Science.gov

Sample records for influence carbon dissolution

  1. Dissolution of carbon from alumina-carbon mixtures into liquid iron: Influence of carbonaceous materials

    NASA Astrophysics Data System (ADS)

    Khanna, Rita; Sahajwalla, Veena; Rodgers, Brenton; McCarthy, Fiona

    2006-08-01

    Due to their excellent thermal shock and wear resistance at high temperatures, alumina-carbon based refractories are used extensively in the steel industry. A clear understanding of factors affecting the dissolution of carbon from refractories is of crucial importance, as carbon depletion from the refractory can significantly deteriorate refractory performance and metal quality. Atomistic simulations on the alumina-graphite/liquid iron system have shown that nonwetting between alumina and liquid iron is an important factor inhibiting the penetration of liquid metal in the refractory matrix and limiting carbon dissolution. This study investigates the role played by the carbonaceous material in the dissolution of carbon from the refractory composite. Two carbonaceous materials, namely, petroleum coke and natural graphite, respectively, containing 0.35 and 5.26 pct ash, were used in this study. Substrates were prepared from mixtures of alumina and carbon over a wide concentration range. Using a sessile drop arrangement, carbon pickup by liquid iron from alumina-carbon mixtures was measured at 1550 °C and was compared with the carbon pickup from alumina-synthetic graphite mixtures. These studies were supplemented with wettability measurements and microscopic investigations on the interfacial region. For high alumina concentrations (>40 wt pct), carbon dissolution from refractory mixtures was found to be negligible for all carbonaceous materials under investigation. Significant differences however were observed at lower alumina concentrations. Carbon dissolution from alumina-petroleum coke mixtures was much lower than the corresponding dissolution from alumina synthetic graphite-mixtures and was attributed to poor wettability of petroleum coke with liquid iron, its structural disorder, and the presence of sulfur. Very high levels of carbon dissolution, however, were observed from alumina-natural graphite mixtures, with carbon pickup by liquid iron from mixtures with up

  2. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  3. Measuring The Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly-Heated Plain Carbon Steels.

    PubMed

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high temperature manufacturing processes, including high speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time-dependent. The present work uses a rapidly-heated, high strain rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about three seconds. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  4. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  5. Dissolution kinetics of calcium carbonate in equatorial Pacific sediments

    NASA Astrophysics Data System (ADS)

    Berelson, William M.; Hammond, Douglas E.; McManus, James; Kilgore, Tammy E.

    1994-06-01

    Benthic chambers were deployed in the equatorial eastern Pacific Ocean on a transect along the equator between 103°W and 140°W and on a transect across the equator at 140°W in order to establish the rate of calcium carbonate dissolution on the seafloor. Dissolution was determined from the rate of alkalinity increase within an incubation chamber, measured over an 80-120 hour incubation period. Dissolution rates were lowest at eastern Pacific sites (0.2-0.4 mmol CaCO3/m2/d) and highest at the equatorial, 140°W sites (0.5-0.7 mmol/m2/d). Both oxygen consumption rates and the degree of bottom water saturation govern dissolution rates. Measured dissolution and oxygen consumption rates are used with a numerical model to constrain the value of the dissolution rate constant k, formulated according to the equation developed by Keir [1980]: dissolution rate = kγ(1-Ω)n. The observed dissolution fluxes are predicted by the model when k = 5 to 100%/d and n = 4.5. This range of k values has important implications regarding the type of carbonate dissolving and its location within the sediment column. At low values of k, organic carbon rain rates to the seafloor become the dominant driving force of carbonate dissolution. At higher values of k, the degree of bottom water undersaturation becomes more important. Dissolution of carbonate within equatorial Pacific sediments can be adequately described with k = 20 ± 10%/d, a rate constant much lower than some previously used values. Dissolution rates do not vary significantly over chamber boundary layer thicknesses between 200 and 800 μm, indicating that dissolution is not controlled by hydrodynamic conditions. Chambers acidified with HCl yield very large dissolution rates, but for a given degree of acidification the dissolution rate was constant for sites ranging from water depths of 3300-4400 m. This implies that there are not more and less easily dissolved forms of CaCO3 arriving on the seafloor between these depths. A budget

  6. Carbon in oxides and silicates - Dissolution versus exsolution

    NASA Technical Reports Server (NTRS)

    Freund, F.

    1986-01-01

    A theory of CO2 dissolution in the solid state is developed, using the idea proposed by Freund (1983) concerning dissolution of CO/CO2 in MgO on the basis of their experimental results obtained with an MgO-containing carbon impurity. It is shown that the dissolution mechanism may be linked to an internal redox reaction by which a certain number of lattice oxygens change their formal oxidation state from -2 to -1, while the carbon becomes reduced. The similarities between the mechanisms of CO and/or CO2 dissolution and that of H2O dissolution are pointed out. A hypothesis is proposed concerning the exsolution of reduced carbon from supersaturated solid solutions under conditions which permit C-C bond formation.

  7. Constant composition kinetics study of carbonated apatite dissolution

    NASA Astrophysics Data System (ADS)

    Tang, Ruikang; Henneman, Zachary J.; Nancollas, George H.

    2003-03-01

    The carbonated apatites (CAP) may be more suitable models for biominerals such as bone and dental hard tissues than is pure hydroxyapatite (HAP) since they have similar chemical compositions. Although they contain only a relatively small amount of carbonate, the solubility and dissolution properties are different. The solubility product of the CAP particles used in this dissolution study, 2.88×10 -112 mol 18 l -18, was significantly greater than that of HAP, 5.52×10 -118 mol 18 l -18. The kinetics of dissolution of CAP has been studied using the constant composition (CC) method. At low undersaturations, the dissolution reaction appeared to be controlled mainly by surface diffusion with an effective reaction order of 1.9±0.1 with respect to the relative undersaturation. These results together with those obtained by scanning electron microscopy (SEM) suggest a dissolution model. Based on the surface diffusion theory of Burton, Cabrera and Frank (BCF). The interfacial tension between CAP and the aqueous phase calculated from this dissolution model, 9.0 m J m -2, was consistent with its relatively low solubility. An abnormal but interesting dissolution behavior is that the CAP dissolution rate was relatively insensitive to changes in calcium and phosphate concentrations at higher undersaturations, suggesting the importance of the carbonate component under these conditions.

  8. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro

    PubMed Central

    Henneman, Zachary J.; Nancollas, George H.; Ebetino, F. Hal; Russell, R. Graham G.; Phipps, Roger J.

    2009-01-01

    Bisphosphonates (BPs), which display a high affinity for calcium phosphate surfaces, are able to selectively target bone mineral, where they are potent inhibitors of osteoclast-mediated bone resorption. The dissolution of synthetic hydroxyapatite (HAP) has been used previously as a model for BP effects on natural bone mineral. The present work examines the influence of BPs on carbonated apatite (CAP), which mimics natural bone more closely than does HAP. Constant composition dissolution experiments were performed at pH 5.50, physiological ionic strength (0.15M) and temperature (37°C). Selected BPs were added at (0.5 × 10−6) to (50.0 × 10−6)M, and adsorption affinity constants, KL, were calculated from the kinetics data. The BPs showed concentration-dependent inhibition of CAP dissolution, with significant differences in rank order zoledronate > alendronate > risedronate. In contrast, for HAP dissolution at pH 5.50, the differences between the individual BPs were considerably smaller. The extent of CAP dissolution was also dependent on the relative undersaturation, σ, and CAP dissolution rates increased with increasing carbonate content. These results demonstrate the importance of the presence of carbonate in mediating the dissolution of CAP, and the possible involvement of bone mineral carbonate in observed differences in bone affinities of BPs in clinical use. PMID:17907244

  9. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  10. Microscopic Effects of Carbonate, Manganese, and Strontium ions on Calcite Dissolution

    SciTech Connect

    Lea, Alan S.; Amonette, James E.; Baer, Donald R.; Liang, Yong; Colton, Nancy G.

    2001-02-01

    Aqueous dissolution of the (1014) surface of calcite was observed at pH near 9 using an atomic force microscope equipped with a fluid cell. The influence of carbonate, Sr, and Mn ion concentrations were observed. Carbonste ions were shown to have a step-specific effect on calcite dissolution. At ow levels (5 mu-M) of carbonate, the retreat rate of the more structually open [441]+steps was than the retreat rate of the structurally confined [441]-steps, leading to anisotropic dissolution. Increasing the carbonate level to 200 mu-M decreased the rate of retreat of both steps, but the [411]+step was slowed to a much greater extent making the dissolution nearly isotropic. At high levels (800 mu-M) of carbonate, the rate of retreat of the [441]+step was slower than that of the [441]-step making dissolution anisotropic in the opposite sense to that observed at low levels of carbonate. This decrease in step velocity at high carbonate levels was attributed to a corresponding increase in the reaction (i.e., precipitation) as the solution approached saturation with respect to calcite, and thus is related to the rate of incorporation of calcium cations into the structure. In addition to changing the rate, this back reaction also altered the shape of etch pits formed by dissolution. Strontium cations were also shown to have a step-specific effect on calcite dissolution similar to that of carbonate, suggesting that strontium is preferentially incorporated into the [441]-step to a greater extent than strontium. When the solution exceeded saturation with respect to rhodochrosite, calcite dissolution was nearly isotropic. These results suggest that the small manganese ion (r = 83 pm), is readily incorporated into both [441]+ and [441]-steps, in contrast to the larger Ca (r = 100 pm) and Sr (r = 131 pm) cations, which are preferentially incorporated into the [441]+step.

  11. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi.

    PubMed

    Li, Wei; Zhou, Peng-Peng; Jia, Li-Ping; Yu, Long-Jiang; Li, Xue-Li; Zhu, Min

    2009-01-01

    Microorganisms influence the dissolution of a number of minerals. Limestone is one of the most abundant rock types in karst areas, and is predominantly calcium carbonate. Two types of experimental systems were designed in this paper, to make comparisons of limestone dissolution rate among the acidic materials and extracellular carbonic anhydrase (CA) excreted by fungi and the enwrapping effect of fungal mycelia. One was the simulated experimental system containing microorganisms. Another was the simulated experimental system without microorganisms. Results of previous experiment indicated that the acidic materials and CA like enzymatic materials excreted by fungi and the enwrapping effect of fungal mycelia were important factors influencing limestone dissolution. In the three factors mentioned above, the dissolution effect was mycelia enwraping effect>acidic dissolution effect>CA enzymatic effect. The results of the second experiment demonstrated further that the limestone dissolution effect of the acidic materials excreted by fungi was stronger than that of CA excreted by fungi. Nevertheless, CA still played an important role in promoting the dissolution of limestone.

  12. The Influence of Chelating Agents on the Kinetics of Calcite Dissolution.

    PubMed

    Fredd; Fogler

    1998-08-01

    The kinetics of calcite dissolution in the presence of calcium chelating agents was investigated over the pH range of 3.3-12 using a rotating disk apparatus. The results show that the rate of dissolution is increased significantly by the presence of chelating agents such as CDTA, DTPA, and EDTA. The rate of dissolution is influenced by the kinetics of the chelation reactions and varies considerably with pH and type of chelating agent. A surface chelation mechanism was introduced to describe the dissolution. The mechanism involves the adsorption of the chelating agent onto the calcite surface and follows Langmuir-Hinshelwood kinetics. The dissolution is different from conventional hydrogen ion attack in that the chelating agent attacks the calcium component of the lattice rather than the carbonate component. Therefore, the rate of dissolution is enhanced by the influence of hydrogen ion attack at low pH. In addition, the various ionic forms of the chelating agents react with the calcite surface at different rates depending on the number of hydrogen ions associated with the species. In general, the rate of dissolution increases with increasing protonation. The surface complexation mechanism was shown to describe the rate of calcite dissolution in the presence of chelating agents over the pH range of 4-12. Copyright 1998 Academic Press.

  13. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  14. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  15. Influence of dipalmitoylphosphatidylcholine on the dissolution of Brazilian chrysotile.

    PubMed

    Valentim, I B; Martins, M H; Joekes, I

    2008-10-01

    It is known that Brazilian chrysotile is rapidly removed from the lungs, but quantitative studies about the influence of lung surfactants on chrysotile dissolution have not been investigated. In this work, the chemical behavior of chrysotile and its dissolution in the presence of dipalmitoylphosphatidylcholine (DPPC) were investigated in physiological conditions. The dissolution was investigated through quantification of magnesium and silicon released by chrysotile. At 37 degrees C, the magnesium concentration is similar to control (without DPPC), which is about 2.0x10(-4)molL(-1), meaning that the dissolution process is not affected by the presence of this surfactant. The same was observed for silicon. The silicon concentration released by chrysotile is similar in all media tested. It is known that the dissolution mechanisms of brucite and tridymite layers are different. From our results, we propose that under physiological conditions, the mechanism of brucite dissolution is based on its interaction with hydrogen ions and that the mechanism of tridymite dissolution is based on a hydrolysis process.

  16. CTAB-Influenced Electrochemical Dissolution of Silver Dendrites.

    PubMed

    O'Regan, Colm; Zhu, Xi; Zhong, Jun; Anand, Utkarsh; Lu, Jingyu; Su, Haibin; Mirsaidov, Utkur

    2016-04-19

    Dendrite formation on the electrodes of a rechargeable battery during the charge-discharge cycle limits its capacity and application due to short-circuits and potential ignition. However, understanding of the underlying dendrite growth and dissolution mechanisms is limited. Here, the electrochemical growth and dissolution of silver dendrites on platinum electrodes immersed in an aqueous silver nitrate (AgNO3) electrolyte solution was investigated using in situ liquid-cell transmission electron microscopy (TEM). The dissolution of Ag dendrites in an AgNO3 solution with added cetyltrimethylammonium bromide (CTAB) surfactant was compared to the dissolution of Ag dendrites in a pure aqueous AgNO3 solution. Significantly, when CTAB was added, dendrite dissolution proceeded in a step-by-step manner, resulting in nanoparticle formation and transient microgrowth stages due to Ostwald ripening. This resulted in complete dissolution of dendrites and "cleaning" of the cell of any silver metal. This is critical for practical battery applications because "dead" lithium is known to cause short circuits and high-discharge rates. In contrast to this, in a pure aqueous AgNO3 solution, without surfactant, dendrites dissolved incompletely back into solution, leaving behind minute traces of disconnected silver particles. Finally, a mechanism for the CTAB-influenced dissolution of silver dendrites was proposed based on electrical field dependent binding energy of CTA(+) to silver.

  17. Comment on "On the influence of carbonate in mineral dissolution: 1. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25°C" by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg

    NASA Astrophysics Data System (ADS)

    Hummel, Wolfgang

    2000-06-01

    Within the scope of a planned update of the Nagra/PSI thermochemical database (Pearson and Berner, 1991; Pearson et al., 1992) we are currently reviewing data concerning the carbonate complexation of trace metals (Hummel et al., 2000). The investigation of Bruno et al. (1992) attracted our attention because it is to our present knowledge the only publication exploring the carbonate complexation of ferric iron. The lack of stability constants of Fe(III) carbonate complexes is regarded as a serious deficiency in our database, and therefore, the work of Bruno et al. (1992) has been carefully reviewed with the aim of including their results into the next version of the Nagra/PSI database. The important findings of Bruno et al. (1992) unfortunately are disguised by some inconsistencies in the treatment of their experimental data that, in turn, hide an unresolved ambiguity in their experiments: The stability constants of the complexes as reported by Bruno et al. (1992), and as already included into the IUPAC database (IUPAC, 1997), are such small numbers that Fe(III) carbonate complexes are predicted to be completely negligible in any aqueous system. On the other hand, their experimental findings point to the fact that Fe(III) carbonate complexes might be important in many groundwater systems. This comment aims at resolving this enigma and clarifying the importance of Fe(III) carbonate complexation.

  18. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  19. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  20. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    SciTech Connect

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO{sub 2} in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO{sub 2} at 40°C and 10MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  1. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    PubMed Central

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-01-01

    Abstract Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of −0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  2. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  3. Carbonate mineral dissolution kinetics in high pressure experiments

    NASA Astrophysics Data System (ADS)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  4. Effect of trace lanthanum ion on dissolution and crystal growth of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Kamiya, Natsumi; Kagi, Hiroyuki; Tsunomori, Fumiaki; Tsuno, Hiroshi; Notsu, Kenji

    2004-07-01

    Impurity effects of trace lanthanum ion (La 3+) on the dissolution and growth of calcium carbonate were studied with in situ observation techniques. Dissolution kinetics of two polymorphs of calcium carbonate, calcite and vaterite, were investigated by monitoring the pH in the solution with laser-induced fluorescence spectroscopy using a pH-sensitive reagent, seminaphthorhodafluors. No effect on dissolution of vaterite was observed with the spectroscopic observations, whereas calcite dissolution was significantly inhibited by lanthanum ion with concentrations higher than 1 μM. Crystal growth and dissolution processes of calcite under the lanthanum-doped condition were observed by means of atomic force microscopy. Step propagations during crystal growth and dissolution of calcite were inhibited by trace lanthanum ion (5 μM). An insoluble thin layer of lanthanum carbonate deposited on the step site of the calcite surface could be a possible cause of the inhibitions observed both for dissolution and growth.

  5. Dissolution of Calcite in the Twilight Zone: Bacterial Control of Dissolution of Sinking Planktonic Carbonates Is Unlikely

    PubMed Central

    Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  6. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    ) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the

  7. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these

  8. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).

    PubMed

    Grange, J S; Rybarczyk, H; Tribollet, A

    2015-09-01

    Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure.

  9. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    PubMed

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy.

  10. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements

    PubMed Central

    Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, PCO2, variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to -2.17 mmol·L-1

  11. Thermodynamic Simulation of Carbonate Cements-Water-Carbon Dioxide Equilibrium in Sandstone for Prediction of Precipitation/Dissolution of Carbonate Cements.

    PubMed

    Duan, Yiping; Feng, Mingshi; Zhong, Xinyan; Shang, Ruishu; Huang, Lihong

    2016-01-01

    Carbonate cements, such as calcite, dolomite, ferrocalcite and ankerite, play important roles in the formation of pores in sandstones: precipitation of carbonate cements modifies pores and inhibits compaction, while dissolution creates secondary pores. This work proposed a precipitation-dissolution model for carbonate cements-CO2-H2O system by means of ion equilibrium concentration ([M2+], M = Ca, Mg, Fe or Mn) with different factors, such as temperature, depth, pH, [Formula: see text], variable rock composition and overpressure. Precipitation-dissolution reaction routes were also analyzed by minimization of the total Gibbs free energy (ΔG). Δ[M2+], the variation of [Ca2+], [Fe2+], [Mg2+] or [Mn2+] for every 100 m of burial depths, is used to predict precipitation or dissolution. The calculation results indicate that the increasing temperature results in decrease of equilibrium constant of reactions, while the increasing pressure results in a relatively smaller increase of equilibrium constant; As a result, with increasing burial depth, which brings about increase of both temperature and pressure, carbonate cements dissolve firstly and produces the maximal dissolved amounts, and then precipitation happens with further increasing depth; For example, calcite is dissolving from 0.0 km to 3.0 km with a maximal value of [Ca2+] at depth of 0.8 km, and then precipitates with depth deeper than 3.0 km. Meanwhile, with an increasing CO2 mole fraction in the gaseous phase from 0.1% to 10.0% in carbonate systems, the aqueous concentration of metal ions increases, e.g., dissolved amount of CaFe0.7Mg0.3(CO3)2 increases and reaches maximum of 1.78 mmol·L-1 and 8.26 mmol·L-1 at burial depth of 0.7 km with CO2 mole fraction of 0.1% and 10.0%, respectively. For the influence of overpressure in the calcite system, with overpressure ranging from 36 MPa to 83 MPa, pH reaches a minimum of 6.8 at overpressure of 51 MPa; meanwhile, Δ[Ca2+] increases slightly from -2.24 mmol·L-1 to

  12. Calcium Carbonate Scale Dissolution in Water Stabilized by Carbon Dioxide Treatment

    DTIC Science & Technology

    1990-01-01

    in Aqueous Systems (E.A. Jenne, Ed.), ACS Symposium Series 93 (American Chemical Society, 1979); R. A. Bemer and J. W. Morse "Dissolution Kinetics of...Veyl. "A. J. Ellis, "The Solubility-of Calcite in Carbon Dioxide Solutions," American Journal of Science, Vol 257 (May 1959). "R. A. Bemer and J. W...Morse. "L. N. Plummer; T. M. L. Wigley, and D. L. Parkhurst. ISR. A. Bemer and J. W. Morse. 13 0.9 - 0.8 EXPLANATION 0 kja. = k2&,ca0.+ k%,o ! 0.7k ky

  13. Kinetics of carbonate mineral dissolution in CO2-acidified brines at storage reservoir conditions.

    PubMed

    Peng, Cheng; Anabaraonye, Benaiah U; Crawshaw, John P; Maitland, Geoffrey C; Trusler, J P Martin

    2016-10-20

    We report experimental measurements of the dissolution rate of several carbonate minerals in CO2-saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO2-saturated NaCl brines with molalities of up to 5 mol kg(-1). The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO2-saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO2-saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO2-injection into carbonate-mineral saline aquifers.

  14. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    PubMed

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies.

  15. The Influence of Milling on the Dissolution Performance of Simvastatin.

    PubMed

    Zimper, Ulrike; Aaltonen, Jaakko; Krauel-Goellner, Karen; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2010-12-17

    Particle size reduction is a simple means to enhance the dissolution rate of poorly water soluble BCS-class II and IV drugs. However, the major drawback of this process is the possible introduction of process induced disorder. Drugs with different molecular arrangements may exhibit altered properties such as solubility and dissolution rate and, therefore, process induced solid state modifications need to be monitored. The aim of this study was two-fold: firstly, to investigate the dissolution rates of milled and unmilled simvastatin; and secondly, to screen for the main milling factors, as well as factor interactions in a dry ball milling process using simvastatin as model drug, and to optimize the milling procedure with regard to the opposing responses particle size and process induced disorder by application of a central composite face centered design. Particle size was assessed by scanning electron microscopy (SEM) and image analysis. Process induced disorder was determined by partial least squares (PLS) regression modeling of respective X-ray powder diffractograms (XRPD) and Raman spectra. Valid and significant quadratic models were built. The investigated milling factors were milling frequency, milling time and ball quantity at a set drug load, out of which milling frequency was found to be the most important factor for particle size as well as process induced disorder. Milling frequency and milling time exhibited an interaction effect on the responses. The optimum milling settings using the maximum number of milling balls (60 balls with 4 mm diameter) was determined to be at a milling frequency of 21 Hz and a milling time of 36 min with a resulting primary particle size of 1.4 μm and a process induced disorder of 6.1% (assessed by Raman spectroscopy) and 8.4% (assessed by XRPD), at a set optimization limit of < 2 μm for particle size and < 10% for process induced disorder. This optimum was tested experimentally and the process induced disorder was

  16. Predicting carbonate mineral precipitation/dissolution events during progressive diagenesis of clastic rocks

    SciTech Connect

    Surdam, R.C.; MacGowan, D.B.; Dunn, T.L. ); Moraes, M. )

    1991-03-01

    There is an observable, regular progression of early and late carbonate cements that is separated by carbonate mineral dissolution in many sandstones during progressive burial and diagenesis. The distribution of early cements is a function of incipient hydration of framework grains, sulfate reduction, and bacterial methanogenesis. These early cements typically precipitate from the sediment water interace to burial depths corresponding to about 80C. The distribution of late carbonate cements is a function of the relationship of organic acid anions, aluminosilicate reactions and CO{sub 2} in formation waters. Elevated PCO{sub 2} in a fluid where the pH is buffered by organic acid anions or aluminosilicates results in precipitation of a late carbonate cement (typically ferroan); these late carbonate cements generally form over the temperature interval of 100-130C. The late and early carbonate cement events are separated in time by a period of carbonate mineral dissolution or nonprecipitation. This dissolution is related to the increase in concentration of carboxylic acid anions resulting from the thermocatalytic cracking of oxygen-bearing functional groups from kerogen and/or redox reactions involving kerogen. Examples of the importance of early carbonate cementation/decementation to hydrocarbon reservoirs include the Campos basin of Brazil and the U.S. Gulf Coast. An example of late carbonate cementation/decementation includes the Norphlet Formation. This observed sequence of cementation and decementation can be modeled, and the modeling results can be used to predict enhanced porosity in the subsurface.

  17. Experimental determination of natural carbonate rock dissolution rates with a focus on temperature dependency

    NASA Astrophysics Data System (ADS)

    Kirstein, Jens; Hellevang, Helge; Haile, Beyene G.; Gleixner, Gerd; Gaupp, Reinhard

    2016-05-01

    The denudation of carbonate rocks at landscape scale is controlled by factors like mineral composition, temperature, precipitation, runoff, fracture spacing and vegetation cover. Knowledge on carbonate denudation is important in order to understand landscape development and long-term terrestrial/marine carbon transport, but there are few laboratory studies done on weathering rates of natural carbonate rocks under the low temperatures relevant for glacial-interglacial periods. To enhance the understanding of carbonate dissolution kinetics we studied low-temperature dissolution reactions of various natural Triassic carbonate rocks belonging to the Lower Muschelkalk in Germany. We conducted batch and flow-through experiments investigating the direct correlation of dissolution rates with temperature, and to establish whether the fine-grained carbonate rocks (micrite) are more reactive than the coarser-grained sparitic limestones. By increasing the temperature from 5 to 26 °C far-from-equilibrium dissolution rates of micritic and sparitic limestone samples increased from 2.42 × 10- 07 to 10.88 × 10- 07 and 4.19 × 10- 07 to 7.74 × 10- 07 mol m- 2 s- 1, respectively (Specific Surface Areas (SSA) of about 0.006-0.01 m2/g). The dissolution rates of dolomite rock samples varied only slightly from 1.06 × 10- 07 to 2.02 × 10- 07 mol m- 2 s- 1 (SSA approximately 0.002 m2/g) in the temperature range 5-25 °C at circum-neutral pH. The obtained apparent activation energies are in the range of earlier experiments done at higher temperatures, but there is a distinct difference between the calcite in the micrite (~ 51 kJ/mol) and sparitic (~ 20-22 kJ/mol) lithologies, indicating that the dissolution mechanisms are not the same. Using these activation energies in modelling of natural carbonate denudation we see that there is a clear effect of changing temperature, but this is mostly through the increased solubility at lower temperatures and not through the increasing far

  18. Comparison of Two Different Approaches to CO2 Dissolution Modeling in Geological Carbon Storage

    NASA Astrophysics Data System (ADS)

    van Nierop, E. A.; Saadatpoor, E.; Bryant, S. L.

    2011-12-01

    In geologic carbon sequestration there are three modes of storage that decrease the risk of leakage over a long period of time: residual, dissolution, and mineral trapping. Dissolution trapping is immobilization of CO2 as aqueous species are dissolved in previously uncontacted brine. The injected CO2 will dissolve in brine and the resulting brine-CO2 mixture will be slightly denser than the brine alone. Slow vertical flow of denser brine will cause further dissolution, as fresh brine is brought in contact with the CO2 phase. Hence, a compositional simulator that correctly models phase behavior is essential for geological CO2 storage simulation. The phase behavior model should predict the phase equilibrium compositions of the CO2-brine system and resulting densities of the phases in agreement with experimental data. In this work, we conduct a field study of CO2 storage in saline aquifers in Illinois and North Dakota. We compare two methods to model the phase behavior. First, a tuned Peng-Robinson equation of state (Kumar, 2004) is used. It is tuned using experimental data for solubility and density over the wide range of pressures, temperatures, and salinities that would be found in aquifer conditions. Second, an enhanced solubility model (Harvey, 1996) for CO2 Henry's constant is used. The Henry's constant is a function of pressure, temperature, and salinity. We study the effect of salinity, permeability heterogeneity, and vertical gridding on the two methods of dissolution modeling. The results of the two methods show good agreement in the amount of dissolution at higher salinities, which validates the consistency of each method in predicting the experimental data in that range, as reported in previously published studies. However, in lower salinities the tuned EOS method does not show a significant change in the solubility of CO2, which is inconsistent with the literature-reported increase in CO2 solubility as salinity decreases. Henry's method seems to give a

  19. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  20. Ion-specific effects influencing the dissolution of tricalcium silicate

    SciTech Connect

    Nicoleau, L.; Schreiner, E.; Nonat, A.

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  1. CO2-induced dissolution of low permeability carbonates. Part II: Numerical modeling of experiments

    NASA Astrophysics Data System (ADS)

    Hao, Yue; Smith, Megan; Sholokhova, Yelena; Carroll, Susan

    2013-12-01

    We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity-permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts. The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more

  2. Terraforming Mars: dissolution of carbonate rocks by cyanobacteria.

    PubMed

    Friedmann, E I; Hua, M; Ocampo-Friedmann, R

    1993-01-01

    One of the most difficult tasks in terraforming Mars is the release into the atmosphere of CO2 bound by the surface of Mars. Even if a sufficiently dense CO2 atmosphere can be created by appropriate technology, the maintenance of CO2 concentration remains a problem. As Mars lacks plate tectonics as well as active volcanism, an Earth-like carbon cycle cannot be reproduced there. We suggest that Matteia sp., a lime-boring cyanobacterium isolated from Negev desert rocks, be used to dissolve carbonate rocks both for initial release of CO2 and in design of a Martian carbon cycle.

  3. Experiment and Simulation Study of Hydrodynamic Dispersion and Finger Dynamics for Convective Dissolution of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic CO2 emissions from industrial point sources. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiment method, advanced image processing method and optimized simulation method to characterize CO2 convective dissolution trapping process and gravitational finger behaviors, in order to study the effect of hydrodynamic dispersion on the CO2 convective dissolution process, as well as to study the effect of control physical parameters on the gravitational finger dynamics. Figure 1 shows the image processing method to analyze the finger dynamics. Understanding the effect of hydrodynamic dispersion and the finger dynamics are essential to evaluate whether convective dissolution occurs, as well as to predict how fast it occurs at the geological CO2 storage field scale. The effect of hydrodynamics dispersion and the finger dynamics can be applied to estimate the security of geological CO2 storage fields, in turn. Optimiezed simulation work is conducted to predict the CO2 dissolution rate at geological CO2 storage field. The large experimental assembly will allow us to quantify in detail for the first time the relationship between convective dissolution rate and the controlling factors of the system, including permeability and driven force, which could be essential to trapping process at Bravo Dome geological CO2 storage field. We complement the homogeneous experiments with a detailed study of the scaling law of the convective flux with dispersion effect. The advanced image processing method with Fourier's transform method allow us to understand the finger dynamics and corresponding control factors in porous media, for the first time. By applying the dispersion effect and finger dynamics we found from the experimental study, we optimize the simulation

  4. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  5. Macroscopic rates, microscopic observations, and molecular models of the dissolution of carbonate phases.

    SciTech Connect

    Duckworth, Owen W.; Cygan, Randall Timothy; Martin, Scot T.

    2004-05-01

    Bulk and surface energies are calculated for endmembers of the isostructural rhombohedral carbonate mineral family, including Ca, Cd, Co, Fe, Mg, Mn, Ni, and Zn compositions. The calculations for the bulk agree with the densities, bond distances, bond angles, and lattice enthalpies reported in the literature. The calculated energies also correlate with measured dissolution rates: the lattice energies show a log-linear relationship to the macroscopic dissolution rates at circumneutral pH. Moreover, the energies of ion pairs translated along surface steps are calculated and found to predict experimentally observed microscopic step retreat velocities. Finally, pit formation excess energies decrease with increasing pit size, which is consistent with the nonlinear dissolution kinetics hypothesized for the initial stages of pit formation.

  6. Influence of Bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features.

    PubMed

    Friis, A K; Davis, T A; Figueira, M M; Paquette, J; Mucci, A

    2003-06-01

    This study investigates the influence of EDTA and the Gram-positive cell walls of Bacillus subtilis on the dissolution rates and development of morphological features on the calcite [1014] surface. The calcite dissolution rates are compared at equivalent saturation indicies (SI) and relative to its dissolution behavior in distilled water (DW). Results indicate that the presence of metabolically inactive B. subtilis does not affect the dissolution rates significantly. Apparent increases in dissolution rates in the presence of the dead bacterial cells can be accounted for by a decrease of the saturation state of the solution with respect to calcite resulting from bonding of dissolved Ca2+ by functional groups on the cell walls. In contrast, the addition of EDTA to the experimental solutions results in a distinct increase in dissolution rates relative to those measured in DW and the bacterial cell suspensions. These results are partly explained by the 6.5-8 orders of magnitude greater stability of the Ca-EDTA complex relative to the Ca-B. subtilis complexes as well as its free diffusion to and direct attack of the calcite surface. Atomic force microscopy images of the [1014] surface of calcite crystals exposed to our experimental solutions reveal the development of dissolution pits with different morphologies according to the nature and concentration of the ligand. Highly anisotropic dissolution pits develop in the early stages of the dissolution reaction at low B. subtilis concentrations (0.004 mM functional group sites) and in DW. In contrast, at high functional group concentrations (4.0 mM EDTA or equivalent B. subtilis functional group sites), dissolution pits are more isotropic. These results suggest that the mechanism of calcite dissolution is modified by the presence of high concentrations of organic ligands. Since all the pits that developed on the calcite surfaces display some degree of anisotropy and dissolution rates are strongly SI dependent, the rate

  7. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  8. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Steinacher, M.; Joos, F.

    2015-12-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve

  9. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Kochhann, Karlos G. D.; Holbourn, Ann; Kuhnt, Wolfgang; Channell, James E. T.; Lyle, Mitch; Shackford, Julia K.; Wilkens, Roy H.; Andersen, Nils

    2016-09-01

    The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (δ18O) and carbon (δ13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic Ice Sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity, and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337, and U1338 on a consistent, astronomically tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on δ13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our intersite comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleodepths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (δ18O minima) and δ13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to δ13C maxima and δ18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

  10. HLW glass dissolution in the presence of magnesium carbonate: Diffusion cell experiment and coupled modeling of diffusion and geochemical interactions

    NASA Astrophysics Data System (ADS)

    Debure, Mathieu; De Windt, Laurent; Frugier, Pierre; Gin, Stéphane

    2013-11-01

    The influence of diffusion of reactive species in aqueous solutions on the alteration rate of borosilicate glass of nuclear interest in the presence of magnesium carbonate (hydromagnesite: 4MgCO3·Mg(OH)2·4H2O) is investigated together with the ability of coupled chemistry/transport models to simulate the processes involved. Diffusion cells in which the solids are separated by an inert stainless steel sintered filter were used to establish parameters for direct comparison with batch experiments in which solids are intimately mixed. The chemistry of the solution and solid phases was monitored over time by various analytical techniques including ICP-AES, XRD, and SEM. The primary mechanism controlling the geochemical evolution of the system remains the consumption of silicon from the glass by precipitation of magnesium silicates. The solution chemistry and the dissolution and precipitation of solid phases are correctly described by 2D modeling with the GRAAL model implemented in the HYTEC reactive transport code. The spatial symmetry of the boron concentrations in both compartments of the cells results from dissolution coupled with simple diffusion, whereas the spatial asymmetry of the silicon and magnesium concentrations is due to strong coupling between dissolution, diffusion, and precipitation of secondary phases. A sensitivity analysis on the modeling of glass alteration shows that the choice of these phases and their thermodynamic constants have only a moderate impact whereas the thickness of the filter has a greater barrier effect.

  11. Influence of polycarboxylic acid chelating agents on the kinetics of the dissolution of metal oxides

    SciTech Connect

    Dyatlova, N.M.; Gorichev, I.G.; Dukhanin, V.S.; Malov, L.V.

    1986-11-01

    The factors influencing the rate of dissolution of metal oxides in aqueous solutions of acids in the presence of polycarboxylic acid chelating agents and other complexing agents have been quantitatively compared in this review, and the decisive role of the gradient of protons and electrons in the realization of this process has been revealed. The main hypotheses of the proposed conceptions of the electron-proton theory for the dissolution of metal oxides have been stated: 1) The rate-limiting step is charge transfer (first hypothesis); 2) The rate limiting step is the desorption of the dissolution products (second hypothesis). The applicability of the proposed electron-proton theory to the theoretical substantiation of all the experimentally observed kinetic features of the influence of various factors has been demonstrated. Practical recommendations for the effective utilization of the chelating agents considered for removing iron oxide surface deposits have been given.

  12. Acid dissolution experiments - Carbonates and the 6.8-micrometer bands in interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.

    1986-01-01

    A chemical dissolution experiment on an interplanetary dust particle (IDP) showed that carbonates, not acid-insoluble organic compounds, were responsible for virtually all the absorption at 6.8 micrometers seen in the infrared spectra of this particle. The IDP examined had an infrared spectrum characteristic of layer-lattice silicates and belongs to a class of IDP's whose spectra resemble those of protostellar objects like W33 A, which also exhibit a band at 6.8 micrometers.

  13. Acid dissolution experiments - Carbonates and the 6.8-micrometer bands in interplanetary dust particles

    NASA Astrophysics Data System (ADS)

    Sandford, S. A.

    1986-03-01

    A chemical dissolution experiment on an interplanetary dust particle (IDP) showed that carbonates, not acid-insoluble organic compounds, were responsible for virtually all the absorption at 6.8 micrometers seen in the infrared spectra of this particle. The IDP examined had an infrared spectrum characteristic of layer-lattice silicates and belongs to a class of IDP's whose spectra resemble those of protostellar objects like W33 A, which also exhibit a band at 6.8 micrometers.

  14. The Impact of Mineral Dissolution on Multiphase Flow in Permeable Carbonates

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Niu, B.

    2015-12-01

    Carbon dioxide injection into deep saline aquifers is governed by a number of physicochemical processes at a broad range of spatial scales including mineral dissolution and precipitation, fluid flow, and capillary trapping. Past efforts have mostly focused on measuring the multiphase flow properties, capillarity, relative permeability, and residual trapping. However, the impact of fluid-rock interaction on these properties is less well understood. In this work we have made a series of measurements characterizing the impact of rock mineral dissolution on multiphase flow in three carbonate rocks. We used core flooding techniques to mimic reactive conditions representative of the near the well bore and far field regions of a carbonate reservoir CO2 injection project. Tests sequentially induced mineral dissolution and characterized the impacts on multiphase flow properties. Temperature retarded acid was used to uniformly dissolve calcite in Ketton, Estaillades, and Edward Brown rock cores. A single dissolution stages removed approximately 0.5% of the mass of the rocks and measurements of relative permeability and residual trapping were made after each stage along with mercury injection capillary pressure (MICP) to quantify the variation of in the pore size distribution. Three Stages were performed on each of carbonates rocks. Imaging with x-ray micro-CT and medical CT were used to quantify the porosity variation and observe the changes in pore structure and multiphase flow properties at scales from the um to the cm. The pore size distribution of the rocks was observed to both increase and become less uniform with progressive dissolution, as shown in Figure 1. For Ketton, the micro-pores, with size range from 0.01 um to 0.1um, have less been involved in the reaction than the macro-pores (10 um to 100 um). A larger spread in capillary trapping was seen around a characteristic initial-residual curve. Relative permeability changes with progressive dissolution was not well

  15. Impact of geoengineering with olivine dissolution on the carbon cycle and marine biology

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Abrams, J.; Völker, C.; Wolf-Gladrow, D. A.; Hartmann, J.

    2012-04-01

    We investigate the potential of a specific geoengineering technique: the carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification. If details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. These upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2 in examples for the rivers Amazon and Congo (Köhler et al., 2010). The secondary effects of the input of silicic acid connected with this approach leads in an ecosystem model (ReCOM2.0 in MITgcm) to species shifts aways from the calcifying species towards diatoms, thus altering the biological carbon pumps. Open ocean dissolution of olivine would sequestrate about 1 Pg CO2 per Pg olivine from which about 8% are caused by changes in the biological pumps (increase export of organic matter, decreased export of CaCO3). The chemical impact of open ocean dissolution of olivine (the increased alkalinity input) is therefore less efficient than dissolution on land, but leads due to different chemical impacts to a higher surface ocean pH enhancement to counteract ocean acidification. We finally investigate open ocean dissolution rates of up to 10 Pg olivine per year corresponding to geoengineering rates which might be of interest in the light of expected future emission (e.g. A2 scenario with emissions rising to 30 PgC/yr in 2100 AD). Those rates would still sequestrate only less than 20% of the emission until 2100, but would require that the nowadays available

  16. Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, eastern equatorial Atlantic Ocean

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.; Cepek, P.

    1981-01-01

    Most of the Tertiary section on Sierra Leone Rise off northwest Africa consists of chalk, marl, and limestone that show cyclic alterations of clay-rich and clay-poor beds about 20-60 cm thick. On the basis of biostratigraphic accumulation rates, the cycles in Oligocene and Miocene chalk have periods which average about 44,000 years, and those in Eocene siliceous limestone have periods of 4000-27,000 years. Several sections were sampled in detail to further define the cycles in terms of content of CaCO3, clay minerals, and relative abundances of calcareous nannofossils. Extending information gained by analyses of Pleistocene cores from the continental margin of northwest Africa to the Tertiary cycles on Sierra Leone Rise, both dilution by noncarbonate material and dissolution of CaCO3 could have contributed to the observed relative variations in clay and CaCO3. However, dissolution of CaCO3 as the main cause of the carbonate-clay cycles on the Sierra Leone Rise, rather than dilution by clay, is suggested by the large amount of change (several thousand percent) in terrigenous influx required to produce the observed variations in amount of clay and by the marked increase in abundance of dissolution-resistant discoasters relative to more easily dissolved coccoliths in low-carbonate parts of cycles. The main cause of dissolution of CaCO3 was shoaling of the carbonate compensation depth (CCD) during the early Neogene and climatically induced fluctuations in the thickness of Antarctic Bottom Water. ?? 1981.

  17. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials.

    PubMed

    Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D

    2017-01-01

    Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.

  18. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid

    PubMed Central

    Li, Zi; Matzger, Adam J.

    2016-01-01

    Cocrystallization is a technique to optimize solid forms that shows great potential to improve the solubility of active pharmaceutical ingredients (APIs). In some systems, an API can form cocrystals in multiple stoichiometries with the same coformer. However, it remains unclear how coformer stoichiometry influences solubility. This paper investigates the pharmaceutical:coformer pair carbamazepine (CBZ)/p-aminobenzoic acid (PABA); both CBZ/PABA 1:1 and 2:1 cocrystals are known, and a novel 4:1 CBZ/PABA cocrystal is reported here. The 4:1 cocrystal is structurally characterized, and phase stability data suggest that it is a thermodynamically unstable form. Dissolution experiments show that there is no correlation between the cocrystal stoichiometry and dissolution rate in this system. On the other hand, with the relatively weak intermolecular interactions, metastable forms can be beneficial to dissolution rate, which suggests that more effort should be devoted to cocrystal production with kinetic growth methods. PMID:26837376

  19. Influence of EDTA and dentine in tissue dissolution ability of sodium hypochlorite.

    PubMed

    de Almeida, Luiza Helena Silva; Leonardo, Natália Gomes e Silva; Gomes, Ana Paula Neutzling; Souza, Erick Miranda; Pappen, Fernanda Geraldes

    2015-04-01

    This study verified whether ethylenediaminetetraacetic acid (EDTA) influences the pulp tissue dissolution capability of different concentrations of NaOCl, in the presence of dentine. NaOCl and EDTA solutions were simultaneously mixed in flasks either containing a dentine disc or those not containing a dentine disc. Previously weighed bovine pulp tissues were immersed in the solutions for 5, 15 and 30 min. The weight loss was measured. The dissolution tests were performed in triplicate. Univariate analysis of variance, along with further Tukey's honestly significant difference pairwise comparisons, was used to verify the effect of EDTA, different concentrations of NaOCl, dentine and time of incubation on the tissue dissolution. Higher concentrations of NaOCl increased the tissue dissolution. EDTA reduced the capacity of NaOCl to dissolve pulp tissue, even in presence of dentine. Dentine negatively affects the capacity of NaOCl to dissolve pulp tissue. In conclusion, the presence of EDTA and dentine negatively affects the tissue dissolution ability of NaOCl.

  20. Dissolution-rate enhancement of fenofibrate by adsorption onto silica using supercritical carbon dioxide.

    PubMed

    Sanganwar, Ganesh P; Gupta, Ram B

    2008-08-06

    Dissolution rate of a poorly water-soluble drug, fenofibrate, is increased by adsorbing the drug onto silica. The adsorption is achieved by first dissolving the drug in supercritical carbon dioxide and then depressurizing the solution onto silica. Loadings of up to 27.5 wt.% drug onto silica are obtained. Since solvents are not used in the loading process, the fenofibrate/silica formulation is free of any residual solvent, and carbon dioxide is freely removed upon depressurization. The formulation is characterized using infrared spectroscopy, ultraviolet spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Based on in vitro dissolution study, a significant increase in the dissolution rate (approximately 80% drug release in 20 min) of drug-silica formulation is observed as compared to micronized fenofibrate (approximately 20% drug release in 20 min), which can be attributed to increase in the surface area and decrease in the crystallinity of drug after adsorption onto silica. Two different formulations are compared: (A) amorphous fenofibrate/silica and (B) slightly crystalline fenofibrate/silica. The second formulation is found to be more stable on storage.

  1. Pore-scale simulation of carbonate dissolution in micro-CT images

    NASA Astrophysics Data System (ADS)

    Pereira Nunes, J. P.; Blunt, M. J.; Bijeljic, B.

    2016-02-01

    We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime - Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.

  2. Chemical structure influence on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux.

    PubMed

    Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R

    2017-03-01

    The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction

  3. Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2).

    PubMed

    Xie, Yanjiao; Wang, Yin; Singhal, Vidhi; Giammar, Daniel E

    2010-02-01

    Lead(IV) oxide is a corrosion product that can develop on lead pipes and affect lead concentrations in drinking water. Continuously stirred flow-though reactors were used to quantify the dissolution rates of plattnerite (beta-PbO(2)) at different pH values and dissolved inorganic carbon (DIC) concentrations. Organic pH buffers were not used, because several were found to be reductants for PbO(2) that accelerated its dissolution. Most plattnerite dissolution rates were on the order of 10(-10) mol/min-m(2). The rate of dissolution increased with decreasing pH and with increasing DIC. The effect of DIC is consistent with a reductive dissolution mechanism that involves the reduction of Pb(IV) to Pb(II) at the plattnerite surface followed by the formation of soluble Pb(II)-carbonate complexes that accelerate Pb(II) release from the surface. Under the experimental conditions, dissolved lead concentrations were controlled by the dissolution rate of plattnerite and not by its equilibrium solubility. A dissolution rate model was developed and can be used to predict dissolution rates of plattnerite as a function of pH and DIC.

  4. Effect of magnesium carbonate on the solubility, dissolution and oral bioavailability of fenofibric acid powder as an alkalising solubilizer.

    PubMed

    Kim, Kyeong Soo; Kim, Jeong Hyun; Jin, Sung Giu; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Li, Dong Xun; Woo, Jong Soo; Choi, Han-Gon

    2016-04-01

    To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability.

  5. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks

    NASA Astrophysics Data System (ADS)

    Nogues, Juan P.; Fitts, Jeffrey P.; Celia, Michael A.; Peters, Catherine A.

    2013-09-01

    A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reaction-induced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain.

  6. Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Klier, Christine; Schröder, Christian; Händel, Matthias; Bosch, Julian; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-08-01

    Microbial reduction of ferric iron is partly dependent on Fe hydroxide particle size: nanosized Fe hydroxides greatly exceed the bioavailability of their counterparts larger than 1 μm. Citrate as a low molecular weight organic acid can likewise stabilize colloidal suspensions against aggregation by electrostatic repulsion but also increase Fe bioavailability by enhancing Fe hydroxide solubility. The aim of this study was to see whether adsorption of citrate onto surfaces of large ferrihydrite aggregates results in the formation of a stable colloidal suspension by electrostatic repulsion and how this effect influences microbial Fe reduction. Furthermore, we wanted to discriminate between citrate-mediated colloid stabilization out of larger aggregates and ferrihydrite dissolution and their influence on microbial Fe hydroxide reduction. Dissolution kinetics of ferrihydrite aggregates induced by different concentrations of citrate and humic acids were compared to microbial reduction kinetics with Geobacter sulfurreducens. Dynamic light scattering results showed the formation of a stable colloidal suspension and colloids with hydrodynamic diameters of 69 (±37) to 165 (± 65) nm for molar citrate:Fe ratios of 0.1 to 0.5 and partial dissolution of ferrihydrite at citrate:Fe ratios ⩾ 0.1. No dissolution or colloid stabilization was detected in the presence of humic acids. Adsorption of citrate, necessary for dissolution, reversed the surface charge and led to electrostatic repulsion between sub-aggregates of ferrihydrite and colloid stabilization when the citrate:Fe ratio was above a critical value (⩽ 0.1). Lower ratios resulted in stronger ferrihydrite aggregation instead of formation of a stable colloidal suspension, owing to neutralization of the positive surface charge. At the same time, microbial ferrihydrite reduction increased from 0.029 to 0.184 mM h-1 indicating that colloids stabilized by citrate addition enhanced microbial Fe reduction. Modelling of

  7. Coarse fraction fluctuations in pelagic carbonate sediments from the tropical Indian Ocean: A 1500-kyr record of carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Bassinot, Franck C.; Beaufort, Luc; Vincent, Edith; Labeyrie, Laurent D.; Rostek, Frauke; Müller, Peter J.; Quidelleur, Xavier; Lancelot, Yves

    1994-08-01

    Appendix Table Al Is available with entire article onmicrofiche. Order from the American Geophysical Union, 2000Florida Avenue, N.W., Washington, D.C. 20009. DocumentP94-001; $2.50. Payment must accompany order.We examined coarse fraction contents of pelagic carbonates deposited between 2000-and 3700-m water depth in the tropical Indian Ocean using Ocean Drilling Program (ODP) sites 722 (Owen Ridge, Arabian Sea) and 758 (Ninetyeast Ridge, eastern equatorial Indian Ocean), and four giant piston cores collected by the French R/V Marion Dufresne during the SEYMAMA expedition. Over the last 1500 kyr, coarse fraction records display high-amplitude oscillations with an irregular wavelength on the order of ˜500 kyr. These oscillations can be correlated throughout the entire equatorial Indian Ocean, from the Seychelles area eastward to the Ninetyeast Ridge, and into the Arabian Sea. Changes in grain size mainly result from changes in carbonate dissolution as evidenced by the positive relationship between coarse fraction content and a foraminiferal preservation index based on test fragmentation. The well-known "mid-Bruhes dissolution cycle"represents the last part of this irregular long-term dissolution oscillation. The origin of this long-term oscillation is still poorly understood. Our observations suggest that it is not a true cycle (it has an irregular wavelength) and we propose that it may result from long-term changes in Ca++flux to the ocean. Sites 722 and 758 δ18O records provide a high-resolution stratigraphy that allows a detailed intersite comparison of the two coarse fraction records over the last 1500 kyr. Site 722 (2030 m) lies above the present and late Pleistocene lysocline. The lysocline shoaled to the position of site 758 (2925 m) only during the interglacial intervals that occurred between about 300 and 500 ka (Peterson and Prell, 1985a). Despite these supralysoclinal positions of the two sites, short-term changes in coarse fraction contents are

  8. Microfluidics experiments of dissolution in a fracture. Influence of Damköhler and Péclet numbers, and of the geometry on the dissolution pattern

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Szymczak, Piotr

    2015-04-01

    Dissolution of natural rocks is an ever present phenomenon in nature. The shaping of natural landscapes by the dissolution of limestone gives for example birth to exceptional features like karsts. Currently dissolution is also at the heart of key research topics as Carbon Capture and Storage or Enhanced Oil Recovery. The basics principles of dissolution are well-known, however, the sheer amount of different patterns arising from these mechanisms and the strong dependency on parameters such as pore network, chemical composition and flow rate, make it particularly difficult to study theoretically and experimentally. In this study we present a microfluidic experiment simulating the behavior of a dissolving fluid in a fracture. The experiments consist of a chip of gyspum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. The point in using microfluidics is that it allows a complete control on the experimental parameters such as geometry and chemical composition of the porous medium, flow rate, fracture aperture, roughness of the fracture walls, and an in situ observation of the geometry evolution which is impossible with 3D natural rocks. Thanks to our experiments we have been able to cover the whole range of dissolution patterns, from wormholing or DLA fingering to homogeneous dissolution, by changing Péclet and Damköhler numbers. Moreover, we have been able to tweak the geometry of our artificial fracture, inserting finger seeds or non-dissolvable obstacles. The comparison of the experimental patterns with the numerical dissolution code dissol (Szymczak and Ladd 2011) has then shown a very good correlation of the patterns, giving confidence in both experiments and modeling.

  9. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments

    NASA Astrophysics Data System (ADS)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2013-12-01

    The effect of elevated dissolved CO2 concentrations on compositionally and structurally distinct carbonate sample cores from the Weyburn-Midale CO2-enhanced oil recovery and storage site (Canada) was measured from analysis of 3-D sample characterization and fluid chemistry data from core-flood experiments. Experimental conditions (60 °C; 24.8 MPa confining pressure) and brine composition were chosen to mimic in situ reservoir conditions. Mineralogy and pore space distributions within the eight individual cores were characterized with X-ray computed microtomography and scanning electron microscopy both before and after exposure to brine with 0.5 ⩽ pCO2 ⩽ 3 MPa, while solution chemistry and differential fluid pressures were monitored during experiments. Our experimental study aimed to quantify the relationship between fluid flow, heterogeneity, and reaction specific to carbon storage at the Weyburn-Midale field by integrating characterization imaging, pressure data, and solution chemistry. Through the use of non-invasive microtomographic imaging, a variety of dissolution behaviors were observed, with variable effects on the evolution of solution chemistry and permeability as a result of heterogeneity within these two relatively low permeability carbonate samples. Similar-sized, evenly distributed pores, and steadily advancing dissolution fronts suggested that uniform flow velocities were maintained throughout the duration of the higher permeability “Marly” dolostone core experiments. The development of unstable dissolution fronts and fast pathways occurred in the “Vuggy” sample experiments when fluid velocities varied widely within the sample (as a result of increased pore structure heterogeneity). The overall effect of fast pathway development was to increase bulk permeability values by several orders of magnitude, allowing CO2-acidified fluids to travel through the cores largely unmodified by carbonate mineral reaction, as indicated by a lack of change

  10. Influence of Experimental Conditions on Electronic Tongue Results—Case of Valsartan Minitablets Dissolution

    PubMed Central

    Wesoły, Małgorzata; Kluk, Anna; Sznitowska, Małgorzata; Ciosek, Patrycja; Wróblewski, Wojciech

    2016-01-01

    A potentiometric electronic tongue was applied to study the release of valsartan from pharmaceutical formulations, i.e., minitablets uncoated and coated with Eudragit E. Special attention was paid to evaluate the influence of medium temperature and composition, as well as to compare the performances of the sensor arrays working in various hydrodynamic conditions. The drug dissolution profiles registered with the ion-sensitive electrodes were compared with standard dissolution tests performed with USP Apparatus 2 (paddle). Moreover, the signal changes of all sensors were processed by principal component analysis to visualize the release modifications, related to the presence of the coating agent. Finally, the importance and influence of the experimental conditions on the results obtained using potentiometric sensor arrays were discussed. PMID:27563904

  11. Experimental Study of Convective Dissolution of Carbon Dioxide in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2013-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic carbon dioxide (CO2) emissions from industrial point sources. The technology is only viable, if the long-term security of the geological CO2 storage can be demonstrated. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiments to characterize convective dissolution and to study the effect of porosity and permeability heterogeneity on the CO2 dissolution rate. Understanding the effect of heterogeneity is essential to evaluate if convective dissolution occurs in the field and, in turn, to estimate the security of geological CO2 storage fields. In particular we want to test if the strong heterogeneity observed at the Bravo Dome natural CO2 field can prevent convective currents, which may explain the persistence of free phase CO2 over millennia. Initial laboratory experiments in homogeneous media confirm that the non-classical scaling of the convective flux scales with the 4/5 power of the Rayleigh number that has recently been reported. The large experimental assembly will allow us to quantify for the first time the relationship between wavenumber of the convective motion and the Rayleigh number of the system, which could be essential to trapping process at Bravo Dome. Figure 1 shows the number of fingers that we can observe in our new experimental setup. Figure 2 shows the same photograph that has been processed to enhance the visibility of the dense plumes descending from the interface. Also we plan to complement the homogeneous experiments with a detailed study of the scaling law of the convective flux in heterogeneous, layered media; in particular. Low permeability layers are ubiquitous in geological storage formations and have been observed at Bravo Dome. We plan to measure the reduction in the convective flux due to these barriers compared

  12. Dissolution of CO2 in Brines and Mineral Reactions during Geological Carbon Storage: AN Eor Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.

    2015-12-01

    Dissolution of CO2 in formation brines is likely to be a major process which stabilises stored CO2 on longer time scales and mitigates CO2 migrating through storage complexes. However very little is known about the likely rates of CO2 dissolution as CO2 flows through natural heterogeneous brine filled reservoirs. Here we report the results of sampling fluids over 6 months after a phase of CO2 injection commenced for enhanced oil recovery coupled with injection of isotopically enriched 3He and 129Xe. Modelling of the changes in fluid chemistry has previously been interpreted to indicate significant dissolution of silicate minerals where fluids remained close to saturation with calcite. These calculations, which are based on modal decomposition of changes in cation concentrations, are supported by changes in the isotopic compositions of Sr, Li and Mg. Analysis of Sr-isotopic compositions of samples from outcrops of the Frontier Formation, which forms the reservoir sampled by the EOR experiment, reveals substantial heterogeneity. Silicate mineral compositions have 87Sr/86Sr ratios between 0.709 and 0.719 whereas carbonate cements have values around 0.7076. Calculation of CO2 dissolution based on simplified 2-D flow models shows that fluids likely sample reservoir heterogeneities present on a finer scale with CO2 fingers occupying the most permeable horizons and most water flow in the adjacent slightly less permeable zones. Smaller time scale variations in 87Sr/86Sr ratios are interpreted to reflect variations in flow paths on small length scales driven by invading CO2.

  13. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  14. Mg-calcite dissolution in carbonate sediments: role in ocean acidification

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Mackenzie, F. T.

    2014-12-01

    An array of porewater wells at two locations on Hawaiian reefs have been utilized to obtain interstitial pore fluid from various depths in permeable sandy sediments. The total alkalinity (AT) and pH (total scale) were measured for each sample (depths 0, 2, 4, 6, 8, 12, 16, 20, 30, 40, and 60 cm) as well as calcium, magnesium, and strontium concentrations. Ca2+ and Mg2+ concentrations co-vary and appear to be directly related to AT and pH. The ratio of the change in calcium and magnesium (ΔCa, ΔMg) between the overlying water column and the porewater indicates that an 18 mol % Mg-calcite phase is dissolving within the sediment column. This could represent the dissolution of coralline algae such as Porolithon or Lithothamnion both of which produce ~18% Mg-calcite skeletons and are present on Hawaiian reefs. The small changes in Mg concentrations from dissolution/precipitation of high Mg-calcites is typically difficult to measure against the high background matrix of seawater and to our knowledge these data represent some of the first magnesium concentrations measured in permeable sediments. Saturation state (Ω) for Mg-calcites was calculated using both sets of stoichiometric solubility products (K) widely accepted in the literature. Depending on the K used, most of the porewater was undersaturated with respect to the high Mg calcites (>12%). Saturation states were determined using an ion activity product (IAP) calculated from the measured values of calcium and magnesium. This produces a more accurate Ω than assuming calcium and magnesium concentrations based on salinity, as is typically done in surface waters. As surface water becomes more corrosive to carbonate minerals due to enhanced ocean acidification through the next century, it is expected that dissolution of both biogenic high Mg-calcites and abiotic Mg-calcite cements will increase, potentially destabilizing reef framework and altering the biogeochemical cycling of carbon in these environments.

  15. Evolving Spatial Heterogeneity Induced by Preferential Carbonate Dissolution in Fractured Media

    NASA Astrophysics Data System (ADS)

    Wen, H.; Li, L.; Crandall, D.; Hakala, A.

    2014-12-01

    Spatial heterogeneity plays a key role in determining physical and geochemical processes in geological systems. In reactive fractures, mineral reactions also can alter fracture properties locally, therefore leading to evolving spatial heterogeneity. Here we use two-dimensional (2D) reactive transport modeling to 1) understand the evolving spatial heterogeneity due to the preferential dissolution of carbonate and 2) quantify the dependence of calcite dissolution on characteristics of spatial heterogeneity, including fracture roughness (i.e., aperture standard derivation, surface parameter and fractal dimension), flow connectivity (i.e., ratio of effective permeability keff over geometric mean of local permeability kG), and transport connectivity indicators (e.g., ratio of late 5% arrival time tlate5% over average arrival time tave). The fractured core samples from Brady's Hot Springs geothermal field are composed of primarily carbonate, clay, and quartz. The computational domains were set up using fracture images obtained from CT scanning at the resolution of 31.6 μm. The two samples have similar initial average aperture, porosity, permeability, and mineralogical composition. They differ in the spatial patterns: one has narrow large-aperture zones distributed widely (AD sample); the other has a major large-aperture zone in the middle of the sample (AC sample). Simulation results show that highly connected flow path forms quickly in the AD sample, leading to an increase of average chemical aperture, effective permeability, and flow velocity by five times after 75 days of injecting salt water. In contrast, these properties remain constant in the AC sample. Other parameters that quantitatively characterize the spatial heterogeneity, including connectivity and the tail slope of the breakthrough curves, also change dramatically, indicating major alteration in fracture properties due to calcite dissolution.

  16. Influence of sodium lauryl sulfate and tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour.

    PubMed

    Li, Mingzhong; Qiao, Ning; Wang, Ke

    2013-10-11

    The influence of the surfactants of sodium lauryl sulfate (SLS) and Tween 80 on carbamazepine-nicotinamide (CBZ-NIC) cocrystal solubility and dissolution behaviour has been studied in this work. The solubility of the CBZ-NIC cocrystal was determined by measuring the eutectic concentrations of the drug and the coformer. Evolution of the intrinsic dissolution rate (IDR) of the CBZ-NIC cocrystal was monitored by the UV imaging dissolution system during dissolution. Experimental results indicated that SLS and Tween 80 had little influence upon the solubility of the CBZ-NIC cocrystal but they had totally opposite effects on the IDR of the CBZ-NIC cocrystal during dissolution. SLS significantly increased the IDR of the CBZ-NIC cocrystal while Tween 80 decreased its IDR.

  17. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution.

    PubMed

    Etienne, Mathieu; Schulte, Albert; Mann, Stefan; Jordan, Guntram; Dietzel, Irmgard D; Schuhmann, Wolfgang

    2004-07-01

    Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions. Micrometer-scale heterogeneities in the apparent calcium activity profiles have successfully been resolved for both samples.

  18. Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution.

    PubMed

    Nomura, Shunsuke; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki; Takahashi, Ichiro; Ishikawa, Kunio

    2014-01-01

    Carbonate apatite (CO3Ap), fabricated by dissolution-precipitation reaction based on an appropriate precursor, is expected to be replaced by bone according to bone remodeling cycle. One of the precursor candidates is gypsum because it shows self-setting ability, which then enables it to be shaped and molded. The aim of this study, therefore, was to fabricate CO3Ap blocks from set gypsum. Set gypsum was immersed in a mixed solution of 0.4 mol/L disodium hydrogen phosphate (Na2HPO4) and 0.4 mol/L sodium hydrogen carbonate (NaHCO3) at 80-200°C for 6-48 h. Powder X-ray diffraction patterns and Fourier transform infrared spectra showed that CO3Ap block was fabricated by dissolution-precipitation reaction in Na2HPO4-NaHCO3 solution using set gypsum in 48 h when the temperature was 100°C or higher. Conversion rate to CO3Ap increased with treatment temperature. CO3Ap block containing a larger amount of carbonate was obtained when treated at lower temperature.

  19. Accelerated Carbonate Dissolution as a CO2 Separation and Sequestration Strategy

    SciTech Connect

    Caldeira, K G; Knauss, K G; Rau, G H

    2004-02-18

    process is geochemically equivalent to continental and marine carbonate weathering which will otherwise naturally consume anthropogenic CO{sub 2}, but over many millennia (e.g. [7,8,9]). We identify the enhanced form of this process as Accelerated Weathering of Limestone or accelerated carbonate dissolution. Previously, it has been shown that accelerated carbonate dissolution can effectively convert a significant fraction of US CO{sub 2} emissions to long-term storage as bicarbonate in the ocean, while avoiding or possibly reversing environmental impacts associated with either the ongoing passive or the proposed active injection of CO{sub 2} into the ocean [6,10]. Being analogous to the widespread use of wet limestone to desulfurize flue gas, accelerated carbonate dissolution reactors could be retrofitted to many existing coastal power plants at a typical cost estimated to be $20-$30/tonne CO{sub 2} mitigated [5,11]. This paper further explores limestone availability, cost, transportation, and reaction kinetics as well as ocean and environmental impacts, and the overall economics and practicality of accelerated carbonate dissolution CO{sub 2} mitigation.

  20. Influence of Heterogamy by Religion on Risk of Marital Dissolution: A Cohort Study of 20,000 Couples.

    PubMed

    Wright, David M; Rosato, Michael; O'Reilly, Dermot

    2017-01-01

    Heterogamous marriages, in which partners have dissimilar attributes (e.g. by socio-economic status or ethnicity), are often at elevated risk of dissolution. We investigated the influences of heterogamy by religion and area of residence on risk of marital dissolution in Northern Ireland, a country with a history of conflict and residential segregation along Catholic-Protestant lines. We expected Catholic-Protestant marriages to have elevated risks of dissolution, especially in areas with high concentrations of a single religious group where opposition to intermarriage was expected to be high. We estimated risks of marital dissolution from 2001 to 2011 for 19,791 couples drawn from the Northern Ireland Longitudinal Study (a record linkage study), adjusting for a range of compositional and contextual factors using multilevel logistic regression. Dissolution risk decreased with increasing age and higher socio-economic status. Catholic-Protestant marriages were rare (5.9 % of the sample) and were at increased risk of dissolution relative to homogamous marriages. We found no association between local population composition and dissolution risk for Catholic-Protestant couples, indicating that partner and household characteristics may have a greater influence on dissolution risk than the wider community.

  1. Carbon dioxide sequestration using NaHSO4 and NaOH: A dissolution and carbonation optimisation study.

    PubMed

    Sanna, Aimaro; Steel, Luc; Maroto-Valer, M Mercedes

    2017-03-15

    The use of NaHSO4 to leach out Mg fromlizardite-rich serpentinite (in form of MgSO4) and the carbonation of CO2 (captured in form of Na2CO3 using NaOH) to form MgCO3 and Na2SO4 was investigated. Unlike ammonium sulphate, sodium sulphate can be separated via precipitation during the recycling step avoiding energy intensive evaporation process required in NH4-based processes. To determine the effectiveness of the NaHSO4/NaOH process when applied to lizardite, the optimisation of the dissolution and carbonation steps were performed using a UK lizardite-rich serpentine. Temperature, solid/liquid ratio, particle size, concentration and molar ratio were evaluated. An optimal dissolution efficiency of 69.6% was achieved over 3 h at 100 °C using 1.4 M sodium bisulphate and 50 g/l serpentine with particle size 75-150 μm. An optimal carbonation efficiency of 95.4% was achieved over 30 min at 90 °C and 1:1 magnesium:sodium carbonate molar ratio using non-synthesised solution. The CO2 sequestration capacity was 223.6 g carbon dioxide/kg serpentine (66.4% in terms of Mg bonded to hydromagnesite), which is comparable with those obtained using ammonium based processes. Therefore, lizardite-rich serpentinites represent a valuable resource for the NaHSO4/NaOH based pH swing mineralisation process.

  2. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  3. Chemomechanical evolution of pore space in carbonate microstructures upon dissolution: Linking pore geometry to bulk elasticity

    NASA Astrophysics Data System (ADS)

    Arson, C.; Vanorio, T.

    2015-10-01

    One of the challenges faced today in a variety of geophysical applications is the need to understand the changes of elastic properties due to time-variant chemomechanical processes. The objective of this work is to model carbonate rock elastic properties as functions of pore geometry changes that occur when the solid matrix is dissolved by carbon dioxide. We compared two carbonate microstructures: porous micrite ("mudstone") and grain-supported carbonate ("packstone"). We formulated a mathematical model that distinguishes the effects of microporosity and macroporosity on stiffness changes. We used measures of mechanical and chemical porosity changes recorded during injection tests to compute elastic moduli and compare them to moduli obtained from wave velocity measurements. In mudstones, both experimental and numerical results indicate that bulk moduli change by less than 5%. The evolution of elastic moduli is controlled by macropore enlargement. In packstones, model predictions underestimate changes of elastic moduli with total porosity by 10% to 80%. The total porosity variation is 60% to 75% smaller than the chemical porosity variation, which indicates that pore expansion due to dissolution is counterbalanced by pore shrinkage due to compaction. Packstone elastic properties are controlled by grain sliding. The methodology presented in this paper can be generalized to other chemomechanical processes studied in rocks, such as dislocations, glide, diffusive mass transfer, recrystallization, and precipitation.

  4. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  5. Coupled dissolution-precipitation as a mechanism for amorphous-to-crystalline calcium carbonate phase transition

    NASA Astrophysics Data System (ADS)

    Rodriguez-Navarro, Carlos Manuel; Kudłacz, Krzysztof; Ruiz-Agudo, Encarnacion

    2014-05-01

    Growing evidence shows that several calcium carbonate biominerals form via an amorphous precursor phase. Such a biomineralization strategy could also be applicable for the biomimetic synthesis of novel functional materials. A crucial step in this process is the transformation of amorphous calcium carbonate (ACC) into calcite. However, controversy exists as to what is the actual mechanism of this transformation: Is it a solid-solid (solid state) or a dissolution/precipitation mechanism? Determining the transition mechanism is critical for example in interpreting the formation of oriented crystalline structures in biominerals (e.g., echinoderm spicles). We studied calcium carbonate precipitation and phase transitions according to the overall reaction Ca(OH)2 + CO2 = CaCO3+ H2O. Mineral phase transformations during this reaction were studied using transmission electron microscopy (TEM). Our TEM analysis showed that two different types of ACC are sequentially formed during this reaction. Type I ACC shows no well-defined short-range order, while Type II ACC shows a short-range order corresponding to calcite. Following e-beam irradiation, Type I ACC particles transform into randomly oriented CaO nanocrystals, while irradiation of Type II ACC leads to the formation of pseudomorphs made up of perfectly oriented aggregates of calcite nanocrystals. Moreover, calcite crystals formed in solution or in air (85 % relative humidity) after Type II ACC are also pseudomorphs made up of porous aggregates of preferentially oriented calcite nanocrystals. Our results give experimental evidence showing that the ACC to calcite transformation under relevant biomineralization conditions (low T and P), also applicable in the biomimetic synthesis of calcite, is a pseudomorphic dissolution-precipitation process. This mechanism involves the tightly interface-coupled dissolution of the precursor amorphous phase (with the crystalline phase protostructure) and concomitant deposition of the

  6. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  7. Detection and projection of carbonate dissolution in the water column and deep-sea sediments due to ocean acidification

    NASA Astrophysics Data System (ADS)

    Ilyina, Tatiana; Zeebe, Richard E.

    2012-03-01

    Dissolution of fossil fuel CO2 in seawater results in decreasing carbonate ion concentration and lowering of seawater pH with likely negative impacts for many marine organisms. We project detectable changes in carbonate dissolution and evaluate their potential to mitigate atmospheric CO2 and ocean acidification with a global biogeochemistry model HAMOCC forced by different CO2 emission scenarios. Our results suggest that as the anthropogenic CO2 signal penetrates into ocean interior, the saturation state of carbonate minerals will drop drastically - with undersaturation extending from the ocean floor up to 100-150 m depth in the next century. This will induce massive dissolution of CaCO3 in the water column as well as the sediment, increasing the Total Alkalinity (TA) by up to 180 μmol kg-1 at the surface and in the ocean interior over the next 2500 years. Model results indicate an inhomogeneous response among different ocean basins: Atlantic carbonate chemistry responds faster and starts recovering two millennia after CO2 emissions cease, which is not the case in the Pacific. CaCO3 rain stops in the Pacific Ocean around 2230. Using an observation-derived detection threshold for TA, we project detectable dissolution-driven changes only by the year 2070 in the surface ocean and after 2230 and 2500 in the deep Atlantic and Pacific respectively. We show that different model assumptions regarding dissolution and calcification rates have little impact on future projections. Instead, anthropogenic CO2 emissions overwhelmingly control the degree of perturbation in ocean chemistry. In conclusion, ocean carbonate dissolution has insignificant potential in mitigating atmospheric CO2 and ocean acidification in the next millennia.

  8. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  9. Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels.

    PubMed

    Ogomi, Daisuke; Serizawa, Takeshi; Akashi, Mitsuru

    2005-03-21

    It is possible that inorganic materials conjugated to suitable organic materials may induce unique mechanical, optical and other functional properties. Therefore, artificial conjugation of organic and inorganic components is attractive for preparing novel functional materials. Recently, we developed an alternate soaking process for calcium salt formation on/in polymer materials. In this study, a poly(vinyl alcohol) (PVA) hydrogel-calcium carbonate (CaCO(3)) composite was prepared by the aforementioned process as a controlled release support. Brilliant blue FCF (Mw = 794), FITC labeled BSA (Mw = 6.6 x 10(4)), FITC labeled dextran-10 k (Mw = 9.5 x 10(3)) and FITC labeled dextran-40 k (Mw = 4.3 x 10(4)) were loaded into the composite as model drugs. CaCO(3) dissolution and model drug release rates increased with a decrease in buffer pH. In addition, model drug release rates increased with a decrease in model drug molecular weight. These results show that CaCO(3) layers on hydrogels behave as capping layers for model drug release; the release rate of model drugs can be controlled by the dissolution rate of CaCO(3) and the molecular weight of the drug.

  10. Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil

    NASA Astrophysics Data System (ADS)

    Ennes-Silva, Renata; Cazarin, Caroline; Bezerra, Francisco; Auler, Augusto; Klimchouk, Alexander

    2015-04-01

    Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil Ennes-Silva, R.A; Cazarin, C.L.; Bezerra, F.H.; Auler, A.S.; Klimchouk, A.B. Dissolution along zones of preferential flow enhances anisotropy in geological media and increases its complexity. Changes in parameters such as porosity and permeability due to diagenesis and presence of ascendant fluids along fractures and faults can be responsible for hypogenic karstic system. The present study investigates the relationship between lithofacies, tectonics and karstification in the Neoproterozoic Salitre Formation, located in the central-eastern Brazil. This unit comprises several systems of caves including the Toca da Boa Vista and da Barriguda hypogenic caves, the largests in South America, and focus of this study. We focused on cave mapping and morphogenetic analysis, determination of petrophysical properties, thin-section description, micro-tomography, and isotopic analysis. The Salitre Formation, deposited in an epicontinental sea, comprises mud/wakestones, grainstones, microbial facies, and fine siliciclastic rocks. Passages occur in several levels within ca. 60 m thick cave-forming section, limited at the top by lithofacies with low permeability and fractures. Cave development occurred in phreatic sluggish-flow environment with overall upwelling flow. Fluids rise via cross-formational fractures and were distributed laterally within the cave-forming section using geological heterogeneities to eventually discharge up through outlets breaching across the upper confining beds. Maps of conduits show preferred directions for development of conduits: NNE-SSW and E-W. These two directions represents a relation between structures and hypogenic morphology. Joints, axis fold and fractures allowed pathways to the fluid rises, and then development of channels of entrance (feeders), outputs (outlets) and some cupolas, which are clearly aligned to fractures. Our data indicate several events

  11. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: the impact of redox and bulk composition on the dissolution kinetics of olivine

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Brunet, F.; Martinez, I.; Guyot, F. J.; Verlaguet, A.; Pinquier, Y.; Garcia, B.; Chardin, M.; Kohler, E.; Daval, D.

    2014-12-01

    Olivine (Mg,Fe)2SiO4, which is one of the major mineral constituents of mafic and ultramafic rocks, has an attractive potential for CO2 mineral sequestration, as it possesses a high content of carbonate-forming divalent cations and exhibits one of the highest dissolution rate amongst rock-forming minerals. This study reports drastic differences in carbonation yields between experiments performed on olivine-rich basalt samples and on olivine separates (a more restricted chemical system). Batch experiments were conducted in water at 150°C and pCO2 = 280 bars on a Mg-rich tholeiitic basalt (9.3 wt.% MgO and 12.2 wt.% CaO), composed of olivine, Ti-magnetite, plagioclase and clinopyroxene. After 45 days of reaction, 56 wt.% of the initial MgO has reacted with CO2 to form Fe-bearing magnesite (Mg0.8Fe0.2)CO3 along with minor calcium carbonates. The substantial decrease of olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt.% MgO) of similar grain size, only 5 wt.% of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt is enhanced by a factor of 40. It could be accounted for by differences in chemical and textural properties of the secondary-silica layer which covers reacted olivine grains in both types of sample. A TEM inspection of mineral surfaces shows that the thin amorphous silica layer (~100 nm) is porous in the case of the basalt sample and that it contains significant amounts of iron and aluminum. Thus, we propose that the composition of the olivine environment itself can strongly influence the olivine dissolution-carbonation process. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks. More

  12. The influence of parents' martial dissolutions on children's attitudes toward family formation.

    PubMed

    Axinn, W G; Thornton, A

    1996-02-01

    We investigate the influence of parents' martial dissolutions on their children's attitudes toward several dimensions of family formation. Hypotheses focus on the role of patients' attitudes as a mechanism linking parents' behavior to their children's attitudes. We test these hypotheses using intergenerational panel data that include measures of children's attitudes taken directly from children. Results demonstrate strong effects of parental divorce, remarriage, and widowhood on children's attitudes toward premarital sex, cohabitation, marriage, childbearing, and divorce. The results also show that parents' own attitudes link their behavior to their children's attitudes, although substantial effects of parental behavior remain after controlling for parents' attitudes.

  13. Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates.

    PubMed

    Zhao, Huangjing; Park, Youngjune; Lee, Dong Hyun; Park, Ah-Hyung Alissa

    2013-09-28

    Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.

  14. The effect of the carbon dissolution on the crystal structure of a-quartz

    NASA Astrophysics Data System (ADS)

    Mitani, S.; Kyono, A.

    2015-12-01

    Silicon is one of the major and important element that constitutes the Earth's crust and mantle. An enormous amount of carbon is also contained in the Earth's interior, which suggests that silicate could be closely interacted with carbon under high-pressure and high-temperature (Sen et al. 2013, PNAS). It is suggested that carbon dioxide is dissolved in cristobalite and the average composition of CO2-SiO2 solid solution is C0.6(1)Si0.4(1)O2 High-pressure experiment (Santoro et al. 2014, Nat. Commun.). Furthermore, the first-principles calculations suggested the possibility of successive CO2 dissolution in cristobalite at ambient pressure (Aravindh et al. 2007, Solid State Commun.). However, CO2-SiO2 solid solution at ambient pressure has not confirmed in laboratory experiment. In this study, we mixed amorphous silica and amorphous carbon and synthesized CO2-SiO2 solid solution at high-temperature under ambient pressure. Powder amorphous silica and graphite was mixed together in the agate mill in order to be homogenized mixture. They were heated for 1300 ˚C, 3 days under ambient pressure. Then, the samples were quenched at room temperature. The samples of CO2-SiO2 solid solution were carefully examined by powder XRD, EPMA measurement, and so on. From the result of the powder XRD, the products were a-quartz. In this lecture, we report the quantity of carbon dissolved in a-quartz and its effect for the crystal structure of a-quartz in detail.

  15. Influence of type and neutralisation capacity of antacids on dissolution rate of ciprofloxacin and moxifloxacin from tablets.

    PubMed

    Uzunović, Alija; Vranić, Edina

    2009-02-01

    Dissolution rate of two fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) was analysed in presence/absence of three antacid formulations. Disintegration time and neutralisation capacity of antacid tablets were also checked. Variation in disintegration time indicated the importance of this parameter, and allowed evaluation of the influence of postponed antacid-fluoroquinolone contact. The results obtained in this study showed decreased dissolution rate of fluoroquinolone antibiotics from tablets in simultaneous presence of antacids, regardless of their type and neutralisation capacity.

  16. Porous calcium carbonate as a carrier material to increase the dissolution rate of poorly soluble flavouring compounds.

    PubMed

    Lundin Johnson, Maria; Noreland, David; Gane, Patrick; Schoelkopf, Joachim; Ridgway, Cathy; Millqvist Fureby, Anna

    2017-03-15

    Two different food grade functionalised porous calcium carbonates (FCC), with different pore size and pore size distributions, were characterised and used as carrier materials to increase the dissolution rate of poorly soluble flavouring compounds in aqueous solution. The loading level was varied between 1.3% by weight (wt%) and 35 wt%, where the upper limit of 35 wt% was the total maximum loading capacity of flavouring compound in FCC based on the fraction of the total weight of FCC plus flavouring compound. Flavouring compounds (l-carvone, vanillin, and curcumin) were selected based on their difference in hydrophilicity and capacity to crystallise. Release kinetic studies revealed that all flavouring compounds showed an accelerated release when loaded in FCC compared to dissolution of the flavouring compound itself in aqueous medium. The amorphous state and/or surface enlargement of the flavouring compound inside or on FCC explains the faster release. The flavouring compounds capable of crystallising (vanillin and curcumin) were almost exclusively amorphous within the porous FCC material as determined by X-ray powder diffraction one week after loading and after storing the loaded FCC material for up to 9 months at room temperature. A small amount of crystalline vanillin and curcumin was detected in the FCC material with large pores and high flavouring compound loading (≥30 wt%). Additionally, two different loading strategies were evaluated, loading by dissolving the flavouring compound in acetone or loading by a hot melt method. Porosimetry data showed that the melt method was more efficient in filling the smallest pores (<100 nm). The main factor influencing the release rate appears to be the amorphous state of the flavouring compound and the increase in exposed surface area. The confinement in small pores prevents crystallisation of the flavouring compounds during storage, providing a stable amorphous form retaining high release rate also after storage.

  17. Influence of Permian salt dissolution on Cretaceous oil and gas entrapment and reserve potential, Denver basin, Western Nebraska

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Location and trap type of Cretaceous oil and gas fields in the D-J Fairway of Nebraska are related to the occurrence of 12 Permian salt zones. Salt distribution is controlled by the configuration of evaporate basins, truncation at a sub-Jurassic unconformity, and post-Jurassic subsurface dissolution. The Sidney Trough, which marks the eastern (regionally updip) limit of Cretaceous oil production in western Nebraska, is a rootless salt-dissolution collapse feature, whose location and origin is controlled by an abrupt linear facies change from thick, porous Lyons Sandstone to Leonardian salt. Eastward gravity-driven groundwater flow within the Lyons occurred in response to hydraulic gradient and recharge along the Front Range Uplift following Laramide orogeny. Dissolution of salt at the facies change caused collapse of overlying strata, producing fractures through which cross-formational flow occurred. Younger salts were dissolved, enhancing relief across the regional depression and subsidiary synclines. Timing of post-Jurassic dissolution influenced entrapment within D and J sandstone reservoirs. Where Early Cretaceous (pre-reservoir) dissolution occurred, structure at the D and J sandstone level is relatively simple, and stratigraphic traps predominate. Where Late Cretaceous - Tertiary (post-reservoir) dissolution occurred, structure is more complex, formation waters are more saline, oil and gas are localized on dissolution-induced anticlines, and per-well reserves are significantly higher.

  18. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil.

    PubMed

    Krupa, Anna; Descamps, Marc; Willart, Jean-François; Jachowicz, Renata; Danède, Florence

    2016-12-01

    Tadalafil (TD) is a crystalline drug of a high melting point (Tm=299°C) and limited solubility in water (<5μg/mL). These properties may result in reduced and variable bioavailability after oral administration. Since the melting of TD is followed by its decomposition, the drug processing at high temperatures is limited. The aim of the research is, therefore, to improve the dissolution of TD by its co-processing with the hydrophilic polymer Soluplus® (SL) at temperatures below 40°C. In this study, two methods, i.e. high energy ball-milling and supercritical carbon dioxide impregnation (scCO2) are compared, with the aim to predict their suitability for the vitrification of TD. The influence of the amount of SL and the kind of co-processing method on TD thermal properties is analyzed. The results show that only the high energy ball milling process makes it possible to obtain a completely amorphous form of TD, with the characteristic X-ray 'halo' pattern. The intensity of the Bragg peaks diminishes for all the formulations treated with scCO2, but these samples remain crystalline. The MDSC results show that high energy ball milling is capable of forcing the mixing of TD and SL at a molecular level, providing a homogeneous amorphous solid solution. The glass transition temperatures (Tg), determined for the co-milled formulations, range from 79°C to 139°C and they are higher than Tg of pure SL (ca. 70°C) and lower than Tg of pure TD (ca. 149°C). In contrast to the co-milled formulations which are in the form of powder, all the formulations after scCO2 impregnation form a hard residue, sticking to the reaction vessel, which needs to be ground before analysis or further processing. Finally, the dissolution studies show that not only has SL a beneficial effect on the amount of TD dissolved, but also both co-processing methods make the dissolution enhancement of TD possible. After co-processing by scCO2, the amount of TD dissolved increases with the decreasing amount

  19. Prevalence of Ca2+-ATPase-Mediated Carbonate Dissolution among Cyanobacterial Euendoliths

    PubMed Central

    Ramírez-Reinat, E. L.

    2012-01-01

    Recent physiological work has shown that the filamentous euendolithic cyanobacterium Mastigocoleus testarum (strain BC008) is able to bore into solid carbonates using Ca2+-ATPases to take up Ca2+ from the medium at the excavation front, promoting dissolution of CaCO3 there. It is not known, however, if this is a widespread mechanism or, rather, a unique capability of this model strain. To test this, we undertook a survey of multispecies euendolithic microbial assemblages infesting natural carbonate substrates in marine coastal waters of the Caribbean, Mediterranean, South Pacific, and Sea of Cortez. Microscopic examination revealed the presence of complex assemblages of euendoliths, encompassing 3 out of the 5 major cyanobacterial orders. 16S rRNA gene clone libraries detected even greater diversity, particularly among the thin-filamentous forms, and allowed us to categorize the endoliths in our samples into 8 distinct phylogenetic clades. Using real-time Ca2+ imaging under a confocal laser scanning microscope, we could show that all communities displayed light-dependent formation of Ca2+-supersaturated zones in and around boreholes, a staple of actively boring phototrophs. In 3 out of 4 samples, boring activity was sensitive to at least one of two inhibitors of Ca2+-ATPase transporters (thapsigargin or tert-butylhydroquinone), indicating that the Ca2+-ATPase mechanism is widespread among cyanobacterial euendoliths but perhaps not universal. Function-community structure correlations point to one particular clade of baeocyte-forming euendoliths as the potential exception. PMID:22038600

  20. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition

    NASA Astrophysics Data System (ADS)

    Posavec, Lidija; Knijnenburg, Jesper T. N.; Hilty, Florentine M.; Krumeich, Frank; Pratsinis, Sotiris E.; Zimmermann, Michael B.

    2016-10-01

    Rapid calcium (Ca) dissolution from nanostructured Ca phosphate and carbonate (CaCO3) powders may allow them to be absorbed in much higher fraction in humans. Nanosized Ca phosphate and CaCO3 made by flame-assisted spray pyrolysis were characterized by nitrogen adsorption, X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy. As-prepared nanopowders contained both CaCO3 and CaO, but storing them under ambient conditions over 130 days resulted in a complete transformation into CaCO3, with an increase in both crystal and particle sizes. The small particle size could be stabilized against such aging by cation (Mg, Zn, Sr) and anion (P) doping, with P and Mg being most effective. Calcium phosphate nanopowders made at Ca:P ≤ 1.5 were XRD amorphous and contained γ-Ca2P2O7 with increasing hydroxyapatite content at higher Ca:P. Aging of powders with Ca:P = 1.0 and 1.5 for over 500 days gradually increased particle size (but less than for CaCO3) without a change in phase composition or crystallinity. In 0.01 M H3PO4 calcium phosphate nanopowders dissolved ≈4 times more Ca than micronsized compounds and about twice more Ca than CaCO3 nanopowders, confirming that nanosizing and/or amorphous structuring sharply increases Ca powder dissolution. Because higher Ca solubility in vitro generally leads to greater absorption in vivo, these novel FASP-made Ca nanostructured compounds may prove useful for nutrition applications, including supplementation and/or food fortification.

  1. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.

    PubMed

    Dalsin, Molly C; Tale, Swapnil; Reineke, Theresa M

    2014-02-10

    Spray dried dispersions (SDDs), solid dispersions of polymer excipients and active pharmaceuticals, are important to the field of oral drug delivery for improving active stability, bioavailability, and efficacy. Herein, we examine the influence of solution-state polymer assemblies on amorphous spray-dried dispersion (SDD) performance with two BCS II model drugs, phenytoin and probucol. These drugs were spray dried with 4 model polymer excipients consisting of poly(ethylene-alt-propylene) (PEP), N,N,-dimethylacrylamide (DMA), or 2-methacrylamido glucopyranose (MAG): amphiphilic diblock ter- and copolymers, PEP-P(DMA-grad-MAG) and PEP-PDMA, and their respective hydrophilic analogues, P(DMA-grad-MAG) and PDMA. Selective and nonselective solvents for the hydrophilic block of the diblock ter- and copolymers were used to induce or repress solution-state assemblies prior to spray drying. Prespray dried solution-state assemblies of these four polymers were probed with dynamic light scattering (DLS) and showed differences in solution assembly size and structure (free polymer versus aggregates versus micelles). Solid-state structures of spray dried dispersions (SDDs) showed a single glass transition event implying a homogeneous mixture of drug/polymer. Crystallization temperatures and enthalpies indicated that the drugs interact mostly with the DMA-containing portions of the polymers. Scanning electron microscopy was used to determine SDD particle size and morphology for the various polymer-drug pairings. In vitro dissolution tests showed excellent performance for one system, spray-dried PEP-PDMA micelles with probucol. Dissolution structures were investigated through DLS to determine drug-polymer aggregates that lead to enhanced SDD performance. Forced aggregation of the polymer into regular micelle structures was found to be a critical factor to increase the dissolution rate and supersaturation maintenance of SDDs, and may be an attractive platform to exploit in excipient

  2. Dissolution kinetics of {delta} phase and its influence on the notch sensitivity of Inconel 718

    SciTech Connect

    Cai Dayong . E-mail: dayongcai@sina.com.cn; Zhang Weihong; Nie Pulin; Liu Wenchang; Yao Mei

    2007-03-15

    The dissolution kinetics of {delta} phase in Inconel 718 at 980 deg. C, 1000 deg. C and 1020 deg. C and its influence on high temperature notch sensitivity have been studied using a quantitative X-ray diffraction (XRD) method and high temperature stress rupture life tests of notched specimens. The amount of {delta} phase decreases gradually during holding time at 980 deg. C, 1000 deg. C and 1020 deg. C. The {delta} phase will be fully dissolved in the austenitic matrix at 1020 deg. C for more than 2 h. A certain amount of {delta} phase still exists after holding at 980 deg. C and 1000 deg. C for times up to 6 h; the amount remaining are 3 wt.% and 0.6 wt.%, respectively. The dissolution rate remains at a high level at the beginning, and then decreases gradually with an increase of holding time. A dynamic equilibrium state can be approached after holding at 980 deg. C for more than 30 min and at 1000 deg. C for more than 2 h. The alloy with {delta} phase amounts higher than 0.62 wt.% does not exhibit notch sensitivity, whereas serious notch sensitivity exists if the concentration is below 0.43 wt.%.

  3. Gravitational instability due to the dissolution of carbon dioxide in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Vreme, A.; Nadal, F.; Pouligny, B.; Jeandet, P.; Liger-Belair, G.; Meunier, P.

    2016-10-01

    We present an experimental study of the gravitational instability triggered by dissolution of carbon dioxide through a water-gas interface. We restrict the study to vertical parallelepipedic Hele-Shaw geometries, for which the thickness is smaller than the other dimensions. The partial pressure of carbon dioxide is quickly increased, leading to a denser layer of CO2-enriched water underneath the surface. This initially one-dimensional diffusive layer destabilizes through a convection-diffusion process. The concentration field of carbon dioxide, which is visualized by means of a pH-sensitive dye, shows a fingering pattern whose characteristics (wavelength and amplitude growth rate) are functions of the Rayleigh (Ra) and the Darcy (Da) numbers. At low Rayleigh numbers, the growth rate and the wave numbers are independent of the Rayleigh number and in excellent agreement with the classical results obtained numerically and theoretically in the Darcy regime. However, above a threshold of Ra√{Da} of the order of 10, the growth rate and the wave number strongly decrease due to the Brinkman term associated with the viscous diffusion in the vertical and longitudinal directions. In this Darcy-Brinkman regime, the growth rate and the wave number depend only on the thickness-based Rayleigh number Ra√{Da} . The classical Rayleigh-Taylor theory including the Brinkman term has been extended to this diffusive gravitational instability and gives an excellent prediction of the growth rate over four decades of Rayleigh numbers. However, the Brinkman regime seems to be valid only until Ra√{Da}=1000 . Above this threshold, the transverse velocity profile is no longer parabolic, which leads to an overestimation of the wave number by the theory.

  4. Numerical Ages of Holocene Tributary Debris Fans Inferred from Dissolution Pitting on Carbonate Boulders in the Grand Canyon of Arizona

    NASA Astrophysics Data System (ADS)

    Hereford, Richard; Thompson, Kathryn S.; Burke, Kelly J.

    1998-09-01

    Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements ( n= 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.

  5. Numerical ages of Holocene tributary debris fans inferred from dissolution pitting on carbonate boulders in the Grand Canyon of Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.

    1998-01-01

    Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements (n = 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.

  6. EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING

    SciTech Connect

    Edwards, T.; Hera, K.; Coleman, C.

    2011-12-05

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting

  7. The Dissolution of Synthetic Na-Boltwoodite in Sodium Carbonate Solutions

    SciTech Connect

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-09-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in the contaminated sediments at the US Department of Energy Hanford site (Liu et al., 2004). Consequently, the solubility of synthetic Na-boltwoodite was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility increased with increasing bicarbonate concentration. Calculated solubility constants varied by nearly 2 log units from low bicarbonate (no added NaCO3) to 50 mmol/L bicarbonate. However, the solubility constants only vary by 0.5 log units from 0 added bicarbonate to 1.2 mmol/L bicarbonate, where logKsp = 5.39-5.92 and the average logKsp = 5.63. No systematic trend in logKsp was apparent over this range in bicarbonate concentrations. LogKsp values trended down with increasing bicarbonate concentration, where logKsp = 4.06 at 50 mmol/L bicarbonate. We conclude that the calculated solubility constants at high bicarbonate are compromised by an incomplete or inaccurate uranyl-carbonate speciation model.

  8. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    NASA Astrophysics Data System (ADS)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  9. Mechanical load-assisted dissolution of metallic implant surfaces: influence of contact loads and surface stress state.

    PubMed

    Mitchell, Andrew; Shrotriya, Pranav

    2008-03-01

    Mechanical load-assisted dissolution is identified as one of the key mechanisms governing material removal in fretting and crevice corrosion of biomedical implants. In the current study, material removal on a stressed surface of cobalt-chromium-molybdenum (CoCrMo) subjected to single asperity contact is investigated in order to identify the influence of contact loads and in-plane stress state on surface damage mechanisms. The tip of an atomic force microscope is used as a well-characterized "asperity" to apply controlled contact forces and mechanically stimulate the loaded specimen surface in different aqueous environments from passivating to corroding. The volume of the material removed is measured to determine the influence of contact loads, in-plane stresses and the environment on the material dissolution rate. Experimental results indicate that surface damage is initiated at all the contact loads studied and as expected in a wear situation, removal rate increases with increase in contact loads. Removal rates display a complex dependence on residual stresses and the environment. In a passivating environment, the material removal rate is linearly dependent on the stress state such that surface damage is accelerated under compressive stresses and suppressed under tensile stresses. In a corrosive environment, the dissolution rate demonstrates a quadratic dependence on stress, with both compressive and tensile stresses accelerating material dissolution. A surface damage mechanism based on stress-assisted dissolution is proposed to elucidate the experimental observations.

  10. Rapid Assessment of the Influence of Solution pH, Anion Concentration and Temperature on the Dissolution of Alloy 22

    SciTech Connect

    Gray, J J; Hayes, J R; Gdowski, G E; Viani, B E; Orme, C A

    2005-05-19

    We introduce an acid titration technique for the rapid characterization of the influence of solution pH, anion (such as chloride) concentration and temperature on the dissolution of metals. We demonstrate the technique with the characterization of the dissolution of alloy 22 (Ni-22Cr-13Mo-3W-3Fe) exposed to chloride-containing hydrochloric, sulfuric and nitric acid environments as a function of pH (from pH 5 to pH -1) and temperature (25-90 C). A combination of electrochemical techniques (electrochemical impedance spectroscopy and linear polarization resistance) and atomic force microscopy are used to characterize the influence of the various solutions on the dissolution of alloy 22. In solutions containing hydrochloric and sulfuric acids, a critical temperature exists for passive film breakdown on alloy 22 for all environments tested. Below the critical temperature, corrosion rates are less than 1 {micro}m/year. Above the critical temperature, the effect of temperature on dissolution rates is a function of both the pH and chloride content of the solution. In nitric acid containing solutions, the presence of nitrates promotes a stable passive oxide film that inhibits dissolution in all environments tested.

  11. Modeling the Influence of Transport on Chemical Reactivity in Microbial Membranes: Mineral Precipitation/Dissolution Reactions.

    NASA Astrophysics Data System (ADS)

    Felmy, A. R.; Liu, C.; Clark, S.; Straatsma, T.; Rustad, J.

    2003-12-01

    It has long been known that microorganisms can alter the chemical composition of their immediate surroundings and influence such processes as ion uptake or adsorption and mineral precipitation dissolution. However, only recently have molecular imaging and molecular modeling capabilities been developed that begin to shed light on the nature of these processes at the nm to um scale at the surface of bacterial membranes. In this presentation we will show the results of recent molecular simulations of microbial surface reactions and describe our efforts to develop accurate non-equilibrium thermodynamic models for the microbial surface that can describe ion uptake and surface induced mineral precipitation. The thermodynamic models include the influence of the bacterial electrical double layer on the uptake of ions from solution and the removal, or exclusion, of ions from the surface of the cell, non-equilibrium diffusion and chemical reaction within the membrane, as well as a new thermodynamic approach to representing ion activities within the microbial membrane. In the latter case, the variability in the water content within the microbial membrane has a significant influence on the calculated mineral saturation indices. In such cases, we will propose the use of recently developed mixed solvent-electrolyte formalisms. Recent experimental data for mixed-solvent electrolyte systems will also be presented to demonstrate the potential impact of the variable water content on calculated ion activities within the membrane.

  12. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: improve dissolution rate and bioavailability.

    PubMed

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan; Zhang, Zhiwen; Jiang, Tongying; Sun, Jin; Li, Yaping; Wang, Siling

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability.

  13. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  14. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  15. Enhancement of carbon dioxide reduction and methane production by an obligate anaerobe and gas dissolution device.

    PubMed

    Kim, Seungjin; Choi, Kwangkeun; Kim, Jong-Oh; Chung, Jinwook

    2016-01-25

    The use of gas dissolution devices to improve the efficiency of H2 dissolution has enhanced CO2 reduction and CH4 production. In addition, the nutrients that initially existed in anaerobic sludge were exhausted over time, and the activities of anaerobic microorganisms declined. When nutrients were artificially injected, CO2 reduction and CH4 production rates climbed. Thus, assuming that the activity of the obligatory anaerobic microorganisms is maintained, a gas dissolution device will further enhance the efficiency of CO2 reduction and CH4 production.

  16. Study of dolomite dissolution at various temperatures - Evidence for the formation of nanocrystalline secondary phases at dolomite surface and influence on dolomite interactions with other minerals

    NASA Astrophysics Data System (ADS)

    Debure, M.; Andreazza, P.; Grangeon, S.; Lerouge, C.; Montes-Hernandez, G.; MADE, B.; Tournassat, C.

    2015-12-01

    In most clay-rock geological formation studied for the storage of nuclear waste, pore water compositions are expected to be at equilibrium with carbonate minerals, which are always included in predictive models for pore water composition calculations [1]. Among the carbonates known to be present, dolomite may be problematic in the pore water composition calculation because its solubility spans a large range of values as a function of its crystallinity in thermodynamic databases. In addition, the composition of dolomite minerals observed in clay-rock formations such as Callovian-Oxfordian or Opalinus clay formation differs from this of a pure dolomite: the Ca/Mg stoichiometry is not ideal, and the minerals contain minor amounts of Fe and traces of many other elements [2]. To understand the influence of secondary phases precipitation during dolomite dissolution on pore water chemistry, the dissolution of monocrystals of dolomite were investigated at 25 °C and at 80 °C in a pH range 3 to 8 for various time periods (30 minutes to 21 days) in sealed PTFE reactors. Solution analyses evidenced a stoichiometric release of Ca and Mg in solution during dolomite dissolution. Scanning Electron Microscopy (SEM), Raman and X-Ray Diffraction (XRD) analyses did not evidence secondary Mg-bearing minerals precipitation, but revealed the formation of Fe-bearing particles on the dolomite surface. Morphological characterizations performed with Small-angle X-ray scattering (SAXS) evidenced that the precipitation occurs along a specific crystallographic plane of the dolomite monocrystal. Thus, the precipitated nanoparticles clustered on specific surface sites, and are made of Fe-rich phases poorly crystallized (carbonates, oxides and hydroxides). [1] Tournassat et al. 2015. Ch. 3: Chemical Conditions in Clay-Rocks. Natural and Engineered Clay Barriers, Elsevier. [2] Lerouge et al. 2011. Geochim. et Cosmoch. Acta, 2011, 75, 2633-2663.

  17. On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6

    NASA Astrophysics Data System (ADS)

    Song, Wenwen; Choi, Pyuck-Pa; Inden, Gerhard; Prahl, Ulrich; Raabe, Dierk; Bleck, Wolfgang

    2014-02-01

    We report on the characterization of high carbon bearing steel 100Cr6 using electron microscopy and atom probe tomography in combination with multi-component diffusion simulations. Scanning electron micrographs show that around 14 vol pct spheroidized carbides are formed during soft annealing and only 3 vol pct remain after dissolution into the austenitic matrix through austenitization at 1123 K (850 °C) for 300 seconds. The spheroidized particles are identified as (Fe, Cr)3C by transmission electron microscopy. Atom probe analysis reveals the redistribution and partitioning of the elements involved, i.e., C, Si, Mn, Cr, Fe, in both, the spheroidized carbides and the bainitic matrix in the sample isothermally heat-treated at 773 K (500 °C) after austenitization. Homogeneous distribution of C and a Cr gradient were detected within the spheroidized carbides. Due to its limited diffusivity in (Fe, Cr)3C, Cr exhibits a maximum concentration at the surface of spheroidized carbides (16 at. pct) and decreases gradually from the surface towards the core down to about 2 at. pct. The atom probe results also indicate that the partially dissolved spheroidized carbides during austenitization may serve as nucleation sites for intermediate temperature cementite within bainite, which results in a relatively softer surface and harder core in spheroidized particles. This microstructure may contribute to the good wear resistance and fatigue properties of the steel. Good agreement between DICTRA simulations and experimental composition profiles is obtained by an increase of mobility of the substitutional elements in cementite by a factor of five, compared to the mobility in the database MOBFE2.

  18. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng

    2017-03-01

    The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.

  19. Geometry of modified release formulations during dissolution--influence on performance of dosage forms with diclofenac sodium.

    PubMed

    Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina

    2014-12-30

    The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results.

  20. Influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Li, Junru; Liu, Jianjun; Jiang, Bo; Zhang, Chaolei; Liu, Yazheng

    2017-02-01

    The dissolution process of delta ferrites and the influence of high temperature pre-deformation on the dissolution rate of delta ferrites in martensitic heat-resistant steel 10Cr12Ni3Mo2VN were studied by isothermal heating and thermal simulation experiments. The precipitation temperature of delta ferrites in experimental steel is about 1195 °C. M23C6-type carbides incline to precipitate and coarsen at the boundaries of delta ferrites below 930 °C, and can be rapidly dissolved by heating at 1180 °C. The percentage of delta ferrites gradually decreases with heating time. And a Kolmogorov-Johnson-Mehl-Avrami equation was established to describe the dissolution process of delta ferrites at 1180 °C. High temperature pre-deformation can markedly increase the dissolution rate of delta ferrites. Pre-deformation can largely increase the interface area between delta ferrite and matrix and thus increase the unit-time diffusing quantities of alloying elements between delta ferrites and matrix. In addition, high temperature pre-deformation leads to dynamic recrystallization and increases the number of internal grain boundaries in the delta ferrites. This can also greatly increase the diffusing rate of alloying elements. In these cases, the dissolution of delta ferrites can be promoted.

  1. Dissolution kinetics of granular calcium carbonate in concentrated aqueous sodium dichromate solution at pH 6.0-7.0 and 110-130 degrees C.

    PubMed

    Wang, Tiangui; Li, Zuohu

    2005-01-01

    An understanding of the factors controlling calcite dissolution is important for modeling geochemical cycles and impacts of greenhouse gases on climate, diagenesis of sediments, and sedimentary rocks. It also has practical significance in the investigation of behavior of carbonates in petroleum and natural gas reservoirs and in the preservation of buildings and monuments constructed from limestone and marble. A large number of papers have been published on dissolution kinetics of calcium carbonate in aqueous solutions. But few involved the near-equilibrium region, especially at elevated temperatures and in concentrated solutions. In this paper, the dissolution kinetics of calcium carbonate in concentrated aqueous sodium dichromate solutions at pH 6.0-7.0 and 110-130 degrees C were studied in a 2-L autoclave. The results indicate that the dissolution reaction is mix-controlled, with surface reaction as the prevailing factor. The concentration of calcium ions in solution hardly affects the dissolution rate, but carbon dioxide in the vapor phase inhibits the dissolution reaction. The dissolution rate can be expressed by R = k(1)a(2)(H+) + k(2), and the apparent activation energy is 55-84 kJ mol(-1).

  2. [Influence of different auxiliary materials on the dissolution of carbamazepine from solid dosage forms].

    PubMed

    Jeköné, B Z

    1998-03-01

    Results of the development of a solid dosage form containing 200 mg Carbamazepine (CBZ) are presented. Citric acid and low substituted Hydroxypropyl-cellulose (L-HPC) were used as dissolution enhancers of the active ingredient. Granulation the CBZ and citric acid with water has no effect on the dissolution of CBZ, but the granulation with absolute alcohol increases the dissolution rate. This enhancement could be explained with a molecular interaction between the CBZ and citric acid in water-free media. This interaction is indicated by the melting points, IR-spectra and scanning electron microscopy of the materials and granules. Further dissolution enhancement can be reached with L-HPC because of its disintegrating effect on the granules. Application of citric acid and L-HPC together results in extremely fast dissolution of the CBZ.

  3. Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide.

    PubMed

    Song, Longchu; Yang, Yunlong; Xie, Haibo; Liu, Enhui

    2015-10-12

    Cellulose is a promising renewable material, but cannot easily be processed homogeneously owing to the stiffness of the molecules and the dense packing of its chains, due to intermolecular hydrogen bonds. Cellulose processability can be improved by chemical modification. The reversible reaction of cellulose with carbon dioxide in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) allows dissolution of cellulose in dimethyl sulfoxide (DMSO). This DMSO solution is an effective medium for grafting L-lactide (LLA) from cellulose by ring-opening polymerization (ROP) under mild conditions, allowing to prepare cellulose-graft-poly(L-lactide) co-polymers with a molar substitution (MSPLLA ) of poly(L-lactide) in the range of 0.37-5.32, at 80 °C. This makes DBU not only an important reagent to achieve cellulose dissolution, but it also acts as organocatalyst for the subsequent ring-opening polymerization process. Characterization of the structure and thermal properties of the co-polymers by a variety of techniques reveals that they have a single glass-transition temperature (Tg ), which decreases with increasing MSPLLA . Thus, the modification results in a transformation of the originally semirigid cellulose into a thermoplastic material with tunable Tg . The carbon dioxide dissolution strategy is an efficient platform for cellulose derivatization by homogeneous organocatalysis.

  4. Storm-generated bedforms and relict dissolution pits and channels on the Yucatan carbonate platform

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Goff, J. A.; Stewart, H. A.; Perez-Cruz, L. L.; Davis, M. B.; Duncan, D.; Saustrup, S.; Sanford, J. C.; Fucugauchi, J. U.

    2013-12-01

    The Yucatan 2013 (cruise number 2013/4_ECORD) geophysical and geotechnical hazard site survey took place aboard the R/V Justo Sierra in April 2013. Our study was conducted within the Chicxulub impact crater, encompassing three potential IODP drilling sites. The survey was located ~32 km northwest of Progreso, Mexico; data acquired included ~15.6 km2 of complete multibeam bathymetry coverage, ~435 line km of side scan sonar and CHIRP data, 204 line kilometers of magnetometer data, and 194 line kilometers of surface tow boomer profiles. Based on these data, this portion of the Yucatan Shelf consists of flat-lying, hard limestone rock overlain by isolated ribbons of carbonate sand <1.0 m thick. These ribbons are oriented along NE-SW trends and have smaller scale orthogonal sand-waves (~20-100 m wavelengths and relief of ~0.2-0.6 m) on them. The sand waves are anisotropic with steeper slopes facing the NE. The larger scale morphology can be classified as longitudinal bedforms (ribbons), and the smaller scale transverse bedforms formed in response to a NE-directed flow. This flow direction is inconsistent with the ambient west-directed current conditions, and may therefore be indicative of storm-driven currents. Numerous dissolution pits, ~5-50m in diameter, ~0.2-0.5 m deep with steep (0.1-0.5 gradient) walls, are present in the bare rock regions of most of the study area. These occasionally are floored by rippled, highly reflective (coarse) sediments. We interpret these pits as representing karstic morphology formed during the last sub-aerial exposure of the study area interpreted to have occurred during Holocene times given the present day ~17 m average water depth. A sub-surface reflector imaged on the surface tow boomer data lies 1-3 m below the hard seafloor reflection (sand ribbons are below the vertical resolution of the surface tow boomer), which we interpret as a layer within the limestone bedrock. This reflector is flat-lying and undisturbed throughout the

  5. Mesoporous silica sub-micron spheres as drug dissolution enhancers: Influence of drug and matrix chemistry on functionality and stability.

    PubMed

    Brigo, Laura; Scomparin, Elisa; Galuppo, Marco; Capurso, Giovanni; Ferlin, Maria Grazia; Bello, Valentina; Realdon, Nicola; Brusatin, Giovanna; Morpurgo, Margherita

    2016-02-01

    Mesoporous silica particles prepared through a simplified Stöber method and low temperature solvent promoted surfactant removal are evaluated as dissolution enhancers for poorly soluble compounds, using a powerful anticancer agent belonging to pyrroloquinolinones as a model for anticancer oral therapy, and anti-inflammatory ibuprofen as a reference compound. Mesoporous powders composed of either pure silica or silica modified with aminopropyl residues are produced. The influence of material composition and drug chemical properties on drug loading capability and dissolution enhancement are studied. The two types of particles display similar size, surface area, porosity, erodibility, drug loading capability and stability. An up to 50% w/w drug loading is reached, showing correlation between drug concentration in adsorption medium and content in the final powder. Upon immersion in simulating body fluids, immediate drug dissolution occurred, allowing acceptor solutions to reach concentrations equal to or greater than drug saturation limits. The matrix composition influenced drug solution maximal concentration, complementing the dissolution enhancement generated by a mesoporous structure. This effect was found to depend on both matrix and drug chemical properties allowing us to hypothesise general prediction behaviour rules.

  6. Electrolytic recycling of a carbonate salt in a process with a dissolution of spent nuclear fuel in a strong alkaline carbonate media

    SciTech Connect

    Kwang-Wook Kim; In-Tae Kim; Seong-Min Kim; Yeon-Hwa Kim; Eil-Hee Lee; Kwang-Yong Jee

    2007-07-01

    A removal of only uranium from spent nuclear fuel with the concepts of a high proliferation-resistance and a minimal generation of waste is helpful for a spent fuel management in view of a volume reduction of the high level radioactive waste generated from the spent fuel treatment. That can be accomplished by a process using a selective oxidative dissolution of the spent fuel in a carbonate solution of high alkalinity. In this work, an electrolytic method for a de-carbonation and a recovery of CO{sub 2} for recycling the used carbonate solution contaminated with some impurity metal ions generated in such a process with a concept of zero-release of waste solution was studied. A carbonate solution generated from such a system was confirmed to be completely recycled within the system, while the impurity ions being separated from the carbonate solution. (authors)

  7. The Combination Therapy of Dissolution Using Carbonated Liquid and Endoscopic Procedure for Bezoars: Pragmatical and Clinical Review

    PubMed Central

    Ogawa, Kohei; Mizuno, Ken-ichi; Shinagawa, Yoko; Kobayashi, Yuji; Abe, Hiroyuki; Watanabe, Yukari; Takahashi, Shunsaku; Hayashi, Kazunao; Yokoyama, Junji; Takeuchi, Manabu; Yamagiwa, Satoshi; Sato, Yuichi; Terai, Shuji

    2016-01-01

    Bezoars are relatively rare foreign bodies of gastrointestinal tract and often cause ileus and ulcerative lesions in the stomach and subsequent bleeding and perforation due to their size and stiffness. Therefore, the removal of bezoars is essential and recent development of devices, the endoscopic removal procedure, is often applied. However, due to their stiffness, simple endoscopic removal failed in not a few cases, and surgical removal has also been used. Recently, the efficacy of a combination therapy of endoscopic procedure and dissolution using carbonated liquid has been reported. To develop the safe and effective removal procedure, we carefully reviewed a total of 55 reported cases in this study including our 3 additional cases, successfully treated with dissolution with endoscopic fragmentation. In summary, the data showed the efficiency in the combination therapy, treating the larger size of bezoar and reducing the length of hospital stay. To the best of our knowledge, this is the largest pragmatical and clinical review for the combination therapy of dissolution and endoscopic treatment for bezoars. This review should help physicians to manage bezoars more efficiently. PMID:27642293

  8. Karst Lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns

    SciTech Connect

    White, W.B.; Culver, D.C.; Herman, J.S.

    1995-09-01

    Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.

  9. Precipitation and dissolution of calcium carbonate: key processes bridging the bio- and geosciences (Vladimir Ivanovich Vernadsky Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gattuso, J.-P.

    2012-04-01

    In this Vladimir Ivanovich Vernadsky medal lecture, I will focus on the biogeochemical cycle of calcium carbonate (CaCO3) which is arguably one of the best example of a set processes that bridge the bio- and geosciences. The main reactions involved are calcification and dissolution that, respectively, manufacture and destroy calcium carbonate. Biology is intimately involved in these two processes which are key controls of the Earth's climate and leave remains that are of great use to human societies (as building materials) and geoscientists. I will illustrate the bridge between the bio- and geosciences by providing brief examples for each of the following four issues. (1) The marine cycle of CaCO3 and its relationship with climate. The release of CO2 by the precipitation of calcium carbonate and the uptake of CO2 by its dissolution are important controls of atmospheric CO2 and climate. The vertical distribution of Ψ, the ratio of CO2 released/used per CaCO3 precipitated/dissolved in the ocean will be shown to be consistent with the Högbom-Urey reactions. (2) The use of CaCO3 in paleooceanography. The remains of calcium carbonate shells and skeletons are wonderful archives of past environmental changes. Their isotopic composition and the concen-tration of trace elements are invaluable in the reconstruction of past climate. I will address the challenge of calibrating one of the proxies used to reconstruct past ocean pH. (3) The challenge of understanding calcification. Despite having been investigated for decades, many aspects of the physiological and molecular processes involved in calcification by marine organisms remain obscure. Recent breakthroughs, mostly on reef-building corals, will be briefly reviewed. (4) The response of calcification and dissolution to environmental change. The critical importance of CaCO3 precipitation and dissolution as climate controls makes it vital to understand their response to global environmental changes such as ocean warming and

  10. A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability.

    PubMed

    Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong

    2016-01-01

    In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate.

  11. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  12. Study of dissolution hydrodynamic conditions versus drug release from hypromellose matrices: the influence of agitation sequence.

    PubMed

    Asare-Addo, Kofi; Levina, Marina; Rajabi-Siahboomi, Ali R; Nokhodchi, Ali

    2010-12-01

    In this article, the influence of agitation in descending and ascending sequences as a systematic method development process for potentially discriminating fed and fasted states and evaluation of its effects on the drug release from swelling gel-forming hydrophilic matrix tablets were investigated. Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus at 5, 10, 15, 20, 25 and 30 dips per minute (dpm). Agitation had a profound effect on the drug release from the HPMC K100LV matrices. Drug release in pH 1.2 changed from about 40% at 5 dpm to about 80% at 30 dpm over a 60 min period alone. The matrices containing HPMC K4M, K15M and K100M however were not significantly affected by the agitation rate. The similarity factor f2 was calculated using drug release at 10 dpm as a reference. The ascending agitations of 5-30 dpm and the descending order of agitation 30-5 dpm were also evaluated. Anomalous transport was the only kinetic of release for the K4M, K15M and K100M tablet matrices. The lower viscous polymer of K100LV had some matrices exhibiting Fickian diffusion as its kinetics of release. The use of systematic change of agitation method may indicate potential fed and fasted effects on drug release from hydrophilic matrices.

  13. Pore-scale study of the effect of secondary carbonate precipitation on the dissolution of primary minerals using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.; Carey, J. W.

    2013-12-01

    Reactive transport processes involving dissolution and/or precipitation are pervasive in Earth, energy, and environmental systems. One typical example is geologic sequestration of carbon dioxide. Among these reactive processes, it is commonly encountered that a second phase precipitates while the primary phase dissolves, and the precipitation and dissolution reactions are fully coupled with each other. In the case of mineral trapping of CO2, the primary silicate mineral dissolves due to a decrease of pH caused by the dissolution of CO2 into the solution; meanwhile the dissolved CO2 can react with cations to form a secondary precipitate of carbonate mineral. Although the effect of precipitation of secondary solid phase on the dissolution of the primary solid phase has been studied extensively, the results reported in the literature are often inconclusive and sometimes even contradict one another. The reason is that the coupled dissolution and precipitation processes are controlled by several factors whose contribution is difficult to ascertain, including the dissolution and precipitation reaction kinetics, temperature and pressure, pH and species concentration of the solution, physicochemical properties of the primary and secondary minerals, as well as the nucleation and crystal mechanisms of the precipitates, etc. In this study, a pore-scale (mesoscopic) model based on the lattice Boltzmann method (LBM) is developed to investigate the effects of secondary precipitation on the dissolution of the primary mineral. The model can predict coupled multiple physicochemical processes including fluid flow, mass transport, chemical reaction, dissolution, precipitation consisting of nucleation and crystal growth, as well as dynamical evolution of pore geometries. Effects of dissolution and precipitation reaction kinetics, molar volumes of primary and secondary minerals, initial powder size and surface roughness of the primary mineral, as well as nucleation and crystal growth

  14. Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009-2010): Evidence for seasonal dissolution

    NASA Astrophysics Data System (ADS)

    Muehllehner, Nancy; Langdon, Chris; Venti, Alyson; Kadko, David

    2016-05-01

    Ocean acidification is projected to lower the Ωar of reefal waters by 0.3-0.4 units by the end of century, making it more difficult for calcifying organisms to secrete calcium carbonate while at the same time making the environment more favorable for abiotic and biotic dissolution of the reefal framework. There is great interest in being able to project the point in time when coral reefs will cross the tipping point between being net depositional to net erosional in terms of their carbonate budgets. Periodic in situ assessments of the balance between carbonate production and dissolution that spans seasonal time scales may prove useful in monitoring and formulating projections of the impact of ocean acidification on reefal carbonate production. This study represents the first broad-scale geochemical survey of the rates of net community production (NCP) and net community calcification (NCC) across the Florida Reef Tract (FRT). Surveys were performed at approximately quarterly intervals in 2009-2010 across seven onshore-offshore transects spanning the upper, middle, and lower Florida Keys. Averaged across the FRT, the rates of NCP and NCC were positive during the spring/summer at 62 ± 7 and 17 ± 2 mmol m-2 d-1, respectively, and negative during the fall/winter at -33 ± 6 and -7 ± 2 mmol m-2 d-1. The most significant finding of the study was that the northernmost reef is already net erosional (-1.1 ± 0.4 kg CaCO3 m-2 yr-1) and midreefs to the south were net depositional on an annual basis (0.4 ± 0.1 kg CaCO3 m-2 yr-1) but erosional during the fall and winter. Only the two southernmost reefs were net depositional year-round. These results indicate that parts of the FRT have already crossed the tipping point for carbonate production and other parts are getting close.

  15. Influence of surfactant-treated starch on the disintegration and dissolution of sulphadiazine tablets.

    PubMed

    Nasipuri, R N; Omotosho, J A

    1985-03-01

    The effects of treating cassava starch with sodium lauryl sulphate and Polysorbate 80 and the method of incorporating the treated and plain starch as disintegrant on the physical properties of sulphadiazine tablets were investigated. Disintegration and dissolution rates were faster with starch in which surfactant was incorporated in dry state than with starch treated with solution of surfactant. A direct correlation was observed between the Hardness-Friability Index and T90 values. Polysorbate 80-treated starch exhibited a better dissolution profile than SLS-treated starch.

  16. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices--influence of agitation rate and dissolution medium composition.

    PubMed

    Kavanagh, Nicole; Corrigan, Owen I

    2004-07-26

    The effect of dissolution medium variables, such as medium composition, ionic strength and agitation rate, on the swelling and erosion of Hypromellose (hydroxypropylmethylcellulose, HPMC) matrices of different molecular weights was examined. Swelling and erosion of HPMC polymers was determined by measuring the wet and subsequent dry weights of matrices. It was possible to describe the rate of dissolution medium uptake in terms of a square root relationship and the erosion of the polymer in terms of the cube root law. The extent of swelling increased with increasing molecular weight, and decreased with increasing agitation rate. The erosion rate was seen to increase with decrease in polymer molecular weight, with a decrease in ionic strength and with increasing agitation rate. The sensitivity of polymer erosion to the degree of agitation may influence the ability of these polymers to give reproducible, agitation-independent release, compared to more rigid non-eroding matrix materials, in the complex hydrodynamic environment of the gastrointestinal tract.

  17. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    PubMed

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected

  18. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    USGS Publications Warehouse

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  19. Influence of ammonia on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.

    PubMed

    Kostigen Mumper, Cameron; Ostermeyer, Ann-Kathrin; Semprini, Lewis; Radniecki, Tyler S

    2013-11-01

    Nitrosomonas europaea, a model ammonia oxidizing bacterium, was sensitive to both ionic silver (Ag(+)) and 20 nm citrate capped silver nanoparticles (AgNPs). AgNP toxicity has been previously shown to be primarily due to the dissolution of Ag(+). The rate of AgNP dissolution dramatically increased in test medium containing ammonium sulfate ((NH4)2SO4) and HEPES buffer compared to test medium containing either deionized water or HEPES buffer alone. The AgNP dissolution rates accelerated with increases in ammonia (NH3) concentrations either through increases in pH or through higher (NH4)2SO4 concentrations. Ammonia likely participated in the oxidation of the AgNP to form [Formula: see text] in solution leading to the observed increase in AgNP dissolution rates. AgNP toxicity was enhanced as NH3 concentrations increased. However, Ag(+) toxicity was constant at all NH3 concentrations tested. Therefore, it can be concluded that the increased AgNP toxicity was due to increased Ag(+) release and not due to a synergistic effect between NH3 and Ag(+). The results of this study may provide insights in the fate and toxicity of AgNPs in high NH3 environments including wastewater treatment plants, eutrophic waterways and alkaline environments.

  20. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonas europaea.

    PubMed

    Ostermeyer, Ann-Kathrin; Kostigen Mumuper, Cameron; Semprini, Lewis; Radniecki, Tyler

    2013-12-17

    Bovine serum albumin (BSA), a model protein, reduced the toxicity of 20 nm citrate silver nanoparticles (AgNP) toward Nitrosomonas europaea, a model ammonia oxidizing bacteria, through a dual-mode protection mechanism. BSA reduced AgNP toxicity by chelating the silver ions (Ag(+)) released from the AgNPs. BSA further reduced AgNP toxicity by binding to the AgNP surface thus preventing NH3-dependent dissolution from occurring. Due to BSA's affinity toward Ag(+) chemisorbed on the AgNP surface, increased concentrations of BSA lead to increased AgNP dissolution rates. This, however, did not increase AgNP toxicity as the dissolved Ag(+) were adsorbed onto the BSA molecules. Alginate, a model extracellular polysaccharide (EPS), lacks strong Ag(+) ligands and was unable to protect N. europaea from Ag(+) toxicity. However, at high concentrations, alginate reduced AgNP toxicity by binding to the AgNP surface and reducing AgNP dissolution rates. Unlike BSA, alginate only weakly interacted with the AgNP surface and was unable to completely prevent NH3-dependent AgNP dissolution from occurring. Based on these results, AgNP toxicity in high protein environments (e.g., wastewater) is expected to be muted while the EPS layers of wastewater biofilms may provide additional protection from AgNPs, but not from Ag(+) that have already been released.

  1. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  2. Carbide Formation and Dissolution in Biomedical Co-Cr-Mo Alloys with Different Carbon Contents during Solution Treatment

    NASA Astrophysics Data System (ADS)

    Mineta, Shingo; Namba, Shigenobu; Yoneda, Takashi; Ueda, Kyosuke; Narushima, Takayuki

    2010-08-01

    The microstructures of as-cast and heat-treated biomedical Co-Cr-Mo (ASTM F75) alloys with four different carbon contents were investigated. The as-cast alloys were solution treated at 1473 to 1548 K for 0 to 43.2 ks. The precipitates in the matrix were electrolytically extracted from the as-cast and heat-treated alloys. An M23C6 type carbide and an intermetallic σ phase (Co(Cr,Mo)) were detected as precipitates in the as-cast Co-28Cr-6Mo-0.12C alloy; an M23C6 type carbide, a σ phase, an η phase (M6C-M12C type carbide), and a π phase (M2T3X type carbide with a β-manganese structure) were detected in the as-cast Co-28Cr-6Mo-0.15C alloy; and an M23C6 type carbide and an η phase were detected in the as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. After solution treatment, complete precipitate dissolution occurred in all four alloys. Under incomplete precipitate dissolution conditions, the phase and shape of precipitates depended on the heat-treatment conditions and the carbon content in the alloys. The π phase was detected in the alloys with carbon contents of 0.15, 0.25, and 0.35 mass pct after heat treatment at high temperature such as 1548 K for a short holding time of less than 1.8 ks. The presence of the π phase in the Co-Cr-Mo alloys has been revealed in this study for the first time.

  3. Theoretical study of the influence of chemical reactions and physical parameters on the convective dissolution of CO2 in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Loodts, Vanessa; Rongy, Laurence; De Wit, Anne

    2014-05-01

    Subsurface carbon sequestration has emerged as a promising solution to the problem of increasing atmospheric carbon dioxide (CO2) levels. How does the efficiency of such a sequestration process depend on the physical and chemical characteristics of the storage site? This question is emblematic of the need to better understand the dynamics of CO2 in subsurface formations, and in particular, the properties of the convective dissolution of CO2 in the salt water of aquifers. This dissolution is known to improve the safety of the sequestration by reducing the risks of leaks of CO2 to the atmosphere. Buoyancy-driven convection makes this dissolution faster by transporting dissolved CO2 further away from the interface. Indeed, upon injection, the less dense CO2 phase rises above the aqueous layer where it starts to dissolve. The dissolved CO2 increases the density of the aqueous solution, thereby creating a layer of denser CO2-rich solution above less dense solution. This unstable density gradient in the gravity field is at the origin of convection. In this framework, we theoretically investigate the effect of CO2 pressure, salt concentration, temperature, and chemical reactions on the dissolution-driven convection of CO2 in aqueous solutions. On the basis of a linear stability analysis, we assess the stability of the time-dependent density profiles developing when CO2 dissolves in an aqueous layer below it. We predict that increasing CO2 pressure destabilizes the system with regard to buoyancy-driven convection, because it increases the density gradient at the origin of the instability. By contrast, increasing salt concentration or temperature stabilizes the system via effects on CO2 solubility, solutal expansion coefficient, diffusion coefficient and on the viscosity and density of the solution. We also show that a reaction of CO2 with chemical species dissolved in the aqueous solution can either enhance or decrease the amplitude of the convective dissolution compared

  4. The dissolution of synthetic Na-boltwoodite in sodium carbonate solutions

    NASA Astrophysics Data System (ADS)

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-10-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in certain contaminated sediments at the US Department of Energy Hanford site [Liu, C., Zachara, J.M., Qafoku, O., McKinley, J.P., Heald, S.M., Wang, Z. 2004. Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta68, 4519-4537.]. Consequently, the solubility of synthetic Na-boltwoodite, Na(UO 2)(SiO 3OH) · 1.5H 2O, was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site and calcareous environments generally. Experiments were open to air. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility and dissolution kinetics increased with increasing bicarbonate concentration and pH. A consistent set of solubility constants were determined from circumneutral pH (0 added bicarbonate) to alkaline pH (50 mM added bicarbonate). Average logKspo=5.86±0.24 or 5.85 ± 0.0.26; using the Pitzer ion-interaction model or Davies equation, respectively. These values are close to the one determined by [Nguyen, S.N., Silva, R.J., Weed, H.C., Andrews, Jr., J.E., 1992. Standard Gibbs free energies of formation at the temperature 303.15 K of four uranyl silicates: soddyite, uranophane, sodium boltwoodite, and sodium weeksite. J. Chem. Thermodynamics24, 359-376.] under very different conditions (pH 4.5, Ar atmosphere).

  5. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    NASA Astrophysics Data System (ADS)

    Odorowski, Mélina; Jégou, Christophe; De Windt, Laurent; Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Martin, Christelle

    2016-01-01

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 109 Bq.gMOX-1 reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·tHM-1 after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O2] < 1 ppm) for one year in carbonated water (10-2 mol L-1). For each experiment, solution samples were taken over time and Eh and pH were monitored. The uranium in solution was assayed using a kinetic phosphorescence analyzer (KPA), plutonium and americium were analyzed by a radiochemical route, and H2O2 generated by the water radiolysis was quantified by chemiluminescence. Surface characterizations were performed before and after leaching using Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA) and Raman spectroscopy. Solubility diagrams were calculated to support data discussion. The uranium releases from MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO2 reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO2 matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO2 grains were much more sensitive to oxidative dissolution, but the presence of carbonates did not enable observation of an

  6. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.; Pattanaik, Jitendra K.; Rai, Santosh K.; Mazumdar, Aninda

    2015-09-01

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over 2 years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and δ13CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ⩾10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon. Calculations show that groundwater cannot account for the observed "excess" Ca in the high salinity zone. Estimated DIC contributions from anthropogenic activity are minor, and they constitute ca. 2-3% of the river water DIC concentrations. The estimated annual DIC flux from the estuary to the Bay of Bengal is ca. (3-4) × 1012 g, of which ca. 40-50% is generated within the estuary. The monsoon periods account for the majority (ca. 70%) of the annual DIC generation in the estuary. The annual DIC flux from the Hooghly estuary accounts for ca. 1% of the global river DIC flux to the oceans. This is disproportionately higher than the water contribution from the Hooghly River to the oceans, which

  7. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  8. The Influence of Dissolution on Bedrock Channel Evolution: Insights from Modelling and Field Observations

    NASA Astrophysics Data System (ADS)

    Thaler, E.; Myre, J. M.; Covington, M. D.

    2015-12-01

    Despite the large global distribution of soluble bedrock, fluvial geomorphological studies typically regard dissolution as a negligible erosion mechanism in bedrock channels when compared to rates of mechanical erosion. Limited prior field observations have suggested that at the transition from insoluble to soluble substrate bedrock channels become wider, less steep, or both. By extending the Fastscape landscape evolution model to include dissolution as an erosion mechanism, we repeatedly produce landscapes with trunk streams consistent with field observations. However, in small tributaries, channel steepening occurs at the contact of the insoluble and soluble lithologies. Furthermore, as the main channel in a basin encounters the soluble layer, the increased erosion due to dissolution acts produces a local increase in the rate of base level lowering, resulting in steepening of channels upstream of the lithologic contact. The increased erosion at the lithological contact in the main stem also causes hillsope steepening in the soluble reaches. Independent field observations in the Buffalo National River Basin agree with the model results. Knickpoints and slot canyons are common at the lithologic contact in small tributaries, and channel widening occurs in soluble reaches in the main stem.

  9. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  10. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.

  11. Size and composition of synthetic calcium sulfate beads influence dissolution and elution rates in vitro.

    PubMed

    Roberts, Randy; McConoughey, Stephen J; Calhoun, Jason H

    2014-05-01

    Treatments of osteomyelitis lag behind bacterial resistance to antibiotics. We tested different-sized calcium sulfate beads and their ability to elute multiple antibiotics in vitro as a possible method to improve the therapeutic delivery in patients. Two sizes of calcium sulfate beads (4.8 and 3.0 mm diameter) that contained vancomycin, tobramycin, or both were dissolved in phosphate-buffered saline, and the rate of dissolution by weight and antibiotic elution by the disc diffusion assay and high-pressure liquid chromatography were measured. The 4.8 mm beads showed significantly higher dissolution rates relative to the 3.0 mm beads (2.3 mg/day vs. 1.3 mg/day). While the vancomycin-loaded 4.8 mm beads eluted for a longer time relative to the 3.0 mm beads (20 days vs. 10 days), the smaller beads had threefold higher elution for the first 2 days, before dropping to near zero elution by day 4. The presence of tobramycin extended the elution of the vancomycin to day 40, which closely matches the recommended 6 weeks to treat orthopedic staphylococcus infections. These data suggest that size and content of the bead are variables that could affect their clinical success, and both could be exploited to tailor treatments of specific infections and injuries.

  12. An ecological mechanism to create regular patterns of surface dissolution in a low-relief carbonate landscape

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Osborne, T.; Murray, A.; Watts, A. C.; Watts, D.; Heffernan, J. B.

    2012-12-01

    Development of karst landscapes is controlled by focused delivery of water undersaturated with respect to the soluble rock minerals. As that water comes to equilibrium with the rock, secondary porosity is incrementally reinforced creating a positive feedback that acts to augment the drainage network and subsequent water delivery. In most self-organizing systems, spatial positive feedbacks create features (in landscapes: patches; in karst aquifers: conduits) whose size-frequency relationship follows a power function, indicating a higher probability of large features than would occur with a random or Gaussian genesis process. Power functions describe several aspects of secondary porosity in the Upper Floridan Aquifer in north Florida. In contrast, a different pattern arises in the karst landscape in southwest Florida (Big Cypress National Preserve; BICY), where low-relief and a shallow aquiclude govern regional hydrology. There, the landscape pattern is highly regular (Fig. 1), with circular cypress-dominated wetlands occupying depressions that are hydrologically isolated and distributed evenly in a matrix of pine uplands. Regular landscape patterning results from spatially coupled feedbacks, one positive operating locally that expands patches coupled to another negative that operates at distance, eventually inhibiting patch expansion. The positive feedback in BICY is thought to derive from the presence of surface depressions, which sustain prolonged inundation in this low-relief setting, and facilitate wetland development that greatly augments dissolution potential of infiltrating water in response to ecosystem metabolic processes. In short, wetlands "drill" into the carbonate leading to both vertical and lateral basin expansion. Wetland expansion occurs at the expense of surrounding upland area, which is the local catchment that subsidizes water availability. A distal inhibitory feedback on basin expansion thus occurs as the water necessary to sustain prolonged

  13. Submarine Dissolution During the Late-Miocene Carbonate Crash and Subsequent Mega-Pockmark Formation on the Cocos Ridge

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.

    2014-12-01

    A large field (245km2) seabed mega-pockmarks (~1 km to 4 km in diameter) was recently imaged on the western edge of the Cocos Ridge near the Middle American Trench. The pockmarks are part of a vast mega-pockmark field (~10x150 km) and were imaged using high-resolution multibeam bathymetry and backscatter and 3D seismic reflection data. On the seafloor, multiple pockmarks exhibit a two-tiered geomorphology, some of which contain small high-backscatter mounds, possibly indicating recent seafloor seepage. 3D seismic data reveal that the two-tiered morphology is caused by collapse structures at depth with large pockmarks above the walls of the former. Observed collapse structures are characterized by steep walls that truncate surrounding strata, apparent normal "ring" faults, chaotic internal reflections interpreted as infill, and circular morphologies. Younger pockmarks located above the walls of the collapse structures are larger in diameter, have gently dipping walls that do not truncate surrounding strata, and typically show elliptical morphologies. Physical properties results at IODP Site U1414 that intersects the 3D seismic volume suggest that observed reverse polarity lens-shaped zones, which are truncated by the deeper collapse structures, represent anomalous regions of high porosity and low density. In addition, a rapid drop in Ca concentrations observed within this interval at Site U1414 suggests a relationship with possible carbonate dissolution. Correlation of the collapse structures stratigraphic timing with nanno-fossil data at Site U1414 suggests formation occurred ~8-10 Ma, approximately during the Late Miocene eastern Pacific carbonate crash. Based on 3D seismic analysis and recent drilling results, we propose a two-stage formation process that consists of initial collapse caused by carbonate dissolution during the late Miocene, followed by sustained fluid-flow along the walls of established collapse features, resulting in pockmark formation. This

  14. Characterization of excipient and tableting factors that influence folic acid dissolution, friability, and breaking strength of oil- and water-soluble multivitamin with minerals tablets.

    PubMed

    Du, Jianping; Hoag, Stephen W

    2003-11-01

    The goal of this study is to characterize the formulation and processing factors that influence folic acid dissolution from oil- and water-soluble multivitamin with minerals tablet formulations for direct compression. The following parameters were studied: bulk filler solubility, soluble to insoluble bulk filler ratio, triturating agent (preblending carrier) solubility, disintegrant usage, compression pressure, and folic acid particle size. Folic acid particle size was determined by using light microscopy, and surface area was measured by using BET adsorption. The tablets were compressed on an instrumented Stokes B2 tablet press, and the friability, weight variation, and dissolution were measured according to USP methods, along with tablet breaking strength. In summary, we found the following factors to be critical to folic acid dissolution: bulk filler solubility (soluble fillers, such as maltose, increase folic acid dissolution); disintegrant amount (levels less than 0.4% (w/w) are ineffectual, whereas levels greater than 1.2% (w/w) did not further increase dissolution); and compression force (generally, maltose produce harder tablets). In addition, folic acid dissolution was less affected by changes in compaction pressure when a "super" disintegrant and maltose, as a bulk filler, were used. It was determined that the trituration agent did not play a significant role in folic acid dissolution. In the range of parameters studied, statistical analysis found no significant interactions between the parameters studied, which means they act independently in an additive manner. The results also show that no one factor is completely responsible for dissolution failure. Thus, it is the combination of formulation factors and processing conditions that collectively add up to produce dissolution failure; however, the use of a disintegrant and a soluble filler such as maltose can make a formulation more robust to the inevitable changes that can occur during commercial

  15. The influence of surface state and saturation state on the dissolution kinetics of biogenic aragonite in seawater

    USGS Publications Warehouse

    Acker, James G.; Byrne, R.H.

    1989-01-01

    Uses several realistic partial molar volume changes (??V) for aragonite dissolution in seawater. Indicates that the molar volume change for aragonite dissolution is within the bounds -37 cm 3/mole ?????V ??? -39.5 cm3/mole. -from Authors

  16. Bovine Serum Albumin binding to CoCrMo nanoparticles and the influence on dissolution

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Brown, A. P.; Milne, S. J.; Brydson, R. M. D.

    2015-10-01

    CoCrMo alloys exhibit good mechanical properties, excellent biocompatibility and are widely utilised in orthopaedic joint replacements. Metal-on-metal hip implant degradation leads to the release of metal ions and nanoparticles, which persist through the implant's life and could be a possible cause of health complications. This study correlates preferential binding between proteins and metal alloy nanoparticles to the alloy's corrosion behaviour and the release of metal ions. TEM images show the formation of a protein corona in all particles immersed in albumin containing solutions. Only molybdenum release was significant in these tests, suggesting high dissolution of this element when CoCrMo alloy nanoparticles are produced as wear debris in the presence of serum albumin. The same trend was observed during extended exposure of molybdenum reference nanoparticles to albumin.

  17. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.

    PubMed

    Daitou, Fumikazu; Maruta, Michito; Kawachi, Giichiro; Tsuru, Kanji; Matsuya, Shigeki; Terada, Yoshihiro; Ishikawa, Kunio

    2010-05-01

    In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specimens, the slurry made from the powder mixture and distilled water was packed in a split stainless steel mold and heat - treated, ranging from 60 degrees C to 100 degrees C up to 48 hours at 100% humidity. It appeared that carbonate apatite could be obtained above 70 degrees C and monophasic carbonate apatite could be obtained from the powder mixture at Ca/P ratio of 1.67. Carbonate content of the specimen was about 5-7%. Diametral tensile strength of the carbonate apatite blocks slightly decreased with increasing treatment temperature. The decrease in diametral tensile strength is thought to be related to the crystal size of the carbonate apatite formed.

  18. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets.

    PubMed

    Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted.

  19. Elevated pCO2 effects on the geochemistry of carbonate aquifers: calcite dissolution as a driver of elevated metal concentrations

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; Moore, J.; McCray, J. E.

    2012-12-01

    Geological carbon capture, utilization and storage has gained momentum in the last decade as a viable option of reducing anthropogenic emissions of CO2, with several demonstration projects completed, in progress or planned for upcoming years. However, large-scale CO2-injection operations are accompanied by concerns of CO2 leakage from deep geological repositories and subsequent contact with shallower aquifers, such as underground sources of drinking water. Direct toxicity of CO2 is of lesser concern; rather, it is the acidification of aquifers from increased CO2 partial-pressures (pCO2), which may lead to release of metals into groundwater through mineral dissolution and metal desorption. Previous geochemical studies have suggested that the presence of calcite in aquifer material would reduce the hazard of metal release by effectively buffering acidity via calcite dissolution at elevated pCO2, thus placing carbonate aquifers at lesser risk in case of CO2 leakage. Yet calcite is rarely found in pure form, and often contains a wide range of impurities, including metals such as As, Cr, and Pb, in solid-solution. Dissolution of calcite during acidity buffering is accompanied by release of these impurities from the calcite lattice. We show through experimental work that dissolution of calcite is the primary mechanism responsible for elevated concentrations of metals in carbonate aquifers at high pCO2. It is also evident that the mechanism responsible for metal release, i.e. dissolution or desorption, is metal-specific and pCO2-specific. Modeling work based on our experimental results suggests that in reducing aquifers calcite can contribute more to release of metals than sulfides, which are generally viewed as likely sources of metals in aquifers, during a hypothetical 30-year CO2 leak. In addition, modeling work suggests that when sulfide minerals are present in a carbonate aquifer, metals release would be more sensitive to pO2 than to pCO2.

  20. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  1. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.

    PubMed

    Rau, Greg H; Carroll, Susan A; Bourcier, William L; Singleton, Michael J; Smith, Megan M; Aines, Roger D

    2013-06-18

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification.

  2. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  3. The Role of Sulfur Oxidation in Carbonate Precipitation and Dissolution Within Sulfidic Hot Springs

    NASA Astrophysics Data System (ADS)

    Alford, S. E.; Kapitulčinová, D.; Kotrc, B.; Langerhuus, A. T.; Berelson, W.; Dawson, S.; Corsetti, F.; Hanselmann, K.; Johnson, H.; Spear, J.; Stevenson, B. S.; de La Torre, J.; 2008, G.

    2008-12-01

    Geothermal waters that have interacted with subsurface limestones often precipitate aragonite and calcite (travertine) upon cooling and degassing of CO2, forming terraced travertine deposits like those at Mammoth Hot Springs (MHS) in Yellowstone National Park. It has been shown that surfaces of filamentous microbial "Aquificales-dominated streamer communities" comprising the Apron and Channel Facies in these systems can act as nucleation sites for carbonate precipitation leading to the fine-scale tubular micro-structures consistently observed in travertine terraces, modern and ancient. The expected carbonate precipitates were found on streamer communities on the proximal Slope facies, however, ESEM imaging and EDX analysis revealed sulfur crystals, rather than carbonate precipitates, in association with Aquificales-dominated communities collected near the mouth of Narrow Gauge (pH 6.43, T 73.5°C), a sulfidic bicarbonate spring within the MHS system. Thermodynamic analysis of geochemical spring water datasets (data from Angel Terrace Spring applied to the Narrow Gauge site) demonstrates that lowering of the acid-neutralizing capacity (ANC) of spring waters can be achieved by sulfur oxidation. Although the first step of oxidation from H2S to S° cannot account for the lack of aragonite on the streamer biofilms, oxidation of even small amounts of S° to S2O32- and further to SO42- markedly decreases ANC. This microbially mediated reaction may lead to a shift in the local pH and a shift in the ion activity product (IAP) for Ca2+ x CO32- to below the solubility product (Ksp) of CaCO3. Our calculations suggest that this reaction, sulfur oxidation with oxygen to sulfate, can liberate sufficient protons to drive aragonite to undersaturation, if the initial sulfur concentration is 5 mM, and the [Ca] and [CO3] concentrations are initially 0.01 M and 1-10 uM, respectively. The potential importance of sulfur oxidation in hot springs, the molecular signatures of this process

  4. Reactive-convective dissolution in a porous medium: the storage of carbon dioxide in saline aquifers.

    PubMed

    Ghoshal, Parama; Kim, Min Chan; Cardoso, Silvana S S

    2016-12-21

    We quantify the destabilising effect of a first-order chemical reaction on the fingering instability of a diffusive boundary layer in a porous medium. Using scaling, we show that the dynamics of such a reactive boundary layer is fully determined by two dimensionless groups: Da/Ra(2), which measures the timescale for convection compared to those for reaction and diffusion; and βC/βA, which reflects the density change induced by the product relative to that of the diffusing solute. Linear stability and numerical results for βC/βA in the range 0-10 and Da/Ra(2) in the range 0-0.01 are presented. It is shown that the chemical reaction increases the growth rate of a transverse perturbation and favours large wavenumbers compared to the inert system. Higher βC/βA and Da/Ra(2) not only accelerate the onset of convection, but crucially also double the transport of the solute compared to the inert system. Application of our findings to the storage of carbon dioxide in carbonate saline aquifers reveals that chemical equilibrium curtails this increase of CO2 flux to 50%.

  5. Debundling and dissolution of single-walled carbon nanotubes in amide solvents.

    PubMed

    Furtado, C A; Kim, U J; Gutierrez, H R; Pan, Ling; Dickey, E C; Eklund, Peter C

    2004-05-19

    Wet chemical methods involving ultrasound and amide solvents were used to purify and separate large bundles of single-walled carbon nanotubes (SWNTs) into individual nanotubes that could then be transported to silicon or mica substrates. The SWNTs studied were produced by the arc-discharge process. Dry oxidation was used in an initial step to remove amorphous carbon. Subsequently, two acid purification schemes were investigated (HCl- and HNO(3)-reflux) to remove the metal growth catalyst (Ni-Y). Finally, ultrasonic dispersion of isolated tubes into either N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) was carried out. Raman scattering, atomic force microscopy (AFM), and electron microscopy were used to study the evolution of the products. Raman scattering was used to probe possible wall damage during the chemical processing. We found that both HCl and HNO(3) could be used to successfully remove the Ni-Y below approximately 1 wt %. However, the HNO(3)-reflux produced significant wall damage (that could be reversed by vacuum annealing at 1000 degrees C). In the dispersion step, both amide solvents (DMF and NMP) produced a high degree of isolated tubes in the final product, and no damage during this dispersion step was observed. HNO(3)-refluxed tubes were found to disperse the best into the amide solvents, perhaps because of significant wall functionalization. AFM was used to study the filament diameter and length distributions in the final product, and interesting differences in these distributions were observed, depending on the chemical processing route.

  6. A mechanistic understanding of plagioclase dissolution based on Al occupancy and T-O bond length: from geologic carbon sequestration to ambient conditions.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-11-14

    A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.

  7. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect

    Quach, D.L.; Wai, C.M.; Mincher, B.J.

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  8. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  9. Dissolution of Columbia River Basalt Under Mildly Acidic Conditions as a Function of Temperature: Experimental Results Relevant to the Geological Sequestration of Carbon Dioxide

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter

    2009-05-01

    Increasing attention is being focused on the rapid rise of carbon dioxide levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O-CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock-water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25° to 90°C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3≤pH≤7) with a slope, η, of -0.12 ± 0.02. An activation energy, Ea, has been estimated at 30.3 ± 2.4 kJ mol-1. Dissolution kinetics measurements like these are essential for modeling the rate at which the CO2 reacts with basalt and ultimately converted to carbonate minerals in situ.

  10. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    PubMed

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.

  11. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment

    NASA Astrophysics Data System (ADS)

    Röllin, S.; Spahiu, K.; Eklund, U.-B.

    2001-09-01

    Dissolution rates of spent UO 2 fuel have been investigated using flow-through experiments under oxidizing, anoxic and reducing conditions. For oxidizing conditions, approximately congruent dissolution rates were obtained in the pH range 3-9.3 for U, Np, Ba, Tc, Cs, Sr and Rb. For these elements, steady-state conditions were obtained in the flow rate range 0.02-0.3 ml min -1. The dissolution rates were about 3 mg d -1 m-2 for pH>6. For pH<6, dissolution rates were strongly increasing for decreasing pH. Incongruent dissolution was found for Zr, Mo, Ru, Rh, Pd, Am and the lanthanides. The dissolution rates with H 2(g) saturated solutions dropped by up to four orders of magnitude as compared to oxidizing conditions. Because of the very low concentrations, only U, Pu, Am, Mo, Tc and Cs could be measured. For anoxic conditions, both the redox potential and dissolution rates increased approaching the same values as under oxidizing conditions.

  12. The difference between surface ocean carbonate chemistry and calcite dissolution in deep sea sediments as observed in tests of Globorotalia menardii

    NASA Astrophysics Data System (ADS)

    Russo, M.; Mekik, F.

    2010-12-01

    The Globorotalia menardii Fragmentation Index (MFI) was developed to trace deep sea calcite dissolution within sediments. While this proxy has a multi-basin core top calibration ranging the tropical and subtropical world ocean, the effect of the surface ocean [CO32-] on thickness of whole G. menardii shells has not been previously tested. If the size-normalized shell weight (SNSW) of G. menardii tests were affected by the [CO32-] of ambient habitat waters, this would put constraints on the applicability of MFI as a reliable bulk sediment calcite dissolution proxy. We present new SNSW data from G. menardii shells within core tops in the eastern equatorial Pacific where there is both a strong gradient to surface ocean [CO32-] and calcite dissolution in the sediments. We compare our G.menardii SNSW data with that of other species in the region, such as Neogloboquadrina dutertrei and Pulleniatina obliquiloculata. While SNSW of both N. dutertrei and P. obliquiloculata have clear relationships with surface ocean [CO32-], we do not find a similar relationship between G. menardii SNSW and surface ocean parameters, particularly [CO32-]. This bolsters our confidence in the reliability of MFI as a deep sea carbonate dissolution tracer.

  13. Interactions between ciprofloxacin and antacids--dissolution and adsorption studies.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Hussain, Fida

    2005-01-01

    Ciprofloxacin is a fluorinated quinolone antibacterial agent extensively used against both Gram-positive and Gram-negative microorganisms. In certain polytherapy programs, ciprofloxacin can be administered with some antacids that could modify its dissolution rate and reduce its absorption leading to therapeutic failure. The aim of this study was to evaluate the influence of some antacids on the availability of ciprofloxacin. The release of ciprofloxacin from tablets in the presence of antacids, such as sodium bicarbonate, calcium hydroxide, calcium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, magnesium trisilicate and magaldrate was studied on BP 2002 dissolution test apparatus. These studies were carried out in simulated gastric and intestinal juices for 3 hours at 37 degrees C. The results confirmed that the dissolution rate of tablets was markedly retarded in the presence of all the antacids studied. Magaldrate and calcium carbonate in simulated gastric juice exhibited relatively higher adsorption capacities, as did magnesium trisilicate and calcium hydroxide in simulated intestinal juice.

  14. Influence of the physiological variability of fasted gastric pH and tablet retention time on the variability of in vitro dissolution and simulated plasma profiles.

    PubMed

    Kovačič, Nataša Nagelj; Pišlar, Mitja; Ilić, Ilija; Mrhar, Aleš; Bogataj, Marija

    2014-10-01

    The aim of the present study was to show that the physiological variability of fasted gastric pH and tablet gastric retention time contributes to the overall variability of simulated plasma profiles of diclofenac. Those two parameters were implemented into dissolution study and plasma profiles were simulated under assumptions that in vitro dissolution well represents that occurring in vivo, and that absorption profiles are identical to dissolution profiles, as diclofenac is a highly permeable drug. Dissolution experiments were performed using USP 2 apparatus and two consecutive dissolution media, namely, an acidic medium of various pH (ranging from 1-3), where tablets were kept for a certain time (10-200 min), and phosphate buffer (pH 6.8). It was shown that the acid pH value and acid retention time of tablets affect in vitro drug release, and consequently also influence the simulated plasma profiles. Lower acid pH resulted in lower plasma peaks at each studied acid retention time. Longer acid retention time caused lower plasma concentrations at lower acid pH values, whereas at pH 3 higher plasma concentrations were noted. Additionally, it was demonstrated that the variability of both parameters represents an important contribution to the overall variability of plasma profiles.

  15. Coupled alkai fieldspar dissolution and secondary mineral precipatation in batch systems-2: New experiments with supercritical CO2 and implications for carbon sequestration

    SciTech Connect

    Lu, Peng; Fu, Qi; Seyfried, William E. Jr.; Hedges, Sheila W.; Soong, Yee; Jones, Kyle; Zhua, Chen

    2013-01-01

    In order to evaluate the extent of CO{sub 2}–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO{sub 2}–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔG{sub r} relationship can overestimate the extent of feldspar dissolution during CO{sub 2} storage. Finally, the literature on feldspar dissolution in CO{sub 2}-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral

  16. The influence of co-formers on the dissolution rates of co-amorphous sulfamerazine/excipient systems.

    PubMed

    Gniado, Katarzyna; Löbmann, Korbinian; Rades, Thomas; Erxleben, Andrea

    2016-05-17

    A comprehensive study on the dissolution properties of three co-amorphous sulfamerazine/excipient systems, namely sulfamerazine/deoxycholic acid, sulfamerazine/citric acid and sulfamerazine/sodium taurocholate (SMZ/DA, SMZ/CA and SMZ/NaTC; 1:1 molar ratio), is reported. While all three co-formers stabilize the amorphous state during storage, only co-amorphization with NaTC provides a dissolution advantage over crystalline SMZ and the reasons for this were analyzed. In the case of SMZ/DA extensive gelation of DA protects the amorphous phase from crystallization upon contact with buffer, but at the same time prevents the release of SMZ into solution. Disk dissolution studies showed an improved dissolution behavior of SMZ/CA compared to crystalline SMZ. However, enhanced dissolution properties were not seen in powder dissolution testing due to poor dispersibility. Co-amorphization of SMZ and NaTC resulted in a significant increase in dissolution rate, both in powder and disk dissolution studies.

  17. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: parameters influence, and optimization.

    PubMed

    Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy

    2016-09-01

    This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.

  18. Natural organic matter influences the dissolution and stability of reduced technetium(IV) and uranium(IV)

    NASA Astrophysics Data System (ADS)

    Gu, B.; Dong, W.; Liang, L.; Wall, N.

    2010-12-01

    Reductive precipitation and immobilization of soluble technetium (as pertechnetate, Tc(VII)O4-) and uranium (as uranyl, U(VI)O22+) to sparingly soluble Tc(IV) and U(IV) species have been proposed as one of the promising remediation technologies to immobilize uranium and technetium in situ in the subsurface. However, the dissolution and long-term stability of reduced Tc(IV) and U(IV) species are poorly understood, particularly in the presence of natural and synthetic organic ligands, which are known to form complexes with these metals or radionuclides and thus cause their mobilization. In this study, the kinetics of both ligand-promoted and oxidative dissolution of Tc(IV) and U(IV) solids are determined, and their mobility is evaluated in the presence of natural organic matter (e.g.,humic acid and fulvic acid) and synthetic ethylenediaminetetraacetate (EDTA). We found that EDTA and the humic acid are among the most effective in promoting the ligand-induced dissolution of Tc(IV) and U(IV) by complexation. However, EDTA is found to suppress the oxidative dissoltuion of Tc(IV) and U(IV), whereas the humic acid enhances the oxidative dissolution due to its redox reactive functional properties. Furthermore, the oxidative dissolution is found to be much quicker than the ligand-promoted dissolution by humic substances. Studies of the dissolution and stability of reduced U(IV) in a contaminated sediment column confirms that both the synthetic and natural organic ligands can cause the mobilization of U(IV) although the dissolution rate is relatively slow. Because these organic ligands commonly co-exit at comtaminated sites, our results suggest that their presence can potentially impact the long-term stability and mobility of reduced Tc(IV) or U(IV) and should be considered in designing remediation strategies using the reductive precipitation approach.

  19. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.

  20. Understanding the dissolution of zeolites.

    PubMed

    Hartman, Ryan L; Fogler, H Scott

    2007-05-08

    Scientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon. Stoichiometric dissolution is observed for Type 4A zeolite in HCl where the Si-to-Al ratio is equal to 1.0. Framework silicon dissolves completely during Type 4A dissolution and is followed by silicate precipitation. However, for the zeolite analcime which has a Si-to-Al ratio of 2.0 dissolves non-stoichiometrically as the selective removal of aluminum results in partially dissolved silicate particles followed by silicate precipitation. In Type Y zeolite, exhibiting a Si-to-Al ratio of 3.0, there is insufficient aluminum to weaken the structure and cause silicon to dissolve in HCl. Thus, little or no precipitation is observed, and amorphous undissolvable silicate particles remain intact. The initial dissolution rates of Type Y and 4A zeolites demonstrate that dissolution is constrained by the number of available reaction sites, and a selective removal rate parameter is applied to delineate the mechanism of particle dissolution by demonstrating the kinetic influence of the Si-to-Al ratio. Zeolite framework models are constructed and used to undergird the basic dissolution mechanism. The framework models, scanning electron micrographs of partially dissolved crystals, and experimentally measured dissolution rates all demonstrate that a zeolite's Si-to-Al framework ratio plays a universal role in the dissolution mechanism, independent of framework type. Consequently, the unique mechanism of zeolite dissolution has general implications on how petroleum

  1. Electrochemical in-situ dissolution study of structurally ordered, disordered and gold doped PtCu3 nanoparticles on carbon composites

    NASA Astrophysics Data System (ADS)

    Jovanovič, Primož; Šelih, Vid Simon; Šala, Martin; Hočevar, Samo B.; Pavlišič, Andraž; Gatalo, Matija; Bele, Marjan; Ruiz-Zepeda, Francisco; Čekada, Miha; Hodnik, Nejc; Gaberšček, Miran

    2016-09-01

    Commercial deployment of low-temperature-fuel cells is still hugely restricted by platinum alloy catalysts corrosion. Extensive research of the last years is focused on increasing stability of the catalyst composite, however a comprehensive understanding is still lacking. In pursuing this fundamentally and practically very important objective we present a comparative corrosion study of a PtCu3 nano-alloy system by investigating the effects of structural ordering and gold doping. For that purpose a recently developed electrochemical flow cell (EFC) coupled to inductively coupled plasma mass spectrometer (ICP-MS) is employed. This approach provides potential- and time-resolved insight into dissolution process at extremely low concentrations (ppb level). Our results show a structure-dependent copper corrosion, where ordering and gold-doping significantly improve copper retention in the native alloy. Two assumptions can be drawn from the measured Pt dissolution profiles: (i) a better Pt re-deposition efficiency in catalysts with higher porosity and (ii) the beneficial effect of Au surface doping that lowers the amount of dissolved Pt amount and shifts the Pt cathodic dissolution to lower potentials. A 2.6 nm Pt/C standard catalyst with the same carbon loading shows a much lower stability which is due to the well-known particle size effect.

  2. The Influence of CaCO3 Dissolution on Core Top Radiocarbon Ages for Deep-Sea Sediments

    NASA Astrophysics Data System (ADS)

    Broecker, Wallace S.; Klas, Mieczyslawa; Clark, Elizabeth; Bonani, Georges; Ivy, Susan; Wolfli, Willy

    1991-10-01

    Radiocarbon ages on CaCO3 from deep-sea cores offer constraints on the nature of the CaCO3 dissolution process. The idea is that the toll taken by dissolution on grains within the core top bioturbation zone should be in proportion to their time of residence in this zone. If so, dissolution would shift the mass distribution in favor of younger grains, thereby reducing the mean radiocarbon age for the grain ensemble. We have searched in vain for evidence supporting the existence of such an age reduction. Instead, we find that for water depths of more than 4 km in the tropical Pacific the radiocarbon age increases with the extent of dissolution. We can find no satisfactory steady state explanation and are forced to conclude that this increase must be the result of chemical erosion. The idea is that during the Holocene the rate of dissolution of CaCO3 has exceeded the rain rate of CaCO3. In this circumstance, bioturbation exhumes CaCO3 from the underlying glacial sediment and mixes it with CaCO3 raining from the sea surface.

  3. Influence of Mechanical Stirring on the Crucible Dissolution Rate and Impurities Distribution in Directional Solidification of Multicrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Popescu, Alexandra; Vizman, Daniel

    2015-12-01

    In this study, time dependent three-dimensional numerical simulations were carried out using the STHAMAS3D software in order to understand the effects of forced convection induced by mechanical stirring of the melt, on the crucible dissolution rate and on the impurities distribution in multicrystalline silicon (mc-Si) melt for different values of the diffusion coefficient. Numerical simulations were performed on a pilot scale furnace with crucible dimensions of 38x38x40cm3. The computational domain used for the local 3D-simulations consists of melt and crystal. The dissolution rate was estimated from the total mass of impurities that was found in the silicon melt after a certain period of time. The obtained results show that enhanced convection produced by a mechanical stirrer leads to a significant increase of the dissolution rate and also to a uniform distribution of impurities in the melt.

  4. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    NASA Astrophysics Data System (ADS)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  5. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  6. Dissolution of trace metals from lava ash: influence on the composition of rainwater in the Mount Etna volcanic area.

    PubMed

    Cimino, G; Toscano, G

    1998-01-01

    Dissolution of trace metals from lava ash of the Mount Etna volcano in aqueous suspensions is studied as a function of solution pH and aerosol mass loading. The rate of dissolution and the final concentration increase with decreasing pH. Leaching experiments are found to be consistent with the observations of these metals in rainwater of the volcanic area. Elements such as Fe and Mn are important in the aqueous oxidation of SO(2) which increases the acidity of the rainwater. Leaching of Na, Ca, K, Fe and Mg may have a buffering effect in reacting with cloud and aerosol droplets.

  7. Influence of process water quality on hydrothermal carbonization of cellulose.

    PubMed

    Lu, Xiaowei; Flora, Joseph R V; Berge, Nicole D

    2014-02-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources. Liquid waste streams may be ideal alternative liquid source candidates. Experiments were conducted to systematically evaluate how changes in pH, ionic strength, and organic carbon content of the initial process water influences cellulose carbonization. Results from the experiments conducted evaluating the influence of process water quality on carbonization indicate that changes in initial water quality do influence time-dependent carbonization product composition and yields. These results also suggest that using municipal and industrial wastewaters, with the exception of streams with high CaCl2 concentrations, may impart little influence on final carbonization products/yields.

  8. Glacial-Holocene paleoceanography of the western equatorial Pacific: Carbonate dissolution and sea surface temperatures in the south China and Sulu Seas

    SciTech Connect

    Miao, Qingmin; Thunell, R.C. . Dept. of Geological Sciences)

    1992-01-01

    Six sediments cores from the South China Sea (SCS) and four from the Sulu Sea (SS) have been used in a detailed study of sea surface temperature changes in these two basins during the last 25,000 year. Sea surface temperature (SST) estimates were derived using a planktonic foraminiferal transfer function (FP-12E). The water depths for the cores range 500 m to more than 4,000 m. The time series (SST) records indicate that winter and summer temperatures during the Holocene were approximately 27 C and 29.5 C, respectively, for both the (SC) and (SS). During the last glacial maximum, summer sea surface temperatures were approximately 28.5 C in the (SCS) and 29 C in the (SS), and thus very similar to the Holocene. In contrast, glacial winter (SST) are estimated at 21 C for the (SCS) and 24 C for the (SS). This decrease in glacial winter (SST) results in a much larger seasonality during the last glacial compared to the Holocene. Variation in intensity of the monsoon system and surface water exchange rates between basins are the major factors controlling glacial-interglacial SST fluctuations in the (SC) and (SS). The primary factor influencing the accuracy of the SST estimates is the quality of preservation of planktonic foraminiferal assemblages. Results show that increasing levels of dissolution result in systematically cooler SST estimates. This is due to the fact that warm water foraminifera tend to be more solution susceptible and as dissolution progresses the assemblage becomes enriched in the more resistant, cool water taxa. Since dissolution is more intense during interglacials than glacials in the Pacific, dissolution tends to reduce the amplitude of the true glacial-interglacial temperature difference.

  9. Influence of spray drying and dispersing agent on surface and dissolution properties of griseofulvin micro and nanocrystals.

    PubMed

    Shah, Dhaval A; Patel, Manan; Murdande, Sharad B; Dave, Rutesh H

    2016-11-01

    The purpose for the current research is to compare and evaluate physiochemical properties of spray-dried (SD) microcrystals (MCs), nanocrystals (NCs), and nanocrystals with a dispersion agent (NCm) from a poorly soluble compound. The characterization was carried out by performing size and surface analysis, interfacial tension (at particle moisture interface), and in-vitro drug dissolution rate experiments. Nanosuspensions were prepared by media milling and were spray-dried. The SD powders that were obtained were characterized morphologically using scanning electron microscopy (SEM), polarized light microscopy (PLM), and Flowchem. Solid-state characterization was performed using X-ray powder diffraction (XRPD), Fourier transfer infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) for the identification of the crystalline nature of all the SD powders. The powders were characterized for their redispersion tendency in the water and in pH 1.2. Significant differences in redispersion were noted for both the NCs in both dissolution media. The interfacial tension for particle moisture interface was determined by applying the BET (Braunauer-Emmett-Teller) equation to the vapor sorption data. No significant reduction in the interfacial tension was observed between MCs and NCs; however, a significant reduction in the interfacial tension was observed for NCm at both 25 °C and 35 °C temperatures. The difference in interfacial tension and redispersion behavior can be attributed to a difference in the wetting tendency for all the SD powders. The dissolution studies were carried out under sink and under non-sink conditions. The non-sink dissolution approach was found suitable for quantification of the dissolution rate enhancement, and also for providing the rank order to the SD formulations.

  10. Influence of Carbon on the Electrical Properties of Crustal Rocks

    SciTech Connect

    Mathez, E. A.

    2002-11-19

    The report summarizes work to determine the nature and distribution of carbon on microcracks in crystalline rocks by time-of-flight secondary ion mass spectroscopy. It also summarizes the results of a workshop devoted to investigating how carbon in rocks influences electrical conductivity and whether carbon on fracture surfaces can account for the electrical conductivity structure of the crust.

  11. Solubility and dissolution kinetics of gypsum as a function of CO2 partial pressure: Implications for geological carbon sequestration William Wolfe, Philip Bennett The University of Texas at Austin, Jackson School of Geosciences

    NASA Astrophysics Data System (ADS)

    Wolfe, W. W.; Bennett, P.

    2011-12-01

    The storage of carbon dioxide in deep saline (non-potable) aquifers has received increasing attention as a possible near term solution to the emission of carbon dioxide into the atmosphere. As a result of CO2 introduction, a wide array of geochemical reactions will occur involving both the aqueous phase and the solid mineral phase. Potential CO2 storage formations are typically saline Na:Cl or NaCa:ClSO4 type water. To gain insight into the dynamics of this system under the conditions of carbon sequestration we examined the solubility and dissolution/precipitation rates of gypsum in aqueous solutions as a function of CO2 partial pressure. Experimental variables ranged from 30-60 degrees C, 0.1-5 molar NaCl, and 1-130 atmospheres of CO2. Most standard geochemical models predict that gypsum solubility will increase with increasing dissolved CO2 due to the increased acidity driving the protonation of sulfate to form bisulfate: H+ + SO4= <=> HSO4- Thus decreasing sulfate concentration and driving further dissolution of gypsum. However, our findings show that increasing dissolved CO2 results in the precipitation of gypsum, with gypsum solubility decreasing by up to 30-50% at all temperatures examined. Solutions initially at equilibrium with gypsum will nucleate and precipitate gypsum as pCO2 increases. This behavior was predicted by Li and Duan, (2011) based on model results but no experimental evidence was found by the authors. Potential factors for this behavior include a decrease in the activity of water due to hydration of dissolved CO2, or possibly the destabilization of the CaSO4 neutral complex increasing the activity of free Ca++ and SO4= in solution, driving the precipitation of gypsum. We are exploring both of these possible scenarios. The saline aquifers of the Texas gulf coast are a potential target for carbon dioxide sequestration, and many of these aquifers have high Ca and SO4 concentrations due to reaction with gypsum. Precipitation of gypsum under high

  12. Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2015-04-01

    The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip zones (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous Alps. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern Alps in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear zones with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite

  13. Mineral Influence on Microbial Survival During Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation

  14. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  15. Carbon nanotube proximity influences rice DNA

    NASA Astrophysics Data System (ADS)

    Katti, Dinesh R.; Sharma, Anurag; Pradhan, Shashindra Man; Katti, Kalpana S.

    2015-07-01

    The uptake of carbon nanotubes (CNT) influences the output of plants, potentially through interactions between the DNA and CNTs. However, little is known about the changes in the plant DNA due to CNT proximity. We report changes in rice plant DNA in the proximity of single walled CNT (SWCNT) using molecular dynamics simulations. The DNA experiences breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and wrapping onto SWCNT. The number of hydrogen bonds between water and DNA nucleobases decreases due to the presence of SWCNT. A higher number of guanine-cytosine (Gua-Cyt) WC hydrogen bonds break as compared to adenine-thymine (Ade-Thy), which suggests that Gua and Cyt bases play a dominant role in DNA-SWCNT interactions. We also find that changes to non-WC nucleobase pairs and van der Waals attractive interactions between WC nucleobase pairs and SWCNT cause significant changes in the conformation of the DNA.

  16. Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses

    SciTech Connect

    Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.; Du, Jincheng

    2016-11-01

    Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.

  17. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.

    2016-11-01

    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg < 4)], consistent with prior studies on sedimentary and inorganic carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic

  18. Interactions between sparfloxacin and antacids - dissolution and adsorption studies.

    PubMed

    Hussain, Fida; Arayne, M Saeed; Sultana, Najma

    2006-01-01

    Sparfloxacin is a broad-spectrum oral fluoroquinolone antimicrobial agent with a long elimination half-life, extensively used against both Gram-positive as well as Gram-negative microorganism. Concurrent administration of antacids and sparfloxacin decreases the gastrointestinal absorption of sparfloxacin and therapeutic failure may result. The present study was designed to evaluate the influence of some antacids on the availability of sparfloxacin. The release of sparfloxacin from tablets in the presence of antacids like sodium bicarbonate, calcium hydroxide, calcium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, magnesium trisilicate and magaldrate has been studied on BP 2003 dissolution test apparatus. These studies were carried out in simulated gastric and intestinal juices for three hours at 37 degrees C. The results confirmed that the dissolution rate of tablets was markedly retarded in the presence all of antacids studied, whereas magaldrate and calcium carbonate exhibited relatively higher adsorption capacities in simulated gastric juice and magnesium trisilicate and calcium hydroxide in simulated intestinal juice.

  19. Porosity evolution during experimental diagenesis of carbonates: influence of salinity

    NASA Astrophysics Data System (ADS)

    Neveux, Lucille; Grgic, Dragan; Carpentier, Cedric; Pironon, Jacques

    2015-04-01

    The existence of high quality (high porosity - high permeability) reservoirs in carbonated rocks at great depth highlights a paradox. Indeed, classical modeling of rock evolution during burial forecasts a strong decrease of porosity with depth, thus predicting a lack of economically interesting reservoirs under 4000 m. So how these reservoirs come to exist? The understanding of the way porosity is altered at great depth may indicate potential reservoir rocks. By which processes is porosity modified? To answer these questions, an experimental approach has been conducted, using a specifically designed apparatus that enable, in laboratory, the simulation of deeply buried reservoirs in situ conditions (high pressures and temperature as well as the circulation of fluids). The nature of carbonated rocks (bioclastic and oolitic) has been investigated as well as the nature of the percolating fluid (with and without NaCl). To characterize the evolution of the porosity and of the porous network, analysis via nanotomography, mercury intrusion porosimetry and specific surface area were used. The results obtained in this study show that the main diagenetic process of porosity loss is the pressure solution creep (PSC), reducing by at least three the initial porosity. PSC results in both dissolution and precipitation, processes that lead to a great modification of the rock porous network. This modification is more pronounced in the oolitic limestone than in the bioclastic one. The presence of NaCl in the fluid leads to a greater dissolution of carbonate matter but also to a precipitation of salt minerals partially blocking the porous network. The dataset obtained from these experiments shows the importance of the nature of the deposit rock but also of the nature of the percolating fluid. It can be concluded that pore fluid chemistry and, by consequence, its origin is of great importance in the study of porosity modification with depth.

  20. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO 2 uptake at regional and global scales

    NASA Astrophysics Data System (ADS)

    Perrin, Anne-Sophie; Probst, Anne; Probst, Jean-Luc

    2008-07-01

    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO 2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO 3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3- content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO 2 to the total riverine alkalinity (CO 2 ATM-SOIL/HCO 3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO 2 to riverine alkalinity decreased by about 7-17% on average for all the studied

  1. Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for improving the dissolution rate and oral bioavailability of water-insoluble drugs.

    PubMed

    Liu, Ying; Wu, Chao; Hao, Yanna; Xu, Jie; Zhao, Ying; Qiu, Yang; Jiang, Jie; Yu, Tong; Ji, Peng

    2016-01-25

    In our study, soluble starch was applied as a novel carbon source for preparing three-dimensional ordered macroporous carbon (3DOMC) using monodisperse silica nanospheres as the hard template. The 3DOMC was used as an insoluble drug carrier when it was found that it could markedly improve the water solubility of felodipine (FDP). The structural features of 3DOMC were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The 3DOMC structure was found to have a higher drug loading than microporous and mesoporous structures, and the interconnected nanostructure effectively inhibited the formation of drug crystals. FDP, belonging to the Biopharmaceutics Classification System II (BCSII), was chosen as the model drug and was loaded into the 3DOMC structure by solvent evaporation. The state of FDP in the 3DOMC structure was characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The results obtained showed that FDP was present in the pores in an amorphous or microcrystalline state. In vivo and in vitro experiments indicated that 3DOMC could significantly improve the drug dissolution rate, but the FDP-3DOMC self-made common tablets had the disadvantage of a burst effect. For this reason, osmotic pump technology was used to control the drug release rate. We developed a potentially useful insoluble drug carrier for pharmaceutical applications.

  2. Development of a Novel Milling System Using Supercritical Carbon Dioxide for Improvement of Dissolution Characteristics of Water-Poorly Soluble Drugs.

    PubMed

    Fern, Jennifer Chia Wee; Nakamura, Hideya; Watano, Satoru

    2016-01-01

    The aim of this study is to develop a novel milling system using supercritical carbon dioxide (SC-CO2) for the improvement of dissolution characteristics of water-poorly soluble drugs. SC-CO2 possesses high potential in the application of nanotechnology, due to the attractive properties of SC-CO2 fluid such as cheap, inert and non-polluting. In addition, SC-CO2 has density comparable to a liquid, viscosity similar to a gas, and high diffusion capacity. Most of all, carbon dioxide exists as gas in room temperature and pressure, which enables the removal of fluid instantaneously. In this study, a novel method of milling using SC-CO2 was proposed to produce fine-drug particles. SC-CO2 milling was conducted and its performance was compared with the ones by various milling methods such as jet milling, dry milling and wet milling. A comparison on the effect of each milling medium on its milling performance, drug size distribution, and particle morphology was conducted. Operating variables of the SC-CO2 milling system were also investigated to clarify the factors affecting the milling properties and to improve drug release characteristics of water-poorly soluble drugs.

  3. Copper corrosion in irradiated environments: The influence of H{sub 2}O{sub 2}on the electrochemistry of copper dissolution in HCl electrolyte

    SciTech Connect

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1986-12-01

    The anodic dissolution of copper was examined in deaerated, 0.1 M HCl aqueous solution in the presence of H{sub 2}O{sub 2}. Concentrations of H{sub 2}O{sub 2} up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H{sub 2}O{sub 2} concentration (C) and decreasing rotation rate. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H{sub 2}O{sub 2} concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 refs., 7 figs.

  4. Alginic Acid Accelerates Calcite Dissolution

    NASA Astrophysics Data System (ADS)

    Perry, T. D.; Duckworth, O. W.; McNamara, C. J.; Martin, S. T.; Mitchell, R.

    2003-12-01

    Accelerated carbonate weathering through biological activity affects both geochemical cycling and the local pH and alkalinity of terrestrial and marine waters. Microbes affect carbonate dissolution through metabolic activity, production of acidic or chelating exudates, and cation binding by cell walls. Dissolution occurs within microbial biofilms - communities of microorganisms attached to stone in an exopolymer matrix. We investigated the effect of alginic acid, a common biological polymer produced by bacteria and algae, on calcite dissolution using a paired atomic force microscopy/flow-through reactor apparatus. The alginic acid caused up to an order of magnitude increase in dissolution rate at 3 < pH < 12. Additionally, the polymer preferentially binds to the obtuse pit steps and increases step velocity. We propose that the polymer is actively chelating surficial cations reducing the activation energy and increasing dissolution rate. The role of biologically produced polymers in mineral weathering is important in the protection of cultural heritage materials and understanding of marine and terrestrial systems.

  5. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  6. Explanation for the enhanced dissolution of silica column packing in high pH phosphate and carbonate buffers.

    PubMed

    Tindall, G W; Perry, R L

    2003-02-28

    It has been reported that at high pH, the rate of bonded phase packing degradation in methanol/water mobile phases is greater for carbonate and phosphate buffers than for amine buffers. This conclusion was based on buffer pH determined in the aqueous buffer before dilution with methanol. Changes in buffer species pKa, and therefore buffer pH, upon methanol dilution are consistent with the observed degradation results. Measurements of pH in the methanol/water solutions confirm that the carbonate and phosphate buffers were considerably more basic than the amine buffer, even though all the buffers were pH 10 before dilution with methanol. These results demonstrate that it can be misleading to extrapolate aqueous pH data to partially aqueous solutions. Measurements of pH in the mixed solvent provide more reliable predictions of column and sample stability.

  7. An AFM study of calcite dissolution in concentrated electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Ruiz Agudo, E.; Putnis, C. V.; Putnis, A.; Rodriguez-Navarro, C.

    2009-04-01

    Calcite-solution interactions are of a paramount importance in a range of processes such as the removal of heavy metals, carbon dioxide sequestration, landscape modeling, weathering of building stone and biomineralization. Water in contact with minerals often carries significant amounts of solutes; additionally, their concentration may vary due to evaporation and condensation. It is well known that calcite dissolution is affected dramatically by the presence of such solutes. Here we present investigations on the dissolution of calcite in the presence of different electrolytes. Both bulk (batch reactors) experiments and nanoscale (in situ AFM) techniques are used to study the dissolution of calcite in a range of solutions containing alkaly cations balanced by halide anions. Previous works have indicated that the ionic strength has little influence in calcite dissolution rates measured from bulk experiments (Pokrovsky et al. 2005; Glendhill and Morse, 2004). Contrary to these results, our quantitative analyses of AFM observations show an enhancement of the calcite dissolution rate with increasing electrolyte concentration. Such an effect is concentration-dependent and it is most evident in concentrated solutions. AFM experiments have been carried out in a fluid cell using calcite cleavage surfaces in contact with solutions of simple salts of the alkaly metals and halides at different undersaturations with respect to calcite to try to specify the effect of the ionic strength on etch pit spreading rate and calcite dissolution rate. These results show that the presence of soluble salts may critically affect the weathering of carbonate rocks in nature as well as the decay of carbonate stone in built cultural heritage. References: Pokrosky, O.S.; Golubev, S.V.; Schott, J. Dissolution kinetics of calcite, dolomite and magnesite at 25°C and 0 to 50 atm pCO2. Chemical Geology, 2005, 217 (3-4) 239-255. Glendhill, D.K.; Morse, J.W. Dissolution kinetics of calcite in Na

  8. Electrochemical studies on the oxygen reduction and NiO(Li) dissolution in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Makkus, Robert Christiaan

    A study of the oxygen reduction in molten carbonate on a plane gold electrode submerged in a molten carbonate melt and on three different porous electrodes, made of NiO(Li), LiFeO2 (doped with either Mg or Co) and LiCoO2, is presented. From the impedance measurements made on plane gold electrode, two parallel reaction mechanisms are concluded to be involved in the oxygen reduction: in the first peroxycarbonate is reduced at a partly with oxide covered electrode surface; and in the second the steps could not be unraveled. Partial pressure dependencies of the diffusion arc observed in the impedance of the porous electrodes indicate that both oxygen and carbon dioxide are the diffusing species. From comparison of the ratios of the diffusion and kinetic arc, the catalytic activities of the three materials are concluded not to differ significantly, although this seems to be contradictory to the observation that the impedance for Co doped LiFeO2 is much Larger than for the other materials. This difference, however, is due to the large specific resistivity of Co doped LiFeO2 compared to the resistivity of the other materials.

  9. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and their Influence on Reactive Transport

    SciTech Connect

    Zachara, John M.; Chongxuan Liu; Qafoku, Nikolla P.; McKinley, James P.; Catalano, Jeffrey G.; Brown, Gordon E., Jr.; Davis, James A.

    2006-04-05

    A number of published studies have sought to understand geochemical kinetic process of uranium (U) that are relevant to nuclear waste sites and repositories by studying the weathering of U ore bodies and downgradient transport of weathering products. Such studies have provided important insights on processes operative over many thousand to millions of years. This project also seeks knowledge on the geochemical kinetics of U, but for shorter in-ground time periods (e.g., 20-50 years) relevant to DOE legacy waste sites. Several representative field sites were selected for intense study at Hanford as part of EMSP research to provide: (1) fundamental insights on intermediate duration geochemical events of U controlling fate and transport, and (2) key scientific information needed for remedial action assessment and informed decision making. The site discussed in this poster is the 300 A uranium plume. This plume is located at the south end of Hanford and discharges directly to the Columbia River. The plume resulted from the discharge of fuels fabrication wastes (nitric acid solutions containing U and Cu) and cladding dissolution wastes (basic sodium aluminate) to the North and South Process Ponds between 1943 and 1975 near the Columbia River. A Kd-based remedial action assessment fifteen years ago predicted that the plume would dissipate to concentrations below the DWS within 10 y. As a result of this assessment, an interim, MNA remedial decision was agreed to by DOE and state/federal regulators. It has been 15 y since the above assessment, and groundwater concentrations have not decreased (attenuated) as projected. Stakeholders are now demanding remedial intervention, and DOE seeks science-based conceptual and numeric models for more accurate future projections. The objectives are: (1) Identify the chemical speciation (e.g., adsorption complexes precipitates), mineral residence, and physical location of contaminant U in a depth sequence of sediments from the disposal

  10. [Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].

    PubMed

    Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan

    2015-08-01

    To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification.

  11. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  12. Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops

    SciTech Connect

    Huret, N.; Chaumerliac, N.; Isaka, H.; Nickerson, E.C. |

    1994-09-01

    Three microphysical formulations are closely compared to evaluate their impact upon gas scavenging and wet deposition processes. They range from a classical bulk approach to a fully spectral representation, including an intermediate semispectral parameterization. Detailed comparisons among the microphysical rates provided by these three parameterizations are performed with special emphasis on evaporation rate calculations. This comparative study is carried out in the context of a mountain wave simulation. Major differences are essentially found in the contrasted spreading of the microphysical fields on the downwind side of the mountain. A detailed chemical module including the dissolution of the species and their transfer between phases (air, cloud, and rain) is coupled with the three microphysical parameterizations in the framework of the dynamical mesoscale model. An assessment of the accuracy of each scheme is then proposed by comparing their ability to represent the drop size dependency of chemical wet processes. The impact of evaporation (partial versus total) upon the partition of species between gas and aqueous phases is also studied in detail.

  13. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen depletion and carbon trapping

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-05-01

    The carbonate-free abyss of the North Pacific defies most paleoceanographic proxy methods and hence remains a "blank spot" in ocean and climate history. Paleomagnetic and rock magnetic, geochemical, and sedimentological methods were combined to date and analyze seven middle to late Pleistocene northwest Pacific sediment cores from water depths of 5100 to 5700 m. Besides largely coherent tephra layers, the most striking features of these records are nearly magnetite-free zones corresponding to glacial marine isotope stages (MISs) 22, 12, 10, 8, 6, and 2. Magnetite depletion is correlated with organic carbon and quartz content and anticorrelated with biogenic barite and opal content. Within interglacial sections and mid-Pleistocene transition glacial stages MIS 20, 18, 16, and 14, magnetite fractions of detrital, volcanic, and bacterial origin are all well preserved. Such alternating successions of magnetic iron mineral preservation and depletion are known from sapropel-marl cycles, which accumulated under periodically changing bottom water oxygen and redox conditions. In the open central northwest Pacific Ocean, the only conceivable mechanism to cause such abrupt change is a modified glacial bottom water circulation. During all major glaciations since MIS 12, oxygen-depleted Antarctic Bottom Water (AABW)-sourced bottom water seems to have crept into the abyssal northwest Pacific below ~5000 m depth, thereby changing redox conditions in the sediment, trapping and preserving dissolved and particulate organic matter and, in consequence, reducing and dissolving both, biogenic and detrital magnetite. At deglaciation, a downward progressing oxidation front apparently remineralized and released these sedimentary carbon reservoirs without replenishing the magnetite losses.

  14. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    USGS Publications Warehouse

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  15. Influence of public transport in black carbon

    NASA Astrophysics Data System (ADS)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  16. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  17. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble's saline solution: influence of different media and chemical composition of the fibers.

    PubMed Central

    Luoto, K; Holopainen, M; Karppinen, K; Perander, M; Savolainen, K

    1994-01-01

    The effect of different chemical compositions of man-made vitreous fibers (MMVF) on their dissolution by alveolar macrophages (AM) in culture and in Gamble's solution was studied. The fibers were exposed to cultured rat AMs, culture medium alone; or Gamble's saline solution for 2, 4, or 8 days. The dissolution of the fibers was studied by measuring the amount of silicon (Si), iron (Fe), and aluminum (Al) in each medium. The AMs in culture dissolved Fe and Al from the fibers but the dissolution of Si was more marked in the cell culture medium without cells and in the Gamble's solution. The dissolution of Si, Fe, and Al was different for different fibers, and increased as a function of time. The Fe and Al content of the fibers correlated negatively with the dissolution of Si by AMs from the MMVF, i.e., when the content of Fe and Al of the fibers increased the dissolution of Si decreased. These results suggest that the chemical composition of MMVFs has a marked effect on their dissolution. AMs seem to affect the dissolution of Fe and Al from the fibers. This suggests that in vitro models with cells in the media rather than only culture media or saline solutions would be preferable in dissolution studies of MMVFs. PMID:7882911

  18. Dissolution Mediated Boron and Carbon Storage during Exhumation of HP Metapelites: Examples from New Hampshire Tourmaline-Graphite Intergrowths

    NASA Astrophysics Data System (ADS)

    Galvez, M.; Rumble, D.; Cody, G. D.; Sverjensky, D. A.

    2013-12-01

    measurements done on other metasomatic or biogenic graphite displaying high structural ordering. Other textural habit of graphite are radiating crystals of graphite preferentially growing along crystalline planes of wall rock minerals (e.g. plagioclases) and at the interface between grain edge. We test whether a C and B(OH)3° (×As, Cu) rich acidic vapor unmixing from a salt-rich aqueous fluid exsolved from crystallizing igneous bodies can account for some geochemical and textural greisen-type metasomatic features of these outcrops. Other mechanical and geochemical processes participating in the process will be discussed. This work is direct evidence that respeciation and/or fluid-rock interaction at varying P,T,fH2,pH conditions of fluids during exhumation, as well as interaction between magmatic bodies and metasedimentary units play a key role in the cycling of light elements during exhumation. Rumble, D., III, and Hoering, T.C., 1986, Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A: Geochimica et Cosmochimica Acta, v. 50, p. 1239-1247. Galvez ME, Beyssac O, Martinez I, Benzerara K, Chaduteau C, Malvoisin B, Malavieille J (2013) Graphite formation by carbonate reduction during subduction. Nature Geoscience 6 (6):473-477

  19. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  20. Dissolution kinetics of calcium carbonate minerals in H 2OCO 2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H 2O + CO 2 → H + + HCO 3-

    NASA Astrophysics Data System (ADS)

    Liu, Zaihua; Dreybrod, Wolfgang

    1997-07-01

    Dissolution and precipitation of calcium carbonate minerals in aqueous solutions with turbulent flow are controlled by a diffusion boundary layer (DBL) adjacent to the surface of the mineral, across which mass transfer is effected by molecular diffusion. A rotating disk technique was used to investigate the effect of the DBL on the dissolution rates of CaCO 3. This technique allows an exact adjustment of the thickness of the DBL by controlling the rotation speed of a circular sample of CaCO 3. Measurements of the dissolution rates in H 2OCO 2Ca 2+-solutions in equilibrium with various partial pressures of CO 2 from 1·10 -3 up to 1 atm showed a dependence of the rates R on the rotation frequency ω, given by R ∝ ωn. The exponent n varies from 0.25 at low Pco 2 to about 0.01 at a Pco 2 of 1 atm. This reveals that the rates are not controlled by mass transport only, which would require n = 0.5. The experimental data can be explained employing a theoretical model, which also takes into account the slow reaction CO 2 + H 2O → H + + HCO 3- and the chemical reactions at the surface (Dreybrodt and Buhmann, 1991). Interpretation of the experimental data in view of this model reveals that conversion of CO 2 plays an important role in the control of the rates. At high PCO 2 and large DBL thickness (ε > 0.001 cm), conversion of CO 2 occurs mainly in the DBL and, therefore, becomes rate limiting. This is corroborated by the observation that upon addition of the enzyme carbonic anhydrase, which catalyzes CO 2-conversion, the dissolution rates are enhanced by 1 order of magnitude. From our experimental observations we conclude that the theoretical model above enables one to predict dissolution rates with satisfactory precision. Since the precipitation rates from supersaturated solutions are determined by the same mechanisms as dissolution, we infer that this model is also valid to predict precipitation rates. The predicted rates for both dissolution and precipitation

  1. Warming influenced by the ratio of black carbon to sulphate and the black-carbon source

    NASA Astrophysics Data System (ADS)

    Ramana, M. V.; Ramanathan, V.; Feng, Y.; Yoon, S.-C.; Kim, S.-W.; Carmichael, G. R.; Schauer, J. J.

    2010-08-01

    Black carbon is generated by fossil-fuel combustion and biomass burning. Black-carbon aerosols absorb solar radiation, and are probably a major source of global warming. However, the extent of black-carbon-induced warming is dependent on the concentration of sulphate and organic aerosols-which reflect solar radiation and cool the surface-and the origin of the black carbon. Here we examined the impact of black-carbon-to-sulphate ratios on net warming in China, using surface and aircraft measurements of aerosol plumes from Beijing, Shanghai and the Yellow Sea. The Beijing plumes had the highest ratio of black carbon to sulphate, and exerted a strong positive influence on the net warming. Compiling all the data, we show that solar-absorption efficiency was positively correlated with the ratio of black carbon to sulphate. Furthermore, we show that fossil-fuel-dominated black-carbon plumes were approximately 100% more efficient warming agents than biomass-burning-dominated plumes. We suggest that climate-change-mitigation policies should aim at reducing fossil-fuel black-carbon emissions, together with the atmospheric ratio of black carbon to sulphate.

  2. Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation

    PubMed Central

    Bednaršek, Nina; Tarling, Geraint A.; Bakker, Dorothee C. E.; Fielding, Sophie; Feely, Richard A.

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean. PMID:25285916

  3. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation.

    PubMed

    Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Feely, Richard A

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ω(ar)). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ω(ar) ∼ 0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ω(ar) levels slightly above 1 and lower at Ω(ar) levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ω(ar) derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ω(ar) levels close to 1, with net shell growth ceasing at an Ω(ar) of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean.

  4. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  5. Tidal influences on carbon assimilation by a salt marsh

    NASA Astrophysics Data System (ADS)

    Kathilankal, James C.; Mozdzer, Thomas J.; Fuentes, Jose D.; D'Odorico, Paolo; McGlathery, Karen J.; Zieman, Jay C.

    2008-10-01

    Salt marshes are among the most productive ecosystems on Earth, and play an important role in the global carbon cycle. Net carbon dioxide (CO2) ecosystem exchanges in coastal salt marshes remain poorly investigated. In Spartina alterniflora dominated North American Atlantic coast marshes, the lack of a clear understanding of how Spartina alterniflora responds to flooding limits our current ability to understand and predict salt marsh response to sea-level rise. Here we investigate the processes influencing ecosystem-level carbon exchanges between a S. alterniflora dominated salt marsh on the eastern shore of Virginia and the atmosphere. We examined the impacts of tidal inundation on the marsh-atmosphere carbon exchanges through a combination of eddy covariance measurements and in situ photosynthetic measurements. Maximum daytime carbon fluxes were observed during the middle of the growing season (July and August) and amounted to -10 μmol CO2 m-2 s-1, and the marsh assimilated 130 gC m-2 during the 2007 growing season. Our study is the first to quantify the effects of tidal inundation on marsh plants, which caused anywhere from 3% to 91% reductions in atmospheric carbon fluxes, with a mean reduction of 46 ± 26%, when compared to non-flooded conditions.

  6. Carbon fixation efficiency of plants influenced by sulfur dioxide.

    PubMed

    Chung, Chung-Yi; Chung, Pei-Ling; Liao, Shao-Wei

    2011-02-01

    In the land ecosystem, the forest can absorb the carbon dioxide (CO2) in the atmosphere and turn the CO2 into organic carbon to store it in the plant body. About 2×10(11) tons of CO2 changes through photosynthesis into organic matter by plant annually. In this research, ten kinds of woody plants were selected for assessing the carbon fixation ability influenced by sulfur dioxide (SO2). The tested trees were put into a fumigation chamber for 210 days in a 40-ppb SO2 environment. The results of this study showed that there was no clear symptom of tested trees under a 40-ppb SO2 environment. The tested trees could tolerate this polluted environment, but it will impact their CO2 absorption ability. The carbon fixation ability will reduce as the polluted period lengthens. The carbon fixation potential of tested trees ranged from 2.1 to 15.5 g·CO2/m2·d with an average of 7.7 g·CO2/m2·d. The changes in CO2 absorption volume for Messerschmidia argentea were more stable during the fumigation period with a variation of 102%. Among the tested trees, Diospyros morrisiana had the best carbon fixation potential of 9.19 g·CO2/m2·d and M. argentea had the least with 2.54 g·CO2/m2·d.

  7. Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling

    NASA Astrophysics Data System (ADS)

    Jackson, Colin R. M.; Parman, Stephen W.; Kelley, Simon P.; Cooper, Reid F.

    2015-06-01

    Light noble gas (He-Ne-Ar) solubility has been experimentally determined in a range of materials with six-member, tetrahedral ring structures: beryl, cordierite, tourmaline, antigorite, muscovite, F-phlogopite, actinolite, and pargasite. Helium solubility in these materials is relatively high, 4 × 10-10 to 3 × 10-7 mol g-1 bar-1, which is ∼100 to 100,000× greater than He solubility in olivine, pyroxene, or spinel. Helium solubility broadly correlates with the topology of ring structures within different minerals. Distinctive He-Ne-Ar solubility patterns are associated with the different ring structure topologies. Combined, these observations suggest ring structures have a strong influence on noble gas solubility in materials and could facilitate the recycling of noble gases, along with other volatiles (i.e., water, chlorine, and fluorine), into the mantle. Measurements of Ne and Ar solubility in antigorite, however, are highly variable and correlated with each other, suggesting multiple factors contribute the solubility of noble gases in serpentine-rich materials.

  8. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  9. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  10. The Influence of Drug Physical State on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case Study Using Olanzapine

    PubMed Central

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-01-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%–16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves. PMID:24765654

  11. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine.

    PubMed

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-04-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%-16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves.

  12. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  13. Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes.

    PubMed

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin; Jipa, Iuliana; Dobre, Tanase; Dobre, Loredana

    2012-07-01

    The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl(2)) and sodium carbonate (Na(2)CO(3)) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.

  14. Accelerating Gallstone Dissolution

    PubMed Central

    Tao, J. C.; Cussler, E. L.; Evans, D. F.

    1974-01-01

    The dissolution rates of cholesterol in model bile salt solutions are controlled by diffusion in slowly flowing bile and by interfacial kinetics in rapidly flowing bile. At low flow, dissolution varies with the square root of bile flow and can be predicted, a priori, from existing correlations of mass transfer. At high bile flow, dissolution is independent of bile flow and is probably dominated by the rate of micelle adsorption. These results show that cholesterol gallstone dissolution, a potential nonsurgical therapy for cholelithiasis, can be accelerated little in slow bile, but more significantly in rapidly flowing bile. PMID:4530271

  15. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.

  16. Initial microfluidic dissolution regime of CO2 bubbles in viscous oils

    NASA Astrophysics Data System (ADS)

    Sauzade, Martin; Cubaud, Thomas

    2013-11-01

    We examine the initial dynamical behavior of dissolving microbubbles composed of carbon dioxide gas in highly viscous silicone oils over a range of flow rates and pressure conditions. Microfluidic periodic trains of CO2 bubbles are used to probe the interrelation between bubble dissolution and high-viscosity multiphase flows in microgeometries. We investigate bubble morphology from low to large capillary numbers and calculate the effective mass diffusion flux across the interface by tracking and monitoring individual bubbles during shrinkage. The initial flux is characterized using a dissolution coefficient that reveals the influence of the oil molecular weight on the dissolution process. Our findings show the possibility to control and exploit the interplay between capillary and mass transfer phenomena with highly viscous fluids in small-scale systems.

  17. Temperature influences carbon accumulation in moist tropical forests.

    PubMed

    Raich, James W; Russell, Ann E; Kitayama, Kanehiro; Parton, William J; Vitousek, Peter M

    2006-01-01

    Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.

  18. Low temperature dissolution flowsheet for plutonium metal

    SciTech Connect

    Daniel, W. E.; Almond, P. M.; Rudisill, T. S.

    2016-05-01

    The H-Canyon flowsheet used to dissolve Pu metal for PuO2 production utilizes boiling HNO3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.

  19. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  20. Mechanistic Approach to Understanding the Influence of USP Apparatus I and II on Dissolution Kinetics of Tablets with Different Operating Release Mechanisms.

    PubMed

    Lu, Zheng; Fassihi, Reza

    2017-02-01

    This article provides an analysis of dissolution kinetics associated with formulations subjected to different dissolution methods with the purpose of revealing credible direction on selection of apparatus type and hydrodynamics on in vitro drug release profiles using three different formulations. The dissolution kinetics of immediate release (IR) and controlled release (CR) ibuprofen tablets under different hydrodynamic conditions were determined, and potential existence of any correlation between USP apparatus I and II were analyzed using adequate kinetic models. Two types of CR tablets based on PEO (polyethylene oxide-N80) and HPMC (hydroxypropyl methylcellulose- K100M) polymers were prepared. Marketed ibuprofen 200-mg IR tablets were also used. Dissolution studies were carried out using USP 34 apparatuses I and II methods at stirring speed of 100 and 50 rpm in 900 mL phosphate buffer, pH 7.2 at 37°C. The drug release profiles for each formulation was determined and statistically analyzed using model-dependent, model-independent (f 2 ), and ANOVA methods. No significant dissolution differences existed between IR tablets, whereas CR tablets were significantly impacted by apparatus types and hydrodynamics. PEO matrices displayed higher sensitivity to hydrodynamics relative to HPMC matrices, and differences in dissolution profiles were confirmed by ANOVA and boxplot analysis. It is concluded that in the case of CR systems, selection of apparatus type and adherence to the monograph specifications and hydrodynamic conditions is critical, while for IR tablets, both apparatus types and agitation rates had no significant impact on drug release rate, suggesting the possibility of apparatus interchangeability if desired.

  1. Modeling dissolution in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Durbin, Tracie Lee

    2005-07-01

    alloys when compared with published experimental results. The influence of inter-particle spacing is examined and shown to have a significant effect on dissolution kinetics. Finally, the impact of multiple particles of various sizes interacting in an aluminum matrix is investigated. It is shown that smaller particles dissolve faster, as expected, but influence the dissolution of larger particles through soft-impingement, even after the smaller particles have disappeared.

  2. Influence of diagenesis on the stable isotopic composition of biogenic carbonates from the Gulf of Tehuantepec oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Blanchet, C. L.; Kasten, S.; Vidal, L.; Poulton, S. W.; Ganeshram, R.; Thouveny, N.

    2012-04-01

    In order to evaluate the influence of diagenetic and post-sampling processes on the stable oxygen and carbon isotope compositions of biogenic carbonates, we conducted a multiproxy study of organic-rich sediments from the eastern Pacific oxygen minimum zone. Core MD02-2520, which was retrieved from the Gulf of Tehuantepec (Mexico), has seasonal laminations and covers the last 40 kyr. Together with the presence of gypsum crystals and inorganic calcite aggregates, the occurrence of large excursions in the stable oxygen and carbon isotope records of both planktonic and benthic foraminifera (as large as +3‰ in δ18O and -5‰ in δ13C) point to significant secondary transformations. Storage-related gypsum precipitation was ruled out since it implies sulfide reoxidation by oxygen that triggers biogenic calcite dissolution, which proved to be of minor importance here. Instead, precipitation of authigenic calcite during early diagenesis appears to be the most likely process responsible for the observed isotopic excursions. The δ13C composition for inorganic calcite aggregates (-5 to -7‰) suggests a major contribution from anaerobic oxidation of organic matter. The δ34S composition for gypsum crystals (-10 to +15‰) suggests a major contribution from anaerobic reoxidation of authigenic sulfides, potentially involving reactions with metal oxides and sulfur disproportionation. A minor part of the gypsum might possibly have formed as a result of local pore water salinity increases induced by gas hydrate formation.

  3. Molecular dynamic simulations of ocular tablet dissolution.

    PubMed

    Ru, Qian; Fadda, Hala M; Li, Chung; Paul, Daniel; Khaw, Peng T; Brocchini, Steve; Zloh, Mire

    2013-11-25

    Small tablets for implantation into the subconjunctival space in the eye are being developed to inhibit scarring after glaucoma filtration surgery (GFS). There is a need to evaluate drug dissolution at the molecular level to determine how the chemical structure of the active may correlate with dissolution in the nonsink conditions of the conjunctival space. We conducted molecular dynamics simulations to study the dissolution process of tablets derived from two drugs that can inhibit fibrosis after GFS, 5-fluorouracil (5-FU) and the matrix metalloprotease inhibitor (MMPi), ilomastat. The dissolution was simulated in the presence of simple point charge (SPC) water molecules, and the liquid turnover of the aqueous humor in the subconjunctival space was simulated by removal of the dissolved drug molecules at regular intervals and replacement by new water molecules. At the end of the simulation, the total molecular solvent accessible surface area of 5-FU tablets increased by 60 times more than that of ilomastat as a result of tablet swelling and release of molecules into solution. The tablet dissolution pattern shown in our molecular dynamic simulations tends to correlate with experimental release profiles. This work indicates that a series of molecular dynamic simulations can be used to predict the influence of the molecular properties of a drug on its dissolution profile and could be useful during preformulation where sufficient amounts of the drug are not always available to perform dissolution studies.

  4. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  5. Sodium sulfate - Deposition and dissolution of silica

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1989-01-01

    The hot-corrosion process for SiO2-protected materials involves deposition of Na2SO4 and dissolution of the protective SiO2 scale. Dew points for Na2SO4 deposition are calculated as a function of pressure, sodium content, and sulfur content. Expected dissolution regimes for SiO2 are calculated as a function of Na2SO4 basicity. Controlled-condition burner-rig tests on quartz verify some of these predicted dissolution regimes. The basicity of Na2SO4 is not always a simple function of P(SO3). Electrochemical measurements of an (Na2O) show that carbon creates basic conditions in Na2SO4, which explains the extensive corrosion of SiO2-protected materials containing carbon, such as SiC.

  6. Advances in principal factors influencing carbon dioxide adsorption on zeolites

    PubMed Central

    Bonenfant, Danielle; Kharoune, Mourad; Niquette, Patrick; Mimeault, Murielle; Hausler, Robert

    2008-01-01

    We report the advances in the principal structural and experimental factors that might influence the carbon dioxide (CO2) adsorption on natural and synthetic zeolites. The CO2 adsorption is principally govern by the inclusion of exchangeable cations (countercations) within the cavities of zeolites, which induce basicity and an electric field, two key parameters for CO2 adsorption. More specifically, these two parameters vary with diverse factors including the nature, distribution and number of exchangeable cations. The structure of framework also determines CO2 adsorption on zeolites by influencing the basicity and electric field in their cavities. In fact, the basicity and electric field usually vary inversely with the Si/Al ratio. Furthermore, the CO2 adsorption might be limited by the size of pores within zeolites and by the carbonates formation during the CO2 chemisorption. The polarity of molecules adsorbed on zeolites represents a very important factor that influences their interaction with the electric field. The adsorbates that have the most great quadrupole moment such as the CO2, might interact strongly with the electric field of zeolites and this favors their adsorption. The pressure, temperature and presence of water seem to be the most important experimental conditions that influence the adsorption of CO2. The CO2 adsorption increases with the gas phase pressure and decreases with the rise of temperature. The presence of water significantly decreases adsorption capacity of cationic zeolites by decreasing strength and heterogeneity of the electric field and by favoring the formation of bicarbonates. The optimization of the zeolites structural characteristics and the experimental conditions might enhance substantially their CO2 adsorption capacity and thereby might give rise to the excellent adsorbents that may be used to capturing the industrial emissions of CO2. PMID:27877925

  7. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.

    PubMed

    Meleshyn, A; Azeroual, M; Reeck, T; Houben, G; Riebe, B; Bunnenberg, C

    2009-07-01

    The influence of uranyl-carbonate and calcium-uranyl-carbonate complexations on the kinetics of U(VI) (approximately 3.4 x 10(-3) mol L(-1)) sorption from NaNO3 and Ca(NO3)2 solutions on Na- and Ca-bentonites at circumneutral ambient conditions was investigated. Complexation of U(VI) in Ca2UO2(CO3)3(aq) aqueous species, dominating the U(VI) speciation in Ca(NO3)2 solution, reduces its adsorption on bentonite by a factor of 2-3 in comparison with that in (UO2)2CO3(OH)3- species, dominating in NaNO3 solution, within the studied period of time (21 days). As a result of the dissolution of accessory calcite, Ca2UO2(CO3)3(aq) can be formed in the initially Ca-free solution in contact with either Na- or Ca-bentonite. U(VI) adsorption on Na-bentonite is a factor of approximately 2 higher than that on Ca-bentonite for solutions with the Ca2UO2(CO3)3(aq) complex dominating aqueous U(VI) speciation. This favors use of Na-bentonite over that of Ca-bentonite in final disposal of radioactive waste. Furthermore, the observed strong correlation between U(VI) adsorption and Mg release as a result of montmorillonite dissolution indicates in agreement with previous findings that under the applied conditions U(VI) is adsorbed on the edge surface of montmorillonite, which is a major mineral phase of the studied clays.

  8. Saltcake Dissolution Simulant Tests

    SciTech Connect

    Martino, C.J.

    2003-02-18

    Small-scale (15 to 50 mL) dissolution equilibrium tests were performed on surrogate waste representing typical saltcake at the Savannah River and Hanford Sites. The primary objectives of this study were to gain a better understanding of the solid-liquid equilibrium of simulated-waste saltcakes and chemistry of the dissolved salt solutions. These tests were performed in preparation for similar dissolution tests with actual-waste saltcakes. Two types of tests (single-wash and multiple-wash) were performed at two temperatures (25 degrees Celsius and 50 degrees Celsius) for each saltcake simulant. The compositions of the supernatant fluids are provided for both types of dissolution tests, and profiles of the elution of each salt component are provided for the multiple-wash tests. The conclusions from these tests follow: (1) For both salt waste surrogates, dissolution of the soluble components was achieved at less than a 2:1 mass ratio of inhibited water to saltcake during multiple-wash tests., (2) Dissolution of the Hanford S-112 simulant resulted in a relatively large weight percentage of residual insoluble material (4.2 wt. percent), which was identified as a mixture of Al(OH)3 phases (bayerite and gibbsite)., and (3) The profiles for the relative elution of anions from saltcake during dissolution exhibit distinctions that are dependent upon the dissolution temperature and the initial saltcake composition.

  9. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  10. The Volcanic History of Mars and Influences on Carbon Outgassing

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Whelley, P.

    2015-12-01

    Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so

  11. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  12. Influence of carbon nanotubes on the bioavailability of fluoranthene.

    PubMed

    Linard, Erica N; van den Hurk, Peter; Karanfil, Tanju; Apul, Onur G; Klaine, Stephen J

    2015-03-01

    Concurrent with the increase in the use of carbon nanotubes (CNTs) in society is the rise of their introduction into the environment. Carbon nanotubes cause adverse effects themselves, and they have the potential to adsorb contaminants such as polycyclic aromatic hydrocarbons (PAHs). Although CNTs have a high adsorption capacity for PAHs and these contaminants can co-occur in the environment, few studies have characterized the bioavailability of CNT-adsorbed PAHs to fish. The goal of the present study was to characterize the bioavailability of fluoranthene adsorbed to suspended multiwalled-carbon nanotubes (MWNTs) in freshwater containing natural organic matter (NOM). Adsorption isotherms indicated that NOM influenced the adsorption of fluoranthene to MWNTs, although in the absence of MWNTs it did not influence the bioavailability of fluoranthene to Pimephales promelas. Pimephales promelas were exposed for 16 h in synthetic moderately hard water containing fluoranthene in the presence of different concentrations of NOM, and fluoranthene adsorbed to MWNTs in the presence of NOM. Bioavailable fluoranthene was quantified in each exposure through bile analysis using fluorescence spectrophotometry. By comparing the concentration of fluoranthene metabolites in the bile with the concentration of fluoranthene added to MWNT and NOM solutions, the relative bioavailability of fluoranthene adsorbed to MWNTs was quantified. Results indicate that approximately 60% to 90% of the fluoranthene was adsorbed to the MWNTs and that adsorbed fluoranthene was not bioavailable to P. promelas. The results also suggest that fluoranthene is not desorbed from ingested MWNT, and the bioavailable fraction is only the freely dissolved fluoranthene in the aqueous phase.

  13. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail

    PubMed Central

    Nienhuis, Sarah; Palmer, A. Richard; Harley, Christopher D. G.

    2010-01-01

    As CO2 levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO2 in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO2 on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO2 levels—those forecast to occur in roughly 100 and 200 years—on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO2 levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs. PMID:20392726

  14. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.

    PubMed

    Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G

    2010-08-22

    As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.

  15. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  16. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  17. The unique mechanism of analcime dissolution by hydrogen ion attack.

    PubMed

    Hartman, Ryan L; Fogler, H Scott

    2006-12-19

    Acidization is the process of injecting acid into porous oil bearing formations to dissolve minerals in the pore space and is a common technique to increase oil production. Analcime is a zeolite which is one of the minerals found in oil reservoirs in the Gulf of Mexico. This mineral is particularly troublesome during the injection of hydrochloric acid during stimulation of the well reservoir because of the precipitation of silicate and analcime dissolution products. To better understand the dissolution/precipitation process, a fundamental investigation of dissolution of analcime was carried out. Experiments establish that silicate precipitates completely from solution during analcime dissolution in hydrochloric acid and that the precipitation does not influence the dissolution kinetics. Comparison of Si and Al initial dissolution rates demonstrates that Al is selectively removed from the zeolite. The selective removal rate parameter is defined as the ratio of the measured Si dissolution rate to the stoichiometric Si dissolution rate. A new concept is introduced of using the selective removal rate parameter to delineate the mechanism of particle dissolution by demonstrating the influence of the Si-to-Al ratio. The mechanism comprises the removal of Si facilitated by the selective removal of Al, leading to the formation of undissolvable silicate particles. Consequently, the unique mechanism of analcime dissolution has general implications pertaining to how microporous materials dissolve.

  18. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  19. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  20. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Cornet, F.

    2012-04-01

    We will explore a simple model coupling for carbonate rocks the fracture density and orientation, the water chemistry and transport, the dissolution reactions and the expected irreversible rock deformation. Adding elasticity and boundary conditions, plus an estimation of the water source composition in the formation, we will estimate orders of magnitudes of the stress changes that can be expected from these processes in sedimentary basins over long times. We will in particular examine whether such intrinsic deformation mechanism can give a hint to explain the observed anisotropic stresses, in orientation and magnitude, in zones above the C.O.X. argillite formation in the Paris Basin, where the horizontal stress anisotropy has been shown to be important, whereas stress decoupling from the deep crustal roots should be effective, and no strong anisotropy would be expected in the absence of active deformation mechanism. In the Paris basin, the analysis of log cores shows that fractures and joints, up to meter-long ones, are common anisotropic features present in the carbonate rocks. Dissolution of calcite along these oriented features removes material with an a priori oriented flux reflecting this structural anisotropy, resulting in a non-isotropic deformation associated to this dissolution. We will present a simple model where dissolution and transport of dissolved calcite is associated with the deformation of the carbonate rock. Estimating the reaction constants, the chemical composition variation of the meteoric water, the rock permeability and the fracture density from observations around the Bure underground laboratory, we will estimate the order of magnitude of the deformations expected from these types of mechanisms. Such estimates have already been performed for dissolution along stylolites, e.g. by Clark, 1966; Renard et al., 2004; Schmittbuhl et al., 2004; Koehn et al., 2007. We will adapt these to reflect the anisotropic feature of the fractures present in

  1. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.

    PubMed

    Wallace, N; Dicker, S; Lewin, P; Wrenn, S P

    2014-12-01

    values for the duration of the 40min trial. The results are consistent with two distinct stages of gas transport: in the first stage, passive diffusion occurs under ambient conditions across the microbubble monolayer within the first few minutes after formulation until the aqueous interior of the microcapsule is saturated with gas; in the second stage ultrasound drives additional gas dissolution even further due to pressure modulation. It is important to understand the chemistry and transport mechanisms of this contrast agent under the influence of ultrasound to attain better perspicacity for enhanced applications in imaging. Results from this study will facilitate future preclinical studies and clinical applications of nested microbubbles for therapeutic and diagnostic imaging.

  2. The dissolution of an anthracite coal with perchloric acid

    SciTech Connect

    Hood, G.E.; Hyatt, A.G.; McGowan, C.W.

    1996-10-01

    Lignite coal, bituminous coal and several oil shales have previously been dissolved using perchloric acid of varying boiling point and subsequent oxidizing ability. These organic deposits generally dissolved between 150 and 160{degrees}C. This indicated that the aliphatic ether oxygen bond was being broken during the dissolution process. This dissolution process was performed on an anthracite coal because of the coal`s low oxygen content. The anthracite coal dissolved between 180 and 190{degrees}C making it similar to high-vol bituminous coal from New Zealand. Earlier work has indicated that carbon-carbon double bonds are being attacked during the dissolution process at the higher temperatures.

  3. Calcite dissolution: an in situ study in the Panama Basin

    SciTech Connect

    Thunell, R.C.; Keir, R.S.; Honjo, S.

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  4. Calcite Dissolution: An in situ Study in the Panama Basin.

    PubMed

    Thunell, R C; Keir, R S; Honjo, S

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  5. Instant and supersaturated dissolution of naproxen and sesamin (poorly water-soluble drugs and supplements) nanoparticles prepared by continuous expansion of liquid carbon dioxide solution through long dielectric nozzle

    NASA Astrophysics Data System (ADS)

    Arita, Toshihiko; Manabe, Noriyoshi; Nakahara, Koichi

    2012-11-01

    Nanoparticles (NPs) of naproxen (a nonsteroidal anti-inflammatory drug, BCS Class 2) and sesamin (a poorly water-soluble lignan) were investigated. By applying a newly developed rapid expansion system of liquid carbon dioxide solutions equipped with a dielectric nozzle, well-separated and fine both naproxen NPs (averaged particle size (APS) = 46.9 nm) and sesamin NPs (APS = 60.2 nm) were obtained without heating, surfactants, and co-solvents. Obtained naproxen and sesamin NPs had large surface/weight ratio, therefore, they showed instant dissolution to water until about ten percent higher than the saturated concentrations. In addition, the technique developed in the study has big advantage on producing especially drug NPs because the NPs produced by the method never includes neither poisonous additives (especially co-solvents and detergents) nor thermally denatured compounds.

  6. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  7. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  8. Mergers, Annexations, Dissolutions

    ERIC Educational Resources Information Center

    Russo, Alexander

    2006-01-01

    Consolidations come in all shapes and sizes, including mergers, annexations and dissolutions. They do not all take place under state mandate, however. A handful of districts consolidate every year in some states like Illinois that have large numbers of small districts, many of them dual districts that serve K-8 or 9-12 in the same geographic area.…

  9. HEPA filter dissolution process

    SciTech Connect

    Brewer, K.N.; Murphy, J.A.

    1992-12-31

    This invention is comprised of a process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  10. Coupled Mineral Dissolution and Precipitation Reactions in Shale-Hydraulic Fracturing Fluid Systems

    NASA Astrophysics Data System (ADS)

    Joe-Wong, C. M.; Harrison, A. L.; Thomas, D.; Dustin, M. K.; Jew, A. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2015-12-01

    Hydraulic fracturing of low-permeability, hydrocarbon-rich shales has recently become an important energy source in the United States. However, hydrocarbon recovery rates are low and drop rapidly after a few months. Hydraulic fracture fluids, which contain dissolved oxygen and numerous organic additives, induce dissolution and precipitation reactions that change the porosity and permeability of the shale. To investigate these reactions, we studied the interactions of four shales (Eagle Ford, Barnett, Marcellus, and Green River) with a simulated hydraulic fracture fluid in batch reactors at 80 °C. The shales were chosen for both economic viability and chemical variety, allowing us to explore the reactivities of different components. The Eagle Ford shale is carbonate rich, and the Green River shale contains significant siderite and kerogen. The Barnett shale also has a high organic content, while the Marcellus shale has the highest fractions of clay and pyrite. Our experiments show that hydrochloric acid in the fluid promotes carbonate mineral dissolution, rapidly raising the pH from acidic to circumneutral levels for the Eagle Ford and Green River shales. Dissolution textures in the Green River shale and large cavities in the Barnett shale indicate significant mineralogical and physical changes in the reacted rock. Morphological changes are not readily apparent in the Eagle Ford and Marcellus shales. For all shales, ongoing changes to the solution Al: Si ratio suggest incongruent aluminosilicate dissolution. Siderite or pyrite dissolution occurs within days and is followed by the formation of secondary Fe precipitates in suspension and coating the walls of the reactor. However, little evidence of any coatings on shale surfaces was found. The net effect of these reactions on porosity and permeability and their influence on the long-term efficacy of oil and gas recovery after hydraulic fracturing are critical to the energy landscape of the United States.

  11. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.

    PubMed

    Ssenyange, Solomon; Yan, Haijun; McCreery, Richard L

    2006-12-05

    Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as "control" junctions of the type carbon/TiO2/Ag/Au. The polarity of the "switching" is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions between high and low conductivity states, particularly near the switching threshold. The results are consistent with a switching mechanism based on Ag or Cu oxidation, transport of their ions through the TiO2, and reduction at the carbon to form a metal filament.

  12. Influence of carbonization conditions on the pyrolytic carbon deposition in acacia and eucalyptus wood chars

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1997-04-01

    The amount of deposited pyrolytic carbon (resulting from the cracking of volatile matter) was found to depend on wood species and carbonization conditions, such as temperature and heating rate. Maximum pyrolytic carbon deposition in both the acacia and eucalyptus wood chars has been observed at a carbonization temperature of 800 C. Rapid carbonization (higher heating rate) of wood significantly reduces the amount of deposited pyrolytic carbon in resulting chars. Results also indicate that the amount of deposited pyrolytic carbon in acacia wood char is less than that in eucalyptus wood char.

  13. Manganese Influences Carbonate Precipitation in a Laminated Microbial Mat

    NASA Astrophysics Data System (ADS)

    Krusor, M.; Grim, S. L.; Wilmeth, D.; Johnson, H.; Berelson, W.; Stevenson, B. S.; Stamps, B. W.; Corsetti, F. A.; Spear, J. R.

    2015-12-01

    Investigating mineralization within modern microbial mats informs our interpretation of ancient microbialites and the mineralization process. Microbial mats in Little Hot Creek (LHC), California contain 4 distinct layers with different microbiota. Each layer of the mat is supersaturated with regard to calcium carbonate (CaCO3), which increases with depth. Total organic carbon decreases with depth through the mat. We used 13C-labeled bicarbonate incubations of each mat layer to calculate growth rates of organic carbon and CaCO3 within the mat. Incubations were also amended with Mn or Mg to test their effect on rates of CaCO3 and organic carbon formation. The Mn-amended top layer increased CaCO3 precipitation and organic carbon growth. Mn increased organic carbon production in the lowest layer to a lesser extent, but not growth of CaCO3. Mn addition had no effect on growth rates in the two intervening layers. Mg amendment stimulated only organic carbon formation in the top layer, with little to no effect on the lower layers or overall CaCO3 formation. We attribute the elevated CaCO3 precipitation noted after Mn addition to increased oxygenic photosynthetic activity. Oxygenic photosynthesis requires Mn as an enzyme cofactor and promotes carbonate precipitation. We propose that the phototrophic community was responsible for most of the CaCO3 precipitation in the upper layer. Phototrophs gradually moved upwards for optimal access to sunlight, and as the mat grew, "tenant" microorganisms inhabited the lower carbonate layers while the "builders" remained on top. The relatively constant percentages of inorganic carbon below the top layer combined with observed minimal CaCO3 precipitation under laboratory conditions suggest that additional research into potential metabolisms that impact carbonate formation would be informative. These results improve our understanding of the linkages between microbial metabolisms, carbonate precipitation in microbial mats, and the potential

  14. Dissolution Kinetics of Biogenic Magnesian Calcites

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Guidry, M.; Mackenzie, F. T.; De Carlo, E. H.

    2014-12-01

    Ocean acidification (OA) is a serious concern for the health of calcifying ecosystems in the near future. During the past century, surface ocean pH has decreased by ~0.1 pH units, and is expected to decrease further by 0.3-0.4 pH units by the end of this century. The process of OA will likely result in both decreased calcification rates and increased rates of carbonate mineral dissolution, particularly involving the magnesian calcite (Mg-calcite) calcifiers found in shallow-water reef and other carbonate environments. Many Mg-calcite compositions are the most soluble of the carbonate phases commonly found in reef environments (often comprising much of the cementation and structure within a reef), and are therefore potentially the most susceptible to dissolution processes associated with OA. However, the dissolution kinetics of these phases is poorly known, limiting our ability to understand their behavior in nature. Laboratory experiments designed to investigate the mechanisms and dissolution rates of biogenic Mg-calcite mineral phases in distilled water and seawater over a range of CO2 and T conditions were conducted employing both batch and fluidized-bed reactor systems and using a variety of cleaned and annealed biogenic Mg-calcite phases. Our initial results have shown that the dissolution rate at 298 K and a pCO2 of ~350 ppm of the crustose coralline alga Amphiroa rigida (~20 mol% MgCO3) in seawater undersaturated with respect to this phase is 3.6 μmol g-1 hr-1, nearly 50% greater than that under similar conditions for aragonite. This rate and the derived experimental rate law are consistent with the preliminary findings of Walter and Morse (1985). Additional kinetic (and also solubility) data will be presented for the following species: Chiton tuberculatus (~0-4 mol% MgCO3); Echinometra mathei and/or Lytechinus variegatus (~8-12 mol% MgCO3); Homotrema rubrum (12-16 mol% MgCO3); and Lithothamnion sp. (~18-24 mol% MgCO3). Quantification of the rates of

  15. The influence of bubbles on the perception carbonation bite.

    PubMed

    Wise, Paul M; Wolf, Madeline; Thom, Stephen R; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  16. Determinants of marriage dissolution

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  17. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Tian, Hanqin; Tao, Bo; Ren, Wei; Lu, Chaoqun; Pan, Shufen; Wang, Yuhang; Liu, Yongqiang

    2015-09-01

    Fires have consumed a large amount of terrestrial organic carbon and significantly influenced terrestrial ecosystems and the physical climate system over the past century. Although biomass burning has been widely investigated at a global level in recent decades via satellite observations, less work has been conducted to examine the century-scale changes in global fire regimes and fire influences on the terrestrial carbon balance. In this study, we investigated global pyrogenic carbon emissions and fire influences on the terrestrial carbon fluxes from 1901 to 2010 by using a process-based land ecosystem model. Our results show a significant declining trend in global pyrogenic carbon emissions between the early 20th century and the mid-1980s but a significant upward trend between the mid-1980s and the 2000s as a result of more frequent fires in ecosystems with high carbon storage, such as peatlands and tropical forests. Over the past 110 years, average pyrogenic carbon emissions were estimated to be 2.43 Pg C yr-1 (1 Pg = 1015 g), and global average combustion rate (defined as carbon emissions per unit area burned) was 537.85 g C m-2 burned area. Due to the impacts of fires, the net primary productivity and carbon sink of global terrestrial ecosystems were reduced by 4.14 Pg C yr-1 and 0.57 Pg C yr-1, respectively. Our study suggests that special attention should be paid to fire activities in the peatlands and tropical forests in the future. Practical management strategies, such as minimizing forest logging and reducing the rate of cropland expansion in the humid regions, are in need to reduce fire risk and mitigate fire-induced greenhouse gases emissions.

  18. Influence of different geographical factors on carbon sink functions in the Pearl River Delta.

    PubMed

    Xu, Qian; Dong, Yuxiang; Yang, Ren

    2017-12-01

    This study analyzed carbon fixation across different land use types in the Pearl River Delta to identify the influence of different geographical factors on carbon fixation ability. The methodology was based on interpreting land use data from TM imagery, MODIS13Q1 data, and climate data, using the improved CASA and GeogDetector models. The results show that: (1) From 2000 to 2013, the total carbon sink increased slightly, from 15.58 × 10(6) t to 17.52 × 10(6) t, being spatially low at the center and increasing outwards; (2) Proxy variables (topography and landform characteristics), influencing urbanization, significantly affect the carbon sink function of the Pearl River Delta region. The proportion of urban and other construction land showed increasing effect on the regional carbon sink each year. However, the spatial structure of land in the study area changed from complex to simple, with enhanced stability; consequently, the influence of landscape characteristics (landscape dominance and landscape perimeter area fractal dimension) on the regional carbon sink gradually decreased; (3) The influence of the same factors differed with different land use types. Slope and altitude were found to have the greatest influence on the carbon sink of cultivated land, while landscape perimeter area fractal dimension more significantly affected the forest carbon sink.

  19. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  20. The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress

    NASA Astrophysics Data System (ADS)

    Chen, X.; Fang, C. Q.; Wang, X.

    2017-01-01

    An analytical method is presented to solve the influence of surface effect on non-coaxial resonance of multi-walled carbon nanotubes embedded in matrix utilizing laminated structures model. Due to coupled van der Waals forces between adjacent tubes and surface effect exerted carbon nanotubes, the resonance frequencies and amplitude ratios of multi-walled carbon nanotubes under initial stresses show that the resonant characteristics of the multi-walled carbon nanotubes become complex and the numbers of vibrational modes do not keep increase under identical conditions after considering surface effects. The result obtained can be used as a beneficial reference for investigating the electronic and physical behaviors of carbon nanotubes.

  1. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    PubMed Central

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-01-01

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented. PMID:28336884

  2. Stability analysis of dissolution-driven convection in porous media

    NASA Astrophysics Data System (ADS)

    Emami-Meybodi, Hamid

    2017-01-01

    We study the stability of dissolution-driven convection in the presence of a capillary transition zone and hydrodynamic dispersion in a saturated anisotropic porous medium, where the solute concentration is assumed to decay via a first-order chemical reaction. While the reaction enhances stability by consuming the solute, porous media anisotropy, hydrodynamic dispersion, and capillary transition zone destabilize the diffusive boundary layer that is unstably formed in a gravitational field. We perform linear stability analysis, based on the quasi-steady-state approximation, to assess critical times, critical wavenumbers, and neutral stability curves as a function of anisotropy ratio, dispersivity ratio, dispersion strength, material parameter, Bond number, Damköhler number, and Rayleigh number. The results show that the diffusive boundary layer becomes unstable in anisotropic porous media where both the capillary transition zone and dispersion are considered, even if the geochemical reaction is significantly large. Using direct numerical simulations, based on the finite difference method, we study the nonlinear dynamics of the system by examining dissolution flux, interaction of convective fingers, and flow topology. The results of nonlinear simulations confirm the predictions from the linear stability analysis and reveal that the fingering pattern is significantly influenced by combined effects of reaction, anisotropy, dispersion, and capillarity. Finally, we draw conclusions on implications of our results on carbon dioxide sequestration in deep saline aquifers.

  3. Land-Use Influences Carbon Fluxes in Northern Kazakhstan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of carbon cycling is important to maintain sustainable rangeland ecosystems. Rangelands in the western U.S. are similar to those in Central Asia. We used a combination of meteorological and computer modeling techniques to quantitatively assess carbon loss and gain for four major l...

  4. Interface dissolution control of the [sup 14]C profile in marine sediment

    SciTech Connect

    Keir, R.S. ); Michel, R.L. )

    1993-08-01

    The process of carbonate dissolution at the sediment-water interface has two possible end-member boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content, and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and [sup 230]Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in [sup 230]Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5,000 years ago. 30 refs., 8 figs., 3 tabs.

  5. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  6. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    NASA Astrophysics Data System (ADS)

    Brewer, Nolan W.; Smith, Alistair M. S.; Hatten, Jeffery A.; Higuera, Philip E.; Hudak, Andrew T.; Ottmar, Roger D.; Tinkham, Wade T.

    2013-03-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is important in determining how persistent charred residues are following a fire within specific fuel types. Additionally, understanding how mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential for understanding how this management technique, employed in many fire-prone forest types, may influence stand-level black carbon in soils. In this experimental study, 15 masticated fuel beds, conditioned to three fuel moisture ranges, were burned, and production rates of pyrogenic carbon and soot-based black carbon were evaluated. Pyrogenic carbon was determined through elemental analysis of the post-fire residues, and soot-based black carbon was quantified with thermochemical methods. Pyrogenic carbon production rates ranged from 7.23% to 8.67% relative to pre-fire organic carbon content. Black carbon production rates averaged 0.02% in the 4-8% fuel moisture group and 0.05% in the 13-18% moisture group. A comparison of the ratio of black carbon to pyrogenic carbon indicates that burning with fuels ranging from 13% to 15% moisture content resulted in a higher proportion of black carbon produced, suggesting that the precursors to black carbon were indiscriminately consumed at lower fuel moistures. This research highlights the importance of fuel moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel beds.

  7. Carbon Dioxide Corrosion and Acetate: A Hypothesis on the Influence of Microorganisms

    DTIC Science & Technology

    2008-11-01

    reducing bacteria residing in pipeline facilities can influence corrosion through the production of carbon dioxide and acetate under the prevailing...anaerobic conditions. The exacerbation of carbon dioxide corrosion of carbon steel in the presence of acetic acid is a well-known phenomenon in the...and that the microbial diversity inherent in petroleum reservoirs largely reflects that in pipelines. 20090306219 15. SUBJECT TERMS acetate

  8. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics

  9. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  10. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  11. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  12. Ocean acidification: Towards a better understanding of calcite dissolution

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Adkins, Jess; Menemenlis, Dimitris

    2016-11-01

    The drastic increase of anthropogenic CO2 emissions over the past two centuries has altered the chemical structure of the ocean, acidifying upper ocean waters. The net impact of this pH decrease on marine ecosystems is still unclear, given the unprecedented rate at which CO2 is being released into the atmosphere. As part of the carbon cycle, calcium carbonate dissolution in sediments neutralizes CO2: phytoplankton at the surface produce carbonate minerals, which sink and reach the seafloor after the organisms die. On time scales of thousands of years, the calcium carbonate in these shells ultimately reacts with CO2 in seawater. Research in this field has been extensive; nevertheless, the dissolution rate law, the impact of boundary layer transport, and the feedback with the global ocean carbon cycle remain controversial. Here, we (i) develop a comprehensive numerical framework via 1D modeling of carbonate dissolution in sediments, (ii) approximate its impact on water column properties by implementing a polynomial approximation to the system's response into a global ocean biogeochemistry general circulation model (OBGCM), and (iii) examine the OBGCM sensitivity response to different formulations of sediment boundary layer properties. We find that, even though the burial equilibration time scales of calcium carbonate are in the order of thousands of years, the formulation of a bottom sediment model along with an improved description of the dissolution rate law can have consequences on multi-year to decadal time scales.

  13. Dissolution Profile of Nimesulide from Pharmaceutical Preparations for Oral Use.

    PubMed

    Tubić, Biljana; Uzunović, Alija; Pilipović, Saša; Gagić, Žarko

    2016-01-01

    Nimesulide belongs to the group of semi-selective COX-2 inhibitors, widely used in solid oral formulations. In the present work the influence of surfactants among other drug excipients, as well as particle size of the active substance and the effects of medium pH on the dissolution rate of nimesulide from solid pharmaceutical forms. For that purpose, four different preparations containing 100 mg nimesulide per tablet and available in the market of Bosnia and Herzegovina (labeled here as A, B, C and D) were studied. The test for the assessment of dissolution profiles of the formulations was performed in surfactant-free dissolution medium pH 7.5. The dissolution profiles were compared by calculating difference (f1), and similarity (f2) factors. The increasing dissolution medium pH value from 7.5 to 7.75 resulted in a significant increase of nimesulide dissolution rate from the examined formulations. Also, the results showed that particle size affects to a great extent the dissolution rate and the best results were achieved with micronized nimesulide. The presence of the surfactants among the other excipients expressed a negligible effect on the dissolution profile.

  14. The effect of fuel chemistry on UO2 dissolution

    SciTech Connect

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater infiltration into the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters have on the dissolution rate of unirradiated UO2 under repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods where radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix showed a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.

  15. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  16. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed after the carbon fibers were coated with CNTs.

  17. Potential Influence of Perchlorate on Organic Carbon in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Oze, C.; Vithanage, M. S.; Kumarathilaka, P. R.; Indraratne, S.; Horton, T. W.

    2014-12-01

    Perchlorate is a strong oxidizer present at elevated concentrations in surface martian regolith. Chemical and isotopic modification of potential organic carbon with perchlorate in martian regolith during H2O(l) interactions is unknown. Here we assess the relationship between martian levels of perchlorate and organic carbon present in life harbouring geologic material from Earth. These materials represent chemical (i.e., processed serpentine soils from Sri Lanka) and temperature (i.e., hydrothermal jarosite/goethite deposit from White Island, New Zealand) extremes to where life exists on Earth. Preliminary evidence demonstrates that organic carbon decreases and δ13C values are modified for ultramafic sediment in both perchlorate kinetic and incubation experiments. In hydrothermal jarosite/goethite with microbial communities present, total and organic carbon is maintained and little modification in δ13C values is apparent. These preliminary results suggest that surface hydrothermal deposits with mineralogically 'protected' organic carbon are preferable sites to assess the potential of life on Mars.

  18. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  19. Climate indices strongly influence old-growth forest carbon exchange

    DOE PAGES

    Wharton, Sonia; Falk, Matthias

    2016-04-13

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (FNEE) at Wind River AmeriFlux was –32 ± 84 g C m–2 yr–1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannualmore » variability is high (>300 g C m–2 yr–1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean FNEE = –90 g C m–2 yr–1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean FNEE = +17 g C m–2 yr–1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (FANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.« less

  20. Climate indices strongly influence old-growth forest carbon exchange

    SciTech Connect

    Wharton, Sonia; Falk, Matthias

    2016-04-13

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (FNEE) at Wind River AmeriFlux was –32 ± 84 g C m–2 yr–1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m–2 yr–1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean FNEE = –90 g C m–2 yr–1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean FNEE = +17 g C m–2 yr–1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (FANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  1. Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions.

    PubMed

    Ololade, Isaac Ayodele; Oladoja, Nurudeen Abiola; Alomaja, Folasade; Ololade, Oluwaranti Olubunmi; Olaseni, Esan O; Oloye, Femi Francis; Adelagun, Ruth O A

    2015-01-01

    Chlorobenzoic acids represent crucial recalcitrant metabolites in the environment; thus, the influence of soil components on the sorption of 2,4,6-trichlorobenzoic acid (TCB) under oxic and anoxic conditions was studied. The surficial physiognomies of untreated and isolated soil samples were studied using FTIR, XRD, specific surface area, and PZC determination. The roles of redox potential, dissolved organic carbon (DOC), and pH, particularly under anoxic condition, were appraised. Batch equilibrium adsorption studies on soils of variable Fe/Mn oxides and organic carbon showed that adsorption was low across all components (log Koc = 0.82-3.10 Lg(-1)). The sorption of 2,4,6-TCB was well described by the pseudo second-order kinetic model. The fluctuation of both redox potential and pH during anoxic experiment had a negative impact on the sorption, partitioning, and the oxidation of organic matter. Linear relationships were observed for Kd with both soil total organic carbon (TOC) and surface area (SA). The results showed the existence of DOC-mediated sorption of 2,4,6-TCB which seems to be enhanced at lower pH. The reductive dissolution, particularly of iron compounds, possibly impeded sorption of 2,4,6-TCB under anoxic condition. It could be inferred that habitats dominated by fluctuating oxygen concentrations are best suited for the development of environmental conditions capable of mineralizing 2,4,6-TCB and similar xenobiotics.

  2. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.

    PubMed

    Dong, Ze Hua; Liu, Tao; Liu, Hong Fang

    2011-05-01

    Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions.

  3. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    SciTech Connect

    Edwards, Thomas

    2005-09-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs{sub 2}CO{sub 3}) digestion method. Successful implementation of the Cs{sub 2}CO{sub 3} fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard{trademark} sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs{sub 2}CO{sub 3} and K{sub 2}CO{sub 3

  4. Study of Dissolution Process of Solid Cu in Liquid Al

    NASA Astrophysics Data System (ADS)

    Chen, Shuying; Wu, Yang; Chang, Guowei; Zhu, Changxu; Li, Qingchun

    2016-09-01

    The dissolution process of solid Cu in liquid Al influences the compound quality directly when fabricating the copper cladding aluminum (CCA) composite castings utilizing the casting aluminum method. Dissolution rate of solid Cu is investigated utilizing the method of quenching rapidly. Effects of liquid Al temperature and the contact time between solid Cu and liquid Al on the dissolution rate of Cu are investigated; meanwhile, the dissolution mechanism of Cu is explored. Subsequently, the influences of processing parameters on the dissolution thickness of Cu are examined. The results indicate that chemical compounds, such as AlCu2, Cu5Al, CuAl2 and Cu2Al3, may form on the contact surface between solid Cu and liquid Al. These chemical compounds are contributed to decompose the solid Cu, Cu5Al exerts the greatest effect. The dissolution of Cu is affected by the contact time between solid Cu and liquid Al, temperature and cooling method of Cu plate. The dissolution of Cu cannot terminate immediately even though the Cu plate is cooled by the spray. The experimental results will provide a reference for controlling the composite layer thickness.

  5. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE PAGES

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; ...

    2017-03-18

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy,more » bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces

  6. Statistical properties of the USP dissolution test with pooled samples.

    PubMed

    Saccone, Carlos D; Meneces, Nora S; Tessore, Julio

    2005-01-01

    The Montecarlo simulation method is used to study the statistical properties of the USP pooled dissolution test. In this paper, the statistical behavior of the dissolution test for pooled samples is studied, including: a) the operating characteristic curve showing the probability of passing the test versus the mean amount dissolved, b) the influence of measurement uncertainty on the result of the test, c) an analysis of the dependence of the statistical behavior on the underlying distribution of the individual amounts dissolved, d) a comparison of the statistical behavior of the unit dissolution test versus the pooled dissolution test, e) the average number of stages needed to reach a decision presented as a function of parameters of the lot, f) the relative influence of the three stages of the test on the probability of acceptance.

  7. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water

    NASA Astrophysics Data System (ADS)

    Liu, Zaihua; Liu, Xiangling; Liao, Changjun

    2008-09-01

    Water temperature, dissolved oxygen (DO), pH, and specific conductivity (spc) were measured in a time interval of 15 min in a karst spring and the spring-fed pool with flourishing submerged plants in Guilin, SW China under dry weather for periods of 2 days. Measurements allowed calculation of calcium and bicarbonate concentrations ([Ca2+] and [HCO3 -]), and thus CO2 partial pressure ( P_{{{text{CO}}2 }} ) and saturation index of calcite (SIc). Results show that there were not any diurnal variations in the physico-chemical parameters of the water for the spring. However, during daytime periods, pool water P_{{{text{CO}}2 }} decreased to far less than the spring water in a few hours, pH and SIc increased to greater than the spring, and [Ca2+] and [HCO3 -] decreased to less than the spring. During nighttime periods, pool water P_{{{text{CO}}2 }} returned to or even increased to greater than the spring, pH and SIc decreased to less than the spring, and [Ca2+] and [HCO3 -] increased to greater than the spring. The decrease in [Ca2+] and [HCO3 -] to less than the spring during daytime periods implies daytime deposition of calcium carbonate, while the increase in [Ca2+] and [HCO3 -] to greater than the spring during nighttime periods implies nighttime dissolution of calcium carbonate. The direction of the observed changes depended essentially on the illumination, indicating that daytime photosynthetic and nighttime respiratory activities in the pool aquatic plant ecosystem, which were further evidenced by the increase and decrease in DO during daytime and nighttime periods respectively, were the main processes involved. The large variations of the components of the carbonate system imply considerable changes of the capacities of CO2 and O2 in water. The finding has implications for water sampling strategy in slow-flowing karst streams and other similar environments with stagnant water bodies such as estuaries, lakes, reservoirs, and wetlands, where aquatic plant ecosystem

  8. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  9. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  10. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  11. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  12. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  13. Influence of bark beetles outbreaks on the carbon balance of western United States forests

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Williams, C. A.; Collatz, G. J.; Masek, J. G.

    2011-12-01

    Recently bark beetle outbreaks have been increasing in western United States forests due to increases in temperatures and prolonged occurrence of droughts. Bark beetle outbreaks transfer carbon from the live photosynthesizing pools to the dead respiring pool where carbon slowly decomposes into the atmosphere causing landscapes to change from a net sink to source of carbon. Previous studies have usually been conducted at small localized areas, focused only on one or two bark beetle types or encompass a single outbreak event. The literature largely ignores the influence of bark beetle mortality on carbon balance at both local and regional scales by focusing on multiple bark beetles types and events. This study uses a combination of the Carnegie Ames Stanford Approach (CASA) carbon cycle model driven by remotely sensed biophysical observations, Forest Inventory and Analysis (FIA) derived post-disturbance biomass regeneration trajectories, and mortality rates obtained from Aerial Detection Survey (ADS) insect outbreak polygons. The synthesis of the carbon cycle based modeling approach and different data products results in characteristic carbon trajectories for Net Ecosystem Productivity (NEP), Net Primary Productivity (NPP) and heterotrophic respiration associated with insect outbreaks. This study demonstrates that bark beetle events change landscapes from a sink to source of carbon at a local scale but at a larger regional level the influence of bark beetle outbreaks are not prominent compared to other disturbance agents.

  14. Research on the influencing factors of reverse logistics carbon footprint under sustainable development.

    PubMed

    Sun, Qiang

    2016-12-09

    With the concerns of ecological and circular economy along with sustainable development, reverse logistics has attracted the attention of enterprise. How to achieve sustainable development of reverse logistics has important practical significance of enhancing low carbon competitiveness. In this paper, the system boundary of reverse logistics carbon footprint is presented. Following the measurement of reverse logistics carbon footprint and reverse logistics carbon capacity is provided. The influencing factors of reverse logistics carbon footprint are classified into five parts such as intensity of reverse logistics, energy structure, energy efficiency, reverse logistics output, and product remanufacturing rate. The quantitative research methodology using ADF test, Johansen co-integration test, and impulse response is utilized to interpret the relationship between reverse logistics carbon footprint and the influencing factors more accurately. This research finds that energy efficiency, energy structure, and product remanufacturing rate are more capable of inhibiting reverse logistics carbon footprint. The statistical approaches will help practitioners in this field to structure their reverse logistics activities and also help academics in developing better decision models to reduce reverse logistics carbon footprint.

  15. Kinetics of scheelite dissolution in groundwater: defining the release rate of tungsten contamination from a natural source

    NASA Astrophysics Data System (ADS)

    Montgomery, S. D.; Mckibben, M. A.

    2011-12-01

    Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer

  16. Iron sulfide oxidation as influenced by calcium carbonate application.

    PubMed

    Hossner, L R; Doolittle, J J

    2003-01-01

    Two overburden materials, with different FeS2 contents (1.9 and 4.1%) and low acid neutralization potential, were limed with CaCO3 at rates of 0, 25, 50, 75, 100, and 125% based on the amount of CaCO3 needed to provide an acid-base account deficit (A/Ba) of zero (A/Ba = neutralization potential--potential acidity--exchangeable acidity). The limed overburden materials were inoculated with Thiobacillus ferrooxidans and leached weekly with deionized water. Residual FeS2 and CaCO3 were determined in samples over a 378-d period. Oxidation followed zero-order kinetics with respect to FeS2 concentration at pH values greater than 4 and first-order kinetics at pH values less than 4. Zero-order oxidation rates ranged from 0.01 to 0.46 micromol g(-1) d(-1) in the overburden with 1.9% FeS2 and from 0.01 to 0.22 micromol g(-1) d(-1) in the overburden with 4.1% FeS2. Oxidation following the first-order rate law had a first-order rate constant of 0.03 d(-1) in the 1.9% FeS2 overburden and 0.01 d(-1) in the 4.1% FeS2 overburden. The calculated half-life was 23 d for the 1.9% FeS2 overburden and 69 d for the 4.1% FeS2 overburden. Additions of CaCO3 affected FeS2 oxidation by controlling the pH of the system. Liming to greater than 50% of the acid-base account deficit did not significantly affect the zero-order oxidation rate. Dissolution of the applied CaCO3 was found to be faster than the oxidation of FeS2 at pH values greater than 4. It was projected that at lime rates up to 125%, the CaCO3 would dissolve and leach out of the system before all the FeS2 oxidized, leaving the potential for acid minesoil formation.

  17. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    PubMed

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  18. Properties that Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers

    PubMed Central

    BIRCH, M. EILEEN; RUDA-EBERENZ, TONI A.; CHAI, MING; ANDREWS, RONNEE; HATFIELD, RANDAL L.

    2015-01-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer–Emmett–Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed. PMID:24029925

  19. Olivine dissolution from Indian dunite in saline water.

    PubMed

    Agrawal, Amit Kumar; Mehra, Anurag

    2016-11-01

    The rate and mechanism of olivine dissolution was studied using naturally weathered dunite FO98.21(Mg1.884Fe0.391SiO4) from an Indian source, that also contains serpentine mineral lizardite. A series of batch dissolution experiments were carried out to check the influence of temperature (30-75 (∘)C), initial dunite concentration (0.5 and 20 g/L), and salinity (0-35 g/L NaCl) under fixed head space CO2 pressure (P[Formula: see text] = 1 barg) on dunite dissolution. Dissolved Mg, Si, and Fe concentrations were determined by inductive coupled plasma atomic emission spectroscopy. End-product solids were characterized by scanning electron microscopy and X-ray diffraction. Initially, rates of dissolution of Si and Mg were observed to be in stoichiometric proportion. After 8 h, the dissolution rate was observed to decline. At the end of the experiment (504 h), an amorphous silica-rich layer was observed over the dunite surface. This results in decay of the dissolution rate. The operating conditions (i.e., salinity, temperature, and mineral loading) affect the dissolution kinetics in a very complex manner because of which the observed experimental trends do not exhibit a direct trend.

  20. Landscape influence on soil carbon and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...

  1. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-08

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).

  2. Influence of climatic parameters in the carbon content of topsoils in Galicia (NW-Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lado, Luis

    2014-05-01

    Soil organic carbon (SOC) stock constitutes the largest pool of terrestrial organic carbon, acting as an important long-term sink for carbon released to the atmosphere by human activities. There is a general agreement in that climate highly influences the storage of carbon in soils, being low temperatures and high precipitation rates the environmental variables that mainly increase the carbon storage rates of soils. In this study, we analysed the distribution of SOC content in relation to climatic variability in a climate transition zone (Galicia, NW Spain). Raster maps of climatic variables have been created using spatially non-stationary algorithms. These variables, which include mean annual temperature, annual accumulated precipitation, continentality index, ombrothermic indexes and thermicity index, were then crossed with georeferenced SOC data from topsoil horizons to determine the spatial relationships between SOC content and climate. The model shows that the SOC content is highly related to the hydric balance within each location.

  3. Variable source areas of runoff generation: influence on soil carbon stocks

    NASA Astrophysics Data System (ADS)

    Salemi, L.; Costa Silva, R. W.; Andrade, T. M.; Fernandes, R. P.; De Moraes, J.; Camargo, P. B.; Martinelli, L.

    2013-12-01

    Variable source areas (VSA) might be considered the main mechanism of runoff generation within humid areas. In this paper we assess the soil carbon stocks within 3 flow convergence zones (FCZs) under high influence of overland-flow (OV). These FCZs had different land-cover (riparian forest and sugarcane plantations) and were subdivided into 3 portions, that is downslope, middleslope and upslope (FCZ-1 and 2: downslope - forest; middleslope and upslope -sugarcane; FCZ-3 downslope and middleslope - forest; upslope -sugarcane). Stocks under riparian forests (FCZ-1) were significantly higher than under sugarcane plantations. More importantly, riparian forests under high OV influence (FCZ-3) presented lower soil carbon stocks compared to riparian forests under lower OV influence. Similarly, sugarcane plantations within high OV areas presented in some cases (FCZ-2) significantly lower carbon stocks compared to sugarcane areas under low OV influence. These results suggest that OV within VSAs is a major driver for particulate carbon fluxes from terrestrial to aquatic ecosystems or for carbon redistribution within riparian ecosystems.

  4. Calcite dissolution in two deep eutrophic lakes

    SciTech Connect

    Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wueest, A.

    1999-10-01

    The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 {center{underscore}dot} 10{sup {minus}10} kg{sup 1/3} s{sup {minus}1}) as published laboratory values for this surface controlled process. Both lakes show a similar specific calcite precipitation rate of 170 g Ca m{sup {minus}2} a{sup {minus}1}. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.

  5. Alloy dissolution in argon stirred steel

    NASA Astrophysics Data System (ADS)

    Webber, Darryl Scott

    Alloying is required for the production of all steel products from small castings to large beams. Addition of large quantities of bulk alloys can result in alloy segregation and inconsistent alloy recovery. The objective of this research was to better understand alloy dissolution in liquid steel especially as it relates to Missouri S&Ts' patented continuous steelmaking process. A 45-kilogram capacity ladle with a single porous plug was used to evaluate the effect of four experimental factors on alloy dissolution: alloy species, alloy size or form, argon flow rate, and furnace tap temperature. Four alloys were tested experimentally including Class I low carbon ferromanganese, nickel and tin (as a surrogate for low melting alloys) and Class II ferroniobium. The alloys ranged in size and form from granular to 30 mm diameter lumps. Experimental results were evaluated using a theoretically based numerical model for the steel shell period, alloy mixing (Class I) and alloy dissolution (Class II). A CFD model of the experimental ladle was used to understand steel motion in the ladle and to provide steel velocity magnitudes for the numerical steel shell model. Experiments and modeling confirmed that smaller sized alloys have shorter steel shell periods and homogenize faster than larger particles. Increasing the argon flow rate shortened mixing times and reduced the delay between alloy addition and the first appearance of alloy in the melt. In addition, for every five degree increase in steel bath temperature the steel shell period was shortened by approximately four percent. Class II ferroniobium alloy dissolution was an order of magnitude slower than Class I alloy mixing.

  6. Factors Influencing the Quality of Carbon Coatings onLiFePO4

    SciTech Connect

    Wilcox, James D.; Doeff, Marca M.; Marcinek, Marek; Kostecki,Robert

    2006-10-11

    Several LiFePO4/C composites were prepared and characterizedelectrochemically in lithium half-cells. Pressed pellet conductivitiescorrelated well with the electrochemical performance in lithiumhalf-cells. It was found that carbon structural factors such as sp2/sp3,D/G, and H/C ratios, as determined by Raman spectroscopy and elementalanalysis, influenced the conductivity and rate behavior strongly. Thestructure of the residual carbon could be manipulated through the use ofadditives during LiFePO4 synthesis. Increasing the pyromellitic acid (PA)content in the precursor mix prior to calcination resulted in asignificant lowering of the D/G ratio and a concomitant rise in thesp2/sp3 ratio of the carbon. Addition of both iron nitrate and PAresulted in higher sp2/sp3 ratios without further lowering the D/Gratios, or increasing carbon contents. The best electrochemical resultswere obtained for LiFePO4 processed with both ferrocene and PA. Theimprovement is attributed to better decomposition of the carbon sources,as evidenced by lower H/C ratios, a slight increase of the carbon content(still below 2 wt. percent), and more homogeneous coverage. A discussionof the influence of carbon content vs. structural factors on thecomposite conductivities and, by inference, the electrochemicalperformance, is included.

  7. A spatially resolved surface kinetic model for forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Johnson, Natalie C.; Jackson, Ariel; Lammers, Laura N.; Torchinsky, Abe B.; Weaver, Karrie L.; Bird, Dennis K.; Brown, Gordon E.

    2016-02-01

    The development of complex alteration layers on silicate mineral surfaces undergoing dissolution is a widely observed phenomenon. Given the complexity of these layers, most kinetic models used to predict rates of mineral-fluid interactions do not explicitly consider their formation. As a result, the relationship between the development of the altered layers and the final dissolution rate is poorly understood. To improve our understanding of the relationship between the alteration layer and the dissolution rate, we developed a spatially resolved surface kinetic model for olivine dissolution and applied it to a series of closed-system experiments consisting of three-phases (water (±NaCl), olivine, and supercritical CO2) at conditions relevant to in situ mineral carbonation (i.e. 60 °C, 100 bar CO2). We also measured the corresponding δ26/24Mg of the dissolved Mg during early stages of dissolution. Analysis of the solid reaction products indicates the formation of Mg-depleted layers on the olivine surface as quickly as 2 days after the experiment was started and before the bulk solution reached saturation with respect to amorphous silica. The δ26/24Mg of the dissolved Mg decreased by approximately 0.4‰ in the first stages of the experiment and then approached the value of the initial olivine (-0.35‰) as the steady-state dissolution rate was approached. We attribute the preferential release of 24Mg to a kinetic effect associated with the formation of a Mg-depleted layer that develops as protons exchange for Mg2+. We used experimental data to calibrate a surface kinetic model for olivine dissolution that includes crystalline olivine, a distinct ;active layer; from which Mg can be preferentially removed, and secondary amorphous silica precipitation. By coupling the spatial arrangement of ions with the kinetics, this model is able to reproduce both the early and steady-state long-term dissolution rates, and the kinetic isotope fractionation. In the early stages of

  8. Influence of charge traps in carbon nanodots on gas interaction.

    PubMed

    Mukherjee, Anwesha; Reddy, Siva Kumar; Deka Boruah, Buddha; Misra, Abha

    2017-03-01

    The nonlinear electrical characteristic of carbon nanodots (CNDs) has revealed important physical phenomena of charge trapping playing a dominant role in surface interactions. Functional groups on the surface of CNDs attract ambient water molecules which in turn act as charge traps and give rise to electrical hysteresis that plays a dominant role in understanding charge transport in CNDs on surface interactions. Hysteresis in the current-voltage response is further utilized to study the interaction of the CNDs with nitrogen dioxide gas as an external stimuli. The hysteresis area is observed to be dependent on the time of gas interaction with the CNDs, therefore revealing the interaction mechanism of the CNDs with the gas.

  9. Influence of charge traps in carbon nanodots on gas interaction

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anwesha; Reddy, Siva Kumar; Deka Boruah, Buddha; Misra, Abha

    2017-03-01

    The nonlinear electrical characteristic of carbon nanodots (CNDs) has revealed important physical phenomena of charge trapping playing a dominant role in surface interactions. Functional groups on the surface of CNDs attract ambient water molecules which in turn act as charge traps and give rise to electrical hysteresis that plays a dominant role in understanding charge transport in CNDs on surface interactions. Hysteresis in the current–voltage response is further utilized to study the interaction of the CNDs with nitrogen dioxide gas as an external stimuli. The hysteresis area is observed to be dependent on the time of gas interaction with the CNDs, therefore revealing the interaction mechanism of the CNDs with the gas.

  10. Dissolution of materials in artificial skin surface film liquids.

    PubMed

    Stefaniak, Aleksandr B; Harvey, Christopher J

    2006-12-01

    The dissolution of chemical constituents from jewelry, textiles, cosmetics, drugs, industrial chemicals, and particles in direct and prolonged contact with human skin is often assessed in vitro using artificial skin surface film liquids (SSFL). To provide meaningful results, the composition of artificial SSFL should accurately mimic human sweat and sebum, and the conditions of the in vitro test system should accurately reflect in vivo skin conditions. We summarized the reported composition of human SSFL and compared it to 45 different formulations of artificial sweat and 18 formulations of artificial sebum (studies published from 1940 to 2005). Conditions of in vitro dissolution test systems were reviewed and compared to in vivo skin conditions. The concentrations of individual constituents and pH of artificial sweat and concentrations of artificial sebum constituents are not always within ranges reported for human SSFL. Nearly all artificial SSFL lack many of the constituents in human SSFL. To develop a comprehensive model SSFL, we propose a standard SSFL, modified from the two best published sweat and sebum formulations. Little is known concerning the influence of test system conditions on dissolution, including SSFL temperature, container material composition, agitation, and physicochemical properties of the test article on dissolution. Thus, both a need and an opportunity exist for standardizing the composition of artificial SSFL and in vitro dissolution test methodologies. To standardize in vitro dissolution test systems, we recommend: maintaining artificial SSFL at a biologically relevant temperature appropriate to the human activity being modeled, carefully selecting test and sample storage containers to avoid bias in dissolution measurements, accounting for friction between a test article and skin in a biologically plausible manner, and physicochemical characterization of the test article or material to better understand mechanisms of dissolution and

  11. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  12. Soil management and carbon calculation methods influence changes in soil carbon estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing in bulk density. In two study sites, we investigated the effect of different management practices on SOC changes calcul...

  13. Provincial variation of carbon emissions from bituminous coal: Influence of inertinite and other factors

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.

    2002-01-01

    We observe a 1.3 kg C/net GJ variation of carbon emissions due to inertinite abundance in some commercially available bituminous coal. An additional 0.9 kg C/net GJ variation of carbon emissions is expected due to the extent of coalification through the bituminous rank stages. Each percentage of sulfur in bituminous coal reduces carbon emissions by about 0.08 kg C/net GJ. Other factors, such as mineral content, liptinite abundance and individual macerals, also influence carbon emissions, but their quantitative effect is less certain. The large range of carbon emissions within the bituminous rank class suggests that rank- specific carbon emission factors are provincial rather than global. Although carbon emission factors that better account for this provincial variation might be calculated, we show that the data used for this calculation may vary according to the methods used to sample and analyze coal. Provincial variation of carbon emissions and the use of different coal sampling and analytical methods complicate the verification of national greenhouse gas inventories. Published by Elsevier Science B.V.

  14. Influence of sample composition on aerosol organic and black carbon determinations

    SciTech Connect

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  15. Carbon Speciation and Anthropogenic Influences in Haitian Rivers and Inland Waters

    NASA Astrophysics Data System (ADS)

    Markowitz, M.; Paine, J.; McGillis, W. R.; Hsueh, D. Y.

    2014-12-01

    Climate, geography, and land use patterns all contribute to the social, economic, and environmental challenges in Haiti. Water quality remains a predominant issue, and the health of freshwater systems has been linked to the cycling and transformation of carbon. A speciation dominated by carbonates and bicarbonates is conducive to higher alkalinity waters, which is part of an environmental signature in which cholera and other bacteria thrive. Numerous human activities such as deforestation, biomass burning, and agricultural practices have radically changed the abundances of carbon on land and rivers in Haiti. In Haitian small mountainous rivers, carbon speciation is also influenced by the weathering of limestone and other carbonate rocks. Additionally, rain events and natural disturbances such as earthquakes have shown to drastically increase the amount of carbon in rivers and coastal waters. Since 2010, a network of both satellite and autonomous hydrometeorological stations has been deployed to monitor the climate in southwestern Haiti. Additionally, various hydrological parameters from river, reservoir, and coastal sites have been measured during field visits. Research will be continued into the wet season, providing temporal analysis needed for quantifying the abundances and transformations of carbon. Together, data from weather stations and field sites can be contextualized with local land use patterns and other human activities to offer unique insights on the carbon system. Findings may offer new perspectives on the relationships between hydrologic cycles, human health, and environmental sustainability in Haiti.

  16. Mesoscale Approach to Feldspar Dissolution: Quantification of Dissolution Incongruency Based on Al/Si Ordering State

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Min, Y.; Jun, Y.

    2012-12-01

    Dissolution mechanism of aluminosilicates is important for understanding natural and anthropogenic carbon cycles. The total mass of atmospheric CO2 is regulated by the weathering of silicate minerals, and the fate of geologically sequestered CO2 is affected by the interactions between brine, sandstone, caprock, and CO2, which is initiated by mineral dissolution. It has been shown through both experimental and ab initio studies that the dissolution/weathering reactivities of Al and Si in the matrix of an aluminosilicate can be different under many conditions. A subsequent observation is that the release rates of Al and Si, both from the same mineral, may not be stoichiometric when compared to the bulk chemistry of the mineral. For a very long time, the relationship between mineral dissolution incongruency and mineral crystallographic properties remain largely qualitative and descriptive. Here we study the dissolution incongruency of feldspars, the most abundant aluminosilicate on earth. Mineral dissolution experiments for a series of alkali feldspars (albite, anorthoclase, sanidine, and microcline) and plagioclases (oligoclase, andesine, labradorite, bytownite, and anorthite) were conducted at pH 1.68 under ambient conditions. Synchrotron-based X-ray diffraction (HR-XRD), Fourier transform infrared spectroscopy (FTIR), and water chemistry analysis (ICP-MS) are combined to examine the effect of Al/Si ordering on mineral dissolution. Our analysis based on a C1 structure model shows that the incongruency, stemming from the different reactivities of Al-O-Si and Si-O-Si linkages in feldspar's framework, is quantifiable and closely related to the Al/Si ordering state of a feldspar. Our results also suggest that the more random the Al/Si distribution of a mineral, the greater the dissolution incongruency. Our results have significant implications for understanding water-rock interactions. First, when studying the effect of water chemistry on water-rock interaction, smaller

  17. Quartz dissolution in organic-rich aqueous systems

    USGS Publications Warehouse

    Bennett, Philip C.

    1991-01-01

    Organic electrolytes are a common component of natural waters and are known to be important in many rock-water interactions. The influence of organic electrolytes on silica mobility, quartz solubility, and quartz dissolution kinetics, however, is less well understood. While there is mounting evidence supporting the presence of an aqueous organic-silica complex in natural waters, the significance of this species is difficult to characterize because of competing interactions in mixed inorganic-organic electrolyte environments. In the experiments reported here, the kinetics of quartz dissolution in dilute aqueous organic-acid solutions between 25 and 70°C were investigated to determine the influence of both organic and inorganic electrolytes.Batch-reactor dissolution experiments in inorganic and organic electrolyte solutions were designed to investigate the hypothesis that organic acids at circum-neutral pH accelerate the dissolution and increase the solubility of quartz in water. Results suggest that multi-functional organic acids such as citrate and oxalate accelerate quartz dissolution by decreasing the activation energy by approximately 20%. The increase in dissolution rate was accompanied by a 100% increase in apparent quartz solubility at 25°C. Experiments using inorganic electrolytes, in contrast, increase the rate of quartz dissolution without decreasing the activation energy, and without increasing solubility.From these data, a model for both a solution complex between dissolved organic acid and monomeric silicic acid, and an activated complex on quartz surfaces is proposed. The model suggests that dissolved organic compounds in natural waters at near-neutral pH and low temperatures are capable of accelerating the dissolution of quartz and increasing its solubility.

  18. Methanobactin-Promoted Dissolution of Cu-Substituted Borosilicate Glass

    NASA Astrophysics Data System (ADS)

    Kulczycki, E.; Fowle, D. A.; Knapp, C.; Graham, D. W.; Roberts, J. A.

    2006-12-01

    Mineral weathering processes play a major role in the global cycling of carbon and metals and there is an increasing realization that subsurface microbial activity may be a key factor regulating specific biogeochemical reactions and their rates. Methanobactin (mb) is an extracellular copper-binding compound excreted by methanotrophs who require copper to regulate methane oxidation. Cu that is available to the cell regulates the expression and activity of pMMO versus sMMO (particulate versus soluble methane monooxygenase, respectively), which are key enzymes responsible for methane oxidation. The primary focus of this study is to determine the effect of mb-promoted dissolution of Cu-substituted glass at low temperature and near neutral pH conditions, using batch dissolution experiments with and without the methanotroph, Methylonsinus trichosporium OB3b. Methanobactin promotes the weathering of Cu-substituted borosilicate glasses at rates faster than control experiments without methanobactin. Glasses with lower concentrations of copper (80 ppm) or no copper are dissolved more rapidly than those containing larger amounts of copper (800 ppm). Within the first 2 hours of reactivity, a greater quantity of mb appears to sorb onto the glass surface at higher copper concentrations and may limit mass transfer of Cu to solution. Furthermore gene expression in M. trichosporium OB3b, using real-time RT-PCR techniques, indicate that pmoA expression is influenced by mb in presence of Cu containing solid phases. These findings demonstrate that this methanotroph can directly access mineral-bound Cu and suggests that methane oxidation rates may be directly linked to mineral weathering in near-surface geologic settings.

  19. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGES

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  20. Two-phase convective CO2 dissolution in saline aquifers

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Hesse, M. A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. This removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.

  1. Influence of carbon dioxide clouds on early martian climate.

    PubMed

    Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R

    2000-06-01

    Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.

  2. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  3. INFLUENCE OF ELEVATED OZONE AND CARBON DIOXIDE ON INSECT DENSITIES.

    SciTech Connect

    DELUCIA, E.; DERMODY, O.; O'NEILL, B.; ALDEA, M.; HAMILTON, J.; ZANGERL, A.; ROGER, A.; BERENBAUM, M.

    2005-01-05

    The combustion of fossil fuels is profoundly altering the chemical composition of the atmosphere. Beginning with the Industrial Revolution, the concentration of carbon dioxide in the atmosphere has increased from approximately 280 to 370 {micro}l l{sup -1} in 2004, and it is expected to exceed 550 {micro}l l{sup -1} by 2050. Tropospheric ozone has risen even more rapidly than CO{sub 2} and average summer concentrations in the Northern Hemisphere are expected to continue to increase by 0.5-2.5% per year over the next 30 years. Although elevated CO{sub 2} stimulates photosynthesis and productivity of terrestrial ecosystems, ozone (O{sub 3}) is deleterious. In addition to directly affecting the physiology and productivity of crops, increased concentrations of tropospheric CO{sub 2} and O{sub 3} are predicted to lower the nutritional quality of leaves, which has the potential to increase herbivory as insects eat more to meet their nutritional demands. We tested the hypothesis that changes in tropospheric chemistry affect the relationship between plants and insect herbivores by changing leaf quality. The susceptibility to herbivory of soybean grown in elevated CO{sub 2} or O{sub 3} was examined using free air gas concentration enrichment (SoyFACE). FACE technology has the advantage that plants are cultivated under realistic field conditions with no unwanted alteration of microclimate or artificial constraints on the insect community.

  4. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    PubMed

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  5. Influence of energy alternatives and carbon emissions on an institution's green reputation.

    PubMed

    Komarek, Timothy M; Lupi, Frank; Kaplowitz, Michael D; Thorp, Laurie

    2013-10-15

    Institutions' reputation for being environmentally friendly or 'green' can come from many sources. This paper examines how the attributes of alternative energy management plans impact an institutions' 'green' reputation by focusing on the interaction between 'external' and 'internal' influences. Some 'external' influences on environmental reputation we studied include the institution's mix of fuels, energy conservation effort, carbon emissions targets, investment time-frame, and program cost. The 'internal' influences on institutions' green reputation we examined include altruism (respondents' concern for the welfare of others) and environmentalism (respondents' concern for the environment). Using a stated-preference conjoint survey, we empirically examine how attributes of alternative energy management plans influence a large, research university's 'green' reputation. Our results show that constituents benefit from their institution's green reputation and that the energy management choices of the institution can significantly influence its perceived green reputation. Furthermore, integrating internal and external influences on reputation can create more informative models and better decision-making.

  6. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Bauke, C.; Meier, K. J. S.; Riebesell, U.; Schulz, K. G.

    2012-05-01

    The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It is, however, not yet understood how these changes are reflected in the morphology of coccoliths. Here, we compare data on coccolith size, weight, and malformation from a~set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3-), carbonate (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3-] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

  7. Magnesium inhibition of calcite dissolution kinetics

    SciTech Connect

    Arvidson, Rolf S.; Collier, Martin; Davis, Kevin J.; Vinson, Michael D.; Amonette, James E.; Luttge, Andreas

    2006-02-01

    We present evidence of inhibition of calcite dissolution by dissolved magnesium through direct observations of the (104) surface using atomic force microscopy (AFM) and vertical scanning interferometry (VSI). Far from equilibrium, the pattern of magnesium inhibition is dependent on solution composition and specific to surface step geometry. In CO2-free solutions (pH 8.8), dissolved magnesium brings about little inhibition even at concentrations of 0.8 x 10-3 molal. At the same pH, magnesium concentrations of less than 0.05 x 10-3 molal in carbonate-buffered solutions generate significant inhibition, although no changes in surface and etch pit morphology are observed. As concentrations exceed magnesite saturation, the dissolution rate shows little additional decrease; however, selective pinning of step edges results in unique etch-pit profiles, seen in both AFM and VSI datasets. Despite the decreases in step velocity, magnesium addition in carbonated solutions also appears to activate the surface by increasing the nucleation rate of new defects. These relationships suggest that the modest depression of the bulk rate measured by VSI reflects a balance between competing reaction mechanisms that simultaneously depress the rate through selective inhibition of step movement, but also enhance reactivity on terraces by lowering the energy barrier to new etch-pit formation.

  8. Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term field experiments (LTE) are ideal for predicting the influence of agricultural management on soil organic carbon (SOC) dynamics and examining biofuel crop residue removal policy questions. Our objectives were (i) to simulate SOC dynamics in LTE soils under various climates, crop rotations,...

  9. Effects of sinker shapes on dissolution profiles.

    PubMed

    Soltero, R A; Hoover, J M; Jones, T F; Standish, M

    1989-01-01

    In dissolution testing, according to the U.S. Pharmacopeia, a nonreactive stainless steel wire helix is typically used to sink dosage forms that would otherwise float. The objective of this investigation was to determine if other sinker shapes will influence the rate, extent, or variability of dissolution. Criteria for the optimal sinker were defined. Various new sinker designs were fabricated, tested, and classified. Four classes of sinker shapes were defined: longitudinal, lateral, screen enclosures, and internal weights. Longitudinal sinkers contact the dosage forms on the long axis. Lateral sinkers either wrap around or contact capsule dosage forms in the middle, such as the line where the top and bottom halves of a capsule shell come together. Screen enclosures are of two types: either a wire cage, which holds the entire capsule, or a circular piece of wire screen placed on top of the capsule. Internal weights consist of two steel ball bearings, one inserted into each end of the capsule. The investigation consisted of four studies: (1) visual observation of the dissolution performance using 12 different sinkers; (2) the effect on drug release from nine classified sinkers on two different capsule formulations; (3) side-by-side comparison between the selected optimal longitudinal U clip and the wire helix lateral type sinkers; and (4) hydrodynamic effects caused by the use of the longitudinal U clip and the wire helix lateral type sinkers in the absence of capsule shells. We concluded that capsules sunk with either of the two longitudinal sinkers, the U clip or the paper clip, have faster, more complete dissolution and less variable results than did lateral type sinkers.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation

    SciTech Connect

    Singh, Joseph A; Dudney, Nancy J; Li, Meijun; Overbury, Steven {Steve} H; Veith, Gabriel M

    2012-01-01

    This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

  11. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    as well as carbonates in porefluids under different pCO2 levels. In a second step, we will let the minerals react to a thermodynamically stable state and thereby observe the resulting alkalinity effect and the effect on carbonate precipitation. So far, modeling showed that saturation states of some of the most common clay minerals, including kaolinite, illite, montmorillonite and chlorite in a standard seawater solution strongly depend on silica and aluminum concentrations, but they show very little dependence on the pH. This is understandable since a congruent dissolution of clay minerals does not significantly increase or decrease the alkalinity. However, partial leaching of structural ions by incongruent dissolution/precipitation should have a strong effect on porewater alkalinity. Hence, substitution reactions will have to be simulated as part of this study. Calculated mineral alteration and rock-fluid interactions in deep sediments will contribute to a better understanding of carbonate diagenesis but also of long-term effects in subsurface CO2 storage reservoirs. Mavromatis et al. (2014) Chem. Geol. 385, 84-91. Parkhurst, D.L, and Appelo, C.A.J. (2013) U.S Geological Survey Techniques and Methods, book 6, chap. A43, 497 p. Wallmann et al. (2008) Geochim. Cosmochim. Acta 72, 3067-3090.

  12. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  13. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  14. 12 CFR 146.4 - Voluntary dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Voluntary dissolution. 146.4 Section 146.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 146.4 Voluntary dissolution. (a) A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  15. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  16. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 6 2014-01-01 2012-01-01 true Voluntary dissolution. 546.4 Section 546.4 Banks... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  17. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 6 2013-01-01 2012-01-01 true Voluntary dissolution. 546.4 Section 546.4 Banks... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  18. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  19. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 6 2012-01-01 2012-01-01 false Voluntary dissolution. 546.4 Section 546.4... ASSOCIATIONS-MERGER, DISSOLUTION, REORGANIZATION, AND CONVERSION § 546.4 Voluntary dissolution. A Federal savings association's board of directors may propose a plan for dissolution of the association. The...

  20. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    USGS Publications Warehouse

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  1. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  2. Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.

    1989-01-01

    Thermodynamic models of aqueous solutions have indicated that the mixing of seawater and calcite-saturated fresh groundwater can produce a water that is undersaturated with respect to calcite. Mixing of such waters in coastal carbonate aquifers could lead to significant amounts of limestone dissolution. The potential for such dissolution in coastal saltwater mixing zones is analyzed by coupling the results from a reaction simulation model (PHREEQE) with a variable density groundwater flow and solute transport model. Idealized cross sections of coastal carbonate aquifers are simulated to estimate the potential for calcite dissolution under a variety of hydrologic and geochemical conditions. Results show that limestone dissolution in mixing zones is strongly dependent on groundwater flux and nearly independent of the dissolution kinetics of calcite. -from Authors

  3. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.

    PubMed

    Dall'agnol, Leonardo T; Cordas, Cristina M; Moura, José J G

    2014-06-01

    Sulphate Reducing Prokaryotes (SRP) are an important group of microorganisms involved in biocorrosion processes. Sulphide production is recognized as a fundamental cause of corrosion and nitrate is often used as treatment. The present work analyses the influence of respiratory substrates in the metal, from off-shore installations, SRP influenced corrosion, using Desulfovibrio desulfuricans ATTC 27774 as model organism, since this can switch from sulphate to nitrate. Open Circuit Potential over 6days in different conditions was measured, showing an increase around 200 and 90mV for the different media. Tafel plots were constructed allowing Ecorr and jcorr calculations. For SRP in sulphate and nitrate media Ecorr values of -824 and -728mV, and jcorr values of 2.5 and 3.7μAcm(-2), respectively, were attained indicating that in nitrate, the resultant corrosion rate is larger than in sulphate. Also, it is shown that the equilibrium of sulphide in the solution/gas phases is a key factor to the evolution of corrosion Nitrate prevents pitting but promotes general corrosion and increases the corrosion potential and iron dissolution 40 times when compared to sulphate. Our results demonstrate that nitrate injection strategy in oil fields has to be considered carefully as option to reduce souring and localized corrosion.

  4. Carbon molecular sieves from carbon cloth: Influence of the chemical impregnant on gas separation properties

    NASA Astrophysics Data System (ADS)

    Rodríguez-Blanco, G.; Giraldo, L.; Moreno-Piraján, J. C.

    2010-06-01

    Carbon materials with molecular sieve properties (CMS) were prepared by pyrolysis of cotton fabrics by chemical activation procedures. To evaluate the changes in the chemical and textural properties, the impregnants AlCl 3, ZnCl 2 and H 3PO 4 were used at 1123 K. The materials were characterized using adsorption of nitrogen and carbon dioxide, TPD, and immersion calorimetry in C 6H 6. Adsorption kinetics of O 2, N 2, CO 2, CH 4, C 3H 8 and C 3H 6 were measured in all the prepared materials to determine their behaviour as molecular sieves. The results confirm that the chemical used as impregnant has a significant effect on the resulting CMS separation properties. All materials exhibit microporosity and low oxygen surface group contents; however, the sample impregnated with zinc chloride, with an immersion enthalpy value of 66.4 J g -1 in benzene, exhibits the best performance in the separation of CH 4-CO 2 and C 3H 8-C 3H 6 at 273 K.

  5. The effect of fuel chemistry on UO2 dissolution

    NASA Astrophysics Data System (ADS)

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO2 under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.

  6. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  7. Characterization of heterogeneities from core X-ray scans and borehole wall images in a reefal carbonate reservoir: influence on the porosity structure.

    NASA Astrophysics Data System (ADS)

    Hebert, V.; Garing, C.; Pezard, P. A.; Gouze, P.; Maria-Sube, Y.; Camoin, G.; Lapointe, P.

    2009-04-01

    Petrophysical properties of rocks can be largely influenced by heterogeneities. This is particularly true in reefal carbonates, with heterogeneities due to the primary structure of the reef, the degradation of that structure into a fossil form, and fluid circulations with associated dissolutions and recrystallization. We report here a study conducted on Miocene reefal carbonates drilled in the context of salt water intrusion in coastal reservoirs. Salt water intrusion along coastlines is highly influenced by geological and petrophysical structures. In particular, heterogeneities and anisotropy in porous media (karsts, vugs…) control fluid flow and dispersion. A new experimental site has been developed in the South East of Mallorca Island (Spain) in the context of the ALIANCE EC project (2002-2005). This project aimed at developing a strategy for the quantitative analysis and description of fluid flow and salt transport in coastal carbonate aquifers. The site drilled the Miocene carbonate reef platform at Ses Sitjoles, 6 km inland, near the city of Campos. Sea water is found there at 60 to 80 m depth. The geological structure present multi-scale heterogeneities, often bound to either lateral variations of geological facies, or dissolution patterns. The Campos site provides a unique laboratory to study the heterogeneities of carbonate rocks with a saltwater intrusion and develop new borehole investigation methods in this context. The present study focuses on borehole geophysical measurements and images, and core scans. New image analysis methods have been developed to better characterize the presence of heterogeneities in terms of grain-size distribution, formation factor changes and porosity. Cores scans from RX tomography can lead to the extraction of petrophysical parameters from 3D images. For this, the AVIZO software was used here to represent the micro-porosity and vuggy porosity structure. Beyond core analyses, the optical and acoustic borehole wall images

  8. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  9. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Bauke, C.; Meier, K. J. S.; Riebesell, U.; Schulz, K. G.

    2012-08-01

    The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3-), carbonate ion (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3-] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

  10. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A.

    PubMed

    Goulart, Lorena Athie; de Moraes, Fernando Cruz; Mascaro, Lucia Helena

    2016-01-01

    Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nmwere functionalized in HNO3 5.0 mol L(-1) and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20-40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L(-1).

  11. Assessment of the influence of a carbon fiber tabletop on portal imaging

    NASA Astrophysics Data System (ADS)

    Misiarz, Agnieszka; Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał

    2013-06-01

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely -26×26 cm2 in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one observes the

  12. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    SciTech Connect

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms was decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.

  13. Investigation of the Dissolution Profile of Gliclazide Modified-Release Tablets Using Different Apparatuses and Dissolution Conditions.

    PubMed

    Skripnik, K K S; Riekes, M K; Pezzini, B R; Cardoso, S G; Stulzer, H K

    2016-10-31

    In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.

  14. Dissolution of cemented carbide powders in artificial sweat: implications for cobalt sensitization and contact dermatitis.

    PubMed

    Stefaniak, Aleksandr B; Harvey, Christopher J; Virji, M Abbas; Day, Gregory A

    2010-10-06

    Skin exposure to cobalt-containing materials can cause systemic immune sensitization and upon repeat contact, elicitation of allergic contact dermatitis (ACD). Data on cobalt dissolution rates are needed to calculate uptake through skin and for development of models to understand risk of sensitization or dermatitis. The purpose of this research was to measure the dissolution kinetics of feedstock and process-sampled powders encountered in the production of hard metal alloys using artificial sweat. The physicochemical properties of each material were characterized prior to evaluation of dissolution behavior. Variations in artificial sweat solvent pH and chemistry were used to understand critical factors in dissolution. Dissolution of cobalt, tungsten, and tungsten carbide was often biphasic with the initial rapid phase being up to three orders of magnitude faster than the latter long-term phase. Artificial sweat pH did not influence dissolution of cobalt or tungsten carbide. Solvent composition had little influence on observed dissolution rates; however, vitamin E suppressed the dissolution of cobalt and tungsten carbide from sintered particles obtained from a chamfer grinder. There was no effect of particle size on dissolution of feedstock cobalt, tungsten, tungsten carbide, and admixture powders. Particle physicochemical properties influenced observed dissolution rates with more cobalt and tungsten carbide dissolving from chamfer grinder particles compared to the feedstock powders or admixture powder. Calculations using the observed dissolution rates revealed that skin exposure concentrations were similar to concentrations known to induce cobalt sensitization and elicit ACD. Observed dissolution rates for cobalt in artificial sweat indicate that dermal uptake may be sufficient to induce cobalt sensitization and allergic dermatitis.

  15. Interactions between gravity currents and convective dissolution

    NASA Astrophysics Data System (ADS)

    Elenius, M. T.; Voskov, D. V.; Tchelepi, H. A.

    2015-09-01

    Geological storage of carbon dioxide (CO2) is a promising technology for reducing atmospheric emissions. The large discrepancy in the time- and length-scales between up-dip migration of buoyant supercritical CO2 and the sinking fingers of dissolved CO2 poses a challenge for numerical simulations aimed at describing the fate of the plume. Hence, several investigators have suggested methods to simplify the problem, but to date there has been no reference solution with which these simplified models can be compared. We investigate the full problem of Darcy-based two-phase flow with gravity-current propagation and miscible convective mixing, using high-resolution numerical simulations. We build on recent developments of the Automatic Differentiation - General Purpose Research Simulator (AD-GPRS) at Stanford. The results show a CO2 plume that travels for 5000 years reaching a final distance of 14 km up-dip from the injection site. It takes another 2000 years before the CO2 is completely trapped as residual (40%) and dissolved (60%) CO2. Dissolution causes a significant reduction of the plume speed. While fingers of dissolved CO2 appear under the propagating gravity current, the resident brine does not become fully saturated with CO2 anywhere under the plume. The overall mass transfer of CO2 into the brine under the plume remains practically constant for several thousands of years. These results can be used as a benchmark for verification, or improvements, of simplified (reduced-dimensionality, upscaled) models. Our results indicate that simplified models need to account for: (i) reduced dissolution due to interaction with the plume, and (ii) gradual reduction of the local dissolution rate after the fingers begin to interact with the bottom of the aquifer.

  16. Influence of management and precipitation on carbon fluxes in greatplains grasslands

    USGS Publications Warehouse

    Rigge, Matthew B.; Wylie, Bruce K.; Zhang, Li; Boyte, Stephen P.

    2013-01-01

    Suitable management and sufficient precipitation on grasslands can provide carbon sinks. The net carbon accumulation of a site from the atmosphere, modeled as the Net Ecosystem Productivity (NEP), is a useful means to gauge carbon balance. Previous research has developed methods to integrate flux tower data with satellite biophysical datasets to estimate NEP across large regions. A related method uses the Ecosystem Performance Anomaly (EPA) as a satellite-derived indicator of disturbance intensity (e.g., livestock stocking rate, fire, and insect damage). To better understand the interactions among management, climate, and carbon dynamics, we evaluated the relationship between EPA and NEP data at the 250 m scale for grasslands in the Central Great Plains, USA (ranging from semi-arid to mesic). We also used weekly estimates of NEP to evaluate the phenology of carbon dynamics, classified by EPA (i.e., by level of disturbance impact). Results show that the cumulative carbon balance over these grasslands from 2000 to 2008 was a weak net sink of 13.7 g C m−2 yr−1. Overall, NEP increased with precipitation (R2 = 0.39, P < 0.05) from west to east. Disturbance influenced NEP phenology; however, climate and biophysical conditions were usually more important. The NEP response to disturbance varies by ecoregion, and more generally by grassland type, where the shortgrass prairie NEP is most sensitive to disturbance, the mixed-grass prairie displays a moderate response, and tallgrass prairie is the least impacted by disturbance (as measured by EPA). Sustainable management practices in the tallgrass and mixed-grass prairie may potentially induce a period of average net carbon sink until a new equilibrium soil organic carbon is achieved. In the shortgrass prairie, management should be considered sustainable if carbon stocks are simply maintained. The consideration of site carbon balance adds to the already difficult task of managing grasslands appropriately to site conditions

  17. Is bicarbonate buffer suitable as a dissolution medium?

    PubMed

    Boni, Julia Elisabeth; Brickl, Rolf Stefan; Dressman, Jennifer

    2007-10-01

    The objectives of this study were to compare two methods for the preparation of bicarbonate buffer, and to compare media prepared with bicarbonate buffer with commonly used biorelevant and pharmacopoeial media in terms of their suitability for dissolution testing. The various media were compared with regard to ease of preparation, robustness and reproducibility of composition. The dissolution of three formulations of a typical Biopharmaceutical Classification System Class II drug (BIXX) was compared in bicarbonate buffer, standard phosphate buffer, a biorelevant buffer (fasted-state simulating intestinal fluid, FaSSIF) and a modified FaSSIF prepared with bicarbonate buffer. The bicarbonate buffer used for dissolution testing was produced by supplying carbon dioxide to a saline solution (0.9% NaCl, to which 12 or 42 mmol NaOH had been added). The bicarbonate buffer had to be prepared in-situ, which proved to be time-consuming, and the pH stability of the bicarbonate buffer could only be maintained under constant CO2 supply. To minimize the mechanical stress caused by inflow and evaporation of gas, the carbon dioxide was supplied above the medium during the dissolution test. Despite taking these measures, use of bicarbonate buffer led to less reproducible dissolution results than the phosphate buffers commonly used to prepare compendial media and FaSSIF, with coefficient of variance values 1.5- to 5-times higher in bicarbonate buffer. It was concluded that although a bicarbonate buffer system would be physiologically relevant for the fasted state in the small intestine, its suitability for dissolution testing is restricted by lack of practicability and poor reproducibility of results.

  18. Selective dissolution in binary alloys

    NASA Astrophysics Data System (ADS)

    McCall, Carol Rene

    Corrosion is an important issue in the design of engineering alloys. De-alloying is an aspect of alloy corrosion related to the selective dissolution of one or more of the components in an alloy. The work reported herein focuses on the topic of de-alloying specific to single-phase binary noble metal alloy systems. The alloy systems investigated were gold-silver and gold-copper. The onset of a bulk selective dissolution process is typically marked by a critical potential whereby the more reactive component in the alloy begins dissolving from the bulk, leading to the formation of a bi-continuous solid-void morphology. The critical potential was investigated for the entire composition range of gold-silver alloys. The results presented herein include the formulation of an expression for critical potential as a function of both alloy and electrolyte composition. Results of the first investigation of underpotential deposition (UPD) on alloys are also presented herein. These results were implemented as an analytical tool to provide quantitative measurements of the surface evolution of gold during de-alloying. The region below the critical potential was investigated in terms of the compositional evolution of the alloy surface. Below the critical potential, there is a competition between the dissolution of the more reactive alloying constituent (either silver or copper) and surface diffusion of gold that serves to cover dissolution sites and prevent bulk dissolution. By holding the potential at a prescribed value below the critical potential, a time-dependent gold enrichment occurs on the alloy surface leading to passivation. A theoretical model was developed to predict the surface enrichment of gold based on the assumption of layer-by-layer dissolution of the more reactive alloy constituent. The UPD measurements were used to measure the time-dependent surface gold concentration and the results agreed with the predictions of the theoretical model.

  19. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    PubMed

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties.

  20. Influence of carbon and buffer amendment on ammonia volatilization in composting.

    PubMed

    Liang, Y; Leonard, J J; Feddes, J J R; McGill, W B

    2006-03-01

    Laboratory-scale experiments were carried out to test a mathematical model of the nitrogen dynamics in a composting process. The main ingredients of composting materials were wheat straw and dairy manure. The influence of (a) two carbon amendments, i.e. molasses and office paper, and (b) two chemicals forming buffer solutions on ammonia volatilization were investigated. Nitrogen losses amounted to 12-25% of initial nitrogen, in which ammonia volatilization accounted for 60-99%. Addition of molasses, a readily available form of carbon, reduced cumulative ammonia emissions substantially, but office paper, i.e. cellulose, had only a small influence. The addition of buffering chemicals did not significantly reduce ammonia volatilization.

  1. The Skeletal Organic Matrix from Mediterranean Coral Balanophyllia europaea Influences Calcium Carbonate Precipitation

    PubMed Central

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  2. Influence of oxygen concentration, fuel composition, and strain rate on synthesis of carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Hou, Shuhn-Shyurng; Huang, Wei-Cheng

    2015-02-01

    This paper investigates the influence of flame parameters including oxygen concentration, fuel composition, and strain rate on the synthesis of carbon nanomaterials in opposed-jet ethylene diffusion flames with or without rigid-body rotation. In the experiments, a mixture of ethylene and nitrogen was introduced from the upper burner; meanwhile, a mixture of oxygen and nitrogen was supplied from the lower burner. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. With non-rotating opposed-jet diffusion flames, carbon nanotubes (CNTs) were successfully produced for oxygen concentrations in the range of 21-50 % at a fixed ethylene concentration of 20 %, and for ethylene concentrations ranging from 14 to 24 % at a constant oxygen concentration of 40 %. With rotating opposed-jet diffusion flames, the strain rate was varied by adjusting the angular velocities of the upper and lower burners. The strain rate governed by flow rotation greatly affects the synthesis of carbon nanomaterials [i.e., CNTs and carbon nano-onions (CNOs)] either through the residence time or carbon sources available. An increase in the angular velocity lengthened the residence time of the flow and thus caused the diffusion flame to experience a decreased strain rate, which in turn produced more carbon sources. The growth of multi-walled CNTs was achieved for the stretched flames experiencing a higher strain rate [i.e., angular velocity was equal to 0 or 1 rotations per second (rps)]. CNOs were synthesized at a lower strain rate (i.e., angular velocity was in the range of 2-5 rps). It is noteworthy that the strain rate controlled by flow rotation greatly influences the fabrication of carbon nanostructures owing to the residence time as well as carbon source. Additionally, more carbon sources and higher temperature are required for the synthesis of CNOs compared with those required for CNTs (i.e., about 605-625 °C for CNTs and 700-800 °C for CNOs).

  3. Parents' Union Dissolution and Adolescents' School Performance: Comparing Methodological Approaches

    ERIC Educational Resources Information Center

    Frisco, Michelle L.; Muller, Chandra; Frank, Kenneth

    2007-01-01

    We use data from the National Longitudinal Study of Adolescent Health and the Adolescent Health and Academic Achievement Study to estimate how parents' union dissolution influences changes in adolescents' mathematics course work gains, overall grade point average, and course failure rates during a window of approximately 1 year (N = 2,629). A…

  4. Dissolution of Hausmannite (Mn(3)O(4)) in the Presence of the Trihydroxamate Siderophore Desferrioxamine B

    SciTech Connect

    Pena, J.; Duckworth, O.W.; Bargar, J.R.; Sposito, G.

    2009-06-02

    That microbial siderophores may be mediators of Mn(III) biogeochemistry is suggested by recent studies showing that these well known Fe(III)-chelating ligands form very stable Mn(III) aqueous complexes. In this study, we examine the influence of desferrioxamine B (DFOB), a trihydroxamate siderophore, on the dissolution of hausmannite, a mixed valence Mn(II,III) oxide found in soils and freshwater sediments. Batch dissolution experiments were conducted both in the absence (pH 4-9) and in the presence of 100 {mu}M DFOB (pH 5-9). In the absence of the ligand, there is a sharp decrease in the extent of proton-promoted dissolution above pH 5 and no appreciable dissolution above pH 8. The resulting aqueous Mn{sup 2+} activities were in good agreement with previous studies, indirectly supporting the accepted two-step mechanism involving the formation of manganite and reprecipitation of hausmannite. Desferrioxamine B enhanced hausmannite dissolution over the entire pH range investigated, both via the formation of a Mn(III) complex and through surface-catalyzed reductive dissolution. Above pH 8, non-reductive ligand-promoted dissolution dominated, whereas below pH 8, dissolution was non-stoichiometric with respect to DFOB. Concurrent proton-promoted, ligand-promoted, reductive, and induced dissolution was observed, with Mn release by either reductive or induced dissolution increasing linearly with decreasing pH. The fast kinetics of the DFOB-promoted dissolution of hausmannite, as compared to iron oxides, suggest that the siderophore-promoted dissolution of Mn(III)-bearing minerals may compete with the siderophore-promoted dissolution of Fe(III)-bearing minerals.

  5. Dissolution of hausmannite (Mn 3O 4) in the presence of the trihydroxamate siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Peña, Jasquelin; Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2007-12-01

    That microbial siderophores may be mediators of Mn(III) biogeochemistry is suggested by recent studies showing that these well known Fe(III)-chelating ligands form very stable Mn(III) aqueous complexes. In this study, we examine the influence of desferrioxamine B (DFOB), a trihydroxamate siderophore, on the dissolution of hausmannite, a mixed valence Mn(II, III) oxide found in soils and freshwater sediments. Batch dissolution experiments were conducted both in the absence (pH 4-9) and in the presence of 100 μM DFOB (pH 5-9). In the absence of the ligand, there is a sharp decrease in the extent of proton-promoted dissolution above pH 5 and no appreciable dissolution above pH 8. The resulting aqueous Mn 2+ activities were in good agreement with previous studies, indirectly supporting the accepted two-step mechanism involving the formation of manganite and reprecipitation of hausmannite. Desferrioxamine B enhanced hausmannite dissolution over the entire pH range investigated, both via the formation of a Mn(III) complex and through surface-catalyzed reductive dissolution. Above pH 8, non-reductive ligand-promoted dissolution dominated, whereas below pH 8, dissolution was non-stoichiometric with respect to DFOB. Concurrent proton-promoted, ligand-promoted, reductive, and induced dissolution was observed, with Mn release by either reductive or induced dissolution increasing linearly with decreasing pH. The fast kinetics of the DFOB-promoted dissolution of hausmannite, as compared to iron oxides, suggest that the siderophore-promoted dissolution of Mn(III)-bearing minerals may compete with the siderophore-promoted dissolution of Fe(III)-bearing minerals.

  6. Influence of mesophase activation conditions on the specific capacitance of the resulting carbons

    NASA Astrophysics Data System (ADS)

    Mora, E.; Ruiz, V.; Santamaría, R.; Blanco, C.; Granda, M.; Menéndez, R.; Juarez-Galán, J. M.; Rodríguez-Reinoso, F.

    Mesophase pitch AR24 was directly activated with KOH using different proportions of the activating agent and activation temperatures, to study the effect on the textural characteristics of the resultant activated carbons and how these characteristics influence their behaviour as electrodes in supercapacitors. The textural properties of the activated carbons were studied by gas adsorption and immersion calorimetry. The results indicate that all the carbons produced were mainly microporous, with pore size around 1 nm. The behaviour of these carbons as electrodes in supercapacitors was studied from galvanostatic charge-discharge cycles. The specific capacitance values obtained were very high, reaching 400 and 200 F g -1 at low and high current densities respectively, for the sample activated with (5:1) KOH to mesophase ratio. Nevertheless, the reasons for this high capacitance values cannot be explained only on the basis of the textural characteristics of the activated carbons, as the results indicated that other factors might be also playing a significant role in their electrochemical behaviour.

  7. Formulations for iron oxides dissolution

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  8. Boehmite Actual Waste Dissolutions Studies

    SciTech Connect

    Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

    2008-07-15

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

  9. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    cores are being assayed monthly from June - October for two oxidase enzyme activities (phenol oxidase, peroxidase) and four hydrolase enzyme activities (β-glucosidase, chitinase, cellobiohydrolase, and acid-phosphatase). Early season assays (June and July) where water table treatments did not significantly vary showed trends of decreasing oxidase activities while hydrolase activities increased. These preliminary results show no significant differences between vegetation treatments but as the season progresses (August - October), water table levels between high and low treatments will continue to experience greater dissimilarities. These water table declines within sedge and ericaceous shrub communities may have opposing effects on rhizosphere extracellular enzyme activities indicating plant communities may significantly influence belowground carbon storage mechanisms in ways not previously considered in peatland ecosystems.

  10. Marital Discord and Subsequent Marital Dissolution: Perceptions of Nepalese Wives and Husbands

    PubMed Central

    Jennings, Elyse

    2014-01-01

    This study examines the influence of marital discord on separation and divorce in a rural South Asian setting. We know little about how marital discord influences marital outcomes in settings with low personal freedom and limited access to independence. Using a sample of 674 couples from the Chitwan Valley Family Study in Nepal, this paper investigates the impact of marital discord on the rate of marital dissolution, and the extent to which wives’ and husbands’ perceptions of discord influence dissolution. Results reveal that (a) spouses’ perceptions of marital discord increase the rate of marital dissolution, (b) both husbands’ and wives’ perceptions of discord have an important influence, and (c) the influence of wives’ perceptions of discord is independent of their husbands’ perceptions. Overall, these findings suggest that both spouses’ perceptions of discord are important for marital outcomes, even in settings where the costs of marital dissolution are relatively high. PMID:25484450

  11. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  12. Influence of functional groups on water splitting in carbon nanodot and graphitic carbon nitride composites: a theoretical mechanism study.

    PubMed

    Feng, Jin; Liu, Guokui; Yuan, Shiling; Ma, Yuchen

    2017-02-15

    The coupling of carbon nanodots (C-Dots) with graphitic carbon nitride (g-C3N4) has been demonstrated to boost the overall photocatalytic solar water splitting efficiency. However, the understanding on the role of the C-Dots and how the structure of C-Dots influences the photocatalytic reaction is still limited. In this work, we investigate the excited states of some C-Dot/g-C3N4 composites with the C-Dots containing different functional groups including -OH, -CHO and -COOH by first-principles many-body Green's function theory. It is found that the increase of efficiency can be ascribed to the high separation rate and the low recombination rate of the electron-hole pair benefiting from the emergence of the charge-transfer excited state between the C-Dots and g-C3N4. Functional groups on the C-Dots play a crucial role in determining the charge transfer direction, active sites for reduction reaction and oxidation reaction of water, and whether the reaction is a four-electron process or a two-electron/two-electron process. These results can provide guidance for the design and optimization of the C-Dots for heterojunction photocatalysts.

  13. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    PubMed

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.

  14. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  15. Influence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose.

    PubMed

    Lu, Xiaowei; Pellechia, Perry J; Flora, Joseph R V; Berge, Nicole D

    2013-06-01

    Studies have demonstrated that hydrothermal carbonization of biomass and waste streams results in the formation of beneficial materials/resources with minimal greenhouse gas production. Data necessary to understand how critical process conditions influence carbonization mechanisms, product formation, and associated environmental implications are currently lacking. The purpose of this work is to hydrothermally carbonize cellulose at different temperatures and to systematically sample over a 96-h period to determine how changes in reaction temperature influence product evolution. Understanding cellulose carbonization will provide insight to carbonization of cellulosic biomass and waste materials. Results from batch experiments indicate that the majority of cellulose conversion occurs between the first 0.5-4h, and faster conversion occurs at higher temperatures. Data collected over time suggest cellulose solubilization occurs prior to conversion. The composition of solids recovered after 96h is similar at all temperatures, consisting primarily of sp(2) carbons (furanic and aromatic groups) and alkyl groups.

  16. Chemistry and kinetics of calcite dissolution in passive treatment systems

    SciTech Connect

    Rose, A.W.

    1999-07-01

    Reaction of calcite with AMD is a key remediation process in anoxic limestone drains, (ALD), SAPS, and many wetlands, but predictions of effluent quality are currently based mainly on rules of thumb and prior experience. The PHREEQC computer program can be used to calculate the progress of this and similar reactions, and aid in understanding, design and evaluation of these systems. At pH values less than 5, calcite dissolution rates are strongly influenced by transport parameters such as flow velocity. Estimated calcite dissolution rates from ALD's and column experiments indicate little change in rate with pH, in contrast to published data for well stirred lab experiments. The dissolution rate is affected by concentration of SO{sub 4}, Fe, Al, Ca, P, and other trace solutes. The optimum contact time and sizing of ALD's will be dependent on these and possibly other parameters. Additional experiments are needed to evaluate these dependencies.

  17. Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells.

    PubMed

    Pieters, Ilse Y; Van den Vreken, Natasja M F; Declercq, Heidi A; Cornelissen, Maria J; Verbeeck, Ronald M H

    2010-04-01

    The influence of the carbonate content in apatites on the adhesion and the proliferation of MC3T3-E1 osteoblastic cells was investigated. B-type carbonated apatites (DCAps) were prepared by the hydrolysis of monetite (CaHPO(4), DCP) in solutions with a carbonate concentration ranging from 0.001 to 0.075 mol l(-1). Stoichiometric hydroxyapatite (DCAp0) was synthesized in carbonate-free solution. MC3T3-E1 cells were seeded on the compacted DCAps and cell adhesion and proliferation were analysed after 24h and 7 days, respectively, using a MTS assay and fluorescence microscopy. Cell adhesion tends to increase with increasing carbonate content for carbonate contents between 0 and 6.9 wt.% and levels out to an acceptable value (+ or - 50% compared to the control) for carbonate contents between 6.9 and 16.1 wt.%. Only DCAps with a carbonate content equal to or higher than 11% support high cell proliferation comparable to the control. On the latter DCAps, the cells have a spread morphology and form a near-confluent layer. A decrease in charge density and crystallinity at the apatite surface, as well as the formation of more spheroidal crystals with increasing carbonate content, might attribute to changes in composition and three-dimensional structure of the protein adsorption layer and hence to the observed cell behaviour. Consequently, only DCAps with a high carbonate content, mimicking early in vivo mineralization, are possible candidates for bone regeneration.

  18. Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil

    NASA Astrophysics Data System (ADS)

    Ennes-Silva, Renata A.; Bezerra, Francisco H. R.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Klimchouk, Alexander; Cazarin, Caroline L.; Auler, Augusto S.

    2016-01-01

    Porosity and permeability along fractured zones in carbonates could be significantly enhanced by ascending fluid flow, resulting in hypogene karst development. This work presents a detailed structural analysis of the longest cave system in South America to investigate the relationship between patterns of karst conduits and regional deformation. Our study area encompasses the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR) caves, which are ca. 107 km and 34 km long, respectively. This cave system occurs in Neoproterozoic carbonates of the Salitre Formation in the northern part of the São Francisco Craton, Brazil. The fold belts that are around and at the craton edges were deformed in a compressive setting during the Brasiliano orogeny between 750 and 540 Ma. Based on the integrated analysis of the folds and brittle deformation in the caves and in outcrops of the surrounding region, we show the following: (1) The caves occur in a tectonic transpressive corridor along a regional thrust belt; (2) major cave passages, at the middle storey of the system, considering both length and frequency, developed laterally along mainly (a) NE-SW to E-W and (b) N to S oriented anticline hinges; (3) conduits were formed by dissolutional enlargement of subvertical joints, which present a high concentration along anticline hinges due to folding of competent grainstone layers; (4) the first folding event F1 was previously documented in the region and corresponds with NW-SE- to N-S-trending compression, whereas the second event F2, documented for the first time in the present study, is related to E-W compression; and (5) both folding events occurred during the Brasiliano orogeny. We conclude that fluid flow and related dissolution pathways have a close relationship with regional deformation events, thus enhancing our ability to predict karst patterns in layered carbonates.

  19. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  20. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  1. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability, and corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile pools of soil organic carbon (SOC) and nitrogen (N) affect the carbon (C) and N fluxes from terrestrial soils, whereas, long-term C and N storage is determined by the long-lived recalcitrant fractions. Tillage influences these labile pools, however effect of the tillage systems may be differe...

  2. Bench Scale Saltcake Dissolution Test Report

    SciTech Connect

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-12-06

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

  3. Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris

    Electrochemical double layer capacitors, which rely on electrosorption of ions in nanostructured carbon electrodes, can supplement or even replace traditional batteries in energy harvesting and storage applications. While supercapacitors offer > 10 kW/kg power densities, their ~5 Wh/kg energy densities are insufficient for many automotive and grid storage applications. Most prior efforts have focused on novel high-performing ionic liquid electrolytes and porous carbons with tunable pore diameters and high specific surface areas. However, existing research lacks fundamental understanding of the influence of surface heterogeneity and disorder, such as graphitic defects and functional groups, on key electrosorption properties at electrode-electrolyte interfaces. These interactions significantly impact charge accumulation densities, ion transport mechanisms, and electrolyte breakdown processes. Subsequently, they must be investigated to optimize ion screening, charge mobilities, and operating voltage windows of the devices. The research in this dissertation examined the influence of surface functional groups and structural ordering on capacitance, electrosorption dynamics, and electrochemical stability of external and internal surface of carbon electrodes. High-temperature vacuum annealing, air oxidation, hydrogenation, and amination were used to tune pore surface compositions and decouple key structural and chemical properties of carbide-derived carbons. The approach combined materials characterization by a variety of techniques, neutron scattering studies of ion dynamics, electrochemical testing, and MD simulations to investigate the fundamental intermolecular interactions and dynamics of ions electrosorption in different pore architectures and on planar graphene surfaces. Contrary to expected results and existing theories, defect removal via defunctionalization and graphitization decreased capacitance. Hydrogenated surfaces benefitted electrosorption, while oxygen

  4. Floodplain influence on carbon speciation and fluxes from the lower Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Shim, Moo-Joon; Guo, Laodong; Shiller, Alan

    2016-08-01

    To investigate the floodplain influence on carbon speciation and export to the northern Gulf of Mexico, water samples were collected monthly from two sites in the East Pearl River (EPR) basin during 2006-2008. Additionally, four spatial surveys in the river basin between those two sites were also conducted. Compared with the upstream sampling site at Bogalusa, MS, dissolved inorganic carbon (DIC) and particulate organic carbon (POC) concentrations were 36% and 55% lower, respectively, and dissolved organic carbon (DOC) concentration was 49% higher at the downstream Stennis Space Center (SSC) site. In addition, the bulk DOC pool at SSC had a higher colloidal fraction than at Bogalusa (75% vs. 68%). Detailed spatial surveys revealed the differences between the upstream and downstream stations resulted both from input from Hobolochitto Creek, a tributary of the EPR, and from influence of the swamp-rich floodplain. The contributions from Hobolochitto Creek to the carbon pool in the EPR basin were lowest during a high flow event and reached a maximum during the dry season. Meanwhile, the floodplain in the EPR basin acted as a significant sink for DOC, POC and particulate nitrogen during summer and for suspended sediment during a high flow event. However, the floodplain was converted into a source of suspended sediment, DOC, and POC to the EPR during winter, revealing a dynamic nature and seasonality in the floodplain influence. Consistent with its dominant forest coverage, abundant wetlands along the river corridor, and mild anthropogenic disturbance, the Pearl River basin above Bogalusa generally had higher yields of DOC and POC (1903 and 1386 kg-C km-2 yr-1, respectively), but a lower yield of DIC (2126 kg-C km-2 yr-1) compared to other North American rivers. An estimation based on a mass balance approach suggests the interactions between floodplain and the main river stem could reduce the annual DIC and POC export fluxes from downstream of the EPR by 24% and 40

  5. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  6. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  7. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  8. 12 CFR 239.16 - Voluntary dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 4 2012-01-01 2012-01-01 false Voluntary dissolution. 239.16 Section 239.16... (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.16 Voluntary dissolution. (a) A mutual holding company's board of directors may propose a plan for dissolution of the...

  9. 12 CFR 239.16 - Voluntary dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 4 2014-01-01 2014-01-01 false Voluntary dissolution. 239.16 Section 239.16... (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.16 Voluntary dissolution. (a) A mutual holding company's board of directors may propose a plan for dissolution of the...

  10. 12 CFR 239.16 - Voluntary dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 4 2013-01-01 2013-01-01 false Voluntary dissolution. 239.16 Section 239.16... (CONTINUED) MUTUAL HOLDING COMPANIES (REGULATION MM) Mutual Holding Companies § 239.16 Voluntary dissolution. (a) A mutual holding company's board of directors may propose a plan for dissolution of the...

  11. 5 CFR 2634.410 - Dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Dissolution. 2634.410 Section 2634.410..., QUALIFIED TRUSTS, AND CERTIFICATES OF DIVESTITURE Qualified Trusts § 2634.410 Dissolution. Within thirty days of dissolution of a qualified trust, the interested party shall file a report of the...

  12. 5 CFR 2634.410 - Dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Dissolution. 2634.410 Section 2634.410..., QUALIFIED TRUSTS, AND CERTIFICATES OF DIVESTITURE Qualified Trusts § 2634.410 Dissolution. Within thirty days of dissolution of a qualified trust, the interested party shall file a report of the...

  13. The influence of Southern Ocean winds on the North Atlantic carbon sink

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2016-06-01

    Observed and predicted increases in Southern Ocean winds are thought to upwell deep ocean carbon and increase atmospheric CO2. However, Southern Ocean dynamics affect biogeochemistry and circulation pathways on a global scale. Using idealized Massachusetts Institute of Technology General Circulation Model (MITgcm) simulations, we demonstrate that an increase in Southern Ocean winds reduces the carbon sink in the North Atlantic subpolar gyre. The increase in atmospheric CO2 due to the reduction of the North Atlantic carbon sink is shown to be of the same magnitude as the increase in atmospheric CO2 due to Southern Ocean outgassing. The mechanism can be described as follows: The increase in Southern Ocean winds leads to an increase in upper ocean northward nutrient transport. Biological productivity is therefore enhanced in the tropics, which alters the chemistry of the subthermocline waters that are ultimately upwelled in the subpolar gyre. The results demonstrate the influence of Southern Ocean winds on the North Atlantic carbon sink and show that the effect of Southern Ocean winds on atmospheric CO2 is likely twice as large as previously thought in past, present, and future climates.

  14. Emission of carbon dioxide influenced by different water levels from soil incubated organic residues.

    PubMed

    Hossain, M B; Puteh, A B

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO₂-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO₂-C emission. Poultry litter with soil mixture increased 121% cumulative CO₂-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO₂-C. Maximum CO₂-C was found in 7 days after incubation and thereafter CO₂-C emission was decreased with the increase of time. Control produced the lowest CO₂-C (158.23 mg). Poultry litter produced maximum cumulative CO₂-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO₂-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d⁻¹) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon.

  15. Influence of solid content and maximum temperature on the performance of a hydrothermal carbonization reactor.

    PubMed

    Zabaleta, Imanol; Marchetti, Paola; Lohri, Christian Riuji; Zurbrügg, Christian

    2017-01-23

    Hydrothermal carbonization is a thermochemical process that converts wet organic matter into a sterile, high-calorific solid material called hydrochar. This technology is considered an interesting option for low- and middle-income urban settings, often lacking adequate services and high fraction of wet organic waste. The aim of this study was to study the influence of the loading rate (total solid content) and the maximum temperature reached on the resulting energy ratio (ER) of the process and the fuel properties of the obtained hydrochar. Ten experiments were carried out with a standardized biowaste-feedstock. Different solid contents (2.54%, 4.93%, 7.44%, 9.45%, 12.83%, 15.2% by weight) and different targeted maximum temperatures (170°C, 180°C, 190°C, 200°C) were tested. Compared to the feedstock, all resulting hydrochars had an increased higher heating value (HHV) (average of 29.2 MJ/kgdb) and carbon content (average of 66.9%db) than the original biowaste (19.3 MJ/kgdb and 46.2%db, respectively). The HHV obtained were similar to those of charcoal (29.6 MJ/kg). Higher solid contents resulted in higher hydrochar yields and carbon efficiencies, whereas higher temperatures resulted in higher carbon content and HHV of the hydrochar. The experiment with the highest solid content (15.2%wt) achieved an ER > 1.

  16. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    PubMed Central

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  17. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    PubMed

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing.

  18. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  19. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    PubMed

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  20. Major influencing factors of water flooding in abnormally high-pressure carbonate reservoir

    NASA Astrophysics Data System (ADS)

    Qingying, Hou; Kaiyuan, Chen; Zifei, Fan; Libing, Fu; Yefei, Chen

    2017-01-01

    The higher pressure coefficient is the major characteristics of the abnormal high pressure carbonate reservoirs, which the pressure coefficient generally exceeds 1.2 and the initial formation pressure is higher than normal sandstone reservoirs. Due to the large pressure difference between initial formation and saturated pressure, oil wells are capable to production with high flow rate by the natural energy at early production stage. When the formation pressure drops to the saturation pressure, the water or gas is usually injected to stabilize the well productivity and sustain the formation pressure. Based on the characteristics of Kenkiak oilfield, a typical abnormal high pressure carbonate reservoir, a well group model is designed to simulate and analyze the influence factors on water flooding. The conclusion is that permeability, interlayer difference and reserve abundance are the main three factors on the water flooding development in these reservoirs.

  1. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schütz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products.

  2. Influence of Geant4 parameters on dose distribution and computation time for carbon ion therapy simulation.

    PubMed

    Zahra, Nabil; Frisson, Thibault; Grevillot, Loic; Lautesse, Philippe; Sarrut, David

    2010-10-01

    The aim of this work was to study the influence of Geant4 parameters on dose distribution and computational time for simulations of carbon ion therapy. The study was done using Geant4 version 9.0. The dose distribution in water for incident monoenergetic carbon ion beams of 300 MeV/u were compared for different values of secondary particle production threshold and different step limits. Variations of depth dose of about 2 mm were observed in some cases, which induced a 30% variation of dose deposit in the Bragg peak region. Other tests were done using Geant4 version 9.2 to verify the results from this study. The two versions provided converging results and led to the same conclusions.

  3. Dissolution Kinetics of Alumina Calcine

    SciTech Connect

    Batcheller, Thomas Aquinas

    2001-09-01

    Dissolution kinetics of alumina type non-radioactive calcine was investigated as part of ongoing research that addresses permanent disposal of Idaho High Level Waste (HLW). Calcine waste was produced from the processing of nuclear fuel at the Idaho Nuclear Technology and Engineering Center (INTEC). Acidic radioactive raffinates were solidified at ~500°C in a fluidized bed reactor to form the dry granular calcine material. Several Waste Management alternatives for the calcine are presented in the Idaho High Level Waste Draft EIS. The Separations Alternative addresses the processing of the calcine so that the HLW is ready for removal to a national geological repository by the year 2035. Calcine dissolution is the key front-end unit operation for the separations alternative.

  4. Dissolution of HFIR control plates

    SciTech Connect

    Posey, J.C.

    1984-03-01

    A process was developed for the dissolution of High Flux Isotope Reactor (HFIR) control plates. These plates consist of aluminum metal, intensely radioactive europium oxide, and a small amount of tantalum metal. The radioactive solution will be diluted, mixed with grout, and disposed of by shale fracture. The plates are dissolved in nitric acid using a mercury catalyst. Conditions were determined that would produce a reaction rate compatible with existing equipment. 3 references, 1 figure, 3 tables.

  5. After adoption: dissolution or permanence?

    PubMed

    Festinger, Trudy

    2002-01-01

    Results are presented on the whereabouts of 516 adopted children, based on a random sample of children adopted from placement in New York City in 1996. Data from interviews with adoptive parents were augmented by information from adoption subsidy records and state child tracking files, as well as interviews with caregivers of children whose adoptive parents were deceased. There were few dissolutions, but postadoption service needs were many.

  6. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  7. Mass exchange during simultaneous grinding and dissolution

    SciTech Connect

    Aksel'rud, G.A.; Semenishin, E.M.; Kopyt, S.Ya.; Trotskii, V.I.

    1988-03-20

    Extraction of ore components of interest has a number of disadvantages, one of which being low efficiency. Combining the grinding and dissolution steps in one apparatus makes the process more efficient. Adoption of this technology, however, requires theoretical and mathematical studies. This paper reports the kinetics of simultaneous grinding and dissolution of copper-containing minerals. Simultaneous grinding and dissolution accelerated several fold the mass transfer of components of interest in the interaction of malachite and azurite with sulfuric acid solutions. The complete dissolution time was determined by adding the experimental rates of dissolution and abrasion.

  8. [Real-time UV imaging of chloramphenicol intrinsic dissolution characteristics from ophthalmic in situ gel].

    PubMed

    Chen, Jian-Xiu; Guo, Zhen; Li, Hai-Yan; Wu, Li; He, Zhong-Gui; Hu, Rong-Feng; Zhang, Ji-Wen

    2013-07-01

    In this paper, chloramphenicol was selected as a model drug to prepare in situ gels. The intrinsic dissolution rate of chloramphenicol from in situ gel was evaluated using the surface dissolution imaging system. The results indicated that intrinsic dissolution rate of chloramphenicol thermosensitive in situ gel decreased significantly when the poloxamer concentration increased. The addition of the thickener reduced the intrinsic dissolution rate of chloramphenicol thermosensitive gel, wherein carbomer had the most impact. Different dilution ratios of simulated tear fluid greatly affected gel temperature, and had little influence on the intrinsic dissolution rate of chloramphenicol from the thermosensitive in situ gel. The pH of simulated tear fluid had little influence on the intrinsic dissolution rate of chloramphenicol thermosensitive in situ gel. For the pH sensitive in situ gel, the dissolution rates of chloramphenicol in weak acidic and neutral simulated tear fluids were slower than that in weak alkaline simulated tear fluid. In conclusion, the intrinsic dissolution of chloramphenicol from in situ gel was dependent on formulation and physiological factors. With advantages of small volume sample required and rapid detection, the UV imaging method can be an efficient tool for the evaluation of drug release characteristics of ophthalmic in situ gel.

  9. Conversion of batch to molten glass, II: Dissolution of quartz particles

    SciTech Connect

    Hrma, Pavel R.; Marcial, Jose; Swearingen, Kevin J.; Henager, Samuel H.; Schweiger, Michael J.; Tegrotenhuis, Nathan E.

    2011-01-28

    Quartz dissolution during the batch-to-glass conversion influences the melt viscosity and ultimately the temperature at which the glass forms. Batches to make a high-alumina borosilicate glass (formulated for the vitrification of nuclear waste) were heated as 5°C min-1 and quenched from the temperatures of 400-1200°C at 100°C intervals. As a silica source, the batches contained quartz with particles ranging from 5 to 195 µm. The content of unreacted quartz in the samples was determined with x-ray diffraction. Most of fine quartz has dissolved during the early batch reactions (at temperatures <800°C), whereas coarser quartz dissolved mostly in a continuous glass phase via diffusion. The mass-transfer coefficients were assessed from the data as functions of the initial particle sizes and the temperature. A series of batch was also tested that contained nitrated components and additions of sucrose known to accelerate melting. While sucrose addition had no discernible impact on quartz dissolution, nitrate batches melted somewhat more slowly than batches containing carbonates and hydroxides in addition to nitrates.

  10. Effect of Extracellular Polymeric Substances on CuO Nanoparticle Dissolution and Colloidal Stability

    NASA Astrophysics Data System (ADS)

    Adeleye, A. S.; Keller, A. A.

    2013-12-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers produced by microorganisms growing in natural as well as artificial environments. EPS may interact with engineered nanomaterials (ENMs) in aquatic systems via electrostatic and/or hydrophobic associations, therefore, influencing the fate and transport of ENMs. In this study the effect of soluble EPS isolated from Isochrysis galbana, a marine phytoplankton, on the dissolution kinetics and colloidal stability of CuO nanoparticles was investigated. EPS was characterized by measuring hydrodynamic diameter, total organic carbon, carbohydrate, and protein concentrations. CuO nanoparticles were more stable in the presence of EPS in aqueous media as indicated by hydrodynamic size and average count rate measurements. The effect of pH and ionic strength on dissolution was also studied. [Cu2+] and [Cu]total detected after a week were 5.70 mg L-1 and 7.08 mg L-1 respectively when 10 mg L-1 CuO nanoparticles was kept in 10 mM NaCl at pH 4. In the presence of 5 mg-C EPS L-1, [Cu2+] and [Cu]total were slightly lower at 5.0 mg L-1 and 5.53 mg L-1 respectively. Although observed [Cu2+] and [Cu]total were significantly lower at neutral and alkaline pH conditions, a similar pattern was observed.

  11. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates.

    PubMed

    Perry, Thomas D; Duckworth, Owen W; McNamara, Christopher J; Martin, Scot T; Mitchell, Ralph

    2004-06-01

    Dissolution of carbonate minerals has significant environmental effects. Microorganisms affect carbonate dissolution rates by producing extracellular metabolites, including complex polysaccharides such as alginic acid. Using a combined atomic force microscopy (AFM)/flowthrough reactor apparatus, we investigated the effects of alginic acid on calcite dissolution. Macroscopic dissolution rates, derived from the aqueous metal ion concentrations, are 10(-5.5) mol m(-2) s(-1) for 5 < pH < 12 in the absence of alginic acid compared to 10(-4.8) mol m(-2) s(-1) in its presence. The AFM images demonstrate that alginic acid preferentially attacks the obtuse steps of dissolution pits on the calcite surface. In pure water, the obtuse and acute steps retreat at similar rates, and the pits are nearly isotropic except under highly acidic conditions. In alginic acid, the acute step retreat rate is nearly unchanged in comparison to water, whereas the obtuse step retreat rate increases with decreasing pH values. As a result, the pits remain rhombohedral but propagate faster in the obtuse direction. To explain these observations, we propose that alginic acid preferentially forms dissolution active surface complexes with calcium atoms on the obtuse step, which results in anisotropic ligand-promoted dissolution.

  12. Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix

    NASA Astrophysics Data System (ADS)

    Petrunin, S.; Vaganov, V.; Reshetniak, V.; Zakrevskaya, L.

    2015-11-01

    The potential of application of CNTs as a reinforcing agent in cement composites is governed by their unique mechanical and electronic properties. The analysis of concrete strength changes under CNTs introduction shows non-uniformity and sometimes inconsistency of results. Due to the fact that CNTs influence the hydration kinetics, structure and phase composition of concrete, an idea concerning the importance of interaction between the surface of CNTs and hydrate ions formed by the dissolution of the clinker phases has been suggested. In this paper, the theoretical and experimental study of interaction between hydrate ions and CNTs surface is discussed. Reference nanotubes and nanotubes functionalized by carboxylic groups are used in this research. Phase composition was determined by X-Ray analysis according to the Rietveld method. It was found that the presence of oxygen-containing functional groups on CNTs surface leads to intensification of the hydration process and increase in concentration of C-S-H gel from 65.9% to 74.4%. Special attention is usually paid to interactions between Ca2+ ions and CNTs, because the hardening rate and structure of cement stone are determined by principle of Ca2+ localization in the solution. In this paper the possible binding mechanisms are discussed. Based on the experimental results, the hypothesis regarding the formation of cement composite structure for different CNTs surface functionalizations is considered. According to this hypothesis, the CNTs act as the centers of crystallization for hydration products contributing to the acceleration of hydration, increase of the concentration of C-S-H gel and strength improvement of CNTs based composites.

  13. Influence of the Sonication Temperature on the Debundling Kinetics of Carbon Nanotubes in Propan-2-ol

    PubMed Central

    Dumée, Ludovic; Sears, Kallista; Schütz, Jürg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2013-01-01

    The effect of sonication temperature on the debundling of carbon nanotube (CNT) macro-bundles is reported and demonstrated by analysis with different particle sizing methods. The change of bundle size over time and after several comparatively gentle sonication cycles of suspensions at various temperatures is reported. A novel technique is presented that produces a more homogeneous nanotube dispersion by lowering the temperature during sonication. We produce evidence that temperature influences the suspension stability, and that low temperatures are preferable to obtain better dispersion without increasing damage to the CNT walls. PMID:28348322

  14. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  15. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  16. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    NASA Astrophysics Data System (ADS)

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  17. The combined influence of the main European circulation patterns on carbon uptake by ecosystems

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Gouveia, Célia; Trigo, Ricardo

    2014-05-01

    Understanding how natural climate variability affects carbon uptake by land and ocean pools is particularly relevant to better characterize human impact on the carbon cycle. Recently, we have contributed to assess the major role played by the El-Niño/Southern Oscillation in driving inter-annual variability (IAV) of carbon uptake by land ecosystems and significantly influencing global CO2 air-borne fraction [1]. Despite the prominent role played by ENSO, other important teleconnections on the hemispheric scale have deserved less attention. On the European scale, the main mode of variability is the North-Atlantic Oscillation (NAO), which controls storm tracks position and drives changes in temperature and precipitation over the whole region, affecting vegetation dynamics [2]. Besides NAO, a few additional large scale circulation patterns the Scandinavian (SC) and East-Atlantic (EA) Patterns, are also known to influence significantly the European climate [3]. Different combinations of these teleconnection polarities have been recently shown to modulate the overall role of the NAO impact location and strength, thus affecting winter temperature and precipitation patterns over Europe [4]. This work aims to answer the following questions: (i) how do NAO, EA and SC affect vegetation carbon uptake IAV? (ii) do the interactions between these three modes have a significant impact on land CO2 IAV? (iii) what is the contribution of the different physical variables to ecosystems' response to these modes? (iv) how well do the state-of-the-art Earth System Models (ESMs) from CMIP5 represent these climate variability modes and the corresponding carbon fluxes? We first analyze observational data to assess the relationships between the different combinations of NAO, SC and EA polarities and IAV of gross and net primary production (GPP and NPP, respectively), as well as the most relevant driving factors of ecosystem's response to those variability patterns. Although the winter state

  18. The effect of water structure and solute hydration on the kinetics of mineral growth and dissolution (Arne Richter Award for Outstanding Young Scientists)

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, E.; Putnis, C. V.; Putnis, A.

    2012-04-01

    Classical crystal growth theory relates growth and dissolution rates to the degree of supersaturation. However, the solution composition may also affect the growth rate of carbonate minerals, via the Ca2+ to CO32- concentration ratio (e.g. Perdikouri et al., 2009; Stack and Grantham, 2010), ionic strength (e.g. Ruiz-Agudo et al. 2010) or the presence of organic matter (Hoch et al., 2000). For this reason, the influence of these parameters on the kinetics of mineral growth and dissolution has generated a considerable amount of research in the last decade. In particular, effects of both inorganic and organic impurities on mineral growth and dissolution have been frequently reported in the literature. Commonly, water in contact with rock forming minerals, contains significant and variable amounts of ions in solution. The effect of such ions on dissolution and growth rates has been traditionally ascribed to changes in solubility. However, experimental studies performed on different minerals have shown that the dependence of growth or dissolution rates on ionic strength is complex, and that the effect of ionic strength is not independent of the ionic species producing it. Here, we report investigations aimed at addressing the basic hypothesis that mineral growth and dissolution is governed by complex interactions between solvent structure, surface hydration and the ion solvation environment induced by the presence of electrolytes. It is proposed that any factor affecting ion solvation should alter growth and dissolution rates. These results have opened the possibility of a new understanding of very diverse phenomena in geochemistry and demonstrate the need for the inclusion of this "hydration effect" in the development of predictive models that describe crystal growth and dissolution in complex systems, such as those found in nature. Furthermore, we can hypothesise that ion-assisted dehydration of trace and minor element ions could occur in biological systems, thus

  19. Dissolution and reduction of magnetite by bacteria

    NASA Technical Reports Server (NTRS)

    Kostka, J. E.; Nealson, K. H.

    1995-01-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis.

  20. Dissolution and reduction of magnetite by bacteria.

    PubMed

    Kostka, J E; Nealson, K H

    1995-10-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis.

  1. Influence of carbon nanomaterial defects on the formation of protein corona.

    PubMed

    Sengupta, Bishwambhar; Gregory, Wren E; Zhu, Jingyi; Dasetty, Siva; Karakaya, Mehmet; Brown, Jared M; Rao, Apparao M; Barrows, John K; Sarupria, Sapna; Podila, Ramakrishna

    In any physiological media, carbon nanomaterials (CNM) strongly interact with biomolecules leading to the formation of biocorona, which subsequently dictate the physiological response and the fate of CNMs. Defects in CNMs play an important role not only in material properties but also in the determination of how materials interact at the nano-bio interface. In this article, we probed the influence of defect-induced hydrophilicity on the biocorona formation using micro-Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge-transfer between them, inducing protein unfolding which enhances conformational entropy and higher protein adsorption.

  2. Influence of carbon nanomaterial defects on the formation of protein corona

    PubMed Central

    Sengupta, Bishwambhar; Gregory, Wren E.; Zhu, Jingyi; Dasetty, Siva; Karakaya, Mehmet; Brown, Jared M.; Rao, Apparao M.; Barrows, John K.; Sarupria, Sapna; Podila, Ramakrishna

    2015-01-01

    In any physiological media, carbon nanomaterials (CNM) strongly interact with biomolecules leading to the formation of biocorona, which subsequently dictate the physiological response and the fate of CNMs. Defects in CNMs play an important role not only in material properties but also in the determination of how materials interact at the nano-bio interface. In this article, we probed the influence of defect-induced hydrophilicity on the biocorona formation using micro-Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge-transfer between them, inducing protein unfolding which enhances conformational entropy and higher protein adsorption. PMID:26877870

  3. Vegetation Influences on Long-Term Carbon Stabilization in Soils: a Coast Redwood-Prairie Comparison

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Burton, S. D.; McFarlane, K. J.; Torn, M. S.; Dawson, T. E.

    2010-12-01

    Complex interactions and feedbacks among soil, biota, climate, and parent material determine the long-term pathways and mechanisms of carbon persistence in soils. While it is well known that litter chemistry influences litter decay on annual-decadal timescales, its impact on long-term SOM storage is still under debate. We tested the role of the substrate available to decomposers in determining decomposition and sequestration of carbon by comparing two contrasting ecosystems representing end-members in terms of tissue lifespan and litter recalcitrance, an old-growth redwood forest and an adjacent tree-less prairie, at one site with identical climate, topography, and parent material. Solid-state CP MAS 13C NMR was applied to investigate the chemical structure of vegetation tissues (aboveground and belowground), and of soil fractions (particulate organic carbon free in the soil matrix and particulate organic carbon located inside soil aggregates, or free and occluded light fraction (LF), respectively) at different depths. In addition, the carbon stability of these soil density fractions was estimated based on radiocarbon modeling. Preliminary NMR results showed strong differences between redwood and prairie tissues, and between litters and surface soil fractions. On average, redwood litter contained more aromatic carbon (C and O substituted aryl C), more lipids (alkyl C) and fewer carbohydrates (O-alkyl C) than prairie litter. Under both vegetation types we found that the chemical structure changed consistently from litter to free LF, and from free LF to occluded LF. The alkyl C signal intensity increased, while the O-alkyl C fraction decreased, but more strongly at the redwood forest. The proportion of aromatic functional groups in the total organic matter (aromaticity) was always higher in the soil fractions compared with the original litters. Redwood soil fractions aromaticity was 0.32 (+80% from litter), while prairie soil fractions aromaticity varied from 0

  4. Bacterial siderophores promote dissolution of UO2 under reducing conditions.

    PubMed

    Frazier, Scott W; Kretzschmar, Ruben; Kraemer, Stephan M

    2005-08-01

    Tetravalent actinides are often considered environmentally immobile due to their strong hydrolysis and formation of sparingly soluble oxide phases. However, biogenic ligands commonly found in the soil environment may increase their solubility and mobility. We studied the adsorption and dissolution kinetics of UO2 in the presence of a microbial siderophore, desferrioxamine-B (DFO-B), under reducing conditions. Using batch and continuous flow stirred tank reactors (CFSTR),we found that DFO-B increases the solubility of UIV and accelerates UO2 dissolution rates through a ligand-promoted dissolution mechanism. DFO-B adsorption to UO2 followed a Langmuir-type isotherm. The maximum adsorbed DFO-B concentrations were 3.3 micromol m(-2) between pH 3 and 8 and declined above pH 8. DFO-B dissolved UO2 at a DFO-B surface-saturated net rate of 64 nmol h(-1) m(-2) (pH 7.5, l = 0.01 M) according to the first-order rate equation R = kL[Lads], with a rate coefficient kL of 0.019 h(-1). Even at very low siderophore concentrations (e.g. 1 microM), net dissolution rates (16 nmol h(-1) m(-2), pH 7.5, l = 0.01 M) were substantially greater than net proton-promoted dissolution rates (3 nmol h(-1) m(-2), pH 7-7.5, l = 0.01 M). Interestingly, adding dissolved FeIII had negligible effects on DFO-B-promoted UO2 dissolution rates, despite its potential as a competitor for DFO-B and as an oxidant of UIV. Our results suggest that strong organic ligands could influence the environmental mobility of tetravalent actinides and should be considered in predictions for nuclear waste storage and remediation strategies.

  5. Geochemistry: A piece of the deep carbon puzzle

    NASA Astrophysics Data System (ADS)

    Manning, Craig E.

    2014-05-01

    Carbon loss from subducting slabs is thought to be insufficient to balance carbon dioxide emissions at arc volcanoes. Analyses of ancient subducted rocks in Greece suggest that fluid dissolution of slab carbonate can help solve this carbon-cycle conundrum.

  6. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    PubMed Central

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  7. Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation.

    PubMed

    Angın, Dilek; Altintig, Esra; Köse, Tijen Ennil

    2013-11-01

    Activated carbons were produced from biochar obtained through pyrolysis of safflower seed press cake by chemical activation with zinc chloride. The influences of process variables such as the activation temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons were investigated. Also, the adsorptive properties of activated carbons were tested using methylene blue dye as the targeted adsorbate. The experimental data indicated that the adsorption isotherms are well described by the Langmuir equilibrium isotherm equation. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 128.21 mg g(-1) and carbon content 76.29%, while the BET surface area and total pore volume corresponded to 801.5m(2)g(-1) and 0.393 cm(3)g(-1), respectively. This study demonstrated that high surface area activated carbons can be prepared from the chemical activation of biochar with zinc chloride as activating agents.

  8. Influence of the dynamical image potential on the rainbows in ion channeling through short carbon nanotubes

    SciTech Connect

    Borka, D.; Petrovic, S.; Neskovic, N.; Mowbray, D. J.; Miskovic, Z. L.

    2006-06-15

    We investigate the influence of the dynamic polarization of the carbon valence electrons on the angular distributions of protons channeled through short (11,9) single-wall carbon nanotubes at speeds of 3 and 5 a.u. (corresponding to the proton energies of 0.223 and 0.621 MeV), with the nanotube length varied from 0.1 to 0.3 {mu}m. The dynamic image force on protons is calculated by means of a two-dimensional hydrodynamic model for the nanotube's dielectric response, whereas the repulsive interaction with the nanotube's cylindrical wall is modeled by a continuum potential based on the Doyle-Turner interatomic potential. The angular distributions of channeled protons are generated by a computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Our analysis shows that the inclusion of the image interaction causes qualitative changes in the proton deflection function, giving rise to a number of rainbow maxima in the corresponding angular distribution. We propose that observations of those rainbow maxima could be used to deduce detailed information on the relevant interaction potentials, and consequently to probe the electron distribution inside carbon nanotubes.

  9. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  10. Influence of carbon content on cold rolling and recrystallization texture in polycrystalline 3% Si-Fe

    NASA Astrophysics Data System (ADS)

    Takenaka, M.; Shingaki, Y.; Imamura, T.; Hayakawa, Y.

    2015-04-01

    The influence of carbon content on cold rolling and recrystallization texture in polycrystalline 3%Si-Fe under the relatively high rolling reduction condition has been investigated. The main component of recrystallization texture was {554}<225> orientation in ultra low carbon (ULC) 3%Si-Fe and {411}<148> orientation in low carbon (LC) 3%Si-Fe. The origin of {411}<148> recrystallization texture development in LC 3%Si-Fe is discussed in terms of the rotation of deformation twin from {100}<011> to {411}<148> orientation with the generation of the slip bands inside the neighboring matrix grain {111}<011>. The rotation axis of this crystal rotation was estimated <112> axis. Assuming the single slip system activation in BCC metal, crystal rotation around <112> axis indicates an activation of {110}<111> slip system. In terms of Schmid factor, {112}<111> slip system must be activated in {100}<011> matrix. This is not in agreement with the estimation of {110}<111> slip system activation. Detailed observation on the cold rolled sample revealed that common slip plane passed through the deformation twin and surrounding deformed matrix grains. It is considered that slip plane matching (SPM) with neighboring grains activates the lower Schmid factor slip system in deformation twin. These results suggest that not only Schmid factor but also SPM with neighboring grains should be considered to decide the active slip systems in polycrystalline metals.

  11. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  12. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse.

    PubMed

    Zhao, Xuebing; Morikawa, Yuichi; Qi, Feng; Zeng, Jing; Liu, Dehua

    2014-01-01

    Acetic acid (AcH) pretreatment of sugarcane bagasse with the catalysis of sulfuric acid (SA) could greatly enhance the enzymatic digestibility of cellulose. However, polysaccharide dissolution happened inevitably during the pretreatment. It was found that the simplest model, which assumes that the total polysaccharides were reactive to be dissolved, could not well describe the kinetic behavior of polysaccharide dissolution. A novel pseudo-homogenous kinetic model was thus developed by introducing a parameter termed as "potential dissolution degree" (δ(d)) based on the multilayered structure of cell wall. It was found that solid xylan and glucan dissolutions were a first-order reaction with respect to the dissolvable fraction. Due to the delignification action of AcH, polysaccharide dissolutions were enhanced in AcH media compared with those in aqueous system. Acetylizations of cellulose and sugars were also observed, and AcH concentration showed a significant influence on the degree of acetylization.

  13. Influence of chamber volume in single-walled carbon nanotube synthesis by an electric arc

    NASA Astrophysics Data System (ADS)

    Ramarozatovo, V.; Mansour, A.; Razafinimanana, M.; Monthioux, M.; Valensi, F.; Noé, L.; Masquère, M.

    2012-08-01

    Single-walled carbon nanotubes (SWCNTs) were produced by an electric arc process in a low-pressure chamber with vertical electrodes using heterogeneous graphite anodes containing nickel and yttrium catalysts. The influence of the chamber volume (18, 25 and 60 L) and graphite grain size (1 and 100 µm) of the anode on the resulting products was analysed. This was correlated with the physical properties of the plasma as studied by optical emission spectroscopy and with the temperature of the gaseous atmosphere surrounding the plasma as measured using thermocouples. Nanotube yield and purity were evaluated from high-resolution transmission electron microscopy. Results showed a strong influence of the heterogeneous anode grain size. It was found that the optimal synthesis conditions correspond to an arc chamber volume of 25 L and a graphite grain size of 1 µm. In that case the plasma temperature and the carbon over nickel concentration ratio in the plasma differ notably from those observed under the other synthesis conditions. It was also found that a slower temperature rise of the gaseous atmosphere surrounding the plasma and a higher anode erosion rate are associated with a higher SWCNT yield. These results were interpreted considering the vapour-liquid-solid nanotube formation model.

  14. Hydrothermal carbonization of biomass from landscape management - Influence of process parameters on soil properties of hydrochars.

    PubMed

    Röhrdanz, Michael; Rebling, Tammo; Ohlert, Jan; Jasper, Jan; Greve, Thomas; Buchwald, Rainer; von Frieling, Petra; Wark, Michael

    2016-05-15

    Besides pyrolysis the technology of hydrothermal carbonization (HTC) is tested to produce hydrochars for soil improvement. The chemical and physical properties of the hydrochars mainly depend on the feedstock and the process parameters reaction time and process temperature. Systematic investigations on the influences of these process parameters on soil properties of hydrochars like water holding capacity (WHC) and cation exchange capacity (CEC) are missing. In this study, a rush-rich biomass was carbonized within defined HTC process conditions under variation of reaction time and process temperature to produce hydrochars. Analysis of WHC, CEC, the elemental composition and Fourier-transform infrared spectroscopy (FT-IR) were performed to evaluate the influence of HTC process conditions on the pedological hydrochar properties. The results indicated that at increasing reaction severity (reaction time and process temperature) WHC and CEC decreased as well as the elemental O/C ratio. The decrease of WHC and CEC is based on the decrease of the hydrochar surface polarity. However, even the lowest WHC and CEC of investigated