. Thus, these results supported the use of variable monthly pan coefficients for the long-term hydrologic budget. A hydrologic model was developed using the primary components of the hydrologic budget and was used to simulate monthly storage deficits and drawdown for Sheridan Lake using hypothetical

  8. SSOAP - A USEPA TOOLBOX FOR SSO ANALYSIS AND CONTROL PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  9. 42. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MISSISSIPPI BASIN MODEL AT CLINTON SUBSTATION. DETAIL OF 200 GALLON PER MINUTE INFLOW CONTROLLER WITH NEW PROGRAMMER, LOCATED ALONG THE NATCHEZ SECTION OF THE MODEL. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  10. Water Power | NREL

    Science.gov Websites

    Regulations Publications WEC3: Wave Energy Converter Code Comparison Project Turbine Control of a Tidal and Surge Wave Energy Converter Performance Characterization of a Cross-Flow Hydrokinetic Turbine in Sheared Inflow More publications News News More News New Wave Energy Converter Design Inspired by Wind Energy

  11. Spring contributions to water quality and nitrate loads in the Suwannee River during base flow in July 1995

    USGS Publications Warehouse

    Pittman, J.R.; Hatzell, H.H.; Oaksford, E.T.

    1997-01-01

    The Suwannee River flows through an area of north-central Florida where ground water has elevated nitrate concentrations. A study was conducted to determine how springs and other ground-water inflow affect the quantity and quality of water in the Suwannee River. The study was done on a 33-mile (mi) reach of the lower Suwannee River from just downstream of Dowling Park, Fla., to Branford, Fla. Water samples for nitrate concentrations (dissolved nitrite plus nitrate as nitrogen) and discharge data were collected at 11 springs and 3 river sites during the 3-day period in July 1995 during base flow in the river. In the study reach, all inflow to the river is derived from ground water. Measured springs and other ground-water inflow, such as unmeasured springs and upward diffuse leakage through the riverbed, increased the river discharge 47 percent over the 33-mi reach. The 11 measured springs contributed 41 percent of the increased discharge and other ground-water inflow contributed the remaining 59 percent. River nitrate loads increased downstream from 2,300 to 6,000 kilograms per day (kg/d), an increase of 160 percent in the 33-mi study reach. Measured springs contributed 46 percent of this increase and other ground-water inflow contributed the remaining 54 percent. The study reach was divided at Luraville, Fla., into an 11-mi upper segment and a 22-mi lower segment to determine whether the ground-water inflows and nitrate concentrations were uniform throughout the entire study reach (fig. 1). The two segments were dissimilar. The amount of water added to the river by measured springs more than tripled from the upper to the lower segment. Even though the median nitrate concentration for the three springs in the upper segment (1.7 milligrams per liter (mg/L)) was similar to the median for the eight springs in the lower segment (1.8 mg/L), nitrate concentrations in the river almost doubled from 0.46 to 0.83 mg/L in the lower segment. Only 11 percent of the increase in nitrate load for the study reach occurred in the upper segment; the remaining 89 percent occurred in the lower segment. Measured springs were the major source of nitrate load in the upper reach and other ground-water inflow was the major source in the lower segment. Differences in nitrate loads between the upper and lower river segments are probably controlled by such factors as differences in the magnitude of the spring discharges, the size and location of spring basins, and the hydrologic characteristics of ground water in the study area.

  12. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  13. Efficacy of the ejector flow-meter. A scavenging device for anaesthetic gases.

    PubMed

    Obel, D; Jørgensen, S; Ferguson, A; Frandsen, K

    1985-01-01

    Measurements of air concentrations of nitrous oxide and halothane in the breathing zone of the anaesthetist and the operating-room nurse were carried out during inhalation anaesthesia with a Mapleson D system. Gas removal was performed from inside the breathing system at the same rate as that of the fresh gas inflow by means of an ejector flow-meter. The concentrations of nitrous oxide and halothane were maintained below the Danish Threshold Limit Values of 100 and 5 parts per million, respectively, by using this type of scavenging. When these anaesthetics were used simultaneously, the reduced Threshold Limit Values were not exceeded during endotracheal anaesthesia.

  14. Dependence of flow and transport through the Williamson River Delta, Upper Klamath Lake, Oregon, on wind, river inflow, and lake elevation

    USGS Publications Warehouse

    Wood, Tamara M.

    2012-01-01

    The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.

  15. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation

    PubMed Central

    2013-01-01

    Background Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. Methods 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PSL%), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBVL%) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBViwL%). For PBViwL%, the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. Results The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBVL% showed error of 49.24% to −40.37% (intraclass correlation coefficient RI = 0.55) and PBFL% had error of 34.87% to −27.76% (RI = 0.80). With the inflow-weighted model, PBViwL% had much less error of 12.28% to −11.20% (RI = 0.98) from PSL%. Conclusions The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated. PMID:23448679

  16. Inflow-weighted pulmonary perfusion: comparison between dynamic contrast-enhanced MRI versus perfusion scintigraphy in complex pulmonary circulation.

    PubMed

    Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi; Chung, Hsiao-Wen; Huang, Yi-Luan; Wu, Fu-Zong; Lin, Chu-Chuan; Peng, Nan-Jing; Wu, Ming-Ting

    2013-02-28

    Due to the different properties of the contrast agents, the lung perfusion maps as measured by 99mTc-labeled macroaggregated albumin perfusion scintigraphy (PS) are not uncommonly discrepant from those measured by dynamic contrast-enhanced MRI (DCE-MRI) using indicator-dilution analysis in complex pulmonary circulation. Since PS offers the pre-capillary perfusion of the first-pass transit, we hypothesized that an inflow-weighted perfusion model of DCE-MRI could simulate the result by PS. 22 patients underwent DCE-MRI at 1.5T and also PS. Relative perfusion contributed by the left lung was calculated by PS (PS(L%)), by DCE-MRI using conventional indicator dilution theory for pulmonary blood volume (PBV(L%)) and pulmonary blood flow (PBFL%) and using our proposed inflow-weighted pulmonary blood volume (PBV(iw)(L%)). For PBViw(L%), the optimal upper bound of the inflow-weighted integration range was determined by correlation coefficient analysis. The time-to-peak of the normal lung parenchyma was the optimal upper bound in the inflow-weighted perfusion model. Using PSL% as a reference, PBV(L%) showed error of 49.24% to -40.37% (intraclass correlation coefficient R(I) = 0.55) and PBF(L%) had error of 34.87% to -27.76% (R(I) = 0.80). With the inflow-weighted model, PBV(iw)(L%) had much less error of 12.28% to -11.20% (R(I) = 0.98) from PS(L%). The inflow-weighted DCE-MRI provides relative perfusion maps similar to that by PS. The discrepancy between conventional indicator-dilution and inflow-weighted analysis represents a mixed-flow component in which pathological flow such as shunting or collaterals might have participated.

  17. Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.

    2014-08-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.

  18. Improved Regional Water Management Utilizing Climate Forecasts: An Inter-basin Transfer Model with a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.

    2014-12-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply system.

  19. The suitability of a simplified isotope-balance approach to quantify transient groundwater-lake interactions over a decade with climatic extremes

    USGS Publications Warehouse

    Sacks, Laura A.; Lee, Terrie M.; Swancar, Amy

    2013-01-01

    Groundwater inflow to a subtropical seepage lake was estimated using a transient isotope-balance approach for a decade (2001–2011) with wet and dry climatic extremes. Lake water δ18O ranged from +0.80 to +3.48 ‰, reflecting the 4 m range in stage. The transient δ18O analysis discerned large differences in semiannual groundwater inflow, and the overall patterns of low and high groundwater inflow were consistent with an independent water budget. Despite simplifying assumptions that the isotopic composition of precipitation (δP), groundwater inflow, and atmospheric moisture (δA) were constant, groundwater inflow was within the water-budget error for 12 of the 19 semiannual calculation periods. The magnitude of inflow was over or under predicted during periods of climatic extreme. During periods of high net precipitation from tropical cyclones and El Niño conditions, δP values were considerably more depleted in 18O than assumed. During an extreme dry period, δA values were likely more enriched in 18O than assumed due to the influence of local lake evaporate. Isotope balance results were most sensitive to uncertainties in relative humidity, evaporation, and δ18O of lake water, which can limit precise quantification of groundwater inflow. Nonetheless, the consistency between isotope-balance and water-budget results indicates that this is a viable approach for lakes in similar settings, allowing the magnitude of groundwater inflow to be estimated over less-than-annual time periods. Because lake-water δ18O is a good indicator of climatic conditions, these data could be useful in ground-truthing paleoclimatic reconstructions using isotopic data from lake cores in similar settings.

  20. Field Measurements to Characterize Turbulent Inflow for Marine Hydrokinetic Devices - Marrowstone Island, WA

    NASA Astrophysics Data System (ADS)

    Richmond, M. C.; Thomson, J. M.; Durgesh, V.; Polagye, B. L.

    2011-12-01

    Field measurements are essential for developing an improved understanding of turbulent inflow conditions that affect the design and operation of marine and hydrokinetic (MHK) devices. The Marrowstone Island site in Puget Sound, Washington State is a potential location for installing MHK devices, as it experiences strong tides and associated currents. Here, field measurements from Nodule Point on the eastern side of Marrowstone Island are used to characterize the turbulence in terms of velocity variance as a function of length and time scales. The field measurements were performed using Acoustic Doppler Velocimetry (ADV) and Acoustic Doppler Current Profiler (ADCP) instruments. Both were deployed on a bottom-mounted tripod at the site by the Applied Physics Lab at the University of Washington (APL-UW). The ADV acquired single point, temporally resolved velocity data from 17-21 Feb 2011, at a height of 4.6 m above the seabed at a sampling frequency of 32 Hz. The ADCP measured the velocity profile over the water column from a height of 2.6 m above the seabed up to the sea-surface in 36 bins, with each bin of 0.5 m size. The ADCP acquired data from 11-27 Feb 2011 at a sampling frequency of 2 Hz. Analysis of the ADV measurements shows distinct dynamic regions by scale: anisotropic eddies at large scales, an isotropic turbulent cascade (-5/3 slope in frequency spectra) at mesoscales, and contamination by Doppler noise at small scales. While Doppler noise is an order of magnitude greater for the ADCP measurements, the turbulence bulk statistics are consistent between the two instruments. There are significant variations in turbulence statistics with stage of the tidal currents (i.e., from slack to non-slack tidal conditions), however an average turbulent intensity of 10% is a robust, canonical value for this site. The ADCP velocity profiles are useful in quantifying the variability in velocity along the water column, and the ensemble averaged velocity profiles may be described by a power law, commonly used to characterize boundary layers.

  1. Recent trends and variations in Baltic Sea temperature, salinity, stratification and circulation

    NASA Astrophysics Data System (ADS)

    Elken, Jüri; Lehmann, Andreas; Myrberg, Kai

    2015-04-01

    The presentation highlights the results of physical oceanography from BACC II (Second BALTEX Assessment of Climate Change for the Baltic Sea basin) book based on the review of recent literature published until 2013. We include also information from some more recent publications. A recent warming trend in sea surface waters has been clearly demonstrated by all available methods: in-situ measurements, remote sensing data and modelling tools. In particular, remote sensing data for the period 1990-2008 indicate that the annual mean SST has increased even by 1°C per decade, with the greatest increase in the northern Bothnian Bay and also with large increases in the Gulf of Finland, the Gulf of Riga, and the northern Baltic Proper. Although the increase in the northern areas is affected by the recent decline in the extent and duration of sea ice, and corresponding changes in surface albedo, warming is still evident during all seasons and with the greatest increase occurring in summer. The least warming of surface waters (0.3-0.5°C per decade) occurred northeast of Bornholm Island up to and along the Swedish coast, probably owing to an increase in the frequency of coastal upwelling forced by the westerly wind events. Comparing observations with the results of centennial-scale modelling, recent changes in sea water temperature appear to be within the range of the variability observed during the past 500 years. Overall salinity pattern and stratification conditions are controlled by river runoff, wind conditions, and salt water inflows through the Danish straits. The mean top-layer salinity is mainly influenced by the accumulated river runoff, with higher salinity during dry periods and lower salinity during wet periods. Observations reveal a low-salinity period above the halocline starting in the 1980s. The strength of stratification and deep salinity are reduced when the mean zonal wind stress increases, as it occurred since 1987. Major Baltic Inflows of highly saline water of North Sea origin occur sporadically and transport high-saline water into the deep layers of the Baltic Sea. These inflow events occur when high pressure over the Baltic region with easterly winds is followed by several weeks of strong westerly winds; changes in the inflow activity are related to the frequency of deep cyclones and their pathways over the Baltic area. Major inflows are often followed by a period of stagnation during which saline stratification decreases and oxygen deficiency develops in the deep basins of the central Baltic. Major inflows are usually of barotropic character. They normally occur during winter and spring and transport relatively cold, salty and oxygen-rich waters to the deep basins. Since 1996, another type of inflows have been observed during summer or early autumn. These inflows are of baroclinic character and transport high-saline, but warm and low-oxygen water into the deep layers of the Baltic Sea. Event-like water exchange and mixing anomalies, driven by specific atmospheric forcing patterns like sequences of deep cyclones, occur also in other parts of the Baltic Sea.

  2. Analysis of information systems for hydropower operations

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W. W. G.

    1976-01-01

    The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined.

  3. Analysis of information systems for hydropower operations: Executive summary

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.; Becker, L.; Estes, J.; Simonett, D.; Yeh, W.

    1976-01-01

    An analysis was performed of the operations of hydropower systems, with emphasis on water resource management, to determine how aerospace derived information system technologies can effectively increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined in detail to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results were used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept was outlined.

  4. Performance Evaluation, Emulation, and Control of Cross-Flow Hydrokinetic Turbines

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Robert J.

    Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. (Abstract shortened by UMI.).

  5. Rotorcraft Blade-Vortex Interaction Controller

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor)

    1995-01-01

    Blade-vortex interaction noises, sometimes referred to as 'blade slap', are avoided by increasing the absolute value of inflow to the rotor system of a rotorcraft. This is accomplished by creating a drag force which causes the angle of the tip-path plane of the rotor system to become more negative or more positive.

  6. Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells.

    PubMed

    Dhar, Manjima; Pao, Edward; Renier, Corinne; Go, Derek E; Che, James; Montoya, Rosita; Conrad, Rachel; Matsumoto, Melissa; Heirich, Kyra; Triboulet, Melanie; Rao, Jianyu; Jeffrey, Stefanie S; Garon, Edward B; Goldman, Jonathan; Rao, Nagesh P; Kulkarni, Rajan; Sollier-Christen, Elodie; Di Carlo, Dino

    2016-10-14

    Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60-100% for cytology, and 80% for immunostaining based enumeration.

  7. Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells

    PubMed Central

    Dhar, Manjima; Pao, Edward; Renier, Corinne; Go, Derek E.; Che, James; Montoya, Rosita; Conrad, Rachel; Matsumoto, Melissa; Heirich, Kyra; Triboulet, Melanie; Rao, Jianyu; Jeffrey, Stefanie S.; Garon, Edward B.; Goldman, Jonathan; Rao, Nagesh P.; Kulkarni, Rajan; Sollier-Christen, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60–100% for cytology, and 80% for immunostaining based enumeration. PMID:27739521

  8. Human Fitting Studies of Cleveland Clinic Continuous-Flow Total Artificial Heart

    PubMed Central

    Karimov, Jamshid H.; Steffen, Robert J.; Byram, Nicole; Sunagawa, Gengo; Horvath, David; Cruz, Vincent; Golding, Leonard A.R.; Fukamachi, Kiyotaka; Moazami, Nader

    2015-01-01

    Implantation of mechanical circulatory support devices is challenging, especially in patients with a small chest cavity. We evaluated how well the Cleveland Clinic continuous-flow total artificial heart (CFTAH) fit the anatomy of patients about to receive a heart transplant. A mock pump model of the CFTAH was rapid-prototyped using biocompatible materials. The model was brought to the operative table, and the direction, length, and angulation of the inflow/outflow ports and outflow conduits were evaluated after the recipient's ventricles had been resected. Thoracic cavity measurements were based on preoperative computed tomographic data. The CFTAH fit well in all five patients (height, 170 ± 9 cm; weight, 75 ± 24 kg). Body surface area was 1.9 ± 0.3 m2 (range, 1.6-2.1 m2). The required inflow and outflow port orientation of both the left and right housings appeared consistent with the current version of the CFTAH implanted in calves. The left outflow conduit remained straight, but the right outflow direction necessitated a 73 ± 22 degree angulation to prevent potential kinking when crossing over the connected left outflow. These data support the fact that our design achieves the proper anatomical relationship of the CFTAH to a patient's native vessels. PMID:25806613

  9. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging

    NASA Astrophysics Data System (ADS)

    Halboth, Florian; Roces, Flavio

    2017-10-01

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  10. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States

    NASA Astrophysics Data System (ADS)

    Naz, Bibi S.; Kao, Shih-Chieh; Ashfaq, Moetasim; Gao, Huilin; Rastogi, Deeksha; Gangrade, Sudershan

    2018-01-01

    The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. In this study, we evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 138 headwater subbasins located upstream of reservoirs across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble of global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. Four commonly used indices, including mean annual flow, annual center timing, 100-year daily high streamflow, and 10-year 7-day average low streamflow were used for evaluation. The results projected an increase in the high streamflow by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States (US) and a decrease in the low streamflow by 11% for subbasins upstream of hydropower reservoirs across the western US. In the eastern US, frequencies of both high and low streamflow were projected to increase in the majority of subbasins upstream of both hydropower and flood control reservoirs. Increased frequencies of both high and low streamflow events can potentially make reservoirs across CONUS more vulnerable to future climate conditions. This study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.

  11. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging.

    PubMed

    Halboth, Florian; Roces, Flavio

    2017-09-19

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  12. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    PubMed Central

    Honeine, Jean-Louis; Schieppati, Marco

    2014-01-01

    Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices. PMID:25339872

  13. Separation control in a hypersonic shock wave / turbulent boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Bermejo-Moreno, Ivan; Kim, Jeonglae; Urzay, Javier

    2016-11-01

    Hypersonic vehicles play a key role for affordable access to space. The associated flow fields are strongly affected by shock wave/turbulent boundary-layer interactions, and the inherent separation causes flow distortion and low-frequency unsteadiness. Microramp sub-boundary layer vortex generators are a promising means to control separation and diminish associated detrimental effects. We investigate the effect of a microramp on the low-frequency unsteadiness in a fully separated interaction. A large eddy simulation of a 33 ∘ -compression-ramp interaction was performed for an inflow Mach number of 7.2 and a Reynolds number based on momentum thickness of Reθ = 3500 , matching the experiment of Schreyer et al. (2011). For the control case, we introduced a counter-rotating vortex pair, as induced by a single microramp, into the boundary layer through the inflow conditions. We applied a dynamic mode decomposition (DMD) on both cases to identify coherent structures that are responsible for the dynamic behavior. Based on the DMD, we discuss the reduction of the separation zone and the stabilization of the shock motion achieved by the microramp, and contribute to the description of the governing mechanisms. Pursued during the 2016 CTR Summer Program at Stanford University.

  14. Preliminary Analysis of the Hydrologic and Geochemical Controls on Acid-Neutralizing Capacity in Two Acidic Seepage Lakes in Florida

    NASA Astrophysics Data System (ADS)

    Pollman, Curtis D.; Lee, T. M.; Andrews, W. J.; Sacks, L. A.; Gherini, S. A.; Munson, R. K.

    1991-09-01

    In late 1988, parallel studies of Lake Five-O (pH 5.14) in the Florida panhandle and Lake Barco (pH 4.50) in north central Florida were initiated to develop hydrologic and major ion budgets of these lakes as part of an overall effort to improve understanding of the hydrologic, depositional, and biogeochemical factors that control acid-neutralizing capacity (ANC) in seepage lakes. Preliminary findings from these studies indicate that earlier perceptions of lake hydrology and mechanisms of ANC regulation in Florida seepage lakes may have to be revised. The traditional perspective of seepage lakes in the Florida panhandle views these systems as dominated by precipitation inputs and that ANC regulation is due largely to in-lake processes. Our results for Lake Five-O show modest to steep hydraulic gradients almost entirely around the lake. In addition, the horizontal hydraulic conductivity of the surficial aquifer is high (8-74 m day-1), indicating that large quantities of groundwater flow into Lake Five-O. Calculations of net groundwater flow from hydrologic budgets also indicate that groundwater may comprise at least 38 to 46% of the total inflow. For Lake Barco, net flow estimates of the minimum groundwater inflow range from 5 to 14% of total inflow. Enrichment factor and ion flux calculations for Lake Five-O and Lake Barco indicate that terrestrial as well as in-lake processes contribute significantly to ANC regulation. The extent that terrestrial processes contribute to ANC generation is directly related to the magnitude of groundwater inflow as well as the degree of ion enrichment or depletion that occurs in the surficial aquifer. Net ANC generation in both study lakes was dominated by anion retention (NO3- and SO42-). Where previous studies concluded that in-lake reduction was the primary sink for SO42-, our preliminary calculations show that adsorption of SO42- within the watershed is perhaps twice as important as in-lake reduction as a source of ANC. Net base cation enrichment in both lakes was negligible.

  15. Hemodynamic comparison of stent configurations used for aortoiliac occlusive disease.

    PubMed

    Groot Jebbink, Erik; Mathai, Varghese; Boersen, Johannes T; Sun, Chao; Slump, Cornelis H; Goverde, Peter C J M; Versluis, Michel; Reijnen, Michel M P J

    2017-07-01

    Endovascular treatment of aortoiliac occlusive disease entails the use of multiple stents to reconstruct the aortic bifurcation. Different configurations have been applied and geometric variations exist, as quantified in previous work. Other studies concluded that specific stent geometry seems to affect patency. These variations may affect local flow patterns, resulting in different wall shear stress (WSS) and oscillating shear index (OSI). The aim of this study was to compare the effect of different stent configurations on flow perturbations (recirculation and fluid stasis), WSS, and OSI in an in vitro setup. Three different stent configurations were deployed in transparent silicone models: bare-metal kissing (BMK) stents, covered kissing (CK) stents, and the covered endovascular reconstruction of the aortic bifurcation (CERAB) configuration. Transparent covered stents were created with polyurethane to enable visualization. Models were placed in a circulation setup under physiologic flow conditions. Time-resolved laser particle image velocimetry techniques were used to quantify the flow, and WSS and OSI were calculated. The BMK configuration did not show flow disturbances at the inflow section, and WSS values were similar to the control. An area of persistent low flow was observed throughout the cardiac cycle in the area between the anatomic bifurcation and neobifurcation. The CK model showed recirculation zones near the inflow area of the stents with a resulting low average WSS value and high OSI. The proximal inflow of the CERAB configuration did not show flow disturbances, and WSS values were comparable to control. Near the inflow of the limbs, a minor zone of recirculation was observed without changes in WSS values. Flow, WSS, and OSI on the lateral wall of the proximal iliac artery were undisturbed in all models. The studied aortoiliac stent configurations have distinct locations where flow disturbances occur, and these are related to the radial mismatch. The CERAB configuration is the most unimpaired physiologic reconstruction, whereas BMK and CK stents have their typical zones of flow recirculation. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  16. Computed discharges at five sites in lower Laguna Madre near Port Isabel, Texas, June 1997

    USGS Publications Warehouse

    East, Jeffrey W.; Solis, R.S.; Ockerman, D.J.

    1998-01-01

    The Texas Water Development Board (TWDB), Texas Parks and Wildlife Department (TPWD), and Texas Natural Resource Conservation Commission (TNRCC) are charged by the Texas Legislature with determining freshwater inflows required to maintain the ecological health of streams, bays, and estuaries in Texas. To determine required inflows, the three agencies collect data and conduct studies on the needs for freshwater inflows to estuaries. The TWDB uses estuarine hydrodynamic and conservativetransport computer models to predict the effects of altering freshwater inflows on estuarine circulation and salinity. To calibrate these models, a variety of water-quality and discharge data are needed.

  17. Inflow Motions Associated with High-mass Protostellar Objects

    NASA Astrophysics Data System (ADS)

    Yoo, Hyunju; Kim, Kee-Tae; Cho, Jungyeon; Choi, Minho; Wu, Jingwen; Evans, Neal J., II; Ziurys, L. M.

    2018-04-01

    We performed a molecular line survey of 82 high-mass protostellar objects in a search for inflow signatures associated with high-mass star formation. Using the H13CO+ (1‑0) line as an optically thin tracer, we detected a statistically significant excess of blue asymmetric line profiles in the HCO+ (1‑0) transition, but nonsignificant excesses in the HCO+ (3‑2) and H2CO (212–111) transitions. The negative blue excess for the HCN (3‑2) transition suggests that the line profiles are affected by dynamics other than inflow motion. The HCO+ (1‑0) transition thus seems to be the suitable tracer of inflow motions in high-mass star-forming regions, as previously suggested. We found 27 inflow candidates that have at least 1 blue asymmetric profile and no red asymmetric profile, and derived the inflow velocities to be 0.23‑2.00 km s‑1 for 20 of them using a simple two-layer radiative transfer model. Our sample is divided into two groups in different evolutionary stages. The blue excess of the group in relatively earlier evolutionary stages was estimated to be slightly higher than that of the other in the HCO+ (1‑0) transition.

  18. An implementation of an aeroacoustic prediction model for broadband noise from a vertical axis wind turbine using a CFD informed methodology

    NASA Astrophysics Data System (ADS)

    Botha, J. D. M.; Shahroki, A.; Rice, H.

    2017-12-01

    This paper presents an enhanced method for predicting aerodynamically generated broadband noise produced by a Vertical Axis Wind Turbine (VAWT). The method improves on existing work for VAWT noise prediction and incorporates recently developed airfoil noise prediction models. Inflow-turbulence and airfoil self-noise mechanisms are both considered. Airfoil noise predictions are dependent on aerodynamic input data and time dependent Computational Fluid Dynamics (CFD) calculations are carried out to solve for the aerodynamic solution. Analytical flow methods are also benchmarked against the CFD informed noise prediction results to quantify errors in the former approach. Comparisons to experimental noise measurements for an existing turbine are encouraging. A parameter study is performed and shows the sensitivity of overall noise levels to changes in inflow velocity and inflow turbulence. Noise sources are characterised and the location and mechanism of the primary sources is determined, inflow-turbulence noise is seen to be the dominant source. The use of CFD calculations is seen to improve the accuracy of noise predictions when compared to the analytic flow solution as well as showing that, for inflow-turbulence noise sources, blade generated turbulence dominates the atmospheric inflow turbulence.

  19. Simulation of tidal-flow, circulation, and flushing of the Charlotte Harbor Estuarine System, Florida

    USGS Publications Warehouse

    Goodwin, C.R.

    1996-01-01

    A two-dimensional circulation and constituent- transport model, SIMSYS2D, was used to simulate tidal-flow, circulation, and flushing characteristics in Charlotte Harbor. The model was calibrated and verified against field observations of stage,discharge, and velocity. Standard errors averaged about 3 percent of the range in stage at the tide stations and between 3 and 10 percent of the range in discharge measured in the inlets for the calibration period. Following calibration and verification, the model was applied to three different conditions. The first condition represented the existing physical configuration and typical freshwater inflow. The second condition represented reduced fresh water inflow, and the third represented an alteration of Sanibel Causeway. All three conditions were evaluated through Lagrangian particle tracks and simulated dye injections. Residual circulation patterns were similar for typical and reduced freshwater inflow, but reduced freshwater inflow increased the residence time in the upper harbor by a factor of two or more. Removal of Sanibel Causeway did not significantly affect residual flows in upper and lower Charlotte Harbor, Matlacha Pass, Gasparilla Sound, or the Gulf of Mexico. Analysis of Lagrangian particle tracks indicated changes in residence times in San Carlos Bay as a result of removing Sanibel Causeway, but the changes were not consistent for all particles. The residence time of 8 particles in San Carlos Bay decreased with removal of the causeway, 1 was unchanged, and the residence time of 3 particles increased. Simulated flushing characteristics of the estuarine system were affected more by reduced freshwater inflow than for typical freshwater inflow. After 30 days of simulation of reduced freshwater inflow, 42 percent of the dye injected into the upper harbor remained in the upper harbor, compared to 28 percent for typical freshwater inflow. The upper harbor has a relatively long flushing time because it is not directly connected to the gulf and some of the dye that exits to the lower harbor returns to the upper harbor by way of a landward residual flow in the deep center channel. The upper harbor is also sensitive to reduced freshwater inflow because it is the subarea closest to freshwater inflow from the Peace and Myakka Rivers. Removal of Sanibel Causeway had a slight effect on the flushing of Pine Island Sound and San Carlos Bay, but had no significant effect in upper and lower Charlotte Harbor.

  20. Gas-blowout control by water injection through relief wells: a theoretical analysis. [Injection of water into the formation through relief wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehner, F.; Williamson, A.S.

    1974-08-01

    Koninklijke/Shell Exploratie en Produktie Laboratorium in The Netherlands suggests bringing a gas blowout under control by injecting water into the formation through relief wells. By avoiding direct contact between relief well and blowout well, this technique reduces the inflow of gas by creating sufficient back pressure in the formation itself. The mechanics of the technique are considered.

  1. Myocardial perfusion characteristics during machine perfusion for heart transplantation.

    PubMed

    Peltz, Matthias; Cobert, Michael L; Rosenbaum, David H; West, LaShondra M; Jessen, Michael E

    2008-08-01

    Optimal parameters for machine perfusion preservation of hearts prior to transplantation have not been determined. We sought to define regional myocardial perfusion characteristics of a machine perfusion device over a range of conditions in a large animal model. Dog hearts were connected to a perfusion device (LifeCradle, Organ Transport Systems, Inc, Frisco, TX) and cold perfused at differing flow rates (1) at initial device startup and (2) over the storage interval. Myocardial perfusion was determined by entrapment of colored microspheres. Myocardial oxygen consumption (MVO(2)) was estimated from inflow and outflow oxygen differences. Intra-myocardial lactate was determined by (1)H magnetic resonance spectroscopy. MVO(2) and tissue perfusion increased up to flows of 15 mL/100 g/min, and the ratio of epicardial:endocardial perfusion remained near 1:1. Perfusion at lower flow rates and when low rates were applied during startup resulted in decreased capillary flow and greater non-nutrient flow. Increased tissue perfusion correlated with lower myocardial lactate accumulation but greater edema. Myocardial perfusion is influenced by flow rates during device startup and during the preservation interval. Relative declines in nutrient flow at low flow rates may reflect greater aortic insufficiency. These factors may need to be considered in clinical transplant protocols using machine perfusion.

  2. Median Sternotomy or Right Thoracotomy Techniques for Total Artificial Heart Implantation in Calves.

    PubMed

    Karimov, Jamshid H; Moazami, Nader; Sunagawa, Gengo; Kobayashi, Mariko; Byram, Nicole; Sale, Shiva; Such, Kimberly A; Horvath, David J; Golding, Leonard A R; Fukamachi, Kiyotaka

    2016-10-01

    The choice of optimal operative access technique for mechanical circulatory support device implantation ensures successful postoperative outcomes. In this study, we retrospectively evaluated the median sternotomy and lateral thoracotomy incisions for placement of the Cleveland Clinic continuous-flow total artificial heart (CFTAH) in a bovine model. The CFTAH was implanted in 17 calves (Jersey calves; weight range, 77.0-93.9 kg) through a median sternotomy (n = 9) or right thoracotomy (n = 8) for elective chronic implantation periods of 14, 30, or 90 days. Similar preoperative preparation, surgical techniques, and postoperative care were employed. Implantation of the CFTAH was successfully performed in all cases. Both methods provided excellent surgical field visualization. After device connection, however, the median sternotomy approach provided better visualization of the anastomoses and surgical lines for hemostasis confirmation and repair due to easier device displacement, which is severely limited following right thoracotomy. All four animals sacrificed after completion of the planned durations (up to 90 days) were operated through full median sternotomy. Our data demonstrate that both approaches provide excellent initial field visualization. Full median sternotomy provides larger viewing angles at the anastomotic suture line after device connection to inflow and outflow ports. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  3. Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre; ...

    2018-05-16

    Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less

  4. Comparison of four large-eddy simulation research codes and effects of model coefficient and inflow turbulence in actuator-line-based wind turbine modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Yilmaz, Ali Emre

    Here, large-eddy simulation (LES) of a wind turbine under uniform inflow is performed using an actuator line model (ALM). Predictions from four LES research codes from the wind energy community are compared. The implementation of the ALM in all codes is similar and quantities along the blades are shown to match closely for all codes. The value of the Smagorinsky coefficient in the subgrid-scale turbulence model is shown to have a negligible effect on the time-averaged loads along the blades. Conversely, the breakdown location of the wake is strongly dependent on the Smagorinsky coefficient in uniform laminar inflow. Simulations aremore » also performed using uniform mean velocity inflow with added homogeneous isotropic turbulence from a public database. The time-averaged loads along the blade do not depend on the inflow turbulence. Moreover, and in contrast to the uniform inflow cases, the Smagorinsky coefficient has a negligible effect on the wake profiles. It is concluded that for LES of wind turbines and wind farms using ALM, careful implementation and extensive cross-verification among codes can result in highly reproducible predictions. Moreover, the characteristics of the inflow turbulence appear to be more important than the details of the subgrid-scale modeling employed in the wake, at least for LES of wind energy applications at the resolutions tested in this work.« less

  5. Anatomizing one of the largest saltwater inflows into the Baltic Sea in December 2014

    NASA Astrophysics Data System (ADS)

    Gräwe, Ulf; Naumann, Michael; Mohrholz, Volker; Burchard, Hans

    2015-11-01

    In December 2014, an exceptional inflow event into the Baltic Sea was observed, a so-called Major Baltic Inflow (MBI). Such inflow events are important for the deep water ventilation in the Baltic Sea and typically occur every 3-10 years. Based on first observational data sets, this inflow had been ranked as the third largest since 100 years. With the help of a multinested modeling system, reaching from the North Atlantic (8 km resolution) to the Western Baltic Sea (600 m resolution, which is baroclinic eddy resolving), this event is reproduced in detail. The model gave a slightly lower salt transport of 3.8 Gt, compared to the observational estimate of four Gt. Moreover, by using passive tracers to mark the different inflowing water masses, including an age tracer, the inflowing water masses could be tracked and their paths and timing through the different basins could be reproduced and investigated. The analysis is supported by the recently developed Total Exchange Flow (TEF) to quantify the volume transport in different salinity classes. To account for uncertainties in the modeled velocity and tracer fields, a Monte Carlo Analysis (MCA) is applied to correct possible biases and errors. With the help of the MCA, 95% confidence intervals are computed for the transport estimates. Based on the MCA, the "best guess" of the volume transport is 291.0 ± 13.65 km3 and 3.89 ± 0.18 Gt for the total salt transport.

  6. Improving inflow forecasting into hydropower reservoirs through a complementary modelling framework

    NASA Astrophysics Data System (ADS)

    Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K.

    2014-10-01

    Accuracy of reservoir inflow forecasts is instrumental for maximizing the value of water resources and benefits gained through hydropower generation. Improving hourly reservoir inflow forecasts over a 24 h lead-time is considered within the day-ahead (Elspot) market of the Nordic exchange market. We present here a new approach for issuing hourly reservoir inflow forecasts that aims to improve on existing forecasting models that are in place operationally, without needing to modify the pre-existing approach, but instead formulating an additive or complementary model that is independent and captures the structure the existing model may be missing. Besides improving forecast skills of operational models, the approach estimates the uncertainty in the complementary model structure and produces probabilistic inflow forecasts that entrain suitable information for reducing uncertainty in the decision-making processes in hydropower systems operation. The procedure presented comprises an error model added on top of an un-alterable constant parameter conceptual model, the models being demonstrated with reference to the 207 km2 Krinsvatn catchment in central Norway. The structure of the error model is established based on attributes of the residual time series from the conceptual model. Deterministic and probabilistic evaluations revealed an overall significant improvement in forecast accuracy for lead-times up to 17 h. Season based evaluations indicated that the improvement in inflow forecasts varies across seasons and inflow forecasts in autumn and spring are less successful with the 95% prediction interval bracketing less than 95% of the observations for lead-times beyond 17 h.

  7. Lateral and subsurface flows impact arctic coastal plain lake water budgets

    USGS Publications Warehouse

    Koch, Joshua C.

    2016-01-01

    Arctic thaw lakes are an important source of water for aquatic ecosystems, wildlife, and humans. Many recent studies have observed changes in Arctic surface waters related to climate warming and permafrost thaw; however, explaining the trends and predicting future responses to warming is difficult without a stronger fundamental understanding of Arctic lake water budgets. By measuring and simulating surface and subsurface hydrologic fluxes, this work quantified the water budgets of three lakes with varying levels of seasonal drainage, and tested the hypothesis that lateral and subsurface flows are a major component of the post-snowmelt water budgets. A water budget focused only on post-snowmelt surface water fluxes (stream discharge, precipitation, and evaporation) could not close the budget for two of three lakes, even when uncertainty in input parameters was rigorously considered using a Monte Carlo approach. The water budgets indicated large, positive residuals, consistent with up to 70% of mid-summer inflows entering lakes from lateral fluxes. Lateral inflows and outflows were simulated based on three processes; supra-permafrost subsurface inflows from basin-edge polygonal ground, and exchange between seasonally drained lakes and their drained margins through runoff and evapotranspiration. Measurements and simulations indicate that rapid subsurface flow through highly conductive flowpaths in the polygonal ground can explain the majority of the inflow. Drained lakes were hydrologically connected to marshy areas on the lake margins, receiving water from runoff following precipitation and losing up to 38% of lake efflux to drained margin evapotranspiration. Lateral fluxes can be a major part of Arctic thaw lake water budgets and a major control on summertime lake water levels. Incorporating these dynamics into models will improve our ability to predict lake volume changes, solute fluxes, and habitat availability in the changing Arctic.

  8. Methylmercury in flood-control impoundments and natural waters of northwestern Minnesota, 1997-99

    USGS Publications Warehouse

    Brigham, M.E.; Krabbenhoft, D.P.; Olson, M.L.; DeWild, J.F.

    2002-01-01

    We studied methylmercury (MeHg) and total mercury (HgT) in impounded and natural surface waters in northwestern Minnesota, in settings ranging from agricultural to undeveloped. In a recently constructed (1995) permanent-pool impoundment, MeHg levels typically increased from inflow to outflow during 1997; this trend broke down from late 1998 to early 1999. MeHg levels in the outflow reached seasonal maxima in mid-summer (maximum of 1.0 ng L−1 in July 1997) and late-winter (maximum of 6.6 ng L−1 in February 1999), and are comparable to high levels observed in new hydroelectric reservoirs in Canada. Spring and autumn MeHg levels were typically about 0.1–0.2 ng L−1. Overall, MeHg levels in both the inflow (a ditch that drains peatlands) and outflow were significantly higher than in three nearby reference natural lakes. Eleven older permanent-pool impoundments and six natural lakes in northwestern Minnesota were sampled five times. The impoundments typically had higher MeHg levels (0.071–8.36 ng L−1) than natural lakes. Five of six lakes MeHg levels typical of uncontaminated lakes (0.014–1.04 ng L−1) with highest levels in late winter, whereas a hypereutrophic lake had high levels (0.37–3.67 ng L−1) with highest levels in mid-summer. Seven temporary-pool impoundments were sampled during summer high-flow events. Temporary-pool impoundments that retained water for about 10–15 days after innundation yielded pronounced increases in MeHg from inflow to outflow, in one case reaching 4.6 ng L−1, which was about 2 ng L−1 greater than the mean inflow concentration during the runoff event.

  9. Gas propagation in a liquid helium cooled vacuum tube following a sudden vacuum loss

    NASA Astrophysics Data System (ADS)

    Dhuley, Ram C.

    This dissertation describes the propagation of near atmospheric nitrogen gas that rushes into a liquid helium cooled vacuum tube after the tube suddenly loses vacuum. The loss-of-vacuum scenario resembles accidental venting of atmospheric air to the beam-line of a superconducting radio frequency particle accelerator and is investigated to understand how in the presence of condensation, the in-flowing air will propagate in such geometry. In a series of controlled experiments, room temperature nitrogen gas (a substitute for air) at a variety of mass flow rates was vented to a high vacuum tube immersed in a bath of liquid helium. Pressure probes and thermometers installed on the tube along its length measured respectively the tube pressure and tube wall temperature rise due to gas flooding and condensation. At high mass in-flow rates a gas front propagated down the vacuum tube but with a continuously decreasing speed. Regression analysis of the measured front arrival times indicates that the speed decreases nearly exponentially with the travel length. At low enough mass in-flow rates, no front propagated in the vacuum tube. Instead, the in-flowing gas steadily condensed over a short section of the tube near its entrance and the front appeared to `freeze-out'. An analytical expression is derived for gas front propagation speed in a vacuum tube in the presence of condensation. The analytical model qualitatively explains the front deceleration and flow freeze-out. The model is then simplified and supplemented with condensation heat/mass transfer data to again find the front to decelerate exponentially while going away from the tube entrance. Within the experimental and procedural uncertainty, the exponential decay length-scales obtained from the front arrival time regression and from the simplified model agree.

  10. Verification of the Chesapeake Bay Model.

    DTIC Science & Technology

    1981-12-01

    points on the model. Each inflow control unit consists of a pressure regulator , a digital flow control valve, and a flowmeter (Fig- ure 8). A mechanical...spring-type pressure regulator ensures constant pressure to the digital flow control valve. Each digital valve contains eight solenoid valve actuators...FT) =0.798 EEOC 1DGS 2.78 EPOCH (DEGS) - 11. 84 3 DATA TAKEN: AC(0) = 0. 11 38 F T A (0)= 0. 1653 FT 28 MAR 1978 RANGE (FT) - 1.638 RANGE (FT

  11. Virtual atmospheric mercury emission network in China.

    PubMed

    Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong

    2014-01-01

    Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.

  12. Groundwater mixing dynamics at a Canadian Shield mine

    NASA Astrophysics Data System (ADS)

    Douglas, M.; Clark, I. D.; Raven, K.; Bottomley, D.

    2000-08-01

    Temporal and spatial variations in geochemistry and isotopes in mine inflows at the Con Mine, Yellowknife, are studied to access the impact of underground openings on deep groundwater flow in the Canadian Shield. Periodic sampling of inflow at 20 sites from 700 to 1615 m depth showed that salinities range from 1.4 to 290 g/l, with tritium detected at all depths. Three mixing end-members are identified: (1) Ca(Na)-Cl Shield brine; (2) glacial meltwater recharged at the margin of the retreating Laurentide ice sheet at ˜10 ka; and (3) modern meteoric water. Mixing fractions, calculated for inflows on five mine levels, illustrate the infiltration of modern water along specific fault planes. Tritium data for the modern component are corrected for mixing with brine and glacial waters and interpreted with an exponential-piston flow model. Results indicate that the mean transit time from surface to 1300 m depth is about 23 years in the early period after drift construction in 1979, but decreases to about 17 years in the past decade. The persistence of glacial meltwater in the subsurface to the present time, and the rapid circulation of modern meteoric water since the start of mining activities underline the importance of gradient, in addition to permeability, as a control on deep groundwater flow in the Canadian Shield.

  13. Scramjet Research with Flight-Like Inflow Conditions

    DTIC Science & Technology

    2013-07-01

    AFRL-RQ-WP-TR-2013-0163 SCRAMJET RESEARCH WITH FLIGHT-LIKE INFLOW CONDITIONS Mark A. Hagenmaier, John Boles, and Ryan T. Milligan...TITLE AND SUBTITLE SCRAMJET RESEARCH WITH FLIGHT-LIKE INFLOW CONDITIONS 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...Clearance Date: 19 Aug 2013. This report contains color. 14. ABSTRACT Studies of flow distortion on fundamental scramjet flows have been performed

  14. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of dipole sources, one generated by the 16 th harmonic, perpendicular to the inflow, and the other generated by the 12th harmonic of the inflow parallel to the inflow. At the first harmonic of blade-rate for 60 ft/s, the model under predicts measured levels.

  15. Synopsis of integrated science to support the assessment of conservation practices in the Fort Cobb reservoir watershed, southwestern Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The Fort Cobb Reservoir in southwestern Oklahoma is an artificial impoundment constructed by the Bureau of Reclamation for water supplies, flood control, and recreation. Success of best-management practices in reducing inflows of sediments and phosphorus to the reservoir prompted the U.S. Departmen...

  16. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  17. Model simulation of inflow water to the Baltic Sea based on ¹²⁹I.

    PubMed

    Yi, P; Chen, X G; Bao, D X; Qian, R Z; Aldahan, A; Tian, F Y; Possnert, G; Bryhn, A C; Gu, T F; Hou, X L; He, P; Yu, Z B; Wang, B

    2013-12-01

    The semi-enclosed Baltic Sea represents a vital economic and recreational resource for more than 90 million people inhabiting its coasts. Extensive contamination of this sea by a variety of anthropogenic pollutants has raised the concern of the people in the region. Quantifying seawater inflow is crucial for estimating potential environmental risks as well as to find the best remedial strategy. We present here a model to estimate water inflow from the North Sea to the Baltic Sea by utilizing ¹²⁹I as a tracer. The results predicted inflow range of 230-450 km³/y with best fit value around 330 km³/y from the North Sea to the Baltic Sea during 1980-1999. Despite limited time series data on ¹²⁹I, the model presented here demonstrates a new management tool for the Baltic Sea to calculate inflow water compared to conventional methods (such as salinity, temperature and hydrographic models). Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  18. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholbrock, F. A.; Fleming, P.; Wright, A.

    2014-02-01

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  19. Technology for Sustained Supersonic Combustion Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions

    DTIC Science & Technology

    2013-01-01

    flight vehicle . Many facilities are not large enough to perform free-jet testing of scramjet engines which include an inlet. Rather, testing is often...AFRL-RQ-WP-TR-2013-0029 TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow...TITLE AND SUBTITLE TECHNOLOGY FOR SUSTAINED SUPERSONIC COMBUSTION Task Order 0006: Scramjet Research with Flight-Like Inflow Conditions 5a

  20. Dynamics of a wind turbine airfoil in turbulent inflow

    NASA Astrophysics Data System (ADS)

    Heisselmann, Hendrik; Peinke, Joachim; Hoelling, Michael

    2015-11-01

    An experimental investigation of the aerodynamics of a wind turbine airfoil model was performed for laminar inflow and three different turbulent inflow conditions at Re ~ 500,000. Particular turbulent inflow conditions were generated with an active grid, which allows for a repetition of the same turbulence pattern for each investigated airfoil configuration. The inflow wind fields comprise a laminar baseline case, a quasi-2D sinusoidal angle of attack (AoA) variation and an intermittent AoA variation. Additionally, AoA variations as obtained from a 5-hole Pitot probe during a field experiment were emulated. High-resolution time series of the pressure distributions and acting forces on a DU00-W-212 airfoil model were measured under the various inflow conditions for an AoA range of +/-35°. The obtained data was analyzed using time averages of first order quantities (mean, std. deviation) as well as more complex stochastic methods. The analysis of the laminar and turbulent cases indicates higher AoAs for maximum lift under turbulent conditions, while the drop-off in the post-stall regime is flattened. The presented work was funded from the European Union's Seventh Program for research, technological development and demonstration under grand agreement No FP7-ENERGY-2013-1/n° 608396.

  1. Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations.

    PubMed

    Bonnemain, Jean; Malossi, A Cristiano I; Lesinigo, Matteo; Deparis, Simone; Quarteroni, Alfio; von Segesser, Ludwig K

    2013-10-01

    In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Evaluation of ground-water flow and hydrologic budget for Lake Five-O, a seepage lake in northwestern Florida

    USGS Publications Warehouse

    Grubbs, J.W.

    1995-01-01

    Temporal and spatial distributions of ground-water inflow to, and leakage from Lake Five-O, a softwater, seepage lake in northwestern Florida, were evaluated using hydrologic data and simulation models of the shallow ground-water system adjacent to the lake. The simulation models indicate that ground-water inflow to the lake and leakage from the lake to the ground-water system are the dominant components in the total inflow (precipitation plus ground-water inflow) and total outflow (evaporation plus leakage) budgets of Lake Five-O. Simlulated ground-water inflow and leakage were approximately 4 and 5 times larger than precipitation inputs and evaporative losses, respectively, during calendar years 1989-90. Exchanges of water between Lake Five-O and the ground-water system were consistently larger than atmospheric-lake exchanges. A consistent pattern of shallow ground-water inflow and deep leakage was also evident throughout the study period. The mean time of travel from ground-water that discharges at Lake Five-O (time from recharge at the water table to discharge at the lake) was estimated to be within a range of 3 to 6 years. Flow-path evaluations indicated that the intermediate confining unit probably has a negligible influence on the geochemistry of ground-water inflow to Lake Five-O. The hydrologic budgets and flow-path evaluations provide critical information for developing geochemical budgets for Lake Five-O and for improving the understanding of the relative importance of various processes that regulate the acid-neutralizing capacity of softwater seepage lakes in Florida.

  3. The Cycles of Gaseous Baryons between the Disk and Halo

    NASA Astrophysics Data System (ADS)

    Zheng, Yong

    2018-01-01

    The disks of galaxies closely interact with the circumgalactic medium (CGM) through the disk-halo (D/H) interface. The disks grow by inflows from the CGM, while the CGM is enriched, stirred, and heated by outflows from the disks. Recent years have seen great breakthroughs in observations of inflows and outflows at the D/H interface; however, inflow detections are still rare and the structure of the D/H interface is unclear. My thesis work includes searching for inflows and studying the multiphase gas at the D/H interface, and building my expertise in both UV spectroscopy and HI 21cm observations.I will first show HST/COS observations of gas inflows detected in Si IV absorption lines at M33’s D/H interface (Zheng et al. 2017a); this is among the first to unambiguously reveal the existence of disk-wide galactic inflows. The detection of Si IV-bearing inflows indicates that baryons are efficiently recycled between the disk and halo, mostly consistent with a galactic fountain scenario. Then I will present a 3-dimensional kinematic model of the Milky Way (MW)’s D/H interface. I will show that beyond the MW’s D/H interface, there is a significant amount of baryons in the MW’s CGM moving at low velocities (|vlsr|<100 km/s; Zheng et al. 2015, Zheng et al. 2017c). Current MW’s CGM mass estimates suffer from an inside-out observational bias: local observers miss more than half of the gas mass in the MW’s CGM that is blocked out in high-velocity focused studies.

  4. Using radon to understand parafluvial flows and the changing locations of groundwater inflows in the Avon River, southeast Australia

    NASA Astrophysics Data System (ADS)

    Cartwright, Ian; Hofmann, Harald

    2016-09-01

    Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. This study utilizes 222Rn activities and Cl concentrations in the Avon River, southeast Australia, to determine the distribution of groundwater inflows and to understand the importance of parafluvial flow on the 222Rn budget. The distribution of 222Rn activities and Cl concentrations implies that the Avon River contains alternating gaining and losing reaches. The location of groundwater inflows changed as a result of major floods in 2011-2013 that caused significant movement of the floodplain sediments. The floodplain of the Avon River comprises unconsolidated coarse-grained sediments with numerous point bars and sediment banks through which significant parafluvial flow is likely. The 222Rn activities in the Avon River, which are locally up to 3690 Bq m-3, result from a combination of groundwater inflows and the input of water from the parafluvial zone that has high 222Rn activities due to 222Rn emanation from the alluvial sediments. If the high 222Rn activities were ascribed solely to groundwater inflows, the calculated net groundwater inflows would exceed the measured increase in streamflow along the river by up to 490 % at low streamflows. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain a discrepancy of this magnitude. The proposed model of parafluvial flow envisages that water enters the alluvial sediments in reaches where the river is losing and subsequently re-enters the river in the gaining reaches with flow paths of tens to hundreds of metres. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.

  5. Tidal-flow, circulation, and flushing characteristics of Kings Bay, Citrus County, Florida

    USGS Publications Warehouse

    Hammett, K.M.; Goodwin, C.R.; Sanders, G.L.

    1996-01-01

    Kings Bay is an estuary on the gulf coast of peninsular Florida with a surface area of less than one square mile. It is a unique estuarine system with no significant inflowing rivers or streams. As much as 99 percent of the freshwater entering the bay originates from multiple spring vents at the bottom of the estuary. The circulation and flushing characteristics of Kings Bay were evaluated by applying SIMSYS2D, a two-dimensional numerical model. Field data were used to calibrate and verify the model. Lagrangian particle simulations were used to determine the circulation characteristics for three hydrologic conditions: low inflow, typical inflow, and low inflow with reduced friction from aquatic vegetation. Spring discharge transported the particles from Kings Bay through Crystal River and out of the model domain. Tidal effects added an oscillatory component to the particle paths. The mean particle residence time was 59 hours for low inflow with reduced friction; therefore, particle residence time is affected more by spring discharge than by bottom friction. Circulation patterns were virtually identical for the three simulated hydroloigc conditions. Simulated particles introduced in the southern part of Kings Bay traveled along the eastern side of Buzzard Island before entering Crystal River and existing the model domain. The flushing characteristics of Kings Bay for the three hydrodynamic conditions were determined by simulating the injection of conservative dye constituents. The average concentration of dye initially injected in Kings Bay decreased asymptotically because of spring discharge, and the tide caused some oscillation in the average dye concentration. Ninety-five percent of the injected dye exited Kings Bay and Crystal River with 94 hours for low inflow, 71 hours for typical inflow, and 94 hours for low inflow with reduced bottom friction. Simulation results indicate that all of the open waters of Kings Bay are flushed by the spring discharge. Reduced bottom friction has little effect on flushing.

  6. Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices

    NASA Technical Reports Server (NTRS)

    Nance, Robert P.; Hash, David B.; Hassan, H. A.

    1997-01-01

    A study is made of the issues surrounding prediction of microchannel flows using the direct simulation Monte Carlo method. This investigation includes the introduction and use of new inflow and outflow boundary conditions suitable for subsonic flows. A series of test simulations for a moderate-size microchannel indicates that a high degree of grid under-resolution in the streamwise direction may be tolerated without loss of accuracy. In addition, the results demonstrate the importance of physically correct boundary conditions, as well as possibilities for reducing the time associated with the transient phase of a simulation. These results imply that simulations of longer ducts may be more feasible than previously envisioned.

  7. Left ventricular assist device malfunction: a systematic approach to diagnosis.

    PubMed

    Horton, Steven C; Khodaverdian, Reza; Powers, Amanda; Revenaugh, James; Renlund, Dale G; Moore, Stephanie A; Rasmusson, Brad; Nelson, Karl E; Long, James W

    2004-05-05

    A protocol was designed to diagnose the common malfunctions of a left ventricular assist device (LVAD). Mechanical circulatory support, primarily with an LVAD, is increasingly used for treatment of advanced heart failure (HF). Left ventricular assist device dysfunction is a recognized complication; but heretofore, a systematic method to accurately diagnose LVAD dysfunction has not been thoroughly described. We developed a catheter-based protocol designed to characterize a normally functioning LVAD and diagnose multiple types of dysfunction. A total of 15 studies of 10 patients supported with an LVAD were reviewed. All patients had been evaluated due to concerns regarding LVAD dysfunction. Of 15 examinations performed, 11 documented severe LVAD inflow valve regurgitation. One of these cases proved to have coexistent severe mitral valve regurgitation. One case was diagnosed with distortion of the LVAD outflow graft. One case of suspected embolization from the pumping chamber excluded the outflow graft as the source of emboli. One study had aortic insufficiency. As LVAD use for treatment of end-stage HF becomes widespread and durations of support are extended, dysfunction will be increasingly prevalent. This catheter-based protocol provided a practical method to diagnose multiple causes of LVAD dysfunction.

  8. Afferent control of central pattern generators: experimental analysis of scratching in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky, Y P

    1991-01-01

    Systematic quantitative analysis of changes in the spinal scratching generator motor activity evoked by tonic and phasic peripheral afferent signals during "fictitious" scratching was carried out in the cat. Correlations between the kinematics of hindlimb scratching movement, sensory inflow, and primary afferent depolarization were investigated. Reliable correlations between the parameters of generator motor activity during fictitious scratching were revealed: they depended on tonic peripheral afferent inflow. The functional role of these dependencies consists of providing stability for aiming the hindlimb to the itch site. It was shown that scratching generator reaction to a phasic sensory signal depended significantly on afferent input, signal intensity, and its arrival phase in the cycle of motor activity. Phase correction of "scratching" rhythm was performed by inhibition of the current stage of "scratching" cycle, the inhibition magnitude depending on the intensity of a sensory signal run along high threshold afferent fibers. The moments in the scratching cycle, in which the afferent signal caused no rearrangement in scratching generator activity, were discovered for all investigated afferent inputs. These moments corresponded to the transitions from one scratching cycle phase to another. Integral afferent activity was distributed unevenly in the cycle during real scratching. The main part of it was observed just in that scratching cycle part which included the above mentioned no rearrangement phase points. The data obtained allowed us to conclude that the scratching generator should be considered as a working program for the motor optimal control system containing the intrinsic model of the controlled object dynamics (e.g. hindlimb scratching movement dynamics), which produces an inner analog of peripheral flow. This inner flow interacts with peripheral afferent inflow just as one of the latter components. Centrally originated modulation of primary afferent depolarization is a result of affecting the depolarization generating system by this inner "sensory" activity. It is the model, with the aid of which the generator can work after deafferentation. The functional organization of a central pattern generator is considered.

  9. Afferent control of central pattern generators: experimental analysis of locomotion in the decerebrate cat.

    PubMed

    Baev, K V; Esipenko, V B; Shimansky YuP

    1991-01-01

    Changes in the motor activity of the spinal locomotor generator evoked by tonic and phasic peripheral afferent signals during fictitious locomotion of both slow and fast rhythms were analysed in the cat. The tonic afferent inflow was conditioned by the position of the hindlimb. The phasic afferent signals were imitated by electrical stimulation of hindlimb nerves. The correlation between the kinematics of hindlimb locomotor movement and sensory inflow was investigated during actual locomotion. Reliable correlations between motor activity parameters during fictitious locomotion were revealed in cases of both slow and fast "locomotor" rhythms. The main difference between these cases was that correlations "duration-intensity" were positive in the first and negative in the second case. The functional role of "locomotor" pattern dependence on tonic sensory inflow consisted of providing stability for planting the hindlimb on the ground. For any investigated afferent input the phase moments in the "locomotor" cycle were found, in which an afferent signal caused no rearrangement in locomotor generator activity. These moments corresponded to the transitions between "flexion" and "extension" phases and to the bursts of integral afferent activity observed during real locomotion. The data obtained are compared with the results previously described for the scratching generator. The character of changes in "locomotor" activity in response to tonic and phasic sensory signals was similar to that of such changes in "scratching" rhythm in the case of fast "locomotion". Intensification of the "flexion" phase caused by phasic high-intensity stimulation of cutaneous afferents during low "locomotor" rhythm was changed to inhibition (such as observed during "scratching") when this rhythm was fast. It is concluded that the main regularities of peripheral afferent control for both the locomotor and scratching generators are the same. Moreover, these central pattern generators are just working regimes of a general spinal motor optimal control system containing the intrinsic model of limb movement dynamics. The consequences of this concept and ways of further research are discussed.

  10. Mass loading of selected major and trace elements in Lake Fork Creek near Leadville, Colorado, September-October 2001

    USGS Publications Warehouse

    Walton-Day, Katherine; Flynn, Jennifer L.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    A mass-loading study of Lake Fork Creek of the Arkansas River between Sugarloaf Dam and the mouth was completed in September-October 2001 to help ascertain the following: (1) variation of pH and aqueous constituent concentrations (calcium, sulfate, alkalinity, aluminum, cadmium, copper, iron, manganese, lead, and zinc) and their relation to toxicity standards along the study reach; (2) location and magnitude of sources of metal loading to Lake Fork Creek; (3) amount and locations of metal attenuation; (4) the effect of streamside wetlands on metal transport from contributing mine tunnels; and (5) the effect of organic-rich inflow from the Leadville National Fish Hatchery on water quality in Lake Fork Creek. The study was done in cooperation with the Bureau of Land Management, U.S. Department of Agriculture Forest Service, and U.S. Fish and Wildlife Service. Constituent concentrations and pH showed variable patterns over the study reach. Hardness-based acute and chronic toxicity standards were exceeded for some inflows and some constituents. However, stream concentrations did not exceed standards except for zinc starting in the upper parts of the study reach and extending to just downstream from the inflow from the Leadville National Fish Hatchery. Dilution from that inflow lowered stream zinc concentrations to less than acute and chronic toxicity standards. The uppermost 800 meters of the study reach that contained inflow from the Bartlett, Dinero, and Nelson mine tunnels and the Dinero wetland was the greatest source of loading for manganese and zinc. A middle section of the study reach that extended approximately 2 kilometers upstream from the National Fish Hatchery inflow to just downstream from that inflow was the largest source of aluminum, copper, iron, and lead loading. The loading was partially from the National Fish Hatchery inflow but also from unknown sources upstream from that inflow, possibly ground water. The largest sources for calcium and sulfate load to the stream were the parts of the study reach containing inflow from the tribu-taries Halfmoon Creek (calcium) and Willow Creek (sulfate). The Arkansas River and its tributaries upstream from Lake Fork Creek were the source of most of the calcium (70 percent), sulfate (82 percent), manganese (77 percent), lead (78 percent), and zinc (95 percent) loads in the Arkansas River downstream from the Lake Fork confluence. In contrast, Lake Fork Creek was the major source of aluminum (68 percent), copper (65 percent), and iron (87 percent) loads to the Arkansas River downstream from the confluence. Attenuation was not important for calcium, sulfate, or iron. However, other metals loads were reduced up to 81 percent over the study reach (aluminum, 25 percent; copper, 20 percent; manganese, 81 percent; lead, 30 percent; zinc, 72 percent). Metal attenuation in the stream occurred primarily in three locations (1) the irrigation diversion ditch; (2) the beaver pond complex extending from upstream from the Colorado Gulch inflow to just downstream from that inflow; and (3) the stream reach that included the inflow from Willow Creek. The most likely attenuation mechanism is precipitation of metal oxides and hydroxides (primarily manganese), and sorption or coprecipitation of trace elements with the precipitating phase. A mass-balance calculation indicated that the wetland between the Dinero Tunnel and Lake Fork Creek removed iron, had little effect on zinc mass load, and was a source for, or was releasing, aluminum and manganese. In contrast, the wetland that occurred between the Siwatch Tunnel and Lake Fork Creek removed aluminum, iron, manganese, and zinc from the tunnel drainage before it entered the creek. Inflow from the National Fish Hatchery increased dissolved organic carbon concentrations in Lake Fork Creek and slightly changed the composition of the dissolved organic carbon. However, dissolved organic carbon loads increased in the stream reach downs

  11. Maximization of the annual energy production of wind power plants by optimization of layout and yaw-based wake control: Maximization of wind plant AEP by optimization of layout and wake control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew

    This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less

  12. Chesapeake Bay Low Freshwater Inflow Study. Biota Assessment. Phase I. Volume I.

    DTIC Science & Technology

    1980-08-01

    Percentage as Larvae Containing Food Item . . . 70 111-9. Submerged Aquatic Vegetation Found in Maryland and Virginia Waters of the Chesapeake Bay ... .... 74...Composition or the 1977 and 1978 Water - fowl Hunting Kill for Maryland and Virginia. . . . 117 IV-1. Annual Mean Freshwater Inflow to Chesapeake Bay...15C IV-3. Sumary of Water Quality Factors Impacting the Low Freshwater Inflow on Biota .. ............. 163 IV-4. Ranked Relative Importance of

  13. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code.

  14. Isotopic Estimation of Water Balance and Groundwater-Surface Water Interactions of Tropical Wetland Lakes in the Pantanal, Brazil

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Weiler, M.; Couto, E. G.

    2009-12-01

    The Pantanal is the largest and most pristine wetland of the world, yet hydrological research there is still in its infancy. In particular the water balance of the millions of lakes and ponds and their interaction with the groundwater and the rivers are not known. The aim of this study was to assess the hydrological behaviour between different water bodies in the dry season of the northern Pantanal wetland, Brazil, to provide a more general understanding of the hydrological functioning of tropical floodplain lakes and surface water-groundwater interactions of wetlands. In the field 6-9 water sample of seven different lakes were taken during 3 months and were analyzed for stable water isotopes and chloride. In addition meteorological data from a nearby station was used to estimate daily evaporation from the water surface. This information was then used to predict the hydrological dynamics to determine whether the lakes are evaporation-controlled or throughflow-dominated systems. A chloride mass balance served to evaluate whether Cl- enrichment took place due to evaporation only, or whether the system has significant inflow and/or outflow rates. The results of those methods showed that for all lakes the water budget in the dry season, output was controlled by strong evaporation while significant inflow rates were also apparent. Inflow rates and their specific concentrations in stable isotopes and chloride were successfully estimated using the simple mass balance model MINA TrêS. This approach enabled us to calculate the water balance for the lakes as well as providing an information on source water flowing into the lakes.

  15. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  16. Cerebral perfusion characteristics show differences in younger versus older children with sickle cell anaemia: Results from a multiple-inflow-time arterial spin labelling study.

    PubMed

    Kawadler, Jamie M; Hales, Patrick W; Barker, Simon; Cox, Timothy C S; Kirkham, Fenella J; Clark, Chris A

    2018-03-30

    Sickle cell anaemia (SCA) is associated with chronic anaemia and oxygen desaturation, which elevate cerebral blood flow (CBF) and increase the risk of neurocognitive complications. Arterial spin labelling (ASL) provides a methodology for measuring CBF non-invasively; however, ASL techniques using only a single inflow time are not sufficient to fully characterize abnormal haemodynamic behaviour in SCA. This study investigated haemodynamic parameters from a multi-inflow-time ASL acquisition in younger (8-12 years) and older (13-18 years) children with SCA with and without silent cerebral infarction (SCI+/-) (n = 20 and 19 respectively, 6 and 4 SCI+ respectively) and healthy controls (n = 9 and 7 respectively). Compared with controls, CBF was elevated globally in both groups of patients. In the younger SCA patients, blood oxygen content was negatively correlated with CBF in the middle and posterior cerebral artery territories and significantly positively correlated with bolus arrival time (BAT) in the anterior and middle cerebral artery territories. In older children, SCA patients had significantly shorter BAT than healthy controls and there was a significant negative correlation between CBF and oxygen content only in the territory of the posterior cerebral artery, with a trend for a correlation in the anterior cerebral artery but no relationship for the middle cerebral artery territory. In the younger group, SCI+ patients had significantly higher CBF in the posterior cerebral artery territory (SCI+ mean = 92.78 ml/100 g/min; SCI- mean = 72.71 ml/100 g/min; F = 4.28, p = 0.04), but this no longer reached significance when two children with abnormal transcranial Doppler and one with haemoglobin SC disease were excluded, and there were no significant differences between patients with and without SCI in the older children. With age, there appears to be increasing disparity between patients and controls in terms of the relationship between CBF and oxygen content in the anterior circulation, potentially predicting the risk of acute and chronic compromise of brain tissue. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Towards an Understanding of the Interactions between Freshwater Inflows and Phytoplankton Communities in a Subtropical Estuary in the Gulf of Mexico

    PubMed Central

    Dorado, Samuel; Booe, Tyra; Steichen, Jamie; McInnes, Allison S.; Windham, Rachel; Shepard, Alicia; Lucchese, Allyson E. B.; Preischel, Hannah; Pinckney, James L.; Davis, Stephen E.; Roelke, Daniel L.; Quigg, Antonietta

    2015-01-01

    Subtropical estuaries worldwide face increased pressure on their ecosystem health and services due to increasing human population growth and associated land use/land cover changes, expansion of ports, and climate change. We investigated freshwater inflows (river discharge) and the physico-chemical characteristics of Galveston Bay (Texas, USA) as mechanisms driving variability in phytoplankton biomass and community composition between February 2008 and December 2009. Results of multivariate analyses (hierarchical cluster analysis, PERMANOVA, Mantel test, and nMDS ordination coupled to environmental vector fitting) revealed that temporal and spatial differences in phytoplankton community structure correlate to differences in hydrographic and water quality parameters. Spatially, phytoplankton biomass and community composition responded to nutrient loading from the San Jacinto River in the northwest region of the bay (consistent with nutrient limitation) while hydraulic displacement (and perhaps other processes) resulted in overall lower biomass in the Trinity River delta (northeast region). The influence of inflows on phytoplankton diminished along a north to south gradient in the bay. Temporally, temperature and variables associated with freshwater inflow (discharge volume, salinity, inorganic nitrogen and phosphorus concentrations) were major influences on phytoplankton dynamics. Dissolved inorganic nitrogen: phosphorus (DIN:DIP) ratios suggest that phytoplankton communities will be predominately nitrogen limited. Diatoms dominated during periods of moderate to high freshwater inflows in winter/spring and were more abundant in the upper bay while cyanobacteria dominated during summer/fall when inflow was low. Given the differential influences of freshwater inflow on the phytoplankton communities of Galveston Bay, alterations upstream (magnitude, timing, frequency) will likely have a profound effect on downstream ecological processes and corresponding ecosystem services. PMID:26133991

  18. Determination of mass balance and entrainment in the stratified Duwamish River Estuary, King County, Washington

    USGS Publications Warehouse

    Stoner, J.D.

    1972-01-01

    During a study of the effects of waste-water input on the stratified Duwamish River estuary, intensive water-velocity and salinity measurements were made in both the lower salt wedge and the upper fresher water layer for tidal-cycle periods. The net movement of water and salt mass past a cross section during a tidal cycle was determined from integration of the measured rates of movement of water and salt past the section. The net volume of water that moved downstream past the section during the cycle agreed with the volume of fresh-water inflow at the head of the estuary within (1) 3.8 and 7.2 percent, respectively, for two studies made during periods of maximum and minimum tidal-prism thickness and identical inflow rates .of 312 cfs (cubic feet per second), and (2) 15 percent for one study made during a period of average tidal-prism thickness and an inflow rate of 1,280 cfs. For the three studies, the difference between salt mass transported upstream and downstream during the cycles ranged from 0.8 to 19 percent of the respective mean salt-mass transport. Water was entrained from the .salt-water wedge into the overlying layer of mixed fresh and salt water at tidal-cycle-average rates of 30 and 69 cfs per million square feet of interface for the inflow rates of 312 cfs, and 99 cfs per million square feet of interface for an inflow rate of 1,280 cfs. At a constant inflow rate, the rate of entrainment of salt-wedge water in the Duwamish River estuary more than doubled for a doubling of tidal-prism thickness. It also doubled for a quadrupling of inflow rate at about constant tidal-prism thickness.

  19. Effects of surface area and inflow on the performance of stormwater best management practices with uncertainty analysis.

    PubMed

    Park, Daeryong; Roesner, Larry A

    2013-09-01

    The performance of stormwater best management practices (BMPs) is affected by BMP geometric and hydrologic factors. The objective of this study was to investigate the effect of BMP surface area and inflow on BMP performance using the k-C* model with uncertainty analysis. Observed total suspended solids (TSS) from detention basins and retention ponds data sets in the International Stormwater BMP Database were used to build and evaluate the model. Detention basins are regarded as dry ponds because they do not always have water, whereas retention ponds have a permanent pool and are considered wet ponds. In this study, Latin hypercube sampling (LHS) was applied to consider uncertainty in both influent event mean concentration (EMC), C(in), and the areal removal constant, k. The latter was estimated from the hydraulic loading rate, q, through use of a power function relationship. Results show that effluent EMC, C(out), decreased as inflow decreased and as BMP surface area increased in both detention basins and retention ponds. However, the change in C(out), depending on inflow and BMP surface area for detention basins, differed from the change in C(out) for retention ponds. Specifically, C(in) was more dominantly associated with the performance of the k-C* model of detention basins than were BMP surface area and inflow. For retention ponds, however, results suggest that BMP surface area and inflow both influenced changes in C(out) as well as C(in). These results suggest that sensitive factors in the performance of the k-C* model are limited to C(in) for detention basins, whereas BMP surface area, inflow, and C(in) are important for retention ponds.

  20. Using geochemical tracers to distinguish groundwater and parafluvial inflows in rivers (the Avon Catchment, SE Australia)

    NASA Astrophysics Data System (ADS)

    Cartwright, I.; Hofmann, H.

    2015-09-01

    Understanding the location and magnitude of groundwater inflows to rivers is important for the protection of riverine ecosystems and the management of connected groundwater and surface water systems. Downstream trends in 222Rn activities and Cl concentrations in the Avon River, southeast Australia, implies that it contains alternating gaining and losing reaches. 222Rn activities of up to 3690 Bq m-3 imply that inflows are locally substantial (up to 3.1 m3 m-1 day-1). However, if it assumed that these inflows are solely from groundwater, the net groundwater inflows during low-flow periods exceed the measured increase in streamflow along the Avon River by up to 490 %. Uncertainties in the 222Rn activities of groundwater, the gas transfer coefficient, and the degree of hyporheic exchange cannot explain this discrepancy. It is proposed that a significant volume of the total calculated inflows into the Avon River represents water that exfiltrates from the river, flows through parafluvial sediments, and subsequently re-enters the river in the gaining reaches. This returning parafluvial flow has high 222Rn activities due to 222Rn emanations from the alluvial sediments. The riffle sections of the Avon River commonly have steep longitudinal gradients and may transition from losing at their upstream end to gaining at the downstream end and parafluvial flow through the sediment banks on meanders and point bars may also occur. Parafluvial flow is likely to be important in rivers with coarse-grained alluvial sediments on their floodplains and failure to quantify the input of 222Rn from parafluvial flow will result in overestimating groundwater inflows to rivers.

  1. Aquatic Plant Control Research Program. Ecological Assessment of Kirk Pond

    DTIC Science & Technology

    1994-03-01

    Botany 60, 1216-21. Bamickol, P. G. (1941). "Food habits of Gambusia affinis from Reelfoot Lake , Tennessee, with special reference to malarial control...34 Report of the Reelfoot Lake Biological Station 5, 5-13. Barwick, D. H., and Holcomb, D. E. (1976). "Relation of largemouth bass reproduction to crowded...1991 (Figure 3). Pond elevation at all in- lake stations remained constant throughout the study. Station I represents the inflow to the impoundment

  2. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  3. Three dimensional LDV flow measurements and theoretical investigation in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Malak, Malak Fouad; Hamed, Awatef; Tabakoff, Widen

    1990-01-01

    A two-color LDV system was used in the measurement of three orthogonal velocity components at 758 points located throughout the scroll and the unvaned portion of the nozzle of a radial inflow turbine scroll. The cold flow experimental results are presented for the velocity field at the scroll tongue. In addition, a total pressure loss of 3.5 percent for the scroll is revealed from the velocity measurements combined with the static pressure readings. Moreover, the measurement of the three normal stresses of the turbulence has showed that the flow is anisotropic. Furthermore, the mean velocity components are compared with a numerical solution of the potential flow field using the finite element technique. The theoretical prediction of the exit flow angle variation agrees well with the experimental results. This variation leads to a higher scroll pattern factor which can be avoided by controlling the scroll cross sectional area distribution.

  4. Turbomachinery noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.; Sofrin, Thomas G.; Rice, Edward J.; Gliebe, Phillip R.

    1991-08-01

    Summarized here are key advances in experimental techniques and theoretical applications which point the way to a broad understanding and control of turbomachinery noise. On the experimental side, the development of effective inflow control techniques makes it possible to conduct, in ground based facilities, definitive experiments in internally controlled blade row interactions. Results can now be valid indicators of flight behavior and can provide a firm base for comparison with analytical results. Inflow control coupled with detailed diagnostic tools such as blade pressure measurements can be used to uncover the more subtle mechanisms such as rotor strut interaction, which can set tone levels for some engine configurations. Initial mappings of rotor wake-vortex flow fields have provided a data base for a first generation semiempirical flow disturbance model. Laser velocimetry offers a nonintrusive method for validating and improving the model. Digital data systems and signal processing algorithms are bringing mode measurement closer to a working tool that can be frequently applied to a real machine such as a turbofan engine. On the analytical side, models of most of the links in the chain from turbomachine blade source to far field observation point have been formulated. Three dimensional lifting surface theory for blade rows, including source noncompactness and cascade effects, blade row transmission models incorporating mode and frequency scattering, and modal radiation calculations, including hybrid numerical-analytical approaches, are tools which await further application.

  5. Visualization of peripheral vasodilative indices in human skin by use of red, green, blue images

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Tanaka, Noriyuki; Kawase, Tatsuya; Maeda, Takaaki; Yuasa, Tomonori; Aizu, Yoshihisa; Yuasa, Tetsuya; Niizeki, Kyuichi

    2013-06-01

    We propose a method to visualize the arterial inflow, the vascular resistance, and the venous capacitance in the skin tissue from red, green, blue (RGB) digital color images. The arterial inflow and the venous capacitance in the skin tissue are visualized based on an increase in the rate of change in the total blood concentration and the change of the total blood concentration during upper limb occlusion at a pressure of 50 mmHg. The resultant arterial inflow with the measured mean arterial pressure also provides an image of the vascular resistance in human skin. The arterial inflow, the vascular resistance, and the venous capacitance acquired by the method are well correlated with those obtained from the conventional strain-gauge plethysmograph. The correlation coefficients R between the estimated values by the method and the measurements by the SPG are calculated to be 0.83 (P<0.001) for the arterial inflow, 0.77 (P<0.01) for the vascular resistance, and 0.77 (P<0.01) for the venous capacitance. The arterial inflow and the venous capacitance in the skin tissue are significantly higher in active subjects compared with the sedentary subjects, whereas the vascular resistance was significantly lower in the active subjects compared with the sedentary subjects. The results of the present study indicate the possibility of using the proposed method for evaluating the peripheral vascular functions in human skin.

  6. Developing reservoir monthly inflow forecasts using artificial intelligence and climate phenomenon information

    NASA Astrophysics Data System (ADS)

    Yang, Tiantian; Asanjan, Ata Akbari; Welles, Edwin; Gao, Xiaogang; Sorooshian, Soroosh; Liu, Xiaomang

    2017-04-01

    Reservoirs are fundamental human-built infrastructures that collect, store, and deliver fresh surface water in a timely manner for many purposes. Efficient reservoir operation requires policy makers and operators to understand how reservoir inflows are changing under different hydrological and climatic conditions to enable forecast-informed operations. Over the last decade, the uses of Artificial Intelligence and Data Mining [AI & DM] techniques in assisting reservoir streamflow subseasonal to seasonal forecasts have been increasing. In this study, Random Forest [RF), Artificial Neural Network (ANN), and Support Vector Regression (SVR) are employed and compared with respect to their capabilities for predicting 1 month-ahead reservoir inflows for two headwater reservoirs in USA and China. Both current and lagged hydrological information and 17 known climate phenomenon indices, i.e., PDO and ENSO, etc., are selected as predictors for simulating reservoir inflows. Results show (1) three methods are capable of providing monthly reservoir inflows with satisfactory statistics; (2) the results obtained by Random Forest have the best statistical performances compared with the other two methods; (3) another advantage of Random Forest algorithm is its capability of interpreting raw model inputs; (4) climate phenomenon indices are useful in assisting monthly or seasonal forecasts of reservoir inflow; and (5) different climate conditions are autocorrelated with up to several months, and the climatic information and their lags are cross correlated with local hydrological conditions in our case studies.

  7. LIST/BMI Turbines Instrumentation and Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,PERRY L.; SUTHERLAND,HERBERT J.; NEAL,BYRON A.

    2001-06-01

    In support of two major SNL programs, the Long-term Inflow and Structural Test (LIST) program and the Blade Manufacturing Initiative (BMI), three Micon 65/13M wind turbines have been erected at the USDA Agriculture Research Service (ARS) center in Bushland, Texas. The inflow and structural response of these turbines are being monitored with an array of 60 instruments: 34 to characterize the inflow, 19 to characterize structural response and 7 to characterize the time-varying state of the turbine. The primary characterization of the inflow into the LIST turbine relies upon an array of five sonic anemometers. Primary characterization of the structuralmore » response of the turbine uses several sets of strain gauges to measure bending loads on the blades and the tower and two accelerometers to measure the motion of the nacelle. Data are sampled at a rate of 30 Hz using a newly developed data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these turbines and their inflow.« less

  8. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    PubMed

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found.

  9. STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Nakamura, Masanori; Hirotani, Kouichi

    2015-03-01

    General relativistic magnetohydrodynamic (GRMHD) flows along magnetic fields threading a black hole can be divided into inflow and outflow parts, according to the result of the competition between the black hole gravity and magneto-centrifugal forces along the field line. Here we present the first self-consistent, semi-analytical solution for a cold, Poynting flux–dominated (PFD) GRMHD flow, which passes all four critical (inner and outer, Alfvén, and fast magnetosonic) points along a parabolic streamline. By assuming that the dominating (electromagnetic) component of the energy flux per flux tube is conserved at the surface where the inflow and outflow are separated, the outflowmore » part of the solution can be constrained by the inflow part. The semi-analytical method can provide fiducial and complementary solutions for GRMHD simulations around the rotating black hole, given that the black hole spin, global streamline, and magnetizaion (i.e., a mass loading at the inflow/outflow separation) are prescribed. For reference, we demonstrate a self-consistent result with the work by McKinney in a quantitative level.« less

  10. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Offsetting turbines' yaw orientations from incoming wind is a powerful tool that may be leveraged to reduce undesirable wake effects on downstream turbines. First, we examine a simple two-turbine case to gain intuition as to how inflow direction uncertainty affects the optimal solution. The turbines are modeled with unidirectional inflow such that one turbine directly wakes the other, using ten rotor diameter spacing. We perform optimization under uncertainty (OUU) via a parameter sweep of the front turbine. The OUU solution generally prefers less steering. We then do this optimization for a 60-turbine wind farm with unidirectional inflow, varying the degreemore » of inflow uncertainty and approaching this OUU problem by nesting a polynomial chaos expansion uncertainty quantification routine within an outer optimization. We examined how different levels of uncertainty in the inflow direction effect the ratio of the expected values of deterministic and OUU solutions for steering strategies in the large wind farm, assuming the directional uncertainty used to reach said OUU solution (this ratio is defined as the value of the stochastic solution or VSS).« less

  11. 40 CFR 35.2015 - State priority system and project priority list.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...

  12. 40 CFR 35.2015 - State priority system and project priority list.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...

  13. 40 CFR 35.2015 - State priority system and project priority list.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...

  14. 40 CFR 35.2015 - State priority system and project priority list.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... I); (B) Treatment more stringent than secondary (category II); (C) Infiltration/inflow correction... cost-effective alternative; (C) New interceptors and appurtenances; and (D) Infiltration/inflow...

  15. Advanced radial inflow turbine rotor program: Design and dynamic testing

    NASA Technical Reports Server (NTRS)

    Rodgers, C.

    1976-01-01

    The advancement of small, cooled, radial inflow turbine technology in the area of operation at higher turbine inlet temperature is discussed. The first step was accomplished by designing, fabricating, and subjecting to limited mechanical testing an advanced gas generator rotating assembly comprising a radial inflow turbine and two-stage centrifugal compressor. The radial inflow turbine and second-stage compressor were designed as an integrally machined monorotor with turbine cooling taking place basically by conduction to the compressor. Design turbine inlet rotor gas temperature, rotational speed, and overall gas generator compressor pressure ratio were 1422 K (2560 R), 71,222 rpm, and 10/1 respectively. Mechanical testing on a fabricated rotating assembly and bearing system covered 1,000 cold start/stop cycles and three spins to 120 percent design speed (85,466 rpm).

  16. Impact of meteorological inflow uncertainty on tracer transport and source estimation in urban atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip

    2015-08-08

    Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less

  17. Design of a Mach-15 Total-Enthalpy Nozzle With Non-uniform Inflow Using Rotational MOC

    NASA Technical Reports Server (NTRS)

    Gaffney, Richard L., Jr.

    2004-01-01

    A new computer program to design nozzles with non-uniform inflow has been developed using the rotational method of characteristics (MOC). This program has been used to design a nozzle for the NASA's HYPULSE shock-expansion tunnel for use in scramjet engine tests at a Mach-15 flight-enthalpy condition. The nozzle has an area ratio of 9.5:1 that expands the inflow from Mach 6 along the centerline to Mach 8.7. Although the density and Mach number vary radially at the exit due to the non-uniformities of the inflow, the MOC procedure produces exit flow that is parallel and has uniform static pressure. The design has been verified with CFD which compares favorably with the MOC solution.

  18. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements

    USGS Publications Warehouse

    Clemo, T.; Barrash, W.; Reboulet, E.C.; Johnson, T.C.; Leven, C.

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. ?? 2009 National Ground Water Association.

  19. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating at Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  20. Simulation of California's Major Reservoirs Outflow Using Data Mining Technique

    NASA Astrophysics Data System (ADS)

    Yang, T.; Gao, X.; Sorooshian, S.

    2014-12-01

    The reservoir's outflow is controlled by reservoir operators, which is different from the upstream inflow. The outflow is more important than the reservoir's inflow for the downstream water users. In order to simulate the complicated reservoir operation and extract the outflow decision making patterns for California's 12 major reservoirs, we build a data-driven, computer-based ("artificial intelligent") reservoir decision making tool, using decision regression and classification tree approach. This is a well-developed statistical and graphical modeling methodology in the field of data mining. A shuffled cross validation approach is also employed to extract the outflow decision making patterns and rules based on the selected decision variables (inflow amount, precipitation, timing, water type year etc.). To show the accuracy of the model, a verification study is carried out comparing the model-generated outflow decisions ("artificial intelligent" decisions) with that made by reservoir operators (human decisions). The simulation results show that the machine-generated outflow decisions are very similar to the real reservoir operators' decisions. This conclusion is based on statistical evaluations using the Nash-Sutcliffe test. The proposed model is able to detect the most influential variables and their weights when the reservoir operators make an outflow decision. While the proposed approach was firstly applied and tested on California's 12 major reservoirs, the method is universally adaptable to other reservoir systems.

  1. Hemihepatic versus total hepatic inflow occlusion during hepatectomy: a systematic review and meta-analysis.

    PubMed

    Wang, Hai-Qing; Yang, Jia-Yin; Yan, Lu-Nan

    2011-07-14

    To evaluate the clinical outcomes of patients undergoing hepatectomy with hemihepatic vascular occlusion (HHO) compared with total hepatic inflow occlusion (THO). Randomized controlled trials (RCTs) comparing hemihepatic vascular occlusion and total hepatic inflow occlusion were included by a systematic literature search. Two authors independently assessed the trials for inclusion and extracted the data. A meta-analysis was conducted to estimate blood loss, transfusion requirement, and liver injury based on the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Either the fixed effects model or random effects model was used. Four RCTs including 338 patients met the predefined inclusion criteria. A total of 167 patients were treated with THO and 171 with HHO. Meta-analysis of AST levels on postoperative day 1 indicated higher levels in the THO group with weighted mean difference (WMD) 342.27; 95% confidence intervals (CI) 217.28-467.26; P = 0.00 001; I(2) = 16%. Meta-analysis showed no significant difference between THO group and HHO group on blood loss, transfusion requirement, mortality, morbidity, operating time, ischemic duration, hospital stay, ALT levels on postoperative day 1, 3 and 7 and AST levels on postoperative day 3 and 7. Hemihepatic vascular occlusion does not offer satisfying benefit to the patients undergoing hepatic resection. However, they have less liver injury after liver resections.

  2. Hemihepatic versus total hepatic inflow occlusion during hepatectomy: A systematic review and meta-analysis

    PubMed Central

    Wang, Hai-Qing; Yang, Jia-Yin; Yan, Lu-Nan

    2011-01-01

    AIM: To evaluate the clinical outcomes of patients undergoing hepatectomy with hemihepatic vascular occlusion (HHO) compared with total hepatic inflow occlusion (THO). METHODS: Randomized controlled trials (RCTs) comparing hemihepatic vascular occlusion and total hepatic inflow occlusion were included by a systematic literature search. Two authors independently assessed the trials for inclusion and extracted the data. A meta-analysis was conducted to estimate blood loss, transfusion requirement, and liver injury based on the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Either the fixed effects model or random effects model was used. RESULTS: Four RCTs including 338 patients met the predefined inclusion criteria. A total of 167 patients were treated with THO and 171 with HHO. Meta-analysis of AST levels on postoperative day 1 indicated higher levels in the THO group with weighted mean difference (WMD) 342.27; 95% confidence intervals (CI) 217.28-467.26; P = 0.00 001; I2 = 16%. Meta-analysis showed no significant difference between THO group and HHO group on blood loss, transfusion requirement, mortality, morbidity, operating time, ischemic duration, hospital stay, ALT levels on postoperative day 1, 3 and 7 and AST levels on postoperative day 3 and 7. CONCLUSION: Hemihepatic vascular occlusion does not offer satisfying benefit to the patients undergoing hepatic resection. However, they have less liver injury after liver resections. PMID:21912460

  3. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating Mat Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  4. Hydraulics calculation in drilling simulator

    NASA Astrophysics Data System (ADS)

    Malyugin, Aleksey A.; Kazunin, Dmitry V.

    2018-05-01

    The modeling of drilling hydraulics in the simulator system is discussed. This model is based on the previously developed quasi-steady model of an incompressible fluid flow. The model simulates the operation of all parts of the hydraulic drilling system. Based on the principles of creating a common hydraulic model, a set of new elements for well hydraulics was developed. It includes elements that correspond to the in-drillstring and annular space. There are elements controlling the inflow from the reservoir into the well and simulating the lift of gas along the annulus. New elements of the hydrosystem take into account the changing geometry of the well, loss in the bit, characteristics of the fluids including viscoplasticity. There is an opportunity specify the complications, the main one of which is gas, oil and water inflow. Correct work of models in cases of complications makes it possible to work out various methods for their elimination. The coefficients of the model are adjusted on the basis of incomplete experimental data provided by operators of drilling platforms. At the end of the article the results of modeling the elimination of gas inflow by a continuous method are presented. The values displayed in the simulator (drill pipe pressure, annulus pressure, input and output flow rates) are in good agreement with the experimental data. This exercise took one hour, which is less than the time on a real rig with the same configuration of equipment and well.

  5. Updated computations and estimates of streamflows tributary to Carson Valley, Douglas County, Nevada, and Alpine County, California, 1990-2002

    USGS Publications Warehouse

    Maurer, Douglas K.; Watkins, Sharon A.; Burrowws, Robert L.

    2004-01-01

    Rapid population growth in Carson Valley has caused concern over the continued availability of water resources to sustain future growth. The U.S. Geological Survey, in cooperation with Douglas County, began a study to update estimates of water-budget components in Carson Valley for current climatic conditions. Data collected at 19 sites included 9 continuous records of tributary streamflows, 1 continuous record of outflow from the valley, and 408 measurements of 10 perennially flowing but ungaged drainages. These data were compiled and analyzed to provide updated computations and estimates of streamflows tributary to Carson Valley, 1990-2002. Mean monthly and annual flows were computed from continuous records for the period 1990-2002 for five streams, and for the period available, 1990-97, for four streams. Daily mean flow from ungaged drainages was estimated using multi-variate regressions of individual discharge measurements against measured flow at selected continuous gages. From the estimated daily mean flows, monthly and annual mean flows were calculated from 1990 to 2002. These values were used to compute estimates of mean monthly and annual flows for the ungaged perennial drainages. Using the computed and estimated mean annual flows, annual unit-area runoff was computed for the perennial drainages, which ranged from 0.30 to 2.02 feet. For the period 1990-2002, estimated inflow of perennial streams tributary to Carson Valley totaled about 25,900 acre-feet per year. Inflow computed from gaged perennial drainages totaled 10,300 acre-feet per year, and estimated inflow from ungaged perennial drainages totaled 15,600 acre-feet per year. The annual flow of perennial streams ranges from 4,210 acre-feet at Clear Creek to 450 acre-feet at Stutler Canyon Creek. Differences in unit-area runoff and in the seasonal timing of flow likely are caused by differences in geologic setting, altitude, slope, or aspect of the individual drainages. The remaining drainages are ephemeral and supply inflow to the valley floor only during spring runoff in wet years or during large precipitation events. Annual unit-area runoff for the perennial drainages was used to estimate inflow from ephemeral drainages totaling 11,700 acre-feet per year. The totaled estimate of perennial and ephemeral tributary inflows to Carson Valley is 37,600 acre-feet per year. Gaged perennial inflow is 27 percent of the total, ungaged perennial inflow is 42 percent, and ephemeral inflow is 31 percent. The estimate is from 50 to 60 percent greater than three previous estimates, one made for a larger area and similar to two other estimates made for larger areas. The combined uncertainty of the estimates totaled about 33 percent of the total inflow or about 12,000 acre-feet per year.

  6. Inflow rate-driven changes in the composition and dynamics of chromophoric dissolved organic matter in a large drinking water lake.

    PubMed

    Zhou, Yongqiang; Zhang, Yunlin; Jeppesen, Erik; Murphy, Kathleen R; Shi, Kun; Liu, Mingliang; Liu, Xiaohan; Zhu, Guangwei

    2016-09-01

    Drinking water lakes are threatened globally and therefore in need of protection. To date, few studies have been carried out to investigate how the composition and dynamics of chromophoric dissolved organic matter (CDOM) in drinking water lakes are influenced by inflow rate. Such CDOM can lead to unpleasant taste and odor of the water and produce undesirable disinfection byproducts during drinking water treatment. We studied the drinking water Lake Qiandao, China, and found that the concentrations of suspended particulate matter (SPM) in the lake increased significantly with inflow rate (p < 0.001). Similarly, close relationships between inflow rate and the CDOM absorption coefficient at 350 nm a(350) and with terrestrial humic-like fluorescence C3 and a negative relationship between inflow rate and the first principal component (PC1) scores, which, in turn, were negatively related to the concentrations and relative molecular size of CDOM (p < 0.001), i.e. the concentration and molecular size of CDOM entering the lake increased proportionately with inflow rate. Furthermore, stable isotopes (δD and δ(18)O) were depleted in the upstream river mouth relative to downstream remaining lake regions, substantiating that riverine CDOM entering the lake was probably driven by inflow rate. This was further underpinned by remarkably higher mean chlorophyll-a and in situ measured terrestrial CDOM fluorescence (365/480 nm) and apparent oxygen utilization (AOU), and notably lower mean PC1 and CDOM spectral slope (S275-295) recorded in the upstream river mouth than in the downstream main lake area. Strong negative correlations between inflow rate and a(250):a(365), S275-295, and the spectral slope ratio (SR) implied that CDOM input to the lake in rainy period was dominated by larger organic molecules with a more humic-like character. Rainy period, especially rainstorm events, therefore poses a risk to drinking water safety and requires higher removal efficiency of CDOM during drinking water treatment processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  8. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  9. Analysis, approximation, and computation of a coupled solid/fluid temperature control problem

    NASA Technical Reports Server (NTRS)

    Gunzburger, Max D.; Lee, Hyung C.

    1993-01-01

    An optimization problem is formulated motivated by the desire to remove temperature peaks, i.e., 'hot spots', along the bounding surfaces of containers of fluid flows. The heat equation of the solid container is coupled to the energy equations for the fluid. Heat sources can be located in the solid body, the fluid, or both. Control is effected by adjustments to the temperature of the fluid at the inflow boundary. Both mathematical analyses and computational experiments are given.

  10. Assessment of Geometry and In-Flow Effects on Contra-Rotating Open Rotor Broadband Noise Predictions

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Nark, Douglas M.; Boyd, D. Douglas, Jr.

    2015-01-01

    Application of previously formulated semi-analytical models for the prediction of broadband noise due to turbulent rotor wake interactions and rotor blade trailing edges is performed on the historical baseline F31/A31 contra-rotating open rotor configuration. Simplified two-dimensional blade element analysis is performed on cambered NACA 4-digit airfoil profiles, which are meant to serve as substitutes for the actual rotor blade sectional geometries. Rotor in-flow effects such as induced axial and tangential velocities are incorporated into the noise prediction models based on supporting computational fluid dynamics (CFD) results and simplified in-flow velocity models. Emphasis is placed on the development of simplified rotor in-flow models for the purpose of performing accurate noise predictions independent of CFD information. The broadband predictions are found to compare favorably with experimental acoustic results.

  11. THE INFLOW SIGNATURE TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Mihwa; Lee, Jeong-Eun; Kim, Kee-Tae

    2016-08-01

    We analyze both HCN J  = 1–0 and HNC J  = 1–0 line profiles to study the inflow motions in different evolutionary stages of massive star formation: 54 infrared dark clouds (IRDCs), 69 high-mass protostellar objects (HMPOs), and 54 ultra-compact H ii regions (UCHIIs). Inflow asymmetry in the HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in the blue profile. In the case of the HNC spectra, the prevalence of blue sources does not appear, apart from for IRDCs. We suggest that this line is not appropriate to trace the inflow motionmore » in the evolved stages of massive star formation, because the abundance of HNC decreases at high temperatures. This result highlights the importance of considering chemistry in dynamics studies of massive star-forming regions. The fact that the IRDCs show the highest blue excess in both transitions indicates that the most active inflow occurs in the early phase of star formation, i.e., in the IRDC phase rather than in the later phases. However, mass is still inflowing onto some UCHIIs. We also find that the absorption dips of the HNC spectra in six out of seven blue sources are redshifted relative to their systemic velocities. These redshifted absorption dips may indicate global collapse candidates, although mapping observations with better resolution are needed to examine this feature in more detail.« less

  12. Effects of the 2014 major Baltic inflow on methane and nitrous oxide dynamics in the water column of the central Baltic Sea

    NASA Astrophysics Data System (ADS)

    Myllykangas, Jukka-Pekka; Jilbert, Tom; Jakobs, Gunnar; Rehder, Gregor; Werner, Jan; Hietanen, Susanna

    2017-09-01

    In late 2014, a large, oxygen-rich salt water inflow entered the Baltic Sea and caused considerable changes in deep water oxygen concentrations. We studied the effects of the inflow on the concentration patterns of two greenhouse gases, methane and nitrous oxide, during the following year (2015) in the water column of the Gotland Basin. In the eastern basin, methane which had previously accumulated in the deep waters was largely removed during the year. Here, volume-weighted mean concentration below 70 m decreased from 108 nM in March to 16.3 nM over a period of 141 days (0.65 nM d-1), predominantly due to oxidation (up to 79 %) following turbulent mixing with the oxygen-rich inflow. In contrast nitrous oxide, which was previously absent from deep waters, accumulated in deep waters due to enhanced nitrification following the inflow. Volume-weighted mean concentration of nitrous oxide below 70 m increased from 11.8 nM in March to 24.4 nM in 141 days (0.09 nM d-1). A transient extreme accumulation of nitrous oxide (877 nM) was observed in the deep waters of the Eastern Gotland Basin towards the end of 2015, when deep waters turned anoxic again, sedimentary denitrification was induced and methane was reintroduced to the bottom waters. The Western Gotland Basin gas biogeochemistry was not affected by the inflow.

  13. Theory for noise of propellers in angular inflow with parametric studies and experimental verification

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.; Parzych, David J.

    1993-01-01

    This report presents the derivation of a frequency domain theory and working equations for radiation of propeller harmonic noise in the presence of angular inflow. In applying the acoustic analogy, integration over the tangential coordinate of the source region is performed numerically, permitting the equations to be solved without approximation for any degree of angular inflow. Inflow angle is specified in terms of yaw, pitch, and roll angles of the aircraft. Since these can be arbitrarily large, the analysis applies with equal accuracy to propellers and helicopter rotors. For thickness and loading, the derivation is given in complete detail with working equations for near and far field. However, the quadrupole derivation has been carried only far enough to show feasibility of the numerical approach. Explicit formulas are presented for computation of source elements, evaluation of Green's functions, and location of observer points in various visual and retarded coordinate systems. The resulting computer program, called WOBBLE has been written in FORTRAN and follows the notation of this report very closely. The new theory is explored to establish the effects of varying inflow angle on axial and circumferential directivity. Also, parametric studies were performed to evaluate various phenomena outside the capabilities of earlier theories, such as an unsteady thickness effect. Validity of the theory was established by comparison with test data from conventional propellers and Prop Fans in flight and in wind tunnels under a variety of operating conditions and inflow angles.

  14. Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model

    NASA Astrophysics Data System (ADS)

    Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut

    2018-03-01

    Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.

  15. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100-300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}⊙ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}⊙ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}⊙ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  16. Surface flux transport simulations: Effect of inflows toward active regions and random velocities on the evolution of the Sun's large-scale magnetic field

    NASA Astrophysics Data System (ADS)

    Martin-Belda, D.; Cameron, R. H.

    2016-02-01

    Aims: We aim to determine the effect of converging flows on the evolution of a bipolar magnetic region (BMR), and to investigate the role of these inflows in the generation of poloidal flux. We also discuss whether the flux dispersal due to turbulent flows can be described as a diffusion process. Methods: We developed a simple surface flux transport model based on point-like magnetic concentrations. We tracked the tilt angle, the magnetic flux and the axial dipole moment of a BMR in simulations with and without inflows and compared the results. To test the diffusion approximation, simulations of random walk dispersal of magnetic features were compared against the predictions of the diffusion treatment. Results: We confirm the validity of the diffusion approximation to describe flux dispersal on large scales. We find that the inflows enhance flux cancellation, but at the same time affect the latitudinal separation of the polarities of the bipolar region. In most cases the latitudinal separation is limited by the inflows, resulting in a reduction of the axial dipole moment of the BMR. However, when the initial tilt angle of the BMR is small, the inflows produce an increase in latitudinal separation that leads to an increase in the axial dipole moment in spite of the enhanced flux destruction. This can give rise to a tilt of the BMR even when the BMR was originally aligned parallel to the equator.

  17. Preliminary assessment for DNA extraction on microfluidic channel

    NASA Astrophysics Data System (ADS)

    Gopinath, Subash C. B.; Hashim, Uda; Uda, M. N. A.

    2017-03-01

    The aim of this research is to extract, purify and yield DNA in mushroom from solid state mushroom sample by using fabricated continuous high-capacity sample delivery microfluidic through integrated solid state extraction based amino-coated silica bead. This device is made to specifically extract DNA in mushroom sample in continuous inflow process with energy and cost consumption. In this project, we present two methods of DNA extraction and purification which are by using centrifuge (complex and conventional method) and by using microfluidic biosensor (new and fast method). DNA extracted can be determined by using ultraviolet-visible spectroscopy (UV-VIS). The peak obtained at wavelength 260nm after measuring the absorbance of sample proves that DNA is successfully extracted from the mushroom.

  18. Numerical modelling of the groundwater inflow to an advancing open pit mine: Kolahdarvazeh pit, Central Iran.

    PubMed

    Bahrami, Saeed; Doulati Ardejani, Faramarz; Aslani, Soheyla; Baafi, Ernest

    2014-12-01

    The groundwater inflow into a mine during its life and after ceasing operations is one of the most important concerns of the mining industry. This paper presents a hydrogeological assessment of the Irankuh Zn-Pb mine at 20 km south of Esfahan and 1 km northeast of Abnil in west-Central Iran. During mine excavation, the upper impervious bed of a confined aquifer was broken and water at high-pressure flowed into an open pit mine associated with the Kolahdarvazeh deposit. The inflow rates were 6.7 and 1.4 m(3)/s at the maximum and minimum quantities, respectively. Permeability, storage coefficient, thickness and initial head of the fully saturated confined aquifer were 3.5 × 10(-4) m/s, 0.2, 30 m and 60 m, respectively. The hydraulic heads as a function of time were monitored at four observation wells in the vicinity of the pit over 19 weeks and at an observation well near a test well over 21 h. In addition, by measuring the rate of pumping out from the pit sump, at a constant head (usually equal to height of the pit floor), the real inflow rates to the pit were monitored. The main innovations of this work were to make comparison between numerical modelling using a finite element software called SEEP/W and actual data related to inflow and extend the applicability of the numerical model. This model was further used to estimate the hydraulic heads at the observation wells around the pit over 19 weeks during mining operations. Data from a pump-out test and observation wells were used for model calibration and verification. In order to evaluate the model efficiency, the modelling results of inflow quantity and hydraulic heads were compared to those from analytical solutions, as well as the field data. The mean percent error in relation to field data for the inflow quantity was 0.108. It varied between 1.16 and 1.46 for hydraulic head predictions, which are much lower values than the mean percent errors resulted from the analytical solutions (from 1.8 to 5.3 for inflow and from 2.16 to 3.5 for hydraulic head predictions). The analytical solutions underestimated the inflow compared to the numerical model for the time period of 2-19 weeks. The results presented in this paper can be used for developing an effective dewatering program.

  19. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangler, J.; Bir, G.

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  20. An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts.

    PubMed

    Morgan, Robert A; Edwards, Findlay G; Brye, Kristofor R; Burian, Stephen J

    2005-01-01

    In a storm sewer system, the catch basin is the interface between surface runoff and the sewer. Responding to the need to improve the quality of stormwater from urban areas and transportation facilities, and spurred by Phase I and II Stormwater Rules from the U.S. Environmental Protection Agency, several companies market catch basin inserts as best management practices for urban water quality management. However, little data have been collected under controlled tests that indicate the pollutant removal efficiency of these inserts when the inflow is near what can be expected to occur in the field. A stormwater simulator was constructed to test inserts under controlled and replicable conditions. The inserts were tested for removal efficiency of total suspended solids (TSS) and total petroleum hydrocarbons (TPH) at an inflow rate of 757 to 814 L/min, with influent pollutant concentrations of 225 mg/L TSS and 30 mg/L TPH. These conditions are similar to stormwater runoff from small commercial sites in the southeastern United States. Results from the tests indicate that at the test flowrate and pollutant concentration, average TSS removal efficiencies ranged from 11 to 42% and, for TPH, the removal efficiency ranged from 10 to 19%.

  1. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.

  2. Altered left ventricular vortex ring formation by 4-dimensional flow magnetic resonance imaging after repair of atrioventricular septal defects.

    PubMed

    Calkoen, Emmeline E; Elbaz, Mohammed S M; Westenberg, Jos J M; Kroft, Lucia J M; Hazekamp, Mark G; Roest, Arno A W; van der Geest, Rob J

    2015-11-01

    During normal left ventricular (LV) filling, a vortex ring structure is formed distal to the left atrioventricular valve (LAVV). Vortex structures contribute to efficient flow organization. We aimed to investigate whether LAVV abnormality in patients with a corrected atrioventricular septal defect (AVSD) has an impact on vortex ring formation. Whole-heart 4D flow MRI was performed in 32 patients (age: 26 ± 12 years), and 30 healthy subjects (age: 25 ± 14 years). Vortex ring cores were detected at peak early (E-peak) and peak late filling (A-peak). When present, the 3-dimensional position and orientation of the vortex ring was defined, and the circularity index was calculated. Through-plane flow over the LAVV, and the vortex formation time (VFT), were quantified to analyze the relationship of vortex flow with the inflow jet. Absence of a vortex ring during E-peak (healthy subjects 0%, vs patients 19%; P = .015), and A-peak (healthy subjects 10% vs patients 44%; P = .008) was more frequent in patients. In 4 patients, this was accompanied by a high VFT (5.1-7.8 vs 2.4 ± 0.6 in healthy subjects), and in another 2 patients with abnormal valve anatomy. In patients compared with controls, the vortex cores had a more-anterior and apical position, closer to the ventricular wall, with a more-elliptical shape and oblique orientation. The shape of the vortex core closely resembled the valve shape, and its orientation was related to the LV inflow direction. This study quantitatively shows the influence of abnormal LAVV and LV inflow on 3D vortex ring formation during LV inflow in patients with corrected AVSD, compared with healthy subjects. Copyright © 2015. Published by Elsevier Inc.

  3. The Impact of the Major Baltic Inflow of December 2014 on the Mercury Species Distribution in the Baltic Sea.

    PubMed

    Kuss, Joachim; Cordes, Florian; Mohrholz, Volker; Nausch, Günther; Naumann, Michael; Krüger, Siegfried; Schulz-Bull, Detlef E

    2017-10-17

    The Baltic Sea is a marginal sea characterized by stagnation periods of several years. Oxygen consumption in its deep waters leads to the buildup of sulfide from sulfate reduction. Some of the microorganisms responsible for these processes also transform reactive ionic mercury to neurotoxic methylmercury. Episodic inflows of oxygenated saline water from the North Sea temporally re-establish oxic life in deep waters of the Baltic Sea. Thus, this sea is an especially important region to better understand mercury species distributions in connection with variable redox conditions. Mercury species were measured on three Baltic Sea campaigns, during the preinflow, ongoing inflow, and subsiding inflow of water, respectively, to the central basin. The inflowing water caused the removal of total mercury by 600 nmol m -2 and of methylmercury by 214 nmol m -2 in the Gotland Deep, probably via attachment of the mercury compounds to sinking particles. It appears likely that the consequences of the oxygenation of Baltic Sea deep waters, which are the coprecipitation of mercury species and the resettlement of the oxic deep waters, could lead to the enhanced transfer of accumulated mercury and methylmercury to the planktonic food chain and finally to fish.

  4. Using Reconstructed POD Modes as Turbulent Inflow for LES Wind Turbine Simulations

    NASA Astrophysics Data System (ADS)

    Nielson, Jordan; Bhaganagar, Kiran; Juttijudata, Vejapong; Sirisup, Sirod

    2016-11-01

    Currently, in order to get realistic atmospheric effects of turbulence, wind turbine LES simulations require computationally expensive precursor simulations. At times, the precursor simulation is more computationally expensive than the wind turbine simulation. The precursor simulations are important because they capture turbulence in the atmosphere and as stated above, turbulence impacts the power production estimation. On the other hand, POD analysis has been shown to be capable of capturing turbulent structures. The current study was performed to determine the plausibility of using lower dimension models from POD analysis of LES simulations as turbulent inflow to wind turbine LES simulations. The study will aid the wind energy community by lowering the computational cost of full scale wind turbine LES simulations, while maintaining a high level of turbulent information and being able to quickly apply the turbulent inflow to multi turbine wind farms. This will be done by comparing a pure LES precursor wind turbine simulation with simulations that use reduced POD mod inflow conditions. The study shows the feasibility of using lower dimension models as turbulent inflow of LES wind turbine simulations. Overall the power production estimation and velocity field of the wind turbine wake are well captured with small errors.

  5. Insight into dissolved organic matter fractions in Lake Wivenhoe during and after a major flood.

    PubMed

    Aryal, Rupak; Grinham, Alistair; Beecham, Simon

    2016-03-01

    Dissolved organic matter is an important component of biogeochemical processes in aquatic environments. Dissolved organic matter may consist of a myriad of different fractions and resultant processing pathways. In early January 2011, heavy rainfall occurred across South East Queensland, Australia causing significant catchment inflow into Lake Wivenhoe, which is the largest water supply reservoir for the city of Brisbane, Australia. The horizontal and vertical distributions of dissolved organic matter fractions in the lake during the flood period were investigated and then compared with stratified conditions with no catchment inflows. The results clearly demonstrate a large variation in dissolved organic matter fractions associated with inflow conditions compared with stratified conditions. During inflows, dissolved organic matter concentrations in the reservoir were fivefold lower than during stratified conditions. Within the dissolved organic matter fractions during inflow, the hydrophobic and humic acid fractions were almost half those recorded during the stratified period whilst low molecular weight neutrals were higher during the flood period compared to during the stratified period. Information on dissolved organic matter and the spatial and vertical variations in its constituents' concentrations across the lake can be very useful for catchment and lake management and for selecting appropriate water treatment processes.

  6. U.S. Department of Energy Reference Model Program RM2: Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi

    2014-08-01

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor crossmore » flow vertical axis device with counter - rotating rotors, each with a rotor diameter d T = 0.43m and rotor height, h T = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Q w = 2. 35m 3s -1 , resulting in a hub height velocity of approximately U hub = 1. 2 ms -1 and blade chord length Reynolds numbers of Re c = 6 .1x10 4. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.« less

  7. Sensitivity analysis of urban flood flows to hydraulic controls

    NASA Astrophysics Data System (ADS)

    Chen, Shangzhi; Garambois, Pierre-André; Finaud-Guyot, Pascal; Dellinger, Guilhem; Terfous, Abdelali; Ghenaim, Abdallah

    2017-04-01

    Flooding represents one of the most significant natural hazards on each continent and particularly in highly populated areas. Improving the accuracy and robustness of prediction systems has become a priority. However, in situ measurements of floods remain difficult while a better understanding of flood flow spatiotemporal dynamics along with dataset for model validations appear essential. The present contribution is based on a unique experimental device at the scale 1/200, able to produce urban flooding with flood flows corresponding to frequent to rare return periods. The influence of 1D Saint Venant and 2D Shallow water model input parameters on simulated flows is assessed using global sensitivity analysis (GSA). The tested parameters are: global and local boundary conditions (water heights and discharge), spatially uniform or distributed friction coefficient and or porosity respectively tested in various ranges centered around their nominal values - calibrated thanks to accurate experimental data and related uncertainties. For various experimental configurations a variance decomposition method (ANOVA) is used to calculate spatially distributed Sobol' sensitivity indices (Si's). The sensitivity of water depth to input parameters on two main streets of the experimental device is presented here. Results show that the closer from the downstream boundary condition on water height, the higher the Sobol' index as predicted by hydraulic theory for subcritical flow, while interestingly the sensitivity to friction decreases. The sensitivity indices of all lateral inflows, representing crossroads in 1D, are also quantified in this study along with their asymptotic trends along flow distance. The relationship between lateral discharge magnitude and resulting sensitivity index of water depth is investigated. Concerning simulations with distributed friction coefficients, crossroad friction is shown to have much higher influence on upstream water depth profile than street friction coefficients. This methodology could be applied to any urban flood configuration in order to better understand flow dynamics and repartition but also guide model calibration in the light of flow controls.

  8. Erosion in radial inflow turbines. Volume 3: Trajectories of erosive particles in radial inflow turbines

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1974-01-01

    The theoretical trajectories that erosive particles follow in the gas flow fields of a typical radial inflow turbine were investigated. A discussion of the theoretical trajectories that the particles follow in the scroll, in the nozzles, in the vortex between the nozzles and the rotor, and in the rotor passages is included. The results are presented in terms of the characteristic length, a similarity parameter which relates the particles that follow the same trajectory in equivalent flow fields. For Vol, 1, see N74-19395.

  9. Geochemistry of Red Mountain Creek, Colorado, under low-flow conditions, August 2002

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Walton-Day, Katherine; Verplanck, Philip L.

    2005-01-01

    Red Mountain Creek, an acid mine drainage stream in southwestern Colorado, was the subject of a synoptic study conducted in August 2002. During the synoptic study, a solution containing lithium chloride was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 48 stream sites and 29 inflow locations along a 5.4-kilometer study reach. Data from the study provide profiles of pH, concentration, and mass load with a high degree of spatial resolution. Despite the presence of 10 circumneutral inflows, pH remained below 3.4 at all stream sites. Concentration profiles indicate that dissolved concentrations of aluminum, cadmium, copper, lead, and zinc exceed chronic aquatic-life standards established by the State of Colorado along the entire study reach. Comparison of total recoverable and dissolved concentrations suggests that most constituents were transported conservatively. Exceptions to this pattern include arsenic, iron, molybdenum, and vanadium, four constituents that were subject to precipitation and(or) sorption reactions as the addition of a circumneutral tributary resulted in a slight increase in instream pH. Evaluation of data from the 29 inflow locations indicates a sharp contrast between the east and west sides of the watershed; inflows from the east side have high constituent concentrations and acidic pH, whereas inflows from the west side have lower concentrations and generally higher pH. Loading profiles, the product of streamflow and concentration, are used to rank potential sources of metals and acidity within the watershed. Four sources account for 83, 72, 70, 69, 64, and 61 percent of the aluminum, iron, arsenic, zinc, copper, and cadmium loading within the study reach, respectively. All four sources appear to be the result of surface inflows that have been affected by mining activities. The relatively small number of major sources and the fact that they are attributable to surface inflows are two factors that may facilitate effective remediation.

  10. Forecasting and prevention of water inrush during the excavation process of a diversion tunnel at the Jinping II Hydropower Station, China.

    PubMed

    Hou, Tian-Xing; Yang, Xing-Guo; Xing, Hui-Ge; Huang, Kang-Xin; Zhou, Jia-Wen

    2016-01-01

    Estimating groundwater inflow into a tunnel before and during the excavation process is an important task to ensure the safety and schedule during the underground construction process. Here we report a case of the forecasting and prevention of water inrush at the Jinping II Hydropower Station diversion tunnel groups during the excavation process. The diversion tunnel groups are located in mountains and valleys, and with high water pressure head. Three forecasting methods are used to predict the total water inflow of the #2 diversion tunnel. Furthermore, based on the accurate estimation of the water inrush around the tunnel working area, a theoretical method is presented to forecast the water inflow at the working area during the excavation process. The simulated results show that the total water flow is 1586.9, 1309.4 and 2070.2 m(3)/h using the Qshima method, Kostyakov method and Ochiai method, respectively. The Qshima method is the best one because it most closely matches the monitoring result. According to the huge water inflow into the #2 diversion tunnel, reasonable drainage measures are arranged to prevent the potential disaster of water inrush. The groundwater pressure head can be determined using the water flow velocity from the advancing holes; then, the groundwater pressure head can be used to predict the possible water inflow. The simulated results show that the groundwater pressure head and water inflow re stable and relatively small around the region of the intact rock mass, but there is a sudden change around the fault region with a large water inflow and groundwater pressure head. Different countermeasures are adopted to prevent water inrush disasters during the tunnel excavation process. Reasonable forecasting the characteristic parameters of water inrush is very useful for the formation of prevention and mitigation schemes during the tunnel excavation process.

  11. Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin

    NASA Astrophysics Data System (ADS)

    da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio

    2018-03-01

    This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.

  12. 2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CATCH BASIN, INFLOW PIPES AT CENTER, COLD FLOW LABORATORY AT LEFT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Catch Basin, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  14. Spacecraft observations of a Maxwell Demon coating the separatrix of asymmetric magnetic reconnection with crescent-shaped electron distributions

    NASA Astrophysics Data System (ADS)

    Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, Pa; Chen, Lj; Lavraud, B.; Dorell, J.; Avanov, L.; Gershman, D.

    2016-10-01

    During asymmetric magnetic reconnection in the dayside magnetopause in situ spacecraft mea- surements show that electrons from the high density inflow penetrate some distance into the low density inflow. Supported by a kinetic simulation, we present a general derivation of an exclusion energy parameter, which provides a lower kinetic energy bound for an electron to jump across the reconnection region from one inflow region to the other. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, strongly impacting the form of the electron distribution function observed along the low density side separatrix. The dynamics produce two distinct flavors of crescent-shaped electron distributions in a thin boundary layer along the separatrix between the magnetospheric inflow and the reconnection exhaust. The analytical model presented relates these salient details of the distribution function to the electron dynamics in the inner reconnection region.

  15. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    USGS Publications Warehouse

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.

  16. Derivation of Optimal Operating Rules for Large-scale Reservoir Systems Considering Multiple Trade-off

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Lei, X.; Liu, P.; Wang, H.; Li, Z.

    2017-12-01

    Flood control operation of multi-reservoir systems such as parallel reservoirs and hybrid reservoirs often suffer from complex interactions and trade-off among tributaries and the mainstream. The optimization of such systems is computationally intensive due to nonlinear storage curves, numerous constraints and complex hydraulic connections. This paper aims to derive the optimal flood control operating rules based on the trade-off among tributaries and the mainstream using a new algorithm known as weighted non-dominated sorting genetic algorithm II (WNSGA II). WNSGA II could locate the Pareto frontier in non-dominated region efficiently due to the directed searching by weighted crowding distance, and the results are compared with those of conventional operating rules (COR) and single objective genetic algorithm (GA). Xijiang river basin in China is selected as a case study, with eight reservoirs and five flood control sections within four tributaries and the mainstream. Furthermore, the effects of inflow uncertainty have been assessed. Results indicate that: (1) WNSGA II could locate the non-dominated solutions faster and provide better Pareto frontier than the traditional non-dominated sorting genetic algorithm II (NSGA II) due to the weighted crowding distance; (2) WNSGA II outperforms COR and GA on flood control in the whole basin; (3) The multi-objective operating rules from WNSGA II deal with the inflow uncertainties better than COR. Therefore, the WNSGA II can be used to derive stable operating rules for large-scale reservoir systems effectively and efficiently.

  17. Long-term ensemble forecast of snowmelt inflow into the Cheboksary Reservoir under two different weather scenarios

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander; Moreydo, Vsevolod; Motovilov, Yury; Solomatine, Dimitri P.

    2018-04-01

    A long-term forecasting ensemble methodology, applied to water inflows into the Cheboksary Reservoir (Russia), is presented. The methodology is based on a version of the semi-distributed hydrological model ECOMAG (ECOlogical Model for Applied Geophysics) that allows for the calculation of an ensemble of inflow hydrographs using two different sets of weather ensembles for the lead time period: observed weather data, constructed on the basis of the Ensemble Streamflow Prediction methodology (ESP-based forecast), and synthetic weather data, simulated by a multi-site weather generator (WG-based forecast). We have studied the following: (1) whether there is any advantage of the developed ensemble forecasts in comparison with the currently issued operational forecasts of water inflow into the Cheboksary Reservoir, and (2) whether there is any noticeable improvement in probabilistic forecasts when using the WG-simulated ensemble compared to the ESP-based ensemble. We have found that for a 35-year period beginning from the reservoir filling in 1982, both continuous and binary model-based ensemble forecasts (issued in the deterministic form) outperform the operational forecasts of the April-June inflow volume actually used and, additionally, provide acceptable forecasts of additional water regime characteristics besides the inflow volume. We have also demonstrated that the model performance measures (in the verification period) obtained from the WG-based probabilistic forecasts, which are based on a large number of possible weather scenarios, appeared to be more statistically reliable than the corresponding measures calculated from the ESP-based forecasts based on the observed weather scenarios.

  18. Snowmelt Timing as a Determinant of Lake Inflow Mixing

    NASA Astrophysics Data System (ADS)

    Roberts, D. C.; Forrest, A. L.; Sahoo, G. B.; Hook, S. J.; Schladow, S. G.

    2018-02-01

    Snowmelt is a significant source of carbon, nutrient, and sediment loads to many mountain lakes. The mixing conditions of snowmelt inflows, which are heavily dependent on the interplay between snowmelt and lake thermal regime, dictate the fate of these loads within lakes and their ultimate impact on lake ecosystems. We use five decades of data from Lake Tahoe, a 600 year residence-time lake where snowmelt has little influence on lake temperature, to characterize the snowmelt mixing response to a range of climate conditions. Using stream discharge and lake profile data (1968-2017), we find that the proportion of annual snowmelt entering the lake prior to the onset of stratification increases as annual snowpack decreases, ranging from about 50% in heavy-snow years to close to 90% in warm, dry years. Accordingly, in 8 recent years (2010-2017) where hourly inflow buoyancy and discharge could be quantified, we find that decreased snowpack similarly increases the proportion of annual snowmelt entering the lake at weak to positive buoyancy. These responses are due to the stronger effect of winter precipitation conditions on streamflow timing and temperature than on lake stratification, and point toward increased nearshore and near-surface mixing of inflows in low-snowpack years. The response of inflow mixing conditions to snowpack is apparent when isolating temperature effects on snowpack. Snowpack levels are decreasing due to warming temperatures during winter precipitation. Thus, our findings suggest that climate change may lead to increased deposition of inflow loads in the ecologically dynamic littoral zone of high-residence time, snowmelt-fed lakes.

  19. Deepwater dynamics and mixing processes during a major inflow event in the central Baltic Sea

    NASA Astrophysics Data System (ADS)

    Holtermann, Peter L.; Prien, Ralf; Naumann, Michael; Mohrholz, Volker; Umlauf, Lars

    2017-08-01

    Intrusions of large amounts of dense and oxygen-rich waters during so-called Major Baltic Inflows (MBIs) form an essential component of the Baltic Sea overturning circulation and deepwater ventilation. Despite their importance, however, detailed observations of the processes occurring in the central basins during an MBI are virtually lacking. Here data from a long-term deployment of an autonomous profiling platform located in the center of one of the main basins are presented, providing the first direct and detailed view of the deepwater modifications and dynamics induced by one of the largest MBIs ever recorded (MBI 2014/2015). Approximately, 21 Gmol of oxygen were imported during three distinct inflow phases with an unexpectedly large contribution of oxic intrusions at intermediate depth. Oxygen consumption rates during the stagnation period immediately following the inflow phase was found to be 87 g m-2 yr-1 with a dominant contribution of sedimentary oxygen demand. The most energetic deepwater processes (topographic and near-inertial waves) were only marginally affected by the inflow; however, subinertial energy levels associated with intrusions and eddies were strongly enhanced. Turbulence microstructure data revealed that the deep interior regions remain essentially nonturbulent even during the energetic conditions of an MBI, emphasizing the importance of boundary mixing. Warm intrusions frequently showed a temperature fine structure with vertical scales of the order of 0.1 m, without any signs of active turbulence. At the upper flanks of these intrusions, double-diffusive staircases were often found to develop, suggesting an important alternative mixing process during inflow conditions.

  20. Observational evidence for the convective transport of dust over the Central United States

    NASA Astrophysics Data System (ADS)

    Corr, C. A.; Ziemba, L. D.; Scheuer, E.; Anderson, B. E.; Beyersdorf, A. J.; Chen, G.; Crosbie, E.; Moore, R. H.; Shook, M.; Thornhill, K. L.; Winstead, E.; Lawson, R. P.; Barth, M. C.; Schroeder, J. R.; Blake, D. R.; Dibb, J. E.

    2016-02-01

    Bulk aerosol composition and aerosol size distributions measured aboard the DC-8 aircraft during the Deep Convective Clouds and Chemistry Experiment mission in May/June 2012 were used to investigate the transport of mineral dust through nine storms encountered over Colorado and Oklahoma. Measurements made at low altitudes (<5 km mean sea level (MSL)) in the storm inflow region were compared to those made in cirrus anvils (altitude > 9 km MSL). Storm mean outflow Ca2+ mass concentrations and total coarse (1 µm < diameter < 5 µm) aerosol volume (Vc) were comparable to mean inflow values as demonstrated by average outflow/inflow ratios greater than 0.5. A positive relationship between Ca2+, Vc, ice water content, and large (diameter > 50 µm) ice particle number concentrations was not evident; thus, the influence of ice shatter on these measurements was assumed small. Mean inflow aerosol number concentrations calculated over a diameter range (0.5 µm < diameter < 5.0 µm) relevant for proxy ice nuclei (NPIN) were ~15-300 times higher than ice particle concentrations for all storms. Ratios of predicted interstitial NPIN (calculated as the difference between inflow NPIN and ice particle concentrations) and inflow NPIN were consistent with those calculated for Ca2+ and Vc and indicated that on average less than 10% of the ingested NPIN were activated as ice nuclei during anvil formation. Deep convection may therefore represent an efficient transport mechanism for dust to the upper troposphere where these particles can function as ice nuclei cirrus forming in situ.

  1. Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine: Summary for water years 1960, 1961, and 1964

    USGS Publications Warehouse

    Hahl, D.C.

    1968-01-01

    The investigation of dissolved-mineral inflow to Great Salt Lake during the water years 1960, 1961, and 1964 was conducted during conditions of streamflow that were representative of the lowest and the average recorded during the water years 1934-64. The study conducted during the 1960 and 1961 water years was limited to defining surface-water inflow at sites close to the lakeshore, as well as at sites used in the 1960-6 study. From these comparative data, estimates of inflow at the lakeshore were made for the 1960 and 1961 water years. During the 1964 water year, when inflow to the lake was probably representative of the 31-year period, about 800,000 acre-feet of water containing 2,200,000 tons of dissolved solids entered the lake.During the years of average streamflow, about 500,000 acre-feet of water which might be developed for culinary use, passes the lowest sampling sites on the Bear and Weber Rivers. Also, more than 90 percent of the flow near the mouths of the Bear, Weber, and Jordan Rivers would be suitable for irrigation.Sources of inflow could be selected to provide a water supply for a fresh-water lake east of Antelope Island. The supply would range from 300,000 acre-feet of water containing 800 ppm (parts per million) of dissolved solids during periods of low streamflow to 1 million acre-feet containing 500 ppm during periods of average streamflow.

  2. Gadolinium-enhanced 7.0 T magnetic resonance imaging assessment of the aqueous inflow in rat eyes in vivo.

    PubMed

    Li, Lu; Yuan, Yuxiang; Chen, Liwen; Li, Mu; Ji, Pingting; Gong, Jieling; Zhao, Yin; Zhang, Hong

    2017-09-01

    The goal of this study was to calculate the anterior chamber volume and assess aqueous inflow in rat eyes in vivo, under anesthetic condition. Gadolinium-contrast agent (Gd-DTPA, 234.5 mg/ml) was administered to Sprague-Dawley rat eyes via anterior chamber injection or instillation of 234.5 or 117.25 mg/ml Gd-DTPA in 0.2% azone as eye drops, and changes of Gd signal visualized by 7.0 T magnetic resonance imaging (MRI). The safety of local application of Gd-DTPA and azone were performed after MRI scanning. The anterior chamber injection of Gd-DTPA (234.5 mg/ml) group was used for anterior chamber volume and aqueous inflow calculating. Serial changes in Gd-DTPA relative concentration in the anterior chamber was determined based on the initial Gd signal gray values and the initial relative concentration of Gd-DTPA after anterior chamber Gd-DTPA injection. The mean aqueous inflow in rat eyes in vivo was assessed based on changes in Gd-DTPA relative concentration and the anterior chamber volume. Eye drops of Gd-DTPA (234.5 mg/ml) in 0.2% azone readily allowed safe assessment of the aqueous inflow by 7.0 T MRI. Under anesthetic condition in vivo, the mean anterior chamber volume (ACV) in rats was 8493.6 ± 657.4 μm 3 , no differences were observed in the aqueous inflow measured by topical instillation of 234.5 mg/ml Gd-DTPA in 0.2% azone (0.182 ± 0.011 μl/min) between that measured by anterior chamber injection (0.165 ± 0.041 μl/min, P > 0.05), Timolol reduced aqueous inflow to 0.124 ± 0.020 μl/min (P < 0.05). Our results indicated that Gd-enhanced 7.0 T MRI allows evaluation of the Gd signal variation and anterior chamber volume in rats in vivo. The aqueous inflow calculation via non-invasive local application of 234.5 mg/ml Gd-DTPA can be assessed by the variability of relative concentration of Gd-DTPA in anterior chamber and ACV in vivo, under anesthetic condition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales

    DOE PAGES

    Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.; ...

    2018-04-17

    Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Lastly, deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.« less

  4. GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiro, Kathleen A.; Ahmed, Fiaz; Giangrande, Scott E.

    Representations of strongly precipitating deep-convective systems in climate models are among the most important factors in their simulation. Parameterizations of these motions face the dual challenge of unclear pathways to including mesoscale organization and high sensitivity of convection to approximations of turbulent entrainment of environmental air. Ill-constrained entrainment processes can even affect global average climate sensitivity under global warming. Multiinstrument observations from the Department of Energy GoAmazon2014/5 field campaign suggest that an alternative formulation from radar-derived dominant updraft structure yields a strong relationship of precipitation to buoyancy in both mesoscale and smaller-scale convective systems. This simultaneously provides a key stepmore » toward representing the influence of mesoscale convection in climate models and sidesteps a problematic dependence on traditional entrainment rates. A substantial fraction of precipitation is associated with mesoscale convective systems (MCSs), which are currently poorly represented in climate models. Convective parameterizations are highly sensitive to the assumptions of an entraining plume model, in which high equivalent potential temperature air from the boundary layer is modified via turbulent entrainment. Here we show, using multiinstrument evidence from the Green Ocean Amazon field campaign (2014–2015; GoAmazon2014/5), that an empirically constrained weighting for inflow of environmental air based on radar wind profiler estimates of vertical velocity and mass flux yields a strong relationship between resulting buoyancy measures and precipitation statistics. This deep-inflow weighting has no free parameter for entrainment in the conventional sense, but to a leading approximation is simply a statement of the geometry of the inflow. The structure further suggests the weighting could consistently apply even for coherent inflow structures noted in field campaign studies for MCSs over tropical oceans. For radar precipitation retrievals averaged over climate model grid scales at the GoAmazon2014/5 site, the use of deep-inflow mixing yields a sharp increase in the probability and magnitude of precipitation with increasing buoyancy. Furthermore, this applies for both mesoscale and smaller-scale convection. Results from reanalysis and satellite data show that this holds more generally: Deep-inflow mixing yields a strong precipitation–buoyancy relation across the tropics. Lastly, deep-inflow mixing may thus circumvent inadequacies of current parameterizations while helping to bridge the gap toward representing mesoscale convection in climate models.« less

  5. Miniature Oxidizer Ionizer for a Fuel Cell

    NASA Technical Reports Server (NTRS)

    Hartley, Frank

    2006-01-01

    A proposed miniature device for ionizing the oxygen (or other oxidizing gas) in a fuel cell would consist mostly of a membrane ionizer using the same principles as those of the device described in the earlier article, Miniature Bipolar Electrostatic Ion Thruster (NPO-21057). The oxidizing gas would be completely ionized upon passage through the holes in the membrane ionizer. The resulting positively charged atoms or molecules of oxidizing gas could then, under the influence of the fringe fields of the ionizer, move toward the fuel-cell cathode that would be part of a membrane/electrode assembly comprising the cathode, a solid-electrolyte membrane, and an anode. The electro-oxidized state of the oxidizer atoms and molecules would enhance transfer of them through the cathode, thereby reducing the partial pressure of the oxidizer gas between the ionizer and the fuel-cell cathode, thereby, in turn, causing further inflow of oxidizer gas through the holes in the membrane ionizer. Optionally the ionizer could be maintained at a positive electric potential with respect to the cathode, in which case the resulting electric field would accelerate the ions toward the cathode.

  6. Evaluation of persistent hydrophobic organic compounds in the Columbia River Basin using semipermeable-membrane devices

    USGS Publications Warehouse

    McCarthy, K.A.; Gale, R.W.

    2001-01-01

    Persistent hydrophobic organic compounds are of concern in the Columbia River because they have been correlated with adverse effects on wildlife. We analysed samples from nine main-stem and six tributary sites throughout the Columbia River Basin (Washington and Oregon) for polychlorinated dibenzo-p-dioxins, dibenzofurans, polychlorinated biphenyls, organochlorine pesticides, and priority-pollutant polycyclic aromatic hydrocarbons. Because these compounds may have important biological consequences at aqueous concentrations well below the detection limits associated with conventional sampling methods, we used semipermeable-membrane devices to sample water and achieved parts-per-quintillion detection limits. All of these compound classes were prevalent within the basin, but concentrations of many analytes were highest in the vicinity of Portland-Vancouver, indicating that the Willamette subbasin-and perhaps the urban area in particular-is an important source of these compounds. Data collected during basin low-flow conditions in 1997 and again during basin high-flow conditions in 1998 indicate that in-stream processes such as dilution by relatively clean inflow, and flow through island hyporheic zones may be important mechanisms for attenuating dissolved concentrations of hydrophobic compounds.

  7. Towards reducing thrombogenicity of LVAD therapy: optimizing surgical and patient management strategies

    NASA Astrophysics Data System (ADS)

    Chivukula, Venkat Keshav; Lafzi, Ali; Mokadam, Nahush; Beckman, Jennifer; Mahr, Claudius; Aliseda, Alberto

    2017-11-01

    Unfavourable hemodynamics in heart failure patients implanted with left ventricular assist devices (LVAD), due to non-optimal surgical configurations and patient management, strongly influence thrombogenicity. This is consistent with the increase in devastating thromboembolic complications (specifically thrombosis and stroke) in patients, even as the risk of thrombosis inside the device decreases with modern designs. Inflow cannula and outflow graft surgical configurations have been optimized via patient-specific modeling that computes the thrombogenic potential with a combination of Eulerian (endothelial) wall shear stress and Lagrangian (platelet shear history) tracking. Using this view of hemodynamics, the benefits of intermittent aortic valve opening (promoting washout and reducing stagnant flow in the aortic valve region) have been assessed in managing the patient's residual native cardiac output. The use of this methodology to understand the contribution of the hemodynamics in the flow surrounding the LVAD itself to thrombogenesis show promise in developing holistic patient-specific management strategies to minimize stroke risk and enhance efficacy of LVAD therapy. Funded in part by an AHA postdoctoral fellowship 16POST30520004.

  8. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  9. Causes Of Low Efficiency Of Combined Ventilation System In Coal Mines In Resolving The Problem Of Air Leaks (Inflows) Between Levels And Surface

    NASA Astrophysics Data System (ADS)

    Popov, Valeriy; Filatov, Yuriy; Lee, Hee; Golik, Anatoliy

    2017-11-01

    The paper discusses the problem of the underground mining safety control. The long-term air intake to coal accumulations is reviewed as one of the reasons of endogenous fires during mining. The methods of combating air leaks (inflows) in order to prevent endogenous fires are analyzed. The calculations showing the discrepancy between the design calculations for the mine ventilation, disregarding a number of mining-andgeological and mining-engineering factors, and the actual conditions of mining are given. It is proved that the conversion of operating mines to combined (pressure and exhaust) ventilation system in order to reduce the endogenous fire hazard of underground mining is unreasonable due to impossibility of providing an optimal distribution of aerodynamic pressure in mines. The conversion does not exclude the entry of air into potentially hazardous zones of endogenous fires. The essence of the combined application of positive and negative control methods for the distribution of air pressure is revealed. It consists of air doors installation in easily ventilated airways and installation of pressure equalization chambers equipped with auxiliary fans near the stoppings, working sections and in parallel airways.The effectiveness of the combined application of negative and positive control methods for the air pressure distribution in order to reduce endogenous fire hazard of mining operations is proved.

  10. Multiobjective hedging rules for flood water conservation

    NASA Astrophysics Data System (ADS)

    Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng

    2017-03-01

    Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.

  11. Optimal Reservoir Operation using Stochastic Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Sahu, R.; McLaughlin, D.

    2016-12-01

    Hydropower operations are typically designed to fulfill contracts negotiated with consumers who need reliable energy supplies, despite uncertainties in reservoir inflows. In addition to providing reliable power the reservoir operator needs to take into account environmental factors such as downstream flooding or compliance with minimum flow requirements. From a dynamical systems perspective, the reservoir operating strategy must cope with conflicting objectives in the presence of random disturbances. In order to achieve optimal performance, the reservoir system needs to continually adapt to disturbances in real time. Model Predictive Control (MPC) is a real-time control technique that adapts by deriving the reservoir release at each decision time from the current state of the system. Here an ensemble-based version of MPC (SMPC) is applied to a generic reservoir to determine both the optimal power contract, considering future inflow uncertainty, and a real-time operating strategy that attempts to satisfy the contract. Contract selection and real-time operation are coupled in an optimization framework that also defines a Pareto trade off between the revenue generated from energy production and the environmental damage resulting from uncontrolled reservoir spills. Further insight is provided by a sensitivity analysis of key parameters specified in the SMPC technique. The results demonstrate that SMPC is suitable for multi-objective planning and associated real-time operation of a wide range of hydropower reservoir systems.

  12. Phosphate and carbonate mass balances and their relationships to ground-water inputs at Beaver Lake, Waukesha County, Wisconsin. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.E.; Cherkauer, D.S.

    1991-01-01

    The water and chemical budgets of Beaver Lake, Waukesha County, Wisconsin were examined to determine the role of groundwater and sediments in controlling lake quality in a seepage lake. Groundwater dominates the water budget, providing 70% of annual inflow and 60% of the outflow. The 15-m deep lake diverts flow from a depth of at least 90 m in the glacial aquifer of which it is a part. Acting as a flow-through system, the lake receives inflow predominantly from nearshore springs. Outflow occurs in the deeper parts of the lake. Groundwater provides more than 90% of the mass inflow ofmore » the major chemicals examined (Ca, Mg, Na, K, HCO3, SO4, Cl and NO3). It is also the major path of outflow for chemicals, accounting for more than 60% of the lake's loss of all the above ions except Ca and HCO3. Sedimentation of 270 + or - 82 g/sqm/yr of precominatly CaCO3 marl with significant silica and organic matter accounts for removal of 43 and 15% of the Ca and HCO3, respectively. Losses of Mg, Na, K, S and Cl to the sediment are insignificant. Data on NO3 fluxes indicate groundwater provides more N than can be accounted for in water and sediment effluxes. Seasonal denitrification in the lake's hypolimnion may account for the difference.« less

  13. Vegetation dynamics in response to water inflow rates and fire in a brackish Typha domingensis Pers. marsh in the delta of the Colorado River, Mexico

    USGS Publications Warehouse

    Mexicano, Lourdes; Nagler, Pamela L.; Zamora-Arroyo, Francisco; Glenn, Edward P.

    2012-01-01

    The Cienega de Santa Clara is a 5600 ha, anthropogenic wetland in the delta of the Colorado River in Mexico. It is the inadvertent creation of the disposal of brackish agricultural waste water from the U.S. into the intertidal zone of the river delta in Mexico, but has become an internationally important wetland for resident and migratory water birds. We used high resolution Quickbird and WorldView-2 images to produce seasonal vegetation maps of the Cienega before, during and after a test run of the Yuma Desalting Plant, which will remove water from the inflow stream and replace it with brine. We also used moderate resolution, 16-day composite NDVI imagery from the Moderate Resolution Imaging Spectrometer (MODIS) sensors on the Terra satellite to determine the main factors controlling green vegetation density over the years 2000–2011. The marsh is dominated by Typha domingensis Pers. with Phragmites australis (Cav.) Trin. Ex Steud. as a sub-dominant species in shallower marsh areas. The most important factor controlling vegetation density was fire. Spring fires in 2006 and 2011 were followed by much more rapid green-up of T. domingensis in late spring and 30% higher peak summer NDVI values compared to non-fire years (P < 0.001). Fires removed thatch and returned nutrients to the water, resulting in more vigorous vegetation growth compared to non-fire years. The second significant (P < 0.01) factor controlling NDVI was flow rate of agricultural drain water from the U.S. into the marsh. Reduced summer flows in 2001 due to canal repairs, and in 2010 during the YDP test run, produced the two lowest NDVI values of the time series from 2000 to 2011 (P < 0.05). Salinity is a further determinant of vegetation dynamics as determined by greenhouse experiments, but was nearly constant over the period 2000–2011, so it was not a significant variable in regression analyses. It is concluded that any reduction in inflow volumes will result in a linear decrease in green foliage density in the marsh.

  14. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act... transportation and treatment for each defined source of infiltration/inflow. (b) A report shall summarize the... sewer system to eliminate all defined excessive infiltration/inflow. ...

  15. A measurement of forward-flight effects on the noise from a JT15D-1 turbofan engine in the NASA-Ames 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ahtye, W. F.

    1980-01-01

    A Pratt and Whitney JT15D-1 turbofan engine was tested in two facilities at Ames Research Center: the outdoor Static Test Facility and the 40- by 80-Foot Wind Tunnel. The primary purposes of the test were to determine the effects of forward velocity on the turbofan spectra in the forward quadrant for the cruise inlet and to compare these wind-tunnel spectra with outdoor spectra to determine the possibility of simulating forward-velocity effects from purely outdoor measurements. The wind-tunnel data show a reduction in the blade-passage frequency tones of the order of 10 dB with increasing forward velocity at subsonic fan-tip speeds. No forward-velocity variation was observed at supersonic tip speeds. Comparison of in-duct spectra for the cruise inlet at forward velocity, with spectra from outdoor tests with a distortion-control inlet shows excellent agreement for the in-duct data when allowance is made for different in-duct volumes. This is also reflected in good agreement for the far-field spectra at small forward angles. The comparisons of wind-tunnel and outdoor data also indicate that at least for the JT15D-1, it may be possible to approximate the shape of the far-field spectra at large directivity angles from an outdoor measurement with the cruise inlet, providing an effective inflow control device is used.

  16. The influence of dynamic inflow and torsional flexibility on rotor damping in forward flight from symbolically generated equations

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Warmbrodt, W.

    1985-01-01

    The combined effects of blade torsion and dynamic inflow on the aeroelastic stability of an elastic rotor blade in forward flight are studied. The governing sets of equations of motion (fully nonlinear, linearized, and multiblade equations) used in this study are derived symbolically using a program written in FORTRAN. Stability results are presented for different structural models with and without dynamic inflow. A combination of symbolic and numerical programs at the proper stage in the derivation process makes the obtainment of final stability results an efficient and straightforward procedure.

  17. Daily Reservoir Inflow Forecasting using Deep Learning with Downscaled Multi-General Circulation Models (GCMs) Platform

    NASA Astrophysics Data System (ADS)

    Li, D.; Fang, N. Z.

    2017-12-01

    Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.

  18. Valuing hydrological forecasts for a pumped storage assisted hydro facility

    NASA Astrophysics Data System (ADS)

    Zhao, Guangzhi; Davison, Matt

    2009-07-01

    SummaryThis paper estimates the value of a perfectly accurate short-term hydrological forecast to the operator of a hydro electricity generating facility which can sell its power at time varying but predictable prices. The expected value of a less accurate forecast will be smaller. We assume a simple random model for water inflows and that the costs of operating the facility, including water charges, will be the same whether or not its operator has inflow forecasts. Thus, the improvement in value from better hydrological prediction results from the increased ability of the forecast using facility to sell its power at high prices. The value of the forecast is therefore the difference between the sales of a facility operated over some time horizon with a perfect forecast, and the sales of a similar facility operated over the same time horizon with similar water inflows which, though governed by the same random model, cannot be forecast. This paper shows that the value of the forecast is an increasing function of the inflow process variance and quantifies how much the value of this perfect forecast increases with the variance of the water inflow process. Because the lifetime of hydroelectric facilities is long, the small increase observed here can lead to an increase in the profitability of hydropower investments.

  19. Perioperative outcomes of elective inflow revascularization for lower extremity claudication in the American College of Surgeons National Surgical Quality Improvement Program database.

    PubMed

    Madenci, Arin L; Ozaki, C Keith; Gupta, Naren; Raffetto, Joseph D; Belkin, Michael; McPhee, James T

    2016-09-01

    We compared the early postoperative morbidity and mortality rates of contemporary aortofemoral bypass (AFB) and other inflow procedures for claudication. We identified 1974 claudicants who underwent elective AFB (n = 566) or non-AFB (nonaortofemoral bypass [NAFB]; n = 1408) inflow reconstruction using the ACS-NSQIP database (2005 to 2012). Stent placement was not routinely captured. In propensity score-matched cohorts, we analyzed the association between type of inflow surgery and 30-day postoperative outcomes. Among 824 propensity score-matched patients (AFB, n = 412; NAFB, n = 412), the 30-day mortality rate was 2.7% for AFB and .0% for NAFB (P = .0008). NAFB conferred significantly lower rates of major cardiac (.2% vs 2.4%, P = .0063), respiratory (.7% vs 10.9%, P < .0001), renal (.2% vs 1.9%, P = .0380), and septic (.5% vs 3.6%, P = .0014) complications, and fewer returns to the operating room (4.6% vs 9.9%, P = .0032), compared with AFB. Rates of major venous thrombosis, wound complications, peripheral nerve injury, and graft failure were similar between the groups. This study reports a higher contemporary short-term complication rate with AFB compared to alternative inflow revascularization, against which future study of long-term durability may be weighed. Published by Elsevier Inc.

  20. Continuous salinity and temperature data from san francisco estuary, 19822002: Trends and the salinity-freshwater inflow relationship

    USGS Publications Warehouse

    Shellenbarger, G.G.; Schoellhamer, D.H.

    2011-01-01

    The U.S. Geological Survey and other federal and state agencies have been collecting continuous temperature and salinity data, two critical estuarine habitat variables, throughout San Francisco estuary for over two decades. Although this dynamic, highly variable system has been well studied, many questions remain relating to the effects of freshwater inflow and other physical and biological linkages. This study examines up to 20 years of publically available, continuous temperature and salinity data from 10 different San Francisco Bay stations to identify trends in temperature and salinity and quantify the salinityfreshwater inflow relationship. Several trends in the salinity and temperature records were identified, although the high degree of daily and interannual variability confounds the analysis. In addition, freshwater inflow to the estuary has a range of effects on salinity from -0.0020 to -0.0096 (m3 s-1) -1 discharge, depending on location in the estuary and the timescale of analyzed data. Finally, we documented that changes in freshwater inflow to the estuary that are within the range of typical management actions can affect bay-wide salinities by 0.61.4. This study reinforces the idea that multidecadal records are needed to identify trends from decadal changes in water management and climate and, therefore, are extremely valuable. ?? 2011 Coastal Education & Research Foundation.

  1. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem.

    PubMed

    Keller, Markus; Zhang, Yun; Shrestha, Pradeep M; Biondi, Marco; Bondada, Bhaskar R

    2015-06-01

    We tested the common assumption that fleshy fruits become dependent on phloem water supply because xylem inflow declines at the onset of ripening. Using two distinct grape genotypes exposed to drought stress, we found that a sink-driven rise in phloem inflow at the beginning of ripening was sufficient to reverse drought-induced berry shrinkage. Rewatering accelerated berry growth and sugar accumulation concurrently with leaf photosynthetic recovery. Interrupting phloem flow through the peduncle prevented the increase in berry growth after rewatering, but interrupting xylem flow did not. Nevertheless, xylem flow in ripening berries, but not berry size, remained responsive to root or shoot pressurization. A mass balance analysis on ripening berries sampled in the field suggested that phloem water inflow may exceed growth and transpiration water demands. Collecting apoplastic sap from ripening berries showed that osmotic pressure increased at distinct rates in berry vacuoles and apoplast. Our results indicate that the decrease in xylem inflow at the onset of ripening may be a consequence of the sink-driven increase in phloem inflow. We propose a conceptual model in which surplus phloem water bypasses the fruit cells and partly evaporates from the berry surface and partly moves apoplastically to the xylem for outflow. © 2014 John Wiley & Sons Ltd.

  2. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  3. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  4. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    PubMed

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  5. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad.

    PubMed

    Kerkhoffs, Wolfgang; Schumacher, Oliver; Meyns, Bart; Verbeken, Erik; Leunens, Veerle; Bollen, Hilde; Reul, Helmut

    2004-10-01

    The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications.

  6. A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors.

    PubMed

    González-Guerrero, Ana Belén; Alvarez, Mar; García Castaño, Andrés; Domínguez, Carlos; Lechuga, Laura M

    2013-03-01

    Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Transport and remobilization of multi-walled carbon nanotubes in porous media during dynamic saturation change

    NASA Astrophysics Data System (ADS)

    Sharma, P.

    2012-04-01

    Nanotechnology is one of the most important technologies in this century and it is evoking a new industrial revolution. Carbon nanotubes (CNTs) are important engineered nanoparticles with unique and beneficial properties. As a result, CNT has been used in a wide range of commercial products including electronics, optical devices and drug delivery leading to their disposal in the natural environment. Literature studies have investigated the mobility of CNTs in saturated porous media under differing physical and chemical conditions. However CNT transport in temporarily changing porous media water content has not been investigated thus far (a common scenario with rainfall/infiltration events in the vadose zone). This study investigated the mobilization of multi-walled CNTs (MCNTs) in repeated wetting and drying cycles with varying flow rates and ionic strength of the inflow solution. Imbibition-drainage-imbibition cycle experiments suggest that MCNTs mobilization increased with increase in flow rates. MCNTs mobilization occurred only with first imbibition events at low ionic strengths however less mobilization happened for higher ionic strength inflow solution in the first imbibition cycle and additional MCNTs were found in the outflow solution in second imbibition cycle, using low ionic strength solution. This observation was likely due to the attachment force between MCNTs and sand surface. Most of the MCNT mobilization occurred during liquid-gas interface movement with less chance of MCNTs to jump the energy barrier at higher ionic strength solution. As a result, less detachment of MCNTs occurred from the sand surface during drainage.

  8. Effects of Distortion on Mass Flow Plug Calibration

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.

    2015-01-01

    A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.

  9. Induced Power of the Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.

    2004-01-01

    A simplified rotor model was used to explore fundamental behavior of lifting rotor induced power at moderate and high advance ratios. Several rotor inflow theories, including dynamic inflow theory and prescribed-wake vortex theory, together with idealized notional airfoil stall models were employed. A number of unusual results were encountered at high advance ratios including trim control reversal and multiple trim solutions. Significant increases in rotor induced power (torque) above the ideal minimum were observed for moderately high advance ratio. Very high induced power was observed near and above unity advance ratio. The results were sensitive to the stall characteristics of the airfoil models used. An equivalent wing analysis was developed to determine induced power from Prandtl lifting line theory and help interpret the rotor induced power behavior in terms of the spanwise airload distribution. The equivalent wing approach was successful in capturing the principal variations of induced power for different configurations and operating conditions. The effects blade root cutout were found to have a significant effect on rotor trim and induced power at high advance ratios.

  10. Fresh Water Inflow and Oyster Productivity in Apalachicola Bay, FL (USA)

    EPA Science Inventory

    Apalachicola Bay lies at the mouth of the Apalachicola River, where seasonally variable freshwater inflows and shifting winds support an unusually productive and commercially important oyster fishery. While there is concern that upstream water withdrawals may impact the fishery,...

  11. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  12. Apparatus and method for controlling the rotary airlocks in a coal processing system by reversing the motor current rotating the air lock

    DOEpatents

    Groombridge, Clifton E.

    1996-01-01

    An improvement to a coal processing system where hard materials found in the coal may cause jamming of either inflow or outflow rotary airlocks, each driven by a reversible motor. The instantaneous current used by the motor is continually monitored and compared to a predetermined value. If an overcurrent condition occurs, indicating a jamming of the airlock, a controller means starts a "soft" reverse rotation of the motor thereby clearing the jamming. Three patterns of the motor reversal are provided.

  13. Assessment of inter-city transport of particulate matter in the Beijing-Tianjin-Hebei region

    NASA Astrophysics Data System (ADS)

    Chang, Xing; Wang, Shuxiao; Zhao, Bin; Cai, Siyi; Hao, Jiming

    2018-04-01

    The regional transport of particulate matter with diameter less than 2.5 µm (PM2.5) plays an important role in the air pollution of the Beijing-Tianjin-Hebei (BTH) region in China. However, previous studies on regional transport of PM2.5 mainly aim at province level, which is insufficient for the development of an optimal joint PM2.5 control strategy. In this study, we calculate PM2.5 inflows and outflows through the administrative boundaries of three major cities in the BTH region, i.e., Beijing, Tianjin and Shijiazhuang, using the WRF (Weather Research and Forecasting model)-CMAQ (Community Multiscale Air Quality) modeling system. The monthly average inflow fluxes indicate the major directions of PM2.5 transport. For Beijing, the PM2.5 inflow fluxes from Zhangjiakou (in the northwest) and Baoding (in the southwest) constitute 57 % of the total in winter, and Langfang (in the southeast) and Baoding constitute 73 % in summer. Based on the net PM2.5 fluxes and their vertical distributions, we find there are three major transport pathways in the BTH region: the northwest-southeast pathway in winter (at all levels below 1000 m), the northwest-southeast pathway in summer (at all levels below 1000 m), and the southwest-northeast pathway in both winter and in summer (mainly at 300-1000 m). In winter, even if surface wind speeds are low, the transport at above 300 m can still be strong. Among the three pathways, the southwest-northeast happens along with PM2.5 concentrations 30 and 55 % higher than the monthly average in winter and summer, respectively. Analysis of two heavy pollution episodes in January and July in Beijing show a much (8-16 times) stronger transport than the monthly average, emphasizing the joint air pollution control of the cities located on the transport pathways, especially during heavy pollution episodes.

  14. Development of a Model of Nitrogen Cycling in Stormwater Control Measures and Application of the Model at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Bell, C.; Tague, C.; McMillan, S. K.

    2016-12-01

    Stormwater control measures (SCMs) create ecosystems in urban watersheds that store water and promote nitrogen (N) retention and removal. This work used computer modeling at two spatial scales (the individual SCM and watershed scale) to quantify how SCMs affect runoff and nitrogen export in urban watersheds. First, routines that simulate the dynamic hydrologic and water quality processes of an individual wet pond SCM were developed and applied to quantify N processing under different environmental and design scenarios. Results showed that deeper SCMs have greater inorganic N removal efficiencies because they have more stored volume of relatively N-deplete water, and therefore have a greater capacity to dilute relatively N-rich inflow. N removal by the SCM was more sensitive to this design parameter than it was to variations in air temperature, inflow N concentrations, and inflow volume. Next, these SCM model routines were used to simulate processes of a suburban watershed in Charlotte, NC with 16 SCMs. The watershed configuration was varied to simulate runoff under different scenarios of impervious surface connectivity to SCMs with the goal of developing a simple predictive relationship between watershed condition and N loads. We used unmitigated imperviousness (UI), percent of the impervious area that is unmitigated by SCMs, to quantify watershed condition. Results showed that as SCM mitigation decreased, or as UI increased from 3% to 15%, runoff ratios and loads of nitrite and total dissolved N increased by 26% (21-32%), 14% (3-26%) and 13% (2-25%), respectively. The shape of the relationship between these response variables and UI was linear, which indicates that mitigation of any impervious surfaces will result in proportional reductions. However, the range of UI included in this study is on the low end of urban watersheds and future work will assess the behavior of this relationship at higher TI and UI levels.

  15. Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach

    NASA Astrophysics Data System (ADS)

    Moeeni, Hamid; Bonakdari, Hossein; Ebtehaj, Isa

    2017-03-01

    Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA-GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years' worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA-GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA-ANN models. The results indicate that the SARIMA-GEP model ( R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA-ANN ( R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA-GEP over the SARIMA-ANN model.

  16. Reservoir inflow forecasting with a modified coactive neuro-fuzzy inference system: a case study for a semi-arid region

    NASA Astrophysics Data System (ADS)

    Allawi, Mohammed Falah; Jaafar, Othman; Mohamad Hamzah, Firdaus; Mohd, Nuruol Syuhadaa; Deo, Ravinesh C.; El-Shafie, Ahmed

    2017-10-01

    Existing forecast models applied for reservoir inflow forecasting encounter several drawbacks, due to the difficulty of the underlying mathematical procedures being to cope with and to mimic the naturalization and stochasticity of the inflow data patterns. In this study, appropriate adjustments to the conventional coactive neuro-fuzzy inference system (CANFIS) method are proposed to improve the mathematical procedure, thus enabling a better detection of the high nonlinearity patterns found in the reservoir inflow training data. This modification includes the updating of the back propagation algorithm, leading to a consequent update of the membership rules and the induction of the centre-weighted set rather than the global weighted set used in feature extraction. The modification also aids in constructing an integrated model that is able to not only detect the nonlinearity in the training data but also the wide range of features within the training data records used to simulate the forecasting model. To demonstrate the model's efficacy, the proposed CANFIS method has been applied to forecast monthly inflow data at Aswan High Dam (AHD), located in southern Egypt. Comparative analyses of the forecasting skill of the modified CANFIS and the conventional ANFIS model are carried out with statistical score indicators to assess the reliability of the developed method. The statistical metrics support the better performance of the developed CANFIS model, which significantly outperforms the ANFIS model to attain a low relative error value (23%), mean absolute error (1.4 BCM month-1), root mean square error (1.14 BCM month-1), and a relative large coefficient of determination (0.94). The present study ascertains the better utility of the modified CANFIS model in respect to the traditional ANFIS model applied in reservoir inflow forecasting for a semi-arid region.

  17. Symbolic generation of elastic rotor blade equations using a FORTRAN processor and numerical study on dynamic inflow effects on the stability of helicopter rotors

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1986-01-01

    The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.

  18. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  19. Experimentally Identify the Effective Plume Chimney over a Natural Draft Chimney Model

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Chu, C. M.; Tahir, A. M.; Ismail, M. A. bin; Misran, M. S. bin; Ling, L. S.

    2017-07-01

    The demands of energy are in increasing order due to rapid industrialization and urbanization. The researchers and scientists are working hard to improve the performance of the industry so that the energy consumption can be reduced significantly. Industries like power plant, timber processing plant, oil refinery, etc. performance mainly depend on the cooling tower chimney’s performance, either natural draft or forced draft. Chimney is used to create sufficient draft, so that air can flow through it. Cold inflow or flow reversal at chimney exit is one of the main identified problems that may alter the overall plant performance. The presence Effective Plume Chimney (EPC) is an indication of cold inflow free operation of natural draft chimney. Different mathematical model equations are used to estimate the EPC height over the heat exchanger or hot surface. In this paper, it is aim to identify the EPC experimentally. In order to do that, horizontal temperature profiling is done at the exit of the chimneys of face area 0.56m2, 1.00m2 and 2.25m2. A wire mesh screen is installed at chimneys exit to ensure cold inflow chimney operation. It is found that EPC exists in all modified chimney models and the heights of EPC varied from 1 cm to 9 cm. The mathematical models indicate that the estimated heights of EPC varied from 1 cm to 2.3 cm. Smoke test is also conducted to ensure the existence of EPC and cold inflow free option of chimney. Smoke test results confirmed the presence of EPC and cold inflow free operation of chimney. The performance of the cold inflow free chimney is increased by 50% to 90% than normal chimney.

  20. Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

    NASA Astrophysics Data System (ADS)

    Cervi, F.; Ronchetti, F.; Martinelli, G.; Bogaard, T. A.; Corsini, A.

    2012-06-01

    Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the only sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature, and with groundwater sampling followed by determination of major ions, tracers (such as Boron and Strontium), and isotopes (Oxygen, Deuterium, Tritium). Leaching experiments on soil samples and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of highly mineralized Na-SO4 water (more than 9500 μS cm-1) with non-negligible amounts of Chloride (up to 800 mg l-1). The deep water inflow recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 7800-17 500 m3 yr-1). It also partly recharges the landslide body, where the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This points to a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains.

  1. Overlapping inflow events as catalysts for supermassive black hole growth

    NASA Astrophysics Data System (ADS)

    Carmona-Loaiza, Juan M.; Colpi, Monica; Dotti, Massimo; Valdarnini, Riccardo

    2014-02-01

    One of the greatest issues in modelling black hole fuelling is our lack of understanding of the processes by which gas loses angular momentum and falls from galactic scales down to the nuclear region where an accretion disc forms, subsequently guiding the inflow of gas down to the black hole horizon. It is feared that gas at larger scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ˜0.01 pc scales). In this paper we report on hydrodynamical simulations of rotating infalling gas shells impacting at different angles on to a pre-existing, primitive large-scale (˜10 pc) disc around a supermassive black hole. The aim is to explore how the interaction between the shell and the disc redistributes the angular momentum on scales close to the black hole's sphere of influence. Angular momentum redistribution via hydrodynamical shocks leads to inflows of gas across the inner boundary, enhancing the inflow rate by more than 2-3 orders of magnitude. In all cases, the gas inflow rate across the inner parsec is higher than in the absence of the interaction, and the orientation of the angular momentum of the flow in the region changes with time due to gas mixing. Warped discs or nested misaligned rings form depending on the angular momentum content of the infalling shell relative to the disc. In the cases in which the shell falls in near counter-rotation, part of the resulting flows settle into an inner dense disc which becomes more susceptible to mass transfer.

  2. A Rigorous Solution for Finite-State Inflow throughout the Flowfield

    NASA Astrophysics Data System (ADS)

    Fei, Zhongyang

    In this research, the Hseih/Duffy model is extended to all three velocity components of inflow across the rotor disk in a mathematically rigorous way so that it can be used to calculate the inflow below the rotor disk plane. This establishes a complete dynamic inflow model for the entire flow field with finite state method. The derivation is for the case of general skewed angle. The cost of the new method is that one needs to compute the co-states of the inflow equations in the upper hemisphere along with the normal states. Numerical comparisons with exact solutions for the z-component of flow in axial and skewed angle flow demonstrate excellent correlation with closed-form solutions. The simulations also illustrate that the model is valid at both the frequency domain and the time domain. Meanwhile, in order to accelerate the convergence, an optimization of even terms is used to minimize the error in the axial component of the induced velocity in the on and on/off disk region. A novel method for calculating associate Legendre function of the second kind is also developed to solve the problem of divergence of Q¯mn (ieta) for large eta with the iterative method. An application of the new model is also conducted to compute inflow in the wake of a rotor with a finite number of blades. The velocities are plotted at different distances from the rotor disk and are compared with the Glauert prediction for axial flow and wake swirl. In the finite-state model, the angular momentum does not jump instantaneously across the disk, but it does transition rapidly across the disk to correct Glauert value.

  3. Winter monsoon circulation of the northern Arabian Sea and Somali Current

    NASA Astrophysics Data System (ADS)

    Schott, Friedrich A.; Fischer, Jürgen

    2000-03-01

    The winter monsoon circulation in the northern inflow region of the Somali Current is discussed on the basis of an array of moored acoustic Doppler current profiler and current meter stations deployed during 1995-1996 and a ship survey carried out in January 1998. It is found that the westward inflow into the Somali Current regime occurs essentially south of 11°N and that this inflow bifurcates at the Somali coast, with the southward branch supplying the equatorward Somali Current and the northward one returning into the northwestern Arabian Sea. This northward branch partially supplies a shallow outflow through the Socotra Passage between the African continent and the banks of Socotra and partially feeds into eastward recirculation directly along the southern slopes of Socotra. Underneath this shallow surface flow, southwestward undercurrent flows are observed. Undercurrent inflow from the Gulf of Aden through the Socotra Passage occurs between 100 and 1000 m, with its current core at 700-800 m, and is clearly marked by the Red Sea Water (RSW) salinity maximum. The observations suggest that the maximum RSW inflow out of the Gulf of Aden occurs during the winter monsoon season and uses the Socotra Passage as its main route into the Indian Ocean. Westward undercurrent inflow into the Somali Current regime is also observed south of Socotra, but this flow lacks the RSW salinity maximum. Off the Arabian peninsula, eastward boundary flow is observed in the upper 800 m with a compensating westward flow to the south. The observed circulation pattern is qualitatively compared with recent high-resolution numerical model studies and is found to be in basic agreement.

  4. Mass-loss from advective accretion disc around rotating black holes

    NASA Astrophysics Data System (ADS)

    Aktar, Ramiz; Das, Santabrata; Nandi, Anuj

    2015-11-01

    We examine the properties of the outflowing matter from an advective accretion disc around a spinning black hole. During accretion, rotating matter experiences centrifugal pressure-supported shock transition that effectively produces a virtual barrier around the black hole in the form of post-shock corona (hereafter PSC). Due to shock compression, PSC becomes hot and dense that eventually deflects a part of the inflowing matter as bipolar outflows because of the presence of extra thermal gradient force. In our approach, we study the outflow properties in terms of the inflow parameters, namely specific energy (E) and specific angular momentum (λ) considering the realistic outflow geometry around the rotating black holes. We find that spin of the black hole (ak) plays an important role in deciding the outflow rate R_{dot{m}} (ratio of mass flux of outflow to inflow); in particular, R_{dot{m}} is directly correlated with ak for the same set of inflow parameters. It is found that a large range of the inflow parameters allows global accretion-ejection solutions, and the effective area of the parameter space (E, λ) with and without outflow decreases with black hole spin (ak). We compute the maximum outflow rate (R^{max}_{dot{m}}) as a function of black hole spin (ak) and observe that R^{max}_{dot{m}} weakly depends on ak that lies in the range ˜10-18 per cent of the inflow rate for the adiabatic index (γ) with 1.5 ≥ γ ≥ 4/3. We present the observational implication of our approach while studying the steady/persistent jet activities based on the accretion states of black holes. We discuss that our formalism seems to have the potential to explain the observed jet kinetic power for several Galactic black hole sources and active galactic nuclei.

  5. Attractiveness of employment sectors for physical therapists in Ontario, Canada (1999-2007): implication for the long term care sector

    PubMed Central

    2012-01-01

    Background Recruiting and retaining health professions remains a high priority for health system planners. Different employment sectors may vary in their appeal to providers. We used the concepts of inflow and stickiness to assess the relative attractiveness of sectors for physical therapists (PTs) in Ontario, Canada. Inflow was defined as the percentage of PTs working in a sector who were not there the previous year. Stickiness was defined as the transition probability that a physical therapist will remain in a given employment sector year-to-year. Methods A longitudinal dataset of registered PTs in Ontario (1999-2007) was created, and primary employment sector was categorized as ‘hospital’, ‘community’, ‘long term care’ (LTC) or ‘other.’ Inflow and stickiness values were then calculated for each sector, and trends were analyzed. Results There were 5003 PTs in 1999, which grew to 6064 by 2007, representing a 21.2% absolute growth. Inflow grew across all sectors, but the LTC sector had the highest inflow of 32.0%. PTs practicing in hospitals had the highest stickiness, with 87.4% of those who worked in this sector remaining year-to-year. The community and other employment sectors had stickiness values of 78.2% and 86.8% respectively, while the LTC sector had the lowest stickiness of 73.4%. Conclusion Among all employment sectors, LTC had highest inflow but lowest stickiness. Given expected increases in demand for services, understanding provider transitional probabilities and employment preferences may provide a useful policy and planning tool in developing a sustainable health human resource base across all employment sectors. PMID:22643111

  6. Occupational Segregation by Sex: Trends and Prospects.

    ERIC Educational Resources Information Center

    Blau, Francine D.; Hendricks, Wallace E.

    1979-01-01

    Investigates postwar trends in occupational segregation. Finds segregation increased slightly between 1950-60 as predominantly female clerical/professional jobs increased. Occupation mix changes (1960-70) were neutral in impact, but male inflow into female professions and female inflow into male sales/clerical jobs produced modest segregation…

  7. Computer program for the analysis of the cross flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Abdallah, S.; Tabakoff, W.

    1977-01-01

    A computer program was used to solve the governing of the potential flow in the cross sectional planes of a radial inflow turbine scroll. A list of the main program, the subroutines, and typical output example are included.

  8. Creating Turbulent Flow Realizations with Generative Adversarial Networks

    NASA Astrophysics Data System (ADS)

    King, Ryan; Graf, Peter; Chertkov, Michael

    2017-11-01

    Generating valid inflow conditions is a crucial, yet computationally expensive, step in unsteady turbulent flow simulations. We demonstrate a new technique for rapid generation of turbulent inflow realizations that leverages recent advances in machine learning for image generation using a deep convolutional generative adversarial network (DCGAN). The DCGAN is an unsupervised machine learning technique consisting of two competing neural networks that are trained against each other using backpropagation. One network, the generator, tries to produce samples from the true distribution of states, while the discriminator tries to distinguish between true and synthetic samples. We present results from a fully-trained DCGAN that is able to rapidly draw random samples from the full distribution of possible inflow states without needing to solve the Navier-Stokes equations, eliminating the costly process of spinning up inflow turbulence. This suggests a new paradigm in physics informed machine learning where the turbulence physics can be encoded in either the discriminator or generator. Finally, we also propose additional applications such as feature identification and subgrid scale modeling.

  9. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2017-06-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  10. Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime

    NASA Astrophysics Data System (ADS)

    Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay

    2018-05-01

    We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.

  11. EVALUATION OF RIGHT AND LEFT VENTRICULAR DIASTOLIC FILLING

    PubMed Central

    Pasipoularides, Ares

    2013-01-01

    A conceptual fluid-dynamics framework for diastolic filling is developed. The convective deceleration load (CDL) is identified as an important determinant of ventricular inflow during the E-wave (A-wave) upstroke. Convective deceleration occurs as blood moves from the inflow anulus through larger-area cross-sections toward the expanding walls. Chamber dilatation underlies previously unrecognized alterations in intraventricular flow dynamics. The larger the chamber, the larger become the endocardial surface and the CDL. CDL magnitude affects strongly the attainable E-wave (A-wave) peak. This underlies the concept of diastolic ventriculoannular disproportion. Large vortices, whose strength decreases with chamber dilatation, ensue after the E-wave peak and impound inflow kinetic energy, averting an inflow-impeding, convective Bernoulli pressure-rise. This reduces the CDL by a variable extent depending on vortical intensity. Accordingly, the filling vortex facilitates filling to varying degrees, depending on chamber volume. The new framework provides stimulus for functional genomics research, aimed at new insights into ventricular remodeling. PMID:23585308

  12. Flow visualization and flow field measurements of a 1/12 scale tilt rotor aircraft in hover

    NASA Technical Reports Server (NTRS)

    Coffen, Charles D.; George, Albert R.; Hardinge, Hal; Stevenson, Ryan

    1991-01-01

    The results are given of flow visualization studies and inflow velocity field measurements performed on a 1/12 scale model of the XV-15 tilt rotor aircraft in the hover mode. The complex recirculating flow due to the rotor-wake-body interactions characteristic of tilt rotors was studied visually using neutrally buoyant soap bubbles and quantitatively using hot wire anemometry. Still and video photography were used to record the flow patterns. Analysis of the photos and video provided information on the physical dimensions of the recirculating fountain flow and on details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Recirculating flows were also observed along the length of the fuselage. Hot wire anemometry results indicate that the wing under the rotor acts to obstruct the inflow causing a deficit in the inflow velocities over the inboard region of the model. Hot wire anemometry also shows that the turbulence intensities in the inflow are much higher in the recirculating fountain reingestion zone.

  13. Groundwater inflow measurements in wetland systems

    USGS Publications Warehouse

    Hunt, Randy J.; Krabbenhoft, David P.; Anderson, Mary P.

    1996-01-01

    Our current understanding of wetlands is insufficient to assess the effects of past and future wetland loss. While knowledge of wetland hydrology is crucial, groundwater flows are often neglected or uncertain. In this paper, groundwater inflows were estimated in wetlands in southwestern Wisconsin using traditional Darcy's law calculations and three independent methods that included (1) stable isotope mass balances, (2) temperature profile modeling, and (3) numerical water balance modeling techniques. Inflows calculated using Darcy's law were lower than inflows estimated using the other approaches and ranged from 0.02 to 0.3 cm/d. Estimates obtained using the other methods generally were higher (0.1 to 1.1 cm/d) and showed similar spatial trends. An areal map of groundwater flux generated by the water balance model demonstrated that areas of both recharge and discharge exist in what is considered a regional discharge area. While each method has strengths and weaknesses, the use of more than one method can reduce uncertainty in the estimates.

  14. Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Mingkai; Liu, Yanchen; Cheng, Xun; Zhu, David Z.; Shi, Hanchang; Yuan, Zhiguo

    2018-03-01

    Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm was used to optimize parameters in the proposed RDII model. The method was successfully applied to real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation (GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two processes happen simultaneously.

  15. Seasonal changes and driving forces of inflow and outflow through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong; Guo, Binghuo

    2018-02-01

    This work focuses on analyzing seasonal variation of inflow and outflow through the Bohai Strait that greatly affect the marine environment in the Bohai Sea, using observational data including sea bed mounted acoustic Doppler current profiler currents, CTD salinity data on deck, sea level anomalies of coastal tide gauge stations, and climatological monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite Oceanographic data. Our results show three patterns of outflow and inflow through the Bohai Strait. The first is such that outflow and inflow occur respectively in the southern and northern parts of the strait, as in the traditional understanding. Our results suggest that this pattern occurs only in autumn and winter. Beginning in late September, Ekman currents driven by the northwesterly monsoon carry Bohai Sea water that piles up in the southern part of that sea and then exits eastward to the Yellow Sea. In this process, the pressure and current fields are continuously adjusted, until a quasi balance state between wind stress, Coriolis force and pressure gradient force is reached in winter. Inflow with a compensating property through the northern channel is close to the outflow through the southern channel in winter. The second pattern is a single inflow in spring, and the current and pressure fields are in adjustment. In early spring, the northwesterly monsoon ceases, Yellow Sea water enters the Bohai Sea under the pressure gradient force. With southeasterly monsoon establishment and strengthening, northern Yellow Sea water continually flows into the Bohai Sea and causes sea level rise northward. In the third pattern, outflow is much greater than inflow in summer. The currents run eastward in the central Bohai Sea and then enter the northern Yellow Sea through the northern channel and upper layer of the southern channel, while a westward current with a compensating property enters via the lower layer of the southern channel. Larger net transport is through the Bohai Strait to the northern Yellow Sea, which is related to strong precipitation and runoff into the Bohai Sea.

  16. Impacts of initial convective structure on subsequent squall line evolution

    NASA Astrophysics Data System (ADS)

    Varble, A.; Morrison, H.; Zipser, E. J.

    2017-12-01

    A Weather Research and Forecasting simulation of the 20 May 2011 MC3E squall line using 750-m horizontal grid spacing produces wide convective regions with strongly upshear tilted convective updrafts and mesoscale bowing segments that are not produced in radar observations. Similar features occur across several different bulk microphysics schemes, despite surface observations exhibiting cold pool equivalent potential temperature drops that are similar to and pressure rises that are greater than those in the simulation. Observed rear inflow remains more elevated than simulated, partly counteracting the cold pool circulation, whereas the simulated rear inflow descends to low levels, maintaining its strength and reinforcing the cold pool circulation that overpowers the pre-squall line low level vertical wind shear. The descent and strength of the simulated rear inflow is fueled by strong latent cooling caused by large ice water contents detrained from upshear tilted convective cores that accumulate at the rear of the stratiform region. This simulated squall evolution is sensitive to model resolution, which is too coarse to resolve individual convective drafts. Nesting a 250-m horizontal grid spacing domain into the 750-m domain substantially alters the initial convective cells with reduced latent cooling, weaker convective downdrafts, and a weaker initial cold pool. As the initial convective cells develop into a squall line, the rear inflow remains more elevated in the 250-m domain with a cold pool that eventually develops to be just as strong and deeper than the one in the 750-m run. Despite this, the convective cores remain more upright in the 250-m run with the rear inflow partly counteracting the cold pool circulation, whereas the 750-m rear inflow near the surface reinforces the shallower cold pool and causes bowing in the squall line. The different structure in the 750-m run produces excessive mid-level front-to-rear detrainment that widens the convective region relative to the 250-m run and observations while continuing the cycle of excessive latent cooling and rear inflow descent at the rear of the stratiform region in a positive feedback. The causes of initial convective structure differences that produce the divergence in simulated squall line evolutions are explored.

  17. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior under varied global and local scale climatic influences from the developed BHMM.

  18. The Impacts of Wind Speed Trends and Long-term Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Cross, B.; Kohfeld, K. E.; Cooper, A.; Bailey, H. J.; Rucker, M.

    2013-12-01

    The use of wind power is growing rapidly in the Pacific Northwest (PNW ) due to environmental concerns, decreasing costs of implementation, strong wind speeds, and a desire to diversify electricity sources to minimize the impacts of streamflow variability on electricity prices and system flexibility. In hydroelectric dominated systems, like the PNW, the benefits of wind power can be maximized by accounting for the relationship between long term variability in wind speeds and reservoir inflows. Clean energy policies in British Columbia make the benefits of increased wind power generation during low streamflow periods particularly large, by preventing the overbuilding of marginal hydroelectric projects. The goal of this work was to quantify long-term relationships between wind speed and streamflow behavior in British Columbia. Wind speed data from the North American Regional Reanalysis (NARR) and cumulative usable inflows (CUI) from BC Hydro were used to analyze 10m wind speed and density (WD) trends, WD-CUI correlations, and WD anomalies during low and high inflow periods in the PNW (40°N to 65°N, 110°W to 135°W) from 1979-2010. Statistically significant positive wind speed and density trends were found for most of the PNW, with the largest increases along the Pacific Coast. CUI-WD correlations were weakly positive for most regions, with the highest values along the US coast (r ~0.55), generally weaker correlations to the north, and negative correlations (r ~ -0.25) along BC's North Coast. When considering seasonal relationships, the Spring freshet was coincident with lower WD anomalies west of the Rocky Mountains and higher WDs to the east. A similar but opposite pattern was observed for low inflow winter months. When considering interannual variability, lowest inflow years experienced positive WD anomalies (up to 40% increases) for the North Coast. In highest inflow years, positive WD anomalies were widespread in the US and for smaller patches of central BC. By accounting for regional and temporal differences in the relationship between wind (WD) and streamflow (CUI) behaviour during wind farm site selection, the benefits of energy diversification can be maximized.

  19. The influence of unsteady aerodynamics on hingeless rotor ground resonance

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1981-01-01

    Calculations of the model frequency and damping for a hingeless rotor on a gimballed support in hover are compared with measured results for two configurations (differing in blade flap stiffness). Good correlation is obtaned when an inflow dynamics model is used to account for the influence of the unsteady aerodynamics. The effect of the unsteady aerodynamics is significant for this rotor system. The inflow dynamics model introduces additional states corresponding to perturbations of the wake-induced velocity at the rotor disk. The calculations confirm the experimental observation that the inflow mode introduced by these additional states is measurable for one configuration but not for the other.

  20. Flap-Lag-Torsion Stability in Forward Flight

    NASA Technical Reports Server (NTRS)

    Panda, B.; Chopra, I.

    1985-01-01

    An aeroelastic stability of three-degree flap-lag-torsion blade in forward flight is examined. Quasisteady aerodynamics with a dynamic inflow model is used. The nonlinear time dependent periodic blade response is calculated using an iterative procedure based on Floquet theory. The periodic perturbation equations are solved for stability using Floquet transition matrix theory as well as constant coefficient approximation in the fixed reference frame. Results are presented for both stiff-inplane and soft-inplane blade configurations. The effects of several parameters on blade stability are examined, including structural coupling, pitch-flap and pitch-lag coupling, torsion stiffness, steady inflow distribution, dynamic inflow, blade response solution and constant coefficient approximation.

  1. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  2. Groundwater flow in the Brunswick/Glynn County area, Georgia, 2000-04

    USGS Publications Warehouse

    Cherry, Gregory S.

    2015-01-01

    Analysis of simulated water-budget components for 2000 and 2004 indicate that specified-head boundaries in the Floridan aquifer system to the south and southwest of the regional model area control about 70 percent of inflows and nearly 50 percent of outflows to the model region. Other water-budget components indicate an 80-million-gallon-per-day decrease in pumping from the Floridan aquifer system during this period.

  3. Method of Characteristic (MOC) Nozzle Flowfield Solver - User’s Guide and Input Manual

    DTIC Science & Technology

    2013-01-01

    Description: Axi or Planar calculation. Value Description Default 0.0 Planer solution 1.0 Axisymmetric solution * &INPUT: NI Date Type: Integer...angle error !... !... Set Control values !... DELTA = 1.0 !1 axi, 0 planer (Mass flux not working correctly) NI = 81...DELTA = 1.0 !1 axi, 0 planer NI = 71 !NUMBER OF RADIAL POINTS ON INFLOW PLANE (Max 99) NT = 35 !NUMBER OF

  4. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  5. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  6. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic evaluation sub-models, with the capacity to investigate alternative environmental flow requirements. The long term changes in the performance of the Saskatchewan's water resources system with respect to the considered shifts in the inflow regime are quantified using different assessment indices. Indices, such as vulnerability and reliability, are visualized in 2D maps in which the axes are describing the shifts in streamflow characteristics. Results indicate that the economy and environment in Saskatchewan are sensitive to the shifts in Alberta's streamflow regime. Most importantly, hydropower production, lake levels, and the apportionment to the downstream province of Manitoba are among the most sensitive components of the water resource system.

  7. Reservoir optimisation using El Niño information. Case study of Daule Peripa (Ecuador)

    NASA Astrophysics Data System (ADS)

    Gelati, Emiliano; Madsen, Henrik; Rosbjerg, Dan

    2010-05-01

    The optimisation of water resources systems requires the ability to produce runoff scenarios that are consistent with available climatic information. We approach stochastic runoff modelling with a Markov-modulated autoregressive model with exogenous input, which belongs to the class of Markov-switching models. The model assumes runoff parameterisation to be conditioned on a hidden climatic state following a Markov chain, whose state transition probabilities depend on climatic information. This approach allows stochastic modeling of non-stationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We calibrate the model on the inflows of the Daule Peripa reservoir located in western Ecuador, where the occurrence of El Niño leads to anomalously heavy rainfall caused by positive sea surface temperature anomalies along the coast. El Niño - Southern Oscillation (ENSO) information is used to condition the runoff parameterisation. Inflow predictions are realistic, especially at the occurrence of El Niño events. The Daule Peripa reservoir serves a hydropower plant and a downstream water supply facility. Using historical ENSO records, synthetic monthly inflow scenarios are generated for the period 1950-2007. These scenarios are used as input to perform stochastic optimisation of the reservoir rule curves with a multi-objective Genetic Algorithm (MOGA). The optimised rule curves are assumed to be the reservoir base policy. ENSO standard indices are currently forecasted at monthly time scale with nine-month lead time. These forecasts are used to perform stochastic optimisation of reservoir releases at each monthly time step according to the following procedure: (i) nine-month inflow forecast scenarios are generated using ENSO forecasts; (ii) a MOGA is set up to optimise the upcoming nine monthly releases; (iii) the optimisation is carried out by simulating the releases on the inflow forecasts, and by applying the base policy on a subsequent synthetic inflow scenario in order to account for long-term costs; (iv) the optimised release for the first month is implemented; (v) the state of the system is updated and (i), (ii), (iii), and (iv) are iterated for the following time step. The results highlight the advantages of using a climate-driven stochastic model to produce inflow scenarios and forecasts for reservoir optimisation, showing potential improvements with respect to the current management. Dynamic programming was used to find the best possible release time series given the inflow observations, in order to benchmark any possible operational improvement.

  8. Rural Poor Economies and Foreign Investors: An Opportunity or a Risk?

    PubMed Central

    Antoci, Angelo; Russu, Paolo; Ticci, Elisa

    2014-01-01

    In the current age of commercial and financial openness, remote and poor local economies are becoming increasingly exposed to inflows of external capital. The new investors - enjoying lower credit constraints than local dwellers - might play a propulsive role in local development. At the same time, inflows of external capital can have negative impacts on local natural resource-dependent activities. We analyze a two-sector model where both sectors damage the environment, but only that of domestic producers relies on natural resources. We assess under which conditions the coexistence of the two sectors is compatible with sustainability, defined as convergence to a stationary state characterized by a positive stock of the natural resource. Moreover, we find that capital inflows can be stimulated by an increase in the pollution intensity of incoming activities, but also in the pollution intensity of the domestic sector; in both cases, capital inflows generate environmental degradation and a decrease in welfare for the local population. Finally, we show that a reduction in the cost of capital for external investors and the consequent capital inflows have the effect to increase wages, local investments and welfare of the local populations only if the environmental impact of the external sector is relatively low with respect to that of local activities. Otherwise, an unexpected scenario characterized by a reduction in domestic capital accumulation and the impoverishment of local agents can occur. PMID:25506694

  9. The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

    USGS Publications Warehouse

    Bern, Carleton R.; Stogner, Sr., Robert W.

    2017-01-01

    Study regionArkansas River, east of the Rocky Mountains.Study focusCretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.New hydrological insights for the regionPrincipal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

  10. The mathematical model that describes the periodic spouting of a geyser induced by boiling

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2017-04-01

    We have derived and modified the dynamical model of a geyser induced by gas inflow and regular or irregular spouting dynamics of geysers induced by gas inflow has been reproduced by the model. On the other hand, though we have derived the dynamical model of a geyser induced by boiling, periodic change between the spouting state and the pause state has not been adequately modeled by the model. In this connection, concerning a geyser induced by gas inflow we have proposed the model as described below. Because pressure in the spouting tube decreases obeying to the Bernoulli's theorem when the spouting state begins and water in the spouting tube begins to flow, inflow of groundwater into the spouting tube occurs. When the amount of this inflow reaches a certain amount, the spouting state transforms to the pause state. In this study, by applying this idea to the dynamical model of a geyser induced by boiling, the periodic change between the spouting state and the pause state could be reappeared. As a result, the whole picture of the spouting mechanism of a geyser induced by boiling became clear. This research results would give hints on engineering repair in order to prevent the weakening or the depletion of the geyser. And this study would be also useful for protection of geysers as tourism and environmental resources.

  11. Rural poor economies and foreign investors: an opportunity or a risk?

    PubMed

    Antoci, Angelo; Russu, Paolo; Ticci, Elisa

    2014-01-01

    In the current age of commercial and financial openness, remote and poor local economies are becoming increasingly exposed to inflows of external capital. The new investors - enjoying lower credit constraints than local dwellers - might play a propulsive role in local development. At the same time, inflows of external capital can have negative impacts on local natural resource-dependent activities. We analyze a two-sector model where both sectors damage the environment, but only that of domestic producers relies on natural resources. We assess under which conditions the coexistence of the two sectors is compatible with sustainability, defined as convergence to a stationary state characterized by a positive stock of the natural resource. Moreover, we find that capital inflows can be stimulated by an increase in the pollution intensity of incoming activities, but also in the pollution intensity of the domestic sector; in both cases, capital inflows generate environmental degradation and a decrease in welfare for the local population. Finally, we show that a reduction in the cost of capital for external investors and the consequent capital inflows have the effect to increase wages, local investments and welfare of the local populations only if the environmental impact of the external sector is relatively low with respect to that of local activities. Otherwise, an unexpected scenario characterized by a reduction in domestic capital accumulation and the impoverishment of local agents can occur.

  12. Category 3: Sound Generation by Interacting With a Gust

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2004-01-01

    Solve the time-dependent inviscid flow equations for this geometry subject to the specified inflow/outflow mean conditions and the fluctuating inflow velocity distortion. (1) Compute the unsteady solution until periodicity in pressure is achieved by showing that at least two successive periods are identical. Periodicity must be achieved on both the airfoil surface and the inflow/outflow boundaries. (2) Once periodicity is achieved, compute the pressure frequency spectra on the reference airfoil on both the upper and lower surfaces at x=(-0.25c,0.00, +0.25c), on the inflow boundary at (x,y)={1.5c,-0.3c), (-1.5c,0.0),(-1.5c,0.3c)} and on the outflow boundary at (x,y)= {(1.5c,-0.3c),(1.5c,0.0), (1.5c,0.3c)}. Express the spectral results in dB using the standard definition 20 log(P(sub(r.m.s)/P(sub ref), where p(sub ref) == 20 microPa. (3) Extract the harmonic pressure distributions on the inflow and outflow boundaries (i.e., on x= -/+ 1.5c lines) at the fundamental frequency omega and apply a Fourier transform in y direction to identify the spatial (i.e., mode order) structure of the pressure perturbations. Express the result in dB for each mode order. Repeat the process for the frequencies 2omega and 3omega.

  13. Seasonal variation of the water exchange through the Bohai Strait

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2016-02-01

    Seasonal variations of the Lubei coastal current off the northern Shandong Peninsula and water exchange between the Bohai and Yellow seas were analyzed, based on current and salinity data measured mainly in 2006, 2007 and 2012. In winter and autumn, the Lubei coastal current flows eastward through the Bohai Strait before ultimately heading southward into the waters off Chengshantou in the east of the Shandong Peninsula. In spring and summer, the Lubei coastal current disappears. There are three kinds of patterns of water exchange between the Bohai and Yellow seas. The first is the "inflow in the north and outflow in the south of the Bohai Strait" in winter and autumn, which is regarded as the permanent pattern during the whole year from literature. The second is "outflow in the surface layer and inflow in the underlying layer" in summer, where the outflow is significantly greater than the inflow related with increased runoff and precipitation. The third is "inflow together in the southern and northern channels of the Bohai Strait" in spring. The low mean sea level and N-S sea-level incline formed in winter in the Bohai Sea lose their dynamic balance because of the reversal of the northeast monsoon in spring. This forces the water from the northern Yellow Sea into the Bohai Sea via the southern and northern channels of the Bohai Strait, which constitutes the largest net inflow of the four seasons.

  14. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data

    NASA Astrophysics Data System (ADS)

    Jothiprakash, V.; Magar, R. B.

    2012-07-01

    SummaryIn this study, artificial intelligent (AI) techniques such as artificial neural network (ANN), Adaptive neuro-fuzzy inference system (ANFIS) and Linear genetic programming (LGP) are used to predict daily and hourly multi-time-step ahead intermittent reservoir inflow. To illustrate the applicability of AI techniques, intermittent Koyna river watershed in Maharashtra, India is chosen as a case study. Based on the observed daily and hourly rainfall and reservoir inflow various types of time-series, cause-effect and combined models are developed with lumped and distributed input data. Further, the model performance was evaluated using various performance criteria. From the results, it is found that the performances of LGP models are found to be superior to ANN and ANFIS models especially in predicting the peak inflows for both daily and hourly time-step. A detailed comparison of the overall performance indicated that the combined input model (combination of rainfall and inflow) performed better in both lumped and distributed input data modelling. It was observed that the lumped input data models performed slightly better because; apart from reducing the noise in the data, the better techniques and their training approach, appropriate selection of network architecture, required inputs, and also training-testing ratios of the data set. The slight poor performance of distributed data is due to large variations and lesser number of observed values.

  15. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques

    NASA Astrophysics Data System (ADS)

    Lohani, A. K.; Kumar, Rakesh; Singh, R. D.

    2012-06-01

    SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.

  16. Bottleneck effects on the bidirectional crowd dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Xia; Dong, Hai-Rong; Yao, Xiu-Ming; Sun, Xu-Bin

    2016-12-01

    The bottleneck effect on bidirectional crowd dynamics is of great theoretical and practical significance, especially for the designing of corridors in public places, such as subway stations or airports. Based on the famous social force model, this paper investigates the bottleneck effects on the free flow dynamics and breakdown phenomenon under different scenarios, in which different corridor shapes and inflow ratios are considered simultaneously. Numerical simulation finds an interesting self-organization phenomenon in the bidirectional flow, a typical characteristic of such a phenomenon is called lane formation, and the existence of which is independent of the corridor’s shape and inflow rate. However, the pattern of the lane formed by pedestrian flow is related to the corridor’s shape, and the free flow efficiency has close relationship with the inflow rate. Specifically, breakdown phenomenon occurs when inflows from both sides of the corridor are large enough, which mostly originates from the bottleneck and then gradually spreads to the other regions. Simulation results further indicate that the leaving efficiency becomes low as breakdown occurs, and the degree of congestion is proportional to the magnitude of inflow. The findings presented in this paper match well with some of our daily observations, hence it is possible to use them to provide us with theoretical suggestions in design of infrastructures. Project supported jointly by the National Natural Science Foundation of China (Grant Nos. 61322307 and 2016YJS023).

  17. Can MR measurement of intracranial hydrodynamics and compliance differentiate which patient with idiopathic normal pressure hydrocephalus will improve following shunt insertion?

    PubMed

    Bateman, G A; Loiselle, A M

    2007-01-01

    Between 10 and 90% of patients with normal pressure hydrocephalus (NPH) treated with a shunt will improve but they risk significant morbidity/mortality from this procedure. NPH is treated hydrodynamically and it has been assumed that a hydrodynamic difference must exist to differentiate which patient will respond. The purpose of this study is to see whether MRI hydrodynamics can differentiate which patients will improve post shunting. Thirty-two patients with NPH underwent MRI with flow quantification measuring the degree of ventricular enlargement, sulcal compression, white matter disease, total blood inflow, sagittal sinus outflow, aqueduct stroke volume, relative compliance ratio and arteriovenous delay. Patients were followed up after shunt insertion to gauge the degree of improvement and were compared with 12 age-matched controls and 12 patients with Alzheimer's disease. 63% of patients improved with insertion. The responders were identical to the non-responders in all variables. The NPH patients were significantly different to the controls (e.g. Total blood inflow reduced 20%, sagittal sinus outflow reduced 35%, aqueduct stroke volume increased 210%, relative compliance ratio reduced 60% and arteriovenous delay reduced 57% with p = 0.007, 0.03, 0.04, 0.0002 and 0.0003 respectively. The patient's with Alzheimer's disease values were midway between the NPH and control patients. Significant hydrodynamic differences were noted between NPH and controls but these were unable to differentiate the responders from non-responders. The hydrodynamics of Alzheimer's disease makes exclusion of comorbidity from this disease difficult.

  18. 75 FR 3255 - Petitions for Modification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ..., located in Barbour County, West Virginia. Regulation Affected: 30 CFR 75.1700 (Oil and gas wells... the immediate return. If mine air flows into the lateral as expected, or if gas inflow is acceptably... borehole plugging. If gas inflow from the well is unacceptably high (1.0% methane by volume, or higher, as...

  19. 40 CFR 35.2120 - Infiltration/Inflow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2120 Infiltration/Inflow. (a... events, or the rainfall-induced total flow rate exceeds 275 gpcd during storm events, the applicant shall...) Infiltration. (1) If the flow rate at the existing treatment facility is 120 gallons per capita per day or less...

  20. Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Haiyan; Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223-0001; Cai Wei

    2010-06-20

    In this paper, we conduct a study of quantum transport models for a two-dimensional nano-size double gate (DG) MOSFET using two approaches: non-equilibrium Green's function (NEGF) and Wigner distribution. Both methods are implemented in the framework of the mode space methodology where the electron confinements below the gates are pre-calculated to produce subbands along the vertical direction of the device while the transport along the horizontal channel direction is described by either approach. Each approach handles the open quantum system along the transport direction in a different manner. The NEGF treats the open boundaries with boundary self-energy defined by amore » Dirichlet to Neumann mapping, which ensures non-reflection at the device boundaries for electron waves leaving the quantum device active region. On the other hand, the Wigner equation method imposes an inflow boundary treatment for the Wigner distribution, which in contrast ensures non-reflection at the boundaries for free electron waves entering the device active region. In both cases the space-charge effect is accounted for by a self-consistent coupling with a Poisson equation. Our goals are to study how the device boundaries are treated in both transport models affects the current calculations, and to investigate the performance of both approaches in modeling the DG-MOSFET. Numerical results show mostly consistent quantum transport characteristics of the DG-MOSFET using both methods, though with higher transport current for the Wigner equation method, and also provide the current-voltage (I-V) curve dependence on various physical parameters such as the gate voltage and the oxide thickness.« less

  1. Electromotive force analysis of current transformer during lightning surge inflow using Fourier series expansion

    NASA Astrophysics Data System (ADS)

    Kim, Youngsun

    2017-05-01

    The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.

  2. Effect of Georgetown Lake on the water quality of Clear Creek, Georgetown, Colorado, 1997-98

    USGS Publications Warehouse

    Cuffin, Sally M.; Chafin, Daniel T.

    2000-01-01

    Georgetown Lake is a recreational reservoir located in the upper Clear Creek Basin, a designated Superfund site because of extensive metal mining in the past. Metals concentrations in Clear Creek increase as the stream receives runoff from mining-affected areas. In 1997, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, began a study to determine the effect of the reservoir on the transport of metals in Clear Creek. A bathymetric survey determined the capacity of the reservoir to be about 440 acre-feet of water, which remained constant during the study. Average water residence time in the reservoir is about 1?3 days during high flow. During low flow (10 cubic feet per second), average residence is about 22 days without ice cover and about 15 days with a 3-foot-thick ice cover. Sediment samples collected from the bottom of Georgetown Lake contained substantial concentrations of iron (average 25,500 milligrams per kilogram), aluminum (average 12,300 milligrams per kilogram), zinc (2,830 milligrams per kilogram), lead (618 milligrams per kilogram), manganese (548 milligrams per kilogram), and sulfide minerals (average 602 milligrams per kilogram as S). Sediment also contained abundant sulfate-reducing bacteria, indicating anoxic conditions. Algae and diatoms common to cold-water lakes were identified in sediment samples; one genus of algae is known to adapt to low-light conditions such as exist beneath ice cover. Vertical profiles of temperature, specific conductance, pH, and dissolved-oxygen concentrations were measured in the reservoir on July 28, 1997, when inflow to the reservoir was about 170 cubic feet per second and average residence time of water was about 1.3 days, and on February 13, 1998, when the reservoir was covered with about 3 feet of ice, inflow was about 15 cubic feet per second, and average residence time was about 12 days. The measurements on July 28, 1997, showed that the reservoir water was well mixed, although pH and dissolved oxygen concentrations were increased by photosynthesis near the bottom of the reservoir. Measurements on February 13, 1998, indicated thermal and chemical stratification with warmer water (about 4 degrees Celsius) beneath colder water and increases in pH and dissolved oxygen concentrations generally occurring near the top of the warmer layer. Concentrations of dissolved oxygen were saturated to oversaturated throughout the water column on both dates, although the concentrations were greater on February 13, 1998, because of colder temperature and photosynthesis. Median pH was about 0.5 unit higher on February 13, 1998, than on July 28, 1997, largely because the longer residence time on February 13, 1998, allowed greater cumulative effects of photosynthesis. Samples of inflow and outflow water were collected from August 1997 to August 1998. Dissolved cadmium and dissolved lead in inflow and outflow samples exceeded acute and chronic water-quality standards during some of the sampling period, whereas dissolved zinc exceeded both standards in inflow and outflow samples during the entire sampling period. Chromium, nickel, and silver were detected in a few samples at small concentrations. Arsenic, selenium, and thallium were not reported in any water samples. Georgetown Lake removes some metals from inflow water and releases others to outflow water. From August 1997 to August 1998, Georgetown Lake estimated outflow loads were about 21 percent less than the inflow load of cadmium and about 11 percent less than the inflow load of zinc. Estimated inflow loads were about 18 percent less than the outflow load of copper, about 13 percent less than the outflow load of iron, and about 27 percent less than the outflow load of manganese. Inflow and outflow loads of lead were essentially balanced. The outflow load of nitrite plus nitrate was about 14 percent less than the inflow load, probably because of plant uptake.

  3. Temporal variability of the Circumpolar Deep Water inflow onto the Ross Sea continental shelf

    NASA Astrophysics Data System (ADS)

    Castagno, Pasquale; Falco, Pierpaolo; Dinniman, Michael S.; Spezie, Giancarlo; Budillon, Giorgio

    2017-02-01

    The intrusion of Circumpolar Deep Water (CDW) is the primary source of heat, salt and nutrients onto Antarctica's continental shelves and plays a major role in the shelf physical and biological processes. Different studies have analyzed the processes responsible for the transport of CDW across the Ross Sea shelf break, but until now, there are no continuous observations that investigate the timing of the intrusions. Also, few works have focused on the effect of the tides that control these intrusions. In the Ross Sea, the CDW intrudes onto the shelf in several locations, but mostly along the troughs. We use hydrographic observations and a mooring placed on the outer shelf in the middle of the Drygalski Trough in order to characterize the spatial and temporal variability of CDW inflow onto the shelf. Our data span from 2004 to the beginning of 2014. In the Drygalski Trough, the CDW enters as a 150 m thick layer between 250 and 400 m, and moves upward towards the south. At the mooring location, about 50 km from the shelf break, two main CDW cores can be observed: one on the east side of the trough spreading along the west slope of Mawson Bank from about 200 m to the bottom and the other one in the central-west side from 200 m to about 350 m depth. A signature of this lighter and relatively warm water is detected by the instruments on the mooring at bottom of the Drygalski Trough. High frequency periodic CDW intrusion at the bottom of the trough is related to the diurnal and spring/neap tidal cycles. At lower frequency, a seasonal variability of the CDW intrusion is noticed. A strong inflow of CDW is observed every year at the end of December, while the CDW inflow is at its seasonal minimum during the beginning of the austral fall. In addition an interannual variability is also evident. A change of the CDW intrusion before and after 2010 is observed.

  4. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt transport becomes critically dependent on the link between IF-inflow and IF-overflow. These features likely affect sensitivity and stability of climate models to climate change and limit the predictive skill.

  5. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    USGS Publications Warehouse

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  6. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  7. Hepatic Cyst Compressing The Right Atrial and Ventricular Inflow Tract: An Uncommon Cardiac Complication.

    PubMed

    Panchal, Maulik; Alansari, Ahmed; Wallack, Marc; Visco, Ferdinand; Williams, Susan; Sy, Alexander M

    2018-01-01

    Commonly reported complications of hepatic cysts are spontaneous hemorrhage, rupture into the peritoneal cavity, infection and compression of the biliary tree however cardiac complications are not commonly reported. We are presenting a case of a large liver cyst presenting with right atrial and ventricular inflow tract impingement resulting in cardiac symptoms. A 68 year-old Hispanic female presented with one month of fatigue and shortness of breath after household work and walking less than one block, right upper quadrant pain and weight loss. She had history of multiple hepatic cysts for more than 12 years, well-controlled diabetes and hypertension. Examination of the heart revealed tachycardia with regular heart sounds. There were no murmurs. She had tenderness in her right upper quadrant on palpation and an enlarged smooth liver. Rest of physical examination was unremarkable. CT scan of the abdomen showed multiple non-enhancing liver cysts in both lobes, with the largest measuring 12 x 15 x 17 cm which was significantly increased from her baseline of 7 x 8 x 10 cm in 2003. Echocardiogram showed normal left ventricular ejection fraction, grade 1 diastolic dysfunction and a hepatic cyst impinging RA and RV inflow tract. She had successful laparoscopic enucleation of liver cyst and subsequent relief from tachycardia, fatigue and shortness of breath. In conclusion, this case illustrates that hepatic cysts may become symptomatic after remaining quiescent for an extended period. They may present with unusual symptoms and clinicians should be mindful of rare complications, such as in this case.

  8. Some calculated effects of non-uniform inflow on the radiated noise of a large wind turbine

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Hubbard, H. H.

    1980-01-01

    Far field computations were performed for a large wind turbine to evaluate the effects of non-uniform aerodynamic loading over the rotor disk. A modified version of the Farassat/Nystrom propeller noise prediction program was applied to account for the variations in loading due to inflow interruption by the upstream support tower. The computations indicate that for the uniform inflow case, relatively low noise levels are generated and the first rotational harmonic dominated the spectrum. For cases representing wake flow deficiences due to the tower structure, subtantially increased noise levels for all harmonics are indicated, the greatest increases being associated with the higher order harmonics.

  9. The investigation of the lateral interaction effect's on traffic flow behavior under open boundaries

    NASA Astrophysics Data System (ADS)

    Bouadi, M.; Jetto, K.; Benyoussef, A.; El Kenz, A.

    2017-11-01

    In this paper, an open boundaries traffic flow system is studied by taking into account the lateral interaction with spatial defects. For a random defects distribution, if the vehicles velocities are weakly correlated, the traffic phases can be predicted by considering the corresponding inflow and outflow functions. Conversely, if the vehicles velocities are strongly correlated, a phase segregation appears inside the system's bulk which induces the maximum current appearance. Such velocity correlation depends mainly on the defects densities and the probabilities of lateral deceleration. However, for a compact defects distribution, the traffic phases are predictable by using the inflow in the system beginning, the inflow entering the defects zone and the outflow function.

  10. 40 CFR 265.201 - Special requirements for generators of between 100 and 1,000 kg/mo that accumulate hazardous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... structure (e.g., dike or trench), a drainage control system, or a diversion structure (e.g., standby tank... this inflow (e.g., waste feed cutoff system or by-pass system to a stand-by tank). Note: These systems are intended to be used in the event of a leak or overflow from the tank due to a system failure (e.g...

  11. 40 CFR 265.201 - Special requirements for generators of between 100 and 1,000 kg/mo that accumulate hazardous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... structure (e.g., dike or trench), a drainage control system, or a diversion structure (e.g., standby tank... this inflow (e.g., waste feed cutoff system or by-pass system to a stand-by tank). Note: These systems are intended to be used in the event of a leak or overflow from the tank due to a system failure (e.g...

  12. 40 CFR 265.201 - Special requirements for generators of between 100 and 1,000 kg/mo that accumulate hazardous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... structure (e.g., dike or trench), a drainage control system, or a diversion structure (e.g., standby tank... this inflow (e.g., waste feed cutoff system or by-pass system to a stand-by tank). Note: These systems are intended to be used in the event of a leak or overflow from the tank due to a system failure (e.g...

  13. 40 CFR 265.201 - Special requirements for generators of between 100 and 1,000 kg/mo that accumulate hazardous...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... structure (e.g., dike or trench), a drainage control system, or a diversion structure (e.g., standby tank... this inflow (e.g., waste feed cutoff system or by-pass system to a stand-by tank). Note: These systems are intended to be used in the event of a leak or overflow from the tank due to a system failure (e.g...

  14. A Simulation Model for Studying Effects of Pollution and Freshwater Inflow on Secondary Productivity in an Ecosystem. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.

    1974-01-01

    A mathematical model of an ecosystem is developed. Secondary productivity is evaluated in terms of man related and controllable factors. Information from an existing physical parameters model is used as well as pertinent biological measurements. Predictive information of value to estuarine management is presented. Biological, chemical, and physical parameters measured in order to develop models of ecosystems are identified.

  15. Technologies for Refueling Spacecraft On-Orbit

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    2000-01-01

    This paper discusses the current technologies for on-orbit refueling of spacecraft. The findings of 55 references are reviewed and summarized. Highlights include: (1) the Russian Progress system used by the International Space Station; (2) a flight demonstration of superfluid helium transfer; and (3) ground tests of large cryogenic systems. Key technologies discussed include vapor free liquid outflow, control of fluid inflow to prevent liquid venting, and quick disconnects for on-orbit mating of transfer lines.

  16. Erosion in radial inflow turbines. Volume 5: Computer programs for tracing particle trajectories

    NASA Technical Reports Server (NTRS)

    Clevenger, W. B., Jr.; Tabakoff, W.

    1975-01-01

    Computer programs used to study the trajectories of particles in the radial inflow turbines are presented. The general technique of each program is described. A set of subroutines developed during the study are described. Descriptions, listings, and typical examples of each of the main programs are included.

  17. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Water fluxes through the ponds are a function of several factors, including the size, shape, and bathymetry of the pond, orientation of the pond relative to the regional hydraulic gradient, and hydrologic setting relative to the proximity of groundwater divides and discharge boundaries. Total steady-state fluxes through the ponds range from more than 3,300,000 to less than 2,000 cubic feet per day. For ponds without surface-water inlets or outlets, groundwater inflow accounts for 98 to 3 percent of total inflow; conversely, recharge onto the pond surface accounts for the remainder of inflow (between 2 and 97 percent). All natural flows from these ponds are through recharge from the pond into the aquifer. In one pond, about 94 percent of the total outflow is removed for water supply. For ponds that are connected to surface-water drainages, most inflow and outflow are through streams. Ponds that receive water from streams receive most (58 to 89 percent) of their water from those streams. Ponds that are drained by streams lose between 5 and 100 percent of their water to those streams.

  18. Study on the influence on water ecosystem by a lake inflow filtration system

    NASA Astrophysics Data System (ADS)

    Wu, Sushu; Gao, Shipei; Hu, Xiaodong; Weng, Songgan; Guo, Liuchao

    2018-06-01

    Lakes play important roles in the economic-social sustainable development. However, due to unreasonable development and urbanization in recent years, lake water pollution and ecological degradation have occurred in China. The improvement of the lake inflow water quality is very important. A filtration system includes Gravel filtering system, Aquatic plant area and Ecological bag area was established. The test river is one of the typical lake inflow river and located in the river network in the Chang Dang lake, China. Water quality, zooplankton and phytoplankton in the inflow river were observed form July to mid-August in order to analyze the general process. The average removal rate of NH3-N (ammonia nitrogen) TN (total nitrogen) and TP (total phosphorus) is 28.33, 25.76 and 24.43 %, respectively. The Pantle-Buck method was used to evaluate the water quality and the B/T index was used to evaluate the nutrition situation. The B/T values were reduced by 20 % and the SI pollution index was reduced by 11.8 %. Therefore, a positive effect on the water's ecological restoration was achieved by the filtration system.

  19. Dokan Hydropower Reservoir Operation under Stochastic Conditions as Regards the Inflows and the Energy Demands

    NASA Astrophysics Data System (ADS)

    Izat Rashed, Ghamgeen

    2018-03-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  20. Designing a Robust Micromixer Based on Fluid Stretching

    NASA Astrophysics Data System (ADS)

    Mott, David; Gautam, Dipesh; Voth, Greg; Oran, Elaine

    2010-11-01

    A metric for measuring fluid stretching based on finite-time Lyapunov exponents is described, and the use of this metric for optimizing mixing in microfluidic components is explored. The metric is implemented within an automated design approach called the Computational Toolbox (CTB). The CTB designs components by adding geometric features, such a grooves of various shapes, to a microchannel. The transport produced by each of these features in isolation was pre-computed and stored as an "advection map" for that feature, and the flow through a composite geometry that combines these features is calculated rapidly by applying the corresponding maps in sequence. A genetic algorithm search then chooses the feature combination that optimizes a user-specified metric. Metrics based on the variance of concentration generally require the user to specify the fluid distributions at inflow, which leads to different mixer designs for different inflow arrangements. The stretching metric is independent of the fluid arrangement at inflow. Mixers designed using the stretching metric are compared to those designed using a variance of concentration metric and show excellent performance across a variety of inflow distributions and diffusivities.

  1. Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

    NASA Astrophysics Data System (ADS)

    Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum

    2015-12-01

    The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.

  2. Forecasting of monthly inflow and outflow currency using time series regression and ARIMAX: The Idul Fitri effect

    NASA Astrophysics Data System (ADS)

    Ahmad, Imam Safawi; Setiawan, Suhartono, Masun, Nunun Hilyatul

    2015-12-01

    Currency plays an important role in economic transactions of Indonesian society. In order to guarantee the availability of currency, Bank Indonesia needs to develop demand and supply planning of currency. The purpose of this study is to get model and predict inflow and outflow of currency in KPW BI Region IV (East Java) with ARIMA method, time series regression and ARIMAX. The data of monthly inflow and outflow is used of currency in KPW BI Surabaya, Malang, Kediri and Jember.The observation period starting from January 2003 to December 2014. Based on the smallest values of out-sample RMSE and SMAPE, ARIMA is the best model to predict the outflow of currency in KPW BI Surabaya and ARIMAX for KPW BI Malang, Kediri and Jember. The best forecasting model for inflow of currency in KPW BI Surabaya, Malang, Kediri and Jember chronologically as follows are calendar variation model, transfer function, ARIMA, and time series regression. These results indicates that the more complex models may not necessarily produce a more accurate forecast as the result of M3-Competition.

  3. Operation of Dokan Reservoir under Stochastic Conditions as Regards the Inflows and the Energy Demands

    NASA Astrophysics Data System (ADS)

    Rashed, G. I.

    2018-02-01

    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  4. Surgical approach to left ventricular inflow obstruction due to dilated coronary sinus.

    PubMed

    Vargas, Florentino J; Rozenbaum, Jorge; Lopez, Ricardo; Granja, Miguel; De Dios, Ana; Zarlenga, Beatriz; Flores, Enrique; Fischman, Enrique; Kreutzer, Eduardo

    2006-07-01

    Left superior vena cava draining to a dilated coronary sinus can cause left ventricular inflow obstruction. Our purpose is to report 4 severely ill patients with this malformation who were operated upon and in whom repair was accomplished using an original surgical approach. An operative procedure was designed, which included complete resection of the wall of the coronary sinus along its entire extension in the left atrium; division of the left superior vena cava; and establishment of the left superior vena cava-right atrial continuity by a wide left superior vena cava-right atrial appendage anastomosis. The series included 1 patient with interrupted inferior vena cava-hemiazygous continuation to left superior vena cava. There were no deaths. Absence of residual left ventricular inflow obstruction was demonstrated at follow-up in all cases, together with an unobstructed left superior vena cava-right atrial appendage-right atrial connection. A predictable relief of the left ventricular inflow obstruction, together with preservation of an adequate drainage for the systemic venous return, were both achieved with this repair.

  5. Advection-dominated Inflow/Outflows from Evaporating Accretion Disks.

    PubMed

    Turolla; Dullemond

    2000-03-01

    In this Letter we investigate the properties of advection-dominated accretion flows (ADAFs) fed by the evaporation of a Shakura-Sunyaev accretion disk (SSD). In our picture, the ADAF fills the central cavity evacuated by the SSD and extends beyond the transition radius into a coronal region. We find that, because of global angular momentum conservation, a significant fraction of the hot gas flows away from the black hole, forming a transsonic wind, unless the injection rate depends only weakly on radius (if r2sigma&d2;~r-xi, xi<1&solm0;2). The Bernoulli number of the inflowing gas is negative if the transition radius is less, similar100 Schwarzschild radii, so matter falling into the hole is gravitationally bound. The ratio of inflowing to outflowing mass is approximately 1/2, so in these solutions the accretion rate is of the same order as in standard ADAFs and much larger than in advection-dominated inflow/outflow models. The possible relevance of evaporation-fed solutions to accretion flows in black hole X-ray binaries is briefly discussed.

  6. Broadband rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1984-01-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  7. Natural and human drivers of salinity in reservoirs and their implications in water supply operation through a Decision Support System

    NASA Astrophysics Data System (ADS)

    Contreras, Eva; Gómez-Beas, Raquel; Linares-Sáez, Antonio

    2016-04-01

    Salt can be a problem when is originally in aquifers or when it dissolves in groundwater and comes to the ground surface or flows into streams. The problem increases in lakes hydraulically connected with aquifers affecting water quality. This issue is even more alarming when water resources are used for urban and irrigation supply and water quantity and quality restrict that water demand. This work shows a data based and physical modeling approach in the Guadalhorce reservoir, located in southern Spain. This water body receives salt contribution from mainly groundwater flow, getting salinity values in the reservoir from 3500 to 5500 μScm-1. Moreover, Guadalhorce reservoir is part of a complex system of reservoirs fed from the Guadalhorce River that supplies all urban, irrigation, tourism, energy and ecology water uses, which makes that implementation and validation of methods and tools for smart water management is required. Meteorological, hydrological and water quality data from several monitoring networks and data sources, with both historical and real time data during a 40-years period, were used to analyze the impact salinity. On the other hand, variables that mainly depend on the dam operation, such as reservoir water level and water outflow, were also analyzed to understand how they affect to salinity in depth and time. Finally surface and groundwater inflows to the reservoir were evaluated through a physically based hydrological model to forecast when the major contributions take place. Reservoir water level and surface and groundwater inflows were found to be the main drivers of salinity in the reservoir. When reservoir water level is high, daily water inflow around 0.4 hm3 causes changes in salinity (both drop and rise) up to 500 μScm-1, but no significant changes are found when water level falls 2-3 m. However the gradual water outflows due to dam operation and consequent decrease in reservoir water levels makes that, after dry periods, salinity changes from 3800 to 5100 μScm-1 in the deepest layers are found with a similar daily water inflow. On the other hand, when reservoir water level is low, salinity increases around 1000 μScm-1 are found with a 2 m water level falling. In view of the influence of water level in the reservoir dynamics, this factor should be considered when dam operation decisions are taken by managers in terms of satisfying the water demand. The results will be implemented in a Decision Support System that is being displayed in the Guadalhorce River and which includes prediction of water quantity and quality in the reservoir in terms of salinity, involving water level and water inflow forecasting as the main factors to control the state of the reservoir and therefore with implications in water management. This methodology could be implemented in other reservoirs with high salinity and be adapted to other substances (such as nutrients and heavy metals) associated to water inflow in water bodies where water quality and quantity are driven by human decisions factors besides natural factors such as floods and dynamics of flows in the reservoir.

  8. Influence of the Atlantic inflow and Mediterranean outflow currents on late Quaternary sedimentary facies of the Gulf of Cadiz continental margin

    USGS Publications Warehouse

    Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.

    1999-01-01

    The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.

  9. Modelling of Vortex-Induced Loading on a Single-Blade Installation Setup

    NASA Astrophysics Data System (ADS)

    Skrzypiński, Witold; Gaunaa, Mac; Heinz, Joachim

    2016-09-01

    Vortex-induced integral loading fluctuations on a single suspended blade at various inflow angles were modeled in the presents work by means of stochastic modelling methods. The reference time series were obtained by 3D DES CFD computations carried out on the DTU 10MW reference wind turbine blade. In the reference time series, the flapwise force component, Fx, showed both higher absolute values and variation than the chordwise force component, Fz, for every inflow angle considered. For this reason, the present paper focused on modelling of the Fx and not the Fz whereas Fz would be modelled using exactly the same procedure. The reference time series were significantly different, depending on the inflow angle. This made the modelling of all the time series with a single and relatively simple engineering model challenging. In order to find model parameters, optimizations were carried out, based on the root-mean-square error between the Single-Sided Amplitude Spectra of the reference and modelled time series. In order to model well defined frequency peaks present at certain inflow angles, optimized sine functions were superposed on the stochastically modelled time series. The results showed that the modelling accuracy varied depending on the inflow angle. None the less, the modelled and reference time series showed a satisfactory general agreement in terms of their visual and frequency characteristics. This indicated that the proposed method is suitable to model loading fluctuations on suspended blades.

  10. Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step

    NASA Astrophysics Data System (ADS)

    El-Askary, W. A.

    2011-08-01

    Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.

  11. Space Telescope Imaging Spectrograph Spectroscopy of the Central 14 pc OF NGC 3998: Evidence for an Inflow

    NASA Astrophysics Data System (ADS)

    Devereux, Nick

    2011-02-01

    Prior imaging of the lenticular galaxy, NGC 3998, with the Hubble Space Telescope revealed a small, highly inclined, nuclear ionized gas disk, the kinematics of which indicate the presence of a 270 million solar mass black hole. Plausible kinematic models are used to constrain the size of the broad emission line region (BELR) in NGC 3998 by modeling the shape of the broad Hα, Hβ, and Hγ emission line profiles. The analysis indicates that the BELR is large with an outer radius ~7 pc, regardless of whether the kinematic model is represented by an accretion disk or a spherically symmetric inflow. The electron temperature in the BELR is <= 28,800 K consistent with photoionization by the active galactic nucleus (AGN). Indeed, the AGN is able to sustain the ionization of the BELR, albeit with a high covering factor ranging between 20% and 100% depending on the spectral energy distribution adopted for the AGN. The high covering factor favors a spherical distribution for the gas as opposed to a thin disk. If the gas density is >=7 × 103 cm-3 as indicated by the broad forbidden [S II] emission line ratio, then interpreting the broad Hα emission line in terms of a steady state spherically symmetric inflow leads to a rate <= 6.5 × 10-2 M sun yr-1 which exceeds the inflow requirement to explain the X-ray luminosity in terms of a radiatively inefficient inflow by a factor of <=18.

  12. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow

    NASA Astrophysics Data System (ADS)

    Querzoli, G.; Fortini, S.; Cenedese, A.

    2010-04-01

    Mechanical heart valves implanted in mitral position have a great effect on the ventricular flow. Changes include alteration of the dynamics of the vortical structures generated during the diastole and the onset of turbulence, possibly affecting the efficiency of the heart pump or causing blood cell damage. Modifications to the hemodynamics in the left ventricle, when the inflow through the mitral orifice is altered, were investigated in vitro using a silicone rubber, flexible ventricle model. Velocity fields were measured in space and time by means of an image analysis technique: feature tracking. Three series of experiments were performed: one with a top hat inflow velocity profile (schematically resembling physiological conditions), and two with mechanical prosthetic valves of different design, mounted in mitral position—one monoleaflet and the other bileaflet. In each series of runs, two different cardiac outputs have been examined by changing the stroke volume. The flow was investigated in terms of phase averaged velocity field and second order moments of turbulent fluctuations. Results show that the modifications in the transmitral flow change deeply the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. Top hat inflow gives the coherent structures which are optimal, among the compared cases, for the systolic function. The flow generated by the bileaflet valve preserves most of the beneficial features of the top hat inflow, whereas the monoleaflet valve generates a strong jet which discourages the permanence of large coherent structures at the end of the diastole. Moreover, the average shear rate magnitudes induced by the smoother flow pattern of the case of top hat inflow are nearly halved in comparison with the values measured with the mechanical valves. Finally, analysis of the turbulence statistics shows that the monoleaflet valves yield higher turbulence intensity in comparison with the bileaflet and, with top hat inflow, there is not a complete transition to turbulence.

  13. Quantification of mass loading to Strawberry Creek near the Gilt Edge mine, Lawrence County, South Dakota, June 2003

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine; Williamson, Joyce E.

    2006-01-01

    Although remedial actions have taken place at the Gilt Edge mine in the Black Hills of South Dakota, questions remain about a possible hydrologic connection along shear zones between some of the pit lakes at the mine site and Strawberry Creek. Spatially detailed chemical sampling of stream and inflow sites occurred during low-flow conditions in June 2003 as part of a mass-loading study by the U.S. Geological Survey to investigate the possible connection of shear zones to the stream. Stream discharge was calculated by tracer dilution; discharge increased by 25.3 liters per second along the study reach, with 9.73 liters per second coming from three tributaries and the remaining increase coming from small springs and dispersed, subsurface inflow. Chemical differences among inflow samples were distinguished by cluster analysis and indicated that inflows ranged from those unaffected by interaction with mine wastes to those that could have been affected by drainage from pit lakes. Mass loading to the stream from several inflows resulted in distinct chemical changes in stream water along the study reach. Mass loading of the mine-related metals, including cadmium, copper, nickel, and zinc, principally occurred from the discharge from the Gilt Edge mine, and those metals were substantially attenuated downstream. Secondary loadings of metals occurred in the vicinity of the Oro Fino shaft and from two more inflows about 200 m downstream from there. These are both locations where shear zones intersect the stream and may indicate loading associatedwith these zones. Loading downstream from the Oro Fino shaft had a unique chemical character, high in base-metal concentrations, that could indicate an association with water in the pit lakes. The loading from these downstream sources, however, is small in comparison to that from the initial mine discharge and does not appear to have a substantial impact on Strawberry Creek.

  14. Spatial and overwinter changes in clam populations of San Pablo Bay, a semiarid estuary with highly variable freshwater inflow

    USGS Publications Warehouse

    Poulton, V.K.; Lovvorn, J.R.; Takekawa, John Y.

    2004-01-01

    In many estuaries worldwide, climate trends together with human diversion of fresh water have dramatically impacted the benthos. Such impacts have sometimes been complicated by exotic species, whose invasion and persistence can be mediated by wide variations in freshwater inflow. Monitoring such changes usually involves periodic samples at a few sites; but sampling that does not recognize variation at a range of spatial and seasonal scales may not reveal important benthic trends. San Pablo Bay, in northern San Francisco Bay, has extreme fluctuations in freshwater inflow. This bay also experienced a major benthic change with introduction of the Asian clam (Potamocorbula amurensis) in 1986. This species initially displaced the former community, but later appeared to vary in abundance depending on site and freshwater inflow. To investigate such patterns and provide guidelines for research and monitoring, we took 1746 core samples at six sites around San Pablo Bay from 19 October to 17 December 1999 and from 6 March to 19 April 2000. Most biomass consisted of the clams P. amurensis,Macoma balthica and Mya arenaria. Potamocorbula amurensis dominated the benthos at most sites in the fall and recruited a new cohort during winter, while there was weak recruitment in M. balthica and none in M. arenaria. At most but not all sites, densities of P. amurensis and M. arenaria declined dramatically over winter while M. balthica declined only slightly. The dominant clams had patch diameters >5 m at most but not all sites, and some showed inconsistent patch structure at scales of 100–1400 m. In this semiarid estuary with highly variable freshwater inflow, samples for research and monitoring should include multiple sites and seasons, and samples within sites should be ≥5 m apart to account for between-patch variation. Species abundance in winter 1999–2000 appeared to be affected by high freshwater inflows in 1997–1999, while spatial patterns were probably most affected by post-settlement dispersal and mortality.

  15. Glacioclimatological study of Perennial Ice in the Fuji Ice Cave, Japan. Part I. Seasonal variation and mechanism of maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohata, Tetsuo; Furukawa, Teruo; Higuchi, Keiji

    1994-08-01

    Perennial cave ice in a cave located at Mt. Fuji in central Japan was studied to investigate the basic characteristics and the cause for existence of such ice under warm ground-level climate considering the ice cave as a thermal and hydrological system. Fuji Ice Cave is a lava tube cave 150 m in length with a collapsed part at the entrance. Measurements from 1984 to 1986 showed that the surface-level change of floor ice occurred due to freezing and melting at the surface and that melting at the bottom of the ice was negligible. The annual amplitude of change inmore » surface level was larger near the entrance. Meterological data showed that the cold air inflow to the cave was strong in winter, but in summer the cave was maintained near 0[degrees]C with only weak inflow of warm air. The predominant wind system was from the entrance to the interior in both winter and summer, but the spatial scale of the wind system was different. Heat budget consideration of the cave showed that the largest component was the strong inflow of subzero dry air mass in winter. Cooling in winter was compensated for by summer inflow of warm air, heat transport from the surrounding ground layer, and loss of sensible heat due to cooling of the cave for the observed year. Strong inflow of cold air and weak inflow of warm air, which is extremely low compared to the ground level air, seemed to be the most important condition. Thus the thermal condition of the cave is quasi-balanced at the presence condition below 0[degrees]C with ice. It can be said that the interrelated result of the climatological and special structural conditions makes this cave very cold, and allows perennial ice to exist in the cave. Other climatological factors such as precipitation seem to be minor factors. 17 refs., 3 figs., 3 tabs.« less

  16. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest.

    PubMed

    Cross, Benjamin D; Kohfeld, Karen E; Bailey, Joseph; Cooper, Andrew B

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979-2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC's North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast.

  17. The Impacts of Wind Speed Trends and 30-Year Variability in Relation to Hydroelectric Reservoir Inflows on Wind Power in the Pacific Northwest

    PubMed Central

    Cross, Benjamin D.; Kohfeld, Karen E.; Bailey, Joseph; Cooper, Andrew B.

    2015-01-01

    In hydroelectric dominated systems, the value and benefits of energy are higher during extended dry periods and lower during extended or extreme wet periods. By accounting for regional and temporal differences in the relationship between wind speed and reservoir inflow behavior during wind farm site selection, the benefits of energy diversification can be maximized. The goal of this work was to help maximize the value of wind power by quantifying the long-term (30-year) relationships between wind speed and streamflow behavior, using British Columbia (BC) and the Pacific Northwest (PNW) as a case study. Clean energy and self-sufficiency policies in British BC make the benefits of increased generation during low streamflow periods particularly large. Wind density (WD) estimates from a height of 10m (North American Regional Reanalysis, NARR) were correlated with cumulative usable inflows (CUI) for BC (collected from BC Hydro) for 1979–2010. The strongest WD-CUI correlations were found along the US coast (r ~0.55), whereas generally weaker correlations were found in northern regions, with negative correlations (r ~ -0.25) along BC’s North Coast. Furthermore, during the lowest inflow years, WD anomalies increased by up to 40% above average values for the North Coast. Seasonally, high flows during the spring freshet were coincident with widespread negative WD anomalies, with a similar but opposite pattern for low inflow winter months. These poorly or negatively correlated sites could have a moderating influence on climate related variability in provincial electricity supply, by producing greater than average generation in low inflow years and reduced generation in wet years. Wind speed and WD trends were also analyzed for all NARR grid locations, which showed statistically significant positive trends for most of the PNW and the largest increases along the Pacific Coast. PMID:26271035

  18. Real-time reservoir operation considering non-stationary inflow prediction

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Xu, W.; Cai, X.; Wang, Z.

    2011-12-01

    Stationarity of inflow has been a basic assumption for reservoir operation rule design, which is now facing challenges due to climate change and human interferences. This paper proposes a modeling framework to incorporate non-stationary inflow prediction for optimizing the hedging operation rule of large reservoirs with multiple-year flow regulation capacity. A multi-stage optimization model is formulated and a solution algorithm based on the optimality conditions is developed to incorporate non-stationary annual inflow prediction through a rolling, dynamic framework that updates the prediction from period to period and adopt the updated prediction in reservoir operation decision. The prediction model is ARIMA(4,1,0), in which parameter 4 stands for the order of autoregressive, 1 represents a linear trend, and 0 is the order of moving average. The modeling framework and solution algorithm is applied to the Miyun reservoir in China, determining a yearly operating schedule during the period from 1996 to 2009, during which there was a significant declining trend of reservoir inflow. Different operation policy scenarios are modeled, including standard operation policy (SOP, matching the current demand as much as possible), hedging rule (i.e., leaving a certain amount of water for future to avoid large risk of water deficit) with forecast from ARIMA (HR-1), hedging (HR) with perfect forecast (HR-2 ). Compared to the results of these scenarios to that of the actual reservoir operation (AO), the utility of the reservoir operation under HR-1 is 3.0% lower than HR-2, but 3.7% higher than the AO and 14.4% higher than SOP. Note that the utility under AO is 10.3% higher than that under SOP, which shows that a certain level of hedging under some inflow prediction or forecast was used in the real-world operation. Moreover, the impacts of discount rate and forecast uncertainty level on the operation will be discussed.

  19. Questa baseline and pre-mining ground-water quality investigation. 23. Quantification of mass loading from mined and unmined areas along the Red River, New Mexico

    USGS Publications Warehouse

    Kimball, Briant A.; Nordstrom, D. Kirk; Runkel, Robert L.; Vincent, Kirk R.; Verplanck, Phillip L.

    2006-01-01

    Along the course of the Red River, between the town of Red River, New Mexico, and the U.S. Geological Survey streamflow-gaging station near Questa, New Mexico, there are several catchments that contain hydrothermally altered bedrock. Some of these alteration zones have been mined and others have not, presenting an opportunity to evaluate differences that may exist in the mass loading of metals from mined and unmined sections. Such differences may help to define pre-mining conditions. Spatially detailed chemical sampling at stream and inflow sites occurred during low-flow conditions in 2001 and 2002, and during the synoptic sampling, stream discharge was calculated by tracer dilution. Discharge from most catchments, particularly those with alteration scars, occurred as ground water in large debris fans, which generally traveled downstream in an alluvial aquifer until geomorphic constraints caused it to discharge at several locations along the study reach. Locations of discharge zones were indicated by the occurrence of numerous inflows as seeps and springs. Inflows were classified into four groups, based on differences in chemical character, which ranged from near-neutral water showing no influence of mining or alteration weathering to acidic water with high concentrations of metals and sulfate. Acidic, metal-rich inflows occurred from mined and unmined areas, but the most-acidic inflow water that had the highest concentrations of metals and sulfate only occurred downstream from the mine. Locations of ground-water inflow also corresponded to substantial changes in stream chemistry and mass loading of metals and sulfate. The greatest loading occurred in the Cabin Springs, Thunder Bridge, and Capulin Canyon sections, which all occur downstream from the mine. A distinct chemical character and substantially greater loading in water downstream from the mine suggest that there could be impacts from mining that can be distinguished from the water draining from unmined areas.

  20. Patient-individualized boundary conditions for CFD simulations using time-resolved 3D angiography.

    PubMed

    Boegel, Marco; Gehrisch, Sonja; Redel, Thomas; Rohkohl, Christopher; Hoelter, Philip; Doerfler, Arnd; Maier, Andreas; Kowarschik, Markus

    2016-06-01

    Hemodynamic simulations are of increasing interest for the assessment of aneurysmal rupture risk and treatment planning. Achievement of accurate simulation results requires the usage of several patient-individual boundary conditions, such as a geometric model of the vasculature but also individualized inflow conditions. We propose the automatic estimation of various parameters for boundary conditions for computational fluid dynamics (CFD) based on a single 3D rotational angiography scan, also showing contrast agent inflow. First the data are reconstructed, and a patient-specific vessel model can be generated in the usual way. For this work, we optimize the inflow waveform based on two parameters, the mean velocity and pulsatility. We use statistical analysis of the measurable velocity distribution in the vessel segment to estimate the mean velocity. An iterative optimization scheme based on CFD and virtual angiography is utilized to estimate the inflow pulsatility. Furthermore, we present methods to automatically determine the heart rate and synchronize the inflow waveform to the patient's heart beat, based on time-intensity curves extracted from the rotational angiogram. This will result in a patient-individualized inflow velocity curve. The proposed methods were evaluated on two clinical datasets. Based on the vascular geometries, synthetic rotational angiography data was generated to allow a quantitative validation of our approach against ground truth data. We observed an average error of approximately [Formula: see text] for the mean velocity, [Formula: see text] for the pulsatility. The heart rate was estimated very precisely with an average error of about [Formula: see text], which corresponds to about 6 ms error for the duration of one cardiac cycle. Furthermore, a qualitative comparison of measured time-intensity curves from the real data and patient-specific simulated ones shows an excellent match. The presented methods have the potential to accurately estimate patient-specific boundary conditions from a single dedicated rotational scan.

  1. Modelling of Reservoir Operations using Fuzzy Logic and ANNs

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Coerver, B.; Rutten, M.

    2015-12-01

    Today, almost 40.000 large reservoirs, containing approximately 6.000 km3 of water and inundating an area of almost 400.000 km2, can be found on earth. Since these reservoirs have a storage capacity of almost one-sixth of the global annual river discharge they have a large impact on the timing, volume and peaks of river discharges. Global Hydrological Models (GHM) are thus significantly influenced by these anthropogenic changes in river flows. We developed a parametrically parsimonious method to extract operational rules based on historical reservoir storage and inflow time-series. Managing a reservoir is an imprecise and vague undertaking. Operators always face uncertainties about inflows, evaporation, seepage losses and various water demands to be met. They often base their decisions on experience and on available information, like reservoir storage and the previous periods inflow. We modeled this decision-making process through a combination of fuzzy logic and artificial neural networks in an Adaptive-Network-based Fuzzy Inference System (ANFIS). In a sensitivity analysis, we compared results for reservoirs in Vietnam, Central Asia and the USA. ANFIS can indeed capture reservoirs operations adequately when fed with a historical monthly time-series of inflows and storage. It was shown that using ANFIS, operational rules of existing reservoirs can be derived without much prior knowledge about the reservoirs. Their validity was tested by comparing actual and simulated releases with each other. For the eleven reservoirs modelled, the normalised outflow, <0,1>, was predicted with a MSE of 0.002 to 0.044. The rules can be incorporated into GHMs. After a network for a specific reservoir has been trained, the inflow calculated by the hydrological model can be combined with the release and initial storage to calculate the storage for the next time-step using a mass balance. Subsequently, the release can be predicted one time-step ahead using the inflow and storage.

  2. Exploring 222Rn as a tool for tracing groundwater inflows from eskers and moraines into slope peatlands of the Amos region of Quebec, Canada.

    PubMed

    Berthot, Laureline; Pinti, Daniele L; Larocque, Marie; Gagné, Sylvain; Ferlatte, Miryane; Cloutier, Vincent

    2016-11-01

    Peatlands can play an important role in the hydrological dynamics of a watershed. However, interactions between groundwater and peat water remain poorly understood. Here, we present results of an exploratory study destined to test radon ( 222 Rn) as a potential tracer of groundwater inflows from fluvioglacial landform aquifers to slope peatlands in the Amos region of Quebec, Canada. 222 Rn occurs in groundwater but is expected to be absent from peat water because of its rapid degassing to the atmosphere. Any 222 Rn activity detected in peat water should therefore derive from groundwater inflow. 222 Rn activity was measured in groundwater from municipal, domestic wells and newly drilled and instrumented piezometers from the Saint-Mathieu-Berry and Barraute eskers (n = 9), from the Harricana Moraine (n = 4), and from the fractured bedrock (n = 3). Forty measurements of 222 Rn activity were made from piezometers installed in five slope peatlands, along six transects oriented perpendicular to the fluvioglacial deposits. The relationship between 222 Rn and total dissolved solids (TDS) measured in water from the mineral deposits underlying the peat layer suggests that 222 Rn is introduced by lateral inflow from eskers and moraine together with salinity. This input is then diluted by peat water, depleted in both TDS and 222 Rn. The fact that a relationship between TDS and 222 Rn is visible calls for a continuous inflow of groundwater from lateral eskers/moraines, being 222 Rn rapidly removed from the system by radioactive decay. Although more research is required to improve the sampling and tracing techniques, this work shows the potential of 222 Rn tracer to identify groundwater inflow areas from granular aquifers found in eskers and moraines to slope peatlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Quasi-stationary phase change heat transfer on a fin

    NASA Astrophysics Data System (ADS)

    Orzechowski, Tadeusz; Stokowiec, Katarzyna

    2016-03-01

    The paper presents heat transfer research basing on a long fin with a circular cross-section. Its basis is welded to the pipe where the hot liquid paraffin, having a temperature of 70°C at the inflow, is pumped. The analyzed element is a recurrent part of a refrigeration's condenser, which is immersed in a paraffin. The temperature of the inflowing liquid is higher than the temperature of the melting process for paraffin, which allows the paraffin to liquify. The temperature at the basis of the rib changes and it is assumed that the heat transfer is quasi-stationary. On this basis the estimation of the mean value of heat transfer coefficient was conducted. The unsteady thermal field of the investigated system was registered with an infrared camera V50 produced by a Polish company Vigo System. This device is equipped with a microbolometric detector with 384 × 288 elements and the single pixel size 25 × 25 μm. Their thermal resolution is lower than 70 mK at a temperature of 30 °C. The camera operates at 7,5 ÷ 14 μm long-wave infrared radiation range. For a typical lens 35 mm the special resolution is 0.7 mrad. The result of the calculations is mean heat transfer coefficient for the considered time series. It is equal to 50 W m -2 K-1 and 47 W m -2 K-1 on the left and right side of the fin, respectively. The distance between the experimental data and the curve approximating the temperature distribution was assessed with the standard deviation, Sd = 0.04 K.

  4. Ca2+-dependent nitric oxide release in the injured endothelium of excised rat aorta: a promising mechanism applying in vascular prosthetic devices in aging patients

    PubMed Central

    2013-01-01

    Background Nitric oxide is key to endothelial regeneration, but it is still unknown whether endothelial cell (EC) loss results in an increase in NO levels at the wound edge. We have already shown that endothelial damage induces a long-lasting Ca2+ entry into surviving cells though connexin hemichannels (CxHcs) uncoupled from their counterparts on ruptured cells. The physiological outcome of injury-induced Ca2+ inflow is, however, unknown. Methods In this study, we sought to determine whether and how endothelial scraping induces NO production (NOP) in the endothelium of excised rat aorta by exploiting the NO-sensitive fluorochrome, DAF-FM diacetate and the Ca2+-sensitive fluorescent dye, Fura-2/AM. Results We demonstrated that injury-induced NOP at the lesion site is prevented in presence of the endothelial NO synthase inhibitor, L-NAME, and in absence of extracellular Ca2+. Unlike ATP-dependent NO liberation, the NO response to injury is insensitive to BTP-2, which selectively blocks store-operated Ca2+ inflow. However, injury-induced NOP is significantly reduced by classic gap junction blockers, and by connexin mimetic peptides specifically targeting Cx37Hcs, Cx40HCs, and Cx43Hcs. Moreover, disruption of caveolar integrity prevents injury-elicited NO signaling, but not the accompanying Ca2+ response. Conclusions The data presented provide the first evidence that endothelial scraping stimulates NO synthesis at the wound edge, which might both exert an immediate anti-thrombotic and anti-inflammatory action and promote the subsequent re-endothelialization. PMID:24266895

  5. Clinical Assessment of Intraventricular Blood Transport in Patients Undergoing Cardiac Resynchronization Therapy

    NASA Astrophysics Data System (ADS)

    Rossini, Lorenzo; Martinez-Legazpi, P.; Benito, Y.; Perez Del Villar, C.; Gonzalez-Mansilla, A.; Barrio, A.; Yotti, R.; Kahn, A. M.; Shadden, S. C.; Fernandez-Aviles, F.; Bermejo, J.; Del Alamo, J. C.

    2015-11-01

    In the healthy heart, left ventricular (LV) filling generates flow patterns which have been proposed to optimize blood transport by coupling diastole and systole phases. We present a novel image-based method to assess how flow patterns influence LV blood transport in patients undergoing cardiac resynchronization therapy (CRT). Solving the advection equation with time-varying inflow boundary conditions allows to track the transport of blood entering the LV in the different filling waves, as well as the transport barriers which couple filling and ejection. The velocity fields were obtained using echocardiographic color Doppler velocimetry, which provides two-dimensional time-resolved flow maps in the apical long axis three-chamber view of the LV. We analyze flow transport in a group of patients with CRT devices as well as in healthy volunteers. In the patients under CRT, the device programming was varied to analyze flow transport under different values of the atrioventricular (AV) conduction delay and to model tachycardia. This analysis illustrates how CRT influences the transit of blood inside the LV, contributes to conserving kinetic energy and favors the generation of hemodynamic forces that accelerate blood in the direction of the LV outflow tract.

  6. Preclinical in vivo long-term evaluation of the novel Mitra-Spacer technology: experimental validation in the ovine model.

    PubMed

    Peppas, Athanasios; Furer, Ariel; Wilson, Jon; Yi, GengHua; Cheng, Yanping; Van Wygerden, Karl; Seguin, Christopher; Shibuya, Masahiko; Kaluza, Grzegorz L; Granada, Juan F

    2017-06-20

    The Mitra-Spacer (Cardiosolutions, Bridgewater, MA, USA) is designed to treat mitral regurgitation by introducing a dynamic spacer that constantly adapts to the changing haemodynamic conditions during the cardiac cycle. We aimed to evaluate the performance and safety of this device in the chronic ovine model. Eight sheep were enrolled in this study. Through a left thoracotomy, the Mitra-Spacer was inserted via the transapical approach and advanced into the left atrium (LA) under imaging guidance. Device performance and safety were evaluated up to 90 days using fluoroscopy, echocardiography and histopathology. The volume within the balloon spacer shifted during the cardiac cycle in all cases. Seven animals survived up to 90 days for terminal imaging and tissue harvest. Echocardiography showed no change in left ventricle (LV) ejection fraction from baseline to 90 days. There were no observations of changes in LV diastolic function, pulmonary vein inflow, or tricuspid valve function. Histological analysis demonstrated no significant injury to the mitral apparatus. In the healthy ovine model, Mitra-Spacer implantation was feasible and safe. At 90 days, no evidence of structural damage to the mitral apparatus or deterioration of cardiac performance was demonstrated.

  7. Analysis of the Functionality of Refillable Propellant Management Devices (PMD)

    NASA Astrophysics Data System (ADS)

    Winkelmann, Yvonne; Gaulke, Diana; Dreyer, Michael E.

    In order to restart a stage of a spacecraft it is necessary to position the liquid stable over the tank outlet. The gas-or vapor-free provision of the thrusters for the main engine start-up can be accomplished by the use of propellant management devices (PMDs). A propellant refillable reservoir (PRR) will supply the engine with the required amount of liquid propellant until the liquid outside the PRR has settled at the bottom of the tank. Hence, the reservoir will be refilled and the main engine can be restarted. This technique has been applied in case of storable propellants yet, e.g. in satellites or ATVs. For the application in a cryogenic upper stage demonstration and validation tests are still necessary. Ground experiments to simulate propulsed phases are evaluated. To demonstrate the functionality under propulsed conditions first filling, draining and draining with a constant fill level of the tank (refilling) are analyzed. Different inflows with respect to filling and varied outflow rates for the draining tests are investigated. Pressure losses in the LOX-PMD are measured during draining and compared to a previously accomplished estimation with an one-dimensional streamtube theory.

  8. Compact cryocooling system for HTS sampler

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Maruyama, M.; Hato, T.; Wakana, H.; Tanabe, K.; Konno, T.; Uekusa, K.; Sato, N.; Kawabata, M.

    2007-10-01

    This paper describes a compact cooling system using a single-stage stirling-type cryocooler for a practical HTS sampler. The system was designed to cool down an HTS sampler module below 50 K, enabling a bandwidth of the chip more than 100 GHz. The system measures 150 mm in width, 140 mm in height and 310 mm in depth, and weighs 5 kg. Semi-rigid coaxial cables made of brass with a silver coated inner conductor were adopted for a signal to be measured and a trigger pulse. The loss for the signal line was less than 1.5 dB at 50 GHz with relatively small thermal inflow. Thermal inflows from low frequency lines, IF signal lines for control/output of the sampler and dc bias lines, were minimized by choosing proper wires. A new sampler module with reduced weight was placed on the cold stage, which was surrounded by double magnetic shields. The module was successfully cooled down to less than 50 K with cooling time of 1 h in the system. We have also succeeded in observing sinusoidal waveforms with the HTS sampler cooled by the compact cooling system.

  9. Characteristics of Non-Cohesive Embankment Failure

    NASA Astrophysics Data System (ADS)

    Yusof, Z. M.; Wahab, A. K. A.; Ismail, Z.; Amerudin, S.

    2018-04-01

    Embankments are important infrastructure built to provide flood control. They also present risks to property and life due to their potential to fail and cause catastrophic flooding. To mitigate these risks, authorities and regulators need to carefully analyse and inspect dams to identify potential failure modes and protect against them. This paper presents morphology of an embankment study and its sediment behaviour of different grain sizes after the embankment fails. A few experiments were carried out for the embankment size of 1V:3H with different sediment grain sizes; medium and coarser sand. The embankment material used is non-cohesive soil with the embankment height of 0.1 m. The embankment is tested with inflows rate of Q = 0.8 L/s. Experimental results showed the peak discharge for the same inflow rate is affected by the shape of embankment breached. The peak discharge of medium grain size of the embankment is highest, which gave 3.63 L/s in comparison with a coarser embankment. This concludes that the embankment morphology patterns are dissimilar to each other. The flow and dimension of embankment are shown to influence the characteristics of embankment failure.

  10. Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian

    2018-01-01

    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.

  11. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    PubMed

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Altered K+ fluxes and insulin release in pancreatic islets from omega3 fatty acid-depleted rats.

    PubMed

    Sener, Abdullah; Zhang, Ying; Louchami, Karim; Oguzhan, Berrin; Courtois, Philippe; Portois, Laurence; Chardigny, Jean-Michel; Carpentier, Yvon A; Malaisse, Willy J

    2006-10-01

    A low intake of long-chain polyunsaturated omega3 fatty acid often prevails in Western populations. Its consequences in terms of the control of fuel homeostasis led us to explore functional events in pancreatic islets isolated from either normal or omega3-depleted rats (second generation). In the latter rats, the inflow of K+ by both ouabain-sensitive and ouabain-resistant modalities was decreased, this coinciding with an impaired insulin secretory response to ouabain. The intravenous injection of a medium-chain triglyceride:fish oil emulsion to omega3-depleted rats 2 h before sacrifice restored a normal value for the inflow of K+ by the ouabainsensitive modality, i.e., that linked to the activity of the Na,K-ATPase, but failed to correct the entry of K+ by the ouabain-resistant modality and the defect of the insulin secretory response to ouabain. In conclusion, an impaired activity of the Na,K-ATPase in insulin-producing cells apparently represents a key determinant of altered islet function in omega3-depleted rats.

  13. Understanding satellite-based monthly-to-seasonal reservoir outflow estimation as a function of hydrologic controls

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew; Sikder, Safat; Miao, Yabin; Chen, Xiaodong; Hossain, Faisal; Ara Pervin, Ismat; Mahbubur Rahman, S. M.; Lee, Hyongki

    2016-05-01

    Growing population and increased demand for water is causing an increase in dam and reservoir construction in developing nations. When rivers cross international boundaries, the downstream stakeholders often have little knowledge of upstream reservoir operation practices. Satellite remote sensing in the form of radar altimetry and multisensor precipitation products can be used as a practical way to provide downstream stakeholders with the fundamentally elusive upstream information on reservoir outflow needed to make important and proactive water management decisions. This study uses a mass balance approach of three hydrologic controls to estimate reservoir outflow from satellite data at monthly and annual time scales: precipitation-induced inflow, evaporation, and reservoir storage change. Furthermore, this study explores the importance of each of these hydrologic controls to the accuracy of outflow estimation. The hydrologic controls found to be unimportant could potentially be neglected from similar future studies. Two reservoirs were examined in contrasting regions of the world, the Hungry Horse Reservoir in a mountainous region in northwest U.S. and the Kaptai Reservoir in a low-lying, forested region of Bangladesh. It was found that this mass balance method estimated the annual outflow of both reservoirs with reasonable skill. The estimation of monthly outflow from both reservoirs was however less accurate. The Kaptai basin exhibited a shift in basin behavior resulting in variable accuracy across the 9 year study period. Monthly outflow estimation from Hungry Horse Reservoir was compounded by snow accumulation and melt processes, reflected by relatively low accuracy in summer and fall, when snow processes control runoff. Furthermore, it was found that the important hydrologic controls for reservoir outflow estimation at the monthly time scale differs between the two reservoirs, with precipitation-induced inflow being the most important control for the Kaptai Reservoir and storage change being the most important for Hungry Horse Reservoir.

  14. Angiographic analysis for phantom simulations of endovascular aneurysm treatments with a new fully retrievable asymmetric flow diverter.

    PubMed

    Yoganand, Aradhana; Wood, Rachel P; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Nagesh, S V Setlur; Bednarek, D R; Rudin, S; Baier, Robert; Ionita, Ciprian N

    2015-02-21

    Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.

  15. Angiographic analysis for phantom simulations of endovascular aneurysm treatments with a new fully retrievable asymmetric flow diverter

    NASA Astrophysics Data System (ADS)

    Yoganand, Aradhana; Wood, Rachel P.; Jimenez, Carlos; Siddiqui, Adnan; Snyder, Kenneth; Setlur Nagesh, S. V.; Bednarek, D. R.; Rudin, S.; Baier, Robert; Ionita, Ciprian N.

    2015-03-01

    Digital Subtraction Angiography (DSA) is the main diagnostic tool for intracranial aneurysms (IA) flow-diverter (FD) assisted treatment. Based on qualitative contrast flow evaluation, interventionists decide on subsequent steps. We developed a novel fully Retrievable Asymmetric Flow-Diverter (RAFD) which allows controlled deployment, repositioning and detachment achieve optimal flow diversion. The device has a small low porosity or solid region which is placed such that it would achieve maximum aneurysmal in-jet flow deflection with minimum impairment to adjacent vessels. We tested the new RAFD using a flow-loop with an idealized and a patient specific IA phantom in carotid-relevant physiological conditions. We positioned the deflection region at three locations: distally, center and proximally to the aneurysm orifice and analyzed aneurysm dome flow using DSA derived maps for mean transit time (MTT) and bolus arrival times (BAT). Comparison between treated and untreated (control) maps quantified the RAFD positioning effect. Average MTT, related to contrast presence in the aneurysm dome increased, indicating flow decoupling between the aneurysm and parent artery. Maximum effect was observed in the center and proximal position (~75%) of aneurysm models depending on their geometry. BAT maps, correlated well with inflow jet direction and magnitude. Reduction and jet dispersion as high as about 50% was observed for various treatments. We demonstrated the use of DSA data to guide the placement of the RAFD and showed that optimum flow diversion within the aneurysm dome is feasible. This could lead to more effective and a safer IA treatment using FDs.

  16. Identification of key factors affecting the water pollutant concentration in the sluice-controlled river reaches of the Shaying River in China via statistical analysis methods.

    PubMed

    Dou, Ming; Zhang, Yan; Zuo, Qiting; Mi, Qingbin

    2015-08-01

    The construction of sluices creates a strong disturbance in water environmental factors within a river. The change in water pollutant concentrations of sluice-controlled river reaches (SCRRs) is more complex than that of natural river segments. To determine the key factors affecting water pollutant concentration changes in SCRRs, river reaches near the Huaidian Sluice in the Shaying River of China were selected as a case study, and water quality monitoring experiments based on different regulating modes were implemented in 2009 and 2010. To identify the key factors affecting the change rates for the chemical oxygen demand of permanganate (CODMn) and ammonia nitrogen (NH3-N) concentrations in the SCRRs of the Huaidian Sluice, partial correlation analysis, principal component analysis and principal factor analysis were used. The results indicate four factors, i.e., the inflow quantity from upper reaches, opening size of sluice gates, water pollutant concentration from upper reaches, and turbidity before the sluice, which are the common key factors for the CODMn and NH3-N concentration change rates. Moreover, the dissolved oxygen before a sluice is a key factor for the permanganate concentration from CODMn change rate, and the water depth before a sluice is a key factor for the NH3-N concentration change rate. Multiple linear regressions between the water pollutant concentration change rate and key factors were established via multiple linear regression analyses, and the quantitative relationship between the CODMn and NH3-N concentration change rates and key affecting factors was analyzed. Finally, the mechanism of action for the key factors affecting the water pollutant concentration changes was analyzed. The results reveal that the inflow quantity from upper reaches, opening size of sluice gates, permanganate concentration from CODMn from upper reaches and dissolved oxygen before the sluice have a negative influence and the turbidity before the sluice has a positive influence on the permanganate concentration from CODMn change rates and that the opening size of sluice gates, NH3-N concentration from upper reaches, and water depth before the sluice have a negative influence and the inflow quantity from upper reaches and turbidity before the sluice have a positive influence on the NH3-N concentration change rates, which provides a scientific grounding for pollution control and sluice operations in SCRRs.

  17. Foreign Direct Investment and Trade Openness: The Case of Developing Economies

    ERIC Educational Resources Information Center

    Liargovas, Panagiotis G.; Skandalis, Konstantinos S.

    2012-01-01

    This paper examines the importance of trade openness for attracting Foreign Direct Investment (FDI) inflows, using a sample of 36 developing economies for the period 1990-2008. It provides a direct test of causality between FDI inflows, trade openness and other key variables in developing regions of the world: Latin America, Asia, Africa, CIS…

  18. 29 CFR 779.253 - What is included in computing the total annual inflow volume.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FAIR LABOR STANDARDS ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May... taxes and other charges which the enterprise must pay for such goods. Generally, all charges will be... computing the total annual inflow volume. The goods which the establishment purchases or receives for resale...

  19. The Growth of International Students and Economic Development: Friends or Foes?

    ERIC Educational Resources Information Center

    Adnett, Nick

    2010-01-01

    In recent years there has been a significant growth in the number of international students. In several developed countries the inflow of foreign tertiary students has become a significant source of income for higher education (HE) providers and the economy as a whole. This net inflow of foreign students has been indirectly and, more recently,…

  20. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries

    USGS Publications Warehouse

    Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.

    1990-01-01

    The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.

Top