Science.gov

Sample records for influence carbon dissolution

  1. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  2. Measuring the Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly Heated Plain Carbon Steels

    NASA Astrophysics Data System (ADS)

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high-temperature manufacturing processes, including high-speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time dependent. The present work uses a rapidly heated, high-strain-rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about 3 s. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  3. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  4. Perchloric acid dissolution of graphite and pyrolytic carbon.

    PubMed

    Buzzelli, G; Mosen, A W

    1977-06-01

    Three procedures are described for the wet oxidation, with perchloric acid, of nuclear graphite, pyrocarbon-coated fuel particles, and other carbonaceous materials used in high-temperature gas-cooled nuclear reactors (HTGRs). The first procedure is for dissolution of graphite and pyrolytic carbon, the second for dissolution of milligram quantities of HTGR fuel particles, and the last for dissolution of more easily oxidized carbonaceous materials such as charcoal. These procedures were developed primarily for the dissolution of irradiated materials before fission-product or burn-up analyses, but they are also used for dissolution of unirradiated materials.

  5. Helium enrichment during convective carbon dioxide dissolution

    NASA Astrophysics Data System (ADS)

    Larson, T.; Hesse, M. A.

    2013-12-01

    Motivated by observed variations of the CO2/He ratios in natural carbon dioxide (CO2) reservoirs, such as the Bravo Dome field in northeastern New Mexico, we have performed laboratory experiments equilibrating gas mixtures containing Helium (He) and CO2 with water, at close to ambient conditions in a closed system. The experimental design allows for continuous measurement of headspace pressure as well as timed interval measurements of the CO2/He ratios and the δ13C value of CO2 in the headspace. Results from three dissolution experiments are reported: 1) pure Helium system, 2) 98% CO2 + 2% Nitrogen system, and 3) 97% CO2 and 3% Helium. Final equilibrated experimental results are compared to theoretical results obtained using Henry's Law relationships. The evolution of the amount of dissolved CO2 computed from gas pressure and gas compositions are in good agreement with Henry's Law relationships. For example, the CO2 + N2 system was initially pressurized with pure CO2 to 1323 mbar and after six days it equilibrated to a measured headspace pressure of 596 mbar. This compares very well with a calculated equilibrium headspace pressure of 592 mbar for this system. The CO2 + He system was pressurized to 1398 mbar CO2 and after six days equilibrated to a measured headspace pressure of 397 mbar. This measured pressure is slightly higher than the predicted equilibrated headspace pressure of 341 mbar, indicating a possible leak in the system during this particular experiment. In both experiments the initial pH of the water was 9.3 and the final equilibrated pH was 5.4. The δ13C value of equilibrated headspace CO2 was within 0.25‰ of its starting δ13C value, demonstrating insignificant carbon isotope fractionation at low pH. Measured Helium/ CO2 ratios throughout the CO2+Helium experiment preserve a non-linear trend of increasing He/ CO2 ratios through time that correlate very well with the measured pressure drop from CO2 dissolution. This indicates that gas composition

  6. Dissolution rate measurements for resist processing in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Pham, Victor Q.; Weibel, Gina L.; Rao, Nagesh G.; Ober, Christopher K.

    2002-07-01

    A dissolution rate monitor (DRM) was successfully constructed to study the behavior of thin photoresist films undergoing the dissolution process in supercritical carbon dioxide (SCCO2). The DRM is based on the principles of interferometry but requires special modifications to the processing vessel to allow for the passage of transmitted and reflected He-Ne laser light. Dissolution rates obtained agree well with independent profilometric measurements of film thickness loss. We found that for block and random copolymers of THPMA-F7MA, dissolution rates vary with film thickness, slowing down considerably towards the silicon surface. This behavior was also observed in TBMA-F7MA random copolymers.

  7. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  8. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  9. Dissolution of Spent Nuclear Fuel in Carbonate-Peroxide Solution

    SciTech Connect

    Soderquist, Chuck Z.; Hanson, Brady D.

    2010-01-31

    This study shows that spent UO2 fuel can be completely dissolved in a carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. Samples of spent nuclear fuel were pulverized and sieved to a uniform size, then duplicate aliquots were weighed into beakers for analysis. One set was dissolved in near-boiling 10M nitric acid, and the other set was dissolved in a solution of ammonium carbonate and hydrogen peroxide at room temperature. All the resulting fuel solutions were then analyzed for Sr-90, Tc-99, Cs-137, plutonium, and Am-241. For all the samples, the concentrations of Cs-137, Sr-90, plutonium, and Am-241 were the same for both the nitric acid dissolution and the ammonium carbonate-hydrogen peroxide dissolution, but the technetium concentration of the ammonium carbonate-hydrogen peroxide fuel solution was only about 25% of the same fuels dissolved in hot nitric acid.

  10. Dissolution rates of coals and graphite in Fe-C-S melts in direct ironmaking: Dependence of carbon dissolution rate on carbon structure

    SciTech Connect

    Wu, C.; Sahajwalla, V.

    2000-02-01

    It is commonly recognized that the rates of carbon dissolution from graphite as compared to that from glassy carbon are very different, although they are similar in composition and density. Previous studies have established that the liquid-side mass-transfer rate limitation mechanism could not account for the carbon dissolution from nongraphite carbon sources. It has been assumed that the carbon structure affects its dissolution rate in molten iron. In many in-bath direct smelting processes such as HISMELT, predicting the carbon dissolution rate of coals prior to their use in a smelting bath is crucial. In order to verify the relationship between the carbon dissolution rate and the structure of coals, carbon dissolution experiments were conducted in an induction to furnace using the carburizer cover method.

  11. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  12. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-07-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  13. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.

    PubMed

    Ellis, Brian R; Fitts, Jeffrey P; Bromhal, Grant S; McIntyre, Dustin L; Tappero, Ryan; Peters, Catherine A

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  14. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.

    PubMed

    Ellis, Brian R; Fitts, Jeffrey P; Bromhal, Grant S; McIntyre, Dustin L; Tappero, Ryan; Peters, Catherine A

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  15. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    PubMed Central

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-01-01

    Abstract Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of −0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  16. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    SciTech Connect

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO{sub 2} in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO{sub 2} at 40°C and 10MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  17. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-08-04

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  18. Boron isotope fractionation in magma via crustal carbonate dissolution

    PubMed Central

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to −41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  19. Boron isotope fractionation in magma via crustal carbonate dissolution.

    PubMed

    Deegan, Frances M; Troll, Valentin R; Whitehouse, Martin J; Jolis, Ester M; Freda, Carmela

    2016-01-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle. PMID:27488228

  20. Boron isotope fractionation in magma via crustal carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Deegan, Frances M.; Troll, Valentin R.; Whitehouse, Martin J.; Jolis, Ester M.; Freda, Carmela

    2016-08-01

    Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ11B values down to ‑41.5‰, reflecting preferential partitioning of 10B into the assimilating melt. Loss of 11B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports 11B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ11B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

  1. Dissolution and Deformation in Fractured Carbonates Caused by Flow of CO2-Rich Brine

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Ameli, P.

    2011-12-01

    Geometrical alteration in fractures during flow, caused by mineral dissolution, may reduce the contact area between fracture surfaces and affect the mechanical strength of fractures. It is difficult to determine the influence of dissolution on fracture porosity and permeability given the competition between fracture opening due to dissolution and fracture closure caused by mechanical deformation. Therefore, simulating flow in fractured reservoirs during enhanced oil recovery and CO2 sequestration, where local porosity changes may significantly alter permeability, remains a fundamental challenge. We present results from experiments and numerical simulations that explore the influence of coupled geochemical alteration and mechanical deformation on calcium carbonate fracture geometry and permeability. We scan the fracture surfaces, before and after the flow experiments, using high-resolution optical profilometry to map the changes in aperture fields. We also characterize the microstructure and mineralogy of the fracture surfaces using scanning electron microscopy. Flow of brine equilibrated with CO2 at 60 oC and pore pressure of 15 MPa leads to significant dissolution in fractured calcium carbonate cores. The dissolution is essentially controlled by the dimensionless Damkohler number (Da = kL/V< b>, k is the reaction rate coefficient for the dominant dissolution reaction, L is the fracture length, V is the mean velocity of the fluid in the fracture and < b> is the mean fracture aperture). We vary Da in experiments by changing the flow rate through the fractured cores and observe a transition in dissolution from low (0.1 ml/min) to high flow rates (20 ml/min). At low flow rates, dissolution causes the formation of wormholes and channels largely aligned with the fractures resulting in more than 4 orders of magnitude increase in permeability. At higher flow rates, dissolution occurs more uniformly over the fracture surfaces leading to mechanical deformation induced by

  2. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 in 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.

  3. Rates of mineral dissolution and carbonation in peridotite and basalt

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Matter, J. M.

    2009-12-01

    We study natural rates and processes of mineral carbonation in peridotite (olivine-rich rock) in mantle rocks exposed to weathering in northern Oman to learn effective mechanisms from natural processes, and seek ways to accelerate them to achieve significant CO2 capture and storage via mineral carbonation at the lowest possible cost. In our first paper (1), we fit data on mantle olivine carbonation from the DOE Albany Research Center (2,3, ARC). These data, and data from Arizona State University (4, ASU) suggest that a peridotite rock volume heated to 185°C and infused with H2O+CO2 at PCO2 > 75 bars could consume ~ 1 ton CO2 per cubic meter of rock per year. Because it is more abundant than peridotite, other workers focus on carbonation of the most common type of lava on Earth, basalt, whose main mineral constituent is generally labradorite, part of the plagioclase feldspar solid solution series. Our intuition is that labradorite carbonation is much slower than mantle olivine carbonation. To quantify this, we compiled data on dissolution of mantle olivine, labradorite, crystalline basalt, and basaltic glass in aqueous fluids, as well as data on mantle olivine carbonation. The dissolution data are calibrated as a function of surface area (i.e., grain size and shape) and pH, as well as temperature, whereas most of the ARC and ASU experiments were done at a single pH and grain size. Thus, for comparison, we calculated dissolution rates for 70 micron spheres at pH 8, close to the ARC and ASU experimental conditions. At these conditions, olivine carbonation observed by ARC and ASU is 100 to 1000 times faster than labradorite and crystalline basalt, and faster than conventionally measured olivine dissolution rates. The ARC and ASU experiments were different from conventional dissolution experiments in several ways that could lead to an enhancement in olivine reaction rates: (a) they may have lower a(Mg) in fluid due to solid MgCO3 (magnesite) precipitation, (b) they

  4. Kinetic model of carbonate dissolution in Martian meteorite ALH84001

    NASA Astrophysics Data System (ADS)

    Kopp, R. E.; Humayun, M.

    2003-09-01

    The magnetites and sulfides located in the rims of carbonate globules in the Martian meteorite ALH84001 have been claimed as evidence of past life on Mars. Here, we consider the possibility that the rims were formed by dissolution and reprecipitation of the primary carbonate by the action of water. To estimate the rate of these solution-precipitation reactions, a kinetic model of magnesite-siderite carbonate dissolution was applied and used to examine the physicochemical conditions under which these rims might have formed. The results indicate that the formation of the rims could have taken place in < 50 yr of exposure to small amounts of aqueous fluids at ambient temperatures. Plausible conditions pertaining to reactions under a hypothetical ancient Martian atmosphere (1 bar CO 2), the modern Martian atmosphere (8 mbar CO 2), and the present terrestrial atmosphere (0.35 mbar CO 2) were explored to constrain the site of the process. The results indicated that such reactions likely occurred under the latter two conditions. The possibility of Antarctic weathering must be entertained, which, if correct, would imply that the plausibly biogenic minerals (single-domain magnetite of characteristic morphology and sulfide) reported from the rims may be the products of terrestrial microbial activity. This model is discussed in terms of the available isotope data and found to be compatible with the formation of ALH84001 rims. Particularly, anticorrelated variations of radiocarbon with δ 13C indicate that carbonate in ALH84001 was affected by solution-precipitation reactions immediately after its initial fall (˜13,000 yr ago) and then again during its recent exposure prior to collection.

  5. Dissolution of Calcite in the Twilight Zone: Bacterial Control of Dissolution of Sinking Planktonic Carbonates Is Unlikely

    PubMed Central

    Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  6. Dissolution of calcite in the twilight zone: bacterial control of dissolution of sinking planktonic carbonates is unlikely.

    PubMed

    Bissett, Andrew; Neu, Thomas R; Beer, Dirk de

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²⁺ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  7. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    ) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the

  8. Reassessing the dissolution of marine carbonates: I. Solubility

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Bassinot, F. C.; Chou, L.; McCorkle, D.

    2005-08-01

    We studied the solubility of the [63-150 μm] and the greater than 150 μm size fractions of sediments from two bathymetric transects in the eastern tropical Atlantic (Sierra Leone rise and Cape Verde Plateau). Both fractions are made mainly of foraminiferal shells and fragments. We determined the calcite crystallinity (full width at half maximum of XRD (104) calcite peak) of the >150 μm size fraction. Equilibration experiments were carried out in artificial seawater (20 °C, pCO 2=3100 ppm) for up to 57 days starting from undersaturation with respect to calcite and supersaturation with respect to aragonite. Experiments starting from supersaturation yielded concentration products close to aragonite solubility for sediments from the shallowest stations, suggesting the presence of trace levels of aragonite in these samples. Concentration products computed for the deeper stations were intermediate between aragonite and calcite solubility. Our results indicate the formation of a high-Mg coating. The equilibration period was too short to allow the complete recrystallization of these Mg-rich overgrowths. Experiments initiated from undersaturation yield concentration products that are between 4% and 24% higher than the reported stoichiometric concentration product of synthetic calcite. These differences between estimates of calcite stoichiometric solubility products are explained in terms of variations in experimental conditions (artificial versus natural seawater) and related choices of carbonic acid dissociation constants. They do not reflect a true difference in solubility between biogenic and synthetic calcite. The thinning of the foraminiferal calcite (104) XRD peak from 0.168°( 2θ) to 0.148°( 2θ) along the depth transects is interpreted as reflecting an improvement in calcite crystallinity. This and the change in specific surface area are consistent with the progressive change of the carbonate assemblage. The evolution of the bulk composition of the carbonate

  9. Carbonate dissolution and sedimentation on the mid-atlantic continental margin.

    PubMed

    Balsam, W L

    1982-09-01

    The calcium carbonate content was determined for core tops from two transects on the upper slope to lower rise on the mid-Atlantic continental margin. Carbonate content in the sediment increases from approximately 5 percent (by weight) on the upper slope to more than 30 percent on the upper rise. A zone of low-carbonate content extends from 3000 to 4400 meters. Below 4400 meters, the percent carbonate increases. An examination of dissolution indices in these core tops indicates that the low-carbonate zone is associated with intense dissolution. Below 4400 meters, dissolution decreases and carbonate is well preserved. The decrease in dissolution occurs where the high-velocity core of the Western Boundary Undercurrent is first encountered.

  10. Calcium isotope evidence for suppression of carbonate dissolution in carbonate-bearing organic-rich sediments

    NASA Astrophysics Data System (ADS)

    Turchyn, Alexandra V.; DePaolo, Donald J.

    2011-11-01

    Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ 44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ 44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ 44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ 44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these

  11. Experimental Dissolution of Fine-Fraction Carbonate Sediments From the Paleocene

    NASA Astrophysics Data System (ADS)

    Schneider, L. J.; Bralower, T. J.

    2007-12-01

    Pelagic carbonates play a vital role in sequestering CO2 and buffering the oceans through dissolution. The dominant component of deep-sea carbonates is calcareous nannofossils, a group that plays an important role in biostratigraphy, paleoecology and paleoceanography. The composition of assemblages is readily altered by dissolution in the water column, on the seafloor, and within the sediment column. It is therefore necessary to have some understanding of changes in the assemblage composition that may have occurred as well as the dissolution processes involved. Previous studies utilized experiments to constrain the susceptibility of nannofossil taxa during dissolution. While they noted general patterns related to ultrastructure, little is known about how dissolution affects fine-fraction carbonates at the scale of individual crystals of calcite. In this study we use long-term dissolution experiments to recreate dissolution of Paleocene nannofossils from the Indian Ocean in the water through sediment column. This assemblage is diverse and has a range of delicate to robust species and several different calcite morphologies. Detailed observations of subtle changes in the calcite crystals of nannofossils in the SEM reveal information on dissolution processes in pelagic carbonates and the factors that render specific morphologies more susceptible to dissolution. The morphologic alterations of nannofossil species in the light microscope can be used to create a quantitative index for dissolution. This index is based upon etching of rims, the presence of central areas, and the relative abundance of resistant taxa. A quantitative, rather than a subjective, dissolution index will help determine the preservational state of pelagic carbonates from the Paleocene.

  12. Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken; Rau, Greg H.

    2000-01-01

    Various methods have been proposed for mitigating release of anthropogenic CO2 to the atmosphere, including deep-sea injection of CO2 captured from fossil-fuel fired power plants. Here, we use a schematic model of ocean chemistry and transport to analyze the geochemical consequences of a new method for separating carbon dioxide from a waste gas stream and sequestering it in the ocean. This method involves reacting CO2-rich power-plant gases with seawater to produce a carbonic acid solution which in turn is reacted on site with carbonate mineral (e.g., limestone) to form Ca2+ and bicarbonate in solution, which can then be released and diluted in the ocean. Such a process is similar to carbonate weathering and dissolution which would have otherwise occurred naturally, but over many millennia. Relative to atmospheric release or direct ocean CO2 injection, this method would greatly expand the capacity of the ocean to store anthropogenic carbon while minimizing environmental impacts of this carbon on ocean biota. This carbonate-dissolution technique may be more cost-effective and less environmentally harmful, and than previously proposed CO2 capture and sequestration techniques.

  13. Drug agglomeration and dissolution--what is the influence of powder mixing?

    PubMed

    Kale, Kamakshi; Hapgood, Karen; Stewart, Peter

    2009-05-01

    This study determined the influence of mixing speed and time on the dissolution and deagglomeration of a micronised, poorly water-soluble drug, indomethacin, in lactose interactive mixtures. Mixing occurred in a Turbula mixer; dissolution studies were performed using the USP paddle method, and the extent of deagglomeration was determined using modelling strategies and laser diffraction particle sizing of the powder mixtures. During low energy mixing at low rates and short mixing times, dissolution profiles showed an unusual flat asymptote indicating incomplete extents of dissolution caused by agglomerates that did not readily disperse in the dissolution medium. The study showed that increasing both speed and time of mixing increased the extent of dissolution and deagglomeration of the indomethacin powder. Nonlinear least squares modelling of the dissolution data using a sigmoidal equation provided estimates of the extent and rate of dissolution. Mixing speed and time had a much greater influence on the extent of dissolution which was controlled by deagglomeration than on the initial dissolution rate which was related to dispersed indomethacin. While some deagglomeration did occur at higher mixing energies, the deagglomeration of the indomethacin was not complete with only about 58-80% of indomethacin particles overlapping with the primary indomethacin particle size distribution. The significant outcome of this study was that mixing conditions have a major influence on the mixing quality, especially in areas where agglomerate characteristics influence performance. PMID:19347972

  14. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).

    PubMed

    Grange, J S; Rybarczyk, H; Tribollet, A

    2015-09-01

    Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure. PMID:25592911

  15. The three steps of the carbonate biogenic dissolution process by microborers in coral reefs (New Caledonia).

    PubMed

    Grange, J S; Rybarczyk, H; Tribollet, A

    2015-09-01

    Biogenic dissolution of carbonates by microborers is one of the main destructive forces in coral reefs and is predicted to be enhanced by eutrophication and ocean acidification by 2100. The chlorophyte Ostreobium sp., the main agent of this process, has been reported to be one of the most responsive of all microboring species to those environmental factors. However, very little is known about its recruitment, how it develops over successions of microboring communities, and how that influences rates of biogenic dissolution. Thus, an experiment with dead coral blocks exposed to colonization by microborers was carried out on a reef in New Caledonia over a year period. Each month, a few blocks were collected to study microboring communities and the associated rates of biogenic dissolution. Our results showed a drastic shift in community species composition between the 4th and 5th months of exposure, i.e., pioneer communities dominated by large chlorophytes such as Phaeophila sp. were replaced by mature communities dominated by Ostreobium sp. Prior the 4th month of exposure, large chlorophytes were responsible for low rates of biogenic dissolution while during the community shift, rates increased exponentially (×10). After 6 months of exposure, rates slowed down and reached a "plateau" with a mean of 0.93 kg of CaCO3 dissolved per m(2) of reef after 12 months of exposure. Here, we show that (a) Ostreobium sp. settled down in new dead substrates as soon as the 3rd month of exposure but dominated communities only after 5 months of exposure and (b) microbioerosion dynamics comprise three distinct steps which fully depend on community development stage and grazing pressure.

  16. Influence of rapeseed phospholipids on ibuprofen dissolution from solid dispersions.

    PubMed

    Sosada, M; Gorecki, M; Pasker, B

    2006-08-01

    The dissolution profiles of ibuprofen (IB) from solid dispersions prepared by the solvent evaporation method, containing the rapeseed lecithin ethanol soluble fraction (LESF) or rapeseed phosphatidylcholine (RPC) have been determined. The effect of incorporation of PEG 4,000 or PEG 8,000 in the solid dispersions on the controlled-release of IB was also investigated. Dissolution studies conducted in double-distilled water using the paddle dissolution apparatus showed that the initial dissolution rate (IDR) within the first 5 min and the maximum percent of dissolved IB of IB/LESF were double of those of IB/RPC (both in ratio 4:1 w/w). The low amounts of LESF markedly increased dissolution of IB. Increasing of LESF concentration from 0 to 10 and 20% in solid dispersions produced 60 and 100% improvement of IB maximum dissolution level respectively, to compare with that of IB alone. PEG 4,000 caused the slightly decreasing in IB dissolution rate, while PEG 8,000 markedly improved the dissolution of IB in examined conditions.

  17. Effect of a new carbon dioxide laser treatment on dissolution profiles of dental enamel

    NASA Astrophysics Data System (ADS)

    Featherstone, John D. B.; Le, Charles Q.; Fried, Daniel

    2003-06-01

    Previous studies have shown that pretreatment of dental enamel by specific carbon dioxide laser conditions inhibited subsequent acid dissolution of the enamel surface. The aim of the present study was to examine the dissolution profiles following irradiation by a new short pulse carbon dioxide laser treatment. Bovine enamel blocks were irradiated at 9.6 μm with a 5-8 μs or a 20-30 μs pulse duration laser using overlapping spots, and a range of fluences. Dissolution profiles were measured in an acetate buffer. Higher fluences produced rapid initial dissolution followed by a plateau with a low dissolution rate. For caries inhibition purposes the high solubility decomposition phases need to be avoided or removed.

  18. Dissolution behaviour of magnetite film formed over carbon steel in dilute organic acid media

    NASA Astrophysics Data System (ADS)

    Prince, A. A. M.; Velmurugan, S.; Narasimhan, S. V.; Ramesh, C.; Murugesan, N.; Raghavan, P. S.; Gopalan, R.

    2001-03-01

    Magnetite is the major corrosion product formed over the carbon steel in the primary heat transport system of the pressurized heavy water reactor (PHWR). This magnetite usually accumulates radioactivity during reactor operation. The dissolution of the host magnetite is achieved by chemical formulations in order to get rid of the radioactivity trapped in the oxide; the underlying base metal also participates in the process by contributing electron to reduce the ferric ion or by undergoing corrosion. In the present study, the role of base metal in the dissolution of magnetite in various chelating agents has been investigated. The liberated hydrogen was measured by using an amperometric hydrogen sensor. The magnetite dissolution rate and the corrosion rate of carbon steel in the formulations were calculated. The effect of temperature, pH and concentration of the chelating agents on the magnetite film dissolution was studied in detail. The mechanism of base metal aided magnetite dissolution is discussed.

  19. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    PubMed

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. PMID:24094174

  20. The dissolution of carbon dioxide and the diffusion of carbonate ions in alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Deruiter, B.

    If alkaline fuel cells are used, it is more economical to get the necessary oxygen from the air, instead of using pure oxygen. A problem that arises, when air is used, is the dissolution of carbon dioxide into the electrolyte solution (in the form of carbonate). After a certain period the carbonate concentration can be so high that potassium carbonate crystals are formed. This research consists of two parts. A mathematical model was made to describe the diffusion of carbon dioxide and carbonate ions in the air electrode. Second, long run tests were carried out (38 days) with two fuel cells. One cell was connected to a current source which aplied a current density of 50 mA/sq cm. The other cell was not connected to a current source. During the tests, the increase of carbonate concentration was measured. The carbonate concentration was measured by titration with HCl. The precision titration equipment made it possible to analyze very small samples (30 microns). The loss of elecrolyte was therefore negligible. The data are presented in Gran plots. The mathematical model resulted in a set of three partial differential equations which have to be solved numerically. The long run tests showed that the increase of carbonate concentration was the same in both fuel cells. The test also showed that the carbonate concentration increases linearly with respect to time.

  1. Influence of processing-induced phase transformations on the dissolution of theophylline tablets.

    PubMed

    Debnath, Smita; Suryanarayanan, Raj

    2004-02-12

    The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the performance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate --> hydrate --> anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolution rate was attributed to the accelerated anhydrate to hydrate transformation during the dissolution run. Water vapor sorption studies proved to be a good predictor of powder dissolution behavior. While a decrease in crystallinity was brought about either by milling or by granulation, the effect on tablet dissolution was pronounced only in the latter. Tablet formulations prepared from the granules exhibited higher hardness, longer disintegration time, and slower dissolution than those containing the milled drug. The granules underwent plastic deformation during compression resulting in harder tablets, with delayed disintegration. The high hardness coupled with rapid anhydrate --> hydrate transformation during dissolution resulted in the formation of a hydrate layer on the tablet surface, which further delayed tablet disintegration and, consequently, dissolution. Phase transformations during processing and, more importantly, during dissolution influenced the observed dissolution rates. Product performance was a complex function of the physical state of the active and the processing conditions. PMID:15198529

  2. In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation

    NASA Astrophysics Data System (ADS)

    Wall-Palmer, Deborah; Smart, Christopher W.; Hart, Malcolm B.

    2013-12-01

    Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

  3. Dissolution and carbonation of Portlandite [Ca(OH)2] single crystals.

    PubMed

    Ruiz-Agudo, Encarnación; Kudłacz, Krzysztof; Putnis, Christine V; Putnis, Andrew; Rodriguez-Navarro, Carlos

    2013-10-01

    The dissolution and carbonation of portlandite (Ca(OH)2) single crystals was studied by a combination of in situ Atomic Force Microscopy, Scanning Electron Microscopy, and two-dimensional X-ray diffraction. The dissolution of portlandite {0001} surfaces in water proceeds by the formation and expansion of pseudohexagonal etch pits, with edges parallel to ⟨100⟩ directions. Etch pits on {010} surfaces are elongated along ⟨001⟩, with edges parallel to ⟨101⟩. The interaction between carbonate-bearing solutions and portlandite results in the dissolution of the substrate coupled with the precipitation of thick islands of CaCO3 that appear oriented on the portlandite substrate. Ex situ carbonation of portlandite in contact with air results in the formation of pseudomorphs that fully preserve the external shape of the original portlandite single crystals. Our observations suggest that portlandite carbonation in contact with air and carbonate-bearing solutions occurs by a similar mechanism, i.e. coupled dissolution-precipitation. Calcite grows epitaxially on {0001} portlandite surfaces with the following orientation: ⟨001⟩Cc∥ ⟨001⟩Port. Apparently, no porosity is generated during the reaction, which progresses through the formation of fractures. Our results are of relevance to many processes in which the carbonation of portlandite takes place, such as CO2 capture and storage or the carbonation of cementitious materials.

  4. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    PubMed

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. PMID:23554092

  5. Experimental determination of natural carbonate rock dissolution rates with a focus on temperature dependency

    NASA Astrophysics Data System (ADS)

    Kirstein, Jens; Hellevang, Helge; Haile, Beyene G.; Gleixner, Gerd; Gaupp, Reinhard

    2016-05-01

    The denudation of carbonate rocks at landscape scale is controlled by factors like mineral composition, temperature, precipitation, runoff, fracture spacing and vegetation cover. Knowledge on carbonate denudation is important in order to understand landscape development and long-term terrestrial/marine carbon transport, but there are few laboratory studies done on weathering rates of natural carbonate rocks under the low temperatures relevant for glacial-interglacial periods. To enhance the understanding of carbonate dissolution kinetics we studied low-temperature dissolution reactions of various natural Triassic carbonate rocks belonging to the Lower Muschelkalk in Germany. We conducted batch and flow-through experiments investigating the direct correlation of dissolution rates with temperature, and to establish whether the fine-grained carbonate rocks (micrite) are more reactive than the coarser-grained sparitic limestones. By increasing the temperature from 5 to 26 °C far-from-equilibrium dissolution rates of micritic and sparitic limestone samples increased from 2.42 × 10- 07 to 10.88 × 10- 07 and 4.19 × 10- 07 to 7.74 × 10- 07 mol m- 2 s- 1, respectively (Specific Surface Areas (SSA) of about 0.006-0.01 m2/g). The dissolution rates of dolomite rock samples varied only slightly from 1.06 × 10- 07 to 2.02 × 10- 07 mol m- 2 s- 1 (SSA approximately 0.002 m2/g) in the temperature range 5-25 °C at circum-neutral pH. The obtained apparent activation energies are in the range of earlier experiments done at higher temperatures, but there is a distinct difference between the calcite in the micrite (~ 51 kJ/mol) and sparitic (~ 20-22 kJ/mol) lithologies, indicating that the dissolution mechanisms are not the same. Using these activation energies in modelling of natural carbonate denudation we see that there is a clear effect of changing temperature, but this is mostly through the increased solubility at lower temperatures and not through the increasing far

  6. Ion-specific effects influencing the dissolution of tricalcium silicate

    SciTech Connect

    Nicoleau, L.; Schreiner, E.; Nonat, A.

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  7. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    USGS Publications Warehouse

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  8. Influence of glyphosate on the copper dissolution in phosphate buffer

    NASA Astrophysics Data System (ADS)

    Coutinho, C. F. B.; Silva, M. O.; Machado, S. A. S.; Mazo, L. H.

    2007-01-01

    The electrochemical behavior of copper microelectrode in phosphate buffer in the presence of glyphosate was investigated by electrochemical techniques. It was observed that the additions of glyphosate in the phosphate buffer increased the anodic current of copper microelectrode and the electrochemical dissolution was observed. This phenomenon could be associated with the Cu(II) complexation by glyphosate forming a soluble complex. Physical characterization of the surface showed that, in absence of glyphosate, an insoluble layer covered the copper surface; on the other hand, in presence of glyphosate, it was observed a corroded copper surface with the formation of glyphosate complex in solution.

  9. CO2-induced dissolution of low permeability carbonates. Part II: Numerical modeling of experiments

    NASA Astrophysics Data System (ADS)

    Hao, Yue; Smith, Megan; Sholokhova, Yelena; Carroll, Susan

    2013-12-01

    We used the 3D continuum-scale reactive transport models to simulate eight core flood experiments for two different carbonate rocks. In these experiments the core samples were reacted with brines equilibrated with pCO2 = 3, 2, 1, 0.5 MPa (Smith et al., 2013 [27]). The carbonate rocks were from specific Marly dolostone and Vuggy limestone flow units at the IEAGHG Weyburn-Midale CO2 Monitoring and Storage Project in south-eastern Saskatchewan, Canada. Initial model porosity, permeability, mineral, and surface area distributions were constructed from micro tomography and microscopy characterization data. We constrained model reaction kinetics and porosity-permeability equations with the experimental data. The experimental data included time-dependent solution chemistry and differential pressure measured across the core, and the initial and final pore space and mineral distribution. Calibration of the model with the experimental data allowed investigation of effects of carbonate reactivity, flow velocity, effective permeability, and time on the development and consequences of stable and unstable dissolution fronts. The continuum scale model captured the evolution of distinct dissolution fronts that developed as a consequence of carbonate mineral dissolution and pore scale transport properties. The results show that initial heterogeneity and porosity contrast control the development of the dissolution fronts in these highly reactive systems. This finding is consistent with linear stability analysis and the known positive feedback between mineral dissolution and fluid flow in carbonate formations. Differences in the carbonate kinetic drivers resulting from the range of pCO2 used in the experiments and the different proportions of more reactive calcite and less reactive dolomite contributed to the development of new pore space, but not to the type of dissolution fronts observed for the two different rock types. The development of the dissolution front was much more

  10. Terraforming Mars: dissolution of carbonate rocks by cyanobacteria.

    PubMed

    Friedmann, E I; Hua, M; Ocampo-Friedmann, R

    1993-01-01

    One of the most difficult tasks in terraforming Mars is the release into the atmosphere of CO2 bound by the surface of Mars. Even if a sufficiently dense CO2 atmosphere can be created by appropriate technology, the maintenance of CO2 concentration remains a problem. As Mars lacks plate tectonics as well as active volcanism, an Earth-like carbon cycle cannot be reproduced there. We suggest that Matteia sp., a lime-boring cyanobacterium isolated from Negev desert rocks, be used to dissolve carbonate rocks both for initial release of CO2 and in design of a Martian carbon cycle.

  11. Experiment and Simulation Study of Hydrodynamic Dispersion and Finger Dynamics for Convective Dissolution of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic CO2 emissions from industrial point sources. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiment method, advanced image processing method and optimized simulation method to characterize CO2 convective dissolution trapping process and gravitational finger behaviors, in order to study the effect of hydrodynamic dispersion on the CO2 convective dissolution process, as well as to study the effect of control physical parameters on the gravitational finger dynamics. Figure 1 shows the image processing method to analyze the finger dynamics. Understanding the effect of hydrodynamic dispersion and the finger dynamics are essential to evaluate whether convective dissolution occurs, as well as to predict how fast it occurs at the geological CO2 storage field scale. The effect of hydrodynamics dispersion and the finger dynamics can be applied to estimate the security of geological CO2 storage fields, in turn. Optimiezed simulation work is conducted to predict the CO2 dissolution rate at geological CO2 storage field. The large experimental assembly will allow us to quantify in detail for the first time the relationship between convective dissolution rate and the controlling factors of the system, including permeability and driven force, which could be essential to trapping process at Bravo Dome geological CO2 storage field. We complement the homogeneous experiments with a detailed study of the scaling law of the convective flux with dispersion effect. The advanced image processing method with Fourier's transform method allow us to understand the finger dynamics and corresponding control factors in porous media, for the first time. By applying the dispersion effect and finger dynamics we found from the experimental study, we optimize the simulation

  12. The Effect of Micrite on Velocity, Its Sensitivity to Pressure, and Dissolution of Carbonates

    NASA Astrophysics Data System (ADS)

    El Husseiny, A.; Vanorio, T.

    2014-12-01

    This study investigates the effect of micrite on the acoustic properties of well-controlled microstructures created in the laboratory to closely mimic carbonate rocks. In particular, we examine the effect of micrite content on the elastic stiffness rock, its sensitivity to pressure, and induced dissolution upon saturation with a reactive fluid. We followed Dunham's classification and fabricated the samples by mixing coarse (sand size) and very fine (micrite size) calcite grains in different ratios, with the addition of cement and then cold-compressing the mixture. The acoustic velocities were measured under bench-top conditions and as functions of confining pressure before and after the injection of a CO2aqueous solution. Our bench-top measurements indicated that micrite makes the frame of the carbonate samples stiffer. Since the sensitivity of the elastic stiffness to pressure decreases as the content of micrite increases (see figure 1), we hypothesize a stiffer pore structure (i.e., rounder pores) in micrite-richer fabrics. Furthermore, the presence of micrite makes the carbonate sample more reactive upon dissolution. The concentration of Ca+2 cations in the fluid measured at the outlet after the injection of the CO2 aqueous solution shows larger dissolution in the micrite-rich samples likely due to the higher surface area of the micrite aggregates. The content of micrite also seems to affect the evolution of stiffness as dissolution proceeds. As the content of micrite increases, the enhanced dissolution translates into a marked softening of the rock frame. We conclude that the content of micrite can play an important role in the complex rock-fluid interaction of carbonates as well as when comparing Gassmann's predictions to velocity measurements of saturated carbonates.

  13. Macroscopic rates, microscopic observations, and molecular models of the dissolution of carbonate phases.

    SciTech Connect

    Duckworth, Owen W.; Cygan, Randall Timothy; Martin, Scot T.

    2004-05-01

    Bulk and surface energies are calculated for endmembers of the isostructural rhombohedral carbonate mineral family, including Ca, Cd, Co, Fe, Mg, Mn, Ni, and Zn compositions. The calculations for the bulk agree with the densities, bond distances, bond angles, and lattice enthalpies reported in the literature. The calculated energies also correlate with measured dissolution rates: the lattice energies show a log-linear relationship to the macroscopic dissolution rates at circumneutral pH. Moreover, the energies of ion pairs translated along surface steps are calculated and found to predict experimentally observed microscopic step retreat velocities. Finally, pit formation excess energies decrease with increasing pit size, which is consistent with the nonlinear dissolution kinetics hypothesized for the initial stages of pit formation.

  14. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, G.; Steinacher, M.; Joos, F.

    2015-12-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve

  15. A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat

    2016-05-01

    The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system

  16. Eccentricity pacing of eastern equatorial Pacific carbonate dissolution cycles during the Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Kochhann, Karlos G. D.; Holbourn, Ann; Kuhnt, Wolfgang; Channell, James E. T.; Lyle, Mitch; Shackford, Julia K.; Wilkens, Roy H.; Andersen, Nils

    2016-09-01

    The Miocene Climatic Optimum (MCO; ~16.9 to 14.7 Ma) provides an outstanding opportunity to investigate climate-carbon cycle dynamics during a geologically recent interval of global warmth. We present benthic stable oxygen (δ18O) and carbon (δ13C) isotope records (5-12 kyr time resolution) spanning the late early to middle Miocene interval (18 to 13 Ma) at Integrated Ocean Drilling Program (IODP) Site U1335 (eastern equatorial Pacific Ocean). The U1335 stable isotope series track the onset and development of the MCO as well as the transitional climatic phase culminating with global cooling and expansion of the East Antarctic Ice Sheet at ~13.8 Ma. We integrate these new data with published stable isotope, geomagnetic polarity, and X-ray fluorescence (XRF) scanner-derived carbonate records from IODP Sites U1335, U1336, U1337, and U1338 on a consistent, astronomically tuned timescale. Benthic isotope and XRF scanner-derived CaCO3 records depict prominent 100 kyr variability with 400 kyr cyclicity additionally imprinted on δ13C and CaCO3 records, pointing to a tight coupling between the marine carbon cycle and climate variations. Our intersite comparison further indicates that the lysocline behaved in highly dynamic manner throughout the MCO, with >75% carbonate loss occurring at paleodepths ranging from ~3.4 to ~4 km in the eastern equatorial Pacific Ocean. Carbonate dissolution maxima coincide with warm phases (δ18O minima) and δ13C decreases, implying that climate-carbon cycle feedbacks fundamentally differed from the late Pleistocene glacial-interglacial pattern, where dissolution maxima correspond to δ13C maxima and δ18O minima. Carbonate dissolution cycles during the MCO were, thus, more similar to Paleogene hyperthermal patterns.

  17. Mineral dissolution and precipitation in carbonate dominated terranes assessed using Mg isotopes

    NASA Astrophysics Data System (ADS)

    Tipper, E.; Calmels, D.; Gaillardet, J.; Galy, A.

    2013-12-01

    Carbonate weathering by carbonic acid consumes atmospheric CO2 during mineral dissolution, fixing it as aqueous bicarbonate over millennial time-scales. Ocean acidification has increased the solubility of CO2 in seawater by changing the balance of pH to alkalinity (the oceanic reservoir of carbon). This has lengthened the time-scale for CO2 sequestration by carbonate weathering to tens of thousands of years. At a global scale, the net consumption of CO2 is at least equal to that from silicate weathering, but there is far less work on carbonate weathering compared to silicate weathering because it has generally been assumed to be CO2 neutral on geological time-scales. Carbonate rocks are more readily dissolved than silicate rocks, meaning that their dissolution will likely respond much more rapidly to global environmental change when compared with the dissolution of silicate minerals. Although far less concentrated than Ca in many carbonates, Mg substitutes for Ca and is more concentrated than any other metal ion. Tracing the behavior of Mg in river waters, using Mg stable isotopes (26Mg/24Mg ratio expressed as delta26Mg in per mil units) is therefore a novel way to understand the complex series of dissolution/precipitation reactions that govern solute concentrations of Ca and Mg, and hence CO2 transfer by carbonate weathering. We present new Mg isotope data on a series of river and spring waters from the Jura mountains in North-East France. The stratigraphic column is relatively uniform throughout the Jura mountains and is dominated by limestones. As the limestone of the Jura Mountains were deposited in high-energy shallow water environments (shore line, lagoon and coral reefs), they are usually clay and organic poor. The delta26Mg of the local rocks is very constant at circa -4permil. The delta26Mg of the river waters is also fairly constant, but offset from the rock at -2.5permil. This is an intriguing observation because the dissolution of limestones is expected

  18. The Impact of Mineral Dissolution on Multiphase Flow in Permeable Carbonates

    NASA Astrophysics Data System (ADS)

    Krevor, S. C.; Niu, B.

    2015-12-01

    Carbon dioxide injection into deep saline aquifers is governed by a number of physicochemical processes at a broad range of spatial scales including mineral dissolution and precipitation, fluid flow, and capillary trapping. Past efforts have mostly focused on measuring the multiphase flow properties, capillarity, relative permeability, and residual trapping. However, the impact of fluid-rock interaction on these properties is less well understood. In this work we have made a series of measurements characterizing the impact of rock mineral dissolution on multiphase flow in three carbonate rocks. We used core flooding techniques to mimic reactive conditions representative of the near the well bore and far field regions of a carbonate reservoir CO2 injection project. Tests sequentially induced mineral dissolution and characterized the impacts on multiphase flow properties. Temperature retarded acid was used to uniformly dissolve calcite in Ketton, Estaillades, and Edward Brown rock cores. A single dissolution stages removed approximately 0.5% of the mass of the rocks and measurements of relative permeability and residual trapping were made after each stage along with mercury injection capillary pressure (MICP) to quantify the variation of in the pore size distribution. Three Stages were performed on each of carbonates rocks. Imaging with x-ray micro-CT and medical CT were used to quantify the porosity variation and observe the changes in pore structure and multiphase flow properties at scales from the um to the cm. The pore size distribution of the rocks was observed to both increase and become less uniform with progressive dissolution, as shown in Figure 1. For Ketton, the micro-pores, with size range from 0.01 um to 0.1um, have less been involved in the reaction than the macro-pores (10 um to 100 um). A larger spread in capillary trapping was seen around a characteristic initial-residual curve. Relative permeability changes with progressive dissolution was not well

  19. Tertiary carbonate-dissolution cycles on the Sierra Leone Rise, eastern equatorial Atlantic Ocean

    USGS Publications Warehouse

    Dean, W.E.; Gardner, J.V.; Cepek, P.

    1981-01-01

    Most of the Tertiary section on Sierra Leone Rise off northwest Africa consists of chalk, marl, and limestone that show cyclic alterations of clay-rich and clay-poor beds about 20-60 cm thick. On the basis of biostratigraphic accumulation rates, the cycles in Oligocene and Miocene chalk have periods which average about 44,000 years, and those in Eocene siliceous limestone have periods of 4000-27,000 years. Several sections were sampled in detail to further define the cycles in terms of content of CaCO3, clay minerals, and relative abundances of calcareous nannofossils. Extending information gained by analyses of Pleistocene cores from the continental margin of northwest Africa to the Tertiary cycles on Sierra Leone Rise, both dilution by noncarbonate material and dissolution of CaCO3 could have contributed to the observed relative variations in clay and CaCO3. However, dissolution of CaCO3 as the main cause of the carbonate-clay cycles on the Sierra Leone Rise, rather than dilution by clay, is suggested by the large amount of change (several thousand percent) in terrigenous influx required to produce the observed variations in amount of clay and by the marked increase in abundance of dissolution-resistant discoasters relative to more easily dissolved coccoliths in low-carbonate parts of cycles. The main cause of dissolution of CaCO3 was shoaling of the carbonate compensation depth (CCD) during the early Neogene and climatically induced fluctuations in the thickness of Antarctic Bottom Water. ?? 1981.

  20. Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Klier, Christine; Schröder, Christian; Händel, Matthias; Bosch, Julian; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-08-01

    Microbial reduction of ferric iron is partly dependent on Fe hydroxide particle size: nanosized Fe hydroxides greatly exceed the bioavailability of their counterparts larger than 1 μm. Citrate as a low molecular weight organic acid can likewise stabilize colloidal suspensions against aggregation by electrostatic repulsion but also increase Fe bioavailability by enhancing Fe hydroxide solubility. The aim of this study was to see whether adsorption of citrate onto surfaces of large ferrihydrite aggregates results in the formation of a stable colloidal suspension by electrostatic repulsion and how this effect influences microbial Fe reduction. Furthermore, we wanted to discriminate between citrate-mediated colloid stabilization out of larger aggregates and ferrihydrite dissolution and their influence on microbial Fe hydroxide reduction. Dissolution kinetics of ferrihydrite aggregates induced by different concentrations of citrate and humic acids were compared to microbial reduction kinetics with Geobacter sulfurreducens. Dynamic light scattering results showed the formation of a stable colloidal suspension and colloids with hydrodynamic diameters of 69 (±37) to 165 (± 65) nm for molar citrate:Fe ratios of 0.1 to 0.5 and partial dissolution of ferrihydrite at citrate:Fe ratios ⩾ 0.1. No dissolution or colloid stabilization was detected in the presence of humic acids. Adsorption of citrate, necessary for dissolution, reversed the surface charge and led to electrostatic repulsion between sub-aggregates of ferrihydrite and colloid stabilization when the citrate:Fe ratio was above a critical value (⩽ 0.1). Lower ratios resulted in stronger ferrihydrite aggregation instead of formation of a stable colloidal suspension, owing to neutralization of the positive surface charge. At the same time, microbial ferrihydrite reduction increased from 0.029 to 0.184 mM h-1 indicating that colloids stabilized by citrate addition enhanced microbial Fe reduction. Modelling of

  1. Pore-scale simulation of carbonate dissolution in micro-CT images

    NASA Astrophysics Data System (ADS)

    Pereira Nunes, J. P.; Blunt, M. J.; Bijeljic, B.

    2016-02-01

    We present a particle-based method to simulate carbonate dissolution at the pore scale directly on the voxels of three-dimensional micro-CT images. The flow field is computed on the images by solving the incompressible Navier-Stokes equations. Rock-fluid interaction is modeled using a three-step approach: solute advection, diffusion, and reaction. Advection is simulated with a semianalytical pore-scale streamline tracing algorithm, diffusion by random walk is superimposed, while the reaction rate is defined by the flux of particles through the pore-solid interface. We derive a relationship between the local particle flux and the independently measured batch calcite dissolution rate. We validate our method against a dynamic imaging experiment where a Ketton oolite is imaged during CO2-saturated brine injection at reservoir conditions. The image-calculated increases in porosity and permeability are predicted accurately, and the spatial distribution of the dissolution front is correctly replicated. The experiments and simulations are performed at a high flow rate, in the uniform dissolution regime - Pe ≫ 1 and PeDa ≪ 1—thus extending the reaction throughout the sample. Transport is advection dominated, and dissolution is limited to regions with significant inflow of solute. We show that the sample-averaged reaction rate is 1 order of magnitude lower than that measured in batch reactors. This decrease is the result of restrictions imposed on the flux of solute to the solid surface by the heterogeneous flow field, at the millimeter scale.

  2. Microfluidics experiments of dissolution in a fracture. Influence of Damköhler and Péclet numbers, and of the geometry on the dissolution pattern

    NASA Astrophysics Data System (ADS)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Szymczak, Piotr

    2015-04-01

    Dissolution of natural rocks is an ever present phenomenon in nature. The shaping of natural landscapes by the dissolution of limestone gives for example birth to exceptional features like karsts. Currently dissolution is also at the heart of key research topics as Carbon Capture and Storage or Enhanced Oil Recovery. The basics principles of dissolution are well-known, however, the sheer amount of different patterns arising from these mechanisms and the strong dependency on parameters such as pore network, chemical composition and flow rate, make it particularly difficult to study theoretically and experimentally. In this study we present a microfluidic experiment simulating the behavior of a dissolving fluid in a fracture. The experiments consist of a chip of gyspum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. The point in using microfluidics is that it allows a complete control on the experimental parameters such as geometry and chemical composition of the porous medium, flow rate, fracture aperture, roughness of the fracture walls, and an in situ observation of the geometry evolution which is impossible with 3D natural rocks. Thanks to our experiments we have been able to cover the whole range of dissolution patterns, from wormholing or DLA fingering to homogeneous dissolution, by changing Péclet and Damköhler numbers. Moreover, we have been able to tweak the geometry of our artificial fracture, inserting finger seeds or non-dissolvable obstacles. The comparison of the experimental patterns with the numerical dissolution code dissol (Szymczak and Ladd 2011) has then shown a very good correlation of the patterns, giving confidence in both experiments and modeling.

  3. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks

    NASA Astrophysics Data System (ADS)

    Nogues, Juan P.; Fitts, Jeffrey P.; Celia, Michael A.; Peters, Catherine A.

    2013-09-01

    A reactive transport model was developed to simulate reaction of carbonates within a pore network for the high-pressure CO2-acidified conditions relevant to geological carbon sequestration. The pore network was based on a synthetic oolithic dolostone. Simulation results produced insights that can inform continuum-scale models regarding reaction-induced changes in permeability and porosity. As expected, permeability increased extensively with dissolution caused by high concentrations of carbonic acid, but neither pH nor calcite saturation state alone was a good predictor of the effects, as may sometimes be the case. Complex temporal evolutions of interstitial brine chemistry and network structure led to the counterintuitive finding that a far-from-equilibrium solution produced less permeability change than a nearer-to-equilibrium solution at the same pH. This was explained by the pH buffering that increased carbonate ion concentration and inhibited further reaction. Simulations of different flow conditions produced a nonunique set of permeability-porosity relationships. Diffusive-dominated systems caused dissolution to be localized near the inlet, leading to substantial porosity change but relatively small permeability change. For the same extent of porosity change caused from advective transport, the domain changed uniformly, leading to a large permeability change. Regarding precipitation, permeability changes happen much slower compared to dissolution-induced changes and small amounts of precipitation, even if located only near the inlet, can lead to large changes in permeability. Exponent values for a power law that relates changes in permeability and porosity ranged from 2 to 10, but a value of 6 held constant when conditions led to uniform changes throughout the domain.

  4. Effect of magnesium carbonate on the solubility, dissolution and oral bioavailability of fenofibric acid powder as an alkalising solubilizer.

    PubMed

    Kim, Kyeong Soo; Kim, Jeong Hyun; Jin, Sung Giu; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Yong, Chul Soon; Cho, Kwan Hyung; Li, Dong Xun; Woo, Jong Soo; Choi, Han-Gon

    2016-04-01

    To investigate the possibility of developing a novel oral pharmaceutical product using fenofibric acid instead of choline fenofibrate, the powder properties, solubility, dissolution and pharmacokinetics in rats of fenofibrate, choline fenofibrate and fenofibric acid were compared. Furthermore, the effect of magnesium carbonate, an alkalising agent on the solubility, dissolution and oral bioavailability of fenofibric acid was assessed, a mixture of fenofibric acid and magnesium carbonate being prepared by simple blending at a weight ratio of 2/1. The three fenofibrate derivatives showed different particle sizes and melting points with similar crystalline shape. Fenofibric acid had a significantly higher aqueous solubility and dissolution than fenofibrate, but significantly lower solubility and dissolution than choline fenofibrate. However, the fenofibric acid/magnesium carbonate mixture greatly improved the solubility and dissolution of fenofibric acid with an enhancement to levels similar with those for choline fenofibrate. Fenofibric acid gave lower plasma concentrations, AUC and Cmax values compared to choline fenofibrate in rats. However, the mixture resulted in plasma concentrations, AUC and Cmax values levels not significantly different from those for choline fenofibrate. Specifically, magnesium carbonate increased the aqueous solubility, dissolution and bioavailability of fenofibric acid by about 7.5-, 4- and 1.6-fold, respectively. Thus, the mixture of fenofibric acid and magnesium carbonate at the weight ratio of 2/1 might be a candidate for an oral pharmaceutical product with improved oral bioavailability. PMID:26992922

  5. Influence of Experimental Conditions on Electronic Tongue Results—Case of Valsartan Minitablets Dissolution

    PubMed Central

    Wesoły, Małgorzata; Kluk, Anna; Sznitowska, Małgorzata; Ciosek, Patrycja; Wróblewski, Wojciech

    2016-01-01

    A potentiometric electronic tongue was applied to study the release of valsartan from pharmaceutical formulations, i.e., minitablets uncoated and coated with Eudragit E. Special attention was paid to evaluate the influence of medium temperature and composition, as well as to compare the performances of the sensor arrays working in various hydrodynamic conditions. The drug dissolution profiles registered with the ion-sensitive electrodes were compared with standard dissolution tests performed with USP Apparatus 2 (paddle). Moreover, the signal changes of all sensors were processed by principal component analysis to visualize the release modifications, related to the presence of the coating agent. Finally, the importance and influence of the experimental conditions on the results obtained using potentiometric sensor arrays were discussed. PMID:27563904

  6. CO2-induced dissolution of low permeability carbonates. Part I: Characterization and experiments

    NASA Astrophysics Data System (ADS)

    Smith, Megan M.; Sholokhova, Yelena; Hao, Yue; Carroll, Susan A.

    2013-12-01

    The effect of elevated dissolved CO2 concentrations on compositionally and structurally distinct carbonate sample cores from the Weyburn-Midale CO2-enhanced oil recovery and storage site (Canada) was measured from analysis of 3-D sample characterization and fluid chemistry data from core-flood experiments. Experimental conditions (60 °C; 24.8 MPa confining pressure) and brine composition were chosen to mimic in situ reservoir conditions. Mineralogy and pore space distributions within the eight individual cores were characterized with X-ray computed microtomography and scanning electron microscopy both before and after exposure to brine with 0.5 ⩽ pCO2 ⩽ 3 MPa, while solution chemistry and differential fluid pressures were monitored during experiments. Our experimental study aimed to quantify the relationship between fluid flow, heterogeneity, and reaction specific to carbon storage at the Weyburn-Midale field by integrating characterization imaging, pressure data, and solution chemistry. Through the use of non-invasive microtomographic imaging, a variety of dissolution behaviors were observed, with variable effects on the evolution of solution chemistry and permeability as a result of heterogeneity within these two relatively low permeability carbonate samples. Similar-sized, evenly distributed pores, and steadily advancing dissolution fronts suggested that uniform flow velocities were maintained throughout the duration of the higher permeability “Marly” dolostone core experiments. The development of unstable dissolution fronts and fast pathways occurred in the “Vuggy” sample experiments when fluid velocities varied widely within the sample (as a result of increased pore structure heterogeneity). The overall effect of fast pathway development was to increase bulk permeability values by several orders of magnitude, allowing CO2-acidified fluids to travel through the cores largely unmodified by carbonate mineral reaction, as indicated by a lack of change

  7. Dissolution of Irradiated Commercial UO2 Fuels in Ammonium Carbonate and Hydrogen Peroxide

    SciTech Connect

    Soderquist, Chuck Z.; Johnsen, Amanda M.; McNamara, Bruce K.; Hanson, Brady D.; Chenault, Jeffrey W.; Carson, Katharine J.; Peper, Shane M.

    2011-01-18

    We propose and test a disposition path for irradiated nuclear fuel using ammonium carbonate and hydrogen peroxide media. We demonstrate on a 13 g scale that >98% of the irradiated fuel dissolves. Subsequent expulsion of carbonate from the dissolver solution precipitates >95% of the plutonium, americium, curium, and substantial amounts of fission products, effectively partitioning the fuel at the dissolution step. Uranium can be easily recovered from solution by any of several means, such as ion exchange, solvent extraction, or direct precipitation. Ammonium carbonate can be evaporated from solution and recovered for re-use, leaving an extremely compact volume of fission products, transactinides, and uranium. Stack emissions are predicted to be less toxic, less radioactive, chemically simpler, and simpler to treat than those from the conventional PUREX process.

  8. U-series dating of impure carbonates: An isochron technique using total-sample dissolution

    SciTech Connect

    Bischoff, J.L.; Fitzpatrick, J.A. )

    1991-02-01

    U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. The authors propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate on commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only.

  9. Carbide Dissolution/Carbon Loss as a Function of Spray Distance in Unshrouded/Shrouded Plasma Sprayed Cr3C2-NiCr Coatings

    NASA Astrophysics Data System (ADS)

    Matthews, S.

    2015-02-01

    Thermal spraying of Cr3C2-NiCr composites generates varying degrees of carbide dissolution into the Ni binder. During high-temperature exposure, the carbide dissolution zones precipitate high concentrations of small carbides which develop into finely structured networks. This raises the possibility of producing unique tailored carbide composite structures through the generation of controlled carbide dissolution and appropriate heat treatment. The first step in this process is to produce a supersaturated Ni-Cr-C solid solution from which the carbide phase could be precipitated. In a previous work, a broad range of plasma parameters were trialed to assess their effect on the degree of carbide dissolution at a fixed spray distance of 100 mm. The current two-part work builds on the most promising plasma parameters from those trials. In Part 1 of this two-part article series, the effect of spray distance on the extent of carbide dissolution and carbon loss during high energy plasma spraying was investigated. The effectiveness of solid shield and gas shrouding is contrasted, and the mechanisms by which they influence the degree of decarburization discussed.

  10. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales.

    PubMed

    Torres, Mark A; West, A Joshua; Li, Gaojun

    2014-03-20

    The observed stability of Earth's climate over millions of years is thought to depend on the rate of carbon dioxide (CO2) release from the solid Earth being balanced by the rate of CO2 consumption by silicate weathering. During the Cenozoic era, spanning approximately the past 66 million years, the concurrent increases in the marine isotopic ratios of strontium, osmium and lithium suggest that extensive uplift of mountain ranges may have stimulated CO2 consumption by silicate weathering, but reconstructions of sea-floor spreading do not indicate a corresponding increase in CO2 inputs from volcanic degassing. The resulting imbalance would have depleted the atmosphere of all CO2 within a few million years. As a result, reconciling Cenozoic isotopic records with the need for mass balance in the long-term carbon cycle has been a major and unresolved challenge in geochemistry and Earth history. Here we show that enhanced sulphide oxidation coupled to carbonate dissolution can provide a transient source of CO2 to Earth's atmosphere that is relevant over geological timescales. Like drawdown by means of silicate weathering, this source is probably enhanced by tectonic uplift, and so may have contributed to the relative stability of the partial pressure of atmospheric CO2 during the Cenozoic. A variety of other hypotheses have been put forward to explain the 'Cenozoic isotope-weathering paradox', and the evolution of the carbon cycle probably depended on multiple processes. However, an important role for sulphide oxidation coupled to carbonate dissolution is consistent with records of radiogenic isotopes, atmospheric CO2 partial pressure and the evolution of the Cenozoic sulphur cycle, and could be accounted for by geologically reasonable changes in the global dioxygen cycle, suggesting that this CO2 source should be considered a potentially important but as yet generally unrecognized component of the long-term carbon cycle.

  11. Influence of pH and temperature on alunite dissolution rates and products

    NASA Astrophysics Data System (ADS)

    Acero, Patricia; Hudson-Edwards, Karen

    2015-04-01

    Aluminium is one of the main elements in most mining-affected environments, where it may influence the mobility of other elements and play a key role on pH buffering. Moreover, high concentrations of Al can have severe effects on ecosystems and humans; Al intake, for example, has been implicated in neurological pathologies (e.g., Alzheimer's disease; Flaten, 2001). The behaviour of Al in mining-affected environments is commonly determined, at least partially, by the dissolution of Al sulphate minerals and particularly by the dissolution of alunite (KAl3(SO4)2(OH)6), which is one of the most important and ubiquitous Al sulphates in mining-affected environments (Nordstrom, 2011). The presence of alunite has been described in other acid sulphate environments, including some soils (Prietzel & Hirsch, 1998) and on the surface of Mars (Swayze et al., 2008). Despite the important role of alunite, its dissolution rates and products, and their controlling factors under conditions similar to those found in these environments, remain largely unknown. In this work, batch dissolution experiments have been carried out in order to shed light on the rates, products and controlling factors of alunite dissolution under different pH conditions (between 3 and 8) and temperatures (between 279 and 313K) similar to those encountered in natural systems. The obtained initial dissolution rates using synthetic alunite, based on the evolution of K concentrations, are between 10-9.7 and 10-10.9 mol-m-2-s-1, with the lowest rates obtained at around pH 4.8, and increases in the rates recorded with both increases and decreases in pH. Increases of temperature in the studied range also cause increases in the dissolution rates. The dissolution of alunite dissolution is incongruent, as has been reported for jarosite (isostructural with alunite) by Welch et al. (2008). Compared with the stoichiometric ratio in the bulk alunite (Al/K=3), K tends to be released to the solution preferentially over Al

  12. Experimental Study of Convective Dissolution of Carbon Dioxide in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Liang, Y.; DiCarlo, D. A.; Hesse, M. A.

    2013-12-01

    Carbon capture and storage in deep geological formations has the potential to reduce anthropogenic carbon dioxide (CO2) emissions from industrial point sources. The technology is only viable, if the long-term security of the geological CO2 storage can be demonstrated. Dissolution of CO2 into the brine, resulting in stable stratification, has been identified as the key to long-term storage security. Here we present new analogue laboratory experiments to characterize convective dissolution and to study the effect of porosity and permeability heterogeneity on the CO2 dissolution rate. Understanding the effect of heterogeneity is essential to evaluate if convective dissolution occurs in the field and, in turn, to estimate the security of geological CO2 storage fields. In particular we want to test if the strong heterogeneity observed at the Bravo Dome natural CO2 field can prevent convective currents, which may explain the persistence of free phase CO2 over millennia. Initial laboratory experiments in homogeneous media confirm that the non-classical scaling of the convective flux scales with the 4/5 power of the Rayleigh number that has recently been reported. The large experimental assembly will allow us to quantify for the first time the relationship between wavenumber of the convective motion and the Rayleigh number of the system, which could be essential to trapping process at Bravo Dome. Figure 1 shows the number of fingers that we can observe in our new experimental setup. Figure 2 shows the same photograph that has been processed to enhance the visibility of the dense plumes descending from the interface. Also we plan to complement the homogeneous experiments with a detailed study of the scaling law of the convective flux in heterogeneous, layered media; in particular. Low permeability layers are ubiquitous in geological storage formations and have been observed at Bravo Dome. We plan to measure the reduction in the convective flux due to these barriers compared

  13. Dissolution of CO2 in Brines and Mineral Reactions during Geological Carbon Storage: AN Eor Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.

    2015-12-01

    Dissolution of CO2 in formation brines is likely to be a major process which stabilises stored CO2 on longer time scales and mitigates CO2 migrating through storage complexes. However very little is known about the likely rates of CO2 dissolution as CO2 flows through natural heterogeneous brine filled reservoirs. Here we report the results of sampling fluids over 6 months after a phase of CO2 injection commenced for enhanced oil recovery coupled with injection of isotopically enriched 3He and 129Xe. Modelling of the changes in fluid chemistry has previously been interpreted to indicate significant dissolution of silicate minerals where fluids remained close to saturation with calcite. These calculations, which are based on modal decomposition of changes in cation concentrations, are supported by changes in the isotopic compositions of Sr, Li and Mg. Analysis of Sr-isotopic compositions of samples from outcrops of the Frontier Formation, which forms the reservoir sampled by the EOR experiment, reveals substantial heterogeneity. Silicate mineral compositions have 87Sr/86Sr ratios between 0.709 and 0.719 whereas carbonate cements have values around 0.7076. Calculation of CO2 dissolution based on simplified 2-D flow models shows that fluids likely sample reservoir heterogeneities present on a finer scale with CO2 fingers occupying the most permeable horizons and most water flow in the adjacent slightly less permeable zones. Smaller time scale variations in 87Sr/86Sr ratios are interpreted to reflect variations in flow paths on small length scales driven by invading CO2.

  14. The Influence of Pressure on the Intrinsic Dissolution Rate of Amorphous Indomethacin

    PubMed Central

    Löbmann, Korbinian; Flouda, Konstantina; Qiu, Danwen; Tsolakou, Theodosia; Wang, Wenbo; Rades, Thomas

    2014-01-01

    New drug candidates increasingly tend to be poorly water soluble. One approach to increase their solubility is to convert the crystalline form of a drug into the amorphous form. Intrinsic dissolution testing is an efficient standard method to determine the intrinsic dissolution rate (IDR) of a drug and to test the potential dissolution advantage of the amorphous form. However, neither the United States Pharmacopeia (USP) nor the European Pharmacopeia (Ph.Eur) state specific limitations for the compression pressure in order to obtain compacts for the IDR determination. In this study, the influence of different compression pressures on the IDR was determined from powder compacts of amorphous (ball-milling) indomethacin (IND), a glass solution of IND and poly(vinylpyrrolidone) (PVP) and crystalline IND. Solid state properties were analyzed with X-ray powder diffraction (XRPD) and the final compacts were visually observed to study the effects of compaction pressure on their surface properties. It was found that there is no significant correlation between IDR and compression pressure for crystalline IND and IND–PVP. This was in line with the observation of similar surface properties of the compacts. However, compression pressure had an impact on the IDR of pure amorphous IND compacts. Above a critical compression pressure, amorphous particles sintered to form a single compact with dissolution properties similar to quench-cooled disc and crystalline IND compacts. In such a case, the apparent dissolution advantage of the amorphous form might be underestimated. It is thus suggested that for a reasonable interpretation of the IDR, surface properties of the different analyzed samples should be investigated and for amorphous samples the IDR should be measured also as a function of the compression pressure used to prepare the solid sample for IDR testing. PMID:25140536

  15. Mg-calcite dissolution in carbonate sediments: role in ocean acidification

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Mackenzie, F. T.

    2014-12-01

    An array of porewater wells at two locations on Hawaiian reefs have been utilized to obtain interstitial pore fluid from various depths in permeable sandy sediments. The total alkalinity (AT) and pH (total scale) were measured for each sample (depths 0, 2, 4, 6, 8, 12, 16, 20, 30, 40, and 60 cm) as well as calcium, magnesium, and strontium concentrations. Ca2+ and Mg2+ concentrations co-vary and appear to be directly related to AT and pH. The ratio of the change in calcium and magnesium (ΔCa, ΔMg) between the overlying water column and the porewater indicates that an 18 mol % Mg-calcite phase is dissolving within the sediment column. This could represent the dissolution of coralline algae such as Porolithon or Lithothamnion both of which produce ~18% Mg-calcite skeletons and are present on Hawaiian reefs. The small changes in Mg concentrations from dissolution/precipitation of high Mg-calcites is typically difficult to measure against the high background matrix of seawater and to our knowledge these data represent some of the first magnesium concentrations measured in permeable sediments. Saturation state (Ω) for Mg-calcites was calculated using both sets of stoichiometric solubility products (K) widely accepted in the literature. Depending on the K used, most of the porewater was undersaturated with respect to the high Mg calcites (>12%). Saturation states were determined using an ion activity product (IAP) calculated from the measured values of calcium and magnesium. This produces a more accurate Ω than assuming calcium and magnesium concentrations based on salinity, as is typically done in surface waters. As surface water becomes more corrosive to carbonate minerals due to enhanced ocean acidification through the next century, it is expected that dissolution of both biogenic high Mg-calcites and abiotic Mg-calcite cements will increase, potentially destabilizing reef framework and altering the biogeochemical cycling of carbon in these environments.

  16. Direct observations of the influence of solution composition on magnesite dissolution

    NASA Astrophysics Data System (ADS)

    King, Helen E.; Putnis, Christine V.

    2013-05-01

    In situ observations during atomic force microscopy experiments and ex situ observations after static and flow-through experiments were used to explore the effect of three different electrolytes on magnesite (MgCO3) dissolution at pH 2. The experiments showed that the magnesite dissolution rate varied in the order NO3->Cl>SO42- when these anions were present in solution. Under the experimental conditions magnesite dissolution occurred via the removal of successive single surface layers, where changes in magnesite reactivity in the presence of different electrolytes could be observed as variations in the cycle length for the removal of one unit cell layer. The cycles began with the formation of sporadically distributed etch pits followed by the nucleation of homogeneously distributed etch pits. Coalescence of the etch pits formed isolated sections of the remnant surface, which then dissolved away. The timing of sporadic and homogeneous etch pit nucleation was constant despite the presence of different anions. However, the cycles in surface roughness and etch pit spreading rates indicate that the different anions affect step retreat rates and hence dissolution rates. Differences in magnesite reactivity can be attributed to the direct interaction of sulphate with the magnesite surface and the indirect effects of chloride and nitrate on the magnesite surface hydration and hydration of the Mg2+ ion in solution. In all experiments during the dissolution process evidence for the precipitation of a new phase was observed, either directly as precipitates forming on the magnesite surface in the AFM and after the experiments, seen in SEM analysis, or as changes in the Mg outlet concentration during flow-through experiments. EDX and Raman spectroscopy were used to analyse the composition of the precipitate and although it could not be definitively identified, considering previous observations the precipitate is most likely a hydrated Mg-carbonate phase with a MgCO3·xH2O

  17. Constant-distance mode scanning potentiometry. 1. Visualization of calcium carbonate dissolution in aqueous solution.

    PubMed

    Etienne, Mathieu; Schulte, Albert; Mann, Stefan; Jordan, Guntram; Dietzel, Irmgard D; Schuhmann, Wolfgang

    2004-07-01

    Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions. Micrometer-scale heterogeneities in the apparent calcium activity profiles have successfully been resolved for both samples.

  18. Peridotite dissolution and carbonation rates at fracture surfaces under conditions relevant for in situ mineralization of CO2

    NASA Astrophysics Data System (ADS)

    van Noort, R.; Spiers, C. J.; Drury, M. R.; Kandianis, M. T.

    2013-04-01

    Whereas the dissolution of pure single phases (e.g. olivine and other mafic minerals) has been the focus of many studies, no investigation has been reported on the progress of reactions at and within polymineralic, transgranular fracture surfaces cutting peridotites. We document experiments that address the evolution of dissolving peridotite surfaces, and the rates of dissolution and carbonation reactions that occur at these surfaces, under both open- and closed-system conditions relevant for in situ CO2-sequestration. The results of experiments, conducted under quasi-open system conditions, on solid samples of peridotite whose surfaces were taken as an analogue of free fracture surfaces, demonstrate apparent rates of olivine dissolution at the free surfaces that are equivalent to or upwards of 100 times greater than those determined for pure olivine under similar conditions. This increase in apparent olivine dissolution rate is ascribed to fluid penetration along grain boundaries and veins, which resulted in increased accessibility of reactive olivine surface area. Apparent dissolution rates under closed system conditions, where serial olivine dissolution and magnesite precipitation take place, are ˜1 order of magnitude slower owing to changes in fluid composition and pH. In both of these reaction environments, it is apparent that serpentinized veins and mineral grain boundaries within the peridotite allowed fluids to penetrate the rock and to promote the release of divalent metals and silica from within the sample or simulated fracture walls. These results indicate that the microstructure of free (fracture) surfaces exerts a dominant control on peridotite dissolution and carbonation rates, relative to the proportion of highly reactive minerals that compose such ultramafic rock. The rapid dissolution we observe under open system conditions implies that CO2-mineralization may be viable, in open systems, if the composition of injected fluids can be maintained at or

  19. Accelerated Carbonate Dissolution as a CO2 Separation and Sequestration Strategy

    SciTech Connect

    Caldeira, K G; Knauss, K G; Rau, G H

    2004-02-18

    process is geochemically equivalent to continental and marine carbonate weathering which will otherwise naturally consume anthropogenic CO{sub 2}, but over many millennia (e.g. [7,8,9]). We identify the enhanced form of this process as Accelerated Weathering of Limestone or accelerated carbonate dissolution. Previously, it has been shown that accelerated carbonate dissolution can effectively convert a significant fraction of US CO{sub 2} emissions to long-term storage as bicarbonate in the ocean, while avoiding or possibly reversing environmental impacts associated with either the ongoing passive or the proposed active injection of CO{sub 2} into the ocean [6,10]. Being analogous to the widespread use of wet limestone to desulfurize flue gas, accelerated carbonate dissolution reactors could be retrofitted to many existing coastal power plants at a typical cost estimated to be $20-$30/tonne CO{sub 2} mitigated [5,11]. This paper further explores limestone availability, cost, transportation, and reaction kinetics as well as ocean and environmental impacts, and the overall economics and practicality of accelerated carbonate dissolution CO{sub 2} mitigation.

  20. The influence of pH on biotite dissolution and alteration kinetics at low temperature

    USGS Publications Warehouse

    Acker, James G.; Bricker, O.P.

    1992-01-01

    Biotite dissolution rates in acidic solutions were determined in fluidized-bed reactors and flowthrough columns. Biotite dissolution rates increased inversely as a linear function of pH in the pH range 3-7, where the rate order n = -0.34. Biotite dissolved incongruently over this pH range, with preferential release of magnesium and iron from the octahedral layer. Release of tetrahedral silicon was much greater at pH 3 than at higher pH. Iron release was significantly enhanced by low pH conditions. Solution compositions from a continuous exposure flow-through column of biotite indicated biotite dissolves incongruently at pH 4, consistent with alteration to a vermiculite-type product. Solution compositions from a second intermittent-flow column exhibited elevated cation release rates upon the initiation of each exposure to solution. The presence of strong oxidizing agents, the mineral surface area, and sample preparation methodology also influenced the dissolution or alteration kinetics of biotite. ?? 1992.

  1. Assessing the Influence of Calcium Fluoride on Pyrite Electrochemical Dissolution and Mine Drainage pH.

    PubMed

    Wang, Luying; Liu, Qingyou; Zheng, Kai; Li, Heping

    2016-07-01

    We investigated the influence of dissolved calcium fluoride, CaF(aq), on the electrochemical dissolution of pyrite and the corresponding environmental effects on acid mine drainage (AMD). The experimental results showed that CaF(aq) promotes pyrite electrochemical dissolution. When the CaF(aq) concentration increased from 0 to 10 mg L up to saturation, the promoting efficiency was 15.80 and 57.25%, respectively. The reason for this phenomenon is that F and Fe form FeF, and at a higher scan potential, F and Fe form the ion complex FeF. The mechanisms include: (i) the decreasing charge transfer resistance at the double layer due to the iron fluorine complex formation; and (ii) the decreasing passivation resistance at the cover layer due to the strong penetration of F ions through it into the double layer. Although the hydrolysis reaction of F in solution could increase the pH value of mine drainage, the AMD was significantly aggravated because CaF(aq) promoted the pyrite electrochemical dissolution. PMID:27380083

  2. Lab-Scale Study of the Calcium Carbonate Dissolution and Deposition by Marine Cyanobacterium Phormidium subcapitatum

    NASA Technical Reports Server (NTRS)

    Karakis, S. G.; Dragoeva, E. G.; Lavrenyuk, T. I.; Rogochiy, A.; Gerasimenko, L. M.; McKay, D. S.; Brown, I. I.

    2006-01-01

    Suggestions that calcification in marine organisms changes in response to global variations in seawater chemistry continue to be advanced (Wilkinson, 1979; Degens et al. 1985; Kazmierczak et al. 1986; R. Riding 1992). However, the effect of [Na+] on calcification in marine cyanobacteria has not been discussed in detail although [Na+] fluctuations reflect both temperature and sea-level fluctuations. The goal of these lab-scale studies therefore was to study the effect of environmental pH and [Na+] on CaCO3 deposition and dissolution by marine cyanobacterium Phormidium subcapitatum. Marine cyanobacterium P. subcapitatum has been cultivated in ASN-III medium. [Ca2+] fluctuations were monitored with Ca(2+) probe. Na(+) concentrations were determined by the initial solution chemistry. It was found that the balance between CaCO3 dissolution and precipitation induced by P. subcapitatum grown in neutral ASN III medium is very close to zero. No CaCO3 precipitation induced by cyanobacterial growth occurred. Growth of P. subcapitatum in alkaline ASN III medium, however, was accompanied by significant oscillations in free Ca(2+) concentration within a Na(+) concentration range of 50-400 mM. Calcium carbonate precipitation occurred during the log phase of P. subcapitatum growth while carbonate dissolution was typical for the stationary phase of P. subcapitatum growth. The highest CaCO3 deposition was observed in the range of Na(+) concentrations between 200-400 mM. Alkaline pH also induced the clamping of P. subcapitatum filaments, which appeared to have a strong affinity to envelop particles of chemically deposited CaCO3 followed by enlargement of those particles size. EDS analysis revealed the presence of Mg-rich carbonate (or magnesium calcite) in the solution containing 10-100 mM Na(+); calcite in the solution containing 200 mM Na(+); and aragonite in the solution containing with 400 mM Na(+). Typical present-day seawater contains xxmM Na(+). Early (Archean) seawater was

  3. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  4. Controlled release based on the dissolution of a calcium carbonate layer deposited on hydrogels.

    PubMed

    Ogomi, Daisuke; Serizawa, Takeshi; Akashi, Mitsuru

    2005-03-21

    It is possible that inorganic materials conjugated to suitable organic materials may induce unique mechanical, optical and other functional properties. Therefore, artificial conjugation of organic and inorganic components is attractive for preparing novel functional materials. Recently, we developed an alternate soaking process for calcium salt formation on/in polymer materials. In this study, a poly(vinyl alcohol) (PVA) hydrogel-calcium carbonate (CaCO(3)) composite was prepared by the aforementioned process as a controlled release support. Brilliant blue FCF (Mw = 794), FITC labeled BSA (Mw = 6.6 x 10(4)), FITC labeled dextran-10 k (Mw = 9.5 x 10(3)) and FITC labeled dextran-40 k (Mw = 4.3 x 10(4)) were loaded into the composite as model drugs. CaCO(3) dissolution and model drug release rates increased with a decrease in buffer pH. In addition, model drug release rates increased with a decrease in model drug molecular weight. These results show that CaCO(3) layers on hydrogels behave as capping layers for model drug release; the release rate of model drugs can be controlled by the dissolution rate of CaCO(3) and the molecular weight of the drug.

  5. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  6. Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil

    NASA Astrophysics Data System (ADS)

    Ennes-Silva, Renata; Cazarin, Caroline; Bezerra, Francisco; Auler, Augusto; Klimchouk, Alexander

    2015-04-01

    Dissolution along faults-fractures and hypogenic karst in carbonates: examples from Brazil Ennes-Silva, R.A; Cazarin, C.L.; Bezerra, F.H.; Auler, A.S.; Klimchouk, A.B. Dissolution along zones of preferential flow enhances anisotropy in geological media and increases its complexity. Changes in parameters such as porosity and permeability due to diagenesis and presence of ascendant fluids along fractures and faults can be responsible for hypogenic karstic system. The present study investigates the relationship between lithofacies, tectonics and karstification in the Neoproterozoic Salitre Formation, located in the central-eastern Brazil. This unit comprises several systems of caves including the Toca da Boa Vista and da Barriguda hypogenic caves, the largests in South America, and focus of this study. We focused on cave mapping and morphogenetic analysis, determination of petrophysical properties, thin-section description, micro-tomography, and isotopic analysis. The Salitre Formation, deposited in an epicontinental sea, comprises mud/wakestones, grainstones, microbial facies, and fine siliciclastic rocks. Passages occur in several levels within ca. 60 m thick cave-forming section, limited at the top by lithofacies with low permeability and fractures. Cave development occurred in phreatic sluggish-flow environment with overall upwelling flow. Fluids rise via cross-formational fractures and were distributed laterally within the cave-forming section using geological heterogeneities to eventually discharge up through outlets breaching across the upper confining beds. Maps of conduits show preferred directions for development of conduits: NNE-SSW and E-W. These two directions represents a relation between structures and hypogenic morphology. Joints, axis fold and fractures allowed pathways to the fluid rises, and then development of channels of entrance (feeders), outputs (outlets) and some cupolas, which are clearly aligned to fractures. Our data indicate several events

  7. Influence of type and neutralisation capacity of antacids on dissolution rate of ciprofloxacin and moxifloxacin from tablets.

    PubMed

    Uzunović, Alija; Vranić, Edina

    2009-02-01

    Dissolution rate of two fluoroquinolone antibiotics (ciprofloxacin and moxifloxacin) was analysed in presence/absence of three antacid formulations. Disintegration time and neutralisation capacity of antacid tablets were also checked. Variation in disintegration time indicated the importance of this parameter, and allowed evaluation of the influence of postponed antacid-fluoroquinolone contact. The results obtained in this study showed decreased dissolution rate of fluoroquinolone antibiotics from tablets in simultaneous presence of antacids, regardless of their type and neutralisation capacity.

  8. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: the impact of redox and bulk composition on the dissolution kinetics of olivine

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Brunet, F.; Martinez, I.; Guyot, F. J.; Verlaguet, A.; Pinquier, Y.; Garcia, B.; Chardin, M.; Kohler, E.; Daval, D.

    2014-12-01

    Olivine (Mg,Fe)2SiO4, which is one of the major mineral constituents of mafic and ultramafic rocks, has an attractive potential for CO2 mineral sequestration, as it possesses a high content of carbonate-forming divalent cations and exhibits one of the highest dissolution rate amongst rock-forming minerals. This study reports drastic differences in carbonation yields between experiments performed on olivine-rich basalt samples and on olivine separates (a more restricted chemical system). Batch experiments were conducted in water at 150°C and pCO2 = 280 bars on a Mg-rich tholeiitic basalt (9.3 wt.% MgO and 12.2 wt.% CaO), composed of olivine, Ti-magnetite, plagioclase and clinopyroxene. After 45 days of reaction, 56 wt.% of the initial MgO has reacted with CO2 to form Fe-bearing magnesite (Mg0.8Fe0.2)CO3 along with minor calcium carbonates. The substantial decrease of olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt.% MgO) of similar grain size, only 5 wt.% of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt is enhanced by a factor of 40. It could be accounted for by differences in chemical and textural properties of the secondary-silica layer which covers reacted olivine grains in both types of sample. A TEM inspection of mineral surfaces shows that the thin amorphous silica layer (~100 nm) is porous in the case of the basalt sample and that it contains significant amounts of iron and aluminum. Thus, we propose that the composition of the olivine environment itself can strongly influence the olivine dissolution-carbonation process. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks. More

  9. Influence of Permian salt dissolution on Cretaceous oil and gas entrapment and reserve potential, Denver basin, Western Nebraska

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Location and trap type of Cretaceous oil and gas fields in the D-J Fairway of Nebraska are related to the occurrence of 12 Permian salt zones. Salt distribution is controlled by the configuration of evaporate basins, truncation at a sub-Jurassic unconformity, and post-Jurassic subsurface dissolution. The Sidney Trough, which marks the eastern (regionally updip) limit of Cretaceous oil production in western Nebraska, is a rootless salt-dissolution collapse feature, whose location and origin is controlled by an abrupt linear facies change from thick, porous Lyons Sandstone to Leonardian salt. Eastward gravity-driven groundwater flow within the Lyons occurred in response to hydraulic gradient and recharge along the Front Range Uplift following Laramide orogeny. Dissolution of salt at the facies change caused collapse of overlying strata, producing fractures through which cross-formational flow occurred. Younger salts were dissolved, enhancing relief across the regional depression and subsidiary synclines. Timing of post-Jurassic dissolution influenced entrapment within D and J sandstone reservoirs. Where Early Cretaceous (pre-reservoir) dissolution occurred, structure at the D and J sandstone level is relatively simple, and stratigraphic traps predominate. Where Late Cretaceous - Tertiary (post-reservoir) dissolution occurred, structure is more complex, formation waters are more saline, oil and gas are localized on dissolution-induced anticlines, and per-well reserves are significantly higher.

  10. Noble gas and carbon isotopic evidence for CO2-driven silicate dissolution in a recent natural CO2 field

    NASA Astrophysics Data System (ADS)

    Dubacq, Benoît; Bickle, Mike J.; Wigley, Max; Kampman, Niko; Ballentine, Chris J.; Sherwood Lollar, Barbara

    2012-08-01

    Secure storage of anthropogenic carbon dioxide (CO2) in geological reservoirs requires predicting gas-water-rock interactions over millennial timescales. Noble gases and carbon isotope measurements can be used to shed light on the nature of competing dissolution-precipitation processes over different timescales, from the fast dissolution of gaseous CO2 in groundwater to more sluggish reactions involving dissolution and precipitation of newly formed minerals in the reservoir. Here we study a compilation of gas analyses including noble gases and δ13C of CO2 from nine different natural CO2 reservoirs. Amongst these reservoirs, the Bravo Dome CO2 field (New Mexico, USA) shows distinct geochemical trends which are explained by degassing of noble gases from groundwater altering the composition of the gas phase. This groundwater degassing is synchronous with the dissolution of CO2 in groundwater. Progressive creation of alkalinity via CO2-promoted mineral dissolution is required to explain the observed positive correlation between CO2/3He and δ13C of the gas phase, a unique feature of Bravo Dome. The differences between Bravo Dome and other natural CO2 reservoirs are likely explained by the more recent filling of Bravo Dome, reflecting CO2-water-rock interactions over thousands of years rather than over millions of years in older reservoirs.

  11. Solution-state polymer assemblies influence BCS class II drug dissolution and supersaturation maintenance.

    PubMed

    Dalsin, Molly C; Tale, Swapnil; Reineke, Theresa M

    2014-02-10

    Spray dried dispersions (SDDs), solid dispersions of polymer excipients and active pharmaceuticals, are important to the field of oral drug delivery for improving active stability, bioavailability, and efficacy. Herein, we examine the influence of solution-state polymer assemblies on amorphous spray-dried dispersion (SDD) performance with two BCS II model drugs, phenytoin and probucol. These drugs were spray dried with 4 model polymer excipients consisting of poly(ethylene-alt-propylene) (PEP), N,N,-dimethylacrylamide (DMA), or 2-methacrylamido glucopyranose (MAG): amphiphilic diblock ter- and copolymers, PEP-P(DMA-grad-MAG) and PEP-PDMA, and their respective hydrophilic analogues, P(DMA-grad-MAG) and PDMA. Selective and nonselective solvents for the hydrophilic block of the diblock ter- and copolymers were used to induce or repress solution-state assemblies prior to spray drying. Prespray dried solution-state assemblies of these four polymers were probed with dynamic light scattering (DLS) and showed differences in solution assembly size and structure (free polymer versus aggregates versus micelles). Solid-state structures of spray dried dispersions (SDDs) showed a single glass transition event implying a homogeneous mixture of drug/polymer. Crystallization temperatures and enthalpies indicated that the drugs interact mostly with the DMA-containing portions of the polymers. Scanning electron microscopy was used to determine SDD particle size and morphology for the various polymer-drug pairings. In vitro dissolution tests showed excellent performance for one system, spray-dried PEP-PDMA micelles with probucol. Dissolution structures were investigated through DLS to determine drug-polymer aggregates that lead to enhanced SDD performance. Forced aggregation of the polymer into regular micelle structures was found to be a critical factor to increase the dissolution rate and supersaturation maintenance of SDDs, and may be an attractive platform to exploit in excipient

  12. Experimental approaches to marine and meteoric dissolution-to-repreciptiation cycles of fine-grained marine carbonate sediments

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Buhl, Dieter; Riechelmann, Sylvia; Kwiecien, Ola; Lokier, Stephen; Neuser, Rolf

    2016-04-01

    Fine-grained carbonate (carbonate ooze), or microcrystalline carbonate (micrite), its lithified counterpart, forms a main constituent of limestones throughout much of Earth's history. Fine-grained carbonates are deposited below the permanent fair-weather wave base in neritic lagoonal environments or below the storm-wave base in basinal settings. The origin of components forming these fine-grained carbonates often remains poorly understood and represents a major challenge in carbonate sedimentology, particularly when these materials are used as carbonate archives (bulk micrite geochemistry). Here we present a novel experimental approach exposing natural, fine-grained carbonate sediments to dissolution-reprecipitation cycles under non-sterile conditions that mimick earth-surface conditions. In a first stage, the experiment simulated subaerial exposure of an ooid (aragonite) shoal and leaching and carbonate dissolution under meteoric phreatic conditions. In a second stage, CO2 was added to the experimental fluid (natural rainwater) representing soil-zone activity. In a third stage, partly dissolved (micro-karstified) sediments were exposed to marine phreatic conditions simulating renewed flooding of the shoal carbonates. During the third stage, precipitation was induced by degassing the CO2 in the fluid with N2. Degassing induced nucleation and growth of a diagenetic inorganic aragonite (and subordinate calcite) phase upon the surface of carbonate particles. The outcome of these first experiments is promising. The CO2 concentration of the fluid and the air are low under atmospheric conditions and increase as expected due to adding CO2 to the experiment resulting in a lower pH. Carbonate dissolution increases conductivity, alkalinity, and calcium concentration reaching a plateau at the end of the first experimental phase. Small surficial damages to ooids represent zones of weakness and form the preferred sites of dissolution leading to a deepening and widening of these

  13. Loading amorphous Asarone in mesoporous silica SBA-15 through supercritical carbon dioxide technology to enhance dissolution and bioavailability.

    PubMed

    Zhang, Zhengzan; Quan, Guilan; Wu, Qiaoli; Zhou, Chan; Li, Feng; Bai, Xuequn; Li, Ge; Pan, Xin; Wu, Chuanbin

    2015-05-01

    The aim of this study was to load amorphous hydrophobic drug into ordered mesoporous silica (SBA-15) by supercritical carbon dioxide technology in order to improve the dissolution and bioavailability of the drug. Asarone was selected as a model drug due to its lipophilic character and poor bioavailability. In vitro dissolution and in vivo bioavailability of the obtained Asarone-SBA-15 were significantly improved as compared to the micronized crystalline drug. This study offers an effective, safe, and environmentally benign means of solving the problems relating to the solubility and bioavailability of hydrophobic molecules.

  14. Carbonate dissolution and transport in aqueous fluids from subducting oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Frezzotti, M.; Huizenga, J.; Selverstone, J.; Compagnoni, R.; Sharp, Z. D.

    2012-12-01

    Cignana rocks, the C-O-H fluids from which diamond precipitated must have been water rich (0.992 < XH2O < 0.997) assuming that fO2 is fixed by the EMOD equilibrium. The low XCO2 of the fluid phase implies that the relative amount/size of diamond that precipitated should have been very small (at maximum 0.07 mol.%). The high activities of aqueous carbonates and bicarbonates indicate that carbon was released from the slab at sub-arc depths (> 100 km) mainly through dissolution, not decarbonation. Models on the long-term carbon cycle in the Earth compute mass balances between carbon returned to the mantle by subduction and carbon released from the mantle to the atmosphere do not account for the above processes. Consequently, in a geodynamic scenario where aqueous fluids controls carbon mobility, the residence time in the mantle can be shorter and fluxes much larger than predicted.

  15. Processes at the magnesium-bearing carbonates/solution interface. II. kinetics and mechanism of magnesite dissolution.

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques

    1999-07-01

    Steady-state dissolution rates of magnesite (MgCO 3) were measured at 25°C as a function of pH (from 0.2 to 12), total dissolved carbonate concentration (10 -5 < ΣCO 2 < 0.1 M), and ionic strength (0.002 < I < 0.5 M) using a mixed-flow reactor. Dissolution rates were found to be pH-independent at 0 < pH < 3, proportional to a H+ at 3 < pH < 5, pH-independent at 5 < pH < 8, and decreasing with increasing pH at pH > 8 and ΣCO 2 > 10 -3 M. In the acid pH region (3 ≤ pH ≤ 5), the rates increase significantly with ionic strength. In the alkaline pH region, carbonate and bicarbonate ions and ionic strength inhibit significantly the dissolution rate even at far from equilibrium conditions. The surface complexation model developed by Pokrovsky et al. (1999a) was used to correlate magnesite dissolution kinetics with its surface speciation. Dissolution rates in the acid pH region are controlled by the protonation of >CO 3- surface complexes. In neutral and carbonate-rich alkaline solutions, >MgOH 2+ controls the dissolution kinetics. The following rate equation, consistent with transition state theory was used to describe magnesite dissolution kinetics over the full range of solution composition: R (mol/cm 2/s)=[10 7.198·{>CO 3H°} 3.97+10 5.38·{>MgOH 2+} 3.94]·(1-exp(-4 A/ RT)) where {> i} stands for surface species concentration (mol/m 2), and A refers to the chemical affinity of the overall reaction. This equation reflects the formation of two different precursor-activated complexes which contain four protonated >CO 3H° species in acid solutions and four protonated (hydrated) >MgOH 2+ groups in neutral and alkaline solutions. The very low magnesite dissolution/precipitation rates predicted by this equation, especially at close to equilibrium conditions, are consistent with those deduced from field measurements.

  16. Numerical Ages of Holocene Tributary Debris Fans Inferred from Dissolution Pitting on Carbonate Boulders in the Grand Canyon of Arizona

    NASA Astrophysics Data System (ADS)

    Hereford, Richard; Thompson, Kathryn S.; Burke, Kelly J.

    1998-09-01

    Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements ( n= 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.

  17. Numerical ages of Holocene tributary debris fans inferred from dissolution pitting on carbonate boulders in the Grand Canyon of Arizona

    USGS Publications Warehouse

    Hereford, R.; Thompson, K.S.; Burke, K.J.

    1998-01-01

    Carbonate boulders transported down steep tributary channels by debris flow came to rest on Holocene debris fans beside the Colorado River in Grand Canyon National Park. Weakly acidic rainfall and the metabolic activity of blue-green algae have produced roughly hemispheric dissolution pits as much as 2-cm deep on the initially smooth surfaces of the boulders. The average depth of dissolution pits increases with relative age of fan surfaces. The deepening rate averages 2.4 mm/1000 yr (standard error = 0.2 mm/1000 yr), as calculated from several radiometrically dated surfaces and an archeological structure. This linear rate, which appears constant over at least the past 3000 yr, is consistent with field relations limiting the maximum age of the fans and with the physical chemistry of limestone dissolution. Dissolution-pit measurements (n = 6973) were made on 617 boulders on 71 fan surfaces at the 26 largest debris fans in Grand Canyon. Among these fan surfaces, the average pit depth ranges from 1.2 to 17.4 mm, and the resulting pit dissolution ages range from 500 to 7300 cal yr B.P. Most (75%) surfaces are younger than 3000 yr, probably because of removal of older debris fans by the Colorado River. Many of the ages are close to 800, 1600, 2300, 3100, or 4300 cal yr B.P. If not the result of differential preservation of fan surfaces, this clustering implies periods of heightened debris-flow activity and increased precipitation.

  18. EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING

    SciTech Connect

    Edwards, T.; Hera, K.; Coleman, C.

    2011-12-05

    Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting

  19. Rapid Assessment of the Influence of Solution pH, Anion Concentration and Temperature on the Dissolution of Alloy 22

    SciTech Connect

    Gray, J J; Hayes, J R; Gdowski, G E; Viani, B E; Orme, C A

    2005-05-19

    We introduce an acid titration technique for the rapid characterization of the influence of solution pH, anion (such as chloride) concentration and temperature on the dissolution of metals. We demonstrate the technique with the characterization of the dissolution of alloy 22 (Ni-22Cr-13Mo-3W-3Fe) exposed to chloride-containing hydrochloric, sulfuric and nitric acid environments as a function of pH (from pH 5 to pH -1) and temperature (25-90 C). A combination of electrochemical techniques (electrochemical impedance spectroscopy and linear polarization resistance) and atomic force microscopy are used to characterize the influence of the various solutions on the dissolution of alloy 22. In solutions containing hydrochloric and sulfuric acids, a critical temperature exists for passive film breakdown on alloy 22 for all environments tested. Below the critical temperature, corrosion rates are less than 1 {micro}m/year. Above the critical temperature, the effect of temperature on dissolution rates is a function of both the pH and chloride content of the solution. In nitric acid containing solutions, the presence of nitrates promotes a stable passive oxide film that inhibits dissolution in all environments tested.

  20. The Dissolution of Synthetic Na-Boltwoodite in Sodium Carbonate Solutions

    SciTech Connect

    Ilton, Eugene S.; Liu, Chongxuan; Yantasee, Wassana; Wang, Zheming; Moore, Dean A.; Felmy, Andrew R.; Zachara, John M.

    2006-09-01

    Uranyl silicates such as uranophane and Na-boltwoodite appear to control the solubility of uranium in the contaminated sediments at the US Department of Energy Hanford site (Liu et al., 2004). Consequently, the solubility of synthetic Na-boltwoodite was determined over a wide range of bicarbonate concentrations, from circumneutral to alkaline pH, that are representative of porewater and groundwater compositions at the Hanford site. Results show that Na-boltwoodite dissolution was nearly congruent and its solubility increased with increasing bicarbonate concentration. Calculated solubility constants varied by nearly 2 log units from low bicarbonate (no added NaCO3) to 50 mmol/L bicarbonate. However, the solubility constants only vary by 0.5 log units from 0 added bicarbonate to 1.2 mmol/L bicarbonate, where logKsp = 5.39-5.92 and the average logKsp = 5.63. No systematic trend in logKsp was apparent over this range in bicarbonate concentrations. LogKsp values trended down with increasing bicarbonate concentration, where logKsp = 4.06 at 50 mmol/L bicarbonate. We conclude that the calculated solubility constants at high bicarbonate are compromised by an incomplete or inaccurate uranyl-carbonate speciation model.

  1. Dissolution rates of pure methane hydrate and carbon-dioxide hydrate in undersaturated seawater at 1000-m depth

    USGS Publications Warehouse

    Rehder, G.; Kirby, S.H.; Durham, W.B.; Stern, L.A.; Peltzer, E.T.; Pinkston, J.; Brewer, P.G.

    2004-01-01

    To help constrain models involving the chemical stability and lifetime of gas clathrate hydrates exposed at the seafloor, dissolution rates of pure methane and carbon-dioxide hydrates were measured directly on the seafloor within the nominal pressure-temperature (P/T) range of the gas hydrate stability zone. Other natural boundary conditions included variable flow velocity and undersaturation of seawater with respect to the hydrate-forming species. Four cylindrical test specimens of pure, polycrystalline CH4 and CO2 hydrate were grown and fully compacted in the laboratory, then transferred by pressure vessel to the seafloor (1028 m depth), exposed to the deep ocean environment, and monitored for 27 hours using time-lapse and HDTV cameras. Video analysis showed diameter reductions at rates between 0.94 and 1.20 ??m/s and between 9.0 and 10.6 ?? 10-2 ??m/s for the CO2 and CH4 hydrates, respectively, corresponding to dissolution rates of 4.15 ?? 0.5 mmol CO2/m2s and 0.37 ?? 0.03 mmol CH4/m2s. The ratio of the dissolution rates fits a diffusive boundary layer model that incorporates relative gas solubilities appropriate to the field site, which implies that the kinetics of the dissolution of both hydrates is diffusion-controlled. The observed dissolution of several mm (CH4) or tens of mm (CO2) of hydrate from the sample surfaces per day has major implications for estimating the longevity of natural gas hydrate outcrops as well as for the possible roles of CO2 hydrates in marine carbon sequestration strategies. ?? 2003 Elsevier Ltd.

  2. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    SciTech Connect

    Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy; J Capo, Rosemary C.; Hartsock, Angela; Edenborn, Harry M.

    2013-01-01

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.

  3. Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability.

    PubMed

    Niu, Xia; Wan, Long; Hou, Zhong; Wang, Tianyi; Sun, Changshan; Sun, Jin; Zhao, Peng; Jiang, Tongying; Wang, Siling

    2013-08-16

    The purpose of this study was to develop mesoporous carbon loaded with a poorly watersoluble drug to enhance the drug dissolution and improve the oral bioavailability. Mesoporous carbon was synthesized using Pluronic 127 triblock polymer (F127), TEOS and phenolic resins. Fenofibrate (FFB) was chosen as a model drug and loaded onto mesoporous carbon using three different loading methods involving incipient wetness impregnation, and the solvent and melting methods. The effect of the physical state and the specific surface area were investigated using nitrogen adsorption, transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the physicochemical properties of the drug as well as the drug loading methods had critical effects on the drug release rate. In vitro drug release studies showed that incorporation of FFB in mesoporous carbon greatly enhanced the dissolution rate in comparison with that of the pure crystalline drug. Moreover, the oral bioavailability of the drug from mesoporous carbon was higher than that of FFB commercial capsules. Furthermore, mesoporous carbon produced no irritation of the mucosa of the gastrointestinal tract as shown by gastric mucosa irritation test. PMID:23688621

  4. Study of dolomite dissolution at various temperatures - Evidence for the formation of nanocrystalline secondary phases at dolomite surface and influence on dolomite interactions with other minerals

    NASA Astrophysics Data System (ADS)

    Debure, M.; Andreazza, P.; Grangeon, S.; Lerouge, C.; Montes-Hernandez, G.; MADE, B.; Tournassat, C.

    2015-12-01

    In most clay-rock geological formation studied for the storage of nuclear waste, pore water compositions are expected to be at equilibrium with carbonate minerals, which are always included in predictive models for pore water composition calculations [1]. Among the carbonates known to be present, dolomite may be problematic in the pore water composition calculation because its solubility spans a large range of values as a function of its crystallinity in thermodynamic databases. In addition, the composition of dolomite minerals observed in clay-rock formations such as Callovian-Oxfordian or Opalinus clay formation differs from this of a pure dolomite: the Ca/Mg stoichiometry is not ideal, and the minerals contain minor amounts of Fe and traces of many other elements [2]. To understand the influence of secondary phases precipitation during dolomite dissolution on pore water chemistry, the dissolution of monocrystals of dolomite were investigated at 25 °C and at 80 °C in a pH range 3 to 8 for various time periods (30 minutes to 21 days) in sealed PTFE reactors. Solution analyses evidenced a stoichiometric release of Ca and Mg in solution during dolomite dissolution. Scanning Electron Microscopy (SEM), Raman and X-Ray Diffraction (XRD) analyses did not evidence secondary Mg-bearing minerals precipitation, but revealed the formation of Fe-bearing particles on the dolomite surface. Morphological characterizations performed with Small-angle X-ray scattering (SAXS) evidenced that the precipitation occurs along a specific crystallographic plane of the dolomite monocrystal. Thus, the precipitated nanoparticles clustered on specific surface sites, and are made of Fe-rich phases poorly crystallized (carbonates, oxides and hydroxides). [1] Tournassat et al. 2015. Ch. 3: Chemical Conditions in Clay-Rocks. Natural and Engineered Clay Barriers, Elsevier. [2] Lerouge et al. 2011. Geochim. et Cosmoch. Acta, 2011, 75, 2633-2663.

  5. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures.

    PubMed

    Xiao, Xin; Chen, Baoliang; Zhu, Lizhong

    2014-03-18

    Biochars are increasingly recognized as environmentally friendly and cheap remediation agents for soil pollution. The roles of silicon in biochars and interactions between silicon and carbon have been neglected in the literature to date, while the transformation, morphology, and dissolution of silicon in Si-rich biochars remain largely unaddressed. In this study, Si-rich biochars derived from rice straw were prepared under 150-700 °C (named RS150-RS700). The transformation and morphology of carbon and silicon in biochar particles were monitored by FTIR, XRD, and SEM-EDX. With increasing pyrolytic temperature, silicon accumulated, and its speciation changed from amorphous to crystalline matter, while the organic matter evolved from aliphatic to aromatic. For rice straw biomass containing amorphous carbon and amorphous silicon, dehydration (<250 °C) made silicic acid polymerize, resulting in a closer integration of carbon and silicon. At medium pyrolysis temperatures (250-350 °C), an intense cracking of carbon components occurred, and, thus, the silicon located in the inside tissue was exposed. At high pyrolysis temperatures (500-700 °C), the biochar became condensed due to the aromatization of carbon and crystallization of silicon. Correspondingly, the carbon release in water significantly decreased, while the silicon release somewhat decreased and then sharply increased with pyrolytic temperature. Along with SEM-EDX images of biochars before and after water washing, we proposed a structural relationship between carbon and silicon in biochars to explain the mutual protection between carbon and silicon under different pyrolysis temperatures, which contribute to the broader understanding of biochar chemistry and structure. The silicon dissolution kinetics suggests that high Si biochars could serve as a novel slow release source of biologically available Si in low Si agricultural soils.

  6. Dissolution Rates of Synthetic Methane Hydrate and Carbon Dioxide Hydrate in Undersaturated Seawater at 1000m depth

    NASA Astrophysics Data System (ADS)

    Rehder, G.; Kirby, S. H.; Durham, W. B.; Brewer, P. G.; Stern, L.; Peltzer, E. T.; Pinkston, J.

    2001-12-01

    Dissolution of synthetic methane and carbon dioxide hydrates was monitored after their transport to the ocean floor at 1000m depth. Cylindrical test specimens were initially grown in the laboratory by combining either cold, pressurized methane gas or pressurized liquid CO2 with sieved granular water ice, then heating the reactants through the H2O melting point. Samples were then hydrostatically compacted to near-zero porosity, with resulting geometry of approximately 2.5 cm in diameter by 3-4 cm in length. Two samples each of methane and carbon dioxide hydrate were placed in a custom-made sample display rack having individual compartments for each sample with a transparent polycarbonate front window, and side and back walls of a flexible fine-mesh screen that permitted seawater flow around the hydrates. The sample rack was then transferred to the ocean in a stainless steel transport vessel pressurized with 10 MPa methane using the (ROV) Ventana. On the seafloor, the sample display rack was removed from the pressure vessel and secured in a stand attached to an autonomous underwater video recorder system using a time-programmable Hi8 video recorder. The samples were continuously monitored for 2.30 h using VentanaIs HDTV camera system, then followed by 20.75 h observation with the autonomous Hi8 time-lapse camera system (15 s every 0.25 h), and additional 3.33 h HDTV observation at the end of the experiment. Loss of volume and dissolution rates of the hydrates were derived from the measurement of the change of the projected diameter of the individual samples over time. During the first 2.30 h, the diameter of the two CO2 hydrates decreased from 22 mm to 15 and 13 mm, respectively. Diameter loss followed a generally linear trend of 0.94 and 1.20 μ m/sec, corresponding to a dissolution rate of 13 to 17 mole CO2/m2h. Similar short-term oscillations about this linear trend were observed on both samples, suggesting a link to bottom current velocity. The CH4 hydrates

  7. Dissolution kinetics of granular calcium carbonate in concentrated aqueous sodium dichromate solution at pH 6.0-7.0 and 110-130 degrees C.

    PubMed

    Wang, Tiangui; Li, Zuohu

    2005-01-01

    An understanding of the factors controlling calcite dissolution is important for modeling geochemical cycles and impacts of greenhouse gases on climate, diagenesis of sediments, and sedimentary rocks. It also has practical significance in the investigation of behavior of carbonates in petroleum and natural gas reservoirs and in the preservation of buildings and monuments constructed from limestone and marble. A large number of papers have been published on dissolution kinetics of calcium carbonate in aqueous solutions. But few involved the near-equilibrium region, especially at elevated temperatures and in concentrated solutions. In this paper, the dissolution kinetics of calcium carbonate in concentrated aqueous sodium dichromate solutions at pH 6.0-7.0 and 110-130 degrees C were studied in a 2-L autoclave. The results indicate that the dissolution reaction is mix-controlled, with surface reaction as the prevailing factor. The concentration of calcium ions in solution hardly affects the dissolution rate, but carbon dioxide in the vapor phase inhibits the dissolution reaction. The dissolution rate can be expressed by R = k(1)a(2)(H+) + k(2), and the apparent activation energy is 55-84 kJ mol(-1).

  8. Mesoporous silica sub-micron spheres as drug dissolution enhancers: Influence of drug and matrix chemistry on functionality and stability.

    PubMed

    Brigo, Laura; Scomparin, Elisa; Galuppo, Marco; Capurso, Giovanni; Ferlin, Maria Grazia; Bello, Valentina; Realdon, Nicola; Brusatin, Giovanna; Morpurgo, Margherita

    2016-02-01

    Mesoporous silica particles prepared through a simplified Stöber method and low temperature solvent promoted surfactant removal are evaluated as dissolution enhancers for poorly soluble compounds, using a powerful anticancer agent belonging to pyrroloquinolinones as a model for anticancer oral therapy, and anti-inflammatory ibuprofen as a reference compound. Mesoporous powders composed of either pure silica or silica modified with aminopropyl residues are produced. The influence of material composition and drug chemical properties on drug loading capability and dissolution enhancement are studied. The two types of particles display similar size, surface area, porosity, erodibility, drug loading capability and stability. An up to 50% w/w drug loading is reached, showing correlation between drug concentration in adsorption medium and content in the final powder. Upon immersion in simulating body fluids, immediate drug dissolution occurred, allowing acceptor solutions to reach concentrations equal to or greater than drug saturation limits. The matrix composition influenced drug solution maximal concentration, complementing the dissolution enhancement generated by a mesoporous structure. This effect was found to depend on both matrix and drug chemical properties allowing us to hypothesise general prediction behaviour rules. PMID:26652411

  9. Mesoporous silica sub-micron spheres as drug dissolution enhancers: Influence of drug and matrix chemistry on functionality and stability.

    PubMed

    Brigo, Laura; Scomparin, Elisa; Galuppo, Marco; Capurso, Giovanni; Ferlin, Maria Grazia; Bello, Valentina; Realdon, Nicola; Brusatin, Giovanna; Morpurgo, Margherita

    2016-02-01

    Mesoporous silica particles prepared through a simplified Stöber method and low temperature solvent promoted surfactant removal are evaluated as dissolution enhancers for poorly soluble compounds, using a powerful anticancer agent belonging to pyrroloquinolinones as a model for anticancer oral therapy, and anti-inflammatory ibuprofen as a reference compound. Mesoporous powders composed of either pure silica or silica modified with aminopropyl residues are produced. The influence of material composition and drug chemical properties on drug loading capability and dissolution enhancement are studied. The two types of particles display similar size, surface area, porosity, erodibility, drug loading capability and stability. An up to 50% w/w drug loading is reached, showing correlation between drug concentration in adsorption medium and content in the final powder. Upon immersion in simulating body fluids, immediate drug dissolution occurred, allowing acceptor solutions to reach concentrations equal to or greater than drug saturation limits. The matrix composition influenced drug solution maximal concentration, complementing the dissolution enhancement generated by a mesoporous structure. This effect was found to depend on both matrix and drug chemical properties allowing us to hypothesise general prediction behaviour rules.

  10. Influence of porous media heterogeneity on nonaqueous phase liquid dissolution fingering and upscaled mass transfer

    NASA Astrophysics Data System (ADS)

    Farthing, M. W.; Seyedabbasi, M. A.; Imhoff, P. T.; Miller, C. T.

    2012-08-01

    The utility of existing models for describing upscaled mass transfer from nonaqueous phase liquid (NAPL) were examined when preferential dissolution pathways form in NAPL-contaminated zones that extend over the scale of decimeters. Laboratory experiments were conducted in two well-characterized, heterogeneous packings. Using data from these experiments and simulations, existing methods for upscaling the mass transfer rate coefficient for NAPL dissolution based on dissolution front length growth (LDF), aquifer heterogeneity and spatial moments of NAPL distribution, and the ganglia-to-pool ratio (GTP) were evaluated along with an equilibrium stream tube (EST) model for predicting contaminant flux. When the correlation length of permeability perpendicular to the mean water flow direction was 6.0 cm, greater than the scale of dissolution fingers, only 4.8% of the NAPL resided in pools. Dissolution fingers formed in this experiment, and the LDF, GTP, and EST models resulted in similar predictions of effluent concentrations, with root-mean-square errors (RMSEs) between 0.035 and 0.079 and the LDF-heterogeneous model best. When the correlation scale was smaller (1.0 cm), 66.7% of the NAPL was in pools, and preferential dissolution pathways were dominated by channeling, preferential dissolution caused by spatial variations in aqueous phase permeability, and NAPL saturation. For this experiment the EST and GTP models performed well, with RMSEs of 0.055 and 0.103, respectively. Dissolution fingering was important when the permeability correlation length was sufficiently large that dissolution finger formation was not disrupted and NAPL pools were not dominant.

  11. Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide.

    PubMed

    Song, Longchu; Yang, Yunlong; Xie, Haibo; Liu, Enhui

    2015-10-12

    Cellulose is a promising renewable material, but cannot easily be processed homogeneously owing to the stiffness of the molecules and the dense packing of its chains, due to intermolecular hydrogen bonds. Cellulose processability can be improved by chemical modification. The reversible reaction of cellulose with carbon dioxide in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) allows dissolution of cellulose in dimethyl sulfoxide (DMSO). This DMSO solution is an effective medium for grafting L-lactide (LLA) from cellulose by ring-opening polymerization (ROP) under mild conditions, allowing to prepare cellulose-graft-poly(L-lactide) co-polymers with a molar substitution (MSPLLA ) of poly(L-lactide) in the range of 0.37-5.32, at 80 °C. This makes DBU not only an important reagent to achieve cellulose dissolution, but it also acts as organocatalyst for the subsequent ring-opening polymerization process. Characterization of the structure and thermal properties of the co-polymers by a variety of techniques reveals that they have a single glass-transition temperature (Tg ), which decreases with increasing MSPLLA . Thus, the modification results in a transformation of the originally semirigid cellulose into a thermoplastic material with tunable Tg . The carbon dioxide dissolution strategy is an efficient platform for cellulose derivatization by homogeneous organocatalysis.

  12. Cellulose Dissolution and In Situ Grafting in a Reversible System using an Organocatalyst and Carbon Dioxide.

    PubMed

    Song, Longchu; Yang, Yunlong; Xie, Haibo; Liu, Enhui

    2015-10-12

    Cellulose is a promising renewable material, but cannot easily be processed homogeneously owing to the stiffness of the molecules and the dense packing of its chains, due to intermolecular hydrogen bonds. Cellulose processability can be improved by chemical modification. The reversible reaction of cellulose with carbon dioxide in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) allows dissolution of cellulose in dimethyl sulfoxide (DMSO). This DMSO solution is an effective medium for grafting L-lactide (LLA) from cellulose by ring-opening polymerization (ROP) under mild conditions, allowing to prepare cellulose-graft-poly(L-lactide) co-polymers with a molar substitution (MSPLLA ) of poly(L-lactide) in the range of 0.37-5.32, at 80 °C. This makes DBU not only an important reagent to achieve cellulose dissolution, but it also acts as organocatalyst for the subsequent ring-opening polymerization process. Characterization of the structure and thermal properties of the co-polymers by a variety of techniques reveals that they have a single glass-transition temperature (Tg ), which decreases with increasing MSPLLA . Thus, the modification results in a transformation of the originally semirigid cellulose into a thermoplastic material with tunable Tg . The carbon dioxide dissolution strategy is an efficient platform for cellulose derivatization by homogeneous organocatalysis. PMID:26220825

  13. Storm-generated bedforms and relict dissolution pits and channels on the Yucatan carbonate platform

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Goff, J. A.; Stewart, H. A.; Perez-Cruz, L. L.; Davis, M. B.; Duncan, D.; Saustrup, S.; Sanford, J. C.; Fucugauchi, J. U.

    2013-12-01

    The Yucatan 2013 (cruise number 2013/4_ECORD) geophysical and geotechnical hazard site survey took place aboard the R/V Justo Sierra in April 2013. Our study was conducted within the Chicxulub impact crater, encompassing three potential IODP drilling sites. The survey was located ~32 km northwest of Progreso, Mexico; data acquired included ~15.6 km2 of complete multibeam bathymetry coverage, ~435 line km of side scan sonar and CHIRP data, 204 line kilometers of magnetometer data, and 194 line kilometers of surface tow boomer profiles. Based on these data, this portion of the Yucatan Shelf consists of flat-lying, hard limestone rock overlain by isolated ribbons of carbonate sand <1.0 m thick. These ribbons are oriented along NE-SW trends and have smaller scale orthogonal sand-waves (~20-100 m wavelengths and relief of ~0.2-0.6 m) on them. The sand waves are anisotropic with steeper slopes facing the NE. The larger scale morphology can be classified as longitudinal bedforms (ribbons), and the smaller scale transverse bedforms formed in response to a NE-directed flow. This flow direction is inconsistent with the ambient west-directed current conditions, and may therefore be indicative of storm-driven currents. Numerous dissolution pits, ~5-50m in diameter, ~0.2-0.5 m deep with steep (0.1-0.5 gradient) walls, are present in the bare rock regions of most of the study area. These occasionally are floored by rippled, highly reflective (coarse) sediments. We interpret these pits as representing karstic morphology formed during the last sub-aerial exposure of the study area interpreted to have occurred during Holocene times given the present day ~17 m average water depth. A sub-surface reflector imaged on the surface tow boomer data lies 1-3 m below the hard seafloor reflection (sand ribbons are below the vertical resolution of the surface tow boomer), which we interpret as a layer within the limestone bedrock. This reflector is flat-lying and undisturbed throughout the

  14. Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite

    NASA Astrophysics Data System (ADS)

    Ulrich, Marc; Muñoz, Manuel; Guillot, Stéphane; Cathelineau, Michel; Picard, Christian; Quesnel, Benoit; Boulvais, Philippe; Couteau, Clément

    2014-01-01

    The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution-precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution-precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.

  15. Dissolution-precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite

    NASA Astrophysics Data System (ADS)

    Ulrich, M.; Munoz, M.; Guillot, S.; Cathelineau, M.; Picard, C.; Quesnel, B.; Boulvais, P.; Couteau, C.

    2014-12-01

    The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution-precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution-precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite.

  16. Influence of solution volume on the dissolution rate of silicon dioxide in hydrofluoric acid.

    PubMed

    Shvartsev, Boris; Gelman, Danny; Komissarov, Ilia; Epshtein, Alon; Starosvetsky, David; Ein-Eli, Yair

    2015-02-01

    Experimental data and modeling of the dissolution of various Si/SiO2 thermal coatings in different volumes of hydrofluoric acid (HF) are reported. The rates of SiO2 -film dissolution, measured by means of various electrochemical techniques, and alteration in HF activity depend on the thickness of the film coating. Despite the small volumes (0.6-1.2 mL) of the HF solution, an effect of SiO2 -coating thickness on the dissolution rate was detected. To explain alterations detected in HF activity after SiO2 dissolution, spectroscopic analyses (NMR and FTIR) of the chemical composition of the solutions were conducted. This is associated with a modification in the chemical composition of the HF solution, which results in either the formation of an oxidized species in solution or the precipitation of dissolution products. HF2 (-) accumulation in the HF solution, owing to SiO2 dissolution was identified as the source of the chemical alteration.

  17. Influence of layering on the formation and growth of dissolution pipes in karst systems

    NASA Astrophysics Data System (ADS)

    Petrus, Karine; Pecelerowicz, Michal; Szymczak, Piotr

    2015-04-01

    In karst systems, hydraulic conduits called dissolution pipes (a.k.a. wormholes) are formed as a result of the dissolution of limestone rocks by the water surcharged with CO2. The dissolution pipes are the end result of a positive feedback between spatial variations in porosity in the initial matrix and the local dissolution rate. A small enhancement in porosity at some point in the reaction front increases the fluid flow in that region, which convects reactant further downstream. By this means any local variation in porosity is amplified as the reaction front passes through and propagates downstream with the front, eventually developing into dissolution pipes. As dissolution proceeds the growing pipes interact, competing for the available flow, and eventually the growth of the shorter ones ceases. Here, we investigate numerically the effect of rock stratification on the dissolution pipe growth, using a simple model system with a number of horizontal bedding planes, which are less porous than the rest of the matrix. Stratification is shown to affect the resulting piping patterns in a variety of ways. First of all, it enhances the competition between the pipes, impeding the growth of the shorter ones and enhancing the flow in the longer ones, which therefore grow longer. Next, it affects the shapes of individual dissolution pipes, with characteristic widening of the profiles in between the layers and narrowing within the layers. These results are in qualitative agreement with the piping morphologies observed in nature. Importantly, measuring the ratio between the pipe diameters in different layers can provide one with information on the conditions prevailing during the formation of the pattern as well as on the physical characteristics of the layers in a given natural system. Additionally, we have investigated the model with layers of the same porosity but a smaller dissolution rate. Interestingly, in this case, the stratification is shown to weaken the competition

  18. New insight into Cm(III) interaction with kaolinite - Influence of mineral dissolution

    NASA Astrophysics Data System (ADS)

    Huittinen, N.; Rabung, Th.; Schnurr, A.; Hakanen, M.; Lehto, J.; Geckeis, H.

    2012-12-01

    Cm(III) speciation in natural kaolinite (St. Austell, UK) suspensions under alkaline conditions was studied by time-resolved laser fluorescence spectroscopy (TRLFS). The spectroscopic investigations were performed under argon atmosphere (O2 < 1 ppm) using a constant curium concentration, ionic strength and mineral content of 2 × 10-7 M, 1 mM NaClO4 and 0.25 g/L, respectively, throughout the study. The impact of kaolinite mineral dissolution on the speciation of the trivalent actinide was investigated in oversaturation experiments where excess amounts of aluminum and/or silicon were added to alkaline kaolinite suspensions. Only silicon addition was found to influence the curium ligand-field under the experimental conditions indicating the formation of a curium-silicate complex in the kaolinite environment. In experiments with 10-3 M added silicon but no solid phase for curium attachment only the hydrolysis species Cm(OH)2+ could be detected at pH 10. Thus, the formation of colloidal silicate species for the attachment of curium could be excluded and the observed species in alkaline kaolinite environments could be assigned to a ternary kaolinite/curium/silicate complex forming between adsorbed curium at the mineral surface and dissolved silicates in solution. A similar curium-silicate complex with identical spectroscopic features was also found in investigations with α-alumina as sorbent phase upon addition of silicon to the mineral suspensions, suggesting that silicon complexation with surface-bound curium is independent of the sorbent material.

  19. 226Ra-in marine barite: relationship with carbonate dissolution and sediment focusing in the equatorial pacific

    NASA Astrophysics Data System (ADS)

    van Beek, P.; Reyss, J.-L.; DeMaster, D.; Paterne, M.

    2004-02-01

    Sedimentation rates were determined from the 226Ra ( T 1/2=1602 a) decay in barite in seven cores collected from the western, central and eastern equatorial Pacific. Timing of the last carbonate dissolution increase was investigated with this new chronometer. However, an unconformity in the 226Ra-in-barite profiles was observed at some sites, which could be related to this carbonate dissolution event. We discuss different mechanisms that may have generated these unconformities, including (1) bioturbation, (2) possible bias in the estimate of the correction for supported 226Ra activities, (3) changes in the 226Ra/Ba ratio within surface waters and (4) processes that may have affected the 226Ra/Ba ratio recorded in barite, either within the water column or at the sediment-water interface. Among the processes invoked, an increase in the sediment focusing during the Holocene constitutes the mechanism that can most likely explain the observed unconformities. An increase in the sediment redistribution by bottom currents would enhance the lateral transport of old resuspended barite crystals (with a low 226Ra/Ba ratio). The 226Ra/Ba ratio of barite that accumulates in the sediments, therefore, may have decreased, leading to the unconventional 226Ra-profile shape observed in several cores. A change in the chemistry of the bottom waters that transport the resuspended sediment may have also affected the sediment carbonate contents.

  20. The Combination Therapy of Dissolution Using Carbonated Liquid and Endoscopic Procedure for Bezoars: Pragmatical and Clinical Review

    PubMed Central

    Ogawa, Kohei; Mizuno, Ken-ichi; Shinagawa, Yoko; Kobayashi, Yuji; Abe, Hiroyuki; Watanabe, Yukari; Takahashi, Shunsaku; Hayashi, Kazunao; Yokoyama, Junji; Takeuchi, Manabu; Yamagiwa, Satoshi; Sato, Yuichi; Terai, Shuji

    2016-01-01

    Bezoars are relatively rare foreign bodies of gastrointestinal tract and often cause ileus and ulcerative lesions in the stomach and subsequent bleeding and perforation due to their size and stiffness. Therefore, the removal of bezoars is essential and recent development of devices, the endoscopic removal procedure, is often applied. However, due to their stiffness, simple endoscopic removal failed in not a few cases, and surgical removal has also been used. Recently, the efficacy of a combination therapy of endoscopic procedure and dissolution using carbonated liquid has been reported. To develop the safe and effective removal procedure, we carefully reviewed a total of 55 reported cases in this study including our 3 additional cases, successfully treated with dissolution with endoscopic fragmentation. In summary, the data showed the efficiency in the combination therapy, treating the larger size of bezoar and reducing the length of hospital stay. To the best of our knowledge, this is the largest pragmatical and clinical review for the combination therapy of dissolution and endoscopic treatment for bezoars. This review should help physicians to manage bezoars more efficiently.

  1. The Combination Therapy of Dissolution Using Carbonated Liquid and Endoscopic Procedure for Bezoars: Pragmatical and Clinical Review

    PubMed Central

    Ogawa, Kohei; Mizuno, Ken-ichi; Shinagawa, Yoko; Kobayashi, Yuji; Abe, Hiroyuki; Watanabe, Yukari; Takahashi, Shunsaku; Hayashi, Kazunao; Yokoyama, Junji; Takeuchi, Manabu; Yamagiwa, Satoshi; Sato, Yuichi; Terai, Shuji

    2016-01-01

    Bezoars are relatively rare foreign bodies of gastrointestinal tract and often cause ileus and ulcerative lesions in the stomach and subsequent bleeding and perforation due to their size and stiffness. Therefore, the removal of bezoars is essential and recent development of devices, the endoscopic removal procedure, is often applied. However, due to their stiffness, simple endoscopic removal failed in not a few cases, and surgical removal has also been used. Recently, the efficacy of a combination therapy of endoscopic procedure and dissolution using carbonated liquid has been reported. To develop the safe and effective removal procedure, we carefully reviewed a total of 55 reported cases in this study including our 3 additional cases, successfully treated with dissolution with endoscopic fragmentation. In summary, the data showed the efficiency in the combination therapy, treating the larger size of bezoar and reducing the length of hospital stay. To the best of our knowledge, this is the largest pragmatical and clinical review for the combination therapy of dissolution and endoscopic treatment for bezoars. This review should help physicians to manage bezoars more efficiently. PMID:27642293

  2. The Combination Therapy of Dissolution Using Carbonated Liquid and Endoscopic Procedure for Bezoars: Pragmatical and Clinical Review.

    PubMed

    Ogawa, Kohei; Kamimura, Kenya; Mizuno, Ken-Ichi; Shinagawa, Yoko; Kobayashi, Yuji; Abe, Hiroyuki; Watanabe, Yukari; Takahashi, Shunsaku; Hayashi, Kazunao; Yokoyama, Junji; Takeuchi, Manabu; Kobayashi, Masaaki; Yamagiwa, Satoshi; Sato, Yuichi; Terai, Shuji

    2016-01-01

    Bezoars are relatively rare foreign bodies of gastrointestinal tract and often cause ileus and ulcerative lesions in the stomach and subsequent bleeding and perforation due to their size and stiffness. Therefore, the removal of bezoars is essential and recent development of devices, the endoscopic removal procedure, is often applied. However, due to their stiffness, simple endoscopic removal failed in not a few cases, and surgical removal has also been used. Recently, the efficacy of a combination therapy of endoscopic procedure and dissolution using carbonated liquid has been reported. To develop the safe and effective removal procedure, we carefully reviewed a total of 55 reported cases in this study including our 3 additional cases, successfully treated with dissolution with endoscopic fragmentation. In summary, the data showed the efficiency in the combination therapy, treating the larger size of bezoar and reducing the length of hospital stay. To the best of our knowledge, this is the largest pragmatical and clinical review for the combination therapy of dissolution and endoscopic treatment for bezoars. This review should help physicians to manage bezoars more efficiently. PMID:27642293

  3. Precipitation and dissolution of calcium carbonate: key processes bridging the bio- and geosciences (Vladimir Ivanovich Vernadsky Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Gattuso, J.-P.

    2012-04-01

    In this Vladimir Ivanovich Vernadsky medal lecture, I will focus on the biogeochemical cycle of calcium carbonate (CaCO3) which is arguably one of the best example of a set processes that bridge the bio- and geosciences. The main reactions involved are calcification and dissolution that, respectively, manufacture and destroy calcium carbonate. Biology is intimately involved in these two processes which are key controls of the Earth's climate and leave remains that are of great use to human societies (as building materials) and geoscientists. I will illustrate the bridge between the bio- and geosciences by providing brief examples for each of the following four issues. (1) The marine cycle of CaCO3 and its relationship with climate. The release of CO2 by the precipitation of calcium carbonate and the uptake of CO2 by its dissolution are important controls of atmospheric CO2 and climate. The vertical distribution of Ψ, the ratio of CO2 released/used per CaCO3 precipitated/dissolved in the ocean will be shown to be consistent with the Högbom-Urey reactions. (2) The use of CaCO3 in paleooceanography. The remains of calcium carbonate shells and skeletons are wonderful archives of past environmental changes. Their isotopic composition and the concen-tration of trace elements are invaluable in the reconstruction of past climate. I will address the challenge of calibrating one of the proxies used to reconstruct past ocean pH. (3) The challenge of understanding calcification. Despite having been investigated for decades, many aspects of the physiological and molecular processes involved in calcification by marine organisms remain obscure. Recent breakthroughs, mostly on reef-building corals, will be briefly reviewed. (4) The response of calcification and dissolution to environmental change. The critical importance of CaCO3 precipitation and dissolution as climate controls makes it vital to understand their response to global environmental changes such as ocean warming and

  4. Karst Lands: The dissolution of carbonate rock produces unique landscapes and poses significant hydrological and environmental concerns

    SciTech Connect

    White, W.B.; Culver, D.C.; Herman, J.S.

    1995-09-01

    Karst lands are produced by the action of water on soluble rocks, a process among the most dynamic of all erosive forces that counterbalance the uplifting forces of tectonics. The dissolution of carbonate rock, primarily limestone and dolomite, produces unique landscapes and poses significant hydrological and environmental concerns. The major topic areas discussed in this article include the following: processes that form karst; karst drainage basins; discharge from karst aquifers; caves as paleoclimatic recorders; caves as ecosystems; water issues in karst regions; and sinkholes, soil piping and subsidence. 20 refs., 9 figs.

  5. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    SciTech Connect

    Ostfeld, Aminy E.; Arias, Ana Claudia; Catheline, Amélie; Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Siân; Chen, Zhihua; Facchetti, Antonio

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  6. A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability.

    PubMed

    Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong

    2016-01-01

    In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate.

  7. Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Olsson, Carina; Idström, Alexander; Nordstierna, Lars; Westman, Gunnar

    2014-01-01

    In this study the effect of residual coagulation medium (water) on cellulose dissolution in an ionic liquid is discussed. Solubility of dissolving grade pulp; HWP and SWP, and microcrystalline cellulose in binary solvents, mixtures of 1-ethyl-3-methyl-imidazolium acetate and water, was investigated by turbidity measurements, light microscopy, rheometry, and CP/MAS (13)C-NMR spectroscopy. The viscoelastic properties of the cellulose solutions imply that residual water affect the cellulose dissolution. However, it is not obvious that this always necessarily poses serious drawbacks for the solution properties or that the effects are as severe as previously believed. Turbidity measurements, viscosity data and crystallinity of the regenerated cellulose correlated well and an increased conversion to cellulose II was found at low water and cellulose contents with an apparent maximum of conversion at 2-5 wt% water. At high water content, above 10 wt%, dissolution and conversion was largely inhibited. PMID:24274528

  8. Determination of Critical Parameters of Drug Substance Influencing Dissolution: A Case Study

    PubMed Central

    Bojnanska, Erika; Kalina, Michal; Bartonickova, Eva; Opravil, Tomas; Vesely, Michal; Pekar, Miloslav

    2014-01-01

    The purpose of this study was to specify critical parameters (physicochemical characteristics) of drug substance that can affect dissolution profile/dissolution rate of the final drug product manufactured by validated procedure from various batches of the same drug substance received from different suppliers. The target was to design a sufficiently robust drug substance specification allowing to obtain a satisfactory drug product. For this reason, five batches of the drug substance and five samples of the final peroral drug products were analysed with the use of solid state analysis methods on the bulk level. Besides polymorphism, particle size distribution, surface area, zeta potential, and water content were identified as important parameters, and the zeta potential and the particle size distribution of the drug substance seem to be critical quality attributes affecting the dissolution rate of the drug substance released from the final peroral drug formulation. PMID:25317424

  9. Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate.

    PubMed

    Olsson, Carina; Idström, Alexander; Nordstierna, Lars; Westman, Gunnar

    2014-01-01

    In this study the effect of residual coagulation medium (water) on cellulose dissolution in an ionic liquid is discussed. Solubility of dissolving grade pulp; HWP and SWP, and microcrystalline cellulose in binary solvents, mixtures of 1-ethyl-3-methyl-imidazolium acetate and water, was investigated by turbidity measurements, light microscopy, rheometry, and CP/MAS (13)C-NMR spectroscopy. The viscoelastic properties of the cellulose solutions imply that residual water affect the cellulose dissolution. However, it is not obvious that this always necessarily poses serious drawbacks for the solution properties or that the effects are as severe as previously believed. Turbidity measurements, viscosity data and crystallinity of the regenerated cellulose correlated well and an increased conversion to cellulose II was found at low water and cellulose contents with an apparent maximum of conversion at 2-5 wt% water. At high water content, above 10 wt%, dissolution and conversion was largely inhibited.

  10. Fabrication of Carbon Nanowire Arrays Using Inhomogeneous Dissolution-Diffusion Kinetics and Photoresist Pyrolysis.

    PubMed

    Gao, Kunpeng; Zhu, Zhuanghui; Yan, Jinyi; Liao, Lingying; Cheng, Ji; Li, Gang; Jin, Qinghui; Zhao, Jianlong

    2015-09-01

    We report a simple and efficient method to fabricate carbon nanowire (CNW) arrays with precise locations and spatial arrangements. This method is based on a phenomenon in photoresist (PR) development that if the exposed posts are close-spaced they are linked by some undissolved resist filaments. Pyrolysis made the residual resist filaments to shrink and form CNWs under an inert atmosphere. Scanning electron microscope (SEM) showed that these nanowires had orderly arrangement and precise location. The formation of the CNWs was studied by simulation and experiment, which indicated the nanowire was influenced by the thickness of PR, the spacing distance between exposed posts, the diameter of posts and the developing time. We also investigated the composition and electrical properties of the resultant CNWs. The results showed that the CNW had characteristics of p type semiconductor.

  11. Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009-2010): Evidence for seasonal dissolution

    NASA Astrophysics Data System (ADS)

    Muehllehner, Nancy; Langdon, Chris; Venti, Alyson; Kadko, David

    2016-05-01

    Ocean acidification is projected to lower the Ωar of reefal waters by 0.3-0.4 units by the end of century, making it more difficult for calcifying organisms to secrete calcium carbonate while at the same time making the environment more favorable for abiotic and biotic dissolution of the reefal framework. There is great interest in being able to project the point in time when coral reefs will cross the tipping point between being net depositional to net erosional in terms of their carbonate budgets. Periodic in situ assessments of the balance between carbonate production and dissolution that spans seasonal time scales may prove useful in monitoring and formulating projections of the impact of ocean acidification on reefal carbonate production. This study represents the first broad-scale geochemical survey of the rates of net community production (NCP) and net community calcification (NCC) across the Florida Reef Tract (FRT). Surveys were performed at approximately quarterly intervals in 2009-2010 across seven onshore-offshore transects spanning the upper, middle, and lower Florida Keys. Averaged across the FRT, the rates of NCP and NCC were positive during the spring/summer at 62 ± 7 and 17 ± 2 mmol m-2 d-1, respectively, and negative during the fall/winter at -33 ± 6 and -7 ± 2 mmol m-2 d-1. The most significant finding of the study was that the northernmost reef is already net erosional (-1.1 ± 0.4 kg CaCO3 m-2 yr-1) and midreefs to the south were net depositional on an annual basis (0.4 ± 0.1 kg CaCO3 m-2 yr-1) but erosional during the fall and winter. Only the two southernmost reefs were net depositional year-round. These results indicate that parts of the FRT have already crossed the tipping point for carbonate production and other parts are getting close.

  12. Characterization of carbonate reservoir property changes due to dissolution for far-field conditions of CO2 storage

    NASA Astrophysics Data System (ADS)

    Mangane, P. O.; Gouze, P.; Luquot, L.

    2012-12-01

    Geological storage of CO2 in reservoir pore fluid (e.g. deep saline aquifers), is one of the diverse technologies being explored for deacreasing atmospheric CO2 concentration. After injecting the CO2 as a supercritical fluid at depth, it will slowly dissolve into the pore water producing low pH fluids with a high capacity for dissolving carbonates and consequently changing irreversibly the hydrodynamical properties of the reservoir. Characterizing these changes is essential for modelling flow and CO2 transport during and after the CO2 injection. Here we report experimental results from the injection of the CO2-saturated brine into two distinct limestone cores (a bioclastic carbonate and an oolitic carbonate) of 9 mm diameter, 18 mm length. 3D high-resolution X-ray microtomography (XRMT) of the rock sample have been performed before and after the experiments. The experiments were performed using in-situ sequestration conditions (P = 12MPa and T = 100°C), and notably, under chemical conditions given at the position far away from the well injection site (i.e area where the volume of dissolved CO2 into the brine is low, due to CO2 consumption by the dissolution processes occured during its transport from the well injection site). Permeability k is calculated from the pressure drop across the sample and porosity Φ is deduced from chemical concentration of the outlet fluid. The change of the pore structure is analysed in terms of connectivity, tortuosity and fluid-rock interface from processing the XRMT images. These experiments show that far from the well injection site, dissolution processes are characterized by slow mass tranfer including, in the case of carbonate rock, transport of fine particles, which locally clog the porous space. Then, that leads to the damage of the carbonate reservoir both in terms of connectivity of the porous space and CO2 hydrodynamical storage capacity. In fact, the results of the two experiments show that the porosity decreased locally

  13. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  14. The dissolution of calcite in aqueous acid: The influence of humic species

    SciTech Connect

    Compton, R.G.; Sanders, G.H.W. )

    1993-07-01

    The kinetics of proton-induced calcite dissolution in aqueous solution in the presence of humic acids and their sodium salts are reported. In equilibrated acid solutions (pH <4) there is no inhibition by humic material and dissolution proceeds at a rate simply determined by the solution pH. Contrastingly the sodium salts of humic acids were found to have a significant inhibitory effect on the acid catalyzed dissolution. This was quantified using a novel channel flow cell experiment which employed two electrodes, the upstream of which was used to inject protons into a neutral solution, which also contained sodium salts of humic acid, via electrolytic oxidation of dissolved hydroquinone. The two electrodes were located immediately upstream and downstream of a calcite crystal so that the proton injection served to dissolve the calcite in the (inhibiting) presence of humic salts unequilibrated with the solution pH. The amount of H[sup +] which survived passage to the downstream detector'' electrode was used to quantify the rate of dissolution and hence the inhibitory effects of the humic acid. The latter were found to operate in a manner not inconsistent with Langmuirian adsorption.

  15. Dissolution of acidic and basic compounds from the rotating disk: influence of convective diffusion and reaction.

    PubMed

    McNamara, D P; Amidon, G L

    1986-09-01

    A mass transfer model was developed to describe the dissolution and reaction of acidic and basic compounds from a rotating disk in unbuffered water. Dissolution of two carboxylic acids, 2-naphthoic acid (1) and naproxen [(+)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, 2], and the free base, papaverine (6,7-dimethoxy-1-veratrylisoquinoline, 3), in aqueous solutions (mu = 0.1 with KCI) at 25 degrees C were investigated. An automated dissolution apparatus, which consisted of microcomputer-controlled autoburets, was constructed to monitor and adjust the pH of the aqueous solutions during the experiments. Unique features of the mass transfer model include treatment of mass transfer as a convective diffusion process rather than a stagnant film diffusion only process; treatment of ionization and acid-base reactions as heterogeneous reactions; use of experimental diffusion coefficients for all species, particularly H+ and OH-; and application of boundary conditions that specify flux for surface ionization produced species. The model accurately predicted the dissolution rate assuming the solubility, pKa, and diffusion coefficient of the compound were independently known. The model also predicted pH at the solid-liquid surface, the flux of H+ from the surface, and the contribution of A- to the total acid flux as a function of bulk pH of the aqueous solution. PMID:3783452

  16. Carbonate dissolution and transport in H2O fluids during subduction revealed by diamond-bearing rocks from the Alps

    NASA Astrophysics Data System (ADS)

    Frezzotti, M.; Selverstone, J.; Sharp, Z. D.; Compagnoni, R.

    2011-12-01

    Here we discuss the fate of subducted carbonates and its implications for recycling of crustal carbon. Thermodynamic models predict little decarbonation along most subduction geotherms, and the mechanisms by which carbon is transferred from the subducting slab to the overlying mantle remain poorly constrained. Diamond-bearing fluid inclusions in garnet in oceanic metasedimentary rocks from Lago di Cignana (western Alps) represent the first occurrence of diamond from a low-temperature subduction complex of clearly oceanic origin (T ≤600°C; P ≥3.5 GPa). The presence of diamonds in and associated with fluid inclusions provides clear evidence of carbon transport by fluids at depths that are directly relevant to slab-mantle fluid transfer during subduction. At room temperature, the fluid inclusions contain aqueous fluid, a vapor bubble, and multiple solid daughter crystals. Daughter crystals identified by Raman spectroscopy and microprobe analysis include ubiquitous Mg-calcite/calcite and rutile, and less common diamond, quartz, paragonite, dawsonite, rhodochrosite, dypingite, and pentahydrite. Molecular CO2 is absent or in trace amounts. The aqueous liquid phase contains ≥0.2 wt%, HCO3-, CO32-, and SO42- ions. In Raman spectra, broad peaks at 773 and 1017 cm-1 point to the presence of both Si(OH)4(aq) and deprotonated monomers (e.g., SiO(OH)3-(aq), and SiO2(OH)22-(aq)), indicative of alkaline solutions. The absence of CO2 in the vapor, and the presence of carbonate daughter minerals, CO32-(aq), and HCO3-(aq) also show that the trapped fluids are alkaline at ambient conditions. High activities of aqueous carbon species reveal that carbonate dissolution is an important mechanism for mobilizing slab carbon at sub-arc depths (100-200 km) during oceanic subduction. Our results imply that the magnitude of carbon release and transport from the slab at sub-arc depths is greater than experimentally predicted on the basis of decarbonation reactions alone.

  17. Dissolution kinetics of polycrystalline calcium sulfate-based materials: influence of chemical modification.

    PubMed

    Fisher, Robin D; Mbogoro, Michael M; Snowden, Michael E; Joseph, Maxim B; Covington, James A; Unwin, Patrick R; Walton, Richard I

    2011-09-01

    Using a channel flow cell (CFC) system, the dissolution kinetics of polycrystalline gypsum-based materials have been examined with the aim of understanding their interaction with water, a property that limits the applications of the material in many situations. ICP (inductively coupled plasma) analysis of elemental concentrations in solution as a function of time yields surface fluxes by using a finite element modeling approach to simulate the hydrodynamic behavior within the CFC. After correction for surface roughness, a value for the intrinsic dissolution flux into water of pure polycrystalline gypsum, CaSO(4).2H(2)O, of 1.1 (±0.4) × 10(-8) mol cm(-2) s(-1) has been obtained. The addition of known humid creep inhibitors to the gypsum samples, including boric acid, tartaric acid and 3,4,5-trihydroxybenzoic acid (gallic acid), was found to have little measurable effect on the dissolution kinetics of gypsum: all yielded dissolution fluxes of 1.4 (±0.6) × 10(-8) mol cm(-2) s(-1). However, trisodium trimetaphosphate (STMP) was found to have a small detectable inhibitory effect relative to pure gypsum yielding a flux of 7.4 (±2.0) × 10(-9) mol cm(-2) s(-1). The data strongly suggest that models for humid creep inhibition that involve dissolution-crystallization of gypsum crystallites are less likely than those that involve a hindered ingress of water into the gypsum matrix. For comparison, composite materials that comprised of calcium sulfate anhydrite (CaSO(4)) crystallites bound by a polyphosphate matrix were also studied. For some of these samples, Ca(2+) surface fluxes were observed to be ∼1 order of magnitude lower than values for polycrystalline gypsum control substrates, suggesting a useful way to impart water resistance to gypsum-based materials. PMID:21861513

  18. Influence of the pH on the dissolution of TPD and associated solid solutions

    NASA Astrophysics Data System (ADS)

    Robisson, A. C.; Dacheux, N.; Aupiais, J.

    2002-12-01

    The dissolution of thorium phosphate diphosphate (TPD) doped or not with trivalent actinides and that of associated solid solutions with tetravalent plutonium was studied from a kinetic point of view as a function of the acidity or the basicity of the leachate. From the evolution of the normalized mass losses, the dissolution rates were determined. For all the solids considered, the values were found between 1.2×10 -5 and 4.4×10 -9 g m -2 d -1 which confirms the very good durability of TPD to aqueous corrosion. The expression of the dissolution rate was given in acidic and in basic media (10 -1-10 -4 M HNO 3 or HClO 4 and 10 -1-10 -4 M NaOH). The partial orders related to the proton and hydroxide ion concentrations were found to be equal to n=0.31-0.40 and to m=0.37, respectively. The associated dissolution rate constant at pH=0 and pH=14 were found to k 298 K,0.1 M'=1.2×10 -5 to 2.4×10 -5 g m -2 d -1 and to k 298 K,0.1 M″, (7.8±1.9)×10 -5 g m -2 d -1, respectively. In these conditions, the dissolution rate value extrapolated in neutral medium was evaluated to 2.4×10 -7 to 3.6×10 -7 g m -2 d -1 at room temperature and to 5.0×10 -6 to 7.5×10 -6 g m -2 d -1 at 90 °C which remains very low by comparison to the other ceramics studied for the same applications.

  19. Dissolution kinetics of polycrystalline calcium sulfate-based materials: influence of chemical modification.

    PubMed

    Fisher, Robin D; Mbogoro, Michael M; Snowden, Michael E; Joseph, Maxim B; Covington, James A; Unwin, Patrick R; Walton, Richard I

    2011-09-01

    Using a channel flow cell (CFC) system, the dissolution kinetics of polycrystalline gypsum-based materials have been examined with the aim of understanding their interaction with water, a property that limits the applications of the material in many situations. ICP (inductively coupled plasma) analysis of elemental concentrations in solution as a function of time yields surface fluxes by using a finite element modeling approach to simulate the hydrodynamic behavior within the CFC. After correction for surface roughness, a value for the intrinsic dissolution flux into water of pure polycrystalline gypsum, CaSO(4).2H(2)O, of 1.1 (±0.4) × 10(-8) mol cm(-2) s(-1) has been obtained. The addition of known humid creep inhibitors to the gypsum samples, including boric acid, tartaric acid and 3,4,5-trihydroxybenzoic acid (gallic acid), was found to have little measurable effect on the dissolution kinetics of gypsum: all yielded dissolution fluxes of 1.4 (±0.6) × 10(-8) mol cm(-2) s(-1). However, trisodium trimetaphosphate (STMP) was found to have a small detectable inhibitory effect relative to pure gypsum yielding a flux of 7.4 (±2.0) × 10(-9) mol cm(-2) s(-1). The data strongly suggest that models for humid creep inhibition that involve dissolution-crystallization of gypsum crystallites are less likely than those that involve a hindered ingress of water into the gypsum matrix. For comparison, composite materials that comprised of calcium sulfate anhydrite (CaSO(4)) crystallites bound by a polyphosphate matrix were also studied. For some of these samples, Ca(2+) surface fluxes were observed to be ∼1 order of magnitude lower than values for polycrystalline gypsum control substrates, suggesting a useful way to impart water resistance to gypsum-based materials.

  20. Pressurized laboratory experiments show no stable carbon isotope fractionation of methane during gas hydrate dissolution and dissociation.

    PubMed

    Lapham, Laura L; Wilson, Rachel M; Chanton, Jeffrey P

    2012-01-15

    The stable carbon isotopic ratio of methane (δ(13)C-CH(4)) recovered from marine sediments containing gas hydrate is often used to infer the gas source and associated microbial processes. This is a powerful approach because of distinct isotopic fractionation patterns associated with methane production by biogenic and thermogenic pathways and microbial oxidation. However, isotope fractionations due to physical processes, such as hydrate dissolution, have not been fully evaluated. We have conducted experiments to determine if hydrate dissolution or dissociation (two distinct physical processes) results in isotopic fractionation. In a pressure chamber, hydrate was formed from a methane gas source at 2.5 MPa and 4 °C, well within the hydrate stability field. Following formation, the methane source was removed while maintaining the hydrate at the same pressure and temperature which stimulated hydrate dissolution. Over the duration of two dissolution experiments (each ~20-30 days), water and headspace samples were periodically collected and measured for methane concentrations and δ(13)C-CH(4) while the hydrate dissolved. For both experiments, the methane concentrations in the pressure chamber water and headspace increased over time, indicating that the hydrate was dissolving, but the δ(13)C-CH(4) values showed no significant trend and remained constant, within 0.5‰. This lack of isotope change over time indicates that there is no fractionation during hydrate dissolution. We also investigated previous findings that little isotopic fractionation occurs when the gas hydrate dissociates into gas bubbles and water due to the release of pressure. Over a 2.5 MPa pressure drop, the difference in the δ(13)C-CH(4) was <0.3‰. We have therefore confirmed that there is no isotope fractionation when the gas hydrate dissociates and demonstrated that there is no fractionation when the hydrate dissolves. Therefore, measured δ(13)C-CH(4) values near gas hydrates are not affected

  1. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    USGS Publications Warehouse

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  2. Effects of acid deposition on dissolution of carbonate stone during summer storms in the Adirondack Mountains, New York, 1987-89

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, S.I.

    1994-01-01

    This study is part of a long-term research program designed to identify and quantify acid rain damage to carbonate stone. Acidic deposition accelerates the dissolution of carbonate-stone monuments and building materials. Sequential sampling of runoff from carbonate-stone (marble) and glass (reference) microcatchments in the Adirondack Mountains in New York State provided a detailed record of the episodic fluctuations in rain rate and runoff chemistry during individual summer storms. Rain rate and chemical concentrations from carbonate-stone and glass runoff fluctuated three to tenfold during storms. Net calcium-ion concentrations from the carbonatestone runoff, a measure of stone dissolution, typically fluctuated twofold during these storms. High net sulfate and net calcium concentrations in the first effective runoff at the start of a storm indicated that atmospheric pollutants deposited on the stone surface during dry periods formed calcium sulfate minerals, an important process in carbonate stone dissolution. Dissolution of the carbonate stone generally increased up to twofold during coincident episodes of low rain rate (less than 5 millimeters per hour) and decreased rainfall (glass runoff) pH (less than 4.0); episodes of high rain rate (cloudbursts) were coincident with a rapid increase in rainfall pH and also a rapid decrease in the dissolution of carbonate-stone. During a storm, it seems the most important factors causing increased dissolution of carbonate stone are coincident periods of low rain rate and decreased rainfall pH. Dissolution of the carbonate stone decreased slightly as the rain rate exceeded about 5 millimeters per hour, probably in response to rapidly increasing rainfall pH during episodes of high rain rate and shorter contact time between the runoff and the stone surface. High runoff rates resulting from cloudbursts remove calcium sulfate minerals formed during dry periods prior to storms and also remove dissolution products formed in large

  3. Influence of Permian salt dissolution on distribution of shallow Niobrara gas fields, eastern Colorado

    SciTech Connect

    Oldham, D.W.; Smosna, R.A.

    1996-06-01

    Subsurface analysis of Permian salt and related strata in the shallow Niobrara gas area on the eastern flank of the Denver basin reveals that the location of faulted anticlines which produce gas from porous chalk is related to the occurrence of six Nippewalla Group (Leonardian) salt zones. Salt distribution is controlled by the configuration of evaporate basins during the Leonardian, truncation at a sub-Jurassic unconformity (which has completely removed Guadalupian salts), and post-Jurassic subsurface dissolution. Significant dissolution took place in response to Laramide orogeny and subsequent eastward regional groundwater flow within the Lyons (Cedar Hills) Sandstone aquifer. Initially, dissolution occurred along a regional facies change from sandstone to salt. Solution collapse allowed for cross-formational flow and removal of younger salts. Shallow Niobrara gas fields are situated above salt outliers or along regionally updip salt edges. No significant Niobrara production exists in areas where salt is absent. Structural relief across fields is related to Leonardian thickness variations, rather than subsalt offset. Seismic data reveal abrupt Leonardian thinning at the regionally updip limit of Eckley field, which has produced over 33 BCFG. Thickness of residual salt may be important in controlling the amount of gas trapped within the Niobrara. Where thick salts are preserved, structural relief is greater, the gas-water transition zone is thicker, and gas saturation is higher at the crests of faulted anticlines.

  4. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating.

  5. Carbide Formation and Dissolution in Biomedical Co-Cr-Mo Alloys with Different Carbon Contents during Solution Treatment

    NASA Astrophysics Data System (ADS)

    Mineta, Shingo; Namba, Shigenobu; Yoneda, Takashi; Ueda, Kyosuke; Narushima, Takayuki

    2010-08-01

    The microstructures of as-cast and heat-treated biomedical Co-Cr-Mo (ASTM F75) alloys with four different carbon contents were investigated. The as-cast alloys were solution treated at 1473 to 1548 K for 0 to 43.2 ks. The precipitates in the matrix were electrolytically extracted from the as-cast and heat-treated alloys. An M23C6 type carbide and an intermetallic σ phase (Co(Cr,Mo)) were detected as precipitates in the as-cast Co-28Cr-6Mo-0.12C alloy; an M23C6 type carbide, a σ phase, an η phase (M6C-M12C type carbide), and a π phase (M2T3X type carbide with a β-manganese structure) were detected in the as-cast Co-28Cr-6Mo-0.15C alloy; and an M23C6 type carbide and an η phase were detected in the as-cast Co-28Cr-6Mo-0.25C and Co-28Cr-6Mo-0.35C alloys. After solution treatment, complete precipitate dissolution occurred in all four alloys. Under incomplete precipitate dissolution conditions, the phase and shape of precipitates depended on the heat-treatment conditions and the carbon content in the alloys. The π phase was detected in the alloys with carbon contents of 0.15, 0.25, and 0.35 mass pct after heat treatment at high temperature such as 1548 K for a short holding time of less than 1.8 ks. The presence of the π phase in the Co-Cr-Mo alloys has been revealed in this study for the first time.

  6. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    NASA Astrophysics Data System (ADS)

    Odorowski, Mélina; Jégou, Christophe; De Windt, Laurent; Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly; Martin, Christelle

    2016-01-01

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 109 Bq.gMOX-1 reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·tHM-1 after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O2] < 1 ppm) for one year in carbonated water (10-2 mol L-1). For each experiment, solution samples were taken over time and Eh and pH were monitored. The uranium in solution was assayed using a kinetic phosphorescence analyzer (KPA), plutonium and americium were analyzed by a radiochemical route, and H2O2 generated by the water radiolysis was quantified by chemiluminescence. Surface characterizations were performed before and after leaching using Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA) and Raman spectroscopy. Solubility diagrams were calculated to support data discussion. The uranium releases from MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO2 reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO2 matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO2 grains were much more sensitive to oxidative dissolution, but the presence of carbonates did not enable observation of an

  7. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    NASA Astrophysics Data System (ADS)

    Samanta, Saumik; Dalai, Tarun K.; Pattanaik, Jitendra K.; Rai, Santosh K.; Mazumdar, Aninda

    2015-09-01

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over 2 years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and δ13CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ⩾10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon. Calculations show that groundwater cannot account for the observed "excess" Ca in the high salinity zone. Estimated DIC contributions from anthropogenic activity are minor, and they constitute ca. 2-3% of the river water DIC concentrations. The estimated annual DIC flux from the estuary to the Bay of Bengal is ca. (3-4) × 1012 g, of which ca. 40-50% is generated within the estuary. The monsoon periods account for the majority (ca. 70%) of the annual DIC generation in the estuary. The annual DIC flux from the Hooghly estuary accounts for ca. 1% of the global river DIC flux to the oceans. This is disproportionately higher than the water contribution from the Hooghly River to the oceans, which

  8. Sampling times influence the estimate of parameters in the Weibull dissolution model.

    PubMed

    Cupera, Jakub; Lansky, Petr; Sklubalova, Zdenka

    2015-10-12

    The aim is to determine how well the parameters of the Weibull model of dissolution can be estimated in dependency on the chosen times to measure the empirical data. The approach is based on the theory of Fisher information. We show that in order to obtain the best estimates the data should be collected at time instants when tablets actively dissolve or at their close proximity. This is in a sharp contrast with commonly used experimental protocols when sampling times are distributed rather uniformly.

  9. Constraints on the magnitude and rate of carbon dioxide dissolution at Bravo Dome natural gas field

    NASA Astrophysics Data System (ADS)

    Sathaye, K.; Hesse, M. A.

    2013-12-01

    The Bravo Dome field in northeastern New Mexico contains at least 10 trillion cubic feet (tcf) of magmatic CO2. The CO2 has been emplaced in the reservoir for at least 10,000 years, providing a useful analog for geologic CO2 storage. The reservoir is comprised of a CO2 gas layer overlying brine water in a sandstone reservoir. Previous estimates have used differences in the CO2/3He ratio in the gas to infer that locally, half of the CO2 originally emplaced has dissolved into the underlying brine. This study presents the first estimate of the total amount of CO2 dissolved. We incorporate gas pressure, reservoir geometry, and gas layer thickness to show that over 80% of the CO2 originally emplaced is still present in the gas layer. It is generally assumed that the dissolution of CO2 is driven by convective currents in the brine. We present an alternative hypothesis for the spatial differences of the CO2/3He ratio seen in this reservoir. Gas injection theory predicts that as gas displaces a liquid, relatively insoluble gas components will become enriched at the front of the displacement. If the emplacement occurred from west to east this would cause 3He enrichment in the eastern portion of the Bravo Dome field overlying the brine. This effect could be responsible for the spatial differences in the CO2/3He ratio. Mass per area in the gas layer of the reservoir is seen in the 2 right panes. The measured bottom hole pressure data from 1981 is used in combination with CO2/3He measurements to estimate the mass of CO2 originally in place. The water thickness is inversely correlated with the CO2/3He ratio, suggesting that there may be convective dissolution occurring in the eastern part of the reservoir. Present day mass of CO2 is roughly 83% of the original total.

  10. Some factors influencing dissolution from salicylic acid-urea solid dispersions.

    PubMed

    Collett, J H; Flood, B L; Sale, F R

    1976-04-01

    Solid dispersion systems of salicylic acid-urea have been prepared using a fusion method. Two different methods of cooling the melt were employed, rapid cooling in liquid nitrogen and slow cooling in air. Differential scanning calorimetry and an X-ray diffraction technique were employed to investigate the nature of the fused mixture. Evidence was found of compound formation between the constituents. Dissolution rates of drug from non-disintegrating discs of solid dispersion systems were measured. Rapid cooling of the melt resulted in a much faster drug dissolution rate than from a corresponding mixture prepared by a slow cooling method. This phenomenon is explained by a difference in the sizes of drug particles produced under the different cooling conditions. Rapid cooling favoured the generation of many nucleation sites for the solid drug particles as the liquid was cooled, and hence many small particles were obtained. Conversely, slow cooling favoured the growth of the first few nuclei or solid drug particles, rather than the production of new nuclei, and hence large drug particles were obtained.

  11. The influence of amorphization methods on the apparent solubility and dissolution rate of tadalafil.

    PubMed

    Wlodarski, K; Sawicki, W; Paluch, K J; Tajber, L; Grembecka, M; Hawelek, L; Wojnarowska, Z; Grzybowska, K; Talik, E; Paluch, M

    2014-10-01

    This study for the first time investigates the solubility and dissolution rate of amorphous tadalafil (Td)--a poorly water soluble chemical compound which is commonly used for treating the erectile dysfunction. To convert the crystalline form of Td drug to its amorphous counterpart we have employed most of the commercially available amorphization techniques i.e. vitrification, cryogenic grinding, ball milling, spray drying, freeze drying and antisolvent precipitation. Among the mentioned methods only quenched cooling of the molten sample was found to be an inappropriate method of Td amorphization. This is due to the thermal decomposition of Td above 200°C, as proved by the thermogravimetric analysis (TGA). Disordered character of all examined samples was confirmed using differential scanning calorimetry (DSC) and X-ray powder diffraction (PXRD). In the case of most amorphous powders, the largest 3-fold increase of apparent solubility was observed after 5 min, indicating their fast recrystallization in water. On the other hand, the partially amorphous precipitate of Td and hypromellose enhanced the solubility of Td approximately 14 times, as compared with a crystalline substance, which remained constant for half an hour. Finally, disk intrinsic dissolution rate (DIDR) of amorphous forms of Td was also examined. PMID:24907679

  12. Facilitating Conceptual Understanding of Gas-Liquid Mass Transfer Coefficient through a Simple Experiment Involving Dissolution of Carbon Dioxide in Water in a Surface Aeration Reactor

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.; MacPherson, David

    2016-01-01

    Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…

  13. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.

  14. Bovine Serum Albumin binding to CoCrMo nanoparticles and the influence on dissolution

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Brown, A. P.; Milne, S. J.; Brydson, R. M. D.

    2015-10-01

    CoCrMo alloys exhibit good mechanical properties, excellent biocompatibility and are widely utilised in orthopaedic joint replacements. Metal-on-metal hip implant degradation leads to the release of metal ions and nanoparticles, which persist through the implant's life and could be a possible cause of health complications. This study correlates preferential binding between proteins and metal alloy nanoparticles to the alloy's corrosion behaviour and the release of metal ions. TEM images show the formation of a protein corona in all particles immersed in albumin containing solutions. Only molybdenum release was significant in these tests, suggesting high dissolution of this element when CoCrMo alloy nanoparticles are produced as wear debris in the presence of serum albumin. The same trend was observed during extended exposure of molybdenum reference nanoparticles to albumin.

  15. Arsenic incorporation into FeS 2 pyrite and its influence on dissolution: A DFT study

    NASA Astrophysics Data System (ADS)

    Blanchard, Marc; Alfredsson, Maria; Brodholt, John; Wright, Kate; Catlow, C. Richard A.

    2007-02-01

    FeS 2 pyrite can incorporate large amounts of arsenic (up to ca. 10 wt%) and hence has a strong impact on the mobility of this toxic metalloid. Focussing on the lowest arsenic concentrations for which the incorporation occurs in solid solution, the substitution mechanisms involved have been investigated by assuming simple incorporation reactions in both oxidising and reducing conditions. The solution energies were calculated by Density Functional Theory (DFT) calculations and we predict that the formation of AsS dianion groups is the most energetically favourable mechanism. The results also suggest that the presence of arsenic will accelerate the dissolution and thus the generation of acid drainage, when the crystal dissolves in oxidising conditions.

  16. The influence of surface state and saturation state on the dissolution kinetics of biogenic aragonite in seawater

    USGS Publications Warehouse

    Acker, James G.; Byrne, R.H.

    1989-01-01

    Uses several realistic partial molar volume changes (??V) for aragonite dissolution in seawater. Indicates that the molar volume change for aragonite dissolution is within the bounds -37 cm 3/mole ?????V ??? -39.5 cm3/mole. -from Authors

  17. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets

    PubMed Central

    Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301

  18. Evaluation of Influence of Various Polymers on Dissolution and Phase Behavior of Carbamazepine-Succinic Acid Cocrystal in Matrix Tablets.

    PubMed

    Ullah, Majeed; Ullah, Hanif; Murtaza, Ghulam; Mahmood, Qaisar; Hussain, Izhar

    2015-01-01

    The aim of current study was to explore the influence of three commonly used polymers, that is, cellulosics and noncellulosics, for example, Methocel K4M, Kollidon VA/64, and Soluplus, on the phase disproportionation and drug release profile of carbamazepine-succinic acid (CBZ-SUC) cocrystal at varying drug to polymer ratios (1 : 1 to 1 : 0.25) in matrix tablets. The polymorphic phase disproportionation during in-depth dissolution studies of CBZ-SUC cocrystals and its crystalline properties were scrutinized by X-ray powder diffractrometry and Raman spectroscopy. The percent drug release from HPMC formulations (CSH) showed inverse relation with the concentration of polymer; that is, drug release increased with decrease in polymer concentration. On contrary, direct relation was observed between percent drug release and polymer concentrations of Kollidon VA 64/Soluplus (CSK, CSS). At similar polymer concentration, drug release from pure carbamazepine was slightly lower with HPMC formulations than that of cocrystal; however, opposite trend in release rate was observed with Kollidon VA/64 and Soluplus. The significant increase in dissolution rate of cocrystal occurred with Kollidon VA/64 and Soluplus at higher polymer concentration. Moreover, no phase change took place in Methocel and Kollidon formulations. No tablet residue was left for Soluplus formulation so the impact of polymer on cocrystal integrity cannot be predicted. PMID:26380301

  19. An ecological mechanism to create regular patterns of surface dissolution in a low-relief carbonate landscape

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Martin, J. B.; Mclaughlin, D. L.; Osborne, T.; Murray, A.; Watts, A. C.; Watts, D.; Heffernan, J. B.

    2012-12-01

    Development of karst landscapes is controlled by focused delivery of water undersaturated with respect to the soluble rock minerals. As that water comes to equilibrium with the rock, secondary porosity is incrementally reinforced creating a positive feedback that acts to augment the drainage network and subsequent water delivery. In most self-organizing systems, spatial positive feedbacks create features (in landscapes: patches; in karst aquifers: conduits) whose size-frequency relationship follows a power function, indicating a higher probability of large features than would occur with a random or Gaussian genesis process. Power functions describe several aspects of secondary porosity in the Upper Floridan Aquifer in north Florida. In contrast, a different pattern arises in the karst landscape in southwest Florida (Big Cypress National Preserve; BICY), where low-relief and a shallow aquiclude govern regional hydrology. There, the landscape pattern is highly regular (Fig. 1), with circular cypress-dominated wetlands occupying depressions that are hydrologically isolated and distributed evenly in a matrix of pine uplands. Regular landscape patterning results from spatially coupled feedbacks, one positive operating locally that expands patches coupled to another negative that operates at distance, eventually inhibiting patch expansion. The positive feedback in BICY is thought to derive from the presence of surface depressions, which sustain prolonged inundation in this low-relief setting, and facilitate wetland development that greatly augments dissolution potential of infiltrating water in response to ecosystem metabolic processes. In short, wetlands "drill" into the carbonate leading to both vertical and lateral basin expansion. Wetland expansion occurs at the expense of surrounding upland area, which is the local catchment that subsidizes water availability. A distal inhibitory feedback on basin expansion thus occurs as the water necessary to sustain prolonged

  20. Submarine Dissolution During the Late-Miocene Carbonate Crash and Subsequent Mega-Pockmark Formation on the Cocos Ridge

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Silver, E. A.; Bangs, N. L.; McIntosh, K. D.

    2014-12-01

    A large field (245km2) seabed mega-pockmarks (~1 km to 4 km in diameter) was recently imaged on the western edge of the Cocos Ridge near the Middle American Trench. The pockmarks are part of a vast mega-pockmark field (~10x150 km) and were imaged using high-resolution multibeam bathymetry and backscatter and 3D seismic reflection data. On the seafloor, multiple pockmarks exhibit a two-tiered geomorphology, some of which contain small high-backscatter mounds, possibly indicating recent seafloor seepage. 3D seismic data reveal that the two-tiered morphology is caused by collapse structures at depth with large pockmarks above the walls of the former. Observed collapse structures are characterized by steep walls that truncate surrounding strata, apparent normal "ring" faults, chaotic internal reflections interpreted as infill, and circular morphologies. Younger pockmarks located above the walls of the collapse structures are larger in diameter, have gently dipping walls that do not truncate surrounding strata, and typically show elliptical morphologies. Physical properties results at IODP Site U1414 that intersects the 3D seismic volume suggest that observed reverse polarity lens-shaped zones, which are truncated by the deeper collapse structures, represent anomalous regions of high porosity and low density. In addition, a rapid drop in Ca concentrations observed within this interval at Site U1414 suggests a relationship with possible carbonate dissolution. Correlation of the collapse structures stratigraphic timing with nanno-fossil data at Site U1414 suggests formation occurred ~8-10 Ma, approximately during the Late Miocene eastern Pacific carbonate crash. Based on 3D seismic analysis and recent drilling results, we propose a two-stage formation process that consists of initial collapse caused by carbonate dissolution during the late Miocene, followed by sustained fluid-flow along the walls of established collapse features, resulting in pockmark formation. This

  1. Is there a component of Pleistocene CO2 change associated with carbonate dissolution cycles?

    NASA Astrophysics Data System (ADS)

    Keir, Robin S.

    1995-10-01

    The only processes which could have decreased atmospheric CO2 during glacial climates without appreciably changing the carbon isotope distribution in the sea appear to be (1) dissolved calcium carbonate input to the ocean, e.g., coral reef buildup and erosion, (2) the ocean solubility pump, due to changes in surface temperature or air-sea exchange, or (3) decreased biological production of calcium carbonate. It is assumed here that one of these mechanisms caused part of the atmospheric CO2 changes recorded in the 200-kyr-long Vostok ice core. Two residual CO2 records are generated by scaling the δ13C difference between planktonic and benthic foraminifera in marine sediment cores to -82 ppm CO2 per 1‰ increase in Δδ13C and subtracting from this the measured CO2 concentration in the ice core. Both residual CO2 records exhibit two broad maximums between about 20-50 ka and 140-200 ka, indicating that during these times, about 40 ppm of the CO2 decrease from interglacial levels cannot be explained by the interaction of the ocean's biological and vertical mixing cycles. The shape of the residual CO2 curve is similar qualitatively to the variation of calcium carbonate in central equatorial Pacific sediments during this time period, which would imply that changes in dissolved carbonate input to the ocean contributed the added component of CO2 change. However, recent models of atmospheric CO2 change in response to changing alkaline input to the ocean exhibit about a 25 to 35 ppm decrease per 1013 mol yr-1 increase in dissolved CaCO3 input. If compensation for the changing input is occurring mostly within an area of about 40 × 106 km² below the lysocline in the Indo-Pacific, the change in carbonate accumulation rate corresponding to a -40 ppm CO2 change would be a minimum of 3 mg cm-2 yr-1. This can be compared to glacial increases of 0.5 to 1.0 mg cm-2 yr-1 during the last 200 kyr in central equatorial Pacific sediments. Thus, the added glacial accumulation of

  2. Fabrication of carbonate apatite block based on internal dissolution-precipitation reaction of dicalcium phosphate and calcium carbonate.

    PubMed

    Daitou, Fumikazu; Maruta, Michito; Kawachi, Giichiro; Tsuru, Kanji; Matsuya, Shigeki; Terada, Yoshihiro; Ishikawa, Kunio

    2010-05-01

    In this study, we investigated a novel method for fabrication of carbonate apatite block without ionic movement between precursor and solution by using precursor that includes all constituent ions of carbonate apatite. A powder mixture prepared from dicalcium phosphate anhydrous and calcite at appropriate Ca/P ratios (1.5, 1.67, and 1.8) was used as starting material. For preparation of specimens, the slurry made from the powder mixture and distilled water was packed in a split stainless steel mold and heat - treated, ranging from 60 degrees C to 100 degrees C up to 48 hours at 100% humidity. It appeared that carbonate apatite could be obtained above 70 degrees C and monophasic carbonate apatite could be obtained from the powder mixture at Ca/P ratio of 1.67. Carbonate content of the specimen was about 5-7%. Diametral tensile strength of the carbonate apatite blocks slightly decreased with increasing treatment temperature. The decrease in diametral tensile strength is thought to be related to the crystal size of the carbonate apatite formed.

  3. Elevated pCO2 effects on the geochemistry of carbonate aquifers: calcite dissolution as a driver of elevated metal concentrations

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; Moore, J.; McCray, J. E.

    2012-12-01

    Geological carbon capture, utilization and storage has gained momentum in the last decade as a viable option of reducing anthropogenic emissions of CO2, with several demonstration projects completed, in progress or planned for upcoming years. However, large-scale CO2-injection operations are accompanied by concerns of CO2 leakage from deep geological repositories and subsequent contact with shallower aquifers, such as underground sources of drinking water. Direct toxicity of CO2 is of lesser concern; rather, it is the acidification of aquifers from increased CO2 partial-pressures (pCO2), which may lead to release of metals into groundwater through mineral dissolution and metal desorption. Previous geochemical studies have suggested that the presence of calcite in aquifer material would reduce the hazard of metal release by effectively buffering acidity via calcite dissolution at elevated pCO2, thus placing carbonate aquifers at lesser risk in case of CO2 leakage. Yet calcite is rarely found in pure form, and often contains a wide range of impurities, including metals such as As, Cr, and Pb, in solid-solution. Dissolution of calcite during acidity buffering is accompanied by release of these impurities from the calcite lattice. We show through experimental work that dissolution of calcite is the primary mechanism responsible for elevated concentrations of metals in carbonate aquifers at high pCO2. It is also evident that the mechanism responsible for metal release, i.e. dissolution or desorption, is metal-specific and pCO2-specific. Modeling work based on our experimental results suggests that in reducing aquifers calcite can contribute more to release of metals than sulfides, which are generally viewed as likely sources of metals in aquifers, during a hypothetical 30-year CO2 leak. In addition, modeling work suggests that when sulfide minerals are present in a carbonate aquifer, metals release would be more sensitive to pO2 than to pCO2.

  4. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  5. THE INFLUENCE OF EXCIPIENTS ON PHYSICAL PROPERTIES OF TABLETS AND DISSOLUTION OF CAFFEINE.

    PubMed

    Szumiło, Michał; Świader, Katarzyna; Belniak, Piotr; Wojciechowska, Jessica; Poleszak, Ewa

    2015-01-01

    Caffeine is a common component of everyday diet but also a popular ingredient of some analgesics. Before it is administered to a patient, it has to be properly prepared using appropriate procedures to get the suitable drug form with various excipients. The tablets with caffeine were obtained using a wet granulation method. Three groups with four series of tablets were obtained with the constant concentration of caffeine but with different combinations of excipients, including potato starch and lactose, microcrystalline cellulose and lactose and D-mannitol alone. The binder solution of polyvinylpyrrolidone was added in all series of granules used in tabletting but in different quantities. A number of pharmacopoeial tests were conducted to determine the properties of the obtained tablets. All series of tablets positively passed physical tests. More than 80% of caffeine dissolved after 45 min from most series. Only two of 12 series of tablets did not meet pharmacopoeial requirements in a dissolution test. The results of the study indicated that proposed compositions of the tablets are suitable for administration of caffeine in that drug form. PMID:26647637

  6. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.

    PubMed

    Rau, Greg H; Carroll, Susan A; Bourcier, William L; Singleton, Michael J; Smith, Megan M; Aines, Roger D

    2013-06-18

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  7. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    PubMed Central

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  8. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.

    PubMed

    Rau, Greg H; Carroll, Susan A; Bourcier, William L; Singleton, Michael J; Smith, Megan M; Aines, Roger D

    2013-06-18

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 10(5)-fold increase in OH(-) concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH(-) initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (<300 kJ/mol of CO2 captured), and inexpensive (<$100 per tonne of CO2 mitigated) removal of excess air CO2 with production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification.

  9. Dissolution of metal oxides and separation of uranium from lanthanides and actinides in supercritical carbon dioxide

    SciTech Connect

    Quach, D.L.; Wai, C.M.; Mincher, B.J.

    2013-07-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO{sub 2}) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO{sub 2} modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO{sub 2} modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO{sub 2} and counter current stripping columns is presented. (authors)

  10. DISSOLUTION OF METAL OXIDES AND SEPARATION OF URANIUM FROM LANTHANIDES AND ACTINIDES IN SUPERCRITICAL CARBON DIOXIDE

    SciTech Connect

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2013-10-01

    This paper investigates the feasibility of extracting and separating uranium from lanthanides and other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of a counter current stripping technique, which would be a more efficient and environmentally benign technology for spent nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U, Pu, and Np) and europium were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, uranium/europium and uranium/plutonium extraction and separation in sc-CO2 modified with TBP is successful at nitric acid concentrations of less than 6 M and at nitric acid concentrations of less than 3 M with acetohydroxamic acid or oxalic acid, respectively. A scheme for recycling uranium from spent nuclear fuel by using sc-CO2 and counter current stripping columns is presented.

  11. A mechanistic understanding of plagioclase dissolution based on Al occupancy and T-O bond length: from geologic carbon sequestration to ambient conditions.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-11-14

    A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.

  12. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires.

    PubMed

    Kobayashi, Shinya; Ohgoe, Yasuharu; Ozeki, Kazuhide; Hirakuri, Kenji; Aoki, Hideki

    2007-12-01

    Nickel-titanium (NiTi) has been used for implants in orthodontics due to the unique properties such as shape memory effect and superelasticity. However, NiTi alloys are eroded in the oral cavity because they are immersed by saliva with enzymolysis. Their reactions lead corrosion and nickel release into the body. The higher concentrations of Ni release may generate harmful reactions. Ni release causes allergenic, toxic and carcinogenic reactions. It is well known that diamond-like carbon (DLC) films have excellent properties, such as extreme hardness, low friction coefficients, high wear resistance. In addition, DLC film has many other superior properties as a protective coating for biomedical applications such as biocompatibility and chemical inertness. Therefore, DLC film has received enormous attention as a biocompatible coating. In this study, DLC film coated NiTi orthodontic archwires to protect Ni release into the oral cavity. Each wire was immersed in physiological saline at the temperature 37 degrees C for 6 months. The release concentration of Ni ions was detected using microwave induced plasma mass spectrometry (MIP-MS) with the resolution of ppb level. The toxic effect of Ni release was studied the cell growth using squamous carcinoma cells. These cells were seeded in 24 well culture plates and materials were immersed in each well directly. The concentration of Ni ions in the solutions had been reduced one-sixth by DLC films when compared with non-coated wire. This study indicated that DLC films have the protective effect of the diffusion and the non-cytotoxicity in corrosive environment.

  13. Dissolution of Columbia River Basalt Under Mildly Acidic Conditions as a Function of Temperature: Experimental Results Relevant to the Geological Sequestration of Carbon Dioxide

    SciTech Connect

    Schaef, Herbert T.; McGrail, B. Peter

    2009-05-01

    Increasing attention is being focused on the rapid rise of carbon dioxide levels in the atmosphere, which many believe to be the major contributing factor to global climate change. Sequestering CO2 in deep geological formations has been proposed as a long-term solution to help stabilize CO2 levels. However, before such technology can be developed and implemented, a basic understanding of H2O-CO2 systems and the chemical interactions of these fluids with the host formation must be obtained. Important issues concerning mineral stability, reaction rates, and carbonate formation are all controlled or at least significantly impacted by the kinetics of rock-water reactions in mildly acidic, CO2-saturated solutions. Basalt has recently been identified as a potentially important host formation for geological sequestration. Dissolution kinetics of the Columbia River Basalt (CRB) were measured for a range of temperatures (25° to 90°C) under mildly acidic to neutral pH conditions using the single-pass flow-through test method. Under anaerobic conditions, the normalized dissolution rates for CRB decrease with increasing pH (3≤pH≤7) with a slope, η, of -0.12 ± 0.02. An activation energy, Ea, has been estimated at 30.3 ± 2.4 kJ mol-1. Dissolution kinetics measurements like these are essential for modeling the rate at which the CO2 reacts with basalt and ultimately converted to carbonate minerals in situ.

  14. Influence of the physiological variability of fasted gastric pH and tablet retention time on the variability of in vitro dissolution and simulated plasma profiles.

    PubMed

    Kovačič, Nataša Nagelj; Pišlar, Mitja; Ilić, Ilija; Mrhar, Aleš; Bogataj, Marija

    2014-10-01

    The aim of the present study was to show that the physiological variability of fasted gastric pH and tablet gastric retention time contributes to the overall variability of simulated plasma profiles of diclofenac. Those two parameters were implemented into dissolution study and plasma profiles were simulated under assumptions that in vitro dissolution well represents that occurring in vivo, and that absorption profiles are identical to dissolution profiles, as diclofenac is a highly permeable drug. Dissolution experiments were performed using USP 2 apparatus and two consecutive dissolution media, namely, an acidic medium of various pH (ranging from 1-3), where tablets were kept for a certain time (10-200 min), and phosphate buffer (pH 6.8). It was shown that the acid pH value and acid retention time of tablets affect in vitro drug release, and consequently also influence the simulated plasma profiles. Lower acid pH resulted in lower plasma peaks at each studied acid retention time. Longer acid retention time caused lower plasma concentrations at lower acid pH values, whereas at pH 3 higher plasma concentrations were noted. Additionally, it was demonstrated that the variability of both parameters represents an important contribution to the overall variability of plasma profiles.

  15. The difference between surface ocean carbonate chemistry and calcite dissolution in deep sea sediments as observed in tests of Globorotalia menardii

    NASA Astrophysics Data System (ADS)

    Russo, M.; Mekik, F.

    2010-12-01

    The Globorotalia menardii Fragmentation Index (MFI) was developed to trace deep sea calcite dissolution within sediments. While this proxy has a multi-basin core top calibration ranging the tropical and subtropical world ocean, the effect of the surface ocean [CO32-] on thickness of whole G. menardii shells has not been previously tested. If the size-normalized shell weight (SNSW) of G. menardii tests were affected by the [CO32-] of ambient habitat waters, this would put constraints on the applicability of MFI as a reliable bulk sediment calcite dissolution proxy. We present new SNSW data from G. menardii shells within core tops in the eastern equatorial Pacific where there is both a strong gradient to surface ocean [CO32-] and calcite dissolution in the sediments. We compare our G.menardii SNSW data with that of other species in the region, such as Neogloboquadrina dutertrei and Pulleniatina obliquiloculata. While SNSW of both N. dutertrei and P. obliquiloculata have clear relationships with surface ocean [CO32-], we do not find a similar relationship between G. menardii SNSW and surface ocean parameters, particularly [CO32-]. This bolsters our confidence in the reliability of MFI as a deep sea carbonate dissolution tracer.

  16. Coupled alkai fieldspar dissolution and secondary mineral precipatation in batch systems-2: New experiments with supercritical CO2 and implications for carbon sequestration

    SciTech Connect

    Lu, Peng; Fu, Qi; Seyfried, William E. Jr.; Hedges, Sheila W.; Soong, Yee; Jones, Kyle; Zhua, Chen

    2013-01-01

    In order to evaluate the extent of CO{sub 2}–water–rock interactions in geological formations for C sequestration, three batch experiments were conducted on alkali feldspars–CO{sub 2}–brine interactions at 150–200 °C and 300 bars. The elevated temperatures were necessary to accelerate the reactions to facilitate attainable laboratory measurements. Temporal evolution of fluid chemistry was monitored by major element analysis of in situ fluid samples. SEM, TEM and XRD analysis of reaction products showed extensive dissolution features (etch pits, channels, kinks and steps) on feldspars and precipitation of secondary minerals (boehmite, kaolinite, muscovite and paragonite) on feldspar surfaces. Therefore, these experiments have generated both solution chemistry and secondary mineral identity. The experimental results show that partial equilibrium was not attained between secondary minerals and aqueous solutions for the feldspar hydrolysis batch systems. Evidence came from both solution chemistry (supersaturation of the secondary minerals during the entire experimental duration) and metastable co-existence of secondary minerals. The slow precipitation of secondary minerals results in a negative feedback in the dissolution–precipitation loop, reducing the overall feldspar dissolution rates by orders of magnitude. Furthermore, the experimental data indicate the form of rate laws greatly influence the steady state rates under which feldspar dissolution took place. Negligence of both the mitigating effects of secondary mineral precipitation and the sigmoidal shape of rate–ΔG{sub r} relationship can overestimate the extent of feldspar dissolution during CO{sub 2} storage. Finally, the literature on feldspar dissolution in CO{sub 2}-charged systems has been reviewed. The data available are insufficient and new experiments are urgently needed to establish a database on feldspar dissolution mechanism, rates and rate laws, as well as secondary mineral

  17. Interactions between ciprofloxacin and antacids--dissolution and adsorption studies.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Hussain, Fida

    2005-01-01

    Ciprofloxacin is a fluorinated quinolone antibacterial agent extensively used against both Gram-positive and Gram-negative microorganisms. In certain polytherapy programs, ciprofloxacin can be administered with some antacids that could modify its dissolution rate and reduce its absorption leading to therapeutic failure. The aim of this study was to evaluate the influence of some antacids on the availability of ciprofloxacin. The release of ciprofloxacin from tablets in the presence of antacids, such as sodium bicarbonate, calcium hydroxide, calcium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, magnesium trisilicate and magaldrate was studied on BP 2002 dissolution test apparatus. These studies were carried out in simulated gastric and intestinal juices for 3 hours at 37 degrees C. The results confirmed that the dissolution rate of tablets was markedly retarded in the presence of all the antacids studied. Magaldrate and calcium carbonate in simulated gastric juice exhibited relatively higher adsorption capacities, as did magnesium trisilicate and calcium hydroxide in simulated intestinal juice.

  18. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: parameters influence, and optimization.

    PubMed

    Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy

    2016-09-01

    This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment.

  19. CO2 sequestration by mineral carbonation of steel slags under ambient temperature: parameters influence, and optimization.

    PubMed

    Ghacham, Alia Ben; Pasquier, Louis-César; Cecchi, Emmanuelle; Blais, Jean-François; Mercier, Guy

    2016-09-01

    This work focuses on the influence of different parameters on the efficiency of steel slag carbonation in slurry phase under ambient temperature. In the first part, a response surface methodology was used to identify the effect and the interactions of the gas pressure, liquid/solid (L/S) ratio, gas/liquid ratio (G/L), and reaction time on the CO2 removed/sample and to optimize the parameters. In the second part, the parameters' effect on the dissolution of CO2 and its conversion into carbonates were studied more in detail. The results show that the pressure and the G/L ratio have a positive effect on both the dissolution and the conversion of CO2. These results have been correlated with the higher CO2 mass introduced in the reactor. On the other hand, an important effect of the L/S ratio on the overall CO2 removal and more specifically on the carbonate precipitation has been identified. The best results were obtained L/S ratios of 4:1 and 10:1 with respectively 0.046 and 0.052 gCO2 carbonated/g sample. These yields were achieved after 10 min reaction, at ambient temperature, and 10.68 bar of total gas pressure following direct gas treatment. PMID:27236443

  20. Desorption and dissolution of heavy metals from contaminated soil using Shewanella sp. (HN-41) amended with various carbon sources and synthetic soil organic matters.

    PubMed

    Ayyasamy, Pudukadu Munusamy; Chun, Saho; Lee, Sanghoon

    2009-01-30

    Heavy metals in soil are considered a major environmental problem facing many countries around the world. Contamination of heavy metals occurs in soil due to both anthropogenic and natural causes. During the last two decades, extensive attention has been paid to the management and control of soil contamination. Decontamination of heavy metals in the soil has been a challenge for a long time. Microbial solubilization is one of promising process for remediation of heavy metals from contaminated sites. In this study, we attempted to treat soil contaminated with heavy metals using a facultative anaerobic bacterium Shewanella sp. (HN-41). The effect of carbon sources on the dissolution and conversion of heavy metals was first investigated using a defined medium containing 1 g of highly contaminated soil to select the most effective carbon source. Among three carbon sources, namely glucose, acetic acid and lactic acid, glucose at 10 mM was found to be the most effective. Therefore, glucose was used as a representative carbon source for the second part of the biological treatment in the defined medium, amended with humic acid (HA) and anthraquinone-2,6-disulfonate (ADQS), respectively. Among the heavy metals, iron and manganese exhibited the highest dissolution efficiency in the medium supplemented with glucose at 10mM. The rates of dissolution and removal of heavy metals were little bit higher in the medium amended with humic acid and ADQS. Per these results outlined above, a combined system of humic acid and ADQS incorporated with glucose was found to be effective for the removal of heavy metals from soil.

  1. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration.

  2. Influence of the oral dissolution time on the absorption rate of locally administered solid formulations for oromucosal use: the flurbiprofen lozenges paradigm.

    PubMed

    Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi

    2014-01-01

    Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. PMID:25277061

  3. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.

  4. Forsterite dissolution in saline water at elevated temperature and high CO2 pressure.

    PubMed

    Wang, Fei; Giammar, Daniel E

    2013-01-01

    The rates and mechanisms of magnesium silicate dissolution can control the aqueous chemistry in ways that influence carbonate mineral precipitation during geologic carbon sequestration (GCS). A series of batch experiments was performed with forsterite (Mg(1.81)Fe(0.19)SiO(4)) powder to determine the effects of pressure (10-100 bar CO(2)), temperature (25-100 °C), and salinity (0-50,000 mg/L NaCl) on its dissolution rate at conditions relevant to GCS. Dissolution rates and products were determined by analysis of the aqueous phase, equilibrium and reaction path modeling, and solid phase characterization by scanning electron microscopy and X-ray diffraction. After an initially rapid dissolution period, the dissolution rate declined significantly, an effect that is attributed to the formation of a silica-rich layer at the forsterite surface. The initial dissolution rate increased with increasing temperature and increasing CO(2) pressure; the effect of CO(2) was through its influence on the pH. The dissolution rate was enhanced by NaCl, which may have been due to its inhibition of the formation of a silica-rich surface layer. The experimental results provide information about magnesium silicate dissolution at conditions that will be encountered during GCS that can be used to predict the fate of CO(2) and the evolution of subsurface geochemistry following CO(2) injection.

  5. Electrochemical in-situ dissolution study of structurally ordered, disordered and gold doped PtCu3 nanoparticles on carbon composites

    NASA Astrophysics Data System (ADS)

    Jovanovič, Primož; Šelih, Vid Simon; Šala, Martin; Hočevar, Samo B.; Pavlišič, Andraž; Gatalo, Matija; Bele, Marjan; Ruiz-Zepeda, Francisco; Čekada, Miha; Hodnik, Nejc; Gaberšček, Miran

    2016-09-01

    Commercial deployment of low-temperature-fuel cells is still hugely restricted by platinum alloy catalysts corrosion. Extensive research of the last years is focused on increasing stability of the catalyst composite, however a comprehensive understanding is still lacking. In pursuing this fundamentally and practically very important objective we present a comparative corrosion study of a PtCu3 nano-alloy system by investigating the effects of structural ordering and gold doping. For that purpose a recently developed electrochemical flow cell (EFC) coupled to inductively coupled plasma mass spectrometer (ICP-MS) is employed. This approach provides potential- and time-resolved insight into dissolution process at extremely low concentrations (ppb level). Our results show a structure-dependent copper corrosion, where ordering and gold-doping significantly improve copper retention in the native alloy. Two assumptions can be drawn from the measured Pt dissolution profiles: (i) a better Pt re-deposition efficiency in catalysts with higher porosity and (ii) the beneficial effect of Au surface doping that lowers the amount of dissolved Pt amount and shifts the Pt cathodic dissolution to lower potentials. A 2.6 nm Pt/C standard catalyst with the same carbon loading shows a much lower stability which is due to the well-known particle size effect.

  6. Dissolution of trace metals from lava ash: influence on the composition of rainwater in the Mount Etna volcanic area.

    PubMed

    Cimino, G; Toscano, G

    1998-01-01

    Dissolution of trace metals from lava ash of the Mount Etna volcano in aqueous suspensions is studied as a function of solution pH and aerosol mass loading. The rate of dissolution and the final concentration increase with decreasing pH. Leaching experiments are found to be consistent with the observations of these metals in rainwater of the volcanic area. Elements such as Fe and Mn are important in the aqueous oxidation of SO(2) which increases the acidity of the rainwater. Leaching of Na, Ca, K, Fe and Mg may have a buffering effect in reacting with cloud and aerosol droplets.

  7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  8. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition

    NASA Astrophysics Data System (ADS)

    Qajar, Jafar; Arns, Christoph H.

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  9. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis- part 1: Assessment of pore-scale mineral dissolution and deposition.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2016-09-01

    The application of X-ray micro-computed tomography (μ-CT) for quantitatively characterizing reactive-flow induced pore structure evolution including local particle detachment, displacement and deposition in carbonate rocks is investigated. In the studies conducted in this field of research, the experimental procedure has involved alternating steps of imaging and ex-situ core sample alteration. Practically, it is impossible to return the sample, with micron precision, to the same position and orientation. Furthermore, successive images of a sample in pre- and post-alteration states are usually taken at different conditions such as different scales, resolutions and signal-to-noise ratios. These conditions accompanying with subresolution features in the images make voxel-by-voxel comparisons of successive images problematic. In this paper, we first address the respective challenges in voxel-wise interpretation of successive images of carbonate rocks subject to reactive flow. Reactive coreflood in two carbonate cores with different rock types are considered. For the first rock, we used the experimental and imaging results published by Qajar et al. (2013) which showed a quasi-uniform dissolution regime. A similar reactive core flood was conducted in the second rock which resulted in wormhole-like dissolution regime. We particularly examine the major image processing operations such as transformation of images to the same grey-scale, noise filtering and segmentation thresholding and propose quantitative methods to evaluate the effectiveness of these operations in voxel-wise analysis of successive images of a sample. In the second part, we generalize the methodology based on the three-phase segmentation of normalized images, microporosity assignment and 2D histogram of image intensities to estimate grey-scale changes of individual image voxels for a general case where the greyscale images are segmented into arbitrary number of phases. The results show that local (voxel

  10. Dissolution rate enhancement of parabens in PEG solid dispersions and its influence on the release from hydrophilic matrix tablets.

    PubMed

    Tajarobi, Farhad; Abrahmsén-Alami, Susanna; Larsson, Anette

    2011-01-01

    The dissolution rate of a homologous series of parabens and their dispersions in PEG 4 × 10(3) was examined. In light of these measurements, the release behavior of the substances from extended release hydrophilic matrix tablets based on PEO 5 × 10(6) was studied. Tablet release was examined for matrices comprising either a physical mixture of PEG, paraben, and PEO, or a solid solution of each paraben in PEG, incorporated in the PEO matrix. Considerable increase of the dissolution rate for the eutectic and in particular solid solution form of the parabens was observed. The hydration rate of all matrices, as well as polymer release, was the same. The release rate of methyl, ethyl, and butyl parabens in solid solution form was similar to that of their crystalline form. However, the release rate of the solid solution form of propyl paraben was higher than that of its crystalline form, especially in the initial part of the release. The results indicate that all parabens crystallized in the gel layer of the solid solution formulations upon the process of tablet dissolution. This was proposed to be an effect of differences in the dissolution and crystallization kinetics of the parabens.

  11. Investigating the effect of potential additives and temperature on the dissolution kinetics of olivine (Mg2SiO4) in carbonation reactions

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Daval, D.; Martinez, I.; Brunet, F.; Findling, N.; Guyot, F. J.

    2010-12-01

    A recent issue in geologic CO2 sequestration in basic rocks has been the slow dissolution kinetics of Mg-rich silicates. Previous batch carbonation studies on olivine [1] (close to forsteritic composition) performed in CO2 saturated water at relevant P,T conditions have focused on the role of secondary phases - such as amorphous silica layers - on the transport of reactants from and to the reactive surfaces. The fluid composition remained roughly constant for the duration of the 45-days experiment, close to saturation with respect to amorphous silica and with a [Mg2+]/[SiO2 (aq)] ratio close to 2, suggesting stoechiometric release. It therefore appears that the silica layer passivates the dissolution step of the reaction, in agreement with its non-porous nature observed by TEM. In order to accelerate this process, various organic ligands were added to the fluids and tested at different concentrations in similar batch experiments. An intrinsic increase of the dissolution rate of olivine was expected [2], [3] prior to the formation of a passivating silica layer. Preliminary results confirm this idea, as Mg was released in non-stoechimoetric proportions with respect to SiO2 (aq) (found to be in equilibrium with amorphous silica observed at the end of the experiments). Similarly, a slight increase of temperature (from 90°C to 120°C) seems to accelerate the reaction kinetics as well, possibly impacting the textural properties of the silica. In additon, since carbonate minerals have a retrograde solubility, thermodynamical modelling suggests this temperature increase should allow the fluid to reach saturation with respect to carbonates before reaching saturation with respect to silica. Enough Mg can therefore be released to initiate the formation of carbonates before the silica precipitates and passivates the olivine surface. Undergoing TEM investigations will allow to characterize this silica layer, and in particular its porosity, in order to better constrain the

  12. Influence of process water quality on hydrothermal carbonization of cellulose.

    PubMed

    Lu, Xiaowei; Flora, Joseph R V; Berge, Nicole D

    2014-02-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that has been shown to be environmentally and energetically advantageous for the conversion of wet feedstocks. Supplemental moisture, usually in the form of pure water, is added during carbonization to achieve feedstock submersion. To improve process sustainability, it is important to consider alternative supplemental moisture sources. Liquid waste streams may be ideal alternative liquid source candidates. Experiments were conducted to systematically evaluate how changes in pH, ionic strength, and organic carbon content of the initial process water influences cellulose carbonization. Results from the experiments conducted evaluating the influence of process water quality on carbonization indicate that changes in initial water quality do influence time-dependent carbonization product composition and yields. These results also suggest that using municipal and industrial wastewaters, with the exception of streams with high CaCl2 concentrations, may impart little influence on final carbonization products/yields.

  13. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  14. Microstructural record of cataclastic and dissolution-precipitation processes from shallow crustal carbonate strike-slip faults, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Grasemann, Bernhard; Decker, Kurt

    2015-04-01

    The concept of coseismic slip and aseismic creep deformation along faults is supported by the variability of natural fault rocks and their microstructures. Faults in carbonate rocks are characterized by very narrow principal slip zones (cm to mm wide) containing (ultra)cataclastic fault rocks that accommodate most of the fault displacement. Fluidization of ultracataclastic sub layers and thermal decomposition of calcite due to frictional heating have been proposed as possible indicators for seismic slip. Dissolution-precipitation (DP) processes are possible mechanism of aseismic sliding, resulting in spaced cleavage solution planes and associated veins, indicating diffusive mass transfer and precipitation in pervasive vein networks. We investigated exhumed, sinistral strike-slip faults in carbonates of the Northern Calcareous Alps. The study presents microstructural investigations of natural carbonate fault rocks that formed by cataclastic and dissolution-precipitation related deformation processes. Faults belong to the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system that was formed during eastward lateral extrusion of the Eastern Alps in Oligocene to Lower Miocene. The investigated faults accommodated sinistral slip between several tens and few hundreds of meters. Microstructural analysis of fault rocks was done with scanning electron microscopy and optical microscopy. Deformation experiments of natural fault rocks are planned to be conducted at the Sapienza University of Roma and should be available at the meeting. The investigated fault rocks give record of alternating cataclastic deformation and DP creep. DP fault rocks reveal various stages of evolution including early stylolites, pervasive pressure solution seams and cleavage, localized shear zones with syn-kinematic calcite fibre growth and mixed DP/cataclastic microstructures, involving pseudo sc- and scc'-fabrics. Pressure solution seams host fine grained kaolinit, chlorite

  15. Influence of Carbon on the Electrical Properties of Crustal Rocks

    SciTech Connect

    Mathez, E. A.

    2002-11-19

    The report summarizes work to determine the nature and distribution of carbon on microcracks in crystalline rocks by time-of-flight secondary ion mass spectroscopy. It also summarizes the results of a workshop devoted to investigating how carbon in rocks influences electrical conductivity and whether carbon on fracture surfaces can account for the electrical conductivity structure of the crust.

  16. Mineral Influence on Microbial Survival During Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Santillan, E. U.; Shanahan, T. M.; Wolfe, W. W.; Bennett, P.

    2012-12-01

    CO2 sequestered in a deep saline aquifer will perturb subsurface biogeochemistry by acidifying the groundwater and accelerating mineral diagenesis. Subsurface microbial communities heavily influence geochemistry through their metabolic processes, such as with dissimilatory iron reducing bacteria (DIRB). However, CO2 also acts as a sterilant and will perturb these communities. We investigated the role of mineralogy and its effect on the survival of microbes at high PCO2 conditions using the model DIRB Shewanella oneidensis MR-1. Batch cultures of Shewanella were grown to stationary phase and exposed to high PCO2 using modified Parr reactors. Cell viability was then determined by plating cultures after exposure. Results indicate that at low PCO2 (2 bar), growth and iron reduction are decreased and cell death occurs within 1 hour when exposed to CO2 pressures of 10 bar or greater. Further, fatty acid analysis indicates microbial lipid degradation with C18 fatty acids being the slowest lipids to degrade. When cultures were grown in the presence of rocks or minerals representative of the deep subsurface such as carbonates and silicates and exposed to 25 bar CO2, survival lasted beyond 2 hours. The most effective protecting substratum was quartz sandstone, with cultures surviving beyond 8 hours of CO2 exposure. Scanning electron microscope images reveal biofilm formation on the mineral surfaces with copious amounts of extracellular polymeric substances (EPS) present. EPS from these biofilms acts as a reactive barrier to the CO2, slowing the penetration of CO2 into cells and resulting in increased survival. When biofilm cultures were grown with Al and As to simulate the release of toxic metals from minerals such as feldspars and clays, survival time decreased, indicating mineralogy may also enhance microbial death. Biofilms were then grown on iron-coated quartz sand to determine conversely what influence biofilms may have on mineral dissolution during CO2 perturbation

  17. Enhancement of the dissolution rate and bioavailability of fenofibrate by a melt-adsorption method using supercritical carbon dioxide

    PubMed Central

    Cha, Kwang-Ho; Cho, Kyung-Jin; Kim, Min-Soo; Kim, Jeong-Soo; Park, Hee Jun; Park, Junsung; Cho, Wonkyung; Park, Jeong-Sook; Hwang, Sung-Joo

    2012-01-01

    Background: The aim of this study was to enhance the bioavailability of fenofibrate, a poorly water-soluble drug, using a melt-adsorption method with supercritical CO2. Methods: Fenofibrate was loaded onto Neusilin® UFL2 at different weight ratios of fenofibrate to Neusilin UFL2 by melt-adsorption using supercritical CO2. For comparison, fenofibrate-loaded Neusilin UFL2 was prepared by solvent evaporation and hot melt-adsorption methods. The fenofibrate formulations prepared were characterized by differential scanning calorimetry, powder x-ray diffractometry, specific surface area, pore size distribution, scanning electron microscopy, and energy-dispersive x-ray spectrometry. In vitro dissolution and in vivo bioavailability were also investigated. Results: Fenofibrate was distributed into the pores of Neusilin UFL2 and showed reduced crystal formation following adsorption. Supercritical CO2 facilitated the introduction of fenofibrate into the pores of Neusilin UFL2. Compared with raw fenofibrate, fenofibrate from the prepared powders showed a significantly increased dissolution rate and better bioavailability. In particular, the area under the drug concentration-time curve and maximal serum concentration of the powders prepared using supercritical CO2 were 4.62-fold and 4.52-fold greater than the corresponding values for raw fenofibrate. Conclusion: The results of this study highlight the usefulness of the melt-adsorption method using supercritical CO2 for improving the bioavailability of fenofibrate. PMID:23118538

  18. A one-pot method to enhance dissolution rate of low solubility drug molecules using dispersion polymerization in supercritical carbon dioxide.

    PubMed

    Galia, Alessandro; Scialdone, Onofrio; Filardo, Giuseppe; Spanò, Tiziana

    2009-07-30

    The surfactant assisted polymerization of 1-vinyl-2-pyrrolidone in supercritical carbon dioxide in the presence of Piroxicam, selected as a model of a low aqueous solubility drug, was studied in order to prepare in a single step a polymeric composite to enhance the rate of dissolution of the pharmaceutical compound. Reactive entrapping was carried out at 65 degrees C in the P range 21-38MPa. Under proper operative conditions we obtained the composite under the form of sub-micron spherical particles with relatively narrow particle size distribution. Drug loadings higher than 12% (w/w) were obtained and XRD and Raman spectroscopy suggest that the anti-inflammatory agent is dispersed in the matrix with a non-crystalline structure. The dissolution rate of the drug from the composites was significantly faster both than that of the pure compound and of its physical mixture with the polymer. Collected results suggest that the proposed one-pot process can be used to prepare polymer based composites to increase bioavailability of low solubility drugs without utilization of toxic solvents and under mild temperature conditions.

  19. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  20. Carbon nanotube proximity influences rice DNA

    NASA Astrophysics Data System (ADS)

    Katti, Dinesh R.; Sharma, Anurag; Pradhan, Shashindra Man; Katti, Kalpana S.

    2015-07-01

    The uptake of carbon nanotubes (CNT) influences the output of plants, potentially through interactions between the DNA and CNTs. However, little is known about the changes in the plant DNA due to CNT proximity. We report changes in rice plant DNA in the proximity of single walled CNT (SWCNT) using molecular dynamics simulations. The DNA experiences breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and wrapping onto SWCNT. The number of hydrogen bonds between water and DNA nucleobases decreases due to the presence of SWCNT. A higher number of guanine-cytosine (Gua-Cyt) WC hydrogen bonds break as compared to adenine-thymine (Ade-Thy), which suggests that Gua and Cyt bases play a dominant role in DNA-SWCNT interactions. We also find that changes to non-WC nucleobase pairs and van der Waals attractive interactions between WC nucleobase pairs and SWCNT cause significant changes in the conformation of the DNA.

  1. Interactions between sparfloxacin and antacids - dissolution and adsorption studies.

    PubMed

    Hussain, Fida; Arayne, M Saeed; Sultana, Najma

    2006-01-01

    Sparfloxacin is a broad-spectrum oral fluoroquinolone antimicrobial agent with a long elimination half-life, extensively used against both Gram-positive as well as Gram-negative microorganism. Concurrent administration of antacids and sparfloxacin decreases the gastrointestinal absorption of sparfloxacin and therapeutic failure may result. The present study was designed to evaluate the influence of some antacids on the availability of sparfloxacin. The release of sparfloxacin from tablets in the presence of antacids like sodium bicarbonate, calcium hydroxide, calcium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium carbonate, magnesium trisilicate and magaldrate has been studied on BP 2003 dissolution test apparatus. These studies were carried out in simulated gastric and intestinal juices for three hours at 37 degrees C. The results confirmed that the dissolution rate of tablets was markedly retarded in the presence all of antacids studied, whereas magaldrate and calcium carbonate exhibited relatively higher adsorption capacities in simulated gastric juice and magnesium trisilicate and calcium hydroxide in simulated intestinal juice.

  2. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates

    NASA Astrophysics Data System (ADS)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.

    2016-11-01

    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg < 4)], consistent with prior studies on sedimentary and inorganic carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic

  3. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.

    PubMed

    Yamaguchi, N; Nakamura, T; Dong, D; Takahashi, Y; Amachi, S; Makino, T

    2011-05-01

    Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (R(L/S)) increased with pH due to the flooded incubation. The R(L/S) for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles. PMID

  4. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size.

  5. Uniform nano-sized valsartan for dissolution and bioavailability enhancement: influence of particle size and crystalline state.

    PubMed

    Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling

    2013-01-30

    The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. PMID:23266761

  6. Lithological and hydrological influences on ground-water composition in a heterogeneous carbonate-clay aquifer system

    USGS Publications Warehouse

    Kauffman, S.J.; Herman, J.S.; Jones, B.F.

    1998-01-01

    The influence of clay units on ground-water composition was investigated in a heterogeneous carbonate aquifer system of Miocene age in southwest Florida, known as the Intermediate aquifer system. Regionally, the ground water is recharged inland, flows laterally and to greater depths in the aquifer systems, and is discharged vertically upward at the saltwater interface along the coast. A depth profile of water composition was obtained by sampling ground water from discrete intervals within the permeable carbonate units during coring and by squeezing pore water from a core of the less-permeable clay layers. A normative salt analysis of solute compositions in the water indicated a marine origin for both types of water and an evolutionary pathway for the clay water that involves clay diagenesis. The chemical composition of the ground water in the carbonate bedrock is significantly different from that of the pore water in the clay layers. Dissolution of clays and opaline silica results in high silica concentrations relative to water in other parts of the Intermediate aquifer system. Water enriched in chloride relative to the overlying and underlying ground water recharges the aquifer inland where the confining clay layer is absent, and it dissolves carbonate and silicate minerals and reacts with clays along its flow path, eventually reaching this coastal site and resulting in the high chloride and silica concentrations observed in the middle part of the Intermediate aquifer system. Reaction-path modeling suggests that the recharging surficial water mixes with sulfate-rich water upwelling from the Upper Floridan aquifer, and carbonate mineral dissolution and precipitation, weathering and exchange reactions, clay mineral diagenesis, clay and silica dissolution, organic carbon oxidation, and iron and sulfate reduction result in the observed water compositions.A study was conducted to clarify the influence of clay units on ground-water composition in a heterogeneous

  7. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  8. Impact of nitrogenous fertilizers on carbonate dissolution in small agricultural catchments: Implications for weathering CO 2 uptake at regional and global scales

    NASA Astrophysics Data System (ADS)

    Perrin, Anne-Sophie; Probst, Anne; Probst, Jean-Luc

    2008-07-01

    The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO 2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO 3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the NO3- content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO 2 to the total riverine alkalinity (CO 2 ATM-SOIL/HCO 3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing. We estimated that the contribution of atmospheric/soil CO 2 to riverine alkalinity decreased by about 7-17% on average for all the studied

  9. Preparation of a novel starch-derived three-dimensional ordered macroporous carbon for improving the dissolution rate and oral bioavailability of water-insoluble drugs.

    PubMed

    Liu, Ying; Wu, Chao; Hao, Yanna; Xu, Jie; Zhao, Ying; Qiu, Yang; Jiang, Jie; Yu, Tong; Ji, Peng

    2016-01-25

    In our study, soluble starch was applied as a novel carbon source for preparing three-dimensional ordered macroporous carbon (3DOMC) using monodisperse silica nanospheres as the hard template. The 3DOMC was used as an insoluble drug carrier when it was found that it could markedly improve the water solubility of felodipine (FDP). The structural features of 3DOMC were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The 3DOMC structure was found to have a higher drug loading than microporous and mesoporous structures, and the interconnected nanostructure effectively inhibited the formation of drug crystals. FDP, belonging to the Biopharmaceutics Classification System II (BCSII), was chosen as the model drug and was loaded into the 3DOMC structure by solvent evaporation. The state of FDP in the 3DOMC structure was characterized by powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The results obtained showed that FDP was present in the pores in an amorphous or microcrystalline state. In vivo and in vitro experiments indicated that 3DOMC could significantly improve the drug dissolution rate, but the FDP-3DOMC self-made common tablets had the disadvantage of a burst effect. For this reason, osmotic pump technology was used to control the drug release rate. We developed a potentially useful insoluble drug carrier for pharmaceutical applications.

  10. DISSOLUTION OF PLUTONIUM CONTAINING CARRIER PRECIPITATE BY CARBONATE METATHESIS AND SEPARATION OF SULFIDE IMPURITIES THEREFROM BY SULFIDE PRECIPITATION

    DOEpatents

    Duffield, R.B.

    1959-07-14

    A process is described for recovering plutonium from foreign products wherein a carrier precipitate of lanthanum fluoride containing plutonium is obtained and includes the steps of dissolving the carrier precipitate in an alkali metal carbonate solution, adding a soluble sulfide, separating the sulfide precipitate, adding an alkali metal hydroxide, separating the resulting precipitate, washing, and dissolving in a strong acid.

  11. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and their Influence on Reactive Transport

    SciTech Connect

    Zachara, John M.; Chongxuan Liu; Qafoku, Nikolla P.; McKinley, James P.; Catalano, Jeffrey G.; Brown, Gordon E., Jr.; Davis, James A.

    2006-04-05

    A number of published studies have sought to understand geochemical kinetic process of uranium (U) that are relevant to nuclear waste sites and repositories by studying the weathering of U ore bodies and downgradient transport of weathering products. Such studies have provided important insights on processes operative over many thousand to millions of years. This project also seeks knowledge on the geochemical kinetics of U, but for shorter in-ground time periods (e.g., 20-50 years) relevant to DOE legacy waste sites. Several representative field sites were selected for intense study at Hanford as part of EMSP research to provide: (1) fundamental insights on intermediate duration geochemical events of U controlling fate and transport, and (2) key scientific information needed for remedial action assessment and informed decision making. The site discussed in this poster is the 300 A uranium plume. This plume is located at the south end of Hanford and discharges directly to the Columbia River. The plume resulted from the discharge of fuels fabrication wastes (nitric acid solutions containing U and Cu) and cladding dissolution wastes (basic sodium aluminate) to the North and South Process Ponds between 1943 and 1975 near the Columbia River. A Kd-based remedial action assessment fifteen years ago predicted that the plume would dissipate to concentrations below the DWS within 10 y. As a result of this assessment, an interim, MNA remedial decision was agreed to by DOE and state/federal regulators. It has been 15 y since the above assessment, and groundwater concentrations have not decreased (attenuated) as projected. Stakeholders are now demanding remedial intervention, and DOE seeks science-based conceptual and numeric models for more accurate future projections. The objectives are: (1) Identify the chemical speciation (e.g., adsorption complexes precipitates), mineral residence, and physical location of contaminant U in a depth sequence of sediments from the disposal

  12. Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops

    SciTech Connect

    Huret, N.; Chaumerliac, N.; Isaka, H.; Nickerson, E.C. |

    1994-09-01

    Three microphysical formulations are closely compared to evaluate their impact upon gas scavenging and wet deposition processes. They range from a classical bulk approach to a fully spectral representation, including an intermediate semispectral parameterization. Detailed comparisons among the microphysical rates provided by these three parameterizations are performed with special emphasis on evaporation rate calculations. This comparative study is carried out in the context of a mountain wave simulation. Major differences are essentially found in the contrasted spreading of the microphysical fields on the downwind side of the mountain. A detailed chemical module including the dissolution of the species and their transfer between phases (air, cloud, and rain) is coupled with the three microphysical parameterizations in the framework of the dynamical mesoscale model. An assessment of the accuracy of each scheme is then proposed by comparing their ability to represent the drop size dependency of chemical wet processes. The impact of evaporation (partial versus total) upon the partition of species between gas and aqueous phases is also studied in detail.

  13. Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Hubinger, B.; Birk, S.

    2011-12-01

    Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean μ0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of

  14. Influence of initial heterogeneities and recharge limitations on the evolution of aperture distributions in carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Hubinger, B.; Birk, S.

    2011-06-01

    Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean of 0.5 mm. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of magnitudes in size. Under these

  15. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen depletion and carbon trapping

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-05-01

    The carbonate-free abyss of the North Pacific defies most paleoceanographic proxy methods and hence remains a "blank spot" in ocean and climate history. Paleomagnetic and rock magnetic, geochemical, and sedimentological methods were combined to date and analyze seven middle to late Pleistocene northwest Pacific sediment cores from water depths of 5100 to 5700 m. Besides largely coherent tephra layers, the most striking features of these records are nearly magnetite-free zones corresponding to glacial marine isotope stages (MISs) 22, 12, 10, 8, 6, and 2. Magnetite depletion is correlated with organic carbon and quartz content and anticorrelated with biogenic barite and opal content. Within interglacial sections and mid-Pleistocene transition glacial stages MIS 20, 18, 16, and 14, magnetite fractions of detrital, volcanic, and bacterial origin are all well preserved. Such alternating successions of magnetic iron mineral preservation and depletion are known from sapropel-marl cycles, which accumulated under periodically changing bottom water oxygen and redox conditions. In the open central northwest Pacific Ocean, the only conceivable mechanism to cause such abrupt change is a modified glacial bottom water circulation. During all major glaciations since MIS 12, oxygen-depleted Antarctic Bottom Water (AABW)-sourced bottom water seems to have crept into the abyssal northwest Pacific below ~5000 m depth, thereby changing redox conditions in the sediment, trapping and preserving dissolved and particulate organic matter and, in consequence, reducing and dissolving both, biogenic and detrital magnetite. At deglaciation, a downward progressing oxidation front apparently remineralized and released these sedimentary carbon reservoirs without replenishing the magnetite losses.

  16. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    USGS Publications Warehouse

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  17. [Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].

    PubMed

    Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan

    2015-08-01

    To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification. PMID:26592011

  18. [Modeling the Influencing Factors of Karstification and Karst Carbon Cycle in Laboratory].

    PubMed

    Zhao, Rui-yi; Lü, Xian-fu; Duan, Yi-fan

    2015-08-01

    To analyze the influencing factors of karstification and karst carbon cycle, a simulation experiment was carried out and 6 soil columns were designed. The results showed that the content of H2O4, hydrodynamic condition and thickness of the soil had important influence on karstification and karst carbon cycle. For the soil columns which were covered by the same thickness of soil, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B20-2 > B20-1 > B20-3, B50-2 > B50-1 > B50-3. This meant that input of H2SO4 enhanced the karstification and increasing infiltration water had significant dilution effect on the chemical properties. For the soil columns with different thickness of soil but with the same slag pile and hydrodynamic conditions, the concentrations of Ca2+ + Mg2+ and SO4(2-) followed the order of B50-1 > B20-1, B50-2 > B20-2, B50-3 > B20-3. It was demonstrated that more carbonate rock was dissolved under the thick soil columns. In addition, the net consumption of CO2 mainly depended on the content of H2SO4 in this experiment due to slight contribution of H2CO3 to carbonate rock dissolution. More content of H2SO4 brought about less net consumption of C02, but B50-2 was an exception. Organic matter and other nutrients might be input into deep soil with the slag pile, and they promoted the production of soil C)2. Therefore, more CO2 was consumed due to the increased contribution of H2CO to karstification.

  19. Influence of carbonization methods on the aromaticity of pyrogenic dissolved organic carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic carbon (DOC) components of soil amendments such as biochar will influence the fundamental soil chemistry including the metal speciation, nutrient availability, and microbial activity. Quantitative correlation is necessary between (i) pyrogenic DOC components of varying aromaticity...

  20. Dissolution of man-made vitreous fibers in rat alveolar macrophage culture and Gamble's saline solution: influence of different media and chemical composition of the fibers.

    PubMed Central

    Luoto, K; Holopainen, M; Karppinen, K; Perander, M; Savolainen, K

    1994-01-01

    The effect of different chemical compositions of man-made vitreous fibers (MMVF) on their dissolution by alveolar macrophages (AM) in culture and in Gamble's solution was studied. The fibers were exposed to cultured rat AMs, culture medium alone; or Gamble's saline solution for 2, 4, or 8 days. The dissolution of the fibers was studied by measuring the amount of silicon (Si), iron (Fe), and aluminum (Al) in each medium. The AMs in culture dissolved Fe and Al from the fibers but the dissolution of Si was more marked in the cell culture medium without cells and in the Gamble's solution. The dissolution of Si, Fe, and Al was different for different fibers, and increased as a function of time. The Fe and Al content of the fibers correlated negatively with the dissolution of Si by AMs from the MMVF, i.e., when the content of Fe and Al of the fibers increased the dissolution of Si decreased. These results suggest that the chemical composition of MMVFs has a marked effect on their dissolution. AMs seem to affect the dissolution of Fe and Al from the fibers. This suggests that in vitro models with cells in the media rather than only culture media or saline solutions would be preferable in dissolution studies of MMVFs. PMID:7882911

  1. Influence of public transport in black carbon

    NASA Astrophysics Data System (ADS)

    Vasquez, Y.; Oyola, P.; Gramsch, E. V.; Moreno, F.; Rubio, M.

    2013-05-01

    As a consequence of poor air quality in Santiago de Chile, several measures were taken by the local authorities to improve the environmental conditions and protect the public health. In year 2005 the Chilean government implemented a project called "Transantiago" aimed to introduce major modifications in the public transportation system. The primary objectives of this project were to: provide an economically, socially and environmentally sustainable service and improve the quality of service without increasing fares. In this work we evaluate the impact of the Transantiago system on the black carbon pollution along four roads directly affected by the modification to the transport system. The black carbon has been used to evaluate changes in air quality due to changes in traffic. The assessment was done using measurements of black carbon before Transantiago (June-July 2005) and after its implementation (June-July 2007). Four sites were selected to monitor black carbon at street levels, one site (Alameda) that represents trunk-bus streets, i.e., buses crossing the city through main avenues. Buses using these streets had an important technological update with respect to 2005. Two streets (Usach and Departamental) show a mixed condition, i.e., they combine feeder and trunk buses. These streets combine new EURO III buses with old buses with more than 3 years of service. The last street (Eliodoro Yañez) represent private cars road without public transportation and did not experience change. Hence, the results from the years 2005 and 2007 can be directly compared using an appropriate methodology. To ensure that it was not the meteorological conditions that drive the trends, the comparison between year 2005 and 2007 was done using Wilcoxon test and a regression model. A first assessment at the four sites suggested a non decrease in black carbon concentration from 2005 to 2007, except for Alameda. A first statistical approach confirmed small increases in BC in Usach and E

  2. An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2010-11-01

    Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ⩽ I ⩽ 1 M), total dissolved carbonate concentration (10 -4 M < ΣCO 2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO 32- activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory ( Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r=k{>MgOH2+}41-exp (-4ART), where rd represents the BET surface area normalized dissolution rate, {>MgOH2+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO 2 stem from a corresponding decrease in {>MgOH2+}. This decrease in {>MgOH2+} results from the increasing stability of the >MgCO3- and >MgOH° surface species with increasing temperature, pH and CO 32- activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.

  3. Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation

    PubMed Central

    Bednaršek, Nina; Tarling, Geraint A.; Bakker, Dorothee C. E.; Fielding, Sophie; Feely, Richard A.

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean. PMID:25285916

  4. Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation.

    PubMed

    Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Feely, Richard A

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ω(ar)). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ω(ar) ∼ 0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ω(ar) levels slightly above 1 and lower at Ω(ar) levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ω(ar) derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ω(ar) levels close to 1, with net shell growth ceasing at an Ω(ar) of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean.

  5. Light noble gas dissolution into ring structure-bearing materials and lattice influences on noble gas recycling

    NASA Astrophysics Data System (ADS)

    Jackson, Colin R. M.; Parman, Stephen W.; Kelley, Simon P.; Cooper, Reid F.

    2015-06-01

    Light noble gas (He-Ne-Ar) solubility has been experimentally determined in a range of materials with six-member, tetrahedral ring structures: beryl, cordierite, tourmaline, antigorite, muscovite, F-phlogopite, actinolite, and pargasite. Helium solubility in these materials is relatively high, 4 × 10-10 to 3 × 10-7 mol g-1 bar-1, which is ∼100 to 100,000× greater than He solubility in olivine, pyroxene, or spinel. Helium solubility broadly correlates with the topology of ring structures within different minerals. Distinctive He-Ne-Ar solubility patterns are associated with the different ring structure topologies. Combined, these observations suggest ring structures have a strong influence on noble gas solubility in materials and could facilitate the recycling of noble gases, along with other volatiles (i.e., water, chlorine, and fluorine), into the mantle. Measurements of Ne and Ar solubility in antigorite, however, are highly variable and correlated with each other, suggesting multiple factors contribute the solubility of noble gases in serpentine-rich materials.

  6. Factors influencing organic carbon preservation in marine sediments

    NASA Technical Reports Server (NTRS)

    Canfield, D. E.

    1994-01-01

    The organic matter that escapes decomposition is buried and preserved in marine sediments, with much debate as to whether the amount depends on bottom-water O2 concentration. One group argues that decomposition is more efficient with O2, and hence, organic carbon will be preferentially oxidized in its presence, and preserved in its absence. Another group argues that the kinetics of organic matter decomposition are similar in the presence and absence of O2, and there should be no influence of O2 on preservation. A compilation of carbon preservation shows that both groups are right, depending on the circumstances of deposition. At high rates of deposition, such as near continental margins, little difference in preservation is found with varying bottom-water O2. It is important that most carbon in these sediments decomposes by anaerobic pathways regardless of bottom-water O2. Hence, little influence of bottom-water O2 on preservation would, in fact, be expected. As sedimentation rate drops, sediments deposited under oxygenated bottom water become progressively more aerobic, while euxinic sediments remain anaerobic. Under these circumstances, the relative efficiencies of aerobic and anaerobic decomposition could affect preservation. Indeed, enhanced preservation is observed in low-O2 and euxinic environments. To explore in detail the factors contributing to this enhanced carbon preservation, aspects of the biochemistries of the aerobic and anaerobic process are reviewed. Other potential influences on preservation are also explored. Finally, a new model for organic carbon decomposition, the "pseudo-G" model, is developed. This model couples the degradation of refractory organic matter to the overall metabolic activity of the sediment, and has consequences for carbon preservation due to the mixing together of labile and refractory organic matter by bioturbation.

  7. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  8. The Influence of Drug Physical State on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case Study Using Olanzapine

    PubMed Central

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-01-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%–16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves. PMID:24765654

  9. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  10. Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers.

    PubMed

    Peltola, T; Jokinen, M; Veittola, S; Rahiala, H; Yli-Urpo, A

    2001-03-01

    The ability of the sol-gel-derived green state silica fibers to induce the formation of bone-like calcium phosphate (HCA) on their surfaces has not been studied earlier. Bioactive silica fibers provide alternatives for the design of novel products, e.g., as implants used in tissue guiding or bone repairs. In this study, dry spinning was used to prepare the sol-gel fibers. Different fibers with different bulk structures were prepared by changing the composition and controlling the stage of spinnability. Additionally, the influence of the aging time of the fibers on the bulk structure of the samples was investigated. Furthermore, the ability to form calcium phosphate was investigated in vitro in the simulated body fluid (SBF). Transmission electron microscopy was used to illustrate the bulk structure of the green state fibers and scanning electron microscopy to illustrate the formed calcium phosphate layer on the fibers. The fibers were additionally characterized by measuring the dissolution of the silica in the SBF. In vitro bioactive silica fibers were successfully prepared. The calcium phosphate layer was formed within 1-5 days in the best case. The structural stability and the in vitro bioactivity varied with the aging time expect in one case where practically stable fibers could be prepared. The concentration of silica released in the SBF had no direct connection with the HCA formation. The silica-rich gel layer was not observed on the fibers, but the structure of the fibers was suggested to have an important role in the HCA formation.

  11. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    NASA Astrophysics Data System (ADS)

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  12. Influence of pore morphology and topology on capillary trapping in geological carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Andersson, L.; Harper, E.; Herring, A. L.; Wildenschild, D.

    2012-12-01

    Current carbon capture and storage (CCS) techniques could reduce the release of anthropogenic CO2 into the atmosphere by subsurface sequestration of CO2 in saline aquifers. In geological storage CO2 is injected into deep underground porous formations where CO2 is in the supercritical state. Deep saline aquifers are particularly attractive because of their abundance and potentially large storage volumes. Despite very broad research efforts there are still substantial uncertainties related to the effectiveness of the trapping, dissolution, and precipitation processes controlling the permanent storage of CO2. After injection of CO2 the saline water (brine) will imbibe back and reoccupy the pore space as the CO2 moves upwards, trapping a large part of the CO2. This trapping mechanism is known as capillary trapping and occurs as isolated CO2 bubbles are locked in the brine inside the pores of the porous rock. The large-scale movement of CO2 within the brine is thereby prevented. This mechanism thus constitutes an important storage mechanism after the CO2 injection until the subsequent dissolution trapping and precipitation of carbonate mineral. The capillary trapping of CO2 depends largely on the shape and interconnectivity of the pore space and it is therefore important to study the influence of pore scale morphology and topology to understand and optimize large scale capillary trapping. We use a high pressure set-up, designed for supercritical CO2 conditions, with a flow cell compatible with synchrotron-based X-ray computed micro-tomography (CMT) to generate high-resolution images to study capillary trapping. We use sintered glass bead columns as an approximation for unconsolidated reservoir systems. The smooth surface glass bead data allow us to separate the chemistry and surface roughness effects of the porous medium from the effect of the morphology and topology on the capillary trapping. We will relate these aspects of the pore space to the distribution of the

  13. Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes.

    PubMed

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin; Jipa, Iuliana; Dobre, Tanase; Dobre, Loredana

    2012-07-01

    The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl(2)) and sodium carbonate (Na(2)CO(3)) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.

  14. [Influence of carbon source on EBPR metabolism and microorganism communities].

    PubMed

    Wu, Chang-Yong; Peng, Yong-Zhen; Wan, Chun-Li; Li, Xiao-Ling; Yuan, Zhi-Guo

    2009-07-15

    A SBR was used in this study for investigating the influence of carbon source on EBPR metabolism and microorganism communities when feeding with acetate and propionate. The SBR was operated with a cycle time of 8 h and each cycle consisted of 4 min feeding, 2 h anaerobic period, 5 h aerobic period, 35 min setting, 15 min decanting and 6 min waiting. The COD of influent was kept at 300 mg/L during the experiment. Acetate and propionate were used as the sole carbon source for operation of 60 days, respectively. The phosphorus release/ COD consumption in the end of anaerobic phase were 0.35 and 0.27 when acetate and propionate were used as the carbon source, respectively. The PHA composition was different when different carbon source was dosed. PHB accounted for 92.6% in the end of anaerobic phase but the value for PHV was only 7.4% when acetate was selected as the carbon source. No PH2MV was detected during this process. The compositions of PHA were PHB (10.2%), PHV (35.8%) and PH2MV (54.0%) in the end of anaerobic cycle when propionate was used as the sole carbon source. There was variation of microorganism communities during this process for the results of DGGE combined with SEM micrographs and PHA staining. Coccus morphotype PAOs were accumulated in acetate-fed phase and rod morphotype PAOs were accumulated in propionate-fed stage. Different PAOs were accumulated and the metabolic pathways were different when different carbon sources were used, but good EBPR could be achieved during all these conditions.

  15. Stoichiometry of smectite dissolution reaction

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Amram, Keren; Ganor, Jiwchar

    2005-04-01

    The dissolution stoichiometry of smectite-rich bentonites SAz-1, STx-1 and SWy-1 was studied at 50°C and pH 2 and 3 using flow-through reactors. In addition to smectite, these samples contain considerable amounts of silica phases (quartz, cristobalite and/or amorphous silica). As a result, the molar Al/Si ratios of the bulk samples are significantly lower than those of the pure smectite. Smectite dissolution was highly incongruent during the first few hundred to few thousand hours of the experiments. Release rates of Si, Mg, Ca and Na underwent a distinct transition from an initial period of rapid release to significantly lower release rate at steady state. A reversed trend was observed for release of Al, which gradually increased from very low starting release rate to higher release rate at steady state. At steady state the ratio of released Al to released Si was found to be constant and independent of the experimental conditions. We suggest that this ratio represents the Al/Si ratio of the smectite itself, and it is not influenced by the presence of accessory phases in the sample. The rapid release of calcium, sodium and magnesium from the interlayer sites is explained by ion-exchange reactions, whereas the fast release of silicon is explained by dissolution of amorphous silica. We interpret the initial slow release of Al as the result of inhibition of smectite dissolution due to coating or cementation of the smectite aggregates by amorphous silica. As the silica is dissolved, the aggregates fall apart and more smectite surfaces are exposed, resulting in an increase in the smectite dissolution rate. Thereafter, the system approaches steady state, in which the major tetrahedral and octahedral cations of smectite are released congruently.

  16. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons. PMID:26785935

  17. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion.

    PubMed

    Javed, M A; Neil, W C; Stoddart, P R; Wade, S A

    2016-01-01

    The influence of the composition and microstructure of different carbon steel grades on the initial attachment (≤ 60 min) of Escherichia coli and subsequent longer term (28 days) corrosion was investigated. The initial bacterial attachment increased with time on all grades of carbon steel. However, the rate and magnitude of bacterial attachment varied on the different steel grades and was significantly less on the steels with a higher pearlite phase content. The observed variations in the number of bacterial cells attached across different steel grades were significantly reduced by applying a fixed potential to the steel samples. Longer term immersion studies showed similar levels of biofilm formation on the surface of the different grades of carbon steel. The measured corrosion rates were significantly higher in biotic conditions compared to abiotic conditions and were found to be positively correlated with the pearlite phase content of the different grades of carbon steel coupons.

  18. Influence of Phosphorus Cycle Coupling on Carbon-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Yang, X.; Thornton, P. E.; Ricciuto, D. M.; Hoffman, F. M.

    2014-12-01

    It is being increasingly recognized that carbon-nutrient interactions play important roles in regulating terrestrial carbon cycle responses to increasing CO2 in the atmosphere and climate change. Nitrogen-enabled models in CMIP5 indicated that the inclusion of nitrogen cycle reduces CO2 fertilization effect and warming-induced carbon loss from land ecosystems. None of the CMIP5 models has considered phosphorus (P) as a limiting nutrient. Phosphorus has been commonly considered to be the most limiting nutrient in lowland tropical forests. Only recently a few land models have considered P dynamics and C-N-P interactions (CASA-CNP, JSBACH-CNP and CLM-CNP) and these models show strong P limitation in tropical forest responses to increasing atmospheric CO2. In this study, we have performed a set of offline global-scale simulations using CLM-CNP constrained by realistic maps of phosphorus distribution. We examine the influence of including phosphorus cycle dynamics and C-N-P interactions on C-climate feedbacks. We illustrate the spatial patterns of dominant nutrient limitation (N-limited vs. P-limited) on the global scale. We show that P-limitation dominates over most of the tropics and sub-tropics, while N limitation dominates over most of the temperate and high-latitude regions. We also show that phosphorus cycle coupling reduces the sensitivity of net carbon exchange to variations in both temperature and precipitation.

  19. Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients

    NASA Astrophysics Data System (ADS)

    Imhoff, Paul T.; Farthing, Matthew W.; Miller, Cass T.

    2003-10-01

    The dissolution of nonaqueous phase liquids (NAPLs) at residual saturation in porous media has sometimes resulted in the development of preferential dissolution pathways or NAPL dissolution fingers. While NAPL dissolution fingering may be modeled using numerical simulators with fine discretization, this approach is computational intensive. We derived an expression for an upscaled mass transfer rate coefficient that accounts for the growth of dissolution fingers within porous media contaminated uniformly with residual NAPL. This expression was closely related to the lengthening of the dissolution front. Data from physical experiments and numerical simulations in two dimensions were used to examine the growth of the dissolution front and the corresponding upscaled mass transfer rate coefficient. Using this upscaled mass transfer rate coefficient, the time when dissolution fingering results in a reduction in the overall mass transfer rate and thus controls the rate of NAPL dissolution was determined. This crossover time is a convenient parameter for assessing the influence of dissolution fingering on NAPL removal. For the physical experiments and numerical simulations analyzed in this study, the crossover time to dissolution fingering control always occurred before the dissolution front had moved 14 cm within NAPL-contaminated porous media, which is small compared to the scale of typical systems of concern. To verify the utility of this approach, data from a three-dimensional physical experiment were predicted reasonably well using an upscaled mass transfer rate coefficient that was determined independently from this experiment.

  20. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  1. Evaluation of cellular influences caused by calcium carbonate nanoparticles.

    PubMed

    Horie, Masanori; Nishio, Keiko; Kato, Haruhisa; Endoh, Shigehisa; Fujita, Katsuhide; Nakamura, Ayako; Kinugasa, Shinichi; Hagihara, Yoshihisa; Yoshida, Yasukazu; Iwahashi, Hitoshi

    2014-03-01

    The cellular effects of calcium carbonate (CaCO₃) nanoparticles were evaluated. Three kinds of CaCO₃ nanoparticles were employed in our examinations. One of the types of CaCO₃ nanoparticles was highly soluble. And solubility of another type of CaCO₃ nanoparticle was lower. A stable CaCO₃ nanoparticle medium dispersion was prepared and applied to human lung carcinoma A549 cells and human keratinocyte HaCaT cells. Then, mitochondrial activity, cell membrane damage, colony formation ability, DNA injury, induction of oxidative stress, and apoptosis were evaluated. Although the influences of CaCO₃ nanoparticles on mitochondrial activity and cell membrane damage were small, "soluble" CaCO₃ nanoparticles exerted some cellular influences. Soluble CaCO₃ nanoparticles also induced a cell morphological change. Colony formation was inhibited by CaCO₃ nanoparticle exposure. In particular, soluble CaCO₃ nanoparticles completely inhibited colony formation. The influence on intracellular the reactive oxygen species (ROS) level was small. Soluble CaCO₃ nanoparticles caused an increase in C/EBP-homologous protein (CHOP) expression and the activation of caspase-3. Moreover, CaCO₃ exposure increased intracellular the Ca²⁺ level and activated calpain. These results suggest that cellular the influences of CaCO₃ nanoparticles are mainly caused by intracellular calcium release and subsequently disrupt the effect of calcium signaling. In conclusion, there is possibility that soluble CaCO₃ nanoparticles induce cellular influences such as a cell morphological change. Cellular influence of CaCO₃ nanoparticles is caused by intracellular calcium release. If inhaled CaCO₃ nanoparticles have the potential to influence cellular events. However, the effect might be not severe because calcium is omnipresent element in cell.

  2. [Dissolution study of the gentin tablets].

    PubMed

    Tsagareishvili, N T; Bakuridze, A D; Kurdiani, N G; Murtazashvili, T Zh

    2006-04-01

    To establish individual dissolution test for the tablets gentin, which have a marked influence on the secretory function of the stomach (increase the free acidity of the gastric juice and stimulate enzymoproduction function of the stomach), and gastroprotective functioning, the conditions for the test realization were studied and specified, using apparatus "Rotating Basket" (Dissolution test, apparatus 1, p.1791, USP XXIII, 1995). For the quantification of the active ingredients in buffer solutions chromatospectrophotometric method was used. The same conditions were used for the accomplishment of the dissolution test using apparatus "Rotating Paddle" (Dissolution test, apparatus 2, p.1791, USP XXIII, 1995). Metrologic characteristics were compared for the evaluation of the reproducibility of the results. Obtained data showed better reproducibility of the results for the apparatus "Rotating Paddle" compare to the apparatus "Rotating Basket". Estimated conditions are useful for the routine control of the tablets "Gentin" in the case of manufacturing.

  3. A new direction in effective accounting for the atmospheric CO 2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms

    NASA Astrophysics Data System (ADS)

    Liu, Zaihua; Dreybrodt, Wolfgang; Wang, Haijing

    2010-05-01

    The magnitudes, variations, locations and mechanisms responsible for the global atmospheric CO 2 sink are uncertain and under continuing debate. Previous studies have focused mainly on the sinks in the oceans, and soil and vegetation on the continents. Here, we show, based on theoretical calculations and field monitoring evidence, that there is an important but previously underestimated sink for atmospheric CO 2 as DIC-dissolved inorganic carbon that results from the combined action of carbonate dissolution, the global water cycle and the photosynthetic uptake of DIC by aquatic organisms in ocean and land. The sink constitutes up to 0.8242 Pg C/a, amounting to 29.4% of the terrestrial CO 2 sink, or 10.4% of the total anthropogenic CO 2 emission. 0.244 Pg C/a are transferred to the sea via continental rivers and 0.2278 Pg C/a by meteoric precipitation over the seas. 0.119 Pg C/a is released back to the atmosphere again, and 0.2334 Pg C/a is stored in the continental aquatic ecosystem. Therefore, the net sink is estimated as 0.7052 Pg C/a. This sink may increase with an intensification of the global water cycle as a consequence of global warming, rising anthropogenic emissions of CO 2 and carbonate dust in atmosphere, and afforestation, which increases the soil pCO 2 and thus the carbonate dissolution. Fertilization with the elements N, P, C, Fe, Zn, and Si increases the organic matter storage/burial by aquatic organisms and thus decreases the CO 2 return to the atmosphere. Based on the ensemble mean projection of global warming for the year 2100 by IPCC, it is estimated that the atmospheric CO 2 sink will increase by 21%, or about 0.18 Pg C/a. However, the uncertainty in the estimation of this sink needs further exploration.

  4. Influence of soil moisture-carbon cycle interactions on the terrestrial carbon cycle over Europe

    NASA Astrophysics Data System (ADS)

    Mystakidis, Stefanos; Davin, Edouard L.; Gruber, Nicolas; Seneviratne, Sonia I.

    2016-04-01

    Water availability is a crucial limiting factor for terrestrial ecosystems, but relatively few studies have quantitatively assessed the influence of soil moisture variability on the terrestrial carbon cycle. Here, we investigate the role of soil moisture variability and state in the contemporary terrestrial carbon cycle over Europe. For this we use a Regional Earth System Model (RESM) based on the COSMO-CLM Regional Climate Model, coupled to the Community Land Model version 4.0 (CLM4.0) and its carbon-nitrogen module. The simulation setup consists of a control simulation over the period 1979-2010 in which soil moisture is interactive and three sensitivity simulations in which soil moisture is prescribed to a mean, a very dry or a very wet seasonal cycle without inter-annual variability. The cumulative net biome productivity varies markedly between the different experiments ranging from a strong sink of up to 6PgC in the wet experiment to a source of up to 1.2PgC in the dry experiment. Changes in the land carbon uptake are driven by a combination of two factors: the direct impact of soil moisture on plant's carbon uptake (essentially in southern Europe) and an indirect effect through changes in temperature affecting ecosystem respiration (mainly in central and northern Europe). We find that removing temporal variations in soil moisture dampens interannual variations in terrestrial carbon fluxes (Gross Primary Productivity, respiration, Net Biome Productivity) by more than 50% over most of Europe. Moreover, the analysis reveals that on annual scale about two-thirds of central Europe and about 70% of southern Europe display statistically significant effect of drying and/or wetting on the terrestrial carbon budget and its components. Our findings confirm the crucial role of soil moisture in determining the magnitude and the inter-annual variability in land CO2 uptake which is a key contributor to the year-to-year variations in atmospheric CO2 concentration.

  5. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.

    PubMed

    Meleshyn, A; Azeroual, M; Reeck, T; Houben, G; Riebe, B; Bunnenberg, C

    2009-07-01

    The influence of uranyl-carbonate and calcium-uranyl-carbonate complexations on the kinetics of U(VI) (approximately 3.4 x 10(-3) mol L(-1)) sorption from NaNO3 and Ca(NO3)2 solutions on Na- and Ca-bentonites at circumneutral ambient conditions was investigated. Complexation of U(VI) in Ca2UO2(CO3)3(aq) aqueous species, dominating the U(VI) speciation in Ca(NO3)2 solution, reduces its adsorption on bentonite by a factor of 2-3 in comparison with that in (UO2)2CO3(OH)3- species, dominating in NaNO3 solution, within the studied period of time (21 days). As a result of the dissolution of accessory calcite, Ca2UO2(CO3)3(aq) can be formed in the initially Ca-free solution in contact with either Na- or Ca-bentonite. U(VI) adsorption on Na-bentonite is a factor of approximately 2 higher than that on Ca-bentonite for solutions with the Ca2UO2(CO3)3(aq) complex dominating aqueous U(VI) speciation. This favors use of Na-bentonite over that of Ca-bentonite in final disposal of radioactive waste. Furthermore, the observed strong correlation between U(VI) adsorption and Mg release as a result of montmorillonite dissolution indicates in agreement with previous findings that under the applied conditions U(VI) is adsorbed on the edge surface of montmorillonite, which is a major mineral phase of the studied clays. PMID:19673282

  6. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-09-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  7. Anticorrosive Influence of Acetobacter aceti Biofilms on Carbon Steel

    NASA Astrophysics Data System (ADS)

    France, Danielle Cook

    2016-07-01

    Microbiologically influenced corrosion (MIC) of carbon steel infrastructure is an emerging environmental and cost issue for the ethanol fuel industry, yet its examination lacks rigorous quantification of microbiological parameters that could reveal effective intervention strategies. To quantitatively characterize the effect of cell concentration on MIC of carbon steel, numbers of bacteria exposed to test coupons were systematically controlled to span four orders of magnitude throughout a seven-day test. The bacterium studied, Acetobacter aceti, has been found in ethanol fuel environments and can convert ethanol to the corrosive species acetic acid. A. aceti biofilms formed during the test were qualitatively evaluated with fluorescence microscopy, and steel surfaces were characterized by scanning electron microscopy. During exposure, biofilms developed more quickly, and test reactor pH decreased at a faster rate, when cell exposure was higher. Resulting corrosion rates, however, were inversely proportional to cell exposure, indicating that A. aceti biofilms are able to protect carbon steel surfaces from corrosion. This is a novel demonstration of corrosion inhibition by an acid-producing bacterium that occurs naturally in corrosive environments. Mitigation techniques for MIC that harness the power of microbial communities have the potential to be scalable, inexpensive, and green solutions to industrial problems.

  8. The Volcanic History of Mars and Influences on Carbon Outgassing

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Whelley, P.

    2015-12-01

    Exploration of Mars has revealed some of the most impressive volcanic landforms found throughout the solar system. Volatiles outgassed from volcanoes were likely to have strongly influenced atmospheric chemistry and affected the martian climate. On Earth the role of carbon involved in volcanic outgassing is strongly influenced by tectonic setting, with the greatest weight percent contributions coming from partial mantle melts associated with hot spot volcanism. Most martian volcanic centers appear to represent this style of volcanism. Thus, one important factor in understanding the martian carbon cycle through time is understanding this volatile's link to the planet's volcanic history. The identified volcanic constructs on Mars are not unlike those of the Earth suggesting similar magmatic and eruptive processes. However, the dimensions of many martian volcanic features are significantly larger. The distribution of volcanoes and volcanic deposits on Mars are not spatially or temporally uniform. Large volcanoes (> 100 km diameter) are spatially concentrated in volcanic provinces that likely represent focused upwellings or zones of crustal weakness that enabled magma ascension. Smaller (10s km diameters) volcanoes such as cones, low shields and fissures are often grouped into fields and their lava flows coalesce to produce low slope plains. In some cases plains lava fields are quite extensive with little to no evidence for the volcanic constructs. Although martian volcanism appears to have been dominated by effusive eruptions with likely contributions from passive degassing from the interior, explosive volcanic centers and deposits are known to exist. After the development of a martian crust the planet's volcanic style appears to have evolved from early explosive activity to effusive activity centered at major volcanoes to effusive distributed activity in fields. However, questions remain as to whether or not these styles significantly overlapped in time and if so

  9. Influence of carbon nanotubes on the bioavailability of fluoranthene.

    PubMed

    Linard, Erica N; van den Hurk, Peter; Karanfil, Tanju; Apul, Onur G; Klaine, Stephen J

    2015-03-01

    Concurrent with the increase in the use of carbon nanotubes (CNTs) in society is the rise of their introduction into the environment. Carbon nanotubes cause adverse effects themselves, and they have the potential to adsorb contaminants such as polycyclic aromatic hydrocarbons (PAHs). Although CNTs have a high adsorption capacity for PAHs and these contaminants can co-occur in the environment, few studies have characterized the bioavailability of CNT-adsorbed PAHs to fish. The goal of the present study was to characterize the bioavailability of fluoranthene adsorbed to suspended multiwalled-carbon nanotubes (MWNTs) in freshwater containing natural organic matter (NOM). Adsorption isotherms indicated that NOM influenced the adsorption of fluoranthene to MWNTs, although in the absence of MWNTs it did not influence the bioavailability of fluoranthene to Pimephales promelas. Pimephales promelas were exposed for 16 h in synthetic moderately hard water containing fluoranthene in the presence of different concentrations of NOM, and fluoranthene adsorbed to MWNTs in the presence of NOM. Bioavailable fluoranthene was quantified in each exposure through bile analysis using fluorescence spectrophotometry. By comparing the concentration of fluoranthene metabolites in the bile with the concentration of fluoranthene added to MWNT and NOM solutions, the relative bioavailability of fluoranthene adsorbed to MWNTs was quantified. Results indicate that approximately 60% to 90% of the fluoranthene was adsorbed to the MWNTs and that adsorbed fluoranthene was not bioavailable to P. promelas. The results also suggest that fluoranthene is not desorbed from ingested MWNT, and the bioavailable fraction is only the freely dissolved fluoranthene in the aqueous phase.

  10. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  11. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification.

    PubMed

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D; Rivest, Emily B; Sesboüé, Marine; Caldeira, Ken

    2016-03-18

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  12. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.

    PubMed

    Wallace, N; Dicker, S; Lewin, P; Wrenn, S P

    2014-12-01

    values for the duration of the 40min trial. The results are consistent with two distinct stages of gas transport: in the first stage, passive diffusion occurs under ambient conditions across the microbubble monolayer within the first few minutes after formulation until the aqueous interior of the microcapsule is saturated with gas; in the second stage ultrasound drives additional gas dissolution even further due to pressure modulation. It is important to understand the chemistry and transport mechanisms of this contrast agent under the influence of ultrasound to attain better perspicacity for enhanced applications in imaging. Results from this study will facilitate future preclinical studies and clinical applications of nested microbubbles for therapeutic and diagnostic imaging.

  13. Aggregate distribution and associated organic carbon influenced by cover crops

    NASA Astrophysics Data System (ADS)

    Barquero, Irene; García-González, Irene; Benito, Marta; Gabriel, Jose Luis; Quemada, Miguel; Hontoria, Chiquinquirá

    2013-04-01

    Replacing fallow with cover crops during the non-cropping period seems to be a good alternative to diminish soil degradation by enhancing soil aggregation and increasing organic carbon. The aim of this study was to analyze the effect of replacing fallow by different winter cover crops (CC) on the aggregate distribution and C associated of an Haplic Calcisol. The study area was located in Central Spain, under semi-arid Mediterranean climate. A 4-year field trial was conducted using Barley (Hordeum vulgare L.) and Vetch (Vicia sativa L.) as CC during the intercropping period of maize (Zea mays L.) under irrigation. All treatments were equally irrigated and fertilized. Maize was directly sown over CC residues previously killed in early spring. Composite samples were collected at 0-5 and 5-20 cm depths in each treatment on autumn of 2010. Soil samples were separated by wet sieving into four aggregate-size classes: large macroaggregates ( >2000 µm); small macroaggregates (250-2000 µm); microaggregates (53-250 µm); and < 53 µm (silt + clay size). Organic carbon associated to each aggregate-size class was measured by Walkley-Black Method. Our preliminary results showed that the aggregate-size distribution was dominated by microaggregates (48-53%) and the <53 µm fraction (40-44%) resulting in a low mean weight diameter (MWD). Both cover crops increased aggregate size resulting in a higher MWD (0.28 mm) in comparison with fallow (0.20 mm) in the 0-5 cm layer. Barley showed a higher MWD than fallow also in 5-20 cm layer. Organic carbon concentrations in aggregate-size classes at top layer followed the order: large macroaggregates > small macroaggregates > microaggregates > silt + clay size. Treatments did not influence C concentration in aggregate-size classes. In conclusion, cover crops improved soil structure increasing the proportion of macroaggregates and MWD being Barley more effective than Vetch at subsurface layer.

  14. Elevated CO2 influences microbial carbon and nitrogen cycling

    PubMed Central

    2013-01-01

    Background Elevated atmospheric CO2 (eCO2) has been shown to have significant effects on terrestrial ecosystems. However, little is known about its influence on the structure, composition, and functional potential of soil microbial communities, especially carbon (C) and nitrogen (N) cycling. A high-throughput functional gene array (GeoChip 3.0) was used to examine the composition, structure, and metabolic potential of soil microbial communities from a grassland field experiment after ten-year field exposure to ambient and elevated CO2 concentrations. Results Distinct microbial communities were established under eCO2. The abundance of three key C fixation genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), carbon monoxide dehydrogenase (CODH) and propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), significantly increased under eCO2, and so did some C degrading genes involved in starch, cellulose, and hemicellulose. Also, nifH and nirS involved in N cycling were significantly stimulated. In addition, based on variation partitioning analysis (VPA), the soil microbial community structure was largely shaped by direct and indirect eCO2-driven factors. Conclusions These findings suggest that the soil microbial community structure and their ecosystem functioning for C and N cycling were altered dramatically at eCO2. This study provides new insights into our understanding of the feedback response of soil microbial communities to elevated CO2 and global change. PMID:23718284

  15. Dissolution of lead paint in aqueous solutions

    SciTech Connect

    Barnes, G.L.; Davis, A.P.

    1996-07-01

    An analysis of the rate and extent of lead leaching from a lead-based paint was completed. At low-solution pH, dissolution was rapid and approached 80% of the total lead. Residual lead can be estimated based on the predicted solubility of lead carbonate and basic lead carbonate. Release of lead from the paint was slower than that from pure basic lead carbonate due to inhibition by the paint matrix. Although the dissolved concentration of lead in solution at neutral/high pH was low, the paint binder was apparently destroyed at these pH values, releasing colloidal lead pigment particles. The presence of ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) enhanced both the rate and degree of lead dissolution, while benzoic acid had a minimal effect.

  16. Calcite dissolution: an in situ study in the Panama Basin

    SciTech Connect

    Thunell, R.C.; Keir, R.S.; Honjo, S.

    1981-05-08

    The results of an in situ study of calcite dissolution in the Panama Basin indicate that the rate of dissolution in the water column increases suddenly below a water depth of about 2800 meters. This coincides with the depth at which the calcium carbonate content of surface sediments begins to decrease rapidly or the sedimentary lysocline. Since this level of increased dissolution both in the water column and on the sea floor does not appear to be related to the transition from supersaturation to undersaturation with respect to carbonate, there may be a kinetic origin for the lysocline in this region.

  17. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Cornet, F.

    2012-04-01

    We will explore a simple model coupling for carbonate rocks the fracture density and orientation, the water chemistry and transport, the dissolution reactions and the expected irreversible rock deformation. Adding elasticity and boundary conditions, plus an estimation of the water source composition in the formation, we will estimate orders of magnitudes of the stress changes that can be expected from these processes in sedimentary basins over long times. We will in particular examine whether such intrinsic deformation mechanism can give a hint to explain the observed anisotropic stresses, in orientation and magnitude, in zones above the C.O.X. argillite formation in the Paris Basin, where the horizontal stress anisotropy has been shown to be important, whereas stress decoupling from the deep crustal roots should be effective, and no strong anisotropy would be expected in the absence of active deformation mechanism. In the Paris basin, the analysis of log cores shows that fractures and joints, up to meter-long ones, are common anisotropic features present in the carbonate rocks. Dissolution of calcite along these oriented features removes material with an a priori oriented flux reflecting this structural anisotropy, resulting in a non-isotropic deformation associated to this dissolution. We will present a simple model where dissolution and transport of dissolved calcite is associated with the deformation of the carbonate rock. Estimating the reaction constants, the chemical composition variation of the meteoric water, the rock permeability and the fracture density from observations around the Bure underground laboratory, we will estimate the order of magnitude of the deformations expected from these types of mechanisms. Such estimates have already been performed for dissolution along stylolites, e.g. by Clark, 1966; Renard et al., 2004; Schmittbuhl et al., 2004; Koehn et al., 2007. We will adapt these to reflect the anisotropic feature of the fractures present in

  18. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Cornet, F.

    2012-04-01

    We will explore a simple model coupling for carbonate rocks the fracture density and orientation, the water chemistry and transport, the dissolution reactions and the expected irreversible rock deformation. Adding elasticity and boundary conditions, plus an estimation of the water source composition in the formation, we will estimate orders of magnitudes of the stress changes that can be expected from these processes in sedimentary basins over long times. We will in particular examine whether such intrinsic deformation mechanism can give a hint to explain the observed anisotropic stresses, in orientation and magnitude, in zones above the C.O.X. argillite formation in the Paris Basin, where the horizontal stress anisotropy has been shown to be important, whereas stress decoupling from the deep crustal roots should be effective, and no strong anisotropy would be expected in the absence of active deformation mechanism. In the Paris basin, the analysis of log cores shows that fractures and joints, up to meter-long ones, are common anisotropic features present in the carbonate rocks. Dissolution of calcite along these oriented features removes material with an a priori oriented flux reflecting this structural anisotropy, resulting in a non-isotropic deformation associated to this dissolution. We will present a simple model where dissolution and transport of dissolved calcite is associated with the deformation of the carbonate rock. Estimating the reaction constants, the chemical composition variation of the meteoric water, the rock permeability and the fracture density from observations around the Bure underground laboratory, we will estimate the order of magnitude of the deformations expected from these types of mechanisms. Such estimates have already been performed for dissolution along stylolites, e.g. by Clark, 1966; Renard et al., 2004; Schmittbuhl et al., 2004; Koehn et al., 2007. We will adapt these to reflect the anisotropic feature of the fractures present in

  19. Unemployment and marital dissolution.

    PubMed

    Jensen, P; Smith, N

    1990-01-01

    "This paper analyses the effects of unemployment on the probability of marital dissolution. Based on panel data for a sample of Danish married couples, we estimate a dynamic model for the probability of marital dissolution where we take into account the possible effects of unemployment for both spouses. We also control for other factors such as education, age, presence of children, place of residence, health and economic factors. The empirical results show that unemployment seems to be an important factor behind marital instability. However, only unemployment of the husband has an effect, and this effect is immediate." PMID:12283481

  20. Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide

    NASA Astrophysics Data System (ADS)

    Burya, A. I.; Safonova, A. M.; Rula, I. V.

    2012-07-01

    The influence of metal-containing carbon fibers on the thermal properties of carbon-filled phenylone-based plastics has been investigated. It has been shown that carbometallic fibers containing in their composition 20- 30 mass % of a finely dispersed metal (Co, Cu) are promising fillers of phenylone C-2 for making carbonfilled plastics working in frictional units of various machines and mechanisms.

  1. Mergers, Annexations, Dissolutions

    ERIC Educational Resources Information Center

    Russo, Alexander

    2006-01-01

    Consolidations come in all shapes and sizes, including mergers, annexations and dissolutions. They do not all take place under state mandate, however. A handful of districts consolidate every year in some states like Illinois that have large numbers of small districts, many of them dual districts that serve K-8 or 9-12 in the same geographic area.…

  2. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  3. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  4. Formation of CO2, H2 and condensed carbon from siderite dissolution in the 200-300 °C range and at 50 MPa

    NASA Astrophysics Data System (ADS)

    Milesi, Vincent; Guyot, François; Brunet, Fabrice; Richard, Laurent; Recham, Nadir; Benedetti, Marc; Dairou, Julien; Prinzhofer, Alain

    2015-04-01

    Laboratory experiments were conducted to investigate the chemical processes governing the carbon speciation associated to hydrothermal decomposition of siderite. Experiments were carried out in sealed gold capsules using synthetic siderite and deionised water. The samples were reacted at 200 and 300 °C, under a pressure of 50 MPa. Siderite dissolved to reach the 3FeCO3 + H2O = Fe3O4 + 3CO2 + H2 equilibrium and magnetite, Fe3O4, was produced accordingly. The gas phase was dominated by CO2, H2 and CH4, the latter being in strong thermodynamic disequilibrium with CO2. Contrary to the other gas products, H2 concentration was found to decrease with run duration. TEM observations showed the occurrence of condensed carbon phases at the surfaces of magnetite and residual siderite grains. Thermodynamic calculations predict the formation of condensed carbon in the experiments according to the reaction: CO2 + 2H2 ⇒ C + 2H2O, which accounted for the observed H2 concentration decrease up to the point where H2 and CO2 activities were buffered by the graphite-siderite-magnetite assemblage. The well-organized structure of the carbon coating around magnetite emphasizes the high catalytic potential of magnetite surface for carbon reduction and polymerization. The formation of such C-rich phases may represent a potential source of CH4 by hydrogenation. On the other hand, the catalysis of Fischer-Tropsch type reactions may be poisoned by the presence of carbon coating on mineral surfaces. In any case, this study also demonstrates that abiotic H2 generation by water reduction, widely studied in recent years in ultrabasic contexts, can also occur in sedimentary contexts where siderite is present. We show that, in the latter case, natural H2 concentration will be buffered by a condensed carbon phase associated with magnetite.

  5. Coupled Mineral Dissolution and Precipitation Reactions in Shale-Hydraulic Fracturing Fluid Systems

    NASA Astrophysics Data System (ADS)

    Joe-Wong, C. M.; Harrison, A. L.; Thomas, D.; Dustin, M. K.; Jew, A. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2015-12-01

    Hydraulic fracturing of low-permeability, hydrocarbon-rich shales has recently become an important energy source in the United States. However, hydrocarbon recovery rates are low and drop rapidly after a few months. Hydraulic fracture fluids, which contain dissolved oxygen and numerous organic additives, induce dissolution and precipitation reactions that change the porosity and permeability of the shale. To investigate these reactions, we studied the interactions of four shales (Eagle Ford, Barnett, Marcellus, and Green River) with a simulated hydraulic fracture fluid in batch reactors at 80 °C. The shales were chosen for both economic viability and chemical variety, allowing us to explore the reactivities of different components. The Eagle Ford shale is carbonate rich, and the Green River shale contains significant siderite and kerogen. The Barnett shale also has a high organic content, while the Marcellus shale has the highest fractions of clay and pyrite. Our experiments show that hydrochloric acid in the fluid promotes carbonate mineral dissolution, rapidly raising the pH from acidic to circumneutral levels for the Eagle Ford and Green River shales. Dissolution textures in the Green River shale and large cavities in the Barnett shale indicate significant mineralogical and physical changes in the reacted rock. Morphological changes are not readily apparent in the Eagle Ford and Marcellus shales. For all shales, ongoing changes to the solution Al: Si ratio suggest incongruent aluminosilicate dissolution. Siderite or pyrite dissolution occurs within days and is followed by the formation of secondary Fe precipitates in suspension and coating the walls of the reactor. However, little evidence of any coatings on shale surfaces was found. The net effect of these reactions on porosity and permeability and their influence on the long-term efficacy of oil and gas recovery after hydraulic fracturing are critical to the energy landscape of the United States.

  6. Determinants of marriage dissolution

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  7. Dissolution Kinetics of Biogenic Magnesian Calcites

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Guidry, M.; Mackenzie, F. T.; De Carlo, E. H.

    2014-12-01

    Ocean acidification (OA) is a serious concern for the health of calcifying ecosystems in the near future. During the past century, surface ocean pH has decreased by ~0.1 pH units, and is expected to decrease further by 0.3-0.4 pH units by the end of this century. The process of OA will likely result in both decreased calcification rates and increased rates of carbonate mineral dissolution, particularly involving the magnesian calcite (Mg-calcite) calcifiers found in shallow-water reef and other carbonate environments. Many Mg-calcite compositions are the most soluble of the carbonate phases commonly found in reef environments (often comprising much of the cementation and structure within a reef), and are therefore potentially the most susceptible to dissolution processes associated with OA. However, the dissolution kinetics of these phases is poorly known, limiting our ability to understand their behavior in nature. Laboratory experiments designed to investigate the mechanisms and dissolution rates of biogenic Mg-calcite mineral phases in distilled water and seawater over a range of CO2 and T conditions were conducted employing both batch and fluidized-bed reactor systems and using a variety of cleaned and annealed biogenic Mg-calcite phases. Our initial results have shown that the dissolution rate at 298 K and a pCO2 of ~350 ppm of the crustose coralline alga Amphiroa rigida (~20 mol% MgCO3) in seawater undersaturated with respect to this phase is 3.6 μmol g-1 hr-1, nearly 50% greater than that under similar conditions for aragonite. This rate and the derived experimental rate law are consistent with the preliminary findings of Walter and Morse (1985). Additional kinetic (and also solubility) data will be presented for the following species: Chiton tuberculatus (~0-4 mol% MgCO3); Echinometra mathei and/or Lytechinus variegatus (~8-12 mol% MgCO3); Homotrema rubrum (12-16 mol% MgCO3); and Lithothamnion sp. (~18-24 mol% MgCO3). Quantification of the rates of

  8. The influence of root assimilated inorganic carbon on nitrogen acquisition/assimilation and carbon partitioning.

    PubMed

    Viktor, A; Cramer, M D

    2005-01-01

    Understanding of the influences of root-zone CO2 concentration on nitrogen (N) metabolism is limited. The influences of root-zone CO2 concentration on growth, N uptake, N metabolism and the partitioning of root assimilated 14C were determined in tomato (Lycopersicon esculentum). Root, but not leaf, nitrate reductase activity was increased in plants supplied with increased root-zone CO2. Root phosphoenolpyruvate carboxylase activity was lower with NO3(-)- than with NH4(+)-nutrition, and in the latter, was also suppressed by increased root-zone CO2. Increased growth rate in NO3(-)-fed plants with elevated root-zone CO2 concentrations was associated with transfer of root-derived organic acids to the shoot and conversion to carbohydrates. With NH4(+)-fed plants, growth and total N were not altered by elevated root-zone CO2 concentrations, although 14C partitioning to amino acid synthesis was increased. Effects of root-zone CO2 concentration on N uptake and metabolism over longer periods (> 1 d) were probably limited by feedback inhibition. Root-derived organic acids contributed to the carbon budget of the leaves through decarboxylation of the organic acids and photosynthetic refixation of released CO2. PMID:15720630

  9. Influence of carbonization conditions on the pyrolytic carbon deposition in acacia and eucalyptus wood chars

    SciTech Connect

    Kumar, M.; Gupta, R.C.

    1997-04-01

    The amount of deposited pyrolytic carbon (resulting from the cracking of volatile matter) was found to depend on wood species and carbonization conditions, such as temperature and heating rate. Maximum pyrolytic carbon deposition in both the acacia and eucalyptus wood chars has been observed at a carbonization temperature of 800 C. Rapid carbonization (higher heating rate) of wood significantly reduces the amount of deposited pyrolytic carbon in resulting chars. Results also indicate that the amount of deposited pyrolytic carbon in acacia wood char is less than that in eucalyptus wood char.

  10. Manganese Influences Carbonate Precipitation in a Laminated Microbial Mat

    NASA Astrophysics Data System (ADS)

    Krusor, M.; Grim, S. L.; Wilmeth, D.; Johnson, H.; Berelson, W.; Stevenson, B. S.; Stamps, B. W.; Corsetti, F. A.; Spear, J. R.

    2015-12-01

    Investigating mineralization within modern microbial mats informs our interpretation of ancient microbialites and the mineralization process. Microbial mats in Little Hot Creek (LHC), California contain 4 distinct layers with different microbiota. Each layer of the mat is supersaturated with regard to calcium carbonate (CaCO3), which increases with depth. Total organic carbon decreases with depth through the mat. We used 13C-labeled bicarbonate incubations of each mat layer to calculate growth rates of organic carbon and CaCO3 within the mat. Incubations were also amended with Mn or Mg to test their effect on rates of CaCO3 and organic carbon formation. The Mn-amended top layer increased CaCO3 precipitation and organic carbon growth. Mn increased organic carbon production in the lowest layer to a lesser extent, but not growth of CaCO3. Mn addition had no effect on growth rates in the two intervening layers. Mg amendment stimulated only organic carbon formation in the top layer, with little to no effect on the lower layers or overall CaCO3 formation. We attribute the elevated CaCO3 precipitation noted after Mn addition to increased oxygenic photosynthetic activity. Oxygenic photosynthesis requires Mn as an enzyme cofactor and promotes carbonate precipitation. We propose that the phototrophic community was responsible for most of the CaCO3 precipitation in the upper layer. Phototrophs gradually moved upwards for optimal access to sunlight, and as the mat grew, "tenant" microorganisms inhabited the lower carbonate layers while the "builders" remained on top. The relatively constant percentages of inorganic carbon below the top layer combined with observed minimal CaCO3 precipitation under laboratory conditions suggest that additional research into potential metabolisms that impact carbonate formation would be informative. These results improve our understanding of the linkages between microbial metabolisms, carbonate precipitation in microbial mats, and the potential

  11. Bioenhancement of NAPL pool dissolution: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Seagren, Eric A.; Rittmann, Bruce E.; Valocchi, Albert J.

    2002-03-01

    Experiments were conducted to quantify nonaqueous phase liquid (NAPL) pool dissolution and its enhancement by in situ biodegradation. The experiments were performed using square cross-section, glass-bead packed column reactors with a small pool of a toluene-in-dodecane mixture (toluene mole fraction, Xtol≈0.02 or 0.09). Experimental quasi-steady-state toluene dissolution fluxes were determined using a 14C-carbon mass-balance approach during water flushing with and without biodegradation. The experiments demonstrated a statistically significant bioenhancement of the toluene dissolution flux of up to roughly twofold at average pore water velocities of approximately 0.1 and 1 m/day when the toluene mole fraction was low (≈0.02); however, little or no bioenhancement was observed with the higher mole fraction (≈0.09). Although it cannot be determined conclusively, the weight of evidence based on biomass measurements and model analyses suggests that the reduced bioenhancement for the high mole fraction was due to higher dissolved toluene concentrations, which may have caused toxicity effects. Importantly, even though NAPL dissolution was not bioenhanced in every case, the biodegradation reduced toluene concentrations to low levels in the reactor effluents.

  12. The Influence of Bubbles on the Perception Carbonation Bite

    PubMed Central

    Wise, Paul M.; Wolf, Madeline; Thom, Stephen R.; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed. PMID:23990956

  13. The influence of bubbles on the perception carbonation bite.

    PubMed

    Wise, Paul M; Wolf, Madeline; Thom, Stephen R; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  14. Assessing the influence of reacting pyrite and carbonate minerals on the geochemistry of drainage in the Coeur d'Alene mining district

    USGS Publications Warehouse

    Balistrieri, L.S.; Box, S.E.; Bookstrom, A.A.; Ikramuddin, M.

    1999-01-01

    The relative abundance of minerals that react to generate or consume acid in mineralized areas is critical in determining the quality of water draining from such areas. This work examines the fundamental reactions that influence the pH and composition of drainage from mine adits and tailings piles. We construct triangle diagrams that predict stoichiometric relationships between concentrations of dissolved SO4 dissolved Ca and Mg, and either alkalinity or acidity by considering reactions involving the oxidation of pyrite, dissolution of carbonate minerals, and precipitation of iron oxide and iron hydroxysulfate minerals. Drainage data from the Coeur d'Alene mining district are used to test our stoichiometric approach. Comparisons between theoretical predictions and drainage data indicate that the range of pH values in the mining district is due to reacting pyrite to carbonate mineral ratios that range from near 0/1 to 1/1. Calcite and ankerite are the dominant carbonate minerals that buffer the acid produced during pyrite oxidation and ferrihydrite or schwertmannite precipitation.The relative abundance of minerals that react to generate or consume acid in mineralized areas is critical in determining the quality of water draining from such areas. This work examines the fundamental reactions that influence the pH and composition of drainage from mine adits and tailings piles. We construct triangle diagrams that predict stoichiometric relationships between concentrations of dissolved SO4, dissolved Ca and Mg, and either alkalinity or acidity by considering reactions involving the oxidation of pyrite, dissolution of carbonate minerals, and precipitation of iron oxide and iron hydroxysulfate minerals. Drainage data from the Coeur d'Alene mining district are used to test our stoichiometric approach. Comparisons between theoretical predictions and drainage data indicate that the range of pH values in the mining district is due to reacting pyrite to carbonate mineral ratios

  15. Century-scale patterns and trends of global pyrogenic carbon emissions and fire influences on terrestrial carbon balance

    NASA Astrophysics Data System (ADS)

    Yang, Jia; Tian, Hanqin; Tao, Bo; Ren, Wei; Lu, Chaoqun; Pan, Shufen; Wang, Yuhang; Liu, Yongqiang

    2015-09-01

    Fires have consumed a large amount of terrestrial organic carbon and significantly influenced terrestrial ecosystems and the physical climate system over the past century. Although biomass burning has been widely investigated at a global level in recent decades via satellite observations, less work has been conducted to examine the century-scale changes in global fire regimes and fire influences on the terrestrial carbon balance. In this study, we investigated global pyrogenic carbon emissions and fire influences on the terrestrial carbon fluxes from 1901 to 2010 by using a process-based land ecosystem model. Our results show a significant declining trend in global pyrogenic carbon emissions between the early 20th century and the mid-1980s but a significant upward trend between the mid-1980s and the 2000s as a result of more frequent fires in ecosystems with high carbon storage, such as peatlands and tropical forests. Over the past 110 years, average pyrogenic carbon emissions were estimated to be 2.43 Pg C yr-1 (1 Pg = 1015 g), and global average combustion rate (defined as carbon emissions per unit area burned) was 537.85 g C m-2 burned area. Due to the impacts of fires, the net primary productivity and carbon sink of global terrestrial ecosystems were reduced by 4.14 Pg C yr-1 and 0.57 Pg C yr-1, respectively. Our study suggests that special attention should be paid to fire activities in the peatlands and tropical forests in the future. Practical management strategies, such as minimizing forest logging and reducing the rate of cropland expansion in the humid regions, are in need to reduce fire risk and mitigate fire-induced greenhouse gases emissions.

  16. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  17. Interface dissolution control of the [sup 14]C profile in marine sediment

    SciTech Connect

    Keir, R.S. ); Michel, R.L. )

    1993-08-01

    The process of carbonate dissolution at the sediment-water interface has two possible end-member boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content, and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and [sup 230]Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in [sup 230]Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5,000 years ago. 30 refs., 8 figs., 3 tabs.

  18. Optimization of carbon dioxide supply in raceway reactors: Influence of carbon dioxide molar fraction and gas flow rate.

    PubMed

    Duarte-Santos, T; Mendoza-Martín, J L; Acién Fernández, F G; Molina, E; Vieira-Costa, J A; Heaven, S

    2016-07-01

    Influence of CO2 composition and gas flow rate to control pH in a pilot-scale raceway producing Scenedesmus sp. was studied. Light and temperature determined the biomass productivity whereas neither the CO2 molar fraction nor the gas flow rate used influenced it; because pH was always controlled and carbon limitation did not take place. The CO2 molar fraction and the gas flow rate influenced carbon loss in the system. At low CO2 molar fraction (2-6%) or gas flow rate (75-100l·min(-1)) the carbon efficiency in the sump was higher than 95%, 85% of the injected carbon being transformed into biomass. Conversely, at high CO2 molar fraction (14%) or gas flow rate (150l·min(-1)) the carbon efficiency in the sump was lower than 67%, 32% of the carbon being fixed as biomass. Analysis here reported allows the pH control to be optimized and production costs to be reduced by optimizing CO2 efficiency.

  19. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  20. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics

  1. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    NASA Astrophysics Data System (ADS)

    Brewer, Nolan W.; Smith, Alistair M. S.; Hatten, Jeffery A.; Higuera, Philip E.; Hudak, Andrew T.; Ottmar, Roger D.; Tinkham, Wade T.

    2013-03-01

    Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide an avenue in which fire-affected ecosystems can accumulate carbon over time, through the generation of highly resistant fire-altered carbon. Identifying how fuel moisture, and subsequent changes in the fire behavior, relates to the production of fire-altered carbon is important in determining how persistent charred residues are following a fire within specific fuel types. Additionally, understanding how mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential for understanding how this management technique, employed in many fire-prone forest types, may influence stand-level black carbon in soils. In this experimental study, 15 masticated fuel beds, conditioned to three fuel moisture ranges, were burned, and production rates of pyrogenic carbon and soot-based black carbon were evaluated. Pyrogenic carbon was determined through elemental analysis of the post-fire residues, and soot-based black carbon was quantified with thermochemical methods. Pyrogenic carbon production rates ranged from 7.23% to 8.67% relative to pre-fire organic carbon content. Black carbon production rates averaged 0.02% in the 4-8% fuel moisture group and 0.05% in the 13-18% moisture group. A comparison of the ratio of black carbon to pyrogenic carbon indicates that burning with fuels ranging from 13% to 15% moisture content resulted in a higher proportion of black carbon produced, suggesting that the precursors to black carbon were indiscriminately consumed at lower fuel moistures. This research highlights the importance of fuel moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel beds.

  2. Dissolution Profile of Nimesulide from Pharmaceutical Preparations for Oral Use.

    PubMed

    Tubić, Biljana; Uzunović, Alija; Pilipović, Saša; Gagić, Žarko

    2016-01-01

    Nimesulide belongs to the group of semi-selective COX-2 inhibitors, widely used in solid oral formulations. In the present work the influence of surfactants among other drug excipients, as well as particle size of the active substance and the effects of medium pH on the dissolution rate of nimesulide from solid pharmaceutical forms. For that purpose, four different preparations containing 100 mg nimesulide per tablet and available in the market of Bosnia and Herzegovina (labeled here as A, B, C and D) were studied. The test for the assessment of dissolution profiles of the formulations was performed in surfactant-free dissolution medium pH 7.5. The dissolution profiles were compared by calculating difference (f1), and similarity (f2) factors. The increasing dissolution medium pH value from 7.5 to 7.75 resulted in a significant increase of nimesulide dissolution rate from the examined formulations. Also, the results showed that particle size affects to a great extent the dissolution rate and the best results were achieved with micronized nimesulide. The presence of the surfactants among the other excipients expressed a negligible effect on the dissolution profile.

  3. Influence of carbon nanotubes on mechanical properties and structure of rigid polyurethane foam

    NASA Astrophysics Data System (ADS)

    Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Kulesza, M.; Lewandowska, M.; Kowalski, M.; Krauze, S.

    2014-08-01

    In this work, the influence of carbon nanotubes addition on foam structure and mechanical properties of rigid polyurethane foam/nanotube composites was investigated. Scanning electron microscopy was performed to reveal the foam porous structure and distribution of carbon nanotubes. To determine the mechanical properties, three point bending tests were carried out.

  4. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  5. [Influence of biological activated carbon dosage on landfill leachate treatment].

    PubMed

    Cui, Yan-Rui; Guo, Yan; Wu, Qing

    2014-08-01

    Effects of biological activated carbon (BAC) dosage on COD removal in landfill leachate treatment were compared. The COD removal efficiency of reactors with 0, 100 and 300 g activated carbon dosage per litre activated sludge was 12.9%, 19.6% and 27.7%, respectively. The results indicated that BAC improved the refractory organic matter removal efficiency and there was a positive correlation between COD removal efficiency and BAC dosage. The output of carbon dioxide after 8h of aeration in reactors was 109, 193 and 306 mg corresponding to the activated carbon dosages mentioned above, which indicated the amount of biodegradation and BAC dosage also had a positive correlation. The combination of adsorption and bioregeneration of BAC resulted in the positive correlation betweem organic matter removal efficiency and BAC dosage, and bioregeneration was the root cause for the microbial decomposition of refractory organics.

  6. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  7. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].

    PubMed

    Shi, Xiao-Qing; Li, Xiao-Nuo; Yang, Jian-Xin

    2013-01-01

    Transportation is the key industry of urban energy consumption and carbon emissions. The transformation of conventional gasoline vehicles to new energy vehicles is an important initiative to realize the goal of developing low-carbon city through energy saving and emissions reduction, while electric vehicles (EV) will play an important role in this transition due to their advantage in energy saving and lower carbon emissions. After reviewing the existing researches on energy saving and emissions reduction of electric vehicles, this paper analyzed the factors affecting carbon emissions reduction. Combining with electric vehicles promotion program in Beijing, the paper analyzed carbon emissions and reduction potential of electric vehicles in six scenarios using the optimized energy consumption related carbon emissions model from the perspective of fuel life cycle. The scenarios included power energy structure, fuel type (energy consumption per 100 km), car type (CO2 emission factor of fuel), urban traffic conditions (speed), coal-power technologies and battery type (weight, energy efficiency). The results showed that the optimized model was able to estimate carbon emissions caused by fuel consumption more reasonably; electric vehicles had an obvious restrictive carbon reduction potential with the fluctuation of 57%-81.2% in the analysis of six influencing factors, while power energy structure and coal-power technologies play decisive roles in life-cycle carbon emissions of electric vehicles with the reduction potential of 78.1% and 81.2%, respectively. Finally, some optimized measures were proposed to reduce transport energy consumption and carbon emissions during electric vehicles promotion including improving energy structure and coal technology, popularizing energy saving technologies and electric vehicles, accelerating the battery R&D and so on. The research provides scientific basis and methods for the policy development for the transition of new energy vehicles

  8. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  9. Phase II of a Six sigma Initiative to Study DWPF SME Analytical Turnaround Times: SRNL's Evaluation of Carbonate-Based Dissolution Methods

    SciTech Connect

    Edwards, Thomas

    2005-09-01

    The Analytical Development Section (ADS) and the Statistical Consulting Section (SCS) of the Savannah River National Laboratory (SRNL) are participating in a Six Sigma initiative to improve the Defense Waste Processing Facility (DWPF) Laboratory. The Six Sigma initiative has focused on reducing the analytical turnaround time of samples from the Slurry Mix Evaporator (SME) by developing streamlined sampling and analytical methods [1]. The objective of Phase I was to evaluate the sub-sampling of a larger sample bottle and the performance of a cesium carbonate (Cs{sub 2}CO{sub 3}) digestion method. Successful implementation of the Cs{sub 2}CO{sub 3} fusion method in the DWPF would have important time savings and convenience benefits because this single digestion would replace the dual digestion scheme now used. A single digestion scheme would result in more efficient operations in both the DWPF shielded cells and the inductively coupled plasma--atomic emission spectroscopy (ICP-AES) laboratory. By taking a small aliquot of SME slurry from a large sample bottle and dissolving the vitrified SME sample with carbonate fusion methods, an analytical turnaround time reduction from 27 hours to 9 hours could be realized in the DWPF. This analytical scheme has the potential for not only dramatically reducing turnaround times, but also streamlining operations to minimize wear and tear on critical shielded cell components that are prone to fail, including the Hydragard{trademark} sampling valves and manipulators. Favorable results from the Phase I tests [2] led to the recommendation for a Phase II effort as outlined in the DWPF Technical Task Request (TTR) [3]. There were three major tasks outlined in the TTR, and SRNL issued a Task Technical and QA Plan [4] with a corresponding set of three major task activities: (1) Compare weight percent (wt%) total solids measurements of large volume samples versus peanut vial samples. (2) Evaluate Cs{sub 2}CO{sub 3} and K{sub 2}CO{sub 3

  10. Assessing influences on speleothem dead carbon variability over the Holocene: Implications for speleothem-based radiocarbon calibration

    NASA Astrophysics Data System (ADS)

    Noronha, Alexandra L.; Johnson, Kathleen R.; Hu, Chaoyong; Ruan, Jiaoyang; Southon, John R.; Ferguson, Julie E.

    2014-05-01

    Recently, it has been shown that U-Th dated speleothems may provide a valuable archive of atmospheric radiocarbon (14C), but the reliability of these records is dependent upon the stability of the dead carbon proportion (DCP) derived from the soil and bedrock. In order to assess climatic influences on speleothem DCP, we have investigated DCP variability over the Holocene interval where atmospheric 14C is well known based on dendrochronologically dated tree rings by conducting 14C measurements on a U-Th dated stalagmite (HS4) from Heshang Cave, Hubei Province, China (30°27‧N, 110°25‧E; 294 m) spanning 0.5-9.6 ka. We investigated climatic controls on DCP, and found that DCP in HS4 has an average value over the Holocene of 10.3±1.5%, with an average age offset from atmospheric radiocarbon of 875±130 years, and displays a response to both precipitation increases and decreases. HS4 DCP increases during the wetter mid-Holocene interval (˜5.5-7.1 ka), likely reflecting a shift to more closed-system dissolution in response to increased soil moisture. DCP decreases during the 8.2 ka event, a time period of dry conditions at Heshang Cave, though the lower amplitude of this shift indicates that DCP may be less sensitive to dry events. Speleothems are potentially valuable archives of atmospheric radiocarbon, especially in older portions of the 14C calibration curve where knowledge of atmospheric 14C is limited, however minor climatic influences on DCP could introduce uncertainties of several hundred years to calibrated ages.

  11. Potential Influence of Perchlorate on Organic Carbon in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Oze, C.; Vithanage, M. S.; Kumarathilaka, P. R.; Indraratne, S.; Horton, T. W.

    2014-12-01

    Perchlorate is a strong oxidizer present at elevated concentrations in surface martian regolith. Chemical and isotopic modification of potential organic carbon with perchlorate in martian regolith during H2O(l) interactions is unknown. Here we assess the relationship between martian levels of perchlorate and organic carbon present in life harbouring geologic material from Earth. These materials represent chemical (i.e., processed serpentine soils from Sri Lanka) and temperature (i.e., hydrothermal jarosite/goethite deposit from White Island, New Zealand) extremes to where life exists on Earth. Preliminary evidence demonstrates that organic carbon decreases and δ13C values are modified for ultramafic sediment in both perchlorate kinetic and incubation experiments. In hydrothermal jarosite/goethite with microbial communities present, total and organic carbon is maintained and little modification in δ13C values is apparent. These preliminary results suggest that surface hydrothermal deposits with mineralogically 'protected' organic carbon are preferable sites to assess the potential of life on Mars.

  12. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  13. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  14. Asian Black Carbon Influence on East Asian Summer Monsoons

    NASA Astrophysics Data System (ADS)

    Mahmood, R.; Li, S.

    2011-12-01

    Since the black carbon (BC) emission in East and South Asia has increased significantly during the last decades of the 20th century, there is an ever growing concern about its impact on Asian monsoon. In this study we provide an in-depth analysis of the influence by performing several ensemble sensitive experiments with or without historical BC concentrations over East Asia, South Asia, and the combined East and South Asia in an atmospheric general circulation model, GFDL AM2.1. The results show that: (a) The East Asian summer climate is sensitive to the East Asian BC (EABC) concentrations in a sense that EABC contributes significantly to the frequently occurring north-drought and south-flood patterns in Eastern China. In detail, the large scale precipitation anomalies induced by EABC characterize more rainfalls over central/south China, East China Sea and southern Japan and less rainfall over northern China and the west Pacific region between 10N to 20N. These anomalous precipitation patterns are mainly attributed to the EABC induced large scale circulation changes including the weakened Western Pacific Subtropical High (WPSH), anomalous ascent motions over central-southern China (centering over the Yangtze River valley (YRV)) and the subsequent descent motions over northern China and the South China Sea. These modeled results suggest that the EABC experiment reproduces the climate shift event of eastern China during the late 1970s, including intensified rainfall in the YRV and the weakened summer monsoonal circulation. (b) The anomalous results of South Asian BC (SABC) experiment signify a tri-polar precipitation response over East Asia, with a reduction from the YRV to East China Sea and southern Japan sandwiched with increases over a northern domain from northern China/ Korea to northern Japan and over southern China. As for southern China, particularly the YRV, the impact of SABC is to offset a fraction of intensified rainfall induced by local BC of East Asia

  15. Climate indices strongly influence old-growth forest carbon exchange

    NASA Astrophysics Data System (ADS)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was ‑32 ± 84 g C m‑2 yr‑1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m‑2 yr‑1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = ‑90 g C m‑2 yr‑1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m‑2 yr‑1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  16. Climate indices strongly influence old-growth forest carbon exchange

    NASA Astrophysics Data System (ADS)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998-2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was -32 ± 84 g C m-2 yr-1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m-2 yr-1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = -90 g C m-2 yr-1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m-2 yr-1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  17. Climate indices strongly influence old-growth forest carbon exchange

    DOE PAGESBeta

    Wharton, Sonia; Falk, Matthias

    2016-04-13

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (FNEE) at Wind River AmeriFlux was –32 ± 84 g C m–2 yr–1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannualmore » variability is high (>300 g C m–2 yr–1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean FNEE = –90 g C m–2 yr–1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean FNEE = +17 g C m–2 yr–1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (FANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.« less

  18. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed after the carbon fibers were coated with CNTs.

  19. Influence of organic carbon and metal oxide phases on sorption of 2,4,6-trichlorobenzoic acid under oxic and anoxic conditions.

    PubMed

    Ololade, Isaac Ayodele; Oladoja, Nurudeen Abiola; Alomaja, Folasade; Ololade, Oluwaranti Olubunmi; Olaseni, Esan O; Oloye, Femi Francis; Adelagun, Ruth O A

    2015-01-01

    Chlorobenzoic acids represent crucial recalcitrant metabolites in the environment; thus, the influence of soil components on the sorption of 2,4,6-trichlorobenzoic acid (TCB) under oxic and anoxic conditions was studied. The surficial physiognomies of untreated and isolated soil samples were studied using FTIR, XRD, specific surface area, and PZC determination. The roles of redox potential, dissolved organic carbon (DOC), and pH, particularly under anoxic condition, were appraised. Batch equilibrium adsorption studies on soils of variable Fe/Mn oxides and organic carbon showed that adsorption was low across all components (log Koc = 0.82-3.10 Lg(-1)). The sorption of 2,4,6-TCB was well described by the pseudo second-order kinetic model. The fluctuation of both redox potential and pH during anoxic experiment had a negative impact on the sorption, partitioning, and the oxidation of organic matter. Linear relationships were observed for Kd with both soil total organic carbon (TOC) and surface area (SA). The results showed the existence of DOC-mediated sorption of 2,4,6-TCB which seems to be enhanced at lower pH. The reductive dissolution, particularly of iron compounds, possibly impeded sorption of 2,4,6-TCB under anoxic condition. It could be inferred that habitats dominated by fluctuating oxygen concentrations are best suited for the development of environmental conditions capable of mineralizing 2,4,6-TCB and similar xenobiotics.

  20. Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach.

    PubMed

    Kostov, M K; Cheng, H; Cooper, A C; Pez, G P

    2002-09-30

    A general force field methodology is developed for description of molecular interactions in carbon-based materials. The method makes use of existing parameters of potential functions developed for sp(2) and sp(3) carbons and allows accurate representation of molecular forces in curved carbon environment. The potential parameters are explicitly curvature and site dependent. The proposed force field approach was used in molecular dynamics (MD) simulations for hydrogen adsorption in single-walled carbon nanotubes (SWNTs). The results reveal significant nanotube deformations and the calculated energies of adsorption are comparable to the reported experimental heat of adsorption for H2 in SWNTs. PMID:12366059

  1. Kinetics of scheelite dissolution in groundwater: defining the release rate of tungsten contamination from a natural source

    NASA Astrophysics Data System (ADS)

    Montgomery, S. D.; Mckibben, M. A.

    2011-12-01

    Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer

  2. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  3. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  4. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution.

    PubMed

    Stefaniak, A B; Guilmette, R A; Day, G A; Hoover, M D; Breysse, P N; Scripsick, R C

    2005-02-01

    A simulant of phagolysosomal fluid is needed for beryllium particle dissolution research because intraphagolysosomal dissolution is believed to be a necessary step in the cellular immune response associated with development of chronic beryllium disease. Thus, we refined and characterized a potassium hydrogen phthalate (KHP) buffered solution with pH 4.55, termed phagolysosomal simulant fluid (PSF), for use in a static dissolution technique. To characterize the simulant, beryllium dissolution in PSF was compared to dissolution in the J774A.1 murine cell line. The effects of ionic composition, buffer strength, and the presence of the antifungal agent alkylbenzyldimethylammonium chloride (ABDC) on beryllium dissolution in PSF were evaluated. Beryllium dissolution in PSF was not different from dissolution in the J774A.1 murine cell line (p = 0.78) or from dissolution in another simulant having the same pH but different ionic composition (p = 0.73). A buffer concentration of 0.01-M KHP did not appear adequate to maintain pH under all conditions. There was no difference between dissolution in PSF with 0.01-M KHP and 0.02-M KHP (p = 0.12). At 0.04-M KHP, beryllium dissolution was increased relative to 0.02-M KHP (p = 0.02). Use of a 0.02-M KHP buffer concentration in the standard formulation for PSF provided stability in pH without alteration of the dissolution rate. The presence of ABDC did not influence beryllium dissolution in PSF (p = 0.35). PSF appears to be a useful and appropriate model of in vitro beryllium dissolution when using a static dissolution technique. In addition, the critical approach used to evaluate and adjust the composition of PSF may serve as a framework for characterizing PSF to study dissolution of other metal and oxide particles.

  5. Influence of bicarbonate and carbonate ions on sonochemical degradation of Rhodamine B in aqueous phase.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Saoudi, Fethi; Chiha, Mahdi; Pétrier, Christian

    2010-03-15

    The influence of bicarbonate and carbonate ions on sonolytic degradation of cationic dye, Rhodamine B (RhB), in water was investigated. As a consequence of ultrasonic cavitation that generates .OH radicals, carbonate radicals were secondary products of water sonochemistry when it contains dissolved bicarbonate or carbonate ions. The results clearly demonstrated the significant intensification of sonolytic destruction of RhB in the presence of bicarbonate and carbonate, especially at lower dye concentrations. Degradation intensification occurs because carbonate radicals sonochemically formed undergo radical-radical recombination at a lesser extent than hydroxyl radicals. The generated carbonate radicals are likely able to migrate far from the cavitation bubbles towards the solution bulk and are suitable for degradation of an organic dye such as RhB. Therefore, at low dye concentrations, carbonate radical presents a more selective reactivity towards RhB molecules than hydroxyl radical. In the presence of bicarbonate, degradation rate reached a maximum at 3 g L(-1) bicarbonate, but subsequent addition retards the destruction process. In RhB solutions containing carbonate, the oxidation rate gradually increased with increasing carbonate concentration up to 10 g L(-1) and slightly decreased afterward. Carbonate radicals sonochemically generated are suitable for total removal of COD of sonicated RhB solutions. PMID:19910116

  6. Calcite dissolution in two deep eutrophic lakes

    SciTech Connect

    Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wueest, A.

    1999-10-01

    The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 {center{underscore}dot} 10{sup {minus}10} kg{sup 1/3} s{sup {minus}1}) as published laboratory values for this surface controlled process. Both lakes show a similar specific calcite precipitation rate of 170 g Ca m{sup {minus}2} a{sup {minus}1}. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.

  7. Mechanism and kinetics of carbide dissolution in near alpha Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd titanium alloy

    SciTech Connect

    Zhang, S.Z.; Li, M.M.; Yang, R.

    2011-12-15

    The present work evaluates the influence of bulk carbon content and aging temperature on the stability of carbide in near alpha Ti-5.6Al-4.8Sn-2Zr-1Mo-0.35Si-0.7Nd titanium alloy. The carbide particles were formed during heat treatment in the {beta} phase field and preserved by water quenching. Subsequent aging treatments at 750-850 Degree-Sign C caused partial dissolution of these precipitates, as a result of the peritectoid reaction between the {beta} phase and carbide. The models based on interface reaction controlled dissolution, via uniform atomic detachment, dislocation mechanism or vacancy flow, yielded experimental predictions comparable to the observed dissolution kinetics. Furnace cooling after heat treatment in the {beta} phase field dissolved carbide particles completely, and the microstructure changed from acicular-like or block {alpha} to equiaxed {alpha} with increase of carbon content. - Highlights: Black-Right-Pointing-Pointer Carbide dissolution occurs at precipitate/matrix interfaces, forming {beta}-depleted zone. Black-Right-Pointing-Pointer Peritectoid reaction is responsible for drastic reduction of carbide volume fraction. Black-Right-Pointing-Pointer Slower dissolution rate is accounted by dislocation, vacancy flow, and curvature. Black-Right-Pointing-Pointer Lamellar changed to equiaxed {alpha} with increasing carbon from {beta} furnace cooling.

  8. A spatially resolved surface kinetic model for forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Johnson, Natalie C.; Jackson, Ariel; Lammers, Laura N.; Torchinsky, Abe B.; Weaver, Karrie L.; Bird, Dennis K.; Brown, Gordon E.

    2016-02-01

    The development of complex alteration layers on silicate mineral surfaces undergoing dissolution is a widely observed phenomenon. Given the complexity of these layers, most kinetic models used to predict rates of mineral-fluid interactions do not explicitly consider their formation. As a result, the relationship between the development of the altered layers and the final dissolution rate is poorly understood. To improve our understanding of the relationship between the alteration layer and the dissolution rate, we developed a spatially resolved surface kinetic model for olivine dissolution and applied it to a series of closed-system experiments consisting of three-phases (water (±NaCl), olivine, and supercritical CO2) at conditions relevant to in situ mineral carbonation (i.e. 60 °C, 100 bar CO2). We also measured the corresponding δ26/24Mg of the dissolved Mg during early stages of dissolution. Analysis of the solid reaction products indicates the formation of Mg-depleted layers on the olivine surface as quickly as 2 days after the experiment was started and before the bulk solution reached saturation with respect to amorphous silica. The δ26/24Mg of the dissolved Mg decreased by approximately 0.4‰ in the first stages of the experiment and then approached the value of the initial olivine (-0.35‰) as the steady-state dissolution rate was approached. We attribute the preferential release of 24Mg to a kinetic effect associated with the formation of a Mg-depleted layer that develops as protons exchange for Mg2+. We used experimental data to calibrate a surface kinetic model for olivine dissolution that includes crystalline olivine, a distinct "active layer" from which Mg can be preferentially removed, and secondary amorphous silica precipitation. By coupling the spatial arrangement of ions with the kinetics, this model is able to reproduce both the early and steady-state long-term dissolution rates, and the kinetic isotope fractionation. In the early stages of

  9. Ambient organic carbon to elemental carbon ratios: influence of the thermal-optical temperature protocol and implications.

    PubMed

    Cheng, Yuan; He, Ke-bin; Duan, Feng-kui; Du, Zhen-yu; Zheng, Mei; Ma, Yong-liang

    2014-01-15

    Ambient organic carbon (OC) to elemental carbon (EC) ratios are strongly associated with not only the radiative forcing due to aerosols but also the extent of secondary organic aerosol (SOA) formation. An inter-comparison study was conducted based on fine particulate matter samples collected during summer in Beijing to investigate the influence of the thermal-optical temperature protocol on the OC to EC ratio. Five temperature protocols were used such that the NIOSH (National Institute for Occupational Safety and Health) and EUSAAR (European Supersites for Atmospheric Aerosol Research) protocols were run by the Sunset carbon analyzer while the IMPROVE (the Interagency Monitoring of Protected Visual Environments network)-A protocol and two alternative protocols designed based on NIOSH and EUSAAR were run by the DRI analyzer. The optical attenuation measured by the Sunset carbon analyzer was more easily biased by the shadowing effect, whereas total carbon agreed well between the Sunset and DRI analyzers. The EC(IMPROVE-A) (EC measured by the IMPROVE-A protocol; similar hereinafter) to EC(NIOSH) ratio and the EC(IMPROVE-A) to EC(EUSAAR) ratio averaged 1.36 ± 0.21 and 0.91 ± 0.10, respectively, both of which exhibited little dependence on the biomass burning contribution. Though the temperature protocol had substantial influence on the OC to EC ratio, the contributions of secondary organic carbon (SOC) to OC, which were predicted by the EC-tracer method, did not differ significantly among the five protocols. Moreover, the SOC contributions obtained in this study were comparable with previous results based on field observation (typically between 45 and 65%), but were substantially higher than the estimation provided by an air quality model (only 18%). The comparison of SOC and WSOC suggests that when using the transmittance charring correction, all of the three common protocols (i.e., IMPROVE-A, NIOSH and EUSAAR) could be reliable for the estimation of SOC by the EC

  10. Landscape influence on soil carbon and nutrient levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Past runoff, erosion, and management practices influence nutrient levels on the landscape. These starting levels affect future nutrient transport due to runoff, erosion, and leaching events. The purpose of this study was to examine closed-depression landscape effects on surface soil organic matter, ...

  11. Influence of process and formulation parameters on dissolution and stability characteristics of Kollidon® VA 64 hot-melt extrudates.

    PubMed

    Maddineni, Sindhuri; Battu, Sunil Kumar; Morott, Joe; Majumdar, Soumyajit; Murthy, S N; Repka, Michael A

    2015-04-01

    The objective of the present study was to investigate the effects of processing variables and formulation factors on the characteristics of hot-melt extrudates containing a copolymer (Kollidon® VA 64). Nifedipine was used as a model drug in all of the extrudates. Differential scanning calorimetry (DSC) was utilized on the physical mixtures and melts of varying drug-polymer concentrations to study their miscibility. The drug-polymer binary mixtures were studied for powder flow, drug release, and physical and chemical stabilities. The effects of moisture absorption on the content uniformity of the extrudates were also studied. Processing the materials at lower barrel temperatures (115-135°C) and higher screw speeds (50-100 rpm) exhibited higher post-processing drug content (~99-100%). DSC and X-ray diffraction studies confirmed that melt extrusion of drug-polymer mixtures led to the formation of solid dispersions. Interestingly, the extrusion process also enhanced the powder flow characteristics, which occurred irrespective of the drug load (up to 40% w/w). Moreover, the content uniformity of the extrudates, unlike the physical mixtures, was not sensitive to the amount of moisture absorbed. The extrusion conditions did not influence drug release from the extrudates; however, release was greatly affected by the drug loading. Additionally, the drug release from the physical mixture of nifedipine-Kollidon® VA 64 was significantly different when compared to the corresponding extrudates (f2 = 36.70). The extrudates exhibited both physical and chemical stabilities throughout the period of study. Overall, hot-melt extrusion technology in combination with Kollidon® VA 64 produced extrudates capable of higher drug loading, with enhanced flow characteristics, and excellent stability.

  12. Properties that Influence the Specific Surface Areas of Carbon Nanotubes and Nanofibers

    PubMed Central

    BIRCH, M. EILEEN; RUDA-EBERENZ, TONI A.; CHAI, MING; ANDREWS, RONNEE; HATFIELD, RANDAL L.

    2015-01-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer–Emmett–Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed. PMID:24029925

  13. Influence of carbon black and indium tin oxide absorber particles on laser transmission welding

    NASA Astrophysics Data System (ADS)

    Aden, Mirko; Mamuschkin, Viktor; Olowinsky, Alexander

    2015-06-01

    For laser transmission welding of polypropylene carbon black and indium tin oxide (ITO) are used as absorber particles. Additionally, the colorant titanium dioxide is mixed to the absorbing part, while the transparent part is kept in natural state. The absorption coefficients of ITO and carbon black particles are obtained, as well as the scattering properties of polypropylene loaded with titanium dioxide (TiO2). At similar concentrations the absorption coefficient of ITO is an order of magnitude smaller than that of carbon black. Simulations of radiation propagation show that the penetration depth of laser light is smaller for carbon black. Therefore, the density of the released heat is higher. Adding TiO2 changes the distribution of heat in case of ITO, whereas for carbon black the effect is negligible. Thermal simulations reveal the influence of the two absorbers and TiO2 on the heat affected zone. The results of the thermal simulations are compared to tensile test results.

  14. Enhanced CO2 Dissolution in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Daniels, K.; Neufeld, J. A.; Bickle, M. J.; Hallworth, M. A.

    2014-12-01

    Long-term and secure geological storage of CO2 through technologies such as Carbon Capture and Storage (CCS) within reservoirs is seen as a technological means to reduce anthropogenic CO2 emissions. The long-term viability of this technology is reliant on the structural and secondary trapping of supercritical CO2 within heterogeneous reservoirs. Secondary trapping, primarily through the dissolution of CO2 into ambient reservoir brine to produce a denser fluid, is capable of retaining CO2 in the subsurface and thus reducing the risks of storage. To model secondary trapping we need to understand how the flow of CO2 through heterogeneous reservoir rocks enhances dissolution of supercritical CO2 in reservoir brines. Here we experimentally investigate the dissolution of CO2 in reservoir brines in layered, heterogeneous geological formations. Using analogue experiments, designed to approximate an enhanced oil recovery (EOR) setting, the processes of mixing, dispersion and dissolution are examined. These are compared against test results from non-layered, homogeneous porous media experiments. We find that heterogeneities significantly enhance mixing, particularly between adjacent porous layers. During fluid propagation, pore-scale viscous fingers grow and retreat, thereby providing an increased surface area between the flow and the ambient reservoir fluid. This enhanced mixing is predicted to substantially increase the dissolution of CO2 in reservoir brines. Both permeability and viscosity differences are found to have a significant effect on the interface between the two fluids, and therefore the likely amount of dissolution of CO2.

  15. Mechanical clot dissolution: new concept.

    PubMed

    Bildsoe, M C; Moradian, G P; Hunter, D W; Castaneda-Zuniga, W R; Amplatz, K

    1989-04-01

    The authors present preliminary data on in vitro mechanical clot dissolution by means of a catheter with a tiny high-speed propeller enclosed in a special housing. Preweighed human blood clots were subjected to the catheter in a test tube with saline at various propeller speeds and durations of application. After filtration of the resultant slurry, the clot residue was weighed and examined histologically. Clot dissolution was found to be related to both the duration and speed of propeller rotation. No fibrin residue was seen after dissolution, although potential embolic material, composed of clumps of cellular debris as large as 208 microns in longest dimension, was found. Mechanical clot dissolution could possibly be used in any natural or synthetic blood vessel in which there is acute or subacute thrombosis, with fewer complications and lower cost than obtained with traditional methods.

  16. Alunite dissolution rates: Dissolution mechanisms and implications for Mars

    NASA Astrophysics Data System (ADS)

    Miller, J. L.; Elwood Madden, A. S.; Phillips-Lander, C. M.; Pritchett, B. N.; Elwood Madden, M. E.

    2016-01-01

    Alunite (KAl3(SO4)2(OH)6) is a hydrated aluminous sulfate mineral associated with acidic, oxidizing aqueous environments on Earth. Additionally, orbiting spacecraft and rovers on Mars have reported spectral data that indicate a range of mono- and polyhydrated sulfate phases and hydroxysulfate phases, suggesting such conditions also existed on Mars in the past. This study examines alunite dissolution rates in aqueous systems with varying pH, temperature, and solution chemistry conditions. Alunite dissolution rates in dilute solutions are 2-3 orders of magnitude slower than jarosite dissolution rates measured under analogous conditions. Similar to jarosite, alunite dissolution rates vary as a function of activity of H+ and OH- following the rate law log r (mol m-2 s-1) = -0.133(±0.02)pH - 10.65(±0.07) at pH < 5 and log r = 0.194(±0.04)pH - 12.53(±0.26) at pH > 5. However, minimum alunite dissolution rates are shifted to higher pH (5-5.5), likely due to differences in Fe and Al speciation. Alunite and jarosite rates converge in saturated NaCl and CaCl2 brines as the activity of water decreases, suggesting that differences in water exchange rates with Fe3+ and Al3+ control dissolution rates in dilute solutions, while metal-Cl- complexation occurs at similar rates within the brines. Particle lifetimes based on measured dissolution rates in dilute solutions show that alunite particles are expected to be preserved two orders of magnitude longer than jarosite particles over a range of pH and temperature conditions. In particular, alunite is more likely to be preserved in neutral to moderately alkaline systems compared to jarosite, which is expected to be preserved in more acidic conditions. Alunite dissolution produced amorphous Al-rich alteration products at moderate to high pH. Unlike jarosite, alunite dissolution does not show a clear trend as a function of temperature; alunite dissolution rates do not increase with increasing temperature, likely due to lower

  17. Factors Influencing the Quality of Carbon Coatings onLiFePO4

    SciTech Connect

    Wilcox, James D.; Doeff, Marca M.; Marcinek, Marek; Kostecki,Robert

    2006-10-11

    Several LiFePO4/C composites were prepared and characterizedelectrochemically in lithium half-cells. Pressed pellet conductivitiescorrelated well with the electrochemical performance in lithiumhalf-cells. It was found that carbon structural factors such as sp2/sp3,D/G, and H/C ratios, as determined by Raman spectroscopy and elementalanalysis, influenced the conductivity and rate behavior strongly. Thestructure of the residual carbon could be manipulated through the use ofadditives during LiFePO4 synthesis. Increasing the pyromellitic acid (PA)content in the precursor mix prior to calcination resulted in asignificant lowering of the D/G ratio and a concomitant rise in thesp2/sp3 ratio of the carbon. Addition of both iron nitrate and PAresulted in higher sp2/sp3 ratios without further lowering the D/Gratios, or increasing carbon contents. The best electrochemical resultswere obtained for LiFePO4 processed with both ferrocene and PA. Theimprovement is attributed to better decomposition of the carbon sources,as evidenced by lower H/C ratios, a slight increase of the carbon content(still below 2 wt. percent), and more homogeneous coverage. A discussionof the influence of carbon content vs. structural factors on thecomposite conductivities and, by inference, the electrochemicalperformance, is included.

  18. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS).

  19. Environmentally Friendly Carbon-Preserving Recovery of Noble Metals From Supported Fuel Cell Catalysts.

    PubMed

    Latsuzbaia, R; Negro, E; Koper, G J M

    2015-06-01

    The dissolution of noble-metal catalysts under mild and carbon-preserving conditions offers the possibility of in situ regeneration of the catalyst nanoparticles in fuel cells or other applications. Here, we report on the complete dissolution of the fuel cell catalyst, platinum nanoparticles, under very mild conditions at room temperature in 0.1 M HClO4 and 0.1 M HCl by electrochemical potential cycling between 0.5-1.1 V at a scan rate of 50 mV s(-1) . Dissolution rates as high as 22.5 μg cm(-2) per cycle were achieved, which ensured a relatively short dissolution timescale of 3-5 h for a Pt loading of 0.35 mg cm(-2) on carbon. The influence of chloride ions and oxygen in the electrolyte on the dissolution was investigated, and a dissolution mechanism is proposed on the basis of the experimental observations and available literature results. During the dissolution process, the corrosion of the carbon support was minimal, as observed by X-ray photoelectron spectroscopy (XPS). PMID:25959077

  20. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  1. Influence of sorption on sound propagation in granular activated carbon.

    PubMed

    Venegas, Rodolfo; Umnova, Olga

    2016-08-01

    Granular activated carbon (GAC) has numerous applications due to its ability to adsorb and desorb gas molecules. Recently, it has been shown to exhibit unusually high low frequency sound absorption. This behavior is determined by both the multi-scale nature of the material, i.e., the existence of three scales of heterogeneities, and physical processes specific to micro- and nanometer-size pores, i.e., rarefaction and sorption effects. To account for these processes a model for sound propagation in GAC is developed in this work. A methodology for characterizing GAC which includes optical granulometry, flow resistivity measurements, and the derivation of the inner-particle model parameters from acoustical and non-acoustical measurements is also presented. The model agrees with measurements of normal incidence surface impedance and sound absorption coefficient on three different GAC samples. PMID:27586708

  2. Methanobactin-Promoted Dissolution of Cu-Substituted Borosilicate Glass

    NASA Astrophysics Data System (ADS)

    Kulczycki, E.; Fowle, D. A.; Knapp, C.; Graham, D. W.; Roberts, J. A.

    2006-12-01

    Mineral weathering processes play a major role in the global cycling of carbon and metals and there is an increasing realization that subsurface microbial activity may be a key factor regulating specific biogeochemical reactions and their rates. Methanobactin (mb) is an extracellular copper-binding compound excreted by methanotrophs who require copper to regulate methane oxidation. Cu that is available to the cell regulates the expression and activity of pMMO versus sMMO (particulate versus soluble methane monooxygenase, respectively), which are key enzymes responsible for methane oxidation. The primary focus of this study is to determine the effect of mb-promoted dissolution of Cu-substituted glass at low temperature and near neutral pH conditions, using batch dissolution experiments with and without the methanotroph, Methylonsinus trichosporium OB3b. Methanobactin promotes the weathering of Cu-substituted borosilicate glasses at rates faster than control experiments without methanobactin. Glasses with lower concentrations of copper (80 ppm) or no copper are dissolved more rapidly than those containing larger amounts of copper (800 ppm). Within the first 2 hours of reactivity, a greater quantity of mb appears to sorb onto the glass surface at higher copper concentrations and may limit mass transfer of Cu to solution. Furthermore gene expression in M. trichosporium OB3b, using real-time RT-PCR techniques, indicate that pmoA expression is influenced by mb in presence of Cu containing solid phases. These findings demonstrate that this methanotroph can directly access mineral-bound Cu and suggests that methane oxidation rates may be directly linked to mineral weathering in near-surface geologic settings.

  3. Unravelling the relationship between degree of disorder and the dissolution behavior of milled glibenclamide.

    PubMed

    Mah, Pei T; Laaksonen, Timo; Rades, Thomas; Aaltonen, Jaakko; Peltonen, Leena; Strachan, Clare J

    2014-01-01

    Milling is an attractive method to prepare amorphous formulations as it does not require the use of solvents and is suitable for thermolabile drugs. One of the key critical quality attributes of milled amorphous formulations is their dissolution behavior. However, there are limited studies that have investigated the relationship between degree of disorder induced by milling and dissolution behavior. The main aim of this study was to identify the analytical technique used to characterize degree of disorder that correlates best with the recrystallization behavior during dissolution of milled glibenclamide samples. Solid state and surface changes during dissolution of milled glibenclamide samples were monitored in order to elucidate the processes that influence the dissolution behavior of milled glibenclamide samples. Glibenclamide was ball milled for different durations and analyzed using X-ray powder diffractometry (XRPD), Raman spectroscopy and differential scanning calorimetry (DSC). Recrystallization during dissolution of the milled amorphous materials was investigated using an in situ Raman setup. SEM was used to monitor the surfaces of the compacts during dissolution. XRPD, Raman spectroscopy and DSC indicated that glibenclamide was fully amorphous after milling for 30, 60, and 120 min, respectively. 'DSC amorphous' (i.e. fully amorphous according to the onset of crystallization obtained from DSC) glibenclamide samples experienced negligible recrystallization which had no effect on the dissolution profiles. Samples that were not 'DSC amorphous' experienced recrystallization which resulted in a decrease in dissolution rate. Unexpected elevated dissolution rate was observed initially during dissolution for samples milled for 15 to 45 min, and this was related to particle loss from surfaces of the disks during dissolution. In conclusion, the onset of crystallization obtained from DSC best predicts the recrystallization of glibenclamide during dissolution

  4. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-01

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  5. Two-phase convective CO2 dissolution in saline aquifers

    DOE PAGESBeta

    Martinez, Mario J.; Hesse, Marc A.

    2016-01-30

    Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have either ignored the overlyingmore » two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO2 more than 3 times above the rate assuming single-phase conditions.« less

  6. Influence of carbon nanotube extending length on pyrocarbon microstructure and mechanical behavior of carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Li, Kezhi; Sun, Jiajia; Jia, Yujun; Li, Hejun; Zhang, Leilei

    2015-11-01

    We present an in-depth study of the effect of carbon nanotube (CNT) extending length on microstructural and mechanical behavior of carbon/carbon (C/C) composite. High-purity CNTs with controlled extending length were in situ grown on the surface of carbon cloths using injection chemical vapor deposition (ICVD) by varying the reaction time. Microstructure analysis shows that compared with the CNTs of short extending length which only change the pyrocarbon (PyC) close to fiber surface, CNTs with long extending length can strongly affect the deposition behavior of PyC during chemical vapor infiltration and modify the whole matrix PyC. Mechanical tests reveal that CNTs with long extending length are more beneficial to enhance the interlaminar shear strength and in-plane compressive strength of the composites, while the reactive conditions during ICVD degrade the carbon fibers and lead to the decrease of flexural strength. Our work demonstrates that it is necessary to make CNTs long enough as well as to prevent strength degradation of fibers, if we want to largely increase delamination resistance and through-thickness properties without compromising in-plane performance of C/C composites.

  7. Soil management and carbon calculation methods influence changes in soil carbon estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Throughout the years, many studies have evaluated changes in soil organic carbon (SOC) mass on a fixed-depth (FD) basis without considering changes in soil mass caused by changing in bulk density. In two study sites, we investigated the effect of different management practices on SOC changes calcul...

  8. Carbon Speciation and Anthropogenic Influences in Haitian Rivers and Inland Waters

    NASA Astrophysics Data System (ADS)

    Markowitz, M.; Paine, J.; McGillis, W. R.; Hsueh, D. Y.

    2014-12-01

    Climate, geography, and land use patterns all contribute to the social, economic, and environmental challenges in Haiti. Water quality remains a predominant issue, and the health of freshwater systems has been linked to the cycling and transformation of carbon. A speciation dominated by carbonates and bicarbonates is conducive to higher alkalinity waters, which is part of an environmental signature in which cholera and other bacteria thrive. Numerous human activities such as deforestation, biomass burning, and agricultural practices have radically changed the abundances of carbon on land and rivers in Haiti. In Haitian small mountainous rivers, carbon speciation is also influenced by the weathering of limestone and other carbonate rocks. Additionally, rain events and natural disturbances such as earthquakes have shown to drastically increase the amount of carbon in rivers and coastal waters. Since 2010, a network of both satellite and autonomous hydrometeorological stations has been deployed to monitor the climate in southwestern Haiti. Additionally, various hydrological parameters from river, reservoir, and coastal sites have been measured during field visits. Research will be continued into the wet season, providing temporal analysis needed for quantifying the abundances and transformations of carbon. Together, data from weather stations and field sites can be contextualized with local land use patterns and other human activities to offer unique insights on the carbon system. Findings may offer new perspectives on the relationships between hydrologic cycles, human health, and environmental sustainability in Haiti.

  9. Provincial variation of carbon emissions from bituminous coal: Influence of inertinite and other factors

    USGS Publications Warehouse

    Quick, J.C.; Brill, T.

    2002-01-01

    We observe a 1.3 kg C/net GJ variation of carbon emissions due to inertinite abundance in some commercially available bituminous coal. An additional 0.9 kg C/net GJ variation of carbon emissions is expected due to the extent of coalification through the bituminous rank stages. Each percentage of sulfur in bituminous coal reduces carbon emissions by about 0.08 kg C/net GJ. Other factors, such as mineral content, liptinite abundance and individual macerals, also influence carbon emissions, but their quantitative effect is less certain. The large range of carbon emissions within the bituminous rank class suggests that rank- specific carbon emission factors are provincial rather than global. Although carbon emission factors that better account for this provincial variation might be calculated, we show that the data used for this calculation may vary according to the methods used to sample and analyze coal. Provincial variation of carbon emissions and the use of different coal sampling and analytical methods complicate the verification of national greenhouse gas inventories. Published by Elsevier Science B.V.

  10. Systematic review of forsterite dissolution rate data

    NASA Astrophysics Data System (ADS)

    Rimstidt, J. Donald; Brantley, Susan L.; Olsen, Amanda A.

    2012-12-01

    . Comparison of Mg and Si release rates showed that they produced statistically indistinguishable dissolution rates because dissolution was stoichiometric in the experiments over the entire pH range even though the surface concentrations of Mg and Si are known to change with pH. Comparison of rates from experiments with added carbonate, either from CO2 partial pressures greater than atmospheric or added carbonate salts, showed that the existing data set is not sufficient to quantify any effect of dissolved carbonate species on forsterite dissolution rates.

  11. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  12. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.

    PubMed

    Valle, Russell P; Wu, Tony; Zuo, Yi Y

    2015-05-26

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air-water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handle NP-PS interactions in the liquid phase. This technical limitation, inherent in current in vitro methodologies, makes it impossible to simulate how airborne NP deposit at the PS film and interact with it. Existing in vitro NP-PS studies using liquid-suspended particles have been shown to artificially inflate the no-observed adverse effect level of NP exposure when compared to in vivo inhalation studies and international occupational exposure limits (OELs). Here, we developed an in vitro methodology called the constrained drop surfactometer (CDS) to quantitatively study PS inhibition by airborne CNM. We show that airborne multiwalled carbon nanotubes and graphene nanoplatelets induce a concentration-dependent PS inhibition under physiologically relevant conditions. The CNM aerosol concentrations controlled in the CDS are comparable to those defined in international OELs. Development of the CDS has the potential to advance our understanding of how submicron airborne nanomaterials affect the PS lining of the lung.

  13. INFLUENCE OF ELEVATED OZONE AND CARBON DIOXIDE ON INSECT DENSITIES.

    SciTech Connect

    DELUCIA, E.; DERMODY, O.; O'NEILL, B.; ALDEA, M.; HAMILTON, J.; ZANGERL, A.; ROGER, A.; BERENBAUM, M.

    2005-01-05

    The combustion of fossil fuels is profoundly altering the chemical composition of the atmosphere. Beginning with the Industrial Revolution, the concentration of carbon dioxide in the atmosphere has increased from approximately 280 to 370 {micro}l l{sup -1} in 2004, and it is expected to exceed 550 {micro}l l{sup -1} by 2050. Tropospheric ozone has risen even more rapidly than CO{sub 2} and average summer concentrations in the Northern Hemisphere are expected to continue to increase by 0.5-2.5% per year over the next 30 years. Although elevated CO{sub 2} stimulates photosynthesis and productivity of terrestrial ecosystems, ozone (O{sub 3}) is deleterious. In addition to directly affecting the physiology and productivity of crops, increased concentrations of tropospheric CO{sub 2} and O{sub 3} are predicted to lower the nutritional quality of leaves, which has the potential to increase herbivory as insects eat more to meet their nutritional demands. We tested the hypothesis that changes in tropospheric chemistry affect the relationship between plants and insect herbivores by changing leaf quality. The susceptibility to herbivory of soybean grown in elevated CO{sub 2} or O{sub 3} was examined using free air gas concentration enrichment (SoyFACE). FACE technology has the advantage that plants are cultivated under realistic field conditions with no unwanted alteration of microclimate or artificial constraints on the insect community.

  14. Influence of carbon dioxide clouds on early martian climate.

    PubMed

    Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R

    2000-06-01

    Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.

  15. Influence of energy alternatives and carbon emissions on an institution's green reputation.

    PubMed

    Komarek, Timothy M; Lupi, Frank; Kaplowitz, Michael D; Thorp, Laurie

    2013-10-15

    Institutions' reputation for being environmentally friendly or 'green' can come from many sources. This paper examines how the attributes of alternative energy management plans impact an institutions' 'green' reputation by focusing on the interaction between 'external' and 'internal' influences. Some 'external' influences on environmental reputation we studied include the institution's mix of fuels, energy conservation effort, carbon emissions targets, investment time-frame, and program cost. The 'internal' influences on institutions' green reputation we examined include altruism (respondents' concern for the welfare of others) and environmentalism (respondents' concern for the environment). Using a stated-preference conjoint survey, we empirically examine how attributes of alternative energy management plans influence a large, research university's 'green' reputation. Our results show that constituents benefit from their institution's green reputation and that the energy management choices of the institution can significantly influence its perceived green reputation. Furthermore, integrating internal and external influences on reputation can create more informative models and better decision-making.

  16. Influence of energy alternatives and carbon emissions on an institution's green reputation.

    PubMed

    Komarek, Timothy M; Lupi, Frank; Kaplowitz, Michael D; Thorp, Laurie

    2013-10-15

    Institutions' reputation for being environmentally friendly or 'green' can come from many sources. This paper examines how the attributes of alternative energy management plans impact an institutions' 'green' reputation by focusing on the interaction between 'external' and 'internal' influences. Some 'external' influences on environmental reputation we studied include the institution's mix of fuels, energy conservation effort, carbon emissions targets, investment time-frame, and program cost. The 'internal' influences on institutions' green reputation we examined include altruism (respondents' concern for the welfare of others) and environmentalism (respondents' concern for the environment). Using a stated-preference conjoint survey, we empirically examine how attributes of alternative energy management plans influence a large, research university's 'green' reputation. Our results show that constituents benefit from their institution's green reputation and that the energy management choices of the institution can significantly influence its perceived green reputation. Furthermore, integrating internal and external influences on reputation can create more informative models and better decision-making. PMID:23774751

  17. Spreading and dissolution of CO2 in horizontal aquifers: theory and experiments

    NASA Astrophysics Data System (ADS)

    MacMinn, C. W.; Neufeld, J. A.; Hesse, M. A.; Huppert, H. E.

    2010-12-01

    Injection of carbon dioxide into saline aquifers is widely regarded as a promising tool for reducing atmospheric CO2 emissions. An accurate assessment of the post-injection spreading and migration of the CO2 is essential for estimates of storage security, but many of the physical processes controlling CO2 migration are poorly understood. CO2 is buoyant and mobile relative to groundwater at reservoir conditions. This is undesirable because the presence of a pre-existing well or fracture, or the activation of a fault, could lead to leakage into shallower formations. It is well known that the dissolution of CO2 into groundwater increases the density of the groundwater, resulting in convective currents that greatly enhance CO2 dissolution. Once dissolved, the CO2 is considered to be securely stored within the subsurface. Recent numerical and experimental work has led to a greatly improved understanding of the resulting rate of CO2 dissolution. Here, we use analog experiments and simple theoretical models to study dissolution from a plume of CO2 as it spreads upward against the caprock in an aquifer of finite thickness. We show that the interaction between spreading, dissolution, and the finite thickness of the aquifer has a strong influence on the ultimate distribution of the CO2. Experimental results are in good agreement with an existing, unconfined model when dissolution is not limited by the buildup of dissolved CO2 in the aquifer. When the buildup of dissolved CO2 becomes important, experiments show that the dissolved CO2 itself spreads along the bottom of the aquifer as a gravity current. We propose a new confined model that accounts for the spreading of both the free-phase and the dissolved CO2. This model successfully reproduces the characteristic linear retreat of the plume in the confined regime. Buoyant spreading of analog fluids in a tank packed with glass beads (3~mm diameter). Sequences (left: (a)--(d); right: (e)--(f)) are at approximately 0, 8, 34 and

  18. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Bauke, C.; Meier, K. J. S.; Riebesell, U.; Schulz, K. G.

    2012-05-01

    The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It is, however, not yet understood how these changes are reflected in the morphology of coccoliths. Here, we compare data on coccolith size, weight, and malformation from a~set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3-), carbonate (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3-] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

  19. Organic Carbon Influences on Soil Particle Density and Rheological Properties

    SciTech Connect

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2006-07-01

    Soil particle density (rs) is not routinely measured and is assumed to range between 2.60 and 2.70 Mgm23 or to be a constant (2.65 Mgm23) when estimating essential properties such as porosity, and volumetric water and air relations. Values of rs for the same soil may, however, differ significantly from the standard range due to management induced changes in soil organic carbon (SOC) concentrations. We quantified the rs and Atterberg limits of a Rayne silt loam for five long-term (.22 yr) moldboard-plowed continuous corn (Zea mays L.; MP), no-till continuous corn (NT), no-till continuous corn with beef cattle manure (NTm), pasture, and forest systems.We also assessed the relationships of SOC concentration with rs and the Atterberg limits and the impact of rs on soil porosity. Mean rs across NT, NTm, and pasture (2.35 Mg m23) was |7% lower than that for MP in the 0- to 10-cm soil depth (2.52 Mg m23, P , 0.01). Forest had the lowest rs of all soils (1.79 Mg m23). The NTm caused a greater reduction in rs and a greater increase in SOC concentration, liquid limit (LL), plastic limit (PL), and plasticity index (PI) than NT. Surface soils under MP had the highest rs and rb and the lowest SOC concentration, LL, PL, and PI. The SOC concentration was correlated negatively with rs (r 2 5 0.75) and positively with Atterberg limits (r 2 . 0.64) at .20-cm depth. Estimates of soil porosity for NT, NTm, and pasture using the constant rs overestimated the ''true'' porosity by 12% relative to that using the measured rs.

  20. Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation

    SciTech Connect

    Singh, Joseph A; Dudney, Nancy J; Li, Meijun; Overbury, Steven {Steve} H; Veith, Gabriel M

    2012-01-01

    This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

  1. Simulating Climate, Fire, and Management Influences on Forest Carbon Dynamics in Single- and Multi-Species Forests of the Southwestern and Southeastern US

    NASA Astrophysics Data System (ADS)

    Heckman, K. A.; Lawrence, C. R.; Harden, J. W.; Crate, J.; Swanston, C.

    2014-12-01

    Interest in the influence of mineral chemistry on soil organic matter cycling has been steadily growing, with the role of iron specifically garnering a great deal of attention. Empirical evidence from both lab and field based studies suggest that the interactions of Fe-bearing minerals and colloidal Fe species are unique from the interactions of the soil mineral matrix as a whole and may have a disproportionate influence on soil organic matter. We present results from a suite of studies examining Fe-organic matter interactions which utilize a broad range of technical approaches and highlight the use of radiocarbon analysis in terrestrial carbon cycle studies. Data suggests that interaction of organics with Fe-bearing moieties induces consistent partitioning of organics between dissolved and surface bound organic matter pools, including significant consequences for N and P availability and biodegradability of soil organic matter. Selective dissolution techniques have revealed that Fe-humus complexes comprise a significant pool of soil organic matter which cycles on a shorter-term basis across a variety of ecosystems types, while sequential density separation combined with x-ray diffraction imply concentration and long-term preservation of N-rich organics on Fe-bearing crystalline mineral surfaces. Our results explore the unique and multifaceted roles of Fe in regulating organic matter transformation and preservation in a range of soil types.

  2. The effect of fuel chemistry on UO2 dissolution

    NASA Astrophysics Data System (ADS)

    Casella, Amanda; Hanson, Brady; Miller, William

    2016-08-01

    The dissolution rate of both unirradiated UO2 and used nuclear fuel has been studied by numerous countries as part of the performance assessment of proposed geologic repositories. In the scenario of waste package failure and groundwater contact with the fuel, the effects of variables such as temperature, dissolved oxygen, and water and fuel chemistry on the dissolution rates of the fuel are necessary to provide a quantitative estimate of the potential release over geologic time frames. The primary objective of this research was to determine the influence these parameters, with primary focus on the fuel chemistry, have on the dissolution rate of unirradiated UO2 under oxidizing repository conditions and compare them to the rates predicted by current dissolution models. Both unirradiated UO2 and UO2 doped with varying concentrations of Gd2O3, to simulate used fuel composition after long time periods when radiolysis has minor contributions to dissolution, were examined. In general, a rise in temperature increased the dissolution rate of UO2 and had a larger effect on pure UO2 than on those doped with Gd2O3. Oxygen dependence was observed in the UO2 samples with no dopant and increased as the temperature rose; in the doped fuels less dependence was observed. The addition of gadolinia into the UO2 matrix resulted in a significant decrease in the dissolution rate. The matrix stabilization effect resulting from the dopant proved even more beneficial in lowering the dissolution rate at higher temperatures and dissolved O2 concentrations in the leachate where the rates would typically be elevated.

  3. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    as well as carbonates in porefluids under different pCO2 levels. In a second step, we will let the minerals react to a thermodynamically stable state and thereby observe the resulting alkalinity effect and the effect on carbonate precipitation. So far, modeling showed that saturation states of some of the most common clay minerals, including kaolinite, illite, montmorillonite and chlorite in a standard seawater solution strongly depend on silica and aluminum concentrations, but they show very little dependence on the pH. This is understandable since a congruent dissolution of clay minerals does not significantly increase or decrease the alkalinity. However, partial leaching of structural ions by incongruent dissolution/precipitation should have a strong effect on porewater alkalinity. Hence, substitution reactions will have to be simulated as part of this study. Calculated mineral alteration and rock-fluid interactions in deep sediments will contribute to a better understanding of carbonate diagenesis but also of long-term effects in subsurface CO2 storage reservoirs. Mavromatis et al. (2014) Chem. Geol. 385, 84-91. Parkhurst, D.L, and Appelo, C.A.J. (2013) U.S Geological Survey Techniques and Methods, book 6, chap. A43, 497 p. Wallmann et al. (2008) Geochim. Cosmochim. Acta 72, 3067-3090.

  4. Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers

    USGS Publications Warehouse

    Sanford, W.E.; Konikow, L.F.

    1989-01-01

    Thermodynamic models of aqueous solutions have indicated that the mixing of seawater and calcite-saturated fresh groundwater can produce a water that is undersaturated with respect to calcite. Mixing of such waters in coastal carbonate aquifers could lead to significant amounts of limestone dissolution. The potential for such dissolution in coastal saltwater mixing zones is analyzed by coupling the results from a reaction simulation model (PHREEQE) with a variable density groundwater flow and solute transport model. Idealized cross sections of coastal carbonate aquifers are simulated to estimate the potential for calcite dissolution under a variety of hydrologic and geochemical conditions. Results show that limestone dissolution in mixing zones is strongly dependent on groundwater flux and nearly independent of the dissolution kinetics of calcite. -from Authors

  5. The influence of soil crusting on carbon dioxide emissions from soil

    NASA Astrophysics Data System (ADS)

    Armstrong, Elizabeth; Quinton, John; Kuhn, Nikolaus

    2010-05-01

    Global soils contain an estimated 1500GT of carbon, over twice that present in the atmosphere, however the role of soil in the global carbon cycle is highly debated. The influence of soil erosion and deposition in the global carbon cycle has been primarily investigated through the incubation of small volumes of loose sediment. The physical properties of this sediment are likely to differ to those in the environment where in situ soil forms part of an intact unit which can have a cohesive high density crust at the surface. The primary aim of this investigation was to measure carbon dioxide emissions from intact crusted soil samples. Rainfall simulation was used to create areas of soil crusting under high and low rainfall intensity in areas of erosion and deposition. The carbon dioxide emissions were measured over a 58 day period using an Infra Red Gas Analyser (IRGA). Physical properties of the crusts (total C content, C:N ratio, texture, density, degree of aggregation) were also determined. It was found that CO2 emissions were not related to C content alone, with strong correlation found to density (rs - 0.70) and aggregation (rs - 0.67), and texture also being influential although to a lesser extent. It is the effect that these properties have on OM bioavailability and gas diffusivity which affects the emissions of carbon dioxide. The physical properties of a crust are influenced by rainfall intensity, a conceptual diagram explaining this process has been developed. Given the strong correlation that has been found between carbon dioxide emissions and the physical properties of soils to base estimates of emissions on studies of loose samples maybe flawed. Furthermore given that rainfall intensity is predicted to change with global warming so to may soil crusting and emissions of carbon dioxide.

  6. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.

    PubMed

    Nabais, J M Valente; Gomes, J A; Suhas; Carrott, P J M; Laginhas, C; Roman, S

    2009-08-15

    The adsorption of phenol from dilute aqueous solutions onto new activated carbons (AC) was studied. The novel activated carbon was produced from lignocellulosic (LC) precursors of rapeseed and kenaf. Samples oxidised with nitric acid in liquid phase were also studied. The results have shown the significant potential of rapeseed and kenaf for the activated carbon production. The activated carbons produced by carbon dioxide activation were mainly microporous with BET apparent surface area up to 1350 m(2)g(-1) and pore volume 0.5 cm(3)g(-1). The effects of concentration (0.1-2 mM) and pH (3-13) were studied. The phenol adsorption isotherms at 25 degrees C followed the Freundlich model with maximum adsorption capacities of approximately 80 and 50 mg g(-1) for the pristine and oxidised activated carbons, respectively. The influence of pH on the adsorption has two trends for pH below and above 10. It was possible to conclude that when phenol is predominantly in the molecular form the most probable mechanism is based on the pi-pi dispersion interaction between the phenol aromatic ring and the delocalised pi electrons present in the activated carbon aromatic structure. When phenolate is the major component the electrostatic repulsion that occurs at high pH values is the most important aspect of the adsorption mechanism.

  7. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    PubMed Central

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-01-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences. PMID:26987406

  8. Nighttime dissolution in a temperate coastal ocean ecosystem increases under acidification

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Gaylord, Brian; Hill, Tessa; Hosfelt, Jessica; Kroeker, Kristy J.; Nebuchina, Yana; Ninokawa, Aaron; Russell, Ann D.; Rivest, Emily B.; Sesboüé, Marine; Caldeira, Ken

    2016-03-01

    Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ωarag), with potentially substantial impacts on marine ecosystems over the 21st Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ωarag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ωarag. If the short-term sensitivity of community calcification to Ωarag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.

  9. Influence of respiratory substrate in carbon steel corrosion by a Sulphate Reducing Prokaryote model organism.

    PubMed

    Dall'agnol, Leonardo T; Cordas, Cristina M; Moura, José J G

    2014-06-01

    Sulphate Reducing Prokaryotes (SRP) are an important group of microorganisms involved in biocorrosion processes. Sulphide production is recognized as a fundamental cause of corrosion and nitrate is often used as treatment. The present work analyses the influence of respiratory substrates in the metal, from off-shore installations, SRP influenced corrosion, using Desulfovibrio desulfuricans ATTC 27774 as model organism, since this can switch from sulphate to nitrate. Open Circuit Potential over 6days in different conditions was measured, showing an increase around 200 and 90mV for the different media. Tafel plots were constructed allowing Ecorr and jcorr calculations. For SRP in sulphate and nitrate media Ecorr values of -824 and -728mV, and jcorr values of 2.5 and 3.7μAcm(-2), respectively, were attained indicating that in nitrate, the resultant corrosion rate is larger than in sulphate. Also, it is shown that the equilibrium of sulphide in the solution/gas phases is a key factor to the evolution of corrosion Nitrate prevents pitting but promotes general corrosion and increases the corrosion potential and iron dissolution 40 times when compared to sulphate. Our results demonstrate that nitrate injection strategy in oil fields has to be considered carefully as option to reduce souring and localized corrosion.

  10. Dissolution test acceptance sampling plans.

    PubMed

    Tsong, Y; Hammerstrom, T; Lin, K; Ong, T E

    1995-07-01

    The U.S. Pharmacopeia (USP) general monograph provides a standard for dissolution compliance with the requirements as stated in the individual USP monograph for a tablet or capsule dosage form. The acceptance rules recommended by USP have important roles in the quality control process. The USP rules and their modifications are often used as an industrial lot release sampling plan, where a lot is accepted when the tablets or capsules sampled are accepted as proof of compliance with the requirement. In this paper, the operating characteristics of the USP acceptance rules are reviewed and compared to a selected modification. The operating characteristics curves show that the USP acceptance rules are sensitive to the true mean dissolution and do not reject a lot or batch that has a large percentage of tablets that dissolve with less than the dissolution specification.

  11. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    NASA Astrophysics Data System (ADS)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    "Clumped-isotope" thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope "clumps"). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  12. Effects of Natural Organic Matter Properties on the Dissolution Kinetics of Zinc Oxide Nanoparticles.

    PubMed

    Jiang, Chuanjia; Aiken, George R; Hsu-Kim, Heileen

    2015-10-01

    The dissolution of zinc oxide (ZnO) nanoparticles (NPs) is a key step of controlling their environmental fate, bioavailability, and toxicity. Rates of dissolution often depend upon factors such as interactions of NPs with natural organic matter (NOM). We examined the effects of 16 different NOM isolates on the dissolution kinetics of ZnO NPs in buffered potassium chloride solution using anodic stripping voltammetry to directly measure dissolved zinc concentrations. The observed dissolution rate constants (kobs) and dissolved zinc concentrations at equilibrium increased linearly with NOM concentration (from 0 to 40 mg C L(-1)) for Suwannee River humic and fulvic acids and Pony Lake fulvic acid. When dissolution rates were compared for the 16 NOM isolates, kobs was positively correlated with certain properties of NOM, including specific ultraviolet absorbance (SUVA), aromatic and carbonyl carbon contents, and molecular weight. Dissolution rate constants were negatively correlated to hydrogen/carbon ratio and aliphatic carbon content. The observed correlations indicate that aromatic carbon content is a key factor in determining the rate of NOM-promoted dissolution of ZnO NPs. The findings of this study facilitate a better understanding of the fate of ZnO NPs in organic-rich aquatic environments and highlight SUVA as a facile and useful indicator of NOM interactions with metal-based nanoparticles.

  13. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    NASA Astrophysics Data System (ADS)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  14. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Vichi, Lucia; Sandri, Monica

    2004-05-01

    A new method to synthesise carbonate-substituted hydroxyapatite (CHA) powder has been set up introducing a CO(2) flux, as a source of carbonate, in the HA synthesis process based on the neutralisation reaction. The reactants are abundant and inexpensive. The yield is good compared to other CHA powder synthesis. The reaction may be performed at low temperature and without pH control and does not produce any by-products. The influence of the synthesis parameters (temperature, H(3)PO(4) solution dropping rate, i.e. reaction time, CO(2) flux, ageing time) has been tested to optimise the process conditions in order to obtain the highest carbonation degree and favour the B-type CHA precipitation with respect to A-type one. The prepared powder (5.8wt% of total carbonate with an A/B ratio of 0.78) was thermally treated at various temperatures in the range 500-1400 degrees C in different atmospheres (air, wet and dry carbon dioxide). The thermal treatments were performed with a double aim, to eliminate selectively the carbonate groups in A-position maintaining the B-type substitution, and to evaluate the thermal stability of the CHA and the total loss of carbonate as a function of temperature. The thermal treatment at 900 degrees C in wet CO(2) gave the best result in terms of a high carbonate residue and a low A/B ratio. We also investigate the use of different techniques (inductively coupled plasma, TGA, Fourier transformed infrared spectroscopy, X-ray diffraction) for characterising CHA and calculating sensitivity and accuracy in the quantification of carbonate ions for each molecular site. PMID:14738839

  15. The Influence of Landscape Drainage on Biogeochemical Cycling of Carbon in Agricultural Ecosystems

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; King, J. Y.; Mulla, D. J.; Finlay, J. C.; Sands, G. R.

    2008-12-01

    The movement of water through agricultural ecosystems is often modified by the presence of open ditches and subsurface tile drainage systems. Despite the common occurrence of these practices, particularly in the corn- and soybean-producing regions of the midwestern United States, much remains unknown about how altered drainage patterns may influence carbon export from agricultural landscapes. In this study, we examined the role of subsurface drainage systems on the quantity and quality of dissolved carbon export from experimental agricultural fields located in south-central Minnesota. Results from two years of observations show that fields with more intense drainage designs (e.g., greater density of subsurface drain lines) have dissolved organic carbon (DOC) concentrations that are similar to conventionally drained fields. However, fields with more intense drainage exhibit greater annual DOC loads due to higher water yields resulting from more intense drainage. In contrast, dissolved inorganic carbon (DIC) concentrations were consistently greater in fields with more intense drainage practices across all flow conditions. Our ongoing work is focused on determining if these differences in DIC concentrations are the result of either increased weathering or increased soil/plant root respiration resulting in increased soil CO2 concentrations. Molecular weight characterization of samples from our experimental fields shows that DOC from subsurface tile drainage is generally comprised of low molecular weight compounds. This low molecular weight signal is less apparent in samples from downstream ditch and river sites which are dominated by higher molecular weight compounds; suggesting that differences in organic matter source and/or processing are apparent over spatial scales transitioning from the field to small watershed. Overall, these results show that subsurface drainage practices fundamentally alter annual DOC and DIC carbon export from agricultural ecosystems as well

  16. The influence of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation

    NASA Astrophysics Data System (ADS)

    Putro, Triswantoro; Endarko

    2016-04-01

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO3) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  17. Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A.

    PubMed

    Goulart, Lorena Athie; de Moraes, Fernando Cruz; Mascaro, Lucia Helena

    2016-01-01

    Different methods of functionalisation and the influence of the multi-walled carbon nanotube sizes were investigated on the bisphenol A electrochemical determination. Samples with diameters of 20 to 170 nmwere functionalized in HNO3 5.0 mol L(-1) and a concentrated sulphonitric solution. The morphological characterisations before and after acid treatment were carried out by scanning electron microscopy and cyclic voltammetry. The size and acid treatment affected the oxidation of bisphenol A. The multi-walled carbon nanotubes with a 20-40 nm diameter improved the method sensitivity and achieved a detection limit for determination of bisphenol A at 84.0 nmol L(-1).

  18. Influence of changing carbonate chemistry on morphology and weight of coccoliths formed by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Bach, L. T.; Bauke, C.; Meier, K. J. S.; Riebesell, U.; Schulz, K. G.

    2012-08-01

    The coccolithophore Emiliania huxleyi is a marine phytoplankton species capable of forming small calcium carbonate scales (coccoliths) which cover the organic part of the cell. Calcification rates of E. huxleyi are known to be sensitive to changes in seawater carbonate chemistry. It has, however, not yet been clearly determined how these changes are reflected in size and weight of individual coccoliths and which specific parameter(s) of the carbonate system drive morphological modifications. Here, we compare data on coccolith size, weight, and malformation from a set of five experiments with a large diversity of carbonate chemistry conditions. This diversity allows distinguishing the influence of individual carbonate chemistry parameters such as carbon dioxide (CO2), bicarbonate (HCO3-), carbonate ion (CO32-), and protons (H+) on the measured parameters. Measurements of fine-scale morphological structures reveal an increase of coccolith malformation with decreasing pH suggesting that H+ is the major factor causing malformations. Coccolith distal shield area varies from about 5 to 11 μm2. Changes in size seem to be mainly induced by varying [HCO3-] and [H+] although influence of [CO32-] cannot be entirely ruled out. Changes in coccolith weight were proportional to changes in size. Increasing CaCO3 production rates are reflected in an increase in coccolith weight and an increase of the number of coccoliths formed per unit time. The combined investigation of morphological features and coccolith production rates presented in this study may help to interpret data derived from sediment cores, where coccolith morphology is used to reconstruct calcification rates in the water column.

  19. Assessment of the influence of a carbon fiber tabletop on portal imaging

    NASA Astrophysics Data System (ADS)

    Misiarz, Agnieszka; Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał

    2013-06-01

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely -26×26 cm2 in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one observes the

  20. Dissolution of coccolithophorid calcite by microzooplankton and copepod grazing

    NASA Astrophysics Data System (ADS)

    Antia, A. N.; Suffrian, K.; Holste, L.; Müller, M. N.; Nejstgaard, J. C.; Simonelli, P.; Carotenuto, Y.; Putzeys, S.

    2008-01-01

    Independent of the ongoing acidification of surface seawater, the majority of the calcium carbonate produced in the pelagial is dissolved by natural processes above the lysocline. We investigate to what extent grazing and passage of coccolithophorids through the guts of copepods and the food vacuoles of microzooplankton contribute to calcite dissolution. In laboratory experiments where the coccolithophorid Emiliania huxleyi was fed to the rotifer Brachionus plicatilis, the heterotrophic flagellate Oxyrrhis marina and the copepod Acartia tonsa, calcite dissolution rates of 45-55%, 37-53% and 5-22% of ingested calcite were found. We ascribe higher loss rates in microzooplankton food vacuoles as compared to copepod guts to the strongly acidic digestion and the individual packaging of algal cells. In further experiments, specific rates of calcification and calcite dissolution were also measured in natural populations during the PeECE III mesocosm study under differing ambient pCO2 concentrations. Microzooplankton grazing accounted for between 27 and 70% of the dynamic calcite stock being lost per day, with no measurable effect of CO2 treatment. These measured calcite dissolution rates indicate that dissolution of calcite in the guts of microzooplankton and copepods can account for the calcite losses calculated for the global ocean using budget and model estimates.

  1. Self potential observations during DNAPL dissolution

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L.; Kulessa, B.; Russell, C.; Kalin, R.; Ferguson, A.; Graber, J.

    2006-05-01

    Dense non aqueous phase liquids (DNAPLs) are a major environmental problem and are considered to be long term heavy contaminant sources in the subsurface. Accurate monitoring of DNAPL breakdown is required to monitor remediation efforts. We aim to evaluate the efficiency of geophysical methods to monitor DNAPL remediation. Toward this goal we performed self potential (SP) measurements on laboratory columns packed with DNAPL contaminated sand undergoing (a) biodegradation, and (b) abiotic DNAPL dissolution. Geochemical monitoring showed higher concentration of dissolved DNAPL byproducts in the abiotic columns; the use of HgCl2 as a biocide probably increased the rates of DNAPL dissolution in the abiotic columns. The concentration of DNAPL byproducts is significantly lower in the biotic columns due to microbial activity since DNAPL degrading bacteria within the column consume the breakdown products. SP responses are significantly higher (~ 90 mV) in the abiotic columns; in the microbial active columns SP values remain steady with a value ~ 10 mV. High SP signals (up to 110 mV) are associated with DNAPL byproduct concentration gradients within the abiotic columns and exhibit a temporal behavior that mimics total organic carbon concentrations. Although microbial activity in organic rich contaminated areas has been associated with strong negative SP anomalies our results show that positive SP anomalies can also be generated in contaminated areas in the absence of any microbial activity. We discuss a possible SP source mechanism and the implications in geophysical monitoring of DNAPL remedial processes.

  2. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms

    SciTech Connect

    Funk, D.W.; Pullmann, E.R.; Peterson, K.M.

    1994-09-01

    Hydrological changes, particularly alterations in water table level, may largely overshadow the more direct effects of global temperature increase upon carbon cycling in arctic and subarctic wetlands. Frozen cores (n=40) of intact soils and vegetation were collected from a bog near Fairbanks, Alaska, and fluxes of CO{sub 2}, CH{sub 4}, and Co in response to water table variation were studied under controlled conditions in the Duke University phytotron. Core microcosms thawed to a 20-cm depth over 30 days under a 20 hour photoperiod with a day/night temperature regime of 20/10{degrees}C. After 30 days the water table in 20 microcosms was decreased from the soil surface to -15 cm and maintained at the soil surface in 20 control cores. Outward fluxes of CO{sub 2} (9-16 g m{sup -2}d{sup -1}) and CO (3-4 mg m{sup -2}d{sup -1}) were greatest during early thaw and decreased to near zero for both gases before the water table treatment started. Lower water table tripled CO{sub 2} flux to the atmosphere when compared with control cores. Carbon monoxide was emitted at low rates from high water table cores and consumed by low water table cores. Methane fluxes were low (<1 mg m{sup -2}d{sup -1}) in all cores during thaw. High water table cores increased CH{sub 4} flux to 8-9 mg m{sup -2}d{sup -1} over 70 days and remained high relative to the low water table cores (<0.74 mg m{sup -2}d{sup -1}). Although drying of wetland taiga soils may decrease CH{sub 4} emissions to the atmosphere, the associated increase in CO{sub 2} due to aerobic respiration will likely increase the global warming potential of gas emissions from these soils. 43 refs., 4 figs.

  3. Ammonium removal in constructed wetland microcosms as influenced by season and organic carbon load.

    PubMed

    Riley, Kate A; Stein, Otto R; Hook, Paul B

    2005-01-01

    We evaluated ammonium nitrogen removal and nitrogen transformations in three-year-old, batch-operated, subsurface wetland microcosms. Treatments included replicates of Typha latifolia, Carex rostrata, and unplanted controls when influent carbon was excluded, and C. rostrata with an influent containing organic carbon. A series of 10-day batch incubations were conducted over a simulated yearlong cycle of seasons. The presence of plants significantly enhanced ammonium removal during both summer (24 degrees C, active plant growth) and winter (4 degrees C, plant dormancy) conditions, but significant differences between plant species were evident only in summer when C. rostrata outperformed T. latifolia. The effect of organic carbon load was distinctly seasonal, enhancing C. rostrata ammonium removal in winter but having an inhibitory effect in summer. Season did not influence ammonium removal in T. latifolia or unplanted columns. Net production of organic carbon was evident year-round in units without an influent organic carbon source, but was enhanced in summer, especially for C. rostrata, which produced significantly more than T. latifolia and unplanted controls. No differences in production were evident between species in winter. COD values for C. rostrata microcosms with and without influent organic carbon converged within 24 hours in winter and 7 days in summer. Gravel sorption, microbial immobilization and sequential nitrification/denitrification appear to be the major nitrogen removal mechanisms. All evidence suggests differences between season and species are due to differences in seasonal variation of root-zone oxidation.

  4. Influence of management and precipitation on carbon fluxes in greatplains grasslands

    USGS Publications Warehouse

    Rigge, Matthew B.; Wylie, Bruce K.; Zhang, Li; Boyte, Stephen P.

    2013-01-01

    Suitable management and sufficient precipitation on grasslands can provide carbon sinks. The net carbon accumulation of a site from the atmosphere, modeled as the Net Ecosystem Productivity (NEP), is a useful means to gauge carbon balance. Previous research has developed methods to integrate flux tower data with satellite biophysical datasets to estimate NEP across large regions. A related method uses the Ecosystem Performance Anomaly (EPA) as a satellite-derived indicator of disturbance intensity (e.g., livestock stocking rate, fire, and insect damage). To better understand the interactions among management, climate, and carbon dynamics, we evaluated the relationship between EPA and NEP data at the 250 m scale for grasslands in the Central Great Plains, USA (ranging from semi-arid to mesic). We also used weekly estimates of NEP to evaluate the phenology of carbon dynamics, classified by EPA (i.e., by level of disturbance impact). Results show that the cumulative carbon balance over these grasslands from 2000 to 2008 was a weak net sink of 13.7 g C m−2 yr−1. Overall, NEP increased with precipitation (R2 = 0.39, P < 0.05) from west to east. Disturbance influenced NEP phenology; however, climate and biophysical conditions were usually more important. The NEP response to disturbance varies by ecoregion, and more generally by grassland type, where the shortgrass prairie NEP is most sensitive to disturbance, the mixed-grass prairie displays a moderate response, and tallgrass prairie is the least impacted by disturbance (as measured by EPA). Sustainable management practices in the tallgrass and mixed-grass prairie may potentially induce a period of average net carbon sink until a new equilibrium soil organic carbon is achieved. In the shortgrass prairie, management should be considered sustainable if carbon stocks are simply maintained. The consideration of site carbon balance adds to the already difficult task of managing grasslands appropriately to site conditions

  5. Marital dissolution: an economic analysis.

    PubMed

    Hunter, K A

    1984-01-01

    A longitudinal analysis of factors affecting marital dissolution in the United States is presented using data from the Coleman-Rossi Retrospective Life History. Factors considered include labor force participation of both spouses, wage growth, size of family unit, age at marriage, and educational status. The study is based on the economic analysis approach developed by Gary S. Becker and others.

  6. Formulations for iron oxides dissolution

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  7. Influences of carbon content and coating carbon thickness on properties of amorphous CoSnO3@C composites as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Fan, Fuqiang; Fang, Guoqing; Zhang, Ruixue; Xu, Yanhui; Zheng, Junwei; Li, Decheng

    2014-08-01

    A series of core-shell carbon coated amorphous CoSnO3 (CoSnO3@C) with different carbon content are synthesized. Effects of carbon content and coating carbon thickness on the physical and electrochemical performances of the samples were studied in detail. The samples were analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results indicate that controlling the concentration of aqueous glucose solution influences the generation of in-situ carbon layer thickness. The optimal concentration of aqueous glucose solution, carbon content and carbon layer thickness are suggested as 0.25 M, 35.1% and 20 nm, respectively. CoSnO3@C composite prepared under the optimal conditions exhibits excellent cycling performance, whose reversible capacity could reach 491 mA h g-1 after 100 cycles.

  8. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks.

    PubMed

    Lu, Xiaowei; Berge, Nicole D

    2014-08-01

    As the exploration of the carbonization of mixed feedstocks continues, there is a distinct need to understand how feedstock chemical composition and structural complexity influence the composition of generated products. Laboratory experiments were conducted to evaluate the carbonization of pure compounds, mixtures of the pure compounds, and complex feedstocks comprised of the pure compounds (e.g., paper, wood). Results indicate that feedstock properties do influence carbonization product properties. Carbonization product characteristics were predicted using results from the carbonization of the pure compounds and indicate that recovered solids energy contents are more accurately predicted than solid yields and the carbon mass in each phase, while predictions associated with solids surface functional groups are more difficult to predict using this linear approach. To more accurately predict carbonization products, it may be necessary to account for feedstock structure and/or additional feedstock properties. PMID:24907571

  9. Influence of carbon doping on the reversible magnetization of MgB 2 single crystals

    NASA Astrophysics Data System (ADS)

    Eisterer, M.; Krutzler, C.; Zehetmayer, M.; Weber, H. W.; Kazakov, S. M.; Karpinski, J.

    2007-09-01

    The reversible magnetization of Mg(B1-xCx)2 single crystals with varying carbon content (x = 0-0.095) was measured by SQUID magnetometry. It was found to be strongly influenced by the two-band character of this material. At low magnetic fields charge carriers of both bands contribute to superconductivity and to diamagnetism. At high fields the π-band is suppressed and the σ-band mainly determines the magnetization. This allows us to extract information on both bands by analyzing the reversible magnetization in terms of two band Ginzburg-Landau (GL) theory. The "intrinsic" magnetic penetration increases in both bands with increasing carbon content, but the σ-band remains crucial for the upper critical field. Changes in the field dependence of the resulting "effective" penetration depth by carbon doping are discussed.

  10. The influence of temperature on the corrosion resistance of 10# carbon steel for refinery heat exchanger tubes

    NASA Astrophysics Data System (ADS)

    Xiu-qing, Xu; Zhen-quan, Bai; Yao-rong, Feng; Qiu-rong, Ma; Wen-zhen, Zhao

    2013-09-01

    Based on the corrosion problem of refinery heat exchanger tubes (10# carbon steel) in the course of using, the corrosion and electrochemical behaviors of 10# carbon steel in saline wastewater were investigated by means of autoclave test and electrochemical methods, respectively. The experiment results explained the formation mechanism of corrosion products film and indicated that the corrosion process of 10# steel in the corrosion medium with different temperature was divided into two parts: one was the formation of corrosion products below 50 ̊C, the other was the formation and dissolution of corrosion products film. The corrosion rate reached the maximum of 0.195 mm/a when the medium temperature was 60 ̊C.

  11. Probing interfacial reactions with x-ray reflectivity and x-ray reflection interface microscopy : influence of NaCl on the dissolution of orthoclase at pOH2 and 85 {degree} C.

    SciTech Connect

    Fenter, P.; Lee, S. S.; Park, C.; Catalano, J. G.; Zhang, Z.; Sturchio, N. C.; Chemical Sciences and Engineering Division; Washington Univ.; Univ. of Illinois at Chicago

    2010-01-01

    The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH {approx} 2) at 84 {+-} 1 C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 m NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions.

  12. Probing interfacial reactions with X-ray reflectivity and X-ray reflection interface microscopy: Influence of NaCl on the dissolution of orthoclase at pOH 2 and 85 °C

    NASA Astrophysics Data System (ADS)

    Fenter, P.; Lee, S. S.; Park, C.; Catalano, J. G.; Zhang, Z.; Sturchio, N. C.

    2010-06-01

    The role of electrolyte ions in the dissolution of orthoclase (0 0 1) in 0.01 m NaOH (pOH ˜ 2) at 84 ± 1 °C is studied using a combination of in-situ X-ray reflectivity (XR) and ex-situ X-ray reflection interface microscopy (XRIM). The real-time XR measurements show characteristic intensity oscillations as a function of time indicative of the successive removal of individual layers. The dissolution rate in 0.01 m NaOH increases approximately linearly with increasing NaCl concentration up to 2 m NaCl. XRIM measurements of the lateral interfacial topography/structure were made for unreacted surfaces and those reacted in 0.01 m NaOH/1.0 m NaCl solution for 15, 30 and 58 min. The XRIM images reveal that the dissolution reaction leads to the formation of micron-scale regions that are characterized by intrinsically lower reflectivity than the unreacted regions, and appears to be nucleated at steps and defect sites. The reflectivity signal from these reacted regions in the presence of NaCl in solution is significantly lower than that calculated from an idealized layer-by-layer dissolution process, as observed previously in 0.1 m NaOH in the absence of added electrolyte. This difference suggests that dissolved NaCl results in a higher terrace reactivity leading to a more three-dimensional process, consistent with the real-time XR measurements. These observations demonstrate the feasibility of XRIM to gain new insights into processes that control interfacial reactivity, specifically the role of electrolytes in feldspar dissolution at alkaline conditions.

  13. Influence of Shrinkage and Swelling Properties of Coal on Geologic Sequestration of Carbon Dioxide

    SciTech Connect

    Siriwardane, H.J.; Gondle, R.; Smith, D.H.

    2007-05-01

    The potential for enhanced methane production and geologic sequestration of carbon dioxide in coalbeds needs to be evaluated before large-scale sequestration projects are undertaken. Geologic sequestration of carbon dioxide in deep unmineable coal seams with the potential for enhanced coalbed methane production has become a viable option to reduce greenhouse gas emissions. The coal matrix is believed to shrink during methane production and swell during the injection of carbon dioxide, causing changes in tlie cleat porosity and permeability of the coal seam. However, the influence of swelling and shrinkage, and the geomechanical response during the process of carbon dioxide injection and methane recovery, are not well understood. A three-dimensional swelling and shrinkage model based on constitutive equations that account for the coupled fluid pressure-deformation behavior of a porous medium was developed and implemented in an existing reservoir model. Several reservoir simulations were performed at a field site located in the San Juan basin to investigate the influence of swelling and shrinkage, as well as other geomechanical parameters, using a modified compositional coalbed methane reservoir simulator (modified PSU-COALCOMP). The paper presents numerical results for interpretation of reservoir performance during injection of carbon dioxide at this site. Available measured data at the field site were compared with computed values. Results show that coal swelling and shrinkage during the process of enhanced coalbed methane recovery can have a significant influence on the reservoir performance. Results also show an increase in the gas production rate with an increase in the elastic modulus of the reservoir material and increase in cleat porosity. Further laboratory and field tests of the model are needed to furnish better estimates of petrophysical parameters, test the applicability of thee model, and determine the need for further refinements to the mathematical

  14. The skeletal organic matrix from Mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation.

    PubMed

    Goffredo, Stefano; Vergni, Patrizia; Reggi, Michela; Caroselli, Erik; Sparla, Francesca; Levy, Oren; Dubinsky, Zvy; Falini, Giuseppe

    2011-01-01

    Scleractinian coral skeletons are made mainly of calcium carbonate in the form of aragonite. The mineral deposition occurs in a biological confined environment, but it is still a theme of discussion to what extent the calcification occurs under biological or environmental control. Hence, the shape, size and organization of skeletal crystals from the cellular level through the colony architecture, were attributed to factors as diverse as mineral supersaturation levels and organic mediation of crystal growth. The skeleton contains an intra-skeletal organic matrix (OM) of which only the water soluble component was chemically and physically characterized. In this work that OM from the skeleton of the Balanophyllia europaea, a solitary scleractinian coral endemic to the Mediterranean Sea, is studied in vitro with the aim of understanding its role in the mineralization of calcium carbonate. Mineralization of calcium carbonate was conducted by overgrowth experiments on coral skeleton and in calcium chloride solutions containing different ratios of water soluble and/or insoluble OM and of magnesium ions. The precipitates were characterized by diffractometric, spectroscopic and microscopic techniques. The results showed that both soluble and insoluble OM components influence calcium carbonate precipitation and that the effect is enhanced by their co-presence. The role of magnesium ions is also affected by the presence of the OM components. Thus, in vitro, OM influences calcium carbonate crystal morphology, aggregation and polymorphism as a function of its composition and of the content of magnesium ions in the precipitation media. This research, although does not resolve the controversy between environmental or biological control on the deposition of calcium carbonate in corals, sheds a light on the role of OM, which appears mediated by the presence of magnesium ions. PMID:21799830

  15. Marital Discord and Subsequent Marital Dissolution: Perceptions of Nepalese Wives and Husbands.

    PubMed

    Jennings, Elyse

    2014-06-01

    This study examines the influence of marital discord on separation and divorce in a rural South Asian setting. We know little about how marital discord influences marital outcomes in settings with low personal freedom and limited access to independence. Using a sample of 674 couples from the Chitwan Valley Family Study in Nepal, this paper investigates the impact of marital discord on the rate of marital dissolution, and the extent to which wives' and husbands' perceptions of discord influence dissolution. Results reveal that (a) spouses' perceptions of marital discord increase the rate of marital dissolution, (b) both husbands' and wives' perceptions of discord have an important influence, and (c) the influence of wives' perceptions of discord is independent of their husbands' perceptions. Overall, these findings suggest that both spouses' perceptions of discord are important for marital outcomes, even in settings where the costs of marital dissolution are relatively high. PMID:25484450

  16. Marital Discord and Subsequent Marital Dissolution: Perceptions of Nepalese Wives and Husbands

    PubMed Central

    Jennings, Elyse

    2014-01-01

    This study examines the influence of marital discord on separation and divorce in a rural South Asian setting. We know little about how marital discord influences marital outcomes in settings with low personal freedom and limited access to independence. Using a sample of 674 couples from the Chitwan Valley Family Study in Nepal, this paper investigates the impact of marital discord on the rate of marital dissolution, and the extent to which wives’ and husbands’ perceptions of discord influence dissolution. Results reveal that (a) spouses’ perceptions of marital discord increase the rate of marital dissolution, (b) both husbands’ and wives’ perceptions of discord have an important influence, and (c) the influence of wives’ perceptions of discord is independent of their husbands’ perceptions. Overall, these findings suggest that both spouses’ perceptions of discord are important for marital outcomes, even in settings where the costs of marital dissolution are relatively high. PMID:25484450

  17. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect

    Chen Zhu

    2006-08-31

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between laboratory and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO2 injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the second year of the project, we completed CO{sub 2}-Navajo sandstone interaction batch and flow-through experiments and a Navajo sandstone dissolution experiment without the presence of CO{sub 2} at 200 C and 250-300 bars, and initiated dawsonite dissolution and solubility experiments. We also performed additional 5-day experiments at the

  18. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  19. Bench Scale Saltcake Dissolution Test Report

    SciTech Connect

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-12-06

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

  20. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    cores are being assayed monthly from June - October for two oxidase enzyme activities (phenol oxidase, peroxidase) and four hydrolase enzyme activities (β-glucosidase, chitinase, cellobiohydrolase, and acid-phosphatase). Early season assays (June and July) where water table treatments did not significantly vary showed trends of decreasing oxidase activities while hydrolase activities increased. These preliminary results show no significant differences between vegetation treatments but as the season progresses (August - October), water table levels between high and low treatments will continue to experience greater dissimilarities. These water table declines within sedge and ericaceous shrub communities may have opposing effects on rhizosphere extracellular enzyme activities indicating plant communities may significantly influence belowground carbon storage mechanisms in ways not previously considered in peatland ecosystems.

  1. Influence of water availability on carbon uptake of two Mediterranean Holm oak forests

    NASA Astrophysics Data System (ADS)

    Magno, Ramona; Gioli, Beniamino; Primo Vaccari, Francesco; Canfora, Eleonora

    2010-05-01

    In the last decades changes in precipitation pattern were registered at global level as a consequence of temperature rise, with an increase in the intensity of precipitation events in many regions of the world. but also more intense and longer drought in others, and in particular in the Mediterranean basin. Climate changes can have direct influence on biological phenomena, like the earlier onset of spring and the lengthening of the growing season, playing a key role for the carbon fixation and for the amount of CO2 exchanged by the biosphere with the atmosphere. The impact of water availability variation on ecosystem functioning and carbon fluxes differs from species to species and depends on the period of occurrence. Mediterranean-type ecosystems (MTEs), which are mostly water and temperature-limited biomes and suffered prolonged and exacerbated human pressure, are particularly sensitive to changes in climate, as suggested by the observed decrease in plant productivity following recent heat waves and droughts events. Water availability for this region seems to be a crucial constraint for the net carbon assimilation, and biomes evolving in particularly negative soil and climatic conditions could be the most affected by changes in rainfall pattern. In this view a comparison between carbon uptake of two Holm oak (Quercus ilex L.) forests of Central Italy (Castelporziano-Rome and Lecceto-Siena), measured by eddy covariance technique, was done to analyze the possible adaptation to rainfall decrease. The two ecosystems are characterized by different soil water content of the upper soil layers, by the occurrence of a shallow water table in Castelporziano forest and by a strongly different net ecosystem exchange rate (NEE), with -360 gCm-2year-1 for Lecceto and -875 gCm-2year-1 for Castelporziano. The water supply of Lecceto was mostly driven by rainfall, reaching minimum values under 5% in particularly dry periods and increasing the carbon sink of the ecosystem after

  2. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    PubMed

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.

  3. Climate and landscape influence on indicators of lake carbon cycling through spatial patterns in dissolved organic carbon.

    PubMed

    Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A

    2015-12-01

    Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. PMID:26150108

  4. The Use of Artificial Neural Network for Prediction of Dissolution Kinetics

    PubMed Central

    Elçiçek, H.; Akdoğan, E.; Karagöz, S.

    2014-01-01

    Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674

  5. Dissolution patterns on caramel blocks

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Derr, Julien; Berhanu, Michael; Courrech Du Pont, Sylvain

    2015-11-01

    We investigate erosion by dissolution processes. We perform laboratory experiments on hard caramel bodies, which dissolve on a short timescale, compared to geological material such as limestone. We put a block of caramel, tilted from the horizontal, in a water tank without flow. The dissolution syrup, which is denser than pure water, sinks and the flow detaching from the surface creates patterns underneath the caramel block. These patterns result from the coupled dynamics of the flow detaching and the eroding surface and are reminiscent of scallops observed in the walls of phreatic cave passages. We investigate the mechanisms of formation of these structures and their evolution depending on several parameters such as the fluid density or the flow velocity. We finally parallel the formation of patterns on melting iceberg.

  6. Marital Dissolution Among Interracial Couples.

    PubMed

    Zhang, Yuanting; Van Hook, Jennifer

    2009-02-01

    Increases in interracial marriage have been interpreted as reflecting reduced social distance among racial and ethnic groups, but little is known about the stability of interracial marriages. Using six panels of Survey of Income and Program Participation (N = 23,139 married couples), we found that interracial marriages are less stable than endogamous marriages, but these findings did not hold up consistently. After controlling for couple characteristics, the risk of divorce or separation among interracial couples was similar to the more-divorce-prone origin group. Although marital dissolution was found to be strongly associated with race/ethnicity, the results failed to provide evidence that interracial marriage is associated with an elevated risk of marital dissolution.

  7. Comparison of dissolution under oxic acid drainage conditions for eight sedimentary and hydrothermal pyrite samples

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wolfe, Amy L.; Dzombak, David A.; Stewart, Brian W.; Capo, Rosemary C.

    2008-11-01

    The abiotic oxidative dissolution behaviors of eight natural pyrite samples, five sedimentary and three hydrothermal, from various geological environments were compared under oxic conditions at pH 3 and 6 in a highly controlled batch reactor dissolution system. The three sedimentary pyrite samples associated with coal had greater specific surface areas and also exhibited greater apparent dissolution rates and extent than the other two sedimentary and three hydrothermal samples under both pH conditions. However, after normalizing for surface area, the dissolution rate constants for the different pyrite samples were similar; the greatest difference was between the two non-coal sedimentary pyrite samples. Pyrite morphology and the presence of trace metals could contribute to the differences in dissolution behavior as reflected in the normalized dissolution rates. The sulfur:iron ratio observed in the aqueous solution at pH 3 increased with time, but was always less than 2.0 (predicted from the stoichiometry of dissolution) for all the pyrite samples during the 24-h experimental duration. This can be explained by the disproportionation dissociation of thiosulfate, an initial product of pyrite dissolution, to elemental sulfur and sulfate which does not occur in a 1:1 ratio. The results of this work indicate the importance of extracting and using the specific pyrite(s) relevant to particular mining areas in order to understand pyrite dissolution rates and the influence of environmental conditions on those rates.

  8. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    PubMed

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing. PMID:25980801

  9. Hydrodynamic Effects on Drug Dissolution and Deaggregation in the Small Intestine-A Study with Felodipine as a Model Drug.

    PubMed

    Lindfors, Lennart; Jonsson, Malin; Weibull, Emelie; Brasseur, James G; Abrahamsson, Bertil

    2015-09-01

    The aim of this study was to understand and predict the influence of hydrodynamic effects in the small intestine on dissolution of primary and aggregated drug particles. Dissolution tests of suspensions with a low-solubility drug, felodipine, were performed in a Couette cell under hydrodynamic test conditions corresponding to the fed small intestine. Dissolution was also performed in the USP II apparatus at two paddle speeds of 25 and 200 rpm and at different surfactant concentrations below critical micelle concentration. The experimental dissolution rates were compared with theoretical calculations. The different levels of shear stress in the in vitro tests did not influence the dissolution of primary or aggregated particles and experimental dissolution rates corresponded very well to calculations. The dissolution rate for the aggregated drug particles increased after addition of surfactant because of deaggregation, but there were still no effect of hydrodynamics. In conclusion, hydrodynamics do not influence dissolution and deaggregation of micronized drug particles in the small intestine of this model drug. Surface tension has a strong effect on the deaggregation and subsequent dissolution. Addition of surfactants at in vivo relevant surface tension levels is thus critical for in vivo predictive in vitro dissolution testing.

  10. Influence of physical aging on mechanical properties of polymer free films: the prediction of long-term aging effects on the water permeability and dissolution rate of polymer film-coated tablets.

    PubMed

    Guo, J H; Robertson, R E; Amidon, G L

    1991-12-01

    The effects of physical aging on the water permeation of cellulose acetate and ethylcellulose, the mechanical properties of ethylcellulose, and the dissolution property of hydroxypropyl methylcellulose phthalate were investigated. The water permeabilities of cellulose acetate and ethylcellulose and the dissolution rate of hydroxypropyl methylcellulose phthalate were found to decrease with physical aging time after being quenched from above the glass transition temperatures to sub-Tg temperatures. The gradual approach toward thermodynamic equilibrium during physical aging decreases the free volume of the polymers. This decrease in free volume is accompanied by a decrease in the transport mobility, with concomitant changes in those properties of the polymer that depend on it. The effects of long-term aging on the dissolution rate and water permeabilities of these polymers can be estimated from a linear double-logarithmic relationship between the mobility properties and physical aging time. The existence of the linear double-logarithmic relationship can be derived from the Williams-Landel-Ferry equation, the Doolittle equation, Struik's model, and Fujita's relationship between diffusion and free volume.

  11. Mass exchange during simultaneous grinding and dissolution

    SciTech Connect

    Aksel'rud, G.A.; Semenishin, E.M.; Kopyt, S.Ya.; Trotskii, V.I.

    1988-03-20

    Extraction of ore components of interest has a number of disadvantages, one of which being low efficiency. Combining the grinding and dissolution steps in one apparatus makes the process more efficient. Adoption of this technology, however, requires theoretical and mathematical studies. This paper reports the kinetics of simultaneous grinding and dissolution of copper-containing minerals. Simultaneous grinding and dissolution accelerated several fold the mass transfer of components of interest in the interaction of malachite and azurite with sulfuric acid solutions. The complete dissolution time was determined by adding the experimental rates of dissolution and abrasion.

  12. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila

    PubMed Central

    2012-01-01

    Background The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. Results H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. Conclusions We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing

  13. Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil

    NASA Astrophysics Data System (ADS)

    Ennes-Silva, Renata A.; Bezerra, Francisco H. R.; Nogueira, Francisco C. C.; Balsamo, Fabrizio; Klimchouk, Alexander; Cazarin, Caroline L.; Auler, Augusto S.

    2016-01-01

    Porosity and permeability along fractured zones in carbonates could be significantly enhanced by ascending fluid flow, resulting in hypogene karst development. This work presents a detailed structural analysis of the longest cave system in South America to investigate the relationship between patterns of karst conduits and regional deformation. Our study area encompasses the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR) caves, which are ca. 107 km and 34 km long, respectively. This cave system occurs in Neoproterozoic carbonates of the Salitre Formation in the northern part of the São Francisco Craton, Brazil. The fold belts that are around and at the craton edges were deformed in a compressive setting during the Brasiliano orogeny between 750 and 540 Ma. Based on the integrated analysis of the folds and brittle deformation in the caves and in outcrops of the surrounding region, we show the following: (1) The caves occur in a tectonic transpressive corridor along a regional thrust belt; (2) major cave passages, at the middle storey of the system, considering both length and frequency, developed laterally along mainly (a) NE-SW to E-W and (b) N to S oriented anticline hinges; (3) conduits were formed by dissolutional enlargement of subvertical joints, which present a high concentration along anticline hinges due to folding of competent grainstone layers; (4) the first folding event F1 was previously documented in the region and corresponds with NW-SE- to N-S-trending compression, whereas the second event F2, documented for the first time in the present study, is related to E-W compression; and (5) both folding events occurred during the Brasiliano orogeny. We conclude that fluid flow and related dissolution pathways have a close relationship with regional deformation events, thus enhancing our ability to predict karst patterns in layered carbonates.

  14. Influence of Structure and Surface Chemistry of Porous Carbon Electrodes on Supercapacitor Performance

    NASA Astrophysics Data System (ADS)

    Dyatkin, Boris

    Electrochemical double layer capacitors, which rely on electrosorption of ions in nanostructured carbon electrodes, can supplement or even replace traditional batteries in energy harvesting and storage applications. While supercapacitors offer > 10 kW/kg power densities, their ~5 Wh/kg energy densities are insufficient for many automotive and grid storage applications. Most prior efforts have focused on novel high-performing ionic liquid electrolytes and porous carbons with tunable pore diameters and high specific surface areas. However, existing research lacks fundamental understanding of the influence of surface heterogeneity and disorder, such as graphitic defects and functional groups, on key electrosorption properties at electrode-electrolyte interfaces. These interactions significantly impact charge accumulation densities, ion transport mechanisms, and electrolyte breakdown processes. Subsequently, they must be investigated to optimize ion screening, charge mobilities, and operating voltage windows of the devices. The research in this dissertation examined the influence of surface functional groups and structural ordering on capacitance, electrosorption dynamics, and electrochemical stability of external and internal surface of carbon electrodes. High-temperature vacuum annealing, air oxidation, hydrogenation, and amination were used to tune pore surface compositions and decouple key structural and chemical properties of carbide-derived carbons. The approach combined materials characterization by a variety of techniques, neutron scattering studies of ion dynamics, electrochemical testing, and MD simulations to investigate the fundamental intermolecular interactions and dynamics of ions electrosorption in different pore architectures and on planar graphene surfaces. Contrary to expected results and existing theories, defect removal via defunctionalization and graphitization decreased capacitance. Hydrogenated surfaces benefitted electrosorption, while oxygen

  15. Floodplain influence on carbon speciation and fluxes from the lower Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Shim, Moo-Joon; Guo, Laodong; Shiller, Alan

    2016-08-01

    To investigate the floodplain influence on carbon speciation and export to the northern Gulf of Mexico, water samples were collected monthly from two sites in the East Pearl River (EPR) basin during 2006-2008. Additionally, four spatial surveys in the river basin between those two sites were also conducted. Compared with the upstream sampling site at Bogalusa, MS, dissolved inorganic carbon (DIC) and particulate organic carbon (POC) concentrations were 36% and 55% lower, respectively, and dissolved organic carbon (DOC) concentration was 49% higher at the downstream Stennis Space Center (SSC) site. In addition, the bulk DOC pool at SSC had a higher colloidal fraction than at Bogalusa (75% vs. 68%). Detailed spatial surveys revealed the differences between the upstream and downstream stations resulted both from input from Hobolochitto Creek, a tributary of the EPR, and from influence of the swamp-rich floodplain. The contributions from Hobolochitto Creek to the carbon pool in the EPR basin were lowest during a high flow event and reached a maximum during the dry season. Meanwhile, the floodplain in the EPR basin acted as a significant sink for DOC, POC and particulate nitrogen during summer and for suspended sediment during a high flow event. However, the floodplain was converted into a source of suspended sediment, DOC, and POC to the EPR during winter, revealing a dynamic nature and seasonality in the floodplain influence. Consistent with its dominant forest coverage, abundant wetlands along the river corridor, and mild anthropogenic disturbance, the Pearl River basin above Bogalusa generally had higher yields of DOC and POC (1903 and 1386 kg-C km-2 yr-1, respectively), but a lower yield of DIC (2126 kg-C km-2 yr-1) compared to other North American rivers. An estimation based on a mass balance approach suggests the interactions between floodplain and the main river stem could reduce the annual DIC and POC export fluxes from downstream of the EPR by 24% and 40

  16. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  17. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    PubMed

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  18. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  19. Influence of Substrate Mineralogy on Bacterial Mineralization of Calcium Carbonate: Implications for Stone Conservation

    PubMed Central

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-01-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed. PMID:22447589

  20. Long-term tillage and drainage influences on soil organic carbon dynamics, aggregate stability, and corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Labile pools of soil organic carbon (SOC) and nitrogen (N) affect the carbon (C) and N fluxes from terrestrial soils, whereas, long-term C and N storage is determined by the long-lived recalcitrant fractions. Tillage influences these labile pools, however effect of the tillage systems may be differe...

  1. The influence of drought-heat stress on long term carbon fluxes of bioenergy crops grown in the Midwestern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grasses are promising feedstocks for bioenergy production in the Midwestern US. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscan...

  2. Influence of Matrix Polarity on the Properties of Ethylene Vinyl Acetate-Carbon Nanofiller Nanocomposites.

    PubMed

    George, Jinu Jacob; Bhowmick, Anil K

    2009-01-01

    A series of ethylene vinyl acetate (EVA) nanocomposites using four kinds of EVA with 40, 50, 60, and 70 wt% vinyl acetate (VA) contents and three different carbon-based nanofillers-expanded graphite (EG), multi-walled carbon nanotube (MWCNT), and carbon nanofiber (CNF) have been prepared via solution blending. The influence of the matrix polarity and the nature of nanofillers on the morphology and properties of EVA nanocomposites have been investigated. It is observed that the sample with lowest vinyl acetate content exhibits highest mechanical properties. However, the enhancement in mechanical properties with the incorporation of various nanofillers is the highest for EVA with high VA content. This trend has been followed in both dynamic mechanical properties and thermal conductivity of the nanocomposites. EVA copolymer undergoes a transition from partial to complete amorphousness between 40 and 50 wt% VA content, and this changes the dispersion of the nanofillers. The high VA-containing polymers show more affinity toward fillers due to the large free volume available and allow easy dispersion of nanofillers in the amorphous rubbery phase, as confirmed from the morphological studies. The thermal stability of the nanocomposites is also influenced by the type of nanofiller. PMID:20596353

  3. Emission of carbon dioxide influenced by different water levels from soil incubated organic residues.

    PubMed

    Hossain, M B; Puteh, A B

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO₂-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO₂-C emission. Poultry litter with soil mixture increased 121% cumulative CO₂-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO₂-C. Maximum CO₂-C was found in 7 days after incubation and thereafter CO₂-C emission was decreased with the increase of time. Control produced the lowest CO₂-C (158.23 mg). Poultry litter produced maximum cumulative CO₂-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO₂-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d⁻¹) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon.

  4. Emission of carbon dioxide influenced by different water levels from soil incubated organic residues.

    PubMed

    Hossain, M B; Puteh, A B

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO₂-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO₂-C emission. Poultry litter with soil mixture increased 121% cumulative CO₂-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO₂-C. Maximum CO₂-C was found in 7 days after incubation and thereafter CO₂-C emission was decreased with the increase of time. Control produced the lowest CO₂-C (158.23 mg). Poultry litter produced maximum cumulative CO₂-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO₂-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d⁻¹) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  5. Influence of carbon source on alpha-amylase production by Aspergillus oryzae.

    PubMed

    Carlsen, M; Nielsen, J

    2001-10-01

    The influence of the carbon source on alpha-amylase production by Aspergillus oryzae was quantified in carbon-limited chemostat cultures. The following carbon sources were investigated: maltose, maltodextrin (different chain lengths), glucose, fructose, galactose, sucrose, glycerol, mannitol and acetate. A. oryzae did not grow on galactose as the sole carbon source, but galactose was co-metabolized together with glucose. Relative to that on low glucose concentration (below 10 mg/l), productivity was found to be higher during growth on maltose and maltodextrins, whereas it was lower during growth on sucrose, fructose, glycerol, mannitol and acetate. During growth on acetate there was no production of alpha-amylase, whereas addition of small amounts of glucose resulted in alpha-amylase production. A possible induction by alpha-methyl-D-glucoside during growth on glucose was also investigated, but this compound was not found to be a better inducer of a-amylase production than glucose. The results strongly indicate that besides acting as a repressor via the CreA protein, glucose acts as an inducer.

  6. The influence of Southern Ocean winds on the North Atlantic carbon sink

    NASA Astrophysics Data System (ADS)

    Bronselaer, Ben; Zanna, Laure; Munday, David R.; Lowe, Jason

    2016-06-01

    Observed and predicted increases in Southern Ocean winds are thought to upwell deep ocean carbon and increase atmospheric CO2. However, Southern Ocean dynamics affect biogeochemistry and circulation pathways on a global scale. Using idealized Massachusetts Institute of Technology General Circulation Model (MITgcm) simulations, we demonstrate that an increase in Southern Ocean winds reduces the carbon sink in the North Atlantic subpolar gyre. The increase in atmospheric CO2 due to the reduction of the North Atlantic carbon sink is shown to be of the same magnitude as the increase in atmospheric CO2 due to Southern Ocean outgassing. The mechanism can be described as follows: The increase in Southern Ocean winds leads to an increase in upper ocean northward nutrient transport. Biological productivity is therefore enhanced in the tropics, which alters the chemistry of the subthermocline waters that are ultimately upwelled in the subpolar gyre. The results demonstrate the influence of Southern Ocean winds on the North Atlantic carbon sink and show that the effect of Southern Ocean winds on atmospheric CO2 is likely twice as large as previously thought in past, present, and future climates.

  7. Effect of Extracellular Polymeric Substances on CuO Nanoparticle Dissolution and Colloidal Stability

    NASA Astrophysics Data System (ADS)

    Adeleye, A. S.; Keller, A. A.

    2013-12-01

    Extracellular polymeric substances (EPS) are high molecular weight polymers produced by microorganisms growing in natural as well as artificial environments. EPS may interact with engineered nanomaterials (ENMs) in aquatic systems via electrostatic and/or hydrophobic associations, therefore, influencing the fate and transport of ENMs. In this study the effect of soluble EPS isolated from Isochrysis galbana, a marine phytoplankton, on the dissolution kinetics and colloidal stability of CuO nanoparticles was investigated. EPS was characterized by measuring hydrodynamic diameter, total organic carbon, carbohydrate, and protein concentrations. CuO nanoparticles were more stable in the presence of EPS in aqueous media as indicated by hydrodynamic size and average count rate measurements. The effect of pH and ionic strength on dissolution was also studied. [Cu2+] and [Cu]total detected after a week were 5.70 mg L-1 and 7.08 mg L-1 respectively when 10 mg L-1 CuO nanoparticles was kept in 10 mM NaCl at pH 4. In the presence of 5 mg-C EPS L-1, [Cu2+] and [Cu]total were slightly lower at 5.0 mg L-1 and 5.53 mg L-1 respectively. Although observed [Cu2+] and [Cu]total were significantly lower at neutral and alkaline pH conditions, a similar pattern was observed.

  8. Conversion of batch to molten glass, II: Dissolution of quartz particles

    SciTech Connect

    Hrma, Pavel R.; Marcial, Jose; Swearingen, Kevin J.; Henager, Samuel H.; Schweiger, Michael J.; Tegrotenhuis, Nathan E.

    2011-01-28

    Quartz dissolution during the batch-to-glass conversion influences the melt viscosity and ultimately the temperature at which the glass forms. Batches to make a high-alumina borosilicate glass (formulated for the vitrification of nuclear waste) were heated as 5°C min-1 and quenched from the temperatures of 400-1200°C at 100°C intervals. As a silica source, the batches contained quartz with particles ranging from 5 to 195 µm. The content of unreacted quartz in the samples was determined with x-ray diffraction. Most of fine quartz has dissolved during the early batch reactions (at temperatures <800°C), whereas coarser quartz dissolved mostly in a continuous glass phase via diffusion. The mass-transfer coefficients were assessed from the data as functions of the initial particle sizes and the temperature. A series of batch was also tested that contained nitrated components and additions of sucrose known to accelerate melting. While sucrose addition had no discernible impact on quartz dissolution, nitrate batches melted somewhat more slowly than batches containing carbonates and hydroxides in addition to nitrates.

  9. Influence of Sodium Carbonate on Decomposition of Formic Acid by Discharge inside Bubble in Water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2015-09-01

    An influence of sodium carbonate on decomposition of formic acid by discharge inside bubble in water was investigated. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of addition of sodium carbonate, the pH value increased with decomposition of the formic acid. In the case of oxygen injection, the increase of pH value contributed to improve an efficiency of the formic acid decomposition because the reaction rate of ozone and formic acid increased with increasing pH value. In the case of argon injection, the decomposition rate was not affected by the pH value owing to the high rate constants for loss of hydroxyl radicals.

  10. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schütz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products.

  11. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde.

    PubMed

    Rong, Haiqin; Ryu, Zhenyu; Zheng, Jingtang; Zhang, Yuanli

    2003-05-15

    The influence of heat treatment of rayon-based activated carbon fibers on the adsorption behavior of formaldehyde was studied. Heat treatment in an inert atmosphere of nitrogen for rayon-based activated carbon fibers (ACFs) resulted in a significant increase in the adsorption capacities and prolongation of breakthrough time on removing of formaldehyde. The effect of different heat-treatment conditions on the adsorption characteristics was investigated. The porous structure parameters of the samples under study were investigated using nitrogen adsorption at the low temperature 77.4 K. The pore size distributions of the samples under study were calculated by density functional theory. With the aid of these analyses, the relationship between structure and adsorption properties of rayon-based ACFs for removing formaldehyde was revealed. Improvement of their performance in terms of adsorption selectivity and adsorption rate for formaldehyde were achieved by heat post-treatment in an inert atmosphere of nitrogen.

  12. Dissolution and reduction of magnetite by bacteria

    NASA Technical Reports Server (NTRS)

    Kostka, J. E.; Nealson, K. H.

    1995-01-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis.

  13. Dissolution and reduction of magnetite by bacteria.

    PubMed

    Kostka, J E; Nealson, K H

    1995-10-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis. PMID:11539843

  14. Bacterial siderophores promote dissolution of UO2 under reducing conditions.

    PubMed

    Frazier, Scott W; Kretzschmar, Ruben; Kraemer, Stephan M

    2005-08-01

    Tetravalent actinides are often considered environmentally immobile due to their strong hydrolysis and formation of sparingly soluble oxide phases. However, biogenic ligands commonly found in the soil environment may increase their solubility and mobility. We studied the adsorption and dissolution kinetics of UO2 in the presence of a microbial siderophore, desferrioxamine-B (DFO-B), under reducing conditions. Using batch and continuous flow stirred tank reactors (CFSTR),we found that DFO-B increases the solubility of UIV and accelerates UO2 dissolution rates through a ligand-promoted dissolution mechanism. DFO-B adsorption to UO2 followed a Langmuir-type isotherm. The maximum adsorbed DFO-B concentrations were 3.3 micromol m(-2) between pH 3 and 8 and declined above pH 8. DFO-B dissolved UO2 at a DFO-B surface-saturated net rate of 64 nmol h(-1) m(-2) (pH 7.5, l = 0.01 M) according to the first-order rate equation R = kL[Lads], with a rate coefficient kL of 0.019 h(-1). Even at very low siderophore concentrations (e.g. 1 microM), net dissolution rates (16 nmol h(-1) m(-2), pH 7.5, l = 0.01 M) were substantially greater than net proton-promoted dissolution rates (3 nmol h(-1) m(-2), pH 7-7.5, l = 0.01 M). Interestingly, adding dissolved FeIII had negligible effects on DFO-B-promoted UO2 dissolution rates, despite its potential as a competitor for DFO-B and as an oxidant of UIV. Our results suggest that strong organic ligands could influence the environmental mobility of tetravalent actinides and should be considered in predictions for nuclear waste storage and remediation strategies. PMID:16124306

  15. Influence of Leaf Area Index Prescriptions on Simulations of Heat, Moisture, and Carbon Fluxes

    NASA Technical Reports Server (NTRS)

    Kala, Jatin; Decker, Mark; Exbrayat, Jean-Francois; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Abramowitz, Gab; Mocko, David

    2013-01-01

    Leaf-area index (LAI), the total one-sided surface area of leaf per ground surface area, is a key component of land surface models. We investigate the influence of differing, plausible LAI prescriptions on heat, moisture, and carbon fluxes simulated by the Community Atmosphere Biosphere Land Exchange (CABLEv1.4b) model over the Australian continent. A 15-member ensemble monthly LAI data-set is generated using the MODIS LAI product and gridded observations of temperature and precipitation. Offline simulations lasting 29 years (1980-2008) are carried out at 25 km resolution with the composite monthly means from the MODIS LAI product (control simulation) and compared with simulations using each of the 15-member ensemble monthly-varying LAI data-sets generated. The imposed changes in LAI did not strongly influence the sensible and latent fluxes but the carbon fluxes were more strongly affected. Croplands showed the largest sensitivity in gross primary production with differences ranging from -90 to 60 %. PFTs with high absolute LAI and low inter-annual variability, such as evergreen broadleaf trees, showed the least response to the different LAI prescriptions, whilst those with lower absolute LAI and higher inter-annual variability, such as croplands, were more sensitive. We show that reliance on a single LAI prescription may not accurately reflect the uncertainty in the simulation of the terrestrial carbon fluxes, especially for PFTs with high inter-annual variability. Our study highlights that the accurate representation of LAI in land surface models is key to the simulation of the terrestrial carbon cycle. Hence this will become critical in quantifying the uncertainty in future changes in primary production.

  16. Effects of acid rain and sulfur dioxide on marble dissolution

    SciTech Connect

    Schuster, P.F.; Reddy, M.M. ); Sherwood, S.I. )

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO[sub 2]) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO[sub 2] gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  17. Effects of acid rain and sulfur dioxide on marble dissolution

    USGS Publications Warehouse

    Schuster, Paul F.; Reddy, Michael M.; Sherwood, Susan I.

    1994-01-01

    Acid precipitation and the dry deposition of sulfur dioxide (SO2) accelerate damage to carbonate-stone monuments and building materials. This study identified and quantified environmental damage to a sample of Vermont marble during storms and their preceding dry periods. Results from field experiments indicated the deposition of SO2 gas to the stone surface during dry periods and a twofold increase in marble dissolution during coincident episodes of low rain rate and decreased rainfall pH. The study is widely applicable to the analysis of carbonate-stone damage at locations affected by acid rain and air pollution.

  18. The influence of ecosystem nitrogen status on carbon cycling in forests

    NASA Astrophysics Data System (ADS)

    Ollinger, S. V.; Smith, M.; Richardson, A.; Hollinger, D. Y.; Martin, M.; Jenkins, J.

    2006-12-01

    The carbon and nitrogen cycles in terrestrial ecosystems are tightly coupled through a shared set of biological processes. The N status of plant canopies exerts a direct influence on carbon assimilation through its well-known effect on net photosynthesis. In soils, both the accumulation of N and the decay of organic matter are often related to the initial C/N ratio of litterfall. Similarly, respiration rates in both roots and foliage have been shown to be positively correlated with tissue N concentrations. These linkages suggest that the N status of ecosystems may provide a useful indicator of their overall C metabolism. Further, evidence from both CO2 and N enrichment experiments indicates that alteration of one cycle can have important implications for the other. This is significant in that global cycles of both C and N have been greatly perturbed by humans. Despite the well-known influence of nitrogen availability on fluxes of carbon, few studies have explicitly examined the role of nitrogen as it pertains to spatial and temporal variation in carbon cycling. This is due, in part, to limited crossover between different scientific communities, but also stems from some very real methodological limitations that make regional-scale assessment of N status difficult. Here, we report on an NACP investigation that examines the degree to which rates of carbon assimilation and growth in forests can be related to both local and regional variation in ecosystem N status. Field measurements from a series of forested research sites within the AmeriFlux network have been combined with hyperspectral remote sensing data from the AVIRIS and Hyperion instruments. Results from a cross-site synthesis indicate a positive relationship between canopy N and the maximum rate of carbon assimilation, as measured by flux towers. Because existing methods of canopy N detection are restricted to small landscapes, a parallel investigation involves developing generalizeable canopy N detection

  19. Calcination/dissolution residue treatment

    SciTech Connect

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O`Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination.

  20. A novel kinetic model for polysaccharide dissolution during atmospheric acetic acid pretreatment of sugarcane bagasse.

    PubMed

    Zhao, Xuebing; Morikawa, Yuichi; Qi, Feng; Zeng, Jing; Liu, Dehua

    2014-01-01

    Acetic acid (AcH) pretreatment of sugarcane bagasse with the catalysis of sulfuric acid (SA) could greatly enhance the enzymatic digestibility of cellulose. However, polysaccharide dissolution happened inevitably during the pretreatment. It was found that the simplest model, which assumes that the total polysaccharides were reactive to be dissolved, could not well describe the kinetic behavior of polysaccharide dissolution. A novel pseudo-homogenous kinetic model was thus developed by introducing a parameter termed as "potential dissolution degree" (δ(d)) based on the multilayered structure of cell wall. It was found that solid xylan and glucan dissolutions were a first-order reaction with respect to the dissolvable fraction. Due to the delignification action of AcH, polysaccharide dissolutions were enhanced in AcH media compared with those in aqueous system. Acetylizations of cellulose and sugars were also observed, and AcH concentration showed a significant influence on the degree of acetylization.

  1. Effect of surfactant on dissolution of spherical particles in micellar systems.

    PubMed

    Allaboun, Hussien; Alkhamis, Khouloud A; Al Jbour, Nawzat D

    2007-02-01

    The influence of micelle-drug solubilization on the dissolution rate of monodisperse particles of benzocaine has been investigated. A model describing and predicting the initial dissolution rates of spherical particles was derived starting from the boundary layer theory. The dissolution rate of benzocaine spherical particles was determined in water and in solutions of sodium lauryl sulfate (SLS) under static conditions. The derived model was applied to the experimental data. The diffusion coefficients and the aqueous diffusion layer values were estimated from the experimental results and the aforementioned model. The diffusion coefficients and the boundary layer thickness values were also obtained experimentally from the rotating disk method and were used to predict the initial dissolution rates. Excellent correlations were obtained between the experimental and the calculated values at low micellar concentrations. However, obvious deviation was observed at high micellar concentrations. The results obtained from this study suggest that it is possible to predict the initial dissolution rates of monodisperse particles in micellar systems.

  2. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    NASA Astrophysics Data System (ADS)

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  3. Optimizing dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Bornet, Aurélien; Jannin, Sami

    2016-03-01

    This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows: Using broad line polarizing agents to efficiently polarize 1H spins. Increasing the magnetic field to 6.7 T and above. Applying microwave frequency modulation. Applying 1H-13C cross polarization. Transferring hyperpolarized solution through a magnetic tunnel.

  4. DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES

    SciTech Connect

    Kyser, E

    2009-01-12

    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  5. CO2 Dissolution Trapping: Can Geologic Framework Models be used to Capture such Storage?

    NASA Astrophysics Data System (ADS)

    Lichtner, P. C.; Zhang, M.; Zhang, Y.

    2013-12-01

    An efficient simulation methodology is developed to investigate fundamental complexity in modeling geological carbon sequestration, whereby upscaled hydrostratigraphic models (HSMs) with reduced characterization cost can be used to accurately model CO2 flow and storage. Based on a three-dimensional experimental stratigraphy which exhibits permeability (k) heterogeneity at multiple scales, a fully heterogeneous model (FHM) with 3.2 million grid cells is created. Using an image processing algorithm that can capture large-scale facies connectivity, three HSMs of decreasing heterogeneity resolutions are created with 8, 3, and 1 stratigraphic unit. To overcome the computation challenge of simulating these large models, a parallel flow simulator was written and verified. Increasing system ln(k) variances - 0.1, 1.0, 4.5 - are tested, leading to a suite of 12 conceptual flow models. Equivalent k tensors are then computed for each unit of the HSMs using a numerical upscaling technique. For all the HSMs, at all the variances tested, significant accuracy is achieved with the upscaled ks in terms of capturing both the FHM fluid head and flow connectivity. Using PFLOTRAN, a state-of-the-art massively parallel subsurface flow and reactive transport code [1], CO2 injection is simulated with all models at 2 km depth for 20 years, followed by 1000 years of monitoring. Compared to the FHM which provides the reference solution, when the variance of ln(k) is low, all HSMs yield similar reservoir fluid pressure, plume footprint, and dissolution fingering (and therefore the total predicted dissolution storage at the end of the simulation time) as the FHM. When the variance of ln(k) is high, the HSMs are still able to accurately capture the fluid pressure of the FHM, but they predict more dissolution fingering due to their increasingly homogenized representation of the reservoir permeability. The higher the level of homogenization, the stronger the predicted fingering is. On the other

  6. Net carbon allocation in soybean seedlings as influenced by soil water stress at two soil temperatures. [Glycine max (L. ) Merr

    SciTech Connect

    McCoy, E.L.; Boersma, L.; Ekasingh, M. Oregon State Univ., Corvallis Chiang Mai Univ. )

    1990-12-01

    The influence of water stress at two soil temperatures on allocation of net photoassimilated carbon in soybean (Glycine max (L.) Merr.) was investigated using compartmental analysis. The experimental phase employed classical {sup 14}C labeling methodology with plants equilibrated at soil water potentials of {minus}0.04, {minus}0.25 and {minus}0.50 MPa; and soil temperatures of 25 and 10C. Carbon immobilization in the shoot apex generally followed leaf elongation rates with decreases in both parameters at increasing water stress at both soil temperatures. However, where moderate water stress resulted in dramatic declines in leaf elongation rates, carbon immobilization rates were sharply decreased only at severe water stress levels. Carbon immobilization was decreased in the roots and nodules of the nonwater stressed treatment by the lower soil temperature. This relation was reversed with severe water stress, and carbon immobilization in the roots and nodules was increased at the lower soil temperature. Apparently, the increased demand for growth and/or carbon storage in these tissues with increased water stress overcame the low soil temperature limitations. Both carbon pool sizes and partitioning of carbon to the sink tissues increased with moderate water stress at 25C soil temperature. Increased pool sizes were consistent with whole plant osmotic adjustment at moderate water stress. Increased partitioning to the sinks was consistent with carbon translocation processes being less severely influenced by water stress than is photosynthesis.

  7. Dissolution and compaction instabilities in geomaterials

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  8. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil.

    PubMed

    Singh, Bhupinder Pal; Cowie, Annette L

    2014-01-01

    Biochar can influence native soil organic carbon (SOC) mineralisation through "priming effects". However, the long-term direction, persistence and extent of SOC priming by biochar remain uncertain. Using natural (13)C abundance and under controlled laboratory conditions, we show that biochar-stimulated SOC mineralisation ("positive priming") caused a loss of 4 to 44 mg C g(-1) SOC over 2.3 years in a clayey, unplanted soil (0.42% OC). Positive priming was greater for manure-based or 400°C biochars, cf. plant-based or 550°C biochars, but was trivial relative to recalcitrant C in biochar. From 2.3 to 5.0 years, the amount of positively-primed soil CO2-C in the biochar treatments decreased by 4 to 7 mg C g(-1) SOC. We conclude that biochar stimulates native SOC mineralisation in the low-C clayey soil but that this effect decreases with time, possibly due to depletion of labile SOC from initial positive priming, and/or stabilisation of SOC caused by biochar-induced organo-mineral interactions. PMID:24446050

  9. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  10. Influence of the dynamical image potential on the rainbows in ion channeling through short carbon nanotubes

    SciTech Connect

    Borka, D.; Petrovic, S.; Neskovic, N.; Mowbray, D. J.; Miskovic, Z. L.

    2006-06-15

    We investigate the influence of the dynamic polarization of the carbon valence electrons on the angular distributions of protons channeled through short (11,9) single-wall carbon nanotubes at speeds of 3 and 5 a.u. (corresponding to the proton energies of 0.223 and 0.621 MeV), with the nanotube length varied from 0.1 to 0.3 {mu}m. The dynamic image force on protons is calculated by means of a two-dimensional hydrodynamic model for the nanotube's dielectric response, whereas the repulsive interaction with the nanotube's cylindrical wall is modeled by a continuum potential based on the Doyle-Turner interatomic potential. The angular distributions of channeled protons are generated by a computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Our analysis shows that the inclusion of the image interaction causes qualitative changes in the proton deflection function, giving rise to a number of rainbow maxima in the corresponding angular distribution. We propose that observations of those rainbow maxima could be used to deduce detailed information on the relevant interaction potentials, and consequently to probe the electron distribution inside carbon nanotubes.

  11. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  12. Fractal patterns from chemical dissolution

    NASA Astrophysics Data System (ADS)

    Daccord, Gérard; Lenormand, Roland

    1987-01-01

    The highly ramified patterns1,2 produced by the flow of a reactive fluid through a soluble porous medium have never been quantitatively described. The theoretical understanding of this phenomenon is limited to very simple conditions (such as the flow of a liquid through a; capillary3) due to the complexity of the coupling between the chemical reaction and the fluid flow. We show here that the dissolution patterns (DP) obtained experimentally by injecting water through pure plaster are fractal, for different geometries of the samples. In two dimensions, these DP are remarkably'similar to patterns associated with diffusion-limited aggregation4-6 (DLA), that is, dielectric breakdown7, viscous fingering8,9 and diffusion-limited polymerization10. In three dimensions, we compare them with DLA clusters grown in the same boundary conditions and find a good qualitative and quantitative similarity. These results should be of interest in different areas where chemical dissolution of porous media by a flowing fluid occurs, for example, in nature (the formation of caves) and in industry (in the oil industry where acids are routinely injected into oil reservoirs).

  13. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  14. Influence of severe plastic deformation on the structure and properties of ultrahigh carbon steel wire

    SciTech Connect

    Leseur, D R; Sherby, O D; Syn, C K

    1999-07-01

    Ultrahigh-carbon steel wire can achieve very high strength after severe plastic deformation, because of the fine, stable substructures produce. Tensile strengths approaching 6000 MPa are predicted for UHCS containing 1.8%C. This paper discusses the microstructural evolution during drawing of UHCS wire, the resulting strength produced and the factors influencing fracture. Drawing produces considerable alignment of the pearlite plates. Dislocation cells develop within the ferrite plates and, with increasing strain, the size normal to the axis ({lambda}) decreases. These dislocation cells resist dynamic recovery during wire drawing and thus extremely fine substructures can be developed ({lambda} < 10 nm). Increasing the carbon content reduces the mean free ferrite path in the as-patented wire and the cell size developed during drawing. For UHCS, the strength varies as {lambda}{sup {minus}5}. Fracture of these steels was found to be a function of carbide size and composition. The influence of processing and composition on achieving high strength in these wires during severe plastic deformation is discussed.

  15. Hydrothermal carbonization of biomass from landscape management - Influence of process parameters on soil properties of hydrochars.

    PubMed

    Röhrdanz, Michael; Rebling, Tammo; Ohlert, Jan; Jasper, Jan; Greve, Thomas; Buchwald, Rainer; von Frieling, Petra; Wark, Michael

    2016-05-15

    Besides pyrolysis the technology of hydrothermal carbonization (HTC) is tested to produce hydrochars for soil improvement. The chemical and physical properties of the hydrochars mainly depend on the feedstock and the process parameters reaction time and process temperature. Systematic investigations on the influences of these process parameters on soil properties of hydrochars like water holding capacity (WHC) and cation exchange capacity (CEC) are missing. In this study, a rush-rich biomass was carbonized within defined HTC process conditions under variation of reaction time and process temperature to produce hydrochars. Analysis of WHC, CEC, the elemental composition and Fourier-transform infrared spectroscopy (FT-IR) were performed to evaluate the influence of HTC process conditions on the pedological hydrochar properties. The results indicated that at increasing reaction severity (reaction time and process temperature) WHC and CEC decreased as well as the elemental O/C ratio. The decrease of WHC and CEC is based on the decrease of the hydrochar surface polarity. However, even the lowest WHC and CEC of investigated hydrochars still exceeded those of pure quartz sand by factors of 5-10. An application of hydrochars produced at severe HTC conditions could improve WHC and CEC of sandy soils. This has to be investigated in further studies. PMID:26974240

  16. Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics

    SciTech Connect

    Queiroz, A.C.; Santos, J.D.; Monteiro, F.J.; Prado da Silva, M.H

    2003-03-15

    In the continuous agitation assays, glass-reinforced hydroxyapatite (GR-HA) was shown to form a calcium phosphate (CaP) layer, but hydroxyapatite (HA) only formed dispersed precipitates. The formation of this layer was first detected on the GR-HA with a 7.5% glass addition (7.5 GR-HA) after only 3 days of immersion in simulated body fluid (SBF). The time required for layer formation decreased as the amount of glass added to the HA increased. The dissolution rate of the materials followed a similar pattern, i.e. the dissolution rate for GR-HA was higher than for HA, and increased with the addition of glass. The immersion of 7.5 GR-HA in water showed almost linear dissolution kinetics over the immersion periods (3, 7, 15, 30 and 60 days). The concentration of calcium ions in solution and the scanning electron microscopy (SEM) analysis of the 7.5 GR-HA specimens immersed in water and in SBF revealed a clear competition between the material dissolution and the precipitation of a CaP phase. Fourier transformed infrared spectroscopy with alternated total reflectance (FTIR-ATR) analysis indicated that the CaP phase that formed during longer immersion times (30 and 60 days) could be a carbonate-substituted CaP precipitate. As expected from previous work, the GR-HA behavior in terms of its in vitro bioactivity is higher than HA because a homogeneous CaP layer is formed and the precipitation occurs faster. From the dissolution test and in accordance with the chemical composition of the samples, GR-HA was more soluble than HA.

  17. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    PubMed Central

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  18. Impact of fillers on dissolution kinetic of fenofibrate dry foams.

    PubMed

    Lenz, Elisabeth; Sprunk, Angela; Kleinebudde, Peter; Page, Susanne

    2015-01-01

    Dry foam technology reveals the opportunity to improve the dissolution behavior of poorly soluble drugs tending to agglomeration due to micronization. In this study, the impact of fillers on the manufacturability, the properties of dry foams and granules as well as the dissolution kinetics of dry foam tablets was investigated using fenofibrate as a model compound. Different maltodextrins and dried glucose syrups, a maltodextrin-phosphatidylcholine complex, isomalt and a 1:1 mixture of mannitol/glucose syrup were used as filler. Within the group of maltodextrins and glucose syrups, the influences of dextrose equivalent (DE), particle morphology and botanical source of starch were investigated. Comparable macroscopic foam structures were obtained with maltodextrins and glucose syrups whereas different foam morphologies were obtained for the other fillers tested. Regarding the maltodextrins and glucose syrups, different physicochemical and particle properties had a minor impact on granule characteristics and tablet dissolution. Using the maltodextrin-phosphatidylcholine complex resulted in a low specific surface area of the granules and a slow tablet dissolution caused by a slow disintegration. In contrast, a high specific surface area and a fast release were obtained with isomalt and glucose syrup/mannitol mixture indicating that high soluble low molecular weight fillers enable the development of fast dissolving dry foam tablets. PMID:24901031

  19. Impact of fillers on dissolution kinetic of fenofibrate dry foams.

    PubMed

    Lenz, Elisabeth; Sprunk, Angela; Kleinebudde, Peter; Page, Susanne

    2015-01-01

    Dry foam technology reveals the opportunity to improve the dissolution behavior of poorly soluble drugs tending to agglomeration due to micronization. In this study, the impact of fillers on the manufacturability, the properties of dry foams and granules as well as the dissolution kinetics of dry foam tablets was investigated using fenofibrate as a model compound. Different maltodextrins and dried glucose syrups, a maltodextrin-phosphatidylcholine complex, isomalt and a 1:1 mixture of mannitol/glucose syrup were used as filler. Within the group of maltodextrins and glucose syrups, the influences of dextrose equivalent (DE), particle morphology and botanical source of starch were investigated. Comparable macroscopic foam structures were obtained with maltodextrins and glucose syrups whereas different foam morphologies were obtained for the other fillers tested. Regarding the maltodextrins and glucose syrups, different physicochemical and particle properties had a minor impact on granule characteristics and tablet dissolution. Using the maltodextrin-phosphatidylcholine complex resulted in a low specific surface area of the granules and a slow tablet dissolution caused by a slow disintegration. In contrast, a high specific surface area and a fast release were obtained with isomalt and glucose syrup/mannitol mixture indicating that high soluble low molecular weight fillers enable the development of fast dissolving dry foam tablets.

  20. Comparison and modeling of aqueous dissolution rates of various uranium oxides

    SciTech Connect

    Steward, S.A.

    1996-11-01

    Purpose of this work was to measure and model the intrinsic dissolution rates of U oxides under a variety of well-controlled conditions that are relevant to a geologic repository. When exposed to air at elevated temperature, spent fuel may form the stable phase U{sub 3}O{sub 8}. Dehydrated schoepite, UO{sub 3}{center_dot}H{sub 2}O, exists in drip tests on spent fuel. Equivalent sets of U{sub 3}O{sub 8} and UO{sub 3}{center_dot}H{sub 2}O dissolution experiments allowed a systematic examination of the effects of temperature (25-75 C), pH(8-10), and carbonate (2-200x10{sup -4}molar) concentrations at atmospheric oxygen conditions. Results indicate that UO{sub 3}{center_dot}H{sub 2}O has a much higher dissolution rate (at least tenfold) than U{sub 3}O{sub 8} under the same conditions. The intrinsic dissolution rate of unirradiated U{sub 3}O{sub 8} is about twice that of UO{sub 2}. Dissolution of both U{sub 3}O{sub 8} and UO{sub 3}{center_dot}H{sub 2}O shows a very high sensitivity to carbonate concentration. Present results show a 25 to 50-fold increase in room-temperature UO{sub 3}{center_dot}H{sub 2}O dissolution rates between the highest and lowest carbonate concentrations. As with the UO{sub 2} dissolution data, the classical observed chemical kinetic rate law was used to model the U{sub 3}O{sub 8} dissolution rate data. The pH did not have much effect on the models, in agreement with earlier analysis of the UO{sub 2} and spent fuel dissolution data. However, carbonate concentration, not temperature, had the strongest effect on the U{sub 3}O{sub 8} dissolution rate. The U{sub 3}O{sub 8} dissolution activation energy was about 6000 cal/mol, compared with 7300 and 8000 cal/mol for spent fuel and UO{sub 2}, respectively.

  1. Influence of the carbon source on Gordonia alkanivorans strain 1B resistance to 2-hydroxybiphenyl toxicity.

    PubMed

    Teixeira, Alexandra V; Paixão, Susana M; da Silva, Teresa Lopes; Alves, Luís

    2014-06-01

    The viability of bacteria plays a critical role in the enhancement of fossil fuels biodesulfurization efficiency since cells are exposed to toxic compounds such as 2-hydroxybiphenyl (2-HBP), the end product of dibenzothiophene (DBT) biodesulfurization. The goal of this work was to study the influence of the carbon source on the resistance of Gordonia alkanivorans strain 1B to 2-HBP. The physiological response of this bacterium, pre-grown in glucose or fructose, to 2-HBP was evaluated using two approaches: a growth inhibition toxicity test and flow cytometry. The results obtained from the growth inhibition bioassays showed that the carbon source has an influence on the sensitivity of strain 1B growing cells to 2-HBP. The highest IC50 value was obtained for the assay using fructose as carbon source in both inoculum growth and test medium (IC50-48 h = 0.464 mM). Relatively to the evaluation of 2-HBP effect on the physiological state of resting cells by flow cytometry, the results showed that concentrations of 2-HBP >1 mM generated significant loss of cell viability. The higher the 2-HBP concentration, the higher the toxicity effect on cells and the faster the loss of cell viability. In overall, the flow cytometry results highlighted that strain 1B resting cells grown in glucose-SO4 or glucose-DBT are physiologically less resistant to 2-HBP than resting cells grown in fructose-SO4 or fructose-DBT, respectively.

  2. A Review of Economic Factors Influencing Voluntary Carbon Disclosure in the Property Sector of Developing Economies

    NASA Astrophysics Data System (ADS)

    Kalu, J. U.; Aliagha, G. U.; Buang, A.

    2016-02-01

    Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.

  3. CO2 dissolution in water using long serpentine microchannels

    PubMed Central

    Cubaud, Thomas; Sauzade, Martin; Sun, Ruopeng

    2012-01-01

    The evolution of carbon dioxide bubbles dissolving in water is experimentally examined using long microchannels. We study the coupling between bubble hydrodynamics and dissolution in confined geometries. The gas impregnation process in liquid produces significant flow rearrangements. Depending on the initial volumetric liquid fraction, three operating regimes are identified, namely saturating, coalescing, and dissolving. The morphological and dynamical transition from segmented to dilute bubbly flows is investigated. Tracking individual bubbles along the flow direction is used to calculate the temporal evolution of the liquid volumetric fraction and the average flow velocity near reference bubbles over long distances. This method allows us to empirically establish the functional relationship between bubble size and velocity. Finally, we examine the implication of this relationship during the coalescing flow regime, which limits the efficiency of the dissolution process. PMID:22655006

  4. Photochemical production and microbial consumption of carbon monoxide in the Caribbean Sea as influenced by the Orinoco River

    SciTech Connect

    Jones, R.D. )

    1990-01-09

    Carbon monoxide is an important trace gas in the surface waters of the marine environment. An understanding of the mechanisms by which this gas is produced and consumed is important to our understanding carbon cycling in the world's oceans. Carbon monoxide is produced by photochemical processes involving dissolved organic material (DOM) and consumed by microorganism. Major rivers greatly influence the DOM content of the oceans. The Orinoco River of Venezuela inputs its waters into the Caribbean Sea and can, thus, influence production and consumption of carbon monoxide. Microbial consumption rates and photoproduction capacity for carbon monoxide were determined along 2 Caribbean cruise tracks during the spring (low river flow) and fall (high river flow) of 1988. Carbon monoxide production capacity was highest during the fall and the Orinoco influenced a greater area of the Caribbean than during the spring. The highest production capacity was observed in the waters of 22 ppt salinity during the fall and 6.5 ppt during the spring. Correlation of microbial consumption with the highest consumption rate occurring in waters with the highest production capacity. Turnover times for carbon monoxide were as low as 2.2 h, indicating the importance of microbial consumption in these waters.

  5. Mixing-induced dissolution in fingering reactive flow

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Cabeza, Yoar; Dentz, Marco; Carrera, Jesús

    2014-05-01

    The evolution of porosity in carbonate reservoirs during CO2 injection, and the wormhole formation in karst aquifers can be attributed to fast equilibrium reactions, which are characterized by large Damköhler numbers. Under these conditions the reaction rate is mixing-controlled, and can be quantified in terms of the mixing rate of the conservative components of the chemical system [De Simoni et al. (2005), Water. Resour. Res.]. Here, we study the calcite dissolution during the convective-driven mixing of CO2 in a carbonate saline aquifer. The CO2-brine mixture is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. The dissolution front can display a stable or fingering shape depending on the relation of the governing forces. We explore the feedback between fluid instabilites, porosity evolution, and permeability changes by means of numerical simulations of a CO2 stationary layer dissolving into brine using an analogue-fluid system with a non-monotonic density-concentration curve [Neufeld et al. (2010), Geophys. Res. Lett.; Backhaus, et al. (2011), Phys. Rev. Lett.; Hidalgo et al. (2013), Adv. Water Resour.]. We derive an analytical expresion for the speciation contribution to the reaction rate which is valid under a wide range of reservoir conditions (pH< 8.3). This allows us to analyze systematically the impact of conservative mixing mechanisms on the dynamics of the complex reactive flow system. Our findings show how the developed porosity patterns depend on the fingering instabilities caused by the convective-driven dissolution of the CO2, the movement of the receding CO2-brine interface, and the properties of the chemical system.

  6. The Influence of Multiwalled Carbon Nanotubes on Polycyclic Aromatic Hydrocarbon (PAH) Bioavailability and Toxicity to Soil Microbial Communities in Alfalfa Rhizosphere

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon nanotubes (CNTs) may affect bioavailability and toxicity of organic contaminants due to their adsorption properties. Recent studies have observed the influence of multiwalled carbon nanotubes (MWNTs) on the fate of polycyclic aromatic hydrocarbons (PAHs) and other organic contaminants. Greenh...

  7. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  8. Diffusion-controlled dissolution of a spherical precipitate in an infinite binary alloy

    SciTech Connect

    Nojiri, N.; Enomoto, M. . Dept. of Materials Science)

    1995-03-01

    An exact numerical solution of the dissolution kinetics of spherical precipitates was obtained from the Green's function method and compared with previous approximate solutions. The same equation can be used to simulate the growth of precipitates having a non-zero initial radius. The Green's function method is useful to predict the kinetics of dissolution or growth in case the solubility is not very small or the solvus curve extends into the interior of the phase diagram. The influence of capillarity on the dissolution kinetics can be incorporated in the present formalism.

  9. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . PMID:25980464

  10. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2015-09-01

    Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa .

  11. A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics

    SciTech Connect

    Chen Zhu; William E. Seyfried

    2005-01-01

    Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured and field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between lab and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the first year of the project, we have successfully developed a sample preparation method and completed three batch feldspar dissolution experiments at 200 C and 300 bars. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure

  12. Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2.

    PubMed

    Achal, Varenyam; Pan, Xiangliang

    2014-05-01

    Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.

  13. Use Of A Quartz Crystal Microbalance Rate Monitor To Examine Photoproduct Effects On Resist Dissolution

    NASA Astrophysics Data System (ADS)

    Hinsberg, W. D.; Willson, C. G.; Kanazawa, K. K.

    1985-04-01

    A new general method for measuring dissolution kinetics of thin films has been developed. This technique employs a quartz crystal microbalance to measure the mass of the dissolving thin film. The method allows the measurement of very rapid dissolution rates, and can also be used to study the dissolution kinetics of thick or opaque films. The technique has several advantages over alternative in situ methods based on optical interferometry or capacitance. This instrument has been used to examine the effects of photoproducts on the dissolution kinetics of positive photoresist. The influence of photolytically generated carboxylic acid, and the nitrogen byproduct entrapped in the film, have been independently assessed by comparing the solubility of films of novolac resin, and films of resin plus carboxylic acid photoproduct, with that of exposed photoresist. Our results indicate that the acid does not significantly influence the solubility of the resin, and that entrapped gaseous photoproducts exert a rate-enhancing effect.

  14. Imidazole-based deep eutectic solvents for starch dissolution and plasticization.

    PubMed

    Zdanowicz, Magdalena; Spychaj, Tadeusz; Mąka, Honorata

    2016-04-20

    Potato starch and high-amylose starch were treated with imidazole-based deep eutectic solvents (DESs) as dissolution and plasticization media. Beside imidazole (IM) for two-component DESs preparation choline chloride (CC), glycerol (G) or carboxylic acids (citric or malic) were used. An influence of water content in starch (as well as an extra water in the starch/DES system) on polymer dissolution and plasticization processes was investigated. Dissolution and gelatinization of starch in DESs were followed via DSC and laser scanning microscopy. A rheometric characteristics revealed an influence of starch/DES system storage time on the plasticization process. The tendency to recrystallization of compression-molded-starch films was evaluated using XRD technique. High dissolution and plasticization effectiveness of CC/IM and G/IM and a low tendency to film retrogradation of thermoplasticized starch were noted. PMID:26876869

  15. LIMESTONE AND MARBLE DISSOLUTION BY ACID RAIN: AN ONSITE WEATHERING EXPERIMENT.

    USGS Publications Warehouse

    Reddy, Michael M.; Sherwood, Susan I.; Doe, B.R.; ,

    1986-01-01

    In this paper the authors describe an experimental research program, conducted in conjunction with the National Acidic Precipitation Assessment Program (NAPAP), to quantify acid-rain damage to commercial and cultural carbonate-rock resources. Initial results of this experiment show that carbonate-rock dissolution and associated surface recession increase with increasing acid deposition to the rock surface. A statistically significant linear relation has been found between carbonate-rock surface-recession rate and hydrogen ion loading to the rock surface.

  16. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.

    PubMed

    Gomes, Janaina F; Gasparotto, Luiz H S; Tremiliosi-Filho, Germano

    2013-07-01

    Glycerol is at present abundantly co-produced in the biodiesel fabrication and can be used as fuel in Direct Glycerol Fuel Cells (DGFC) for cogeneration of electricity, value-added chemicals and heat. With this motivation, in the present work, we investigated at a fundamental level the oxidation of glycerol over glassy carbon (GC) supported Au nanoparticles in alkaline medium using cyclic voltammetry. By controlling the Au deposition time, we varied the GC supported Au coverage from 0.4% to 30% maintaining a regular particle size distribution with a mean particle size of about 200 nm. An influence of the carbon support on the activity of the GC-supported Au nanoparticles was evidenced. Results from studies on the oxidation of glycerol and ethylene glycol on Au and Pt nanoparticles supported on a glassy carbon, highly ordered pyrolytic graphite and dimensionally stable anode under different pH conditions indicate that the carbon support participates actively in the oxidation of glycerol and other alcohols. We propose that active oxygenated species are gradually formed on the glassy carbon by potential cycling (up to the saturation of the carbon area) and these oxygenated species are additional oxygen suppliers for the oxidation of glycerol residues adsorbed on the Au particles, following a mechanism consisting of the synergism of two ac