Sample records for influence cell behavior

  1. Brain, Behavior, and Immunity: Biobehavioral influences on recovery following hematopoietic stem cell transplantation

    Cancer.gov

    Review of hematopoietic stem cell transplantation and its potential “window of opportunity” during which interventions targeting stress-related behavioral factors can influence the survival, health, and well-being of recipients.

  2. Students' Use of Cell Phones in Class for Off-Task Behaviors: The Indirect Impact of Instructors' Teaching Behaviors through Boredom and Students' Attitudes

    ERIC Educational Resources Information Center

    Bolkan, San; Griffin, Darrin J.

    2017-01-01

    This study was conducted to determine how various teaching behaviors influence students' emotional and cognitive experiences in class, and how these experiences relate to students' use of cell phones while considering contextual factors that might influence this outcome. Two hundred and seventy-four students responded to questions regarding their…

  3. Stem cell behavior on tailored porous oxide surface coatings.

    PubMed

    Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W

    2015-07-01

    Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Species-independent attraction to biofilms through electrical signaling

    PubMed Central

    Humphries, Jacqueline; Xiong, Liyang; Liu, Jintao; Prindle, Arthur; Yuan, Fang; Arjes, Heidi A.; Tsimring, Lev; Süel, Gürol M.

    2017-01-01

    Summary Bacteria residing within biofilm communities can coordinate their behavior through cell-to-cell signaling. However, it remains unclear if these signals can also influence the behavior of distant cells that are not part of the community. Using a microfluidic approach, we find that potassium ion channel-mediated electrical signaling generated by a Bacillus subtilis biofilm can attract distant cells. Integration of experiments and mathematical modeling indicates that extracellular potassium emitted from the biofilm alters the membrane potential of distant cells, thereby directing their motility. This electrically-mediated attraction appears to be a generic mechanism that enables cross-species interactions, as Pseudomonas aeruginosa cells also become attracted to the electrical signal released by the B. subtilis biofilm. Cells within a biofilm community can thus not only coordinate their own behavior, but also influence the behavior of diverse bacteria at a distance through long-range electrical signaling. PMID:28086091

  5. Children with Sickle-Cell Anemia: Parental Relations, Parent-Child Relations, and Child Behavior.

    ERIC Educational Resources Information Center

    Evans, Robert C.; And Others

    1988-01-01

    Investigated the influence of a child with sickle-cell anemia on parental affiliation, parent-child relationships, and parents' perception of their child's behavior. In the sickle-cell group, parents' interpersonal relationship suffered; parent-child relationship and child behavior correlated significantly; and single-parent families estimated…

  6. Mechanical influence of tissue culture plates and extracellular matrix on mesenchymal stem cell behavior: A topical review.

    PubMed

    Tatullo, Marco; Marrelli, Massimo; Falisi, Giovanni; Rastelli, Claudio; Palmieri, Francesca; Gargari, Marco; Zavan, Barbara; Paduano, Francesco; Benagiano, Vincenzo

    2016-03-01

    Tissue engineering applications need a continuous development of new biomaterials able to generate an ideal cell-extracellular matrix interaction. The stem cell fate is regulated by several factors, such as growth factors or transcription factors. The most recent literature has reported several publications able to demonstrate that environmental factors also contribute to the regulation of stem cell behavior, leading to the opinion that the environment plays the major role in the cell differentiation.The interaction between mesenchymal stem cells (MSCs) and extracellular environment has been widely described, and it has a crucial role in regulating the cell phenotype. In our laboratory (Tecnologica Research Institute, Crotone, Italy), we have recently studied how several physical factors influence the distribution and the morphology of MSCs isolated from dental pulp, and how they are able to regulate stem cell differentiation. Mechanical and geometrical factors are only a small part of the environmental factors able to influence stem cell behavior, however, this influence should be properly known: in fact, this assumption must be clearly considered during those studies involving MSCs; furthermore, these interactions should be considered as an important bias that involves an high number of studies on the MSCs, since in worldwide laboratories the scientists mostly use tissue culture plates for their experiments. © The Author(s) 2015.

  7. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms

    PubMed Central

    Janson, Isaac A.; Putnam, Andrew J.

    2014-01-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration, and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cue can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells’ responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors, We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design. PMID:24910444

  8. Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering.

    PubMed

    Knight, Toyin; Basu, Joydeep; Rivera, Elias A; Spencer, Thomas; Jain, Deepak; Payne, Richard

    2013-01-01

    Various methods can be employed to fabricate scaffolds with characteristics that promote cell-to-material interaction. This report examines the use of a novel technique combining compression molding with particulate leaching to create a unique multi-layered scaffold with differential porosities and pore sizes that provides a high level of control to influence cell behavior. These cell behavioral responses were primarily characterized by bridging and penetration of two cell types (epithelial and smooth muscle cells) on the scaffold in vitro. Larger pore sizes corresponded to an increase in pore penetration, and a decrease in pore bridging. In addition, smaller cells (epithelial) penetrated further into the scaffold than larger cells (smooth muscle cells). In vivo evaluation of a multi-layered scaffold was well tolerated for 75 d in a rodent model. This data shows the ability of the components of multi-layered scaffolds to influence cell behavior, and demonstrates the potential for these scaffolds to promote desired tissue outcomes in vivo.

  9. The Influence of Physical Forces on Progenitor Cell Migration, Proliferation and Differentiation in Fracture Repair

    DTIC Science & Technology

    2009-11-01

    The Influence of Physical Forces on Progenitor Cell Migration, Proliferation and Differentiation in Fracture Repair PRINCIPAL INVESTIGATOR...REPORT TYPE Final 3. DATES COVERED (From - To) 11/1/05 – 10/31/09 4. TITLE AND SUBTITLE The Influence of Physical Forces on Progenitor Cell Migration...SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this program is to investigate the influence of controlled mechanical stimulation on the behavior of

  10. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  11. Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis

    NASA Astrophysics Data System (ADS)

    Friesen, Alex; Mönnighoff, Xaver; Börner, Markus; Haetge, Jan; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    The understanding of the aging behavior of lithium ion batteries in automotive and energy storage applications is essential for the acceptance of the technology. Therefore, aging experiments were conducted on commercial 18650-type state-of-the-art cells to determine the influence of the temperature during electrochemical cycling on the aging behavior of the different cell components. The cells, based on Li(Ni0.5Co0.2Mn0.3)O2 (NCM532)/graphite, were aged at 20 °C and 45 °C to different states of health. The electrochemical performance of the investigated cells shows remarkable differences depending on the cycling temperature. At contrast to the expected behavior, the cells cycled at 45 °C show a better electrochemical performance over lifetime than the cells cycled at 20 °C. Comprehensive post-mortem analyses revealed the main aging mechanisms, showing a complex interaction between electrodes and electrolyte. The main aging mechanisms of the cells cycled at 45 °C differ strongly at contrast to cells cycled at 20 °C. A strong correlation between the formed SEI, the electrolyte composition and the electrochemical performance over lifetime was observed.

  12. Mixing of Honeybees with Different Genotypes Affects Individual Worker Behavior and Transcription of Genes in the Neuronal Substrate

    PubMed Central

    Bienefeld, Kaspar; Beye, Martin

    2012-01-01

    Division of labor in social insects has made the evolution of collective traits possible that cannot be achieved by individuals alone. Differences in behavioral responses produce variation in engagement in behavioral tasks, which as a consequence, generates a division of labor. We still have little understanding of the genetic components influencing these behaviors, although several candidate genomic regions and genes influencing individual behavior have been identified. Here, we report that mixing of worker honeybees with different genotypes influences the expression of individual worker behaviors and the transcription of genes in the neuronal substrate. These indirect genetic effects arise in a colony because numerous interactions between workers produce interacting phenotypes and genotypes across organisms. We studied hygienic behavior of honeybee workers, which involves the cleaning of diseased brood cells in the colony. We mixed ∼500 newly emerged honeybee workers with genotypes of preferred Low (L) and High (H) hygienic behaviors. The L/H genotypic mixing affected the behavioral engagement of L worker bees in a hygienic task, the cooperation among workers in uncapping single brood cells, and switching between hygienic tasks. We found no evidence that recruiting and task-related stimuli are the primary source of the indirect genetic effects on behavior. We suggested that behavioral responsiveness of L bees was affected by genotypic mixing and found evidence for changes in the brain in terms of 943 differently expressed genes. The functional categories of cell adhesion, cellular component organization, anatomical structure development, protein localization, developmental growth and cell morphogenesis were overrepresented in this set of 943 genes, suggesting that indirect genetic effects can play a role in modulating and modifying the neuronal substrate. Our results suggest that genotypes of social partners affect the behavioral responsiveness and the neuronal substrate of individual workers, indicating a complex genetic architecture underlying the expression of behavior. PMID:22348118

  13. Three-Dimensional Cell Behavior in Microgels

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Tapomoy; Palmer, Glyn; Ghivizzani, Steven; Keselowsky, Benjamin; Sawyer, W. Gregory; Angelini, Thomas

    The number of dimensions in which particles can freely move strongly influences the collective behavior that emerges from their individual fluctuations. Thus, in 2D systems of cells in petri-dishes, our growing understanding of collective migration may be insufficient to explain cell behavior in 3D tissues. To study cell behavior in 3D, polymer scaffolds are used. Contemporary designs of 3D cell growth scaffolds enable cell migration and proliferative expansion by incorporating of degradable motifs. Matrix degradation creates space for cells to move and proliferate. However, different cell types and experimental conditions require the design of different scaffolds to optimize degradation with specific cell behaviors. By contrast, liquid like solids made from packed microgels can yield under cell generated stresses, allowing for cell motion without the need for scaffold degradation. Moreover, the use of microgels as 3D culture media allows arranging cells in arbitrary structures, harvesting cells, and delivering drugs and nutrients. Preliminary data describing cell behavior in 3D microgel culture will be presented. This material is based on work supported by the National Science Foundation under Grant No. DMR-1352043.

  14. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  15. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.

  16. Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells.

    PubMed

    Tan, Shuxin; Zhai, Jin; Xue, Bofei; Wan, Meixiang; Meng, Qingbo; Li, Yuliang; Jiang, Lei; Zhu, Daoben

    2004-03-30

    The influence of polyanilines (PANIs) as hole conductors on the photovoltaic behaviors of dye-sensitized solar cells is studied. The current-voltage (I-V) characteristics and the incident photon to current conversion efficiency (IPCE) curves of the devices are determined as the function of different conductivities and morphologies of PANIs. The results show that the conductivity of PANIs affects the performance of the devices greatly, and PANI with the intermediate conductivity value (3.5 S/cm) is optimum. In addition, the effects of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors of the devices are also discussed.

  17. “Engineering Substrate Micro- and Nanotopography to Control Cell Function”

    PubMed Central

    Bettinger, Christopher J; Langer, Robert; Borenstein, Jeffrey T

    2010-01-01

    Lead-In The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. Here we review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes including stem cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering will also be discussed including the elucidation of mechanisms and applications in tissue engineering. PMID:19492373

  18. Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography

    PubMed Central

    Yang, Yong; Wang, Kai; Gu, Xiaosong; Leong, Kam W.

    2017-01-01

    The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine. PMID:29071164

  19. Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans.

    PubMed

    Sugi, Takuma; Nishida, Yukuo; Mori, Ikue

    2011-06-26

    Animals cope with environmental changes by altering behavioral strategy. Environmental information is generally received by sensory neurons in the neural circuit that generates behavior. However, although environmental temperature inevitably influences an animal's entire body, the mechanism of systemic temperature perception remains largely unknown. We show here that systemic temperature signaling induces a change in a memory-based behavior in C. elegans. During behavioral conditioning, non-neuronal cells as well as neuronal cells respond to cultivation temperature through a heat-shock transcription factor that drives newly identified gene expression dynamics. This systemic temperature signaling regulates thermosensory neurons non-cell-autonomously through the estrogen signaling pathway, producing thermotactic behavior. We provide a link between systemic environmental recognition and behavioral plasticity in the nervous system.

  20. Surface Curvature Differentially Regulates Stem Cell Migration and Differentiation via Altered Attachment Morphology and Nuclear Deformation

    PubMed Central

    Werner, Maike; Blanquer, Sébastien B. G.; Haimi, Suvi P.; Korus, Gabriela; Dunlop, John W. C.; Duda, Georg N.; Grijpma, Dirk. W.

    2016-01-01

    Signals from the microenvironment around a cell are known to influence cell behavior. Material properties, such as biochemical composition and substrate stiffness, are today accepted as significant regulators of stem cell fate. The knowledge of how cell behavior is influenced by 3D geometric cues is, however, strongly limited despite its potential relevance for the understanding of tissue regenerative processes and the design of biomaterials. Here, the role of surface curvature on the migratory and differentiation behavior of human mesenchymal stem cells (hMSCs) has been investigated on 3D surfaces with well‐defined geometric features produced by stereolithography. Time lapse microscopy reveals a significant increase of cell migration speed on concave spherical compared to convex spherical structures and flat surfaces resulting from an upward‐lift of the cell body due to cytoskeletal forces. On convex surfaces, cytoskeletal forces lead to substantial nuclear deformation, increase lamin‐A levels and promote osteogenic differentiation. The findings of this study demonstrate a so far missing link between 3D surface curvature and hMSC behavior. This will not only help to better understand the role of extracellular matrix architecture in health and disease but also give new insights in how 3D geometries can be used as a cell‐instructive material parameter in the field of biomaterial‐guided tissue regeneration. PMID:28251054

  1. Inherent interfacial mechanical gradients in 3D hydrogels influence tumor cell behaviors.

    PubMed

    Rao, Shreyas S; Bentil, Sarah; DeJesus, Jessica; Larison, John; Hissong, Alex; Dupaix, Rebecca; Sarkar, Atom; Winter, Jessica O

    2012-01-01

    Cells sense and respond to the rigidity of their microenvironment by altering their morphology and migration behavior. To examine this response, hydrogels with a range of moduli or mechanical gradients have been developed. Here, we show that edge effects inherent in hydrogels supported on rigid substrates also influence cell behavior. A Matrigel hydrogel was supported on a rigid glass substrate, an interface which computational techniques revealed to yield relative stiffening close to the rigid substrate support. To explore the influence of these gradients in 3D, hydrogels of varying Matrigel content were synthesized and the morphology, spreading, actin organization, and migration of glioblastoma multiforme (GBM) tumor cells were examined at the lowest (<50 µm) and highest (>500 µm) gel positions. GBMs adopted bipolar morphologies, displayed actin stress fiber formation, and evidenced fast, mesenchymal migration close to the substrate, whereas away from the interface, they adopted more rounded or ellipsoid morphologies, displayed poor actin architecture, and evidenced slow migration with some amoeboid characteristics. Mechanical gradients produced via edge effects could be observed with other hydrogels and substrates and permit observation of responses to multiple mechanical environments in a single hydrogel. Thus, hydrogel-support edge effects could be used to explore mechanosensitivity in a single 3D hydrogel system and should be considered in 3D hydrogel cell culture systems.

  2. Cell Phone Use While Driving: Prospective Association with Emerging Adult Use.

    PubMed

    Trivedi, Neha; Haynie, Denise; Bible, Joe; Liu, Danping; Simons-Morton, Bruce

    2017-09-01

    Secondary task engagement such as cell phone use while driving is a common behavior among adolescents and emerging adults. Texting and other distracting cell phone use in this population contributes to the high rate of fatal car crashes. Peer engagement in similar risky driving behaviors, such as texting, could socially influence driver phone use behavior. The present study investigates the prospective association between peer and emerging adult texting while driving the first year after high school. Surveys were conducted with a national sample of emerging adults and their nominated peers. Binomial logistic regression analyses, adjusting for gender, race/ethnicity, parental education, and family affluence, showed that participants (n=212) with peers (n=675) who reported frequently texting while driving, were significantly more likely to text while driving the following year (odds ratio, 3.01; 95% CI, 1.19-7.59; P=0.05). The findings are consistent with the idea that peer texting behavior influences the prevalence of texting while driving among emerging adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Modeling mechanical interactions in growing populations of rod-shaped bacteria

    NASA Astrophysics Data System (ADS)

    Winkle, James J.; Igoshin, Oleg A.; Bennett, Matthew R.; Josić, Krešimir; Ott, William

    2017-10-01

    Advances in synthetic biology allow us to engineer bacterial collectives with pre-specified characteristics. However, the behavior of these collectives is difficult to understand, as cellular growth and division as well as extra-cellular fluid flow lead to complex, changing arrangements of cells within the population. To rationally engineer and control the behavior of cell collectives we need theoretical and computational tools to understand their emergent spatiotemporal dynamics. Here, we present an agent-based model that allows growing cells to detect and respond to mechanical interactions. Crucially, our model couples the dynamics of cell growth to the cell’s environment: Mechanical constraints can affect cellular growth rate and a cell may alter its behavior in response to these constraints. This coupling links the mechanical forces that influence cell growth and emergent behaviors in cell assemblies. We illustrate our approach by showing how mechanical interactions can impact the dynamics of bacterial collectives growing in microfluidic traps.

  4. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  5. Loss of T cells influences sex differences in behavior and brain structure.

    PubMed

    Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A

    2015-05-01

    Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Micro-scale investigation on the quasi-static behavior of granular material

    NASA Astrophysics Data System (ADS)

    Li, Xia

    Granular material exhibits complex responses when subjected to various external loading. Fundamental mechanisms have not been well established so far, including that about the critical state, one of the most important concepts in the modern soil mechanics. With the recognition that granular material is discrete in nature, the basic understanding can only be obtained from the particle scale. The complexity in granular material behavior lies in the fact that the macroscopic behavior of granular material is determined by not only the interactions operating at contacts, but also how the particles become arranged in space to form an internal structure. This research is aimed to microscopically investigate the influence of the internal structure and the fundamental mechanism about the critical state. In view of the extensive laboratory test data already available in the literature, a numerical simulation method, DEM, is employed as the tool to conduct particle-scale investigations. The contact model for two in-contact circular disks is derived theoretically from the elasticity theory, and the result is a linear contact model with constant stiffness and lateral sliding. Based on the contact model, a systematic series of numerical tests has been implemented, and the results can successfully reproduce the main characteristics in the behavior of natural granular material, under various loading conditions. The macro-micro relationship is the link between the investigations at the two worlds. The key point is to describe the internal structure with the two dual cell systems, a particle cell system and a void cell system. Based on these two systems, the stress and strain in a uniform field are equivalently expressed in terms of the contact forces/relative displacements, and the micro-geometrical variables. With the microstructural definition of the stress tensor, the stress state of granular material is studied microscopically. The stress-fabric-force relation is derived, based on the variables describing the statistics of the contact forces and the contact vectors. By studying the evolution of the micro-quantities during shearing, how the internal structure affects the macro stress state under different loading condition is revealed. With the assumption that the influence of the local variance in stress is ignorable, the response of granular material can be investigated based on the void cell system. Starting from the behavior of a single void cell, the evolutions of the internal structure and its influence on the response of granular material are explained. The stress ratio and the dilatancy behavior of granular material are investigated. The influences of the void ratio, the mean normal stress and the drainage condition are discussed. The fundamental mechanism of the critical state is studied in the framework of thermodynamics with properly considering the influence of the internal structure. The normalized stress ratio tensor at critical state is associated with the critical void cell anisotropy, corresponding to the maximal energy dissipation. The (e, p) relationship at critical state is associated with the critical combination of the void cell size and the contact interactions, corresponding to the minimal free energy. The investigation on the influence of the internal structure anisotropy on the granular material behavior and the critical state is carried out. The results show that at small strain levels, the behavior of granular material is mainly affected by the initial fabric. As shearing continuous, the internal structure of granular material is gradually changed. The granular material approaches the critical state, which is irrespective with the initial internal structure. The critical state of granular material is not unique. With different loading modes, the critical state of granular material, including both the critical stress ratio and the critical (e, p) relations, are found to be different. A fabric tensor is defined based on the characteristics of the void cells. The laboratory method to quantify the fabric anisotropy is proposed by deviatoric shearing. 3D numerical simulations have been carried out to investigate the influence of the loading mode, which is found to be an important factor in the large strain behavior of granular material. With the obtained microscopic understanding, the influence of contact model on granular material behavior is investigated. A method to quantify the fabric anisotropy is proposed. And a simple discussion on the state variable used in the elasto-plastic constitutive model is given.

  7. Characterization of the Cell Surface Properties of Drinking Water Pathogens by Microbial Adhesion to Hydrocarbon and Electrophoretic Mobility Measurements

    EPA Science Inventory

    The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...

  8. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  9. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  10. The influence of surface properties of plasma-etched polydimethylsiloxane (PDMS) on cell growth and morphology.

    PubMed

    Pennisi, Cristian P; Zachar, Vladimir; Gurevich, Leonid; Patriciu, Andrei; Struijk, Johannes J

    2010-01-01

    Polydimethylsiloxane (PDMS) or silicone rubber is a widely used implant material. Approaches to promote tissue integration to PDMS are desirable to avoid clinical problems associated with sliding and friction between tissue and implant. Plasma-etching is a useful way to control cell behavior on PDMS without additional coatings. In this work, different plasma processing conditions were used to modify the surface properties of PDMS substrates. Surface nanotopography and wettability were measured to study their effect on in vitro growth and morphology of fibroblasts. While fluorinated plasma treatments produced nanorough hydrophobic and superhydrophobic surfaces that had negative or little influences on cellular behavior, water vapor/oxygen plasma produced smooth hydrophillic surfaces that enhanced cell growth.

  11. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    PubMed

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  12. Microbial cell surface characteristics: Elucidating attachment/detachment using hydrophobicity and electrokinetic measurements

    EPA Science Inventory

    The surface properties of microorganisms play an important role in their behavior within the environment. Electrophoretic mobility and cell surface hydrophobicity of bacterial cells influence their initial interaction with surfaces and mediate their stability within an aqueous su...

  13. Mesenchymal Stem Cell Fate: Applying Biomaterials for Control of Stem Cell Behavior

    PubMed Central

    Anderson, Hilary J.; Sahoo, Jugal Kishore; Ulijn, Rein V.; Dalby, Matthew J.

    2016-01-01

    The materials pipeline for biomaterials and tissue engineering applications is under continuous development. Specifically, there is great interest in the use of designed materials in the stem cell arena as materials can be used to manipulate the cells providing control of behavior. This is important as the ability to “engineer” complexity and subsequent in vitro growth of tissues and organs is a key objective for tissue engineers. This review will describe the nature of the materials strategies, both static and dynamic, and their influence specifically on mesenchymal stem cell fate. PMID:27242999

  14. Challenging Behavior in Smith-Lemli-Opitz Syndrome: Initial Test of Biobehavioral Influences

    PubMed Central

    Freeman, Kurt A.; Eagle, Rose; Merkens, Louise S.; Sikora, Darryn; Pettit-Kekel, Kersti; Nguyen-Driver, Mina; Steiner, Robert D.

    2013-01-01

    Objective To study challenging behavior (destruction, aggression, self-injury, stereotypy) in children with Smith-Lemli-Opitz syndrome (SLOS) using a biobehavioral model that helps distinguish biological from socially mediated variables influencing the behavior. Background SLOS is an autosomal-recessive syndrome of multiple malformations and intellectual disability resulting from a genetic error in cholesterol synthesis in all cells and tissues, including brain. The exact cause of the challenging behavior in SLOS is unclear, but defective brain cholesterol synthesis may contribute. Because the precise genetic and biochemical etiology of SLOS is known, this disorder is a good model for studying biological causes of challenging behavior. Method In a preliminary application of a biobehavioral model, we studied the association between cholesterol levels (as a biochemical indicator of disease severity) and behavior subtype (“biological” vs “learned”) in 13 children with SLOS. Parents completed a questionnaire that categorized challenging behavior as influenced primarily by social or nonsocial (thus, presumably biological) factors. Results The severity of the cholesterol synthesis defect correlated significantly with behavior subtype classification for 1 of 2 challenging behaviors. Greater severity of the cholesterol synthesis defect was associated with behavior being classified as primarily influenced by biological factors. Conclusion The interplay between challenging behavior and defective cholesterol synthesis in SLOS may help explain biological influences on the behavior. Our findings have implications for research on the effectiveness of behavioral and medical treatments for behavioral difficulties in SLOS and other neurodevelopmental disorders. PMID:23538569

  15. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    PubMed Central

    Diez-Silva, Monica; Park, YongKeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-01-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host. PMID:22937223

  16. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    NASA Astrophysics Data System (ADS)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  17. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang

    2016-12-01

    Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.

  18. Colocalization of Mating-Induced Fos and D2-Like Dopamine Receptors in the Medial Preoptic Area: Influence of Sexual Experience.

    PubMed

    Nutsch, Victoria L; Will, Ryan G; Robison, Christopher L; Martz, Julia R; Tobiansky, Daniel J; Dominguez, Juan M

    2016-01-01

    Dopamine in the medial preoptic area (mPOA) stimulates sexual activity in males. This is evidenced by microdialysis and microinjection experiments revealing that dopamine receptor antagonists in the mPOA inhibit sexual activity, whereas agonists facilitate behavior. Microdialysis experiments similarly show a facilitative role for dopamine, as levels of dopamine in the mPOA increase with mating. While the majority of evidence suggests an important role for dopamine receptors in the mPOA in the regulation of male sexual behaviors, whether sexual activity or sexual experience influence dopamine receptor function in the mPOA has not been previously shown. Here we used immunohistochemical assays to determine whether varying levels of sexual activity or experience influence the number of cells containing Fos or D2 receptor immunoreactivity. Results show that sexual experience facilitated subsequent behavior, namely experience decreased latencies. Moreover, the number of cells with immunoreactivity for Fos or D2 correlated with levels of sexual experience and sexual activity. Sexual activity increased Fos immunoreactivity. Sexually experienced animals also had significantly more D2-positive cells. Sexually inexperienced animals copulating for the first time had a larger percentage of D2-positive cells containing Fos, when compared to sexually experienced animals. Finally, regardless of experience, animals that had sex prior to sacrifice had significantly more D2-positive cells that contained Fos, vs. animals that did not copulate. These findings are noteworthy because sexually experienced animals display increased sexual efficiency. The differences in activation of D2 and changes in receptor density may play a role in this efficiency and other behavioral changes across sexual experience.

  19. Tensegrity II. How structural networks influence cellular information processing networks

    NASA Technical Reports Server (NTRS)

    Ingber, Donald E.

    2003-01-01

    The major challenge in biology today is biocomplexity: the need to explain how cell and tissue behaviors emerge from collective interactions within complex molecular networks. Part I of this two-part article, described a mechanical model of cell structure based on tensegrity architecture that explains how the mechanical behavior of the cell emerges from physical interactions among the different molecular filament systems that form the cytoskeleton. Recent work shows that the cytoskeleton also orients much of the cell's metabolic and signal transduction machinery and that mechanical distortion of cells and the cytoskeleton through cell surface integrin receptors can profoundly affect cell behavior. In particular, gradual variations in this single physical control parameter (cell shape distortion) can switch cells between distinct gene programs (e.g. growth, differentiation and apoptosis), and this process can be viewed as a biological phase transition. Part II of this article covers how combined use of tensegrity and solid-state mechanochemistry by cells may mediate mechanotransduction and facilitate integration of chemical and physical signals that are responsible for control of cell behavior. In addition, it examines how cell structural networks affect gene and protein signaling networks to produce characteristic phenotypes and cell fate transitions during tissue development.

  20. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  1. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation.

    PubMed

    Meade, Kate A; White, Kathryn J; Pickford, Claire E; Holley, Rebecca J; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H; Whittle, Jason D; Day, Anthony J; Merry, Catherine L R

    2013-02-22

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.

  2. Label-free investigation of the effects of lithium niobate polarization on cell adhesion

    NASA Astrophysics Data System (ADS)

    Mandracchia, B.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The determination of contact area is pivotal to understand how biomaterials properties influence cell adhesion. In particular, the influence of surface charges is well-known but still controversial, especially when new functional materials and methods are introduced. Here, we use for the first time Holographic Total Internal Reflection Microscopy (HoloTIRM) to study the influence of the spontaneous polarization of ferroelectric lithium niobate (LN) on the adhesion properties of fibroblast cells. The selective illumination of a very thin region directly above the substrate, achieved by Total Internal Reflection, provides high-contrast images of the contact regions. Holographic recording, on the other hand, allows for label-free quantitative phase imaging of the contact areas between cells and LN. Phase signal is more sensitive in the first 100nm and, thus more reliable in order to locate focal contacts. This work shows that cells adhering on negatively polarized LN present a significant increase of the contact area in comparison with cells adhering on the positively polarized LN substrate, as well as an intensification of contact vicinity. This confirms the potential of LN as a platform for investigating the role of charges on cellular processes. The similarity of cell adhesion behavior on negatively polarized LN and glass control also confirms the possibility to use LN as an active substrate without impairing cell behavior.

  3. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior.

    PubMed

    Marinkovic, Milos; Block, Travis J; Rakian, Rubie; Li, Qihong; Wang, Exing; Reilly, Matthew A; Dean, David D; Chen, Xiao-Dong

    2016-01-01

    For more than 100years, cells and tissues have been studied in vitro using glass and plastic surfaces. Over the last 10-20years, a great body of research has shown that cells are acutely sensitive to their local environment (extracellular matrix, ECM) which contains both chemical and physical cues that influence cell behavior. These observations suggest that modern cell culture systems, using tissue culture polystyrene (TCP) surfaces, may fail to reproduce authentic cell behavior in vitro, resulting in "artificial outcomes." In the current study, we use bone marrow (BM)- and adipose (AD)-derived stromal cells to prepare BM-ECM and AD-ECM, which are decellularized after synthesis by the cells, to mimic the cellular niche for each of these tissues. Each ECM was characterized for its ability to affect BM- and AD-mesenchymal stem cell (MSC) proliferation, as well as proliferation of three cancer cell lines (HeLa, MCF-7, and MDA-MB-231), modulate cell spreading, and direct differentiation relative to standard TCP surfaces. We found that both ECMs promoted the proliferation of MSCs, but that this effect was enhanced when the tissue-origin of the cells matched that of the ECM (i.e. BM-ECM promoted the proliferation of BM-MSCs over AD-MSCs, and vice versa). Moreover, BM- and AD-ECM were shown to preferentially direct MSC differentiation towards either osteogenic or adipogenic lineage, respectively, suggesting that the effects of the ECM were tissue-specific. Further, each ECM influenced cell morphology (i.e. circularity), irrespective of the origin of the MSCs, lending more support to the idea that effects were tissue specific. Interestingly, unlike MSCs, these ECMs did not promote the proliferation of the cancer cells. In an effort to further understand how these three culture substrates influence cell behavior, we evaluated the chemical (protein composition) and physical properties (architecture and mechanical) of the two ECMs. While many structural proteins (e.g. collagen and fibronectin) were found at equivalent levels in both BM- and AD-ECM, the architecture (i.e. fiber orientation; surface roughness) and physical properties (storage modulus, surface energy) of each were unique. These results, demonstrating differences in cell behavior when cultured on the three different substrates (BM- and AD-ECM and TCP) with differences in chemical and physical properties, provide evidence that the two ECMs may recapitulate specific elements of the native stem cell niche for bone marrow and adipose tissues. More broadly, it could be argued that ECMs, elaborated by cells ex vivo, serve as an ideal starting point for developing tissue-specific culture environments. In contrast to TCP, which relies on the "one size fits all" paradigm, native tissue-specific ECM may be a more rational model to approach engineering 3D tissue-specific culture systems to replicate the in vivo niche. We suggest that this approach will provide more meaningful information for basic research studies of cell behavior as well as cell-based therapeutics. Published by Elsevier B.V.

  4. Pigment-Dispersing Factor Modulates Pheromone Production in Clock Cells that Influence Mating in Drosophila

    PubMed Central

    Krupp, Joshua J.; Billeter, Jean-Christophe; Wong, Amy; Choi, Charles; Nitabach, Michael N.; Levine, Joel D.

    2014-01-01

    Summary Social cues contribute to the circadian entrainment of physiological and behavioral rhythms. These cues supplement the influence of daily and seasonal cycles in light and temperature. In Drosophila, the social environment modulates circadian mechanisms that regulate sex pheromone production and mating behavior. Here we demonstrate that a neuroendocrine pathway, defined by the neuropeptide Pigment-Dispersing Factor (PDF), couples the central nervous system (CNS) to the physiological output of peripheral clock cells that produce pheromones, the oenocytes. PDF signaling from the CNS modulates the phase of the oenocyte clock. Despite its requirement for sustaining free-running locomoter activity rhythms, PDF is not necessary to sustain molecular rhythms in the oenocytes. Interestingly, disruption of the PDF signaling pathway reduces male sex pheromones and results in sex-specific differences in mating behavior. Our findings highlight the role of neuropeptide signaling and the circadian system in synchronizing the physiological and behavioral processes which govern social interactions. PMID:23849197

  5. Influence of serum percentage on the behavior of Wharton's jelly mesenchymal stem cells in culture.

    PubMed

    Harmouch, C; El-Omar, R; Labrude, P; Decot, V; Menu, P; Kerdjoudj, H

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several lineages with valuable applications in regenerative medicine. MSCs differentiation is highly dependent on physicochemical properties of the culture substrate, cell density and on culture medium composition. In this study, we assessed the influence of fetal bovine serum (FBS) level on Wharton's jelly (WJ)-MSCs behavior seeded on polyelectrolyte multilayer films (PEMF) made of four bilayers of poly-allylamine hydrochloride (PAH) as polycation and poly-styrene sulfonate (PSS) as polyanion. MSCs isolated from WJ by explants method were amplified until the third passage. Their phenotypic characterization was performed by flow cytometry analyses. MSCs were seeded on PEMF, in Endothelial growth medium-2 (EGM-2) supplemented by either 5% or 2% FBS. Cell's behavior was monitored for 20 days by optical microscopy and immunofluorescence. Until 2 weeks on glass slides, no difference was observed whatever the FBS percentage. Then with 5% FBS, MSCs formed three-dimensional spheroids on PSS/PAH after 20 days of culture with a nuclear aggregate. Whereas, with 2% FBS, these spheroids did not appear and cells grown in 2D conserved the fibroblast-like morphology. The decrease of FBS percentage from 5% to 2% avoids 3D cell spheroids formation on PAH/PSS. Such results could guide bioengineering towards building 2D structures like cell layers or 3D structures by increasing the osteogenic or chondrogenic differentiation potential of MSCs.

  6. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Microglial Morphology and Dynamic Behavior Is Regulated by Ionotropic Glutamatergic and GABAergic Neurotransmission

    PubMed Central

    Fontainhas, Aurora M.; Wang, Minhua; Liang, Katharine J.; Chen, Shan; Mettu, Pradeep; Damani, Mausam; Fariss, Robert N.; Li, Wei; Wong, Wai T.

    2011-01-01

    Purpose Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior. Methods We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. Results Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels. Conclusions Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity. PMID:21283568

  8. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    PubMed Central

    Denning, Denise; Roos, Wouter H.

    2016-01-01

    ABSTRACT The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response. PMID:27266767

  9. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    PubMed

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Masking of a circadian behavior in larval zebrafish involves the thalamo-habenula pathway.

    PubMed

    Lin, Qian; Jesuthasan, Suresh

    2017-06-22

    Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.

  11. Dynamics of cellular level function and regulation derived from murine expression array data.

    PubMed

    de Bivort, Benjamin; Huang, Sui; Bar-Yam, Yaneer

    2004-12-21

    A major open question of systems biology is how genetic and molecular components interact to create phenotypes at the cellular level. Although much recent effort has been dedicated to inferring effective regulatory influences within small networks of genes, the power of microarray bioinformatics has yet to be used to determine functional influences at the cellular level. In all cases of data-driven parameter estimation, the number of model parameters estimable from a set of data is strictly limited by the size of that set. Rather than infer parameters describing the detailed interactions of just a few genes, we chose a larger-scale investigation so that the cumulative effects of all gene interactions could be analyzed to identify the dynamics of cellular-level function. By aggregating genes into large groups with related behaviors (megamodules), we were able to determine the effective aggregate regulatory influences among 12 major gene groups in murine B lymphocytes over a variety of time steps. Intriguing observations about the behavior of cells at this high level of abstraction include: (i) a medium-term critical global transcriptional dependence on ATP-generating genes in the mitochondria, (ii) a longer-term dependence on glycolytic genes, (iii) the dual role of chromatin-reorganizing genes in transcriptional activation and repression, (iv) homeostasis-favoring influences, (v) the indication that, as a group, G protein-mediated signals are not concentration-dependent in their influence on target gene expression, and (vi) short-term-activating/long-term-repressing behavior of the cell-cycle system that reflects its oscillatory behavior.

  12. Recognition of mite-infested brood by honeybee (Apis mellifera) workers may involve thermal sensing.

    PubMed

    Bauer, Daniel; Wegener, Jakob; Bienefeld, Kaspar

    2018-05-01

    Hygienic behavior, i.e. the removal of diseased or damaged brood by worker honey bees (Apis mellifera), is seen as one of the principal behavioral elements of this species' social immunity. Identification of the stimuli that trigger it would be helpful in searching for biochemical and molecular markers of this important breeding trait. While many studies at the genomic, transcriptomic, and behavioral level have pointed to the implication of chemical cues, we here hypothesized that thermal cues are alternatively/additionally involved. To test this hypothesis, we first measured whether infestation by the mite Varroa destructor (a condition known to induce hygienic behavior) leads to a thermal gradient between affected and unaffected brood. We found that infested brood cells were between 0.03 and 0.19 °C warmer than uninfested controls. Next, we tested whether artificially heating an area of a brood comb would increase the removal of infested or uninfested brood as compared to an unheated control area, and found that this was not the case. Finally, we investigated whether the heating of individual brood cells, as opposed to comb areas, would influence brood removal from cells adjacent to the heated one. This was the case for uninfested, though not for infested cells. We conclude that infestation by V. destructor leads to a heating of brood cells that should be perceivable by bees, and that small-scale temperature gradients can influence brood removal. This makes it appear possible that thermal cues play a role in triggering hygienic behavior of honey bees directed at varroa-infested larvae/pupae, although our results are insufficient to prove such an involvement. Copyright © 2018. Published by Elsevier Ltd.

  13. Electromagnetic fields as structure-function zeitgebers in biological systems: environmental orchestrations of morphogenesis and consciousness.

    PubMed

    Rouleau, Nicolas; Dotta, Blake T

    2014-01-01

    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However, biological systems are also subjected to an ever-present influence: the electromagnetic (EM) environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as EM phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behavior) of a biological system. Here we describe theoretical and experimental evidence of EM influence on cells and the integration of whole systems. Even weak interactions between EM energies and biological systems display the potential to affect a developing system. We suggest the growing literature of EM effects on biological systems has significant implications to the cell and its functional aggregates.

  14. Surface Characteristics and Adhesion Behavior of Escherichia coli O157:H7: Role of Extracellular Macromolecules

    USDA-ARS?s Scientific Manuscript database

    Surface macromolecule cleavage experiments were conducted on enterohaemorrhagic Escherichia coli O157:H7 cells to investigate the influence of these macromolecules on cell surface properties. Electrophoretic mobility, hydrophobicity, and titration experiments were carried out on proteinase K treate...

  15. Generation of Organ-conditioned Media and Applications for Studying Organ-specific Influences on Breast Cancer Metastatic Behavior.

    PubMed

    Piaseczny, Matthew M; Pio, Graciella M; Chu, Jenny E; Xia, Ying; Nguyen, Kim; Goodale, David; Allan, Alison

    2016-06-13

    Breast cancer preferentially metastasizes to the lymph node, bone, lung, brain and liver in breast cancer patients. Previous research efforts have focused on identifying factors inherent to breast cancer cells that are responsible for this observed metastatic pattern (termed organ tropism), however much less is known about factors present within specific organs that contribute to this process. This is in part because of a lack of in vitro model systems that accurately recapitulate the organ microenvironment. To address this, an ex vivo model system has been established that allows for the study of soluble factors present within different organ microenvironments. This model consists of generating conditioned media from organs (lymph node, bone, lung, and brain) isolated from normal athymic nude mice. The model system has been validated by demonstrating that different breast cancer cell lines display cell-line specific and organ-specific malignant behavior in response to organ-conditioned media that corresponds to their in vivo metastatic potential. This model system can be used to identify and evaluate specific organ-derived soluble factors that may play a role in the metastatic behavior of breast and other types of cancer cells, including influences on growth, migration, stem-like behavior, and gene expression, as well as the identification of potential new therapeutic targets for cancer. This is the first ex vivo model system that can be used to study organ-specific metastatic behavior in detail and evaluate the role of specific organ-derived soluble factors in driving the process of cancer metastasis.

  16. Advances in the theory and application of BSF cells. [Back Surface Field solar cells

    NASA Technical Reports Server (NTRS)

    Mandelkorn, J.; Lamneck, J. H.

    1975-01-01

    A study to determine the influence of fabrication processes and bulk material properties on the behavior of back surface field (BSF) cells is reported. It is concluded that a photovoltage is generated at the p(+), p back junction of the cell. The concept of majority carrier collection is proposed as a possible mechanism for this generation. Advantages accruing to the advent of BSF cells are outlined.

  17. Interplay of differential cell mechanical properties, motility, and proliferation in emergent collective behavior of cell co-cultures

    NASA Astrophysics Data System (ADS)

    Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita

    The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.

  18. Cell Proliferation on Planar and Curved Substrates

    NASA Astrophysics Data System (ADS)

    Gaines, Michelle; Chang, Ya Wen; Cruz, Ricardo; Fragkopoulos, Alexandros; Garcia, Andres; Fernandez-Nieves, Alberto

    Aberrant epithelial collective cell growth is one of the major challenges to be addressed in order to treat diseases such as cancer and organ fibrosis. The conditions of the extracellular microenvironment, properties of the cells' cytoskeleton, and interfacial properties of the substratum (the surface in contact with epithelial cells) have a significant influence on the migratory behavior of epithelial cells, cell proliferation and migration. This work focuses on understanding the impact the substratum curvature has on cell behavior. We focus on cell proliferation first and study MDCK cells on both planar and curved hydrogel substrates. The curved hydrogels are based on polyacrylamide and have toroidal shape, with tube radius 200 um and an aspect ratio in the rage between 2 and 9. Proliferation is measured using the Click-it EDU assay (Invitrogen), which measures cells that are synthesizing DNA. Funding Source is Childrens Healthcare of Atlanta.

  19. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells

    PubMed Central

    Tian, Ang; Qin, Xiaofei; Wu, Anhua; Zhang, Hangzhou; Xu, Quan; Xing, Deguang; Yang, He; Qiu, Bo; Xue, Xiangxin; Zhang, Dongyong; Dong, Chenbo

    2015-01-01

    Cells respond to their surroundings through an interactive adhesion process that has direct effects on cell proliferation and migration. This research was designed to investigate the effects of TiO2 nanotubes with different topographies and structures on the biological behavior of cultured cells. The results demonstrated that the nanotube diameter, rather than the crystalline structure of the coatings, was a major factor for the biological behavior of the cultured cells. The optimal diameter of the nanotubes was 20 nm for cell adhesion, migration, and proliferation in both glioma and osteosarcoma cells. The expression levels of vitronectin and phosphor-focal adhesion kinase were affected by the nanotube diameter; therefore, it is proposed that the responses of vitronectin and phosphor-focal adhesion kinase to the nanotube could modulate cell fate. In addition, the geometry and size of the nanotube coating could regulate the degree of expression of acetylated α-tubulin, thus indirectly modulating cell migration behavior. Moreover, the expression levels of apoptosis-associated proteins were influenced by the topography. In conclusion, a nanotube diameter of 20 nm was the critical threshold that upregulated the expression level of Bcl-2 and obviously decreased the expression levels of Bax and caspase-3. This information will be useful for future biomedical and clinical applications. PMID:25848261

  20. Influence of the ionophore A23187 on the plastic behavior of normal erythrocytes.

    PubMed

    Kuettner, J F; Dreher, K L; Rao, G H; Eaton, J W; Blackshear, P L; White, J G

    1977-07-01

    Previous studies have demonstrated that A23187, an ionophore which selectively transports divalent cations across cell membranes, has profound effects on human erythrocytes: it causes red cells to take up calcium; lose potassium, water, and ATP; convert from biconcave discs to echinocytes and spheroechinocytes; and become more rigid. The present study has explored the influence of calcium uptake induced by the ionophore on the behavior of individual erythrocyte membranes by the micropipette aspiration technique. Exposure of erythrocytes to calcium and A23187 for intervals of up to 30 minutes resulted in marked changes in membrane viscoelastic properties, including the development of increased resistance to aspiration. The most striking manifestation of altered membrane mechanics was apparent after 10 minutes on incubation. Cells pulled into the pipette for a few seconds and the extruded back into the medium retained the deformity imposed by the pipette for several seconds to a few minutes before regaining the form they manifested prior to initial aspiration. The calcium-induced changes in erythrocyte behavior observed in this study strongly support the concept that extrinsic proteins located inside the membrane provide mechanical support to the cell wall, and that increased levels of calcium cause precipitation or cross-linking of the proteins responsible for the increased resistence to deformation and recoil observed after aspiration into micropipettes.

  1. Influence of physicochemical properties of laser-modified polystyrene on bovine serum albumin adsorption and rat C6 glioma cell behavior.

    PubMed

    Wang, Xuefeng; Ohlin, C André; Lu, Qinghua; Hu, Jun

    2006-09-15

    Biomaterial surface modification is an efficient way of improving cell-material interactions. In this study, sub-micrometer laser-induced periodic surface structures (LIPSS) were produced on polystyrene by laser irradiation. FT-IR analysis confirmed that this treatment also led to surface oxidation and anisotropic orientation of the produced carbonyl groups. As a consequence, the surface energy of the laser-treated polystyrene was 1.45 times that of the untreated polystyrene, as measured by contact-angle goniometry. Protein adsorption and rat C6 glioma cell behavior on the two substrates were investigated, showing that the changed physicochemical properties of laser-modified polystyrene surface led to an increase in the quantity of adsorbed bovine serum albumin and significantly affected the behavior of rat C6 glioma cells. In the early stages of cell spreading, cells explored their microenvironment using filopodium as the main sensor. Moreover, cells actively aligned themselves along the direction of LIPSS gradually and cell attachment and proliferation were significantly enhanced. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  2. Femtosecond laser fabricated spike structures for selective control of cellular behavior.

    PubMed

    Schlie, Sabrina; Fadeeva, Elena; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris N

    2010-09-01

    In this study we investigate the potential of femtosecond laser generated micrometer sized spike structures as functional surfaces for selective cell controlling. The spike dimensions as well as the average spike to spike distance can be easily tuned by varying the process parameters. Moreover, negative replications in soft materials such as silicone elastomer can be produced. This allows tailoring of wetting properties of the spike structures and their negative replicas representing a reduced surface contact area. Furthermore, we investigated material effects on cellular behavior. By comparing human fibroblasts and SH-SY5Y neuroblastoma cells we found that the influence of the material was cell specific. The cells not only changed their morphology, but also the cell growth was affected. Whereas, neuroblastoma cells proliferated at the same rate on the spike structures as on the control surfaces, the proliferation of fibroblasts was reduced by the spike structures. These effects can result from the cell specific adhesion patterns as shown in this work. These findings show a possibility to design defined surface microstructures, which could control cellular behavior in a cell specific manner.

  3. The dangers of rumination on the road: Predictors of risky driving.

    PubMed

    Suhr, Kyle A; Dula, Chris S

    2017-02-01

    Past studies found many different types of factors can influence dangerous driving behaviors. Driver inattention, such as driving under the influence or using a cell phone while driving, was found to contribute to risky driving behaviors. Rumination is a cognitive process that may also contribute to risky driving behaviors due to its influence on attention and limited executive processes. The present study explores the potential role of rumination in dangerous driving behavior endorsement. It was hypothesized that trait rumination would be significantly related to dangerous driving behaviors and that this relationship would be conditional to the sex of the participant. Six-hundred and fifty-three Southeastern university students were recruited to participate and asked to complete multiple questionnaires measuring anger rumination, thought content, driving anger, and dangerous driving behaviors. It was demonstrated that self-reported risky driving behaviors significantly predicted dangerous driving behavior endorsement on the Dula Dangerous Driving Index. Trait rumination scores were found to predict self-reported dangerous driving, aggressive driving, and risky driving behaviors as well as trait driving anger scores. However, no conditional effects based on the sex of the participant were found. It appeared males and females were equally likely to report dangerous driving behaviors, driving anger thoughts, and trait anger rumination. Findings from the current study may assist in understanding how cognitive processes influence different driving behaviors and help develop methods to re-direct attention to safe driving behaviors, and conversely away from ruminative thoughts that increase the likelihood of dangerous driving. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Microbial endocrinology and the microbiota-gut-brain axis.

    PubMed

    Lyte, Mark

    2014-01-01

    Microbial endocrinology is defined as the study of the ability of microorganisms to both produce and recognize neurochemicals that originate either within the microorganisms themselves or within the host they inhabit. As such, microbial endocrinology represents the intersection of the fields of microbiology and neurobiology. The acquisition of neurochemical-based cell-to-cell signaling mechanisms in eukaryotic organisms is believed to have been acquired due to late horizontal gene transfer from prokaryotic microorganisms. When considered in the context of the microbiota's ability to influence host behavior, microbial endocrinology with its theoretical basis rooted in shared neuroendocrine signaling mechanisms provides for testable experiments with which to understand the role of the microbiota in host behavior and as importantly the ability of the host to influence the microbiota through neuroendocrine-based mechanisms.

  5. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2016-03-01

    In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d

  6. Investigation of the hydrodynamic response of cells in drop on demand piezoelectric inkjet nozzles.

    PubMed

    Cheng, Eric; Yu, Haoran; Ahmadi, Ali; Cheung, Karen C

    2016-01-29

    Cell motion within a liquid suspension inside a piezoelectrically actuated, cylindrical inkjet printhead was studied using high speed imaging and a low depth of field setup. For each ejected droplet, a cell within the inkjet nozzle was observed to exhibit one of three possible behaviors which are termed: cell travel, cell ejection and cell reflection. Cell reflection is an undesirable phenomenon which may adversely affect an inkjet's capability in dispensing cells and a possible reason why it was previously reported that the rate of cells dispensed did not follow the expected Poisson distribution. Through the study of the cells motions, it was hypothesized that the rheological properties of the media in the cell suspension play an important role in influencing the cell behaviors exhibited. This was experimentally studied with the tracking of cells within the inkjet nozzle in a 10% w/v Ficoll PM400 cell suspension. The effect of cell reflection was eliminated using the higher density and viscosity Ficoll PM400 suspension. The presented work is the first in-depth study of the cell behaviors occurring within a piezoelectric inkjet nozzle during the printing process. The understanding of the hydrodynamics during a droplet ejection and its effect on the suspended cells are imperative towards achieving reliable cell dispensing for biofabrication applications.

  7. A Finite Element Study of Micropipette Aspiration of Single Cells: Effect of Compressibility

    PubMed Central

    Jafari Bidhendi, Amirhossein; Korhonen, Rami K.

    2012-01-01

    Micropipette aspiration (MA) technique has been widely used to measure the viscoelastic properties of different cell types. Cells experience nonlinear large deformations during the aspiration procedure. Neo-Hookean viscohyperelastic (NHVH) incompressible and compressible models were used to simulate the creep behavior of cells in MA, particularly accounting for the effect of compressibility, bulk relaxation, and hardening phenomena under large strain. In order to find optimal material parameters, the models were fitted to the experimental data available for mesenchymal stem cells. Finally, through Neo-Hookean porohyperelastic (NHPH) material model for the cell, the influence of fluid flow on the aspiration length of the cell was studied. Based on the results, we suggest that the compressibility and bulk relaxation/fluid flow play a significant role in the deformation behavior of single cells and should be taken into account in the analysis of the mechanics of cells. PMID:22400045

  8. Maternal cell phone use during pregnancy and child behavioral problems in five birth cohorts.

    PubMed

    Birks, Laura; Guxens, Mònica; Papadopoulou, Eleni; Alexander, Jan; Ballester, Ferran; Estarlich, Marisa; Gallastegi, Mara; Ha, Mina; Haugen, Margaretha; Huss, Anke; Kheifets, Leeka; Lim, Hyungryul; Olsen, Jørn; Santa-Marina, Loreto; Sudan, Madhuri; Vermeulen, Roel; Vrijkotte, Tanja; Cardis, Elisabeth; Vrijheid, Martine

    2017-07-01

    Previous studies have reported associations between prenatal cell phone use and child behavioral problems, but findings have been inconsistent and based on retrospective assessment of cell phone use. This study aimed to assess this association in a multi-national analysis, using data from three cohorts with prospective data on prenatal cell phone use, together with previously published data from two cohorts with retrospectively collected cell phone use data. We used individual participant data from 83,884 mother-child pairs in the five cohorts from Denmark (1996-2002), Korea (2006-2011), the Netherlands (2003-2004), Norway (2004-2008), and Spain (2003-2008). We categorized cell phone use into none, low, medium, and high, based on frequency of calls during pregnancy reported by the mothers. Child behavioral problems (reported by mothers using the Strengths and Difficulties Questionnaire or Child Behavior Checklist) were classified in the borderline/clinical and clinical ranges using validated cut-offs in children aged 5-7years. Cohort specific risk estimates were meta-analyzed. Overall, 38.8% of mothers, mostly from the Danish cohort, reported no cell phone use during pregnancy and these mothers were less likely to have a child with overall behavioral, hyperactivity/inattention or emotional problems. Evidence for a trend of increasing risk of child behavioral problems through the maternal cell phone use categories was observed for hyperactivity/inattention problems (OR for problems in the clinical range: 1.11, 95%CI 1.01, 1.22; 1.28, 95%CI 1.12, 1.48, among children of medium and high users, respectively). This association was fairly consistent across cohorts and between cohorts with retrospectively and prospectively collected cell phone use data. Maternal cell phone use during pregnancy may be associated with an increased risk for behavioral problems, particularly hyperactivity/inattention problems, in the offspring. The interpretation of these results is unclear as uncontrolled confounding may influence both maternal cell phone use and child behavioral problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.

    PubMed

    Bauer, Sebastian; Park, Jung; von der Mark, Klaus; Schmuki, Patrik

    2008-09-01

    Self-organized layers of vertically orientated TiO(2) nanotubes providing defined diameters ranging from 15 up to 100nm were grown on titanium by anodic oxidation. These TiO(2) nanotube layers show super-hydrophilic behavior. After coating TiO(2) nanotube layers with a self-assembled monolayer (octadecylphosphonic acid) they showed a diameter-dependent wetting behavior ranging from hydrophobic (108+/-2 degrees ) up to super-hydrophobic (167+/-2 degrees ). Cell adhesion, spreading and growth of mesenchymal stem cells on the unmodified and modified nanotube layers were investigated and compared. We show that cell adhesion and proliferation are strongly affected in the super-hydrophobic range. Adsorption of extracellular matrix proteins as fibronectin, type I collagen and laminin, as well as bovine serum albumin, on the coated and uncoated surfaces showed a strong influence on wetting behavior and dependence on tube diameter.

  10. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates

    PubMed Central

    Syed, Sana; Schober, Joseph; Blanco, Alexandra

    2017-01-01

    Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration. PMID:29136040

  11. Influence of ibuprofen on phospholipid membranes

    NASA Astrophysics Data System (ADS)

    Jaksch, Sebastian; Lipfert, Frederik; Koutsioubas, Alexandros; Mattauch, Stefan; Holderer, Olaf; Ivanova, Oxana; Frielinghaus, Henrich; Hertrich, Samira; Fischer, Stefan F.; Nickel, Bert

    2015-02-01

    A basic understanding of biological membranes is of paramount importance as these membranes comprise the very building blocks of life itself. Cells depend in their function on a range of properties of the membrane, which are important for the stability and function of the cell, information and nutrient transport, waste disposal, and finally the admission of drugs into the cell and also the deflection of bacteria and viruses. We have investigated the influence of ibuprofen on the structure and dynamics of L-α -phosphatidylcholine (SoyPC) membranes by means of grazing incidence small-angle neutron scattering, neutron reflectometry, and grazing incidence neutron spin echo spectroscopy. From the results of these experiments, we were able to determine that ibuprofen induces a two-step structuring behavior in the SoyPC films, where the structure evolves from the purely lamellar phase for pure SoyPC over a superposition of two hexagonal phases to a purely hexagonal phase at high concentrations. A relaxation, which is visible when no ibuprofen is present in the membrane, vanishes upon addition of ibuprofen. This we attribute to a stiffening of the membrane. This behavior may be instrumental in explaining the toxic behavior of ibuprofen in long-term application.

  12. EXPLORING PARENT-SIBLING COMMUNICATION IN FAMILIES OF CHILDREN WITH SICKLE CELL DISEASE

    PubMed Central

    Graff, J. Carolyn; Hankins, Jane S.; Hardy, Belinda T.; Hall, Heather R.; Roberts, Ruth J.; Neely-Barnes, Susan L.

    2011-01-01

    Focus group interviews were conducted with parents of children with sickle cell disease to explore parent-sibling communication about sickle cell disease. Communication was influenced by attributes and behaviors of the parent, the child with sickle cell disease, and the sibling; extended family, neighbors, friends, and church members or social networks; and available, accessible resources related to the child’s health, child’s school, and parent employment. Outcomes that influenced and were influenced by factors within and outside the parent-sibling dyad and nuclear family included parent satisfaction, parent roles, family intactness, and status attainment. These findings support previous research with African American families and expand our views of the importance of educating parents, family members, and others about sickle cell disease. The findings suggest a need to explore sibling perception of this communication, parent and sibling perception of the impact of frequent hospitalizations and clinic visits on the sibling and family, and variations within families of children with sickle cell disease. PMID:20384476

  13. Turning behaviors of T cells climbing up ramp-like structures are regulated by myosin light chain kinase activity and lamellipodia formation.

    PubMed

    Song, Kwang Hoon; Lee, Jaehyun; Jung, Hong-Ryul; Park, HyoungJun; Doh, Junsang

    2017-09-14

    T cells navigate diverse microenvironments to perform immune responses. Micro-scale topographical structures within the tissues, which may inherently exist in normal tissues or may be formed by inflammation or injury, can influence T cell migration, but how T cell migration is affected by such topographical structures have not been investigated. In this study, we fabricated ramp-like structures with a 5 μm height and various slopes, and observed T cells climbing up the ramp-like structures. T cells encountering the ramp-like structures exhibited MLC accumulation near head-tail junctions contacting the ramp-like structures, and made turns to the direction perpendicular to the ramp-like structures. Pharmacological study revealed that lamellipodia formation mediated by arp2/3 and contractility regulated by myosin light chain kinase (MLCK) were responsible for the intriguing turning behavior of T cells climbing the ramp-like structures. Arp2/3 or MLCK inhibition substantially reduced probability of T cells climbing sharp-edged ramp-like structures, indicating intriguing turning behavior of T cells mediated by lamellipodia formation and MLCK activity may be important for T cells to access inflamed or injured tissues with abrupt topographical changes.

  14. Cellular behavior controlled by bio-inspired and geometry-tunable nanohairs.

    PubMed

    Heo, Chaejeong; Jeong, Chanho; Im, Hyeon Seong; Kim, Jong Uk; Woo, Juhyun; Lee, Ji Yeon; Park, Byeonghak; Suh, Minah; Kim, Tae-Il

    2017-11-23

    A cicada wing has a biocidal feature of rupturing the membrane of cells, while the cactus spine can transmit a water drop to the stem of the plant. Both of these properties have evolved from their respective unique structures. Here, we endeavor to develop geometry-controllable nanohairs that mimic the cicada's wing-like vertical hairs and the cactus spine-like stooped hairs, and to quantitatively characterize the cell migration behavior of the hairy structures. It was found that the neuroblastoma cells are highly sensitive to the variation of surfaces: flat, vertical, and stooped nanohairs (100 nm diameter and 900 nm height). The cells on the vertical hairs showed significantly decreased proliferation. It was found that the behavior of cells cultured on stooped nanohairs is strongly influenced by the direction of the stooped pattern of hairs when we quantitatively measured the migration of cells on flat, vertical, and stooped structures. However, the cells on the flat structures showed random movement and the cells on the vertical nanohairs restricted the nanohair movement. Cells on the stooped structure showed higher forward migration preference compared to that of the other structures. Furthermore, we found that these cellular behaviors on the different patterns of nanohairs were affected by intracellular actin flament change. Consistent with these results, the vertical and stooped structures can facilitate the control of cell viability and guide directional migration for biomedical applications such as organogenesis.

  15. How do culture media influence in vitro perivascular cell behavior?

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra Juliane

    2015-12-01

    Perivascular cells are multilineage cells located around the vessel wall and important for wall stabilization. In this study, we evaluated a stem cell media and a perivascular cell-specific media for the culture of primary perivascular cells regarding their cell morphology, doubling time, stem cell properties, and expression of cell type-specific markers. When the two cell culture media were compared to each other, perivascular cells cultured in the stem cell medium had a more elongated morphology and a faster doubling rate and cells cultured in the pericyte medium had a more typical morphology, with several filopodia, and a slower doubling rate. To evaluate stem cell properties, perivascular cells, CD146(-) cells, and mesenchymal stem cells (MSCs) were differentiated into the adipogenic, osteogenic, and chondrogenic lineages. It was seen that perivascular cells, as well as CD146(-) cells and MSCs, cultured in stem cell medium showed greater differentiation than cells cultured in pericyte-specific medium. The expression of pericyte-specific markers CD146, neural/glial antigen 2 (NG2), platelet-derived growth factor receptor-β (PDGFR-β), myosin, and α-smooth muscle actin (α-SMA) could be found in both pericyte cultures, as well as to varying amounts in CD146(-) cells, MSCs, and endothelial cells. The here presented work shows that perivascular cells can adapt to their in vitro environment and cell culture conditions influence cell functionality, such as doubling rate or differentiation behavior. Pericyte-specific markers were shown to be expressed also from cells other than perivascular cells. We can further conclude that CD146(+) perivascular cells are inhomogeneous cell population probably containing stem cell subpopulations, which are located perivascular around capillaries. © 2015 International Federation for Cell Biology.

  16. Electrochemical corrosion behavior and MG-63 osteoblast-like cell response of surface-treated titanium

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Kwan; Jang, Ju-Woong

    2004-10-01

    Commercially pure titanium is used as a clinical implant material for many orthopedic and dental implant devices owing to its excellent corrosion resistance and good biocompatibility. However, there remains concern over the release of metal ions from prostheses and unresolved questions about its behavior in a biological environment. Our research investigated the influence of surface oxide thickness and phase on the corrosion resistance in 0.9% NaCl solution by potentiostat and XRD. Also, the MG-63 osteoblast like cell morphology and proliferation were studied to evaluate the biocompatibility in terms of surface treatment. It is demonstrated that a substantial decrease in the current density may be attained due to surface oxide thickening and phase transformation by thermal oxidation. The osteoblast adhesion morphology and proliferation data indicated that the osteoblast cell response is not conspicuously influenced by the thermal oxidation and nitric acid passivation treatments but by surface roughness and porosity of 3rd networking.

  17. Application of Graphene Based Nanotechnology in Stem Cells Research.

    PubMed

    Hu, Shanshan; Zeng, Yongxiang; Yang, Shuying; Qin, Han; Cai, He; Wang, Jian

    2015-09-01

    The past several years have witnessed significant advances in stem cell therapy, tissue engineering and regenerative medicine. Graphene, with its unique properties such as high electrical conductivity, elasticity and good molecule absorption, have potential for creating the next generation of biomaterials. This review summarizes the interrelationship between graphene and stem cells. The analysis of graphene when applied on mesenchymal stem cells, neural stem cells, induced pluripotent stem cells, embryonic stem cells, periodontal ligament stem cells, human adipose-derived stem cells and cancer stem cells, and how graphene influences cell behavior and differentiation are discussed in details.

  18. Role of differential physical properties in emergent behavior of 3D cell co-cultures

    NASA Astrophysics Data System (ADS)

    Kolbman, Dan; Das, Moumita

    2015-03-01

    The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.

  19. A three-dimensional numerical simulation of cell behavior in a flow chamber based on fluid-solid interaction.

    PubMed

    Bai, Long; Cui, Yuhong; Zhang, Yixia; Zhao, Na

    2014-01-01

    The mechanical behavior of blood cells in the vessels has a close relationship with the physical characteristics of the blood and the cells. In this paper, a numerical simulation method was proposed to understand a single-blood cell's behavior in the vessels based on fluid-solid interaction method, which was conducted under adaptive time step and fixed time step, respectively. The main programme was C++ codes, which called FLUENT and ANSYS software, and UDF and APDL acted as a messenger to connect FLUENT and ANSYS for exchanging data. The computing results show: (1) the blood cell moved towards the bottom of the flow chamber in the beginning due to the influence of gravity, then it began to jump up when reached a certain height rather than touching the bottom. It could move downwards again after jump up, the blood cell could keep this way of moving like dancing continuously in the vessels; (2) the blood cell was rolling and deforming all the time; the rotation had oscillatory changes and the deformation became conspicuously when the blood cell was dancing. This new simulation method and results can be widely used in the researches of cytology, blood, cells, etc.

  20. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-06-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  1. Influence of thermal annealing-induced molecular aggregation on film properties and photovoltaic performance of bulk heterojunction solar cells based on a squaraine dye

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Ling, Zhitian; Chen, Guo; Wei, Bin

    2018-04-01

    Squaraine (SQ) dyes have been considered as efficient photoactive materials for organic solar cells. In this work, we purposely controlled the molecular aggregation of an SQ dye, 2,4-bis[4-(N,N-dibutylamino)-2-dihydroxyphenyl] SQ (DBSQ-(OH)2) in the DBSQ(OH)2:[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend film by using the thermal annealing method, to study the influence of the molecular aggregation on film properties as well as the photovoltaic performance of DBSQ(OH)2:PCBM-based bulk heterojunction (BHJ) solar cells. Our results demonstrate that thermal annealing may change the aggregation behavior of DBSQ(OH)2 in the DBSQ(OH)2:PCBM film, and thus significantly influence the surface morphology, optical and electrical properties of the blend film, as well as the photovoltaic performance of DBSQ(OH)2:PCBM BHJ cells.

  2. Numerical Study on the Tensile Behavior of 3D Four Directional Cylindrical Braided Composite Shafts

    NASA Astrophysics Data System (ADS)

    Zhao, Guoqi; Wang, Jiayi; Hao, Wenfeng; Liu, Yinghua; Luo, Ying

    2017-10-01

    The tensile behavior of 3D four directional cylindrical braided composite shafts was analyzed with the numerical method. The unit cell models for the 3D four directional cylindrical braided composite shafts with various braiding angles were constructed with ABAQUS. Hashin's failure criterion was used to analyze the tensile strength and the damage evolution of the unit cells. The influence of the braiding angle on the tensile behavior of the 3D four directional cylindrical braided composite shafts was analyzed. The numerical results showed that the tensile strength along the braiding direction increased as the braiding angle decreased. These results should play an integral role in the design of braiding composites shafts.

  3. Tamoxifen Activation of Cre-Recombinase Has No Persisting Effects on Adult Neurogenesis or Learning and Anxiety

    PubMed Central

    Rotheneichner, Peter; Romanelli, Pasquale; Bieler, Lara; Pagitsch, Sebastian; Zaunmair, Pia; Kreutzer, Christina; König, Richard; Marschallinger, Julia; Aigner, Ludwig; Couillard-Després, Sébastien

    2017-01-01

    Adult neurogenesis is a tightly regulated process continuously taking place in the central nervous system of most mammalian species. In neuroscience research, transgenic animals bearing the tamoxifen-inducible CreERT2-Lox system are widely used. In this study, we made use of a Nestin-CreERT2/R26R-YFP transgenic mouse model in which the CreERT2 activates the expression of YFP in multipotent neural stem cells upon tamoxifen application. Humoral factors, such as the levels of estrogens, have been reported to affect the hippocampal neurogenesis. The application of tamoxifen, a mixed agonist/antagonist of the estrogen receptor that permeates the blood-brain-barrier, could thus influence adult neurogenesis. Although the functions of adult neurogenesis are yet to be fully deciphered, a reciprocal interaction between rates of neurogenesis on the one hand and learning and mood regulation on the other hand, has been suggested. The impact of tamoxifen on neurogenesis and behavior was therefore addressed following five daily applications according to the open field test, the elevated plus maze, and Morris water maze. In addition, the impact of short-term tamoxifen application on progenitor cell proliferation, morphology, and fate in the neurogenic niche of the dentate gyrus were investigated. Finally, the influence of the route of administration (oral vs. intra-peritoneal) and gender-specific response were scrutinized. The sub-acute analysis did neither reveal significant differences in behavior, such as voluntary motor activity, anxiety behavior, and spatial learning, nor in cell proliferation, cell survival, dendritic arborization or maturation rate within the dentate gyrus between saline solution-, corn oil-, and tamoxifen-treated groups. Finally, neither the route of application, nor the gender of treated mice influenced the response to tamoxifen. We conclude that short tamoxifen treatments used to activate the CreERT2 system in transgenic mouse models does not have a measurable impact on adult neurogenesis or the here tested behavior, and is therefore appropriate for most studies in the field. PMID:28203140

  4. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam.

    PubMed

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-05-04

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg₂Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process.

  5. Compressive Deformation Behavior of Closed-Cell Micro-Pore Magnesium Composite Foam

    PubMed Central

    Wang, Jing; Wang, Nannan; Liu, Xin; Ding, Jian; Xia, Xingchuan; Chen, Xueguang; Zhao, Weimin

    2018-01-01

    The closed-cell micro-pore magnesium composite foam with hollow ceramic microspheres (CMs) was fabricated by a modified melt foaming method. The effect of CMs on the compressive deformation behavior of CM-containing magnesium composite foam was investigated. Optical microscopy and scanning electron microscopy were used for observation of the microstructure. Finite element modeling of the magnesium composite foam was established to predict localized stress, fracture of CMs, and the compressive deformation behavior of the foam. The results showed that CMs and pores directly affected the compressive deformation behavior of the magnesium composite foam by sharing a part of load applied on the foam. Meanwhile, the presence of Mg2Si phase influenced the mechanical properties of the foam by acting as the crack source during the compression process. PMID:29734700

  6. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.

    PubMed

    Dunlap, Kent D; Chung, Michael; Castellano, James F

    2013-07-01

    Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.

  7. Disentangling the influence of cell phone usage in the dilemma zone: An econometric approach.

    PubMed

    Eluru, Naveen; Yasmin, Shamsunnahar

    2016-11-01

    This paper focuses on developing an analysis framework to study the impact of cell phone treatment (cell phone type and call status) on driver behavior in the presence of a dilemma zone. Specifically, we examine how the treatment influences the driver maneuver decision at the intersection (stop or cross) and the eventual success of the maneuver. For a stop maneuver, success is defined as stopping before the stop line. Similarly, for a cross maneuver, success is defined as clearing the intersection safely before the light turns red. The eventual success or failure of the driver's decision process is dependent on the factors that affected the maneuver decision. Hence it is important to recognize the interconnectedness of the stop or cross decision with its eventual success (or failure). Toward this end, we formulate and estimate a joint framework to analyze the stop/cross decision with its eventual success (or failure) simultaneously. The study is conducted based on driving simulator data provided online for the 2014 Transportation Research Board Data Contest at http://depts.washington.edu/hfsm/upload.php. The model is estimated to analyze drivers' behavior at the onset of yellow by employing exogenous variables from three broad categories: driver characteristics, cell phone attributes and driving attributes. We also generate probability surfaces to identify dilemma zone distribution associated with different cell phone treatment types. The plots clearly illustrate the impact of various cellphone treatments on driver dilemma zone behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  9. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  10. Living Toroids - Cells on Toroidal Surfaces

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto

    2014-03-01

    Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.

  11. Cancer cells copy migratory behavior and exchange signaling networks via extracellular vesicles.

    PubMed

    Steenbeek, Sander C; Pham, Thang V; de Ligt, Joep; Zomer, Anoek; Knol, Jaco C; Piersma, Sander R; Schelfhorst, Tim; Huisjes, Rick; Schiffelers, Raymond M; Cuppen, Edwin; Jimenez, Connie R; van Rheenen, Jacco

    2018-06-14

    Recent data showed that cancer cells from different tumor subtypes with distinct metastatic potential influence each other's metastatic behavior by exchanging biomolecules through extracellular vesicles (EVs). However, it is debated how small amounts of cargo can mediate this effect, especially in tumors where all cells are from one subtype, and only subtle molecular differences drive metastatic heterogeneity. To study this, we have characterized the content of EVs shed in vivo by two clones of melanoma (B16) tumors with distinct metastatic potential. Using the Cre-LoxP system and intravital microscopy, we show that cells from these distinct clones phenocopy their migratory behavior through EV exchange. By tandem mass spectrometry and RNA sequencing, we show that EVs shed by these clones into the tumor microenvironment contain thousands of different proteins and RNAs, and many of these biomolecules are from interconnected signaling networks involved in cellular processes such as migration. Thus, EVs contain numerous proteins and RNAs and act on recipient cells by invoking a multi-faceted biological response including cell migration. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Cell-Extracellular Matrix Mechanobiology: Forceful Tools and Emerging Needs for Basic and Translational Research.

    PubMed

    Holle, Andrew W; Young, Jennifer L; Van Vliet, Krystyn J; Kamm, Roger D; Discher, Dennis; Janmey, Paul; Spatz, Joachim P; Saif, Taher

    2018-01-10

    Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.

  13. Influence of carbon content on the copper-telluride phase formation and on the resistive switching behavior of carbon alloyed Cu-Te conductive bridge random access memory cells

    NASA Astrophysics Data System (ADS)

    Devulder, Wouter; Opsomer, Karl; Franquet, Alexis; Meersschaut, Johan; Belmonte, Attilio; Muller, Robert; De Schutter, Bob; Van Elshocht, Sven; Jurczak, Malgorzata; Goux, Ludovic; Detavernier, Christophe

    2014-02-01

    In this paper, we investigate the influence of the carbon content on the Cu-Te phase formation and on the resistive switching behavior in carbon alloyed Cu0.6Te0.4 based conductive bridge random access memory (CBRAM) cells. Carbon alloying of copper-tellurium inhibits the crystallization, while attractive switching behavior is preserved when using the material as Cu-supply layer in CBRAM cells. The phase formation is first investigated in a combinatorial way. With increasing carbon content, an enlargement of the temperature window in which the material stays amorphous was observed. Moreover, if crystalline phases are formed, subsequent phase transformations are inhibited. The electrical switching behavior of memory cells with different carbon contents is then investigated by implementing them in 580 μm diameter dot TiN/Cu0.6Te0.4-C/Al2O3/Si memory cells. Reliable switching behavior is observed for carbon contents up to 40 at. %, with a resistive window of more than 2 orders of magnitude, whereas for 50 at. % carbon, a higher current in the off state and only a small resistive window are present after repeated cycling. This degradation can be ascribed to the higher thermal and lower drift contribution to the reset operation due to a lower Cu affinity towards the supply layer, leading cycle-after-cycle to an increasing amount of Cu in the switching layer, which contributes to the current. The thermal diffusion of Cu into Al2O3 under annealing also gives an indication of the Cu affinity of the source layer. Time of flight secondary ion mass spectroscopy was used to investigate this migration depth in Al2O3 before and after annealing, showing a higher Cu, Te, and C migration for high carbon contents.

  14. Exploring parent-sibling communication in families of children with sickle cell disease.

    PubMed

    Graff, J Carolyn; Hankins, Jane S; Hardy, Belinda T; Hall, Heather R; Roberts, Ruth J; Neely-Barnes, Susan L

    2010-01-01

    Communication within families of children with sickle cell disease is important yet has not been adequately investigated. Focus group interviews were conducted with parents of children with sickle cell disease to explore parent-sibling communication about sickle cell disease. Communication was influenced by attributes and behaviors of the parent, the child with sickle cell disease, and the sibling; extended family, neighbors, friends, and church members or social networks; and available, accessible resources related to the child's health, child's school, and parent employment. Outcomes that influenced and were influenced by factors within and outside the parent-sibling dyad and nuclear family included parent satisfaction, parent roles, family intactness, and status attainment. These findings support previous research with African-American families and expand our views of the importance of educating parents, family members, and others about sickle cell disease. The findings suggest a need to explore sibling perception of this communication, parent and sibling perception of the impact of frequent hospitalizations and clinic visits on the sibling and family, and variations within families of children with sickle cell disease.

  15. Radiotherapy and chemotherapy change vessel tree geometry and metastatic spread in a small cell lung cancer xenograft mouse tumor model

    PubMed Central

    Bethge, Anja; Schumacher, Udo

    2017-01-01

    Background Tumor vasculature is critical for tumor growth, formation of distant metastases and efficiency of radio- and chemotherapy treatments. However, how the vasculature itself is affected during cancer treatment regarding to the metastatic behavior has not been thoroughly investigated. Therefore, the aim of this study was to analyze the influence of hypofractionated radiotherapy and cisplatin chemotherapy on vessel tree geometry and metastasis formation in a small cell lung cancer xenograft mouse tumor model to investigate the spread of malignant cells during different treatments modalities. Methods The biological data gained during these experiments were fed into our previously developed computer model “Cancer and Treatment Simulation Tool” (CaTSiT) to model the growth of the primary tumor, its metastatic deposit and also the influence on different therapies. Furthermore, we performed quantitative histology analyses to verify our predictions in xenograft mouse tumor model. Results According to the computer simulation the number of cells engrafting must vary considerably to explain the different weights of the primary tumor at the end of the experiment. Once a primary tumor is established, the fractal dimension of its vasculature correlates with the tumor size. Furthermore, the fractal dimension of the tumor vasculature changes during treatment, indicating that the therapy affects the blood vessels’ geometry. We corroborated these findings with a quantitative histological analysis showing that the blood vessel density is depleted during radiotherapy and cisplatin chemotherapy. The CaTSiT computer model reveals that chemotherapy influences the tumor’s therapeutic susceptibility and its metastatic spreading behavior. Conclusion Using a system biological approach in combination with xenograft models and computer simulations revealed that the usage of chemotherapy and radiation therapy determines the spreading behavior by changing the blood vessel geometry of the primary tumor. PMID:29107953

  16. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    ERIC Educational Resources Information Center

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  17. Units of analysis and kinetic structure of behavioral repertoires

    PubMed Central

    Thompson, Travis; Lubinski, David

    1986-01-01

    It is suggested that molar streams of behavior are constructed of various arrangements of three elementary constituents (elicited, evoked, and emitted response classes). An eight-cell taxonomy is elaborated as a framework for analyzing and synthesizing complex behavioral repertoires based on these functional units. It is proposed that the local force binding functional units into a smoothly articulated kinetic sequence arises from temporally arranged relative response probability relationships. Behavioral integration is thought to reflect the joint influence of the organism's hierarchy of relative response probabilities, fluctuating biological states, and the arrangement of environmental and behavioral events in time. PMID:16812461

  18. Behavioral and Physiological Changes during Benthic-Pelagic Transition in the Harmful Alga, Heterosigma akashiwo: Potential for Rapid Bloom Formation

    PubMed Central

    Tobin, Elizabeth D.; Grünbaum, Daniel; Patterson, Johnathan; Cattolico, Rose Ann

    2013-01-01

    Many species of harmful algae transition between a motile, vegetative stage in the water column and a non-motile, resting stage in the sediments. Physiological and behavioral traits expressed during benthic-pelagic transition potentially regulate the timing, location and persistence of blooms. The roles of key physiological and behavioral traits involved in resting cell emergence and bloom formation were examined in two geographically distinct strains of the harmful alga, Heterosigma akashiwo. Physiological measures of cell viability, division and population growth, and cell fatty acid content were made using flow cytometry and gas chromatography – mass spectrometry techniques as cells transitioned between the benthic resting stage and the vegetative pelagic stage. Video-based tracking was used to quantify cell-level swimming behaviors. Data show increased temperature and light triggered rapid emergence from the resting stage and initiated cell swimming. Algal strains varied in important physiological and behavioral traits, including survivorship during life-stage transitions, population growth rates and swimming velocities. Collectively, these traits function as “population growth strategies” that can influence bloom formation. Many resting cells regained the up-swimming capacity necessary to cross an environmentally relevant halocline and the ability to aggregate in near-surface waters within hours after vegetative growth supporting conditions were restored. Using a heuristic model, we illustrate how strain-specific population growth strategies can govern the timescales over which H. akashiwo blooms form. Our findings highlight the need for identification and quantification of strain-specific physiological and behavioral traits to improve mechanistic understanding of bloom formation and successful bloom prediction. PMID:24124586

  19. The JPL space photovoltaic program. [energy efficient so1 silicon solar cells for space applications

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J. A.

    1979-01-01

    The development of energy efficient solar cells for space applications is discussed. The electrical performance of solar cells as a function of temperature and solar intensity and the influence of radiation and subsequent thermal annealing on the electrical behavior of cells are among the factors studied. Progress in GaAs solar cell development is reported with emphasis on improvement of output power and radiation resistance to demonstrate a solar cell array to meet the specific power and stability requirements of solar power satellites.

  20. Deconstructing (and reconstructing) cell migration.

    PubMed

    Maheshwari, G; Lauffenburger, D A

    1998-12-01

    An overriding objective in cell biology is to be able to relate properties of particular molecular components to cell behavioral functions and even physiology. In the "traditional" mode of molecular cell biology, this objective has been tackled on a molecule-by-molecule basis, and in the "future" mode sometimes termed "functional genomics," it might be attacked in a high-throughput, parallel manner. Regardless of the manner of approach, the relationship between molecular-level properties and cell-level function is exceedingly difficult to elucidate because of the large number of relevant components involved, their high degree of interconnectedness, and the inescapable fact that they operate as physico-chemical entities-according to the laws of kinetics and mechanics-in space and time within the cell. Cell migration is a prominent representative example of such a cell behavioral function that requires increased understanding for both scientific and technological advance. This article presents a framework, derived from an engineering perspective regarding complex systems, intended to aid in developing improved understanding of how properties of molecular components influence the function of cell migration. That is, cell population migration behavior can be deconstructed as follows: first in terms of a mathematical model comprising cell population parameters (random motility, chemotaxis/haptotaxis, and chemokinesis/haptokinesis coefficients), which in turn depend on characteristics of individual cell paths that can be analyzed in terms of a mathematical model comprising individual cell parameters (translocation speed, directional persistence time, chemotactic/haptotactic index), which in turn depend on cell-level physical processes underlying motility (membrane extension and retraction, cell/substratum adhesion, cell contractile force, front-vs.-rear asymmetry), which in turn depend on molecular-level properties of the plethora of components involved in governance and regulation of these processes. Hence, the influence of any molecular component on cell population migration can be understood by reconstructing these relationships from the molecular level to the physical process level to the individual cell path level to the cell population distribution level. This approach requires combining experimental, theoretical, and computational methodologies from molecular biology, biochemistry, biophysics, and bioengineering.

  1. Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro.

    PubMed

    Spiteri, C G; Pilliar, R M; Kandel, R A

    2006-09-15

    Tissue engineering is being explored as a new approach to treat damaged cartilage. As the biomaterial used may influence tissue formation, the effects of substrate geometry on chondrocyte behavior in vitro were examined. Articular chondrocytes were isolated and cultured on the surface of smooth, rough, porous-coated, and fully porous Ti-6Al-4V substrates. The percentage of chondrocytes that attached to each substrate at 24 h was determined. After 24 and 72 h, chondrocytes were visualized by scanning electron microscopy and cell areas were measured. Collagen and proteoglycan accumulation within the first 24 h was determined by incorporation with [3H]-proline and [35S]-SO4, respectively. Chondrocyte attachment as well as matrix accumulation was enhanced as substrate surface area increased. Cell areas on the fully porous substrate were over four times greater than on any other substrate by 72 h in culture. After 8 weeks in culture, a continuous layer of cartilaginous tissue formed only on the surface of the fully porous substrate. This suggests that fully porous Ti-6Al-4V substrates provide the conditions that favor cartilage tissue formation by influencing cell attachment and extent of cell spreading. Understanding how substrate porosity influences chondrocyte behavior may help identify methods to further enhance cartilage tissue formation in vitro. 2006 Wiley Periodicals, Inc. J Biomed Mater Res, 2006.

  2. Comparative surface energetic study of Matrigel® and collagen I interactions with endothelial cells.

    PubMed

    Hill, Michael J; Sarkar, Debanjan

    2017-07-01

    Understanding of the surface energetic aspects of the spontaneously deposited proteins on biomaterial surfaces and how this influences cell adhesion and differentiation is an area of regenerative medicine that has not received adequate attention. Current controversies surround the role of the biomaterial substratum surface chemistry, the range of influence of said substratum, and the effects of different surface energy components of the protein interface. Endothelial cells (ECs) are a highly important cell type for regenerative medicine applications, such as tissue engineering, and In-vivo they interact with collagen I based stromal tissue and basement membranes producing different behavioral outcomes. The surface energetic properties of these tissue types and how they control EC behavior is not well known. In this work we studied the surface energetic properties of collagen I and Matrigel ® on various previously characterized substratum polyurethanes (PU) via contact angle analysis and examined the subsequent EC network forming characteristics. A combinatorial surface energy approach was utilized that compared Zisman's critical surface tension, Kaelble's numerical method, and van Oss-Good-Chaudhury theory (vOGCT). We found that the unique, rapid network forming characteristics of ECs on Matrigel ® could be attributed to the apolar or monopolar basic interfacial characteristics according to Zisman/Kaelble or vOGCT, respectively. We also found a lack of significant substratum influence on EC network forming characteristics for Matrigel ® but collagen I showed a distinct influence where more apolar PU substrata tended to produce higher Lewis acid character collagen I interfaces which led to a greater interaction with ECs. Collagen I interfaces on more polar PU substrata lacked Lewis acid character and led to similar EC network characteristics as Matrigel ® . We hypothesized that bipolar character of the protein film favored cell-substratum over cell-cell adhesive interactions which resulted in less rapidly forming but more stable networks. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. YAP-dependent Mechanotransduction is Required for Proliferation and Migration on Native-like Substrate Topography

    PubMed Central

    Mascharak, Shamik; Benitez, Patrick L.; Proctor, Amy C.; Madl, Christopher M.; Hu, Kenneth H.; Dewi, Ruby E.; Butte, Manish J.; Heilshorn, Sarah C.

    2017-01-01

    Native vascular extracellular matrices (vECM) consist of elastic fibers that impart varied topographical properties, yet most in vitro models designed to study the effects of topography on cell behavior are not representative of native architecture. Here, we engineer an electrospun elastin-like protein (ELP) system with independently tunable, vECM-mimetic topography and demonstrate that increasing topographical variation causes loss of endothelial cell-cell junction organization. This loss of VE-cadherin signaling and increased cytoskeletal contractility on more topographically varied ELP substrates in turn promote YAP activation and nuclear translocation, resulting in significantly increased endothelial cell migration and proliferation. Our findings identify YAP as a required signaling factor through which fibrous substrate topography influences cell behavior and highlights topography as a key design parameter for engineered biomaterials. PMID:27889666

  4. [Biological behavior of hypopharyngeal carcinoma].

    PubMed

    Zhou, L X

    1997-01-01

    Hypopharyngeal squamous cell carcinomas (HPC) has an extremely poor prognosis. Characteristics of cell lines of head and neck squamous cell carcinomas including HPC were studied by various methods, e.g., chemosensitivity test and the immunohistochemistry staining method, to determine whether this poor prognosis is due to the biological behavior of this cancer. An HPC cell line was found to be resistant to anti tumor drugs, i.e., PEP, MTX and CPM and moderately sensitive to CDDP, 5-FU and ADM. Thermoresistance to hyperthermatic treatment and weak expression of ICAM-1 on the HPC cell line were observed. DNA synthesis by the HPC cell line was induced by stimulation with a low concentration of EGF and the amount of EGFR on these HPC cells was very high. In addition, cyclinD1 overexpression was found in the HPC cell line. Based on the above findings, further analysis of hypopharyngeal carcinoma cells and the development of a new treatment modality to control tumor growth and metastatic factors influencing the poor outcome are necessary to improve the prognosis of this cancer.

  5. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior

    PubMed Central

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.

    2012-01-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922

  6. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    PubMed

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  7. CD11c-expressing cells affect Treg behavior in the meninges during CNS infection1

    PubMed Central

    O’Brien, Carleigh A.; Overall, Christopher; Konradt, Christoph; O’Hara Hall, Aisling C.; Hayes, Nikolas W.; Wagage, Sagie; John, Beena; Christian, David A.; Hunter, Christopher A.; Harris, Tajie H.

    2017-01-01

    Treg cells play an important role in the CNS during multiple infections as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, the Treg cells in the CNS during T. gondii infection are Th1-polarized, exemplified by T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC Class II tetramer reagent specific for T. gondii did not recognize Treg cells isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector and regulatory T cells in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Treg cells were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, while Treg cells moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 antibodies to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg cell migration. These data suggest that Treg cells are anatomically restricted within the CNS and the interaction with CD11c+ populations regulates their local behavior during T. gondii infection. PMID:28389591

  8. Debating restrictions on embryonic stem cell research.

    PubMed

    McClain, Colleen

    2009-09-01

    This study investigates the emotional and behavioral effects of interpersonal online communication, focusing on the controversy surrounding the loosening of restrictions on human embryonic stem cell research. The issue, central to national and statewide elections in 2008, generated heated debate among candidates and voters and evoked strong emotional sentiments among partisans. Using the theory of affective intelligence, this study proposes a predictive model connecting levels of enthusiasm and anxiety with behavioral and information-seeking outcomes. Cognitive appraisal theory is also employed to provide a role for political emotion in accounting for interactive media effects. To investigate the ways that online deliberation may influence discussions surrounding stem cell research, a between-subjects experimental study was conducted that systematically varied the tone of feedback received (reinforcing or challenging) and type of interaction (synchronous or asynchronous) experienced by users. Results indicate that emotional responses play a significant role in predicting behavioral intentions arising from the user-to-user interactive experience.

  9. Retention and transport of an anaerobic trichloroethene dechlorinating microbial culture in anaerobic porous media.

    PubMed

    Zhang, Huixin; Ulrich, Ania C; Liu, Yang

    2015-06-01

    The influence of solution chemistry on microbial transport was examined using the strictly anaerobic trichloroethene (TCE) bioaugmentation culture KB-1(®). A column was employed to determine transport behaviors and deposition kinetics of three distinct functional species in KB-1(®), Dehalococcoides, Geobacter, and Methanomethylovorans, over a range of ionic strengths under a well-controlled anaerobic condition. A quantitative polymerase chain reaction (qPCR) was utilized to enumerate cell concentration and complementary techniques were implemented to evaluate cell surface electrokinetic potentials. Solution chemistry was found to positively affect the deposition rates, which was consistent with calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies. Retained microbial profiles showed spatially constant colloid deposition rate coefficients, in agreement with classical colloid filtration theory (CFT). It was interesting to note that the three KB-1(®) species displayed similar transport and retention behaviors under the defined experimental conditions despite their different cell electrokinetic properties. A deeper analysis of cell characteristics showed that factors, such as cell size and shape, concentration, and motility were involved in determining adhesion behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Exploring biological and social networks to better understand and treat diabetes mellitus. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    NASA Astrophysics Data System (ADS)

    Belgardt, Bengt-Frederik; Jarasch, Alexander; Lammert, Eckhard

    2018-03-01

    Improvements and breakthroughs in computational sciences in the last 20 years have paralleled the rapid gain of influence of social networks on our daily life. As timely reviewed by Perc and colleagues [1], understanding and treating complex human diseases, such as type 2 diabetes (T2D), from which already more than 5% of the global population suffer, will necessitate analyzing and understanding the multi-layered and interconnected networks that usually keep physiological functions intact, but are disturbed in disease states. These networks range from intra- and intercellular networks influencing cell behavior (e.g., secretion of insulin in response to food intake and anabolic response to insulin) to social networks influencing human behavior (e.g., food intake and physical activity). This commentary first expands on the background of pancreatic beta cell networks in human health and T2D, briefly introduces exosomes as novel signals exchanged between distant cellular networks, and finally discusses potential pitfalls and chances in network analyses with regards to experimental data acquisition and processing.

  11. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  12. Fibrin hydrogels to deliver dental stem cells of the apical papilla for regenerative medicine.

    PubMed

    Germain, Loïc; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Jacobs, Damien; Vandermeulen, Gaëlle; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2015-01-01

    Evaluation of survival, proliferation and neurodifferentiation of dental stem cells from the apical papilla (SCAP) in fibrin hydrogels. We hypothesized that fibrin composition will influence cell behavior. Modulus, pore and fiber size were measured. SCAP in vitro viability, proliferation and neural differentiation, as well as in vivo proliferation and angiogenesis were studied. Hydrogel moduli were influenced by fibrin formulation but not hydrogel morphology, SCAP in vitro viability and proliferation. In total 60% of SCAP expressed PanNeurofilament in vitro without induction in Fibrinogen50-Thrombin10. SCAP proliferated when implanted in vivo and stimulated host endothelial cell infiltration. Fibrinogen30-Thrombin10 or Thrombin50 would be more favorable to in vitro SCAP viability and in vivo proliferation, while Fibrinogen 50-Thrombin50 would be more adapted to neurodifferentiation.

  13. Versican and the regulation of cell phenotype in disease.

    PubMed

    Wight, Thomas N; Kinsella, Michael G; Evanko, Stephen P; Potter-Perigo, Susan; Merrilees, Mervyn J

    2014-08-01

    Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM. The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted. Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease. ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Behavior of bone cells in contact with magnesium implant material.

    PubMed

    Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank

    2017-01-01

    Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.

  15. A Multi-Paradigm Modeling Framework to Simulate Dynamic Reciprocity in a Bioreactor

    PubMed Central

    Kaul, Himanshu; Cui, Zhanfeng; Ventikos, Yiannis

    2013-01-01

    Despite numerous technology advances, bioreactors are still mostly utilized as functional black-boxes where trial and error eventually leads to the desirable cellular outcome. Investigators have applied various computational approaches to understand the impact the internal dynamics of such devices has on overall cell growth, but such models cannot provide a comprehensive perspective regarding the system dynamics, due to limitations inherent to the underlying approaches. In this study, a novel multi-paradigm modeling platform capable of simulating the dynamic bidirectional relationship between cells and their microenvironment is presented. Designing the modeling platform entailed combining and coupling fully an agent-based modeling platform with a transport phenomena computational modeling framework. To demonstrate capability, the platform was used to study the impact of bioreactor parameters on the overall cell population behavior and vice versa. In order to achieve this, virtual bioreactors were constructed and seeded. The virtual cells, guided by a set of rules involving the simulated mass transport inside the bioreactor, as well as cell-related probabilistic parameters, were capable of displaying an array of behaviors such as proliferation, migration, chemotaxis and apoptosis. In this way the platform was shown to capture not only the impact of bioreactor transport processes on cellular behavior but also the influence that cellular activity wields on that very same local mass transport, thereby influencing overall cell growth. The platform was validated by simulating cellular chemotaxis in a virtual direct visualization chamber and comparing the simulation with its experimental analogue. The results presented in this paper are in agreement with published models of similar flavor. The modeling platform can be used as a concept selection tool to optimize bioreactor design specifications. PMID:23555740

  16. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture.

    PubMed

    Caccavale, Justin; Fiumara, David; Stapf, Michael; Sweitzer, Liedeke; Anderson, Hannah J; Gorky, Jonathan; Dhurjati, Prasad; Galileo, Deni S

    2017-12-11

    Glioblastoma multiforme (GBM) is a devastating brain cancer for which there is no known cure. Its malignancy is due to rapid cell division along with high motility and invasiveness of cells into the brain tissue. Simple 2-dimensional laboratory assays (e.g., a scratch assay) commonly are used to measure the effects of various experimental perturbations, such as treatment with chemical inhibitors. Several mathematical models have been developed to aid the understanding of the motile behavior and proliferation of GBM cells. However, many are mathematically complicated, look at multiple interdependent phenomena, and/or use modeling software not freely available to the research community. These attributes make the adoption of models and simulations of even simple 2-dimensional cell behavior an uncommon practice by cancer cell biologists. Herein, we developed an accurate, yet simple, rule-based modeling framework to describe the in vitro behavior of GBM cells that are stimulated by the L1CAM protein using freely available NetLogo software. In our model L1CAM is released by cells to act through two cell surface receptors and a point of signaling convergence to increase cell motility and proliferation. A simple graphical interface is provided so that changes can be made easily to several parameters controlling cell behavior, and behavior of the cells is viewed both pictorially and with dedicated graphs. We fully describe the hierarchical rule-based modeling framework, show simulation results under several settings, describe the accuracy compared to experimental data, and discuss the potential usefulness for predicting future experimental outcomes and for use as a teaching tool for cell biology students. It is concluded that this simple modeling framework and its simulations accurately reflect much of the GBM cell motility behavior observed experimentally in vitro in the laboratory. Our framework can be modified easily to suit the needs of investigators interested in other similar intrinsic or extrinsic stimuli that influence cancer or other cell behavior. This modeling framework of a commonly used experimental motility assay (scratch assay) should be useful to both researchers of cell motility and students in a cell biology teaching laboratory.

  17. Power-law creep behavior of a semiflexible chain.

    PubMed

    Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije

    2008-10-01

    Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

  18. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography.

    PubMed

    Mascharak, Shamik; Benitez, Patrick L; Proctor, Amy C; Madl, Christopher M; Hu, Kenneth H; Dewi, Ruby E; Butte, Manish J; Heilshorn, Sarah C

    2017-01-01

    Native vascular extracellular matrices (vECM) consist of elastic fibers that impart varied topographical properties, yet most in vitro models designed to study the effects of topography on cell behavior are not representative of native architecture. Here, we engineer an electrospun elastin-like protein (ELP) system with independently tunable, vECM-mimetic topography and demonstrate that increasing topographical variation causes loss of endothelial cell-cell junction organization. This loss of VE-cadherin signaling and increased cytoskeletal contractility on more topographically varied ELP substrates in turn promote YAP activation and nuclear translocation, resulting in significantly increased endothelial cell migration and proliferation. Our findings identify YAP as a required signaling factor through which fibrous substrate topography influences cell behavior and highlights topography as a key design parameter for engineered biomaterials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship.

    PubMed

    Caudron, Fabrice; Barral, Yves

    2013-12-05

    Cellular behavior is frequently influenced by the cell's history, indicating that single cells may memorize past events. We report that budding yeast permanently escape pheromone-induced cell-cycle arrest when experiencing a deceptive mating attempt, i.e., not reaching their putative partner within reasonable time. This acquired behavior depends on super-assembly and inactivation of the G1/S inhibitor Whi3, which liberates the G1 cyclin Cln3 from translational inhibition. Super-assembly of Whi3 is a slow response to pheromone, driven by polyQ and polyN domains, counteracted by Hsp70, and stable over generations. Unlike prion aggregates, Whi3 super-assemblies are not inherited mitotically but segregate to the mother cell. We propose that such polyQ- and polyN-based elements, termed here mnemons, act as cellular memory devices to encode previous environmental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs.

    PubMed

    An, Jia; Chua, Chee Kai; Yu, Ting; Li, Huaqiong; Tan, Lay Poh

    2013-04-01

    Nanobiomaterials, a field at the interface of biomaterials and nanotechnologies, when applied to tissue engineering applications, are usually perceived to resemble the cell microenvironment components or as a material strategy to instruct cells and alter cell behaviors. Therefore, they provide a clear understanding of the relationship between nanotechnologies and resulting cellular responses. This review will cover recent advances in nanobiomaterial research for applications in tissue engineering. In particular, recent developments in nanofibrous scaffolds, nanobiomaterial composites, hydrogel systems, laser-fabricated nanostructures and cell-based bioprinting methods to produce scaffolds with nanofeatures for tissue engineering are discussed. As in native niches of cells, where nanofeatures are constantly interacting and influencing cellular behavior, new generations of scaffolds will need to have these features to enable more desirable engineered tissues. Moving forward, tissue engineering will also have to address the issues of complexity and organization in tissues and organs.

  1. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  2. Migration of cells in a social context

    PubMed Central

    Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.

    2013-01-01

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032

  3. Migration of cells in a social context.

    PubMed

    Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R

    2013-01-02

    In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.

  4. Using GPS-enabled cell phones to track the travel patterns of adolescents.

    PubMed

    Wiehe, Sarah E; Carroll, Aaron E; Liu, Gilbert C; Haberkorn, Kelly L; Hoch, Shawn C; Wilson, Jeffery S; Fortenberry, J Dennis

    2008-05-21

    Few tools exist to directly measure the microsocial and physical environments of adolescents in circumstances where participatory observation is not practical or ethical. Yet measuring these environments is important as they are significantly associated with adolescent health-risk. For example, health-related behaviors such as cigarette smoking often occur in specific places where smoking may be relatively surreptitious. We assessed the feasibility of using GPS-enabled cell phones to track adolescent travel patterns and gather daily diary data. We enrolled 15 adolescent women from a clinic-based setting and asked them to carry the phones for 1 week. We found that these phones can accurately and reliably track participant locations, as well as record diary information on adolescent behaviors. Participants had variable paths extending beyond their immediate neighborhoods, and denied that GPS-tracking influenced their activity. GPS-enabled cell phones offer a feasible and, in many ways, ideal modality of monitoring the location and travel patterns of adolescents. In addition, cell phones allow space- and time-specific interaction, probing, and intervention which significantly extends both research and health promotion beyond a clinical setting. Future studies can employ GPS-enabled cell phones to better understand adolescent environments, how they are associated with health-risk behaviors, and perhaps intervene to change health behavior.

  5. Using GPS-enabled cell phones to track the travel patterns of adolescents

    PubMed Central

    Wiehe, Sarah E; Carroll, Aaron E; Liu, Gilbert C; Haberkorn, Kelly L; Hoch, Shawn C; Wilson, Jeffery S; Fortenberry, J Dennis

    2008-01-01

    Background Few tools exist to directly measure the microsocial and physical environments of adolescents in circumstances where participatory observation is not practical or ethical. Yet measuring these environments is important as they are significantly associated with adolescent health-risk. For example, health-related behaviors such as cigarette smoking often occur in specific places where smoking may be relatively surreptitious. Results We assessed the feasibility of using GPS-enabled cell phones to track adolescent travel patterns and gather daily diary data. We enrolled 15 adolescent women from a clinic-based setting and asked them to carry the phones for 1 week. We found that these phones can accurately and reliably track participant locations, as well as record diary information on adolescent behaviors. Participants had variable paths extending beyond their immediate neighborhoods, and denied that GPS-tracking influenced their activity. Conclusion GPS-enabled cell phones offer a feasible and, in many ways, ideal modality of monitoring the location and travel patterns of adolescents. In addition, cell phones allow space- and time-specific interaction, probing, and intervention which significantly extends both research and health promotion beyond a clinical setting. Future studies can employ GPS-enabled cell phones to better understand adolescent environments, how they are associated with health-risk behaviors, and perhaps intervene to change health behavior. PMID:18495025

  6. Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation

    PubMed Central

    Knierim, James J.; Hamilton, Derek A.

    2011-01-01

    The most common behavioral test of hippocampus-dependent, spatial learning and memory is the Morris water task, and the most commonly studied behavioral correlate of hippocampal neurons is the spatial specificity of place cells. Despite decades of intensive research, it is not completely understood how animals solve the water task and how place cells generate their spatially specific firing fields. Based on early work, it has become the accepted wisdom in the general neuroscience community that distal spatial cues are the primary sources of information used by animals to solve the water task (and similar spatial tasks) and by place cells to generate their spatial specificity. More recent research, along with earlier studies that were overshadowed by the emphasis on distal cues, put this common view into question by demonstrating primary influences of local cues and local boundaries on spatial behavior and place-cell firing. This paper first reviews the historical underpinnings of the “standard” view from a behavioral perspective, and then reviews newer results demonstrating that an animal's behavior in such spatial tasks is more strongly controlled by a local-apparatus frame of reference than by distal landmarks. The paper then reviews similar findings from the literature on the neurophysiological correlates of place cells and other spatially-correlated cells from related brain areas. A model is proposed by which distal cues primarily set the orientation of the animal's internal spatial coordinate system, via the head direction cell system, whereas local cues and apparatus boundaries primarily set the translation and scale of that coordinate system. PMID:22013211

  7. CD11c-Expressing Cells Affect Regulatory T Cell Behavior in the Meninges during Central Nervous System Infection.

    PubMed

    O'Brien, Carleigh A; Overall, Christopher; Konradt, Christoph; O'Hara Hall, Aisling C; Hayes, Nikolas W; Wagage, Sagie; John, Beena; Christian, David A; Hunter, Christopher A; Harris, Tajie H

    2017-05-15

    Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4 + T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4 + T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c + cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c + cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c + cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c + cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c + populations regulates their local behavior during T. gondii infection. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Maternal separation decreases adult hippocampal cell proliferation and impairs cognitive performance but has little effect on stress sensitivity and anxiety in adult Wistar rats.

    PubMed

    Hulshof, Henriëtte J; Novati, Arianna; Sgoifo, Andrea; Luiten, Paul G M; den Boer, Johan A; Meerlo, Peter

    2011-01-20

    Stressful events during childhood are thought to increase the risk for the development of adult psychopathology. A widely used animal model for early life stress is maternal separation (MS), which is thought to affect development and cause alterations in neuroendocrine stress reactivity and emotionality lasting into adulthood. However, results obtained with this paradigm are inconsistent. Here we investigated whether this variation may be related to the type of stressor or the tests used to assess adult stress sensitivity and behavioral performance. Rat pups were exposed to a 3h daily MS protocol during postnatal weeks 1-2. In adulthood, animals were subjected to a wide variety of stressors and tests to obtain a better view on the effects of MS on adult hypothalamic-pituitary-adrenal (HPA) axis regulation, anxiety-like behavior, social interaction and cognition. Also, the influence of MS on adult hippocampal neurogenesis was studied because it might underlie changes in neuroendocrine regulation and behavioral performance. The results show that, independent of the nature of the stressor, MS did not affect the neuroendocrine response. MS did not influence anxiety-like behavior, explorative behavior and social interaction, but did affect cognitive function in an object recognition task. The amount of new born cells in the hippocampal dentate gyrus was significantly decreased in MS animals; yet, cell differentiation and survival were not altered. In conclusion, while interfering with the mother-infant relationship early in life did affect some aspects of adult neuroplasticity and cognitive function, it did not lead to permanent changes in stress sensitivity and emotionality. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.

    PubMed

    Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan

    2017-07-26

    The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.

  10. Synaptic communication between neurons and NG2+ cells.

    PubMed

    Paukert, Martin; Bergles, Dwight E

    2006-10-01

    Chemical synaptic transmission provides the basis for much of the rapid signaling that occurs within neuronal networks. However, recent studies have provided compelling evidence that synapses are not used exclusively for communication between neurons. Physiological and anatomical studies indicate that a distinct class of glia known as NG2(+) cells also forms direct synaptic junctions with both glutamatergic and GABAergic neurons. Glutamatergic signaling can influence intracellular Ca(2+) levels in NG2(+) cells by activating Ca(2+) permeable AMPA receptors, and these inputs can be potentiated through high frequency stimulation. Although the significance of this highly differentiated form of communication remains to be established, these neuro-glia synapses might enable neurons to influence rapidly the behavior of this ubiquitous class of glial progenitors.

  11. Influence of type-I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution.

    PubMed

    Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M

    2018-01-12

    Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are respectively regulated by the 3D morphology and the population of micro-colonies. Copyright © 2018 American Society for Microbiology.

  12. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Shunqiang; Wan, Yuan; Liu, Yaling

    2014-10-01

    While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future. Electronic supplementary information (ESI) available: Additional details about calculation of maximal displacement of an individual NP; additional study of substrate wettability through Cassie's Law; additional details about selection of incubation time and shaking speeds. See DOI: 10.1039/c4nr02854f

  13. Patterning N-type and S-type neuroblastoma cells with Pluronic F108 and ECM proteins.

    PubMed

    Corey, Joseph M; Gertz, Caitlyn C; Sutton, Thomas J; Chen, Qiaoran; Mycek, Katherine B; Wang, Bor-Shuen; Martin, Abbey A; Johnson, Sara L; Feldman, Eva L

    2010-05-01

    Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective antiadhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two antiadhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. Copyright 2009 Wiley Periodicals, Inc.

  14. Patterning N-type and S-type Neuroblastoma Cells with Pluronic F108 and ECM Proteins

    PubMed Central

    Corey, Joseph M.; Gertz, Caitlyn C.; Sutton, Thomas J.; Chen, Qiaoran; Mycek, Katherine B.; Wang, Bor-Shuen; Martin, Abbey A.; Johnson, Sara L.; Feldman, Eva L.

    2009-01-01

    Influencing cell shape using micropatterned substrates affects cell behaviors, such as proliferation and apoptosis. Cell shape may also affect these behaviors in human neuroblastoma (NBL) cancer, but to date, no substrate design has effectively patterned multiple clinically important human NBL lines. In this study, we investigated whether Pluronic F108 was an effective anti-adhesive coating for human NBL cells and whether it would localize three NBL lines to adhesive regions of tissue culture plastic or collagen I on substrate patterns. The adhesion and patterning of an S-type line, SH-EP, and two N-type lines, SH-SY5Y and IMR-32, were tested. In adhesion assays, F108 deterred NBL adhesion equally as well as two anti-adhesive organofunctional silanes and far better than bovine serum albumin. Patterned stripes of F108 restricted all three human NBL lines to adhesive stripes of tissue culture plastic. We then investigated four schemes of applying collagen and F108 to different regions of a substrate. Contact with collagen obliterates the ability of F108 to deter NBL adhesion, limiting how both materials can be applied to substrates to produce high fidelity NBL patterning. This patterned substrate design should facilitate investigations of the role of cell shape in NBL cell behavior. PMID:19609877

  15. Nonlocal origin of response suppression from stimulation outside the classic receptive field in area 17 of the cat.

    PubMed

    Brown, H A; Allison, J D; Samonds, J M; Bonds, A B

    2003-01-01

    A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2-7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons. The existence of cells that exhibit no change in peripherally inhibited responses during the GABA application suggests that peripheral influences may arise from outside area 17, presumably from other cortical areas (e.g. area 18).

  16. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells

    PubMed Central

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2016-01-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer—namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)—in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating “cancer-ness,” thus potentially promoting specific hallmarks of metastasis. PMID:27881474

  17. Cancer Secretome May Influence BSP and DSP Expression in Human Salivary Gland Cells.

    PubMed

    Hamilton, Samantha Lynn; Ferando, Blake; Eapen, Asha Sarah; Yu, Jennifer Chian; Joy, Anita Rose

    2017-03-01

    One of the biggest challenges in managing head and neck cancers, especially salivary gland cancers, is the identification of secreted biomarkers of the disease that can be evaluated noninvasively. A relevant source of enriched tumor markers could potentially be found in the tumor secretome. Although numerous studies have evaluated secretomes from various cancers, the influence of the cancer secretome derived from salivary gland cancers on the behavior of normal cells has not yet been elucidated. Our data indicate that secretome derived from salivary gland cancer cells can influence the expression of two potential biomarkers of oral cancer-namely, bone sialoprotein (BSP) and dentin sialoprotein (DSP)-in normal salivary gland cells. Using routine immunohistochemistry, immunofluorescence, and immunoblotting techniques, we demonstrate an enrichment of BSP and DSP in human salivary gland (HSG) cancer tissue, unique localizations of BSP and DSP in HSG cancer cells, and enriched expression of BSP and DSP in normal salivary gland cells exposed to a cancer secretome. The secretome domain of the cancer microenvironment could alter signaling cascades responsible for normal cell proliferation, migration, and invasion, thus enhancing cancer cell survival and the potential for cancer progression. The cancer secretome may be critical in maintaining and stimulating "cancer-ness," thus potentially promoting specific hallmarks of metastasis.

  18. α5β1 Integrin-Fibronectin Interactions Specify Liquid to Solid Phase Transition of 3D Cellular Aggregates

    PubMed Central

    Caicedo-Carvajal, Carlos E.; Shinbrot, Troy; Foty, Ramsey A.

    2010-01-01

    Background Tissue organization during embryonic development and wound healing depends on the ability of cells on the one hand to exchange adhesive bonds during active rearrangement and on the other to become fixed in place as tissue homeostasis is reached. Cells achieve these contradictory tasks by regulating either cell-cell adhesive bonds, mediated by cadherins, or cell-extracellular matrix (ECM) connections, regulated by integrins. Integrin α5β1 and soluble fibronectin (sFN) are key players in cell-ECM force generation and in ECM polymerization. Here, we explore the interplay between integrin α5β1 and sFN and its influence on tissue mechanical properties and cell sorting behavior. Methodology/Principal Findings We generated a series of cell lines varying in α5β1 receptor density. We then systematically explored the effects of different sFN concentrations on aggregate biomechanical properties using tissue surface tensiometry. We found previously unreported complex behaviors including the observation that interactions between fibronectin and integrin α5β1 generates biphasic tissue cohesion profiles. Specifically, we show that at constant sFn concentration, aggregate cohesion increases linearly as α5β1 receptor density is increased from low to moderate levels, producing a transition from viscoelastic-liquid to pseudo viscoelastic-solid behavior. However, further increase in receptor density causes an abrupt drop in tissue cohesion and a transition back to viscoelastic-liquid properties. We propose that this may be due to depletion of sFn below a critical value in the aggregate microenvironment at high α5β1 levels. We also show that differential expression of α5β1 integrin can promote phase-separation between cells. Conclusions/Significance The interplay between α5-integrin and sFn contributes significantly to tissue cohesion and, depending on their level of expression, can mediate a shift from liquid to elastic behavior. This interplay represents a tunable level of control between integrins and the ECM that can influence tissue cohesion and other mechanical properties, which may translate to the specification of tissue structure and function. These studies provide insights into important biological processes such as embryonic development, wound healing, and for tissue engineering applications. PMID:20686611

  19. Influence of Hearing Risk Information on the Motivation and Modification of Personal Listening Device Use.

    PubMed

    Serpanos, Yula C; Berg, Abbey L; Renne, Brittany

    2016-12-01

    The purpose of this study was (a) to investigate the behaviors, knowledge, and motivators associated with personal listening device (PLD) use and (b) to determine the influence of different types of hearing health risk education information (text with or without visual images) on motivation to modify PLD listening use behaviors in young adults. College-age students (N = 523) completed a paper-and-pencil survey tapping their behaviors, knowledge, and motivation regarding listening to music or media at high volume using PLDs. Participants rated their motivation to listen to PLDs at lower volume levels following each of three information sets: text only, behind-the-ear hearing aid image with text, and inner ear hair cell damage image with text. Acoustically pleasing and emotional motives were the most frequently cited (38%-45%) reasons for listening to music or media using a PLD at high volume levels. The behind-the-ear hearing aid image with text information was significantly (p < .0001) more motivating to participants than text alone or the inner ear hair cell damage image with text. Evocative imagery using hearing aids may be an effective approach in hearing protective health campaigns for motivating safer listening practices with PLDs in young adults.

  20. Study of Microstructure and Mechanical Properties of Particulate Reinforced Aluminum Matrix Composite Foam

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Pandey, O. P.

    Metal foams cellular metals have gained an important role in the field of metallurgy, though barely a few decades old. Aluminum composite foam exhibit unique properties such as light weight, blast palliation, sound absorption, high energy absorption, and flame resistance. In the present investigation the effect of variation in the amount of CaCO3 as blowing agent on the microstructure and wear behavior of LM13 alloy foams has been studied. The blowing agent was blended in highly viscous semi-solid melt by stirring process. The process parameters that influence the formation of bubbles like the melt temperature, size and amount of blowing agent and its distribution has been optimized to get uniform size foams. The distribution behavior of blowing agent is influenced by the melt viscosity and stirring speed. For packaging application, the dry sliding wear behavior of the prepared foam was investigated by using a pin on disc method at applied loads of 9.8, 19.6 and 29.4 N at room temperature. The results indicate that the wear rate is dependent on the cell size and cell wall thickness of the foam.

  1. Viral Aggregation: Impact on Virus Behavior in the Environment.

    PubMed

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  2. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.

    PubMed

    Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E

    2017-06-01

    Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Systems Biology Analysis of Heterocellular Signaling.

    PubMed

    Tape, Christopher J

    2016-08-01

    Tissues comprise multiple heterotypic cell types (e.g., epithelial, mesenchymal, and immune cells). Communication between heterotypic cell types is essential for biological cohesion and is frequently dysregulated in disease. Despite the importance of heterocellular communication, most systems biology techniques do not report cell-specific signaling data from mixtures of cells. As a result, our existing perspective of cellular behavior under-represents the influence of heterocellular signaling. Recent technical advances now permit the resolution of systems-level cell-specific signaling data. This review discusses how new physical, spatial, and isotopic resolving methods are facilitating unique systems biology studies of heterocellular communication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Combined influence of basal media and fibroblast growth factor on the expansion and differentiation capabilities of adipose-derived stem cells.

    PubMed

    Ahearne, Mark; Lysaght, Joanne; Lynch, Amy P

    2014-01-01

    Interest in adipose-derived stem cells (ASCs) has increased in recent years due to their multi-linage differentiation capabilities. While much work has been done to optimize the differentiation media, few studies have focused on examining the influence of different expansion media on cell behavior. In this study, three basal media (low glucose Dulbecco's modified Eagle's medium (DMEM), high glucose DMEM and DMEM-F12) supplemented with or without fibroblast growth factor 2 (FGF) were examined to assess their suitability for expanding ASCs. Flow cytometry, colony-forming unit assays (CFU-Fs) and differentiation assays were utilized to study cell behavior. High glucose media CFU-Fs produced fewest colonies while the addition of FGF increased colony size. By passage 2, the majority of cells were positive for CD44, 45, 73, 90 and 105 and negative for CD14, 31 and 45, indicating a mesenchymal phenotype. A sub-population of CD34 positive cells was present among passage 2 cells; however, by passage 4 the cells were negative for CD34. FGF has a negative effective on passage 4 ASC adipogenesis and high glucose media plus FGF-enhanced osteogenic capacity of passage 4 ASCs. FGF supplemented basal media were most suitable for chondrogenesis. High glucose media plus FGF appeared to be the most beneficial for priming ASCs to induce a keratocyte phenotype. These findings demonstrate the reciprocal effect FGF and basal media have on ASCs. This research has implications for those interested regenerating bone, cartilage, cornea or adipose tissues.

  5. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata.

    PubMed

    Lu, Xiong; Leng, Yang

    2003-09-01

    The effects of implant surface topography and chemistry on osteoblast behavior have been a research focus because of their potential importance in orthopedic and dental applications. This work focused on the topographic effects of hydroxyapatite (HA) and titanium (Ti) surface that had identical micropatterns to determine whether there was synergistic interaction between surface chemistry and surface topography. Surface microgrooves with six different groove widths (4, 8, 16, 24, 30, and 38 microm) and three different groove depths (2, 4, and 10 microm) were made on single crystalline silicon wafers using microfabrication techniques. Ti and HA thin films were coated on the microgrooves by radio-frequency magnetron sputtering. After that, human osteoblast-like cells were seeded and cultured on the microgrooved surfaces for up to 7 days. The cells' behavior was examined using scanning electron microscopy after cells were fixed and dehydrated. Statistical analysis was based on quantitative data of orientation angle, evaluating the contact guidance, and form index, describing cell shape or cell morphology changes. The contact guidance and cell shape changes were observed on the HA and Ti microgrooves. No difference in orientation angle between HA and Ti microgrooves was found. This might suggest that surface chemistry was not a significant influence on cell guidance. However, the form index analysis indicated an interaction between topographic effects and surface chemistry. Thus, conclusions about surface topographic effects on cell behavior drawn from one type of material cannot simply be applied to another type of material. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 66A: 677-687, 2003

  6. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: Disruptive effect of cocaine

    PubMed Central

    Larson, Alice A.; Thomas, Mark J.; McElhose, Alex; Kovács, Katalin J.

    2011-01-01

    Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for one hour after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. PMID:21561602

  7. A combined experimental atomic force microscopy-based nanoindentation and computational modeling approach to unravel the key contributors to the time-dependent mechanical behavior of single cells.

    PubMed

    Florea, Cristina; Tanska, Petri; Mononen, Mika E; Qu, Chengjuan; Lammi, Mikko J; Laasanen, Mikko S; Korhonen, Rami K

    2017-02-01

    Cellular responses to mechanical stimuli are influenced by the mechanical properties of cells and the surrounding tissue matrix. Cells exhibit viscoelastic behavior in response to an applied stress. This has been attributed to fluid flow-dependent and flow-independent mechanisms. However, the particular mechanism that controls the local time-dependent behavior of cells is unknown. Here, a combined approach of experimental AFM nanoindentation with computational modeling is proposed, taking into account complex material behavior. Three constitutive models (porohyperelastic, viscohyperelastic, poroviscohyperelastic) in tandem with optimization algorithms were employed to capture the experimental stress relaxation data of chondrocytes at 5 % strain. The poroviscohyperelastic models with and without fluid flow allowed through the cell membrane provided excellent description of the experimental time-dependent cell responses (normalized mean squared error (NMSE) of 0.003 between the model and experiments). The viscohyperelastic model without fluid could not follow the entire experimental data that well (NMSE = 0.005), while the porohyperelastic model could not capture it at all (NMSE = 0.383). We also show by parametric analysis that the fluid flow has a small, but essential effect on the loading phase and short-term cell relaxation response, while the solid viscoelasticity controls the longer-term responses. We suggest that the local time-dependent cell mechanical response is determined by the combined effects of intrinsic viscoelasticity of the cytoskeleton and fluid flow redistribution in the cells, although the contribution of fluid flow is smaller when using a nanosized probe and moderate indentation rate. The present approach provides new insights into viscoelastic responses of chondrocytes, important for further understanding cell mechanobiological mechanisms in health and disease.

  8. Framing of grid cells within and beyond navigation boundaries

    PubMed Central

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  9. Influence of various superhydrophilic treatments of titanium on the initial attachment, proliferation, and differentiation of osteoblast-like cells.

    PubMed

    Yamamura, Keisuke; Miura, Tadashi; Kou, I; Muramatsu, Takashi; Furusawa, Masahiro; Yoshinari, Masao

    2015-01-01

    The purpose of this study was to investigate the influence of superhydrophilic treatments of titanium on the behavior of osteoblastlike cells. Superhydrophilic specimens were prepared with sandblast and acid-etching (DW), oxygen plasma (Plasma) and ultraviolet light (UV), and were stored in distilled water for 3 days immediately after these treatments. Specimens stored in air for 3 weeks were used as a control Air group. Initial cell attachment, proliferation, alkaline phosphatase activity, and osteocalcin secretion of mouse osteoblast-like cells MC3T3-E1 were enhanced more on superhydrophilic groups than were Air specimens. On confocal laser scanning microscope images of cell morphology, the expression of actin filaments was observed on the superhydrophilic groups, whereas relatively little actin filament expression was seen on the Air surfaces on all culture periods. These results indicate that DW, Plasma, or UV treatment has potential for the creation and maintenance of superhydrophilic surfaces and the enhancement of the initial attachment, proliferation, and differentiation of osteoblast-like cells.

  10. Influence of the mixed organic cation ratio in lead iodide based perovskite on the performance of solar cells.

    PubMed

    Salado, Manuel; Calio, Laura; Berger, Rüdiger; Kazim, Samrana; Ahmad, Shahzada

    2016-10-05

    Lead halide based perovskite solar cells are presently the flagship among the third generation solution-processed photovoltaic technologies. The organic cation part in the perovskite plays an important role in terms of crystal structure tuning from tetragonal to trigonal or pseudocubic or vice versa depending on the organic cations used, while it also displays different microstructure. In this paper, we demonstrate the influence of the organic cation part with respect to optical properties, hysteresis behavior, and stability. This study offers a clear understanding of the perovskite properties and how they can be modulated by compositional engineering. With a rational choice, light harvesting abilities and hysteresis behavior can be controlled in these systems. The substitution of formamidinium cation by methylammonium cation allows achieving low temperature annealing and inducing stability in perovskites together with enhanced photovoltaic properties. By the use of in-situ scanning force microscopy experiments the conversion of precursors to perovskite at a particular temperature can be visualized.

  11. A microfluidic device for study of the effect of tumor vascular structures on the flow field and HepG2 cellular flow behaviors.

    PubMed

    Ke, Ming; Cai, Shaoxi; Zou, Misha; Zhao, Yi; Li, Bo; Chen, Sijia; Chen, Longcong

    2018-01-29

    To build a microfluidic device with various morphological features of the tumor vasculature for study of the effects of tumor vascular structures on the flow field and tumor cellular flow behaviors. The designed microfluidic device was able to approximatively simulate the in vivo structures of tumor vessels and the flow within it. In this models, the influences of the angle of bifurcation, the number of branches, and the narrow channels on the flow field and the influence of vorticity on the retention of HepG2 cells were significant. Additionally, shear stress below physiological conditions of blood circulation has considerable effect on the formation of the lumen-like structures (LLSs) of HepG2 cells. These results can provide some data and reference in the understanding of the interaction between hemorheological properties and tumor vascular structures in solid tumors. Copyright © 2018. Published by Elsevier Inc.

  12. Comparison of the effects of 45S5 and 1393 bioactive glass microparticles on hMSC behavior

    PubMed Central

    Qazi, Taimoor H.; Hafeez, Shahzad; Schmidt, Jochen; Duda, Georg N.

    2017-01-01

    Abstract Bioactive glasses (BAGs) are highly interesting materials for bone regeneration applications in orthopedic and dental defects. It is quite well known that ionic release from BAGs influences cell behavior and function. Mindful of the clinical scenario, we hypothesized that local cell populations might additionally physically interact with the implanted BAG particles and respond differently than to just the ionic stimuli. We therefore studied the biological effect of two BAG types (45S5 and 1393) applied to human mesenchymal stromal cells (hMSCs) in three distinct presentation modes: (a) direct contact; and to dissolution products in (b) 2D, and (c) 3D culture. We furthermore investigated how the dose‐dependence of these BAG particles, in concentrations ranging from 0.1 to 2.5 w/v %, influenced hMSC metabolic activity, proliferation, and cell spreading. These cellular functions were significantly hampered when hMSCs were exposed to high concentrations of either glasses, but the effects were more pronounced in the 45S5 groups and when the cells were in direct contact with the BAGs. Furthermore the biological effect of 1393 BAG outperformed that of 45S5 BAG in all tested presentation modes. These outcomes highlight the importance of investigating cell–BAG interactions in experimental set‐ups that recapitulate host cell interactions with BAG particles. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2772–2782, 2017. PMID:28571113

  13. Functional engraftment of the medial ganglionic eminence cells in experimental stroke model.

    PubMed

    Daadi, Marcel M; Lee, Sang Hyung; Arac, Ahmet; Grueter, Brad A; Bhatnagar, Rishi; Maag, Anne-Lise; Schaar, Bruce; Malenka, Robert C; Palmer, Theo D; Steinberg, Gary K

    2009-01-01

    Currently there are no effective treatments targeting residual anatomical and behavioral deficits resulting from stroke. Evidence suggests that cell transplantation therapy may enhance functional recovery after stroke through multiple mechanisms. We used a syngeneic model of neural transplantation to explore graft-host communications that enhance cellular engraftment.The medial ganglionic eminence (MGE) cells were derived from 15-day-old transgenic rat embryos carrying green fluorescent protein (GFP), a marker, to easily track the transplanted cells. Adult rats were subjected to transient intraluminal occlusion of the medial cerebral artery. Two weeks after stroke, the grafts were deposited into four sites, along the rostro-caudal axis and medially to the stroke in the penumbra zone. Control groups included vehicle and fibroblast transplants. Animals were subjected to motor behavioral tests at 4 week posttransplant survival time. Morphological analysis demonstrated that the grafted MGE cells differentiated into multiple neuronal subtypes, established synaptic contact with host cells, increased the expression of synaptic markers, and enhanced axonal reorganization in the injured area. Initial patch-clamp recording demonstrated that the MGE cells received postsynaptic currents from host cells. Behavioral analysis showed reduced motor deficits in the rotarod and elevated body swing tests. These findings suggest that graft-host interactions influence the fate of grafted neural precursors and that functional recovery could be mediated by neurotrophic support, new synaptic circuit elaboration, and enhancement of the stroke-induced neuroplasticity.

  14. Rapid steroid influences on visually guided sexual behavior in male goldfish

    PubMed Central

    Lord, Louis-David; Bond, Julia; Thompson, Richmond R.

    2013-01-01

    The ability of steroid hormones to rapidly influence cell physiology through nongenomic mechanisms raises the possibility that these molecules may play a role in the dynamic regulation of social behavior, particularly in species in which social stimuli can rapidly influence circulating steroid levels. We therefore tested if testosterone (T), which increases in male goldfish in response to sexual stimuli, can rapidly influence approach responses towards females. Injections of T stimulated approach responses towards the visual cues of females 30–45 min after the injection but did not stimulate approach responses towards stimulus males or affect general activity, indicating that the effect is stimulus-specific and not a secondary consequence of increased arousal. Estradiol produced the same effect 30–45 min and even 10–25 min after administration, and treatment with the aromatase inhibitor fadrozole blocked exogenous T’s behavioral effect, indicating that T’s rapid stimulation of visual approach responses depends on aromatization. We suggest that T surges induced by sexual stimuli, including preovulatory pheromones, rapidly prime males to mate by increasing sensitivity within visual pathways that guide approach responses towards females and/or by increasing the motivation to approach potential mates through actions within traditional limbic circuits. PMID:19751737

  15. Rapid steroid influences on visually guided sexual behavior in male goldfish.

    PubMed

    Lord, Louis-David; Bond, Julia; Thompson, Richmond R

    2009-11-01

    The ability of steroid hormones to rapidly influence cell physiology through nongenomic mechanisms raises the possibility that these molecules may play a role in the dynamic regulation of social behavior, particularly in species in which social stimuli can rapidly influence circulating steroid levels. We therefore tested if testosterone (T), which increases in male goldfish in response to sexual stimuli, can rapidly influence approach responses towards females. Injections of T stimulated approach responses towards the visual cues of females 30-45 min after the injection but did not stimulate approach responses towards stimulus males or affect general activity, indicating that the effect is stimulus-specific and not a secondary consequence of increased arousal. Estradiol produced the same effect 30-45 min and even 10-25 min after administration, and treatment with the aromatase inhibitor fadrozole blocked exogenous T's behavioral effect, indicating that T's rapid stimulation of visual approach responses depends on aromatization. We suggest that T surges induced by sexual stimuli, including preovulatory pheromones, rapidly prime males to mate by increasing sensitivity within visual pathways that guide approach responses towards females and/or by increasing the motivation to approach potential mates through actions within traditional limbic circuits.

  16. Cell migration in microengineered tumor environments.

    PubMed

    Um, Eujin; Oh, Jung Min; Granick, Steve; Cho, Yoon-Kyoung

    2017-12-05

    Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.

  17. Behavioral study of selected microorganisms in an aqueous electrohydrodynamic liquid bridge.

    PubMed

    Paulitsch-Fuchs, Astrid H; Zsohár, Andrea; Wexler, Adam D; Zauner, Andrea; Kittinger, Clemens; de Valença, Joeri; Fuchs, Elmar C

    2017-07-01

    An aqueous electrohydrodynamic (EHD) floating liquid bridge is a unique environment for studying the influence of protonic currents (mA cm -2 ) in strong DC electric fields (kV cm -1 ) on the behavior of microorganisms. It forms in between two beakers filled with water when high-voltage is applied to these beakers. We recently discovered that exposure to this bridge has a stimulating effect on Escherichia coli. . In this work we show that the survival is due to a natural Faraday cage effect of the cell wall of these microorganisms using a simple 2D model. We further confirm this hypothesis by measuring and simulating the behavior of Bacillus subtilis subtilis , Neochloris oleoabundans, Saccharomyces cerevisiae and THP-1 monocytes. Their behavior matches the predictions of the model: cells without a natural Faraday cage like algae and monocytes are mostly killed and weakened, whereas yeast and Bacillus subtilis subtilis survive. The effect of the natural Faraday cage is twofold: First, it diverts the current from passing through the cell (and thereby killing it); secondly, because it is protonic it maintains the osmotic pressure in the cell wall, thereby mitigating cytolysis which would normally occur due to the low osmotic pressure of the surrounding medium. The method presented provides the basis for selective disinfection of solutions containing different microorganisms.

  18. Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression

    PubMed Central

    Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.

    2016-01-01

    Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036

  19. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement. Aggregate formation in these microwells motivated us to develop a templating technique to create hollow cyst-like epithelial structures within PEG hydrogels. Photodegradable microspheres were used to form spherical epithelial layers, which were then encapsulated in a PEG hydrogel followed by template erosion with cytocompatible light. With these model alveoli, we investigated the interplay between the epithelium and mesenchyme by co-encapsulating healthy and diseased pulmonary fibroblasts with healthy and diseased epithelial cysts and measuring important cellular behaviors (i.e. proliferation, migration, and protein expression). This model of alveolar tissue represents a significant advance in culture platforms available to researchers interested in identifying the mechanisms involved in disease progression and for testing potential therapeutics in a controlled, tissue-appropriate setting.

  20. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array.

    PubMed

    Wei, Yan; Mo, Xiaoju; Zhang, Pengchao; Li, Yingying; Liao, Jingwen; Li, Yongjun; Zhang, Jinxing; Ning, Chengyun; Wang, Shutao; Deng, Xuliang; Jiang, Lei

    2017-06-27

    Control of stem cell behaviors at solid biointerfaces is critical for stem-cell-based regeneration and generally achieved by engineering chemical composition, topography, and stiffness. However, the influence of dynamic stimuli at the nanoscale from solid biointerfaces on stem cell fate remains unclear. Herein, we show that electrochemical switching of a polypyrrole (Ppy) array between nanotubes and nanotips can alter surface adhesion, which can strongly influence mechanotransduction activation and guide differentiation of mesenchymal stem cells (MSCs). The Ppy array, prepared via template-free electrochemical polymerization, can be reversibly switched between highly adhesive hydrophobic nanotubes and poorly adhesive hydrophilic nanotips through an electrochemical oxidation/reduction process, resulting in dynamic attachment and detachment to MSCs at the nanoscale. Multicyclic attachment/detachment of the Ppy array to MSCs can activate intracellular mechanotransduction and osteogenic differentiation independent of surface stiffness and chemical induction. This smart surface, permitting transduction of nanoscaled dynamic physical inputs into biological outputs, provides an alternative to classical cell culture substrates for regulating stem cell fate commitment. This study represents a general strategy to explore nanoscaled interactions between stem cells and stimuli-responsive surfaces.

  1. Influence of Dy in solid solution on the degradation behavior of binary Mg-Dy alloys in cell culture medium.

    PubMed

    Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert

    2017-06-01

    Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantifying effects of cyclic stretch on cell-collagen substrate adhesiveness of vascular endothelial cells.

    PubMed

    Omidvar, Ramin; Tafazzoli-Shadpour, Mohammad; Mahmoodi-Nobar, Farbod; Azadi, Shohreh; Khani, Mohammad-Mehdi

    2018-05-01

    Vascular endothelium is continuously subjected to mechanical stimulation in the form of shear forces due to blood flow as well as tensile forces as a consequence of blood pressure. Such stimuli influence endothelial behavior and regulate cell-tissue interaction for an optimized functionality. This study aimed to quantify influence of cyclic stretch on the adhesive property and stiffness of endothelial cells. The 10% cyclic stretch with frequency of 1 Hz was applied to a layer of endothelial cells cultured on a polydimethylsiloxane substrate. Cell-substrate adhesion of endothelial cells was examined by the novel approach of atomic force microscope-based single-cell force spectroscopy and cell stiffness was measured by atomic force microscopy. Furthermore, the adhesive molecular bonds were evaluated using modified Hertz contact theory. Our results show that overall adhesion of endothelial cells with substrate decreased after cyclic stretch while they became stiffer. Based on the experimental results and theoretical modeling, the decrease in the number of molecular bonds after cyclic stretch was quantified. In conclusion, in vitro cyclic stretch caused alterations in both adhesive capacity and elastic modulus of endothelial cells through mechanotransductive pathways as two major determinants of the function of these cells within the cardiovascular system.

  3. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    NASA Astrophysics Data System (ADS)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  4. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    PubMed

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  6. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study.

    PubMed

    Conserva, Enrico; Menini, Maria; Ravera, Giambattista; Pera, Paolo

    2013-08-01

    The aim of this study was an in vitro comparison of osteoblast adhesion, proliferation and differentiation related to six dental implants with different surface characteristics, and to determine if the interaction between cells and implant is influenced by surface structure and chemical composition. Six types of implants were tested, presenting four different surface treatments: turned, sandblasted, acid-etched, anodized. The implant macro- and microstructure were analyzed using SEM, and the surface chemical composition was investigated using energy-dispersive X-ray analysis. SaOS-2 osteoblasts were used for the evaluation of cell adhesion and proliferation by SEM, and cell viability in contact with the various surfaces was determined using cytotoxicity MTT assays. Alkaline phosphatase (ALP) enzymatic activity in contact with the six surfaces was evaluated. Data relative to MTT assay and ALP activity were statistically analyzed using Kruskal-Wallis not parametric test and Nemenyi-Damico-Wolfe-Dunn post hoc test. All the implants tested supported cell adhesion, proliferation and differentiation, revealing neither organic contaminants nor cytotoxicity effects. The industrial treatments investigated changed the implant surface microscopic aspect and SaOS-2 cell morphology appeared to be influenced by the type of surface treatment at 6, 24, and 72 h of growth. SaOS-2 cells spread more rapidly on sandblasted surfaces. Turned surfaces showed the lowest cell proliferation at SEM observation. Sandblasted surfaces showed the greatest ALP activity values per cell, followed by turned surfaces (P < 0.05). On the base of this in vitro investigation, differently surfaced implants affected osteoblast morphology, adhesion, proliferation, and differentiation. Sandblasted surfaces promoted the most suitable osteoblast behavior. © 2012 John Wiley & Sons A/S.

  7. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles.

    PubMed

    Connell, John J; Patrick, P Stephen; Yu, Yichao; Lythgoe, Mark F; Kalber, Tammy L

    2015-01-01

    Regenerative medicine would greatly benefit from a new platform technology that enabled measurable, controllable and targeting of stem cells to a site of disease or injury in the body. Superparamagnetic iron-oxide nanoparticles offer attractive possibilities in biomedicine and can be incorporated into cells, affording a safe and reliable means of tagging. This review describes three current and emerging methods to enhance regenerative medicine using magnetic particles to guide therapeutic cells to a target organ; track the cells using MRI and assess their spatial localization with high precision and influence the behavior of the cell using magnetic actuation. This approach is complementary to the systemic injection of cell therapies, thus expanding the horizon of stem cell therapeutics.

  8. Temporary Depletion of Microglia during the Early Postnatal Period Induces Lasting Sex-Dependent and Sex-Independent Effects on Behavior in Rats

    PubMed Central

    2016-01-01

    Abstract Microglia are the primary immune cells of the brain and function in multiple ways to facilitate proper brain development. However, our current understanding of how these cells influence the later expression of normal behaviors is lacking. Using the laboratory rat, we administered liposomal clodronate centrally to selectively deplete microglia in the developing postnatal brain. We then assessed a range of developmental, juvenile, and adult behaviors. Liposomal clodronate treatment on postnatal days 0, 2, and 4 depleted microglia with recovery by about 10 days of age and induced a hyperlocomotive phenotype, observable in the second postnatal week. Temporary microglia depletion also increased juvenile locomotion in the open field test and decreased anxiety-like behaviors in the open field and elevated plus maze. These same rats displayed reductions in predator odor–induced avoidance behavior, but increased their risk assessment behaviors compared with vehicle-treated controls. In adulthood, postnatal microglia depletion resulted in significant deficits in male-specific sex behaviors. Using factor analysis, we identified two underlying traits—behavioral disinhibition and locomotion—as being significantly altered by postnatal microglia depletion. These findings further implicate microglia as being critically important to the development of juvenile and adult behavior. PMID:27957532

  9. Biobehavioral Influences on Cancer Progression

    PubMed Central

    Costanzo, Erin S.; Sood, Anil K.; Lutgendorf, Susan K.

    2010-01-01

    Synopsis This review focuses on the contributions of stress-related behavioral factors to cancer growth and metastasis and the biobehavioral mechanisms underlying these relationships. We describe behavioral factors that are important in modulation of the stress response and the pivotal role of neuroendocrine regulation in the downstream alteration of physiological pathways relevant to cancer control, including the cellular immune response, inflammation, and tumor angiogenesis, invasion, and cell-signaling pathways. Consequences for cancer progression and metastasis, as well as quality of life, are delineated. Finally, behavioral and pharmacological interventions for cancer patients with the potential to alter these biobehavioral pathways are discussed. PMID:21094927

  10. Rate of deoxygenation modulates rheologic behavior of sickle red blood cells at a given mean corpuscular hemoglobin concentration.

    PubMed

    Kaul, D K; Liu, X D

    1999-01-01

    Although the mean corpuscular hemoglobin concentration (MCHC) plays a dominant role in the rheologic behavior of deoxygenated density-defined sickle red blood cells (SS RBCs), previous studies have not explored the relationship between the rate of deoxygenation and the bulk viscosity of SS RBCs at a given MCHC. In the present study, we have subjected density-defined SS classes (i.e., medium-density SS4 and dense SS5 discocytes) to varying deoxygenation rates. This approach has allowed us to minimize the effects of SS RBC heterogeneity and investigate the effect of deoxygenation rates at a given MCHC. The results show that the percentages of granular cells, classic sickle cells and holly leaf forms in deoxygenated samples are significantly influenced by the rate of deoxygenation and the MCHC of a given discocyte subpopulation. Increasing the deoxygenation rate using high K+ medium (pH 6.8), results in a greater percentage of granular cells in SS4 suspensions, accompanied by a pronounced increase in the bulk viscosity of these cells compared with gradually deoxygenated samples (mainly classic sickle cells and holly leaf forms). The effect of MCHC becomes apparent when SS5 dense cells are subjected to varying deoxygenation rates. At a given deoxygenation rate, SS5 dense discocytes show a greater increase in the percentage of granular cells than that observed for SS4 RBCs. Also, at a given deoxygenation rate, SS5 suspensions exhibit a higher viscosity than SS4 suspensions with fast deoxygenation resulting in maximal increase in viscosity. Although MCHC is the main determinant of SS RBC rheologic behavior, these studies demonstrate for the first time that at a given MCHC, the rate of deoxygenation (hence HbS polymerization rates) further modulates the rheologic behavior of SS RBCs. Thus, both MCHC and the deoxygenation rate may contribute to microcirculatory flow behavior of SS RBCs.

  11. Influence of enriched environment on viral encephalitis outcomes: behavioral and neuropathological changes in albino Swiss mice.

    PubMed

    de Sousa, Aline Andrade; Reis, Renata; Bento-Torres, João; Trévia, Nonata; Lins, Nara Alves de Almeida; Passos, Aline; Santos, Zaire; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa; Cunningham, Colm; Perry, Victor Hugh; Diniz, Cristovam Wanderley Picanço

    2011-01-11

    An enriched environment has previously been described as enhancing natural killer cell activity of recognizing and killing virally infected cells. However, the effects of environmental enrichment on behavioral changes in relation to virus clearance and the neuropathology of encephalitis have not been studied in detail. We tested the hypothesis that environmental enrichment leads to less CNS neuroinvasion and/or more rapid viral clearance in association with T cells without neuronal damage. Stereology-based estimates of activated microglia perineuronal nets and neurons in CA3 were correlated with behavioral changes in the Piry rhabdovirus model of encephalitis in the albino Swiss mouse. Two-month-old female mice maintained in impoverished (IE) or enriched environments (EE) for 3 months were behaviorally tested. After the tests, an equal volume of Piry virus (IEPy, EEPy)-infected or normal brain homogenates were nasally instilled. Eight days post-instillation (dpi), when behavioral changes became apparent, brains were fixed and processed to detect viral antigens, activated microglia, perineuronal nets, and T lymphocytes by immuno- or histochemical reactions. At 20 or 40 dpi, the remaining animals were behaviorally tested and processed for the same markers. In IEPy mice, burrowing activity decreased and recovered earlier (8-10 dpi) than open field (20-40 dpi) but remained unaltered in the EEPy group. EEPy mice presented higher T-cell infiltration, less CNS cell infection by the virus and/or faster virus clearance, less microgliosis, and less damage to the extracellular matrix than IEPy. In both EEPy and IEPy animals, CA3 neuronal number remained unaltered. The results suggest that an enriched environment promotes a more effective immune response to clear CNS virus and not at the cost of CNS damage.

  12. Central administration of a 5-HT2 receptor agonist and antagonist: lack of effect on rapid eye movement sleep and pgo waves.

    PubMed

    Sanford, L D; Hunt, W K; Ross, R J; Pack, A I; Morrison, A R

    1998-01-01

    Serotonin (5-HT) has a role in regulating behavioral state and controlling the production of ponto-geniculo-occipital (PGO) waves, though the exact mechanism of action is not known. The most prevailing explanation is that 5-HT exerts its influence on behavioral state and PGO waves by inhibiting and disinhibiting cholinergic cells in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT), which have been implicated in their generation. Recent work in rats has demonstrated 5-HT2 receptors on most cholinergic cells in PPT/LDT. We microinfused the relatively specific 5-HT2 agonist, DOI (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane), the relatively specific 5-HT2 antagonist, ketanserin, and the nonspecific 5-HT antagonist, methysergide, locally into the peribrachial region of PPT in cats and monitored behavioral state and PGO waves. Neither drug significantly affected behavioral state or PGO wave activity. These results suggest that 5-HT2 receptors associated with cholinergic cells are minimally involved in the control of behavioral state and, together with the recent findings of others, suggest that 5-HT may not modulate PGO wave generation via direct action on cholinergic neurons in PPT/LDT, a departure from the long-held but minimally-tested view.

  13. The neurogenetic frontier--lessons from misbehaving zebrafish.

    PubMed

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  14. The neurogenetic frontier—lessons from misbehaving zebrafish

    PubMed Central

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  15. Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior

    NASA Astrophysics Data System (ADS)

    Meco, Edi; Lampe, Kyle J.

    2018-02-01

    Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.

  16. New tricks by an old dogma: mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior.

    PubMed

    McCarthy, Margaret M; Wright, Christopher L; Schwarz, Jaclyn M

    2009-05-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes.

  17. New tricks by an old dogma: Mechanisms of the Organizational/Activational Hypothesis of steroid-mediated sexual differentiation of brain and behavior

    PubMed Central

    McCarthy, Margaret M.; Wright, Christopher L.; Schwarz, Jaclyn M.

    2009-01-01

    The hormonal regulation of sexual behavior has been the topic of study for over 50 years and yet controversies persist regarding the importance of early versus late events and the identity of the critical neural and cellular substrates. We have taken a mechanistic approach toward the masculinizing actions of the gonadal steroid estradiol, as a means to understand how organization of the neuroarchitechture during a perinatal sensitive period exerts enduring influences on adult behavior. We have identified important roles for prostaglandins, FAK and paxillin, PI3 kinase and glutamate, and determined that cell-to-cell signaling is a critical component of the early organizational events. We have further determined that the mechanisms mediating different components of sexual behavior are distinct and regionally specific. The multitude of mechanisms by which the steroid estradiol, exerts divergent effects on the developing nervous system provides for a multitude of phenotypes which can vary significantly both within and between the sexes. PMID:19682425

  18. Hippocampal “Time Cells”: Time versus Path Integration

    PubMed Central

    Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.

    2014-01-01

    SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613

  19. Movement Rate Is Encoded and Influenced by Widespread, Coherent Activity of Cerebellar Molecular Layer Interneurons.

    PubMed

    Gaffield, Michael A; Christie, Jason M

    2017-05-03

    Inhibition from molecular layer interneurons (MLIs) is thought to play an important role in cerebellar function by sharpening the precision of Purkinje cell spike output. Yet the coding features of MLIs during behavior are poorly understood. To study MLI activity, we used in vivo Ca 2+ imaging in head-fixed mice during the performance of a rhythmic motor behavior, licking during water consumption. MLIs were robustly active during lick-related movement across a lobule-specific region of the cerebellum showing high temporal correspondence within their population. Average MLI Ca 2+ activity strongly correlated with movement rate but not to the intentional, or unexpected, adjustment of lick position or to sensory feedback that varied with task condition. Chemogenetic suppression of MLI output reduced lick rate and altered tongue movements, indicating that activity of these interneurons not only encodes temporal aspects of movement kinematics but also influences motor outcome pointing to an integral role in online control of rhythmic behavior. SIGNIFICANCE STATEMENT The cerebellum helps fine-tune coordinated motor actions via signaling from projection neurons called Purkinje cells. Molecular layer interneurons (MLIs) provide powerful inhibition onto Purkinje cells, but little is understood about how this inhibitory circuit is engaged during behavior or what type of information is transmitted through these neurons. Our work establishes that MLIs in the lateral cerebellum are broadly activated during movement with calcium activity corresponding to movement rate. We also show that suppression of MLI output slows and disorganizes the precise movement pattern. Therefore, MLIs are an important circuit element in the cerebellum allowing for accurate motor control. Copyright © 2017 the authors 0270-6474/17/374751-15$15.00/0.

  20. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.

    PubMed

    Murase, Kenya; Assanai, Purapan; Takata, Hiroshige; Matsumoto, Nozomi; Saito, Shigeyoshi; Nishiura, Motoko

    2015-06-01

    The purpose of this study was to develop a method for analyzing the kinetic behavior of superparamagnetic iron oxide nanoparticles (SPIONs) in the murine liver under control of body temperature using dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and an empirical mathematical model (EMM). First, we investigated the influence of body temperature on the kinetic behavior of SPIONs in the liver by controlling body temperature using our temperature-control system. Second, we investigated the kinetic behavior of SPIONs in the liver when mice were injected with various doses of GdCl3, while keeping the body temperature at 36°C. Finally, we investigated it when mice were injected with various doses of zymosan, while keeping the body temperature at 36°C. We also investigated the effect of these substances on the number of Kupffer cells by immunohistochemical analysis using the specific surface antigen of Kupffer cells (CD68). To quantify the kinetic behavior of SPIONs in the liver, we calculated the upper limit of the relative enhancement (A), the rates of early contrast uptake (α) and washout or late contrast uptake (β), the parameter related to the slope of early uptake (q), the area under the curve (AUC), the maximum change of transverse relaxation rate (ΔR2) (ΔR2(max)), the time to ΔR2(max) (Tmax), and ΔR2 at the last time point (ΔR2(last)) from the time courses of ΔR2 using the EMM. The β and Tmax values significantly decreased and increased, respectively, with decreasing body temperature, suggesting that the phagocytic activity of Kupffer cells is significantly affected by body temperature. The AUC, ΔR2(max), and ΔR2(last) values decreased significantly with increasing dose of GdCl3, which was consistent with the change in the number of CD68-positive cells. They increased with increasing dose of zymosan, which was also consistent with the change in the number of CD68-positive cells. These results suggest that AUC, ΔR2(max), and ΔR2(last) reflect the number of Kupffer cells. In conclusion, we presented a method for analyzing the kinetic behavior of SPIONs in the liver using DSC-MRI and EMM, and investigated the influence of body temperature, GdCl3, and zymosan using body-temperature-controlled mice. The present study suggests that control of body temperature is essential for investigating the kinetic behavior of SPIONs in the liver and that our method will be applicable and useful for quantifying the responses of Kupffer cells to various drugs under control of body temperature. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Syndecan-2 is upregulated in colorectal cancer cells through interactions with extracellular matrix produced by stromal fibroblasts.

    PubMed

    Vicente, Carolina Meloni; Ricci, Ritchelli; Nader, Helena Bonciani; Toma, Leny

    2013-05-25

    The extracellular matrix (ECM) influences the structure, viability and functions of cells and tissues. Recent evidence indicates that tumor cells and stromal cells interact through direct cell-cell contact, the production of ECM components and the secretion of growth factors. Syndecans are a family of transmembrane heparan sulfate proteoglycans that are involved in cell adhesion, motility, proliferation and differentiation. Syndecan-2 has been found to be highly expressed in colorectal cancer cell lines and appears to be critical for cancer cell behavior. We have examined the effect of stromal fibroblast-produced ECM on the production of proteoglycans by colorectal cancer cell lines. Our results showed that in a highly metastatic colorectal cancer cell line, HCT-116, syndecan-2 expression is enhanced by fibroblast ECM, while the expression of other syndecans decreased. Of the various components of the stromal ECM, fibronectin was the most important in stimulating the increase in syndecan-2 expression. The co-localization of syndecan-2 and fibronectin suggests that these two molecules are involved in the adhesion of HCT-116 cells to the ECM. Additionally, we demonstrated an increase in the expression of integrins alpha-2 and beta-1, in addition to an increase in the expression of phospho-FAK in the presence of fibroblast ECM. Furthermore, blocking syndecan-2 with a specific antibody resulted in a decrease in cell adhesion, migration, and organization of actin filaments. Overall, these results show that interactions between cancer cells and stromal ECM proteins induce significant changes in the behavior of cancer cells. In particular, a shift from the expression of anti-tumorigenic syndecans to the tumorigenic syndecan-2 may have implications in the migratory behavior of highly metastatic tumor cells.

  2. Thermal characterizations of a large-format lithium ion cell focused on high current discharges

    NASA Astrophysics Data System (ADS)

    Veth, C.; Dragicevic, D.; Merten, C.

    2014-12-01

    The thermal behavior of a large-format lithium ion cell has been investigated during measurements on cell and battery level. High current discharges up to 300 A are the main topic of this study. This paper demonstrates that the temperature response to high current loads provides the possibility to investigate internal cell parameters and their inhomogeneity. In order to identify thermal response caused by internal cell processes, the heat input due to contact resistances has been minimized. The differences between the thermal footprint of a cell during cell and battery measurements are being addressed. The study presented here focuses on the investigation of thermal hot and cold spots as well as temperature gradients in a 50 Ah pouch cell. Furthermore, it is demonstrated that the difference between charge and discharge can have significant influence on the thermal behavior of lithium ion cells. Moreover, the miscellaneous thermal characteristics of differently aged lithium ion cells highlight the possibility of an ex-situ non-destructive post-mortem-analysis, providing the possibility of a qualitative and quantitative characterization of inhomogeneous cell-aging. These investigations also generate excellent data for the validation and parameterization of electro-thermal cell models, predicting the distribution of temperature, current, potential, SOC and SOH inside large-format cells.

  3. Spontaneous locomotor activity correlates with the degranulation of mast cells in the meninges rather than in the thalamus: disruptive effect of cocaine.

    PubMed

    Larson, Alice A; Thomas, Mark J; McElhose, Alex; Kovács, Katalin J

    2011-06-13

    Mast cells are located in the central nervous system (CNS) of many mammals and stress induces their degranulation. We postulated that mast cells are associated with wakefulness and stimulatory tone in the CNS, as reflected by spontaneous motor activity. Because stress also precipitates drug-seeking behavior in cocaine addicts, we also postulated that cocaine manifests its effects through this relationship. We investigated the influence of single and repeated injections of cocaine on circulating corticosterone, motor activity and degranulation of mast cells in both the thalamus and meninges of mice. Mice were subjected to 5 consecutive days of cocaine or saline followed by a single injection of cocaine or saline 11 days later. Spontaneous locomotor activity was measure for 1h after the final injection before death. Neither a single injection nor prior treatment with cocaine increased motor activity compared to saline-injected controls, however, repeated administration of cocaine induced a significant sensitization to its behavioral effect when delivered 11 days later. In mice that received only saline, motor activity correlated positively with mast cell degranulation in the meninges but not in the thalamus. Cocaine, regardless of the treatment schedule, disrupted this correlation. The concentration of corticosterone did not differ amongst groups and did not correlate with either behavior or mast cell parameters in any group. The correlation between behavioral activity and the mast cell degranulation in the meninges suggests that these parameters are linked. The disruptive effect of cocaine on this relationship indicates a role downstream from mast cells in the regulation of motor activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. TRPM8 inhibits endothelial cell migration via a non-channel function by trapping the small GTPase Rap1

    PubMed Central

    Grolez, Guillaume P.; Bernardini, Michela; Richard, Elodie; Scianna, Marco; Lemonnier, Loic; Munaron, Luca; Mattot, Virginie; Prevarskaya, Natalia; Gkika, Dimitra

    2017-01-01

    Endothelial cell adhesion and migration are critical steps of the angiogenic process, whose dysfunction is associated with tumor growth and metastasis. The TRPM8 channel has recently been proposed to play a protective role in prostate cancer by impairing cell motility. However, the mechanisms by which it could influence vascular behavior are unknown. Here, we reveal a novel non-channel function for TRPM8 that unexpectedly acts as a Rap1 GTPase inhibitor, thereby inhibiting endothelial cell motility, independently of pore function. TRPM8 retains Rap1 intracellularly through direct protein–protein interaction, thus preventing its cytoplasm–plasma membrane trafficking. In turn, this mechanism impairs the activation of a major inside-out signaling pathway that triggers the conformational activation of integrin and, consequently, cell adhesion, migration, in vitro endothelial tube formation, and spheroid sprouting. Our results bring to light a novel, pore-independent molecular mechanism by which endogenous TRPM8 expression inhibits Rap1 GTPase and thus plays a critical role in the behavior of vascular endothelial cells by inhibiting migration. PMID:28550110

  5. Behavior of Xeno-Transplanted Undifferentiated Human Induced Pluripotent Stem Cells Is Impacted by Microenvironment Without Evidence of Tumors.

    PubMed

    Martínez-Cerdeño, Veronica; Barrilleaux, Bonnie L; McDonough, Ashley; Ariza, Jeanelle; Yuen, Benjamin T K; Somanath, Priyanka; Le, Catherine T; Steward, Craig; Horton-Sparks, Kayla; Knoepfler, Paul S

    2017-10-01

    Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.

  6. Stromal Androgen Receptor in Prostate Cancer Development and Progression

    PubMed Central

    Leach, Damien A.; Buchanan, Grant

    2017-01-01

    Prostate cancer development and progression is the result of complex interactions between epithelia cells and fibroblasts/myofibroblasts, in a series of dynamic process amenable to regulation by hormones. Whilst androgen action through the androgen receptor (AR) is a well-established component of prostate cancer biology, it has been becoming increasingly apparent that changes in AR signalling in the surrounding stroma can dramatically influence tumour cell behavior. This is reflected in the consistent finding of a strong association between stromal AR expression and patient outcomes. In this review, we explore the relationship between AR signalling in fibroblasts/myofibroblasts and prostate cancer cells in the primary site, and detail the known functions, actions, and mechanisms of fibroblast AR signaling. We conclude with an evidence-based summary of how androgen action in stroma dramatically influences disease progression. PMID:28117763

  7. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation.

    PubMed

    Cimarelli, Giulia; Virányi, Zsófia; Turcsán, Borbála; Rónai, Zsolt; Sasvári-Székely, Mária; Bánlaki, Zsófia

    2017-01-01

    Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor ( OXTR ) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner's interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners' interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners' behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene.

  8. Respect, trust, and the management of sickle cell disease pain in hospital: comparative analysis of concern-raising behaviors, preliminary model, and agenda for international collaborative research to inform practice

    PubMed Central

    Elander, James; Beach, Mary Catherine; Haywood, Carlton

    2011-01-01

    Background/objectives Qualitative interview studies suggest that adult patients’ experiences of hospital treatment for sickle cell disease (SCD) pain reflect an absence of respect by providers for patients, and an absence or breakdown of trust. Systematic comparisons between treatment settings could help identify contextual influences on respect and trust. Design Quantitative comparison of concern-raising behaviors (pain treatment outcomes indicating breakdowns of trust) among adult SCD patients in Baltimore, Maryland, USA, and London, UK, followed by analysis of potential explanations for differences, including socio-cultural and behavioral factors, with a preliminary model of the processes leading to concern-raising behaviors. Results Rates of concern-raising behaviors were significantly higher in Baltimore than London. The model identifies respect and trust as key factors which could be targeted in efforts to improve the quality of SCD pain management in hospital. Conclusion An agenda for international, interdisciplinary research to improve the treatment of SCD pain in hospital should include: comparative analyses between countries and treatment settings of factors that could influence respect and trust; research to test hypotheses derived from models about the roles of respect and trust in the treatment of pain; studies of the impact of healthcare structures and policy on patients’ experiences of care; research focusing on developmental and interpersonal processes related to respect and trust; applications of attribution and other social psychology theories; and development and evaluation of interventions to improve the hospital treatment of SCD pain by increasing respect and trust. PMID:21797726

  9. Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion.

    PubMed

    Sheriff, Lozan; Alanazi, Asma; Ward, Lewis S C; Ward, Carl; Munir, Hafsa; Rayes, Julie; Alassiri, Mohammed; Watson, Steve P; Newsome, Phil N; Rainger, G E; Kalia, Neena; Frampton, Jon; McGettrick, Helen M; Nash, Gerard B

    2018-02-28

    We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  10. Viability evaluation of culture cells patterned by femtosecond laser-induced impulsive force

    NASA Astrophysics Data System (ADS)

    Takizawa, Noriko; Okano, Kazunori; Uwada, Takayuki; Hosokawa, Yoichiroh; Masuhara, Hiroshi

    2008-02-01

    PC12 cells, which are derived from a rat pheochromocytoma, were independently patterned utilizing an impulsive force resulting in impulsive shockwave and cavitation bubble generation by focused femtosecond laser irradiation. Since the PC12 cells respond reversibly to nerve growth factor by induction of the neuronal phenotype, we can assess an influence that the impulsive force gives to the bioactivity in term of the cell differentiation. The patterned cells were accumulated on an intact dish and cultured for 3 days. The behavior of appearance and cell differentiation was observed by multipoint time-lapse system. On bases of these results, it was proved that the biological activity of the cell is unaffected by the femtosecond laser patterning.

  11. Evidence for deterministic chaos in aperiodic oscillations of acute lymphoblastic leukemia cells in long-term culture

    NASA Astrophysics Data System (ADS)

    Lambrou, George I.; Chatziioannou, Aristotelis; Vlahopoulos, Spiros; Moschovi, Maria; Chrousos, George P.

    Biological systems are dynamic and possess properties that depend on two key elements: initial conditions and the response of the system over time. Conceptualizing this on tumor models will influence conclusions drawn with regard to disease initiation and progression. Alterations in initial conditions dynamically reshape the properties of proliferating tumor cells. The present work aims to test the hypothesis of Wolfrom et al., that proliferation shows evidence for deterministic chaos in a manner such that subtle differences in the initial conditions give rise to non-linear response behavior of the system. Their hypothesis, tested on adherent Fao rat hepatoma cells, provides evidence that these cells manifest aperiodic oscillations in their proliferation rate. We have tested this hypothesis with some modifications to the proposed experimental setup. We have used the acute lymphoblastic leukemia cell line CCRF-CEM, as it provides an excellent substrate for modeling proliferation dynamics. Measurements were taken at time points varying from 24h to 48h, extending the assayed populations beyond that of previous published reports that dealt with the complex dynamic behavior of animal cell populations. We conducted flow cytometry studies to examine the apoptotic and necrotic rate of the system, as well as DNA content changes of the cells over time. The cells exhibited a proliferation rate of nonlinear nature, as this rate presented oscillatory behavior. The obtained data have been fit in known models of growth, such as logistic and Gompertzian growth.

  12. Mechanical behavior of cells in microinjection: a minimum potential energy study.

    PubMed

    Liu, Fei; Wu, Dan; Chen, Ken

    2013-08-01

    Microinjection is a widely used technique to deliver foreign materials into biological cells. We propose a mathematical model to study the mechanical behavior of a cell in microinjection. Firstly, a cell is modeled by a hyperelastic membrane and interior cytoplasm. Then, based on the fact that the equilibrium configuration of a cell would minimize the potential energy, the energy function during microinjection is analyzed. With Lagrange multiplier and Rayleigh-Ritz technique, we successfully minimize the potential energy and obtain the equilibrium configuration. Upon this model, the injection force, the injection distance, the radius of the microinjector and the membrane stress are studied. The analysis demonstrates that the microinjector radius has a significant influence on the cell mechanical behavior: (1) the larger radius generates larger injection force and larger interior pressure at the same injection distance; (2) the radius determines the place where the membrane is most likely to rupture by governing the membrane stress distribution. For a fine microinjector with radius less than 20% of the cell radius, the most likely rupture point located at the edge of the contact area between the microinjector and the membrane; however, it may move to the middle of the equilibrium configuration as the radius increases. To verify our model, some experiments were conducted on zebrafish egg cells. The results show that the computational analysis agrees with the experimental data, which supports the findings from the theoretical model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Earthquake Complex Network Analysis Before and After the Mw 8.2 Earthquake in Iquique, Chile

    NASA Astrophysics Data System (ADS)

    Pasten, D.

    2017-12-01

    The earthquake complex networks have shown that they are abble to find specific features in seismic data set. In space, this networkshave shown a scale-free behavior for the probability distribution of connectivity, in directed networks and theyhave shown a small-world behavior, for the undirected networks.In this work, we present an earthquake complex network analysis for the large earthquake Mw 8.2 in the north ofChile (near to Iquique) in April, 2014. An earthquake complex network is made dividing the three dimensional space intocubic cells, if one of this cells contain an hypocenter, we name this cell like a node. The connections between nodes aregenerated in time. We follow the time sequence of seismic events and we are making the connections betweennodes. Now, we have two different networks: a directed and an undirected network. Thedirected network takes in consideration the time-direction of the connections, that is very important for the connectivityof the network: we are considering the connectivity, ki of the i-th node, like the number of connections going out ofthe node i plus the self-connections (if two seismic events occurred successive in time in the same cubic cell, we havea self-connection). The undirected network is made removing the direction of the connections and the self-connectionsfrom the directed network. For undirected networks, we are considering only if two nodes are or not connected.We have built a directed complex network and an undirected complex network, before and after the large earthquake in Iquique. We have used magnitudes greater than Mw = 1.0 and Mw = 3.0. We found that this method can recognize the influence of thissmall seismic events in the behavior of the network and we found that the size of the cell used to build the network isanother important factor to recognize the influence of the large earthquake in this complex system. This method alsoshows a difference in the values of the critical exponent γ (for the probability distribution of connectivity in the directednetwork) before and after the large earthquake, but this method does not show a change in the clustering behavior ofthe undirected network, before and after the large earthquake, showing a small-world behavior for the network beforeand after of this large seismic event.

  14. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene expression and enzymatic activity of alcohol deydrogenase and pyruvate decarboxilase. PMID:22305374

  15. Influence of e-e+ creation on the radiative trapping in ultraintense fields of colliding laser pulses

    NASA Astrophysics Data System (ADS)

    Baumann, C.; Pukhov, A.

    2016-12-01

    The behavior of a thin plasma target irradiated by two counterpropagating laser pulses of ultrahigh intensity is studied in the framework of one- and two-dimensional particle-in-cell simulations. It is found that above an intensity threshold, radiative trapping can focus electrons in the peaks of the electromagnetic field. At even higher intensities, the trapping effect cannot be maintained according to the increasing influence of electron-positron pair production on the laser-plasma dynamics.

  16. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins.

    PubMed

    Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J

    2016-10-01

    The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.

  17. High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: A model of post-partum stress and possible depression.

    PubMed

    Brummelte, Susanne; Pawluski, Jodi L; Galea, Liisa A M

    2006-09-01

    Post-partum stress and depression (PPD) have a significant effect on child development and behavior. Depression is associated with hypercortisolism in humans, and the fluctuating levels of hormones, including corticosterone, during pregnancy and the post-partum, may contribute to PPD. The present study was developed to investigate the effects of high-level corticosterone (CORT) post-partum in the mother on postnatal neurogenesis and behavior in the offspring. Sprague-Dawley dams were treated with either CORT (40 mg/kg) or sesame oil injections daily for 26 days beginning the day after giving birth. Dams were tested in the forced swim test (FST) and in the open field test (OFT) on days 24-26 post-partum. Results showed that the dams exposed to CORT expressed "depressive-like" behavior compared to controls, with decreased struggling behavior and increased immobility in the FST. To investigate the effects of treatment on hippocampal postnatal cell proliferation and survival in the offspring, males and females from treated dams were injected with BrdU (50 mg/kg) on postnatal day 21 and perfused either 24 h (cell proliferation) or 21 days (cell survival) later. Furthermore, male and female offspring from each litter were tested in adulthood on various behavioral tests, including the forced swim test, open field test, resistance to capture test and elevated plus maze. Intriguingly, male, but not female, offspring of CORT-treated dams exhibited decreased postnatal cell proliferation in the dentate gyrus. Both male and female offspring of CORT-treated dams showed higher resistance to capture and greater locomotor activity as assessed in the open field test. As high levels of CORT may be a characteristic of stress and/or depression, these findings support a model of 'CORT-induced' post-partum stress and possibly depression and demonstrate that the offspring of affected dams can exhibit changes in postnatal neurogenesis and behavior in adulthood.

  18. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells

    PubMed Central

    Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L

    2017-01-01

    Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI: http://dx.doi.org/10.7554/eLife.21540.001 PMID:28195039

  19. Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios

    PubMed Central

    Ball, Alyssa S.; Chaparian, Ryan R.

    2017-01-01

    ABSTRACT The coordination of group behaviors in bacteria is accomplished via the cell-cell signaling process called quorum sensing. Vibrios have historically been models for studying bacterial communication due to the diverse and remarkable behaviors controlled by quorum sensing in these bacteria, including bioluminescence, type III and type VI secretion, biofilm formation, and motility. Here, we discuss the Vibrio LuxR/HapR family of proteins, the master global transcription factors that direct downstream gene expression in response to changes in cell density. These proteins are structurally similar to TetR transcription factors but exhibit distinct biochemical and genetic features from TetR that determine their regulatory influence on the quorum sensing gene network. We review here the gene groups regulated by LuxR/HapR and quorum sensing and explore the targets that are common and unique among Vibrio species. PMID:28484045

  20. Afraid to help: social anxiety partially mediates the association between 5-HTTLPR triallelic genotype and prosocial behavior.

    PubMed

    Stoltenberg, Scott F; Christ, Christa C; Carlo, Gustavo

    2013-01-01

    There is growing evidence that the serotonin system influences prosocial behavior. We examined whether anxiety mediated the association between variation in the serotonin transporter gene regulatory region (5-HTTLPR) and prosocial behavior. We collected self-reported tendencies to avoid certain situations and history of helping others using standard instruments and buccal cells for standard 5-HTTLPR genotyping from 398 undergraduate students. Triallelic 5-HTTLPR genotype was significantly associated with prosocial behavior and the effect was partially mediated by social anxiety, such that those carrying the S' allele reported higher levels of social avoidance and lower rates of helping others. These results are consistent with accounts of the role of serotonin on anxiety and prosocial behavior and suggest that targeted efforts to reduce social anxiety in S' allele carriers may enhance prosocial behavior.

  1. Investigation of acoustic metasurfaces with constituent material properties considered

    NASA Astrophysics Data System (ADS)

    Gerard, Nikhil JRK; Li, Yong; Jing, Yun

    2018-03-01

    This paper examines the transmission behavior of two acoustic metasurfaces and their constituent structural units while including the various material properties that could affect their functionality. The unit cells and the metasurfaces are modeled numerically, and the impact of the structural interaction and thermoviscosity on sound transmission and phase modulation is studied. Each of these effects is viewed individually in order to better understand their influence. Various cases are presented, and the change in the behavior of the metasurfaces is investigated. The deviations from the ideal desired results are examined and highlighted to show that it is important to incorporate these effects to better predict the behavior of acoustic metasurfaces.

  2. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation.

    PubMed

    Avnet, Sofia; Di Pompo, Gemma; Chano, Tokuhiro; Errani, Costantino; Ibrahim-Hashim, Arig; Gillies, Robert J; Donati, Davide Maria; Baldini, Nicola

    2017-03-15

    The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H + -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H + -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H + -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS. © 2016 UICC.

  3. Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels

    DTIC Science & Technology

    2010-07-01

    Flow Uniformity Test Cell .............................................................................51 Figure 37. Relationship Between Thermal...equations that influence both transient and steady state thermal behavior. Equation 1 describes the relationship between thermal diffusivity and the...intrinsic properties of any material. Equation 2 describes the Wiedemann-Franz law. P. Grootenhuis, et al reported on the relationship between

  4. Potential roles of cholinergic modulation in the neural coding of location and movement speed

    PubMed Central

    Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.

    2016-01-01

    Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935

  5. Method to study cell migration under uniaxial compression

    PubMed Central

    Srivastava, Nishit; Kay, Robert R.; Kabla, Alexandre J.

    2017-01-01

    The chemical, physical, and mechanical properties of the extracellular environment have a strong effect on cell migration. Aspects such as pore size or stiffness of the matrix influence the selection of the mechanism used by cells to propel themselves, including by pseudopods or blebbing. How a cell perceives its environment and how such a cue triggers a change in behavior are largely unknown, but mechanics is likely to be involved. Because mechanical conditions are often controlled by modifying the composition of the environment, separating chemical and physical contributions is difficult and requires multiple controls. Here we propose a simple method to impose a mechanical compression on individual cells without altering the composition of the matrix. Live imaging during compression provides accurate information about the cell's morphology and migratory phenotype. Using Dictyostelium as a model, we observe that a compression of the order of 500 Pa flattens the cells under gel by up to 50%. This uniaxial compression directly triggers a transition in the mode of migration from primarily pseudopodial to bleb driven in <30 s. This novel device is therefore capable of influencing cell migration in real time and offers a convenient approach with which to systematically study mechanotransduction in confined environments. PMID:28122819

  6. Tensile stress-dependent fracture behavior and its influences on photovoltaic characteristics in flexible PbS/CdS thin-film solar cells.

    PubMed

    Lee, Seung Min; Yeon, Deuk Ho; Mohanty, Bhaskar Chandra; Cho, Yong Soo

    2015-03-04

    Tensile stress-dependent fracture behavior of flexible PbS/CdS heterojunction thin-film solar cells on indium tin oxide-coated polyethylene terephthalate (PET) substrates is investigated in terms of the variations of fracture parameters with applied strains and their influences on photovoltaic properties. The PbS absorber layer that exhibits only mechanical cracks within the applied strain range from ∼0.67 to 1.33% is prepared by chemical bath deposition at different temperatures of 50, 70, and 90 °C. The PbS thin films prepared at 50 °C demonstrate better mechanical resistance against the applied bending strain with the highest crack initiating bending strain of ∼1.14% and the lowest saturated crack density of 0.036 μm(-1). Photovoltaic properties of the cells depend on the deposition temperature and the level of applied tensile stress. The values of short-circuit current density and fill factor are dramatically reduced above a certain level of applied strain, while open-circuit voltage is nearly maintained. The dependency of photovoltaic properties on the progress of fractures is understood as related to the reduced fracture energy and toughness, which is limitedly controllable by microstructural features of the absorber layer.

  7. Enhanced model of photovoltaic cell/panel/array considering the direct and reverse modes

    NASA Astrophysics Data System (ADS)

    Zegaoui, Abdallah; Boutoubat, Mohamed; Sawicki, Jean-Paul; Kessaissia, Fatma Zohra; Djahbar, Abdelkader; Aillerie, Michel

    2018-05-01

    This paper presents an improved generalized physical model for photovoltaic, PV cells, panels and arrays taking into account the behavior of these devices when considering their biasing existing in direct and reverse modes. Existing PV physical models generally are very efficient for simulating influence of irradiation changes on the short circuit current but they could not visualize the influences of temperature changes. The Enhanced Direct and Reverse Mode model, named EDRM model, enlightens the influence on the short-circuit current of both temperature and irradiation in the reverse mode of the considered PV devices. Due to its easy implementation, the proposed model can be a useful power tool for the development of new photovoltaic systems taking into account and in a more exhaustive manner, environmental conditions. The developed model was tested on a marketed PV panel and it gives a satisfactory results compared with parameters given in the manufacturer datasheet.

  8. Ionic liquid electrolytes for Li-air batteries: lithium metal cycling.

    PubMed

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-05-08

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li-air cells.

  9. Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling

    PubMed Central

    Grande, Lorenzo; Paillard, Elie; Kim, Guk-Tae; Monaco, Simone; Passerini, Stefano

    2014-01-01

    In this work, the electrochemical stability and lithium plating/stripping performance of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) are reported, by investigating the behavior of Li metal electrodes in symmetrical Li/electrolyte/Li cells. Electrochemical impedance spectroscopy measurements and galvanostatic cycling at different temperatures are performed to analyze the influence of temperature on the stabilization of the solid electrolyte interphase (SEI), showing that TFSI-based ionic liquids (ILs) rank among the best candidates for long-lasting Li–air cells. PMID:24815072

  10. The Varied Roles of Notch in Cancer

    PubMed Central

    Aster, Jon C.; Pear, Warren S.; Blacklow, Stephen C.

    2018-01-01

    Notch receptors influence cellular behavior by participating in a seemingly simple signaling pathway, but outcomes produced by Notch signaling are remarkably varied depending on signal dose and cell context. Here, after briefly reviewing new insights into physiologic mechanisms of Notch signaling in healthy tissues and defects in Notch signaling that contribute to congenital disorders and viral infection, we discuss the varied roles of Notch in cancer, focusing on cell autonomous activities that may be either oncogenic or tumor suppressive. PMID:27959635

  11. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.

    PubMed

    Altomare, Lina; Cochis, Andrea; Carletta, Andrea; Rimondini, Lia; Farè, Silvia

    2016-05-01

    Methylcellulose (MC), a water-soluble polymer derived from cellulose, was investigated as a possible temporary substrate having thermo-responsive properties favorable for cell culturing. MC-based hydrogels were prepared by a dispersion technique, mixing MC powder (2, 4, 6, 8, 10, 12 % w/v) with selected salts (sodium sulphate, Na2SO4), sodium phosphate, calcium chloride, or phosphate buffered saline, to evaluate the influence of different compositions on the thermo-responsive behavior. The inversion test was used to determine the gelation temperatures of the different hydrogel compositions; thermo-mechanical properties and thermo-reversibility of the MC hydrogels were investigated by rheological analysis. Gelation temperatures and rheological behavior depended on the MC concentration and type and concentration of salt used in hydrogel preparation. In vitro cytotoxicity tests, performed using L929 mouse fibroblasts, showed no toxic release from all the tested hydrogels. Among the investigated compositions, the hydrogel composed of 8 % w/v MC with 0.05 M Na2SO4 had a thermo-reversibility temperature at 37 °C. For that reason, this formulation was thus considered to verify the possibility of inducing in vitro spontaneous detachment of cells previously seeded on the hydrogel surface. A continuous cell layer (cell sheet) was allowed to grow and then detached from the hydrogel surface without the use of enzymes, thanks to the thermo-responsive behavior of the MC hydrogel. Immunofluorescence observation confirmed that the detached cell sheet was composed of closely interacting cells.

  12. Of extracellular matrix, scaffolds, and signaling: Tissuearchitectureregulates development, homeostasis, and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Celeste M.; Bissell, Mina J.

    2006-03-09

    The microenvironment surrounding cells influences gene expression, such that a cell's behavior is largely determined by its interactions with the extracellular matrix, neighboring cells, and soluble cues released locally or by distant tissues. We describe the essential role of context and organ structure in directing mammary gland development and differentiated function, and in determining response to oncogenic insults including mutations. We expand on the concept of 'dynamic reciprocity' to present an integrated view of development, cancer, and aging, and posit that genes are like piano keys: while essential, it is the context that makes the music.

  13. Cell separations and the demixing of aqueous two phase polymer solutions in microgravity

    NASA Technical Reports Server (NTRS)

    Brooks, Donald E.; Bamberger, Stephan; Harris, J. M.; Van Alstine, James M.

    1991-01-01

    Partition in phase separated aqueous polymer solutions is a cell separation procedure thought to be adversely influenced by gravity. In preparation for performing cell partitioning experiments in space, and to provide general information concerning the demixing of immiscible liquids in low gravity, a series of phase separated aqueous polymer solutions have been flown on two shuttle flights. Fluorocarbon oil and water emulsions were also flown on the second flight. The aqueous polymer emulsions, which in one g demix largely by sedimentation and convection due to the density differences between the phases, demixed more slowly than on the ground and the final disposition of the phases was determined by the wetting of the container wall by the phases. The demixing behavior and kinetics were influenced by the phase volume ratio, physical properties of the systems and chamber wall interaction. The average domain size increased linearly with time as the systems demixed.

  14. Neurotransmitters couple brain activity to subventricular zone neurogenesis

    PubMed Central

    Young, Stephanie Z.; Taylor, M. Morgan; Bordey, Angélique

    2011-01-01

    Adult neurogenesis occurs in two privileged microenvironments, the hippocampal subgranular zone of the dentate gyrus and the subventricular zone (SVZ) along the lateral ventricle. This review focuses on accumulating evidence suggesting that the activity of specific brain regions or bodily states influences SVZ cell proliferation and neurogenesis. Neuromodulators such as dopamine and serotonin have been shown to have long-range effects through neuronal projections into the SVZ. Local GABA and glutamate signaling have demonstrated effects on SVZ proliferation and neurogenesis, but an extra-niche source of these neurotransmitters remains to be explored and options will be discussed. There is also accumulating evidence that diseases and bodily states such as Alzheimer's disease, seizures, sleep, and pregnancy influence SVZ cell proliferation. With such complex behavior and environmentally-driven factors that control subregion-specific activity, it will become necessary to account for overlapping roles of multiple neurotransmitter systems on neurogenesis when developing cell therapies or drug treatments. PMID:21395856

  15. A corticothalamic switch: controlling the thalamus with dynamic synapses

    PubMed Central

    Crandall, Shane R.; Cruikshank, Scott J.; Connors, Barry W.

    2015-01-01

    SUMMARY Corticothalamic neurons provide massive input to the thalamus. This top-down projection may allow cortex to regulate sensory processing by modulating the excitability of thalamic cells. Layer 6 corticothalamic neurons monosynaptically excite thalamocortical cells, but also indirectly inhibit them by driving inhibitory cells of the thalamic reticular nucleus. Whether corticothalamic activity generally suppresses or excites the thalamus remains unclear. Here we show that the corticothalamic influence is dynamic, with the excitatory-inhibitory balance shifting in an activity-dependent fashion. During low-frequency activity corticothalamic effects are mainly suppressive, whereas higher frequency activity (even a short bout of gamma frequency oscillations) converts the corticothalamic influence to enhancement. The mechanism of this switching depends upon distinct forms of short-term synaptic plasticity across multiple corticothalamic circuit components. Our results reveal an activity-dependent mechanism by which corticothalamic neurons can bidirectionally switch the excitability and sensory throughput of the thalamus, possibly to meet changing behavioral demands. PMID:25913856

  16. Rheologic and hemodynamic characteristics of red cells of mouse, rat and human.

    PubMed

    Chen, D; Kaul, D K

    1994-01-01

    The present study compares hematologic, rheologic and hemodynamic characteristics of red cells from mouse, rat and human. Red cells in these species are biconcave discs that show significant differences in diameter and mean corpuscular volume (MCV). However, differences in mean corpuscular hemoglobin concentration (MCHC) are not significant. Viscosity measurement of washed red cell suspensions (in each case the medium osmolarity adjusted to match plasma osmolarity) showed significant interspecies differences at shear rates of 37.5 and 750 sec-1 as follows: Human > rat > mouse. Hemodynamic and microcirculatory behavior of these red cells was investigated in the artificially perfused ex vivo mesocecum vasculature of the rat. Hemodynamic measurements in the whole ex vivo mesocecum preparation revealed maximal increase in the peripheral resistance unit (PRU) for the human red cells followed by the rat and mouse red cells, respectively at a hematocrit (Hct) of 40%. Further, measurements of red cell velocities (Vrbc) in single arterioles of the mesocecum vasculature, during sustained perfusion with washed red cell suspensions, showed that at any given perfusion pressure (Pa), Vrbc for both mouse and rat red cells was higher than that for human red cells, while Vrbc for mouse red cells was higher than that for the rat. These results demonstrate that the microvascular flow behavior of these red cells is likely to be influenced by both physical and rheologic characteristics.

  17. Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: a model for cell-mechanics studies.

    PubMed

    Prodanov, L; Semeins, C M; van Loon, J J W A; te Riet, J; Jansen, J A; Klein-Nulend, J; Walboomers, X F

    2013-05-01

    Introducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200 nm wide, 50 nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7 Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4 Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1 h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal expansion tests and the response of the microstructure. A novel optical method is described which is appropriate for measuring thermal expansion at high temperatures without influencing the thermal expansion measurement. Detailed microstructural investigations will also be described which show cell expansion as a function of temperature. Finally, a phenomenological model on thermal expansion will be described.

  19. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    NASA Astrophysics Data System (ADS)

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.

    2013-06-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.

  20. Evaluation of heat hyperalgesia and anxiety like-behaviors in a rat model of orofacial cancer.

    PubMed

    Gambeta, Eder; Kopruszinski, Caroline Machado; Dos Reis, Renata Cristiane; Zanoveli, Janaina Menezes; Chichorro, Juliana Geremias

    2016-04-21

    Pain and anxiety are commonly experienced by cancer patients and both significantly impair their quality of life. Some authors claim that there is a relationship between pain and anxiety, while others suggest that there is not a direct association. In any case, there is indeed a consensus that anxiety impairs the pain condition beyond be under diagnosed and undertreated in cancer pain patients. Herein we investigated if rats presenting heat hyperalgesia induced by orofacial cancer cell inoculation would display anxiety-like behaviors. In addition, we evaluated if pain blockade would result in alleviation of anxiety behaviors, as well as, if blockade of anxiety would result in pain relief. Orofacial cancer was induced in male Wistar rats by inoculation of Walker-256 cells into the right vibrissal pad. Heat facial hyperalgesia was assessed on day 6 after the inoculation, and on this time point rats were submitted to the elevated plus maze and the light-dark transition tests. The influence of lidocaine and midazolam on heat hyperalgesia and anxiety-like behaviors was assessed. The peak of facial heat hyperalgesia was detected 6 days after cancer cells inoculation, and at this time point, rats exhibited increased anxiety-like behaviors. Local treatment with lidocaine (2%/50μL) caused a marked reduction of heat hyperalgesia, but failed to affect the anxiety-like behaviors, while midazolam (0.5mg/kg, i.p.) treatment failed to change the heat threshold, but induced an anxiolytic-like effect. Altogether, our data demonstrated that rats with orofacial cancer present pain- and anxiety-like behaviors, but brief heat hyperalgesia relief does not affect the anxiety-like behaviors, and vice-versa, in our experimental conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Influence of long-term gravity vector changes on mesenchymal stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Merzlikina, N. V.; Romanov, Yu. A.; Buravkov, S. V.

    2005-08-01

    In vivo and in vitro studies have identified the bone marrow as the primary source of a multipotential mesenchymal stem cells (MSC) that give rise to progenitors for several mesenchymal tissues, including bone, cartilage, tendon, adipose, muscle and hematopoietic-supporting stroma. It is known that MSC are sensitive to chemical signals and mechanical stimuli. It was also suggested that microgravity may influence on progenitor cells and induce abnormalities in cellular differentiation in muscle and skeletal components leading to the changes in physiological regeneration of these tissues. To prove gravitational sensitivity of MSC, we studied the effects of prolonged clinorotation on cultured human MSC (hMSC) morphology, actin cytoskeleton organization and phenotype. It was found that the proliferation rate was significantly decreased during clinorotation but augmented during recovery. The cell cytoskeleton displayed actin filament thinning and altered morphology at clinorotation. The production of interleukin-6 was increased and expression of surface molecules was modified by simulated microgravity. Observed changes of cultured hMSC behavior suggest the gravitational sensitivity of human stromal progenitor cells.

  2. Investigating the interplay between substrate stiffness and ligand chemistry in directing mesenchymal stem cell differentiation within 3D macro-porous substrates.

    PubMed

    Haugh, Matthew G; Vaughan, Ted J; Madl, Christopher M; Raftery, Rosanne M; McNamara, Laoise M; O'Brien, Fergal J; Heilshorn, Sarah C

    2018-07-01

    Dimensionality can have a profound impact on stiffness-mediated differentiation of mesenchymal stem cells (MSCs). However, while we have begun to understand cellular response when encapsulated within 3D substrates, the behavior of cells within macro-porous substrates is relatively underexplored. The goal of this study was to determine the influence of macro-porous topographies on stiffness-mediated differentiation of MSCs. We developed macro-porous recombinant elastin-like protein (ELP) substrates that allow independent control of mechanical properties and ligand chemistry. We then used computational modeling to probe the impact of pore topography on the mechanical stimulus that cells are exposed to within these substrates, and finally we investigated stiffness induced biases towards adipogenic and osteogenic differentiation of MSCs within macro-porous substrates. Computational modeling revealed that there is significant heterogeneity in the mechanical stimuli that cells are exposed to within porous substrates and that this heterogeneity is predominantly due to the wide range of possible cellular orientations within the pores. Surprisingly, MSCs grown within 3D porous substrates respond to increasing substrate stiffness by up-regulating both osteogenesis and adipogenesis. These results demonstrate that within porous substrates the behavior of MSCs diverges from previously observed responses to substrate stiffness, emphasizing the importance of topography as a determinant of cellular behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A turbulence-induced switch in phytoplankton swimming behavior

    NASA Astrophysics Data System (ADS)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  4. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  6. Surface topography and chemistry shape cellular behavior on wide band-gap semiconductors.

    PubMed

    Bain, Lauren E; Collazo, Ramon; Hsu, Shu-Han; Latham, Nicole Pfiester; Manfra, Michael J; Ivanisevic, Albena

    2014-06-01

    The chemical stability and electrical properties of gallium nitride make it a promising material for the development of biocompatible electronics, a range of devices including biosensors as well as interfaces for probing and controlling cellular growth and signaling. To improve the interface formed between the probe material and the cell or biosystem, surface topography and chemistry can be applied to modify the ways in which the device interacts with its environment. PC12 cells are cultured on as-grown planar, unidirectionally polished, etched nanoporous and nanowire GaN surfaces with and without a physisorbed peptide sequence that promotes cell adhesion. While cells demonstrate preferential adhesion to roughened surfaces over as-grown flat surfaces, the topography of that roughness also influences the morphology of cellular adhesion and differentiation in neurotypic cells. Addition of the peptide sequence generally contributes further to cellular adhesion and promotes development of stereotypic long, thin neurite outgrowths over alternate morphologies. The dependence of cell behavior on both the topographic morphology and surface chemistry is thus demonstrated, providing further evidence for the importance of surface modification for modulating bio-inorganic interfaces. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. The influence of cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes fabricated by electron beam melting.

    PubMed

    Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K

    2016-06-01

    Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan

    2017-01-01

    A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Attenuation of the Type IV Pilus Retraction Motor Influences Neisseria gonorrhoeae Social and Infection Behavior.

    PubMed

    Hockenberry, Alyson M; Hutchens, Danielle M; Agellon, Al; So, Magdalene

    2016-12-06

    Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilT L201C ). Purified PilT L201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilT L201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilT L201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilT L201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal social behavior, and they are less infective because they fail to activate the epidermal growth factor receptor. Our study shows that N. gonorrhoeae social and infection behaviors are sensitive to the strength of the retraction motor enzyme. Copyright © 2016 Hockenberry et al.

  10. A versatile mathematical work-flow to explore how Cancer Stem Cell fate influences tumor progression.

    PubMed

    Fornari, Chiara; Balbo, Gianfranco; Halawani, Sami M; Ba-Rukab, Omar; Ahmad, Ab Rahman; Calogero, Raffaele A; Cordero, Francesca; Beccuti, Marco

    2015-01-01

    Nowadays multidisciplinary approaches combining mathematical models with experimental assays are becoming relevant for the study of biological systems. Indeed, in cancer research multidisciplinary approaches are successfully used to understand the crucial aspects implicated in tumor growth. In particular, the Cancer Stem Cell (CSC) biology represents an area particularly suited to be studied through multidisciplinary approaches, and modeling has significantly contributed to pinpoint the crucial aspects implicated in this theory. More generally, to acquire new insights on a biological system it is necessary to have an accurate description of the phenomenon, such that making accurate predictions on its future behaviors becomes more likely. In this context, the identification of the parameters influencing model dynamics can be advantageous to increase model accuracy and to provide hints in designing wet experiments. Different techniques, ranging from statistical methods to analytical studies, have been developed. Their applications depend on case-specific aspects, such as the availability and quality of experimental data, and the dimension of the parameter space. The study of a new model on the CSC-based tumor progression has been the motivation to design a new work-flow that helps to characterize possible system dynamics and to identify those parameters influencing such behaviors. In detail, we extended our recent model on CSC-dynamics creating a new system capable of describing tumor growth during the different stages of cancer progression. Indeed, tumor cells appear to progress through lineage stages like those of normal tissues, being their division auto-regulated by internal feedback mechanisms. These new features have introduced some non-linearities in the model, making it more difficult to be studied by solely analytical techniques. Our new work-flow, based on statistical methods, was used to identify the parameters which influence the tumor growth. The effectiveness of the presented work-flow was firstly verified on two well known models and then applied to investigate our extended CSC model. We propose a new work-flow to study in a practical and informative way complex systems, allowing an easy identification, interpretation, and visualization of the key model parameters. Our methodology is useful to investigate possible model behaviors and to establish factors driving model dynamics. Analyzing our new CSC model guided by the proposed work-flow, we found that the deregulation of CSC asymmetric proliferation contributes to cancer initiation, in accordance with several experimental evidences. Specifically, model results indicated that the probability of CSC symmetric proliferation is responsible of a switching-like behavior which discriminates between tumorigenesis and unsustainable tumor growth.

  11. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae

    PubMed Central

    Frye, Mitchell D.; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2016-01-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. PMID:27837652

  12. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    PubMed

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Activity in descending dopaminergic neurons represents but is not required for leg movements in the fruit fly Drosophila

    PubMed Central

    Tschida, Katherine; Bhandawat, Vikas

    2015-01-01

    Modulatory descending neurons (DNs) that link the brain to body motor circuits, including dopaminergic DNs (DA-DNs), are thought to contribute to the flexible control of behavior. Dopamine elicits locomotor-like outputs and influences neuronal excitability in isolated body motor circuits over tens of seconds to minutes, but it remains unknown how and over what time scale DA-DN activity relates to movement in behaving animals. To address this question, we identified DA-DNs in the Drosophila brain and developed an electrophysiological preparation to record and manipulate the activity of these cells during behavior. We find that DA-DN spike rates are rapidly modulated during a subset of leg movements and scale with the total speed of ongoing leg movements, whether occurring spontaneously or in response to stimuli. However, activating DA-DNs does not elicit leg movements in intact flies, nor do acute bidirectional manipulations of DA-DN activity affect the probability or speed of leg movements over a time scale of seconds to minutes. Our findings indicate that in the context of intact descending control, changes in DA-DN activity are not sufficient to influence ongoing leg movements and open the door to studies investigating how these cells interact with other descending and local neuromodulatory inputs to influence body motor output. PMID:25742959

  14. Social Behavior of Pet Dogs Is Associated with Peripheral OXTR Methylation

    PubMed Central

    Cimarelli, Giulia; Virányi, Zsófia; Turcsán, Borbála; Rónai, Zsolt; Sasvári-Székely, Mária; Bánlaki, Zsófia

    2017-01-01

    Oxytocin is a key modulator of emotional processing and social cognitive function. In line with this, polymorphisms of genes involved in oxytocin signaling, like the oxytocin receptor (OXTR) gene, are known to influence social behavior in various species. However, to date, no study has investigated environmental factors possibly influencing the epigenetic variation of the OXTR gene and its behavioral effects in dogs. Pet dogs form individualized and strong relationships with their owners who are central figures in the social environment of their dogs and therefore might influence the methylation levels of their OXTR gene. Here we set out to investigate whether DNA methylation within the OXTR promoter region of pet dogs is linked to their owner’s interaction style and to the social behavior of the dogs. To be able to do so, we collected buccal epithelial cells and, in Study 1, we used pyrosequencing techniques to look for differentially methylated CpG sites in the canine OXTR promoter region on a heterogeneous sample of dogs and wolves of different ages and keeping conditions. Four identified sites (at positions -727, -751, -1371, and -1383 from transcription start site) showing more than 10% methylation variation were then, in Study 2, measured in triplicate in 217 pet Border Collies previously tested for reactions to an adverse social situation (i.e., approach by a threatening human) and with available data on their owners’ interaction styles. We found that CpG methylation was significantly associated with the behavior of the dogs, in particular with the likelihood that dogs would hide behind their owner or remain passive when approached by a threatening human. On the other hand, CpG methylation was not related to the owners’ behavior but to dog sex (at position -1371). Our findings underpin the complex relationship between epigenetics and behavior and highlight the importance of including epigenetic methods in the analysis of dog behavioral development. Further research is needed to investigate which environmental factors influence the epigenetic variation of the OXTR gene. PMID:28443051

  15. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells

    PubMed Central

    Chen, Liang; Mccrate, Joseph M.; Lee, James C-M.; Li, Hao

    2011-01-01

    The objective of this study is to evaluate the effect of hydroxyapatite (HAP) nanoparticles with different surface charges on the cellular uptake behavior and in vitro cell viability and proliferation of MC3T3-E1 cell lines (osteoblast). The nanoparticles surface charge was varied by the surface modification with two carboxylic acids: 12-aminododecanoic acid (positive) and dodecanedioic acid (negative). The untreated HAP nanoparticles and dodecanoic acid modified HAP nanoparticles (neutral) were used as the control. X-ray diffraction (XRD) revealed that surface modifications by the three carboxylic acids did not change the crystal structure of HAP nanoparticles; Fourier transform infrared spectroscopy (FTIR) confirmed the adsorption and binding of the carboxylic acids on HAP nanoparticle surface; and zeta potential measurement confirmed that the chemicals successfully modified the surface charge of HAP nanoparticles in water based solution. Transmission electron microscopy (TEM) images showed that positively charged, negatively charged and untreated HAP nanoparticles, with similar size and shape, all penetrated into the cells and cells had more uptake of HAP nanoparticles with positive charge compared to those with negative charge, which might be attributed to the attractive or repulsive interaction between the negatively charged cell membrane and positively/negatively charged HAP nanoparticles. The neutral HAP nanoparticles could not penetrate cell membrane due to the larger size. MTT assay and LDH assay results indicated that as compared with the polystyrene control, greater cell viability and cell proliferation were measured on MC3T3-E1 cells treated with the three kinds of the HAP nanoparticles (neutral, positive, and untreated), among which positively charged HAP nanoparticles shows strongest improvement for cell viability and cell proliferation. In summary, the surface charge of HAP nanoparticles can be modified to influence the cellular uptake of HAP nanoparticles and the different uptake also influence the behavior of cells. These in-vitro results may also provide useful information for investigations of HAP nanoparticles applications in the gene delivery and intracellular drug delivery. PMID:21289408

  16. Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.

    PubMed

    Hogrebe, Nathaniel J; Reinhardt, James W; Tram, Nguyen K; Debski, Anna C; Agarwal, Gunjan; Reilly, Matthew A; Gooch, Keith J

    2018-04-01

    A cell's insoluble microenvironment has increasingly been shown to exert influence on its function. In particular, matrix stiffness and adhesiveness strongly impact behaviors such as cell spreading and differentiation, but materials that allow for independent control of these parameters within a fibrous, stromal-like microenvironment are very limited. In the current work, we devise a self-assembling peptide (SAP) system that facilitates user-friendly control of matrix stiffness and RGD (Arg-Gly-Asp) concentration within a hydrogel possessing a microarchitecture similar to stromal extracellular matrix. In this system, the RGD-modified SAP sequence KFE-RGD and the scrambled sequence KFE-RDG can be directly swapped for one another to change RGD concentration at a given matrix stiffness and total peptide concentration. Stiffness is controlled by altering total peptide concentration, and the unmodified base peptide KFE-8 can be included to further increase this stiffness range due to its higher modulus. With this tunable system, we demonstrate that human mesenchymal stem cell morphology and differentiation are influenced by both gel stiffness and the presence of functional cell binding sites in 3D culture. Specifically, cells 24 hours after encapsulation were only able to spread out in stiffer matrices containing KFE-RGD. Upon addition of soluble adipogenic factors, soft gels facilitated the greatest adipogenesis as determined by the presence of lipid vacuoles and PPARγ-2 expression, while increasing KFE-RGD concentration at a given stiffness had a negative effect on adipogenesis. This three-component hydrogel system thus allows for systematic investigation of matrix stiffness and RGD concentration on cell behavior within a fibrous, three-dimensional matrix. Physical cues from a cell's surrounding environment-such as the density of cell binding sites and the stiffness of the surrounding material-are increasingly being recognized as key regulators of cell function. Currently, most synthetic biomaterials used to independently tune these parameters lack the fibrous structure characteristic of stromal extracellular matrix, which can be important to cells naturally residing within stromal tissues. In this manuscript, we describe a 3D hydrogel encapsulation system that provides user-friendly control over matrix stiffness and binding site concentration within the context of a stromal-like microarchitecture. Binding site concentration and gel stiffness both influenced cell spreading and differentiation, highlighting the utility of this system to study the independent effects of these material properties on cell function. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  18. Amygdala Signaling during Foraging in a Hazardous Environment.

    PubMed

    Amir, Alon; Lee, Seung-Chan; Headley, Drew B; Herzallah, Mohammad M; Pare, Denis

    2015-09-23

    We recorded basolateral amygdala (BL) neurons in a seminaturalistic foraging task. Rats had to leave their nest to retrieve food in an elongated arena inhabited by a mechanical predator. There were marked trial-to-trial variations in behavior. After poking their head into the foraging arena and waiting there for a while, rats either retreated to their nest or initiated foraging. Before initiating foraging, rats waited longer on trials that followed failed than successful trials indicating that prior experience influenced behavior. Upon foraging initiation, most principal cells (Type-1) reduced their firing rate, while in a minority (Type-2) it increased. When rats aborted foraging, Type-1 cells increased their firing rates, whereas in Type-2 cells it did not change. Surprisingly, the opposite activity profiles of Type-1 and Type-2 units were also seen in control tasks devoid of explicit threats or rewards. The common correlate of BL activity across these tasks was movement velocity, although an influence of position was also observed. Thus depending on whether rats initiated movement or not, the activity of BL neurons decreased or increased, regardless of whether threat or rewards were present. Therefore, BL activity not only encodes threats or rewards, but is closely related to behavioral output. We propose that higher order cortical areas determine task-related changes in BL activity as a function of reward/threat expectations and internal states. Because Type-1 and Type-2 cells likely form differential connections with the central amygdala (controlling freezing), this process would determine whether movement aimed at attaining food or exploration is suppressed or facilitated. Significance statement: For decades, amygdala research has been dominated by pavlovian and operant conditioning paradigms. This work has led to the view that amygdala neurons signal threats or rewards, in turn causing defensive or approach behaviors. However, the artificial circumstances of conditioning studies bear little resemblance to normal life. In natural conditions, subjects are simultaneously presented with potential threats and rewards, forcing them to engage in a form of risk assessment. We examined this process using a seminaturalistic foraging task. In constant conditions of threats and rewards, amygdala activity could be high or low, depending on the rats' decisions on a given trial. Therefore, amygdala activity does not only encode threats or rewards but is also closely related to behavioral output. Copyright © 2015 the authors 0270-6474/15/3512994-12$15.00/0.

  19. Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.

    PubMed

    Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J

    2018-06-11

    A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.

  20. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    NASA Astrophysics Data System (ADS)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  1. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    PubMed Central

    2011-01-01

    Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861

  2. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.

    PubMed

    Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B

    2011-02-01

    The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  3. Titanium-containing Raney nickel catalyst for hydrogen electrodes in alkaline fuel cell systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, K.; Richter, G.; von Sturm, F.

    In alkaline hydrogen-oxygen fuel cells Raney nickel is employed as catalyst for hydrogen electrodes. The rate of anodic hydrogen conversion has been increased significantly by using a titanium-containing Raney nickel. The properties of the catalyst powder, the influence of particle diameter, and the behavior of electrodes under load are described. Impedance measurements have been used to characterize the electrodes. In fuel cell systems the supported electrodes are normally operated at current densities up to 0.4 A . cm/sup -2/; the overload current density of 1 A . cm/sup -2/ can be maintained for several hours. (15 fig.)

  4. Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations

    PubMed Central

    Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer

    2015-01-01

    In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration. PMID:28793519

  5. Influence of Different Three-Dimensional Open Porous Titanium Scaffold Designs on Human Osteoblasts Behavior in Static and Dynamic Cell Investigations.

    PubMed

    Markhoff, Jana; Wieding, Jan; Weissmann, Volker; Pasold, Juliane; Jonitz-Heincke, Anika; Bader, Rainer

    2015-08-24

    In the treatment of osseous defects micro-structured three-dimensional materials for bone replacement serve as leading structure for cell migration, proliferation and bone formation. The scaffold design and culture conditions are crucial for the limited diffusion distance of nutrients and oxygen. In static culture, decreased cell activity and irregular distribution occur within the scaffold. Dynamic conditions entail physical stimulation and constant medium perfusion imitating physiological nutrient supply and metabolite disposal. Therefore, we investigated the influence of different scaffold configurations and cultivation methods on human osteoblasts. Cells were seeded on three-dimensional porous Ti-6Al-4V scaffolds manufactured with selective laser melting (SLM) or electron beam melting (EBM) varying in porosity, pore size and basic structure (cubic, diagonal, pyramidal) and cultured under static and dynamic conditions. Cell viability, migration and matrix production were examined via mitochondrial activity assay, fluorescence staining and ELISA. All scaffolds showed an increasing cell activity and matrix production under static conditions over time. Expectations about the dynamic culture were only partially fulfilled, since it enabled proliferation alike the static one and enhanced cell migration. Overall, the SLM manufactured scaffold with the highest porosity, small pore size and pyramidal basic structure proved to be the most suitable structure for cell proliferation and migration.

  6. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications. © 2014 Wiley Periodicals, Inc.

  7. Gaussian Curvature Directs Stress Fiber Orientation and Cell Migration.

    PubMed

    Bade, Nathan D; Xu, Tina; Kamien, Randall D; Assoian, Richard K; Stebe, Kathleen J

    2018-03-27

    We show that substrates with nonzero Gaussian curvature influence the organization of stress fibers and direct the migration of cells. To study the role of Gaussian curvature, we developed a sphere-with-skirt surface in which a positive Gaussian curvature spherical cap is seamlessly surrounded by a negative Gaussian curvature draping skirt, both with principal radii similar to cell-length scales. We find significant reconfiguration of two subpopulations of stress fibers when fibroblasts are exposed to these curvatures. Apical stress fibers in cells on skirts align in the radial direction and avoid bending by forming chords across the concave gap, whereas basal stress fibers bend along the convex direction. Cell migration is also strongly influenced by the Gaussian curvature. Real-time imaging shows that cells migrating on skirts repolarize to establish a leading edge in the azimuthal direction. Thereafter, they migrate in that direction. This behavior is notably different from migration on planar surfaces, in which cells typically migrate in the same direction as the apical stress fiber orientation. Thus, this platform reveals that nonzero Gaussian curvature not only affects the positioning of cells and alignment of stress fiber subpopulations but also directs migration in a manner fundamentally distinct from that of migration on planar surfaces. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Past matrix stiffness primes epithelial cells and regulates their future collective migration through a mechanical memory.

    PubMed

    Nasrollahi, Samila; Walter, Christopher; Loza, Andrew J; Schimizzi, Gregory V; Longmore, Gregory D; Pathak, Amit

    2017-11-01

    During morphogenesis and cancer metastasis, grouped cells migrate through tissues of dissimilar stiffness. Although the influence of matrix stiffness on cellular mechanosensitivity and motility are well-recognized, it remains unknown whether these matrix-dependent cellular features persist after cells move to a new microenvironment. Here, we interrogate whether priming of epithelial cells by a given matrix stiffness influences their future collective migration on a different matrix - a property we refer to as the 'mechanical memory' of migratory cells. To prime cells on a defined matrix and track their collective migration onto an adjoining secondary matrix of dissimilar stiffness, we develop a modular polyacrylamide substrate through step-by-step polymerization of different PA compositions. We report that epithelial cells primed on a stiff matrix migrate faster, display higher actomyosin expression, form larger focal adhesions, and retain nuclear YAP even after arriving onto a soft secondary matrix, as compared to their control behavior on a homogeneously soft matrix. Priming on a soft ECM causes a reverse effect. The depletion of YAP dramatically reduces this memory-dependent migration. Our results present a previously unidentified regulation of mechanosensitive collective cell migration by past matrix stiffness, in which mechanical memory depends on YAP activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  10. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  11. Discrete gene replication events drive coupling between the cell cycle and circadian clocks.

    PubMed

    Paijmans, Joris; Bosman, Mark; Ten Wolde, Pieter Rein; Lubensky, David K

    2016-04-12

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push-pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene.

  12. Enantioselective cellular uptake of chiral semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Martynenko, I. V.; Kuznetsova, V. A.; Litvinov, I. K.; Orlova, A. O.; Maslov, V. G.; Fedorov, A. V.; Dubavik, A.; Purcell-Milton, F.; Gun'ko, Yu K.; Baranov, A. V.

    2016-02-01

    The influence of the chirality of semiconductor nanocrystals, CdSe/ZnS quantum dots (QDs) capped with L- and D-cysteine, on the efficiency of their uptake by living Ehrlich Ascite carcinoma cells is studied by spectral- and time-resolved fluorescence microspectroscopy. We report an evident enantioselective process where cellular uptake of the L-Cys QDs is almost twice as effective as that of the D-Cys QDs. This finding paves the way for the creation of novel approaches to control the biological properties and behavior of nanomaterials in living cells.

  13. Impact of Microorganisms on Unsatured Flow within Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daphne L. Stoner; Robert D. Stedtfeld; Tina L. Tyler

    An experiment is described in which a groundwater bacterium, Sphingomonas sp., influenced the dynamics of unsaturated flow at a fracture intersection. A washed cell suspension increased by three-fold the length of time that water pooled at the fracture intersection. On the other hand, the addition of growth substrates resulted in cell growth and the conversion from intermittent to continuous flow behavior at the fracture intersection. The results suggest that microbial properties and processes need to be included with other important variables for understanding unsaturated flow in fractured geomatrices.

  14. Composition-ratio influence on resistive switching behavior of solution-processed InGaZnO-based thin-film.

    PubMed

    Hwang, Yeong-Hyeon; Hwang, Inchan; Cho, Won-Ju

    2014-11-01

    The influence of composition ratio on the bipolar resistive switching behavior of resistive switching memory devices based on amorphous indium-gallium-zinc-oxide (a-IGZO) using the spin-coating process was investigated. To study the stoichiometric effects of the a-IGZO films on device characteristics, four devices with In/Ga/Zn stoichiometries of 1:1:1, 3:1:1, 1:3:1, and 1:1:3 were fabricated and characterized. The 3:1:1 film showed an ohmic behavior and the 1:1:3 film showed a rectifying switching behavior. The current-voltage characteristics of the a-IGZO films with stoichiometries of 1:1:1 and 1:3:1, however, showed a bipolar resistive memory switching behavior. We found that the three-fold increase in the gallium content ratio reduces the reset voltage from -0.9 to - 0.4 V and enhances the current ratio of high to low resistive states from 0.7 x 10(1) to 3 x 10(1). Our results show that the increase in the Ga composition ratio in the a-IGZO-based ReRAM cells effectively improves the device performance and reliability by increasing the initial defect density in the a-IGZO films.

  15. Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass.

    PubMed

    Shah, Furqan A; Brauer, Delia S; Wilson, Rory M; Hill, Robert G; Hing, Karin A

    2014-03-01

    Bioactive glasses are used clinically for bone regeneration, and their bioactivity and cell compatibility are often characterized in vitro, using physiologically relevant test solutions. The aim of this study was to show the influence of varying medium characteristics (pH, composition, presence of proteins) on glass dissolution and apatite formation. The dissolution behavior of a fluoride-containing bioactive glass (BG) was investigated over a period of one week in Eagle's Minimal Essential Medium with Earle's Salts (MEM), supplemented with either, (a) acetate buffer, (b) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, (c) HEPES + carbonate, or (d) HEPES + carbonate + fetal bovine serum. Results show pronounced differences in pH, ion release, and apatite formation over 1 week: Despite its acidic pH (pH 5.8 after BG immersion, as compared to pH 7.4-8.3 for HEPES-containing media), apatite formation was fastest in acetate buffered (HEPES-free) MEM. Presence of carbonate resulted in formation of calcite (calcium carbonate). Presence of serum proteins, on the other hand, delayed apatite formation significantly. These results confirm that the composition and properties of a tissue culture medium are important factors during in vitro experiments and need to be taken into consideration when interpreting results from dissolution or cell culture studies. Copyright © 2013 Wiley Periodicals, Inc.

  16. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe.

    PubMed

    Holschbach, M Allie; Lonstein, Joseph S

    2017-02-01

    The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is influenced by female reproductive state and maternal experience, and that this plasticity is accompanied by changes in DR serotonergic function. Because serotonin is critical for postpartum caregiving behaviors and maternal affective state, plasticity in the DR may contribute to the neurochemical changes necessary for successful motherhood. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. More than a drainage fluid: the role of CSF in signaling in the brain and other effects on brain tissue.

    PubMed

    Illes, Sebastian

    2017-01-01

    Current progress in neuroscience demonstrates that the brain is not an isolated organ and is influenced by the systemic environment and extracerebral processes within the body. In view of this new concept, blood and cerebrospinal fluid (CSF) are important body fluids linking extracerebral and intracerebral processes. For decades, substantial evidence has been accumulated indicating that CSF modulates brain states and influences behavior as well as cognition. This chapter provides an overview of how CSF directly modulates the function of different types of brain cells, such as neurons, neural stem cells, and CSF-contacting cells. Alterations in CSF content occur in most pathologic central nervous system (CNS) conditions. In a classic view, the function of CSF is to drain waste products and detrimental factors derived from diseased brain parenchyma. This chapter presents examples for how intra- and extracerebral pathologic processes lead to alterations in the CSF content. Current knowledge about how pathologically altered CSF influences the functionality of brain cells will be presented. Thereby, it becomes evident that CSF has more than a drainage function and has a causal role for the etiology and pathogenesis of different CNS diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells.

    PubMed

    Aina, Valentina; Bergandi, Loredana; Lusvardi, Gigliola; Malavasi, Gianluca; Imrie, Flora E; Gibson, Iain R; Cerrato, Giuseppina; Ghigo, Dario

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca(10-x)Srx(PO4)6(OH)2, where x=2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl2, in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in HA has a positive effect on MG-63 cells. In contrast, Sr ions alone, at the concentrations released by Sr-HA (1.21-3.24 ppm), influenced neither cell proliferation nor differentiation. Thus the positive effects of Sr in Sr-HA materials are probably due to the co-action of other ions such as Ca and P. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. The efficacy of magnetic field on the thermal behavior of MnFe2O4 nanofluid as a functional fluid through an open-cell metal foam tube

    NASA Astrophysics Data System (ADS)

    Amani, Mohammad; Ameri, Mohammad; Kasaeian, Alibakhsh

    2017-06-01

    In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe2O4 magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe2O4 nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.

  20. Influence of the charge double layer on solid oxide fuel cell stack behavior

    NASA Astrophysics Data System (ADS)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  1. The effects of scaffold architecture and fibrin gel addition on tendon cell phenotype.

    PubMed

    Pawelec, K M; Wardale, R J; Best, S M; Cameron, R E

    2015-01-01

    Development of tissue engineering scaffolds relies on careful selection of pore architecture and chemistry of the cellular environment. Repair of skeletal soft tissue, such as tendon, is particularly challenging, since these tissues have a relatively poor healing response. When removed from their native environment, tendon cells (tenocytes) lose their characteristic morphology and the expression of phenotypic markers. To stimulate tendon cells to recreate a healthy extracellular matrix, both architectural cues and fibrin gels have been used in the past, however, their relative effects have not been studied systematically. Within this study, a combination of collagen scaffold architecture, axial and isotropic, and fibrin gel addition was assessed, using ovine tendon-derived cells to determine the optimal strategy for controlling the proliferation and protein expression. Scaffold architecture and fibrin gel addition influenced tendon cell behavior independently in vitro. Addition of fibrin gel within a scaffold doubled cell number and increased matrix production for all architectures studied. However, scaffold architecture dictated the type of matrix produced by cells, regardless of fibrin addition. Axial scaffolds, mimicking native tendon, promoted a mature matrix, with increased tenomodulin, a marker for mature tendon cells, and decreased scleraxis, an early transcription factor for connective tissue. This study demonstrated that both architectural cues and fibrin gel addition alter cell behavior and that the combination of these signals could improve clinical performance of current tissue engineering constructs.

  2. Sexting: serious problems for youth.

    PubMed

    Ahern, Nancy R; Mechling, Brandy

    2013-07-01

    Youth engaging in sexting (texting plus sex) includes behaviors such as sending, receiving, or forwarding of nude or partially nude images via cell phones. The true prevalence of tweens and teens engaging in sexting is unclear. This might be because of the general secrecy of the behavior, the rapid advances in technology, and the lack of a clear definition that accounts for the added developmental factors (e.g., peak sexual development, impulsivity). Additionally, there is a lack of recognition of the consequences and increased risks of sexting (e.g., shame and guilt, earlier sexual behavior, bullying, incarceration, substance abuse, depression, suicide) for youth as a vulnerable population. The purpose of this article is to examine sexting behaviors among youth by exploring factors specific to today's adolescent population that may influence the prevalence and outcomes of sexting behavior. Implications for nursing practice, including the assessment, intervention, and evaluation that is needed to treat adolescents affected by sexting, are discussed. Copyright 2013, SLACK Incorporated.

  3. Extracellular signaling and multicellularity in Bacillus subtilis.

    PubMed

    Shank, Elizabeth Anne; Kolter, Roberto

    2011-12-01

    Bacillus subtilis regulates its ability to differentiate into distinct, co-existing cell types in response to extracellular signaling molecules produced either by itself, or present in its environment. The production of molecules by B. subtilis cells, as well as their response to these signals, is not uniform across the population. There is specificity and heterogeneity both within genetically identical populations as well as at the strain-level and species-level. This review will discuss how extracellular signaling compounds influence B. subtilis multicellularity with regard to matrix-producing cannibal differentiation, germination, and swarming behavior, as well as the specificity of the quorum-sensing peptides ComX and CSF. It will also highlight how imaging mass spectrometry can aid in identifying signaling compounds and contribute to our understanding of the functional relationship between such compounds and multicellular behavior. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Oxidative and Nitrosative Stress in the Metastatic Microenvironment

    PubMed Central

    Ortega, Ángel L.; Mena, Salvador; Estrela, José M.

    2010-01-01

    Metastases that are resistant to conventional therapies are the main cause of most cancer-related deaths in humans. Tumor cell heterogeneity, which associates with genomic and phenotypic instability, represents a major problem for cancer therapy. Additional factors, such as the attack of immune cells or organ-specific microenvironments, also influence metastatic cell behavior and the response to therapy. Interaction of cancer and endothelial cells in capillary beds, involving mechanical contact and transient adhesion, is a critical step in the initiation of metastasis. This interaction initiates a cascade of activation pathways that involves cytokines, growth factors, bioactive lipids and reactive oxygen and nitrogen species (ROS and RNS) produced by either the cancer cell or the endothelium. Vascular endothelium-derived NO and H2O2 are cytotoxic for the cancer cells, but also help to identify some critical molecular targets that appear essential for survival of invasive metastatic cell subsets. Surviving cancer cells that extravasate and start colonization of an organ or tissue can still be attacked by macrophages and be influenced by specific intraorgan microenvironment conditions. At all steps; from the primary tumor until colonization of a distant organ; metastatic cells undergo a dynamic process of constant adaptations that may lead to the survival of highly resistant malignant cell subsets. In this sequence of molecular events both ROS and RNS play key roles. PMID:24281071

  5. Gap Junction Proteins in the Blood-Brain Barrier Control Nutrient-Dependent Reactivation of Drosophila Neural Stem Cells

    PubMed Central

    Spéder, Pauline; Brand, Andrea H.

    2014-01-01

    Summary Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion. PMID:25065772

  6. Influence of SaOS-2 cells on corrosion behavior of cast Mg-2.0Zn0.98Mn magnesium alloy.

    PubMed

    Witecka, Agnieszka; Yamamoto, Akiko; Święszkowski, Wojciech

    2017-02-01

    In this research, the effect of the presence of living cells (SaOS-2) on in vitro degradation of Mg-2.0Zn-0.98Mn (ZM21) magnesium alloy was examined by two methods simple immersion/cell culture tests and electrochemical measurements (electrochemical impedance spectroscopy and potentiodynamic polarization) under cell culture conditions. In immersion/cell culture tests, when SaOS-2 cells were cultured on ZM21 samples, pH of cell culture medium decreased, therefore weight loss and Mg 2+ ion release from the samples increased. Electrochemical measurements revealed the presence of living cells increased corrosion rate (I corr ) and decreased polarization resistance (R p ) after 48h of incubation. This acceleration of ZM21 corrosion can mainly be attributed to the decrease of medium pH due to cellular metabolic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of Stem Cell Motility In Vivo Based on Immunodetection of Planarian Neoblasts and Tracing of BrdU-Labeled Cells After Partial Irradiation.

    PubMed

    Tasaki, Junichi; Uchiyama-Tasaki, Chihiro; Rouhana, Labib

    2016-01-01

    Planarian flatworms have become an important system for the study of stem cell behavior and regulation in vivo. These organisms are able to regenerate any part of their body upon damage or amputation. A crucial cellular event in the process of planarian regeneration is the migration of pluripotent stem cells (known as neoblasts) to the site of injury. Here we describe two approaches for analyzing migration of planarian stem cells to an area where these have been ablated by localized X-ray irradiation. The first approach involves immunolabeling of mitotic neoblasts, while the second is based on tracing stem cells and their progeny after BrdU incorporation. The use of planarians in studies of cell motility is suitable for the identification of factors that influence stem cell migration in vivo and is amenable to RNA interference or pharmacological screening.

  8. How do heterogeneities in single cell rigidity influence the mechanical behavior at the tissue level?

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Wetzel, Franziska; Fritsch, Anatol; Marchetti, M. Cristina; Manning, M. Lisa; Kaes, Josef

    It has been long recognized that solid tumor tissues are mechanically more rigid than surrounding healthy tissues. However recent experiments have shown that in primary tumor samples from patients with mammary and cervix carcinomas, cells exhibit a broad distribution of rigidities, with a higher fraction of softer and more contractile cells compared to normal tissues. This gives rise to a paradox: does softness emerge from adaptation to mechanical and chemical cues in the external microenvironment, or are soft cells already present inside a primary solid tumor? Motivated by these observations, we study a model of dense tissues that incorporates the experimental data for cell stiffness variations to reveal that, surprisingly, tumors with a significant fraction of very soft cells can still remain rigid. Moreover, in tissues with the observed distributions of cell stiffnesses, softer cells spontaneously self-organize into lines or streams, possibly facilitating cancer metastasis.

  9. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  10. Microscopic Behavior Of Colloidal Particles Under The Effect Of Acoustic Stimulations In The Ultrasonic To Megasonic Range

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Amr I.; Roberts, Peter M.

    2006-05-01

    It is well known that colloid attachment and detachment at solid surfaces are influenced strongly by physico-chemical conditions controlling electric double layer (EDL) and solvation-layer effects. We present experimental observations demonstrating that, in addition, acoustic waves can produce strong effects on colloid/surface interactions that can alter the behavior of colloid and fluid transport in porous media. Microscopic colloid visualization experiments were performed with polystyrene micro-spheres suspended in water in a parallel-plate glass flow cell. When acoustic energy was applied to the cell at frequencies from 500 kHz to 5 MHz, changes in colloid attachment to and detachment from the glass cell surfaces were observed. Quantitative measurements of acoustically-induced detachment of 300-nm microspheres in 0.1M NaCl solution demonstrated that roughly 30% of the colloids that were attached to the glass cell wall during flow alone could be detached rapidly by applying acoustics at frequencies in the range of 0.7 to 1.2 MHz. The remaining attached colloids could not be detached by acoustics. This implies the existence of both "strong" and "weak" attachment sites at the cell surface. Subsequent re-attachment of colloids with acoustics turned off occurred only at new, previously unoccupied sites. Thus, acoustics appears to accelerate simultaneously both the deactivation of existing weak sites where colloids are already attached, and the activation of new weak sites where future attachments can occur. Our observations indicate that acoustics (and, in general, dynamic stress) can influence colloid-colloid and colloid-surface interactions in ways that could cause significant changes in porous-media permeability and mass transport. This would occur due to either buildup or release of colloids present in the porous matrix.

  11. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.

    PubMed

    Wu, J Z; Herzog, W

    2000-03-01

    Experimental evidence suggests that cells are extremely sensitive to their mechanical environment and react directly to mechanical stimuli. At present, it is technically difficult to measure fluid pressure, stress, and strain in cells, and to determine the time-dependent deformation of chondrocytes. For this reason, there are no data in the published literature that show the dynamic behavior of chondrocytes in articular cartilage. Similarly, the dynamic chondrocyte mechanics have not been calculated using theoretical models that account for the influence of cell volumetric fraction on cartilage mechanical properties. In the present investigation, the location- and time-dependent stress-strain state and fluid pressure distribution in chondrocytes in unconfined compression tests were simulated numerically using a finite element method. The technique involved two basic steps: first, cartilage was approximated as a macroscopically homogenized material and the mechanical behavior of cartilage was obtained using the homogenized model; second, the solution of the time-dependent displacements and fluid pressure fields of the homogenized model was used as the time-dependent boundary conditions for a microscopic submodel to obtain average location- and time-dependent mechanical behavior of cells. Cells and extracellular matrix were assumed to be biphasic materials composed of a fluid phase and a hyperelastic solid phase. The hydraulic permeability was assumed to be deformation dependent and the analysis was performed using a finite deformation approach. Numerical tests were made using configurations similar to those of experiments described in the literature. Our simulations show that the mechanical response of chondrocytes to cartilage loading depends on time, fluid boundary conditions, and the locations of the cells within the specimen. The present results are the first to suggest that chondrocyte deformation in a stress-relaxation type test may exceed the imposed system deformation by a factor of 3-4, that chondrocyte deformations are highly dynamic and do not reach a steady state within about 20 min of steady compression (in an unconfined test), and that cell deformations are very much location dependent.

  12. Utilization of Glycosaminoglycans/Proteoglycans as Carriers for Targeted Therapy Delivery

    PubMed Central

    Misra, Suniti; Hascall, Vincent C.; Atanelishvili, Ilia; Moreno Rodriguez, Ricardo; Markwald, Roger R.; Ghatak, Shibnath

    2015-01-01

    The outcome of patients with cancer has improved significantly in the past decade with the incorporation of drugs targeting cell surface adhesive receptors, receptor tyrosine kinases, and modulation of several molecules of extracellular matrices (ECMs), the complex composite of collagens, glycoproteins, proteoglycans, and glycosaminoglycans that dictates tissue architecture. Cancer tissue invasive processes progress by various oncogenic strategies, including interfering with ECM molecules and their interactions with invasive cells. In this review, we describe how the ECM components, proteoglycans and glycosaminoglycans, influence tumor cell signaling. In particular this review describes how the glycosaminoglycan hyaluronan (HA) and its major receptor CD44 impact invasive behavior of tumor cells, and provides useful insight when designing new therapeutic strategies in the treatment of cancer. PMID:26448753

  13. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells.

    PubMed

    Lu, Luyao; Luo, Zhiqiang; Xu, Tao; Yu, Luping

    2013-01-09

    This article describes a cooperative plasmonic effect on improving the performance of polymer bulk heterojunction solar cells. When mixed Ag and Au nanoparticles are incorporated into the anode buffer layer, dual nanoparticles show superior behavior on enhancing light absorption in comparison with single nanoparticles, which led to the realization of a polymer solar cell with a power conversion efficiency of 8.67%, accounting for a 20% enhancement. The cooperative plasmonic effect aroused from dual resonance enhancement of two different nanoparticles. The idea was further unraveled by comparing Au nanorods with Au nanoparticles for solar cell application. Detailed studies shed light into the influence of plasmonic nanostructures on exciton generation, dissociation, and charge recombination and transport inside thin film devices.

  14. Design and characterization of a new bioreactor for continuous ultra-slow uniaxial distraction of a three-dimensional scaffold-free stem cell culture.

    PubMed

    Weiss, S; Henle, P; Roth, W; Bock, R; Boeuf, S; Richter, W

    2011-01-01

    A computer controlled dynamic bioreactor for continuous ultra-slow uniaxial distraction of a scaffold-free three-dimensional (3D) mesenchymal stem cell pellet culture was designed to investigate the influence of stepless tensile strain on behavior of distinct primary cells like osteoblasts, chondroblasts, or stem cells without the influence of an artificial culture matrix. The main advantages of this device include the following capabilities: (1) Application of uniaxial ultra-slow stepless distraction within a range of 0.5-250 μm/h and real-time control of the distraction distance with high accuracy (mean error -3.4%); (2) tension strain can be applied on a 3D cell culture within a standard CO(2) -incubator without use of an artificial culture matrix; (3) possibility of histological investigation without loss of distraction; (4) feasibility of molecular analysis on RNA and protein level. This is the first report on a distraction device capable of applying continuous tensile strain to a scaffold-free 3D cell culture within physiological ranges of motion comparable to distraction ostegenesis in vivo. We expect the newly designed microdistraction device to increase our understanding on the regulatory mechanisms of mechanical strains on the metabolism of stem cells. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  15. Mathematical modeling of a thermovoltaic cell

    NASA Technical Reports Server (NTRS)

    White, Ralph E.; Kawanami, Makoto

    1992-01-01

    A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.

  16. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of electrophysical stimuli regulate stem cell behavior and helps to clarify the potential for graphene substrates in tissue engineering applications.

  17. Somatostatin-Expressing Inhibitory Interneurons in Cortical Circuits

    PubMed Central

    Yavorska, Iryna; Wehr, Michael

    2016-01-01

    Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM) inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons. PMID:27746722

  18. Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation.

    PubMed

    Chuah, Yon Jin; Zhang, Ying; Wu, Yingnan; Menon, Nishanth V; Goh, Ghim Hian; Lee, Ann Charlene; Chan, Vincent; Zhang, Yilei; Kang, Yuejun

    2015-09-01

    Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Glial-released proteins in clonal cultures and their modulation by hydrocortisone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenander, A.T.; de Vellis, J.

    Rat glial C6 cells release into the culture medium a reproducible spectrum of soluble proteins of 12 major peaks over a broad molecular weight range as determined by fractionation on SDS-gel electrophoresis. Exposing C6 monolayers to hydrocortisone (HC) results in a selective alteration in the pattern of glial-released protein (GRP). The selective HC-induced increase or decrease in GRP peaks is specific to HC in that 17 ..beta..-estradiol, dibutyryl cyclic AMP, isoproterenol, and melatonin exert either no detectable or a qualitatively different influence on the GRP pattern. The HC influence is dose dependent over a physiological range of concentrations from 10/supmore » -9/ to 10/sup -6/ M. Differences in culture age and in subclones of C6 can influence both the normal and the HC-induced pattern of GRP. The origin of the GRP is unknown, but pattern reproducibility, viability tests, surface labelling studies, and metabolic labelling studies of soluble and particulate compartment proteins and glycoproteins support the position that cell lysis is not an important source of GRP. More importantly, these studies indicate that GRP and HC-induced changes in GRP pattern are physiologically significant aspects of glial cell behavior.« less

  20. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  1. A Three-Dimensional Computational Model of Collagen Network Mechanics

    PubMed Central

    Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi

    2014-01-01

    Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649

  2. Deficiencies in school readiness skills of children with sickle cell anemia: a preliminary report.

    PubMed

    Chua-Lim, C; Moore, R B; McCleary, G; Shah, A; Mankad, V N

    1993-04-01

    Patients with sickle cell anemia often express myriad clinical signs and symptoms that affect their life-style and academic performance. Certain psychoeducational and psychosocial factors have been shown to influence the academic achievement of older patients with sickle cell anemia. However, studies evaluating the school readiness skills of younger children have not been published. To determine whether sickle cell anemia delays preschool development in children aged 4 to 6 years, we studied 10 affected children and 10 normal subjects matched for age, sex, and race. School readiness was evaluated by the Pediatric Examination of Educational Readiness (PEER), which assess a child's performance in areas of developmental attainment such as visual input, verbal output, and short-term memory. The presence of associated movements (minor neurologic signs) and other areas of behavior such as selective attention, activity level, adaptive behavior, and processing efficiency are also observed. The children with sickle cell anemia scored significantly lower than their normal counterparts in several parameters of the PEER. The McCarthy Scales of Children's Abilities, a standardized psychometric test, showed that these children with sickle cell anemia were within the normal range of intelligence. Magnetic resonance imaging done on three children with sickle cell anemia who scored lowest on the PEER revealed no cerebrovascular infarcts. These preliminary studies demonstrate significant differences in school readiness skills between children with sickle cell anemia and normal subjects.

  3. Technology computer aided design of 29.5% efficient perovskite/interdigitated back contact silicon heterojunction mechanically stacked tandem solar cell for energy-efficient applications

    NASA Astrophysics Data System (ADS)

    Pandey, Rahul; Chaujar, Rishu

    2017-04-01

    A 29.5% efficient perovskite/SiC passivated interdigitated back contact silicon heterojunction (IBC-SiHJ) mechanically stacked tandem solar cell device has been designed and simulated. This is a substantial improvement of 40% and 15%, respectively, compared to the transparent perovskite solar cell (21.1%) and Si solar cell (25.6%) operated individually. The perovskite solar cell has been used as a top subcell, whereas 250- and 25-μm-thick IBC-SiHJ solar cells have been used as bottom subcells. The realistic technology computer aided design analysis has been performed to understand the physical processes in the device and to make reliable predictions of the behavior. The performance of the top subcell has been obtained for different acceptor densities and hole mobility in Spiro-MeOTAD along with the impact of counter electrode work function. To incorporate the effect of material quality, the influence of carrier lifetimes has also been studied for perovskite top and IBC-SiHJ bottom subcells. The optical and electrical behavior of the devices has been obtained for both standalone as well as tandem configuration. Results reported in this study reveal that the proposed four-terminal tandem device may open a new door for cost-effective and energy-efficient applications.

  4. Neurogenesis and Helplessness are Mediated by Controllability in Males but not in Females

    PubMed Central

    Shors, Tracey J.; Mathew, Jason; Sisti, Helene M.; Edgecomb, Carol; Beckoff, Steven; Dalla, Christina

    2009-01-01

    Background Numerous studies have implicated neurogenesis in the hippocampus in animal models of depression, especially those related to controllability and learned helplessness. Here, we tested the hypothesis that uncontrollable, but not controllable stress would reduce cell proliferation in the hippocampus of male and female rats, and would relate to the expression of helplessness behavior. Methods To manipulate controllability, groups of male and female rats were trained in one session (acute stress) or over seven sessions (repeated stress) to escape a footshock, while yoked controls could not escape, but were exposed to the same amount of stress. Cell proliferation was assessed with immunohistochemistry of BrdU and immunofluorescence of BrdU and NeuN. Separate groups were exposed to either controllable or uncontrollable stress and their ability to learn to escape during training on a more difficult task was used as a behavioral measure of helplessness. Results Acute stress reduced cell proliferation in males, but did not affect proliferation in the female hippocampus. When animals were given the opportunity to learn to control the stress over days, males produced more cells than the yoked males without control. Repeated training with controllable stress did not influence proliferation in females. Under all conditions, males were more likely than females to express helplessness behavior, even males that were not previously stressed. Conclusions The modulation of neurogenesis by controllability was evident in males but not in females, as was the expression of helplessness behavior, despite the fact that men are less likely than women to experience depression. PMID:17306770

  5. Neurogenesis and helplessness are mediated by controllability in males but not in females.

    PubMed

    Shors, Tracey J; Mathew, Jason; Sisti, Helene M; Edgecomb, Carol; Beckoff, Steven; Dalla, Christina

    2007-09-01

    Numerous studies have implicated neurogenesis in the hippocampus in animal models of depression, especially those related to controllability and learned helplessness. Here, we tested the hypothesis that uncontrollable but not controllable stress would reduce cell proliferation in the hippocampus of male and female rats and would relate to the expression of helplessness behavior. To manipulate controllability, groups of male and female rats were trained in one session (acute stress) or over seven sessions (repeated stress) to escape a footshock, whereas yoked control subjects could not escape but were exposed to the same amount of stress. Cell proliferation was assessed with immunohistochemistry of bromodeoxyuridine (BrdU) and immunofluorescence of BrdU and neuronal nuclei (NeuN). Separate groups were exposed to either controllable or uncontrollable stress, and their ability to learn to escape during training on a more difficult task was used as a behavioral measure of helplessness. Acute stress reduced cell proliferation in males but did not affect proliferation in the female hippocampus. When animals were given the opportunity to learn to control the stress over seven days, males produced more cells than the yoked males without control. Repeated training with controllable stress did not influence proliferation in females. Under all conditions, males were more likely than females to express helplessness behavior, even males that were not previously stressed. The modulation of neurogenesis by controllability was evident in males but not in females, as was the expression of helplessness behavior, despite the fact that men are less likely than women to experience depression.

  6. Influence of Mixed Solvent on the Electrochemical Property of Hybrid Capacitor.

    PubMed

    Lee, Byunggwan; Yoon, J R

    2015-11-01

    The hybrid capacitors (2245 size, cylindrical type) were prepared by using activated carbon cathode and Li4Ti5O12 anode. In order to improve the cell operation at high temperature range, propylene carbonate (PC) was used in combination with acetonitrile (AN) with volume ratio of 7:3, 5:5, and 3:7, respectively. We investigated the electrochemical behavior of the hybrid capacitors that enabled cell operation with stability at high temperature. The organic electrolyte of hybrid capacitor containing PC and AN with a volume ratio 7:3 intended to exhibit highly reversible cycle performance with good capacity retention at 60 degrees C after 2200 cycles. From this study, it has been found that the very strong influence of the solvent nature on the characteristics of hybrid capacitor, and the difference in performance associated with the two solvents.

  7. Study of surface phenomena in biomaterials: The influence of physical factors

    NASA Astrophysics Data System (ADS)

    Sachelarie, Liliana; Vasiliu, Mihaela Papusa; Ciobanu, Catalina

    2015-10-01

    This study's purpose is pointing out the phenomenon that occurs at time of interaction between the tissue with implant. The materials used are Ti and its alloys. The oral tissue must be compatible with the materials used in surgical implant to human body. The bio-materials surface behavior is influenced by physical characteristics. The methods we use show a number of bio-compatibility aspects. The success of an implant in a hard tissue depends not only on the initial attachment and the osteogenic cells consecutive proliferation, but also on their capacity to create a new bone.

  8. TOF-SIMS investigation of metallic material surface after culturing cells

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Hiromoto, Sachiko; Hanawa, Takao; Kudo, Masahiro

    2004-06-01

    Biomolecules such as extracellular matrix and adhesive proteins generated by adhered cells on metallic specimens were characterized by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to clarify the interaction between cells and metal surfaces. Since composition and structure of the extracellular matrix depends on conditions of cells, characterization of the interaction between cells and metallic specimens is important in order to evaluate the biocompatibility and the degradation behavior of metallic biomaterials and artificial organs. Moreover, the obtained data can contribute to the development of new metallic biomaterials. TOF-SIMS spectra were analyzed by means of mutual information described by information theory and principal components analysis (PCA). The results show that cells have great influence on adsorption of biomolecules on metallic materials because they change surface conditions of the materials. Thus TOF-SIMS is a useful technique to investigate the interaction between metallic biomaterials and cells.

  9. Rheological behavior of mammalian cells.

    PubMed

    Stamenović, D

    2008-11-01

    Rheological properties of living cells determine how cells interact with their mechanical microenvironment and influence their physiological functions. Numerous experimental studies have show that mechanical contractile stress borne by the cytoskeleton and weak power-law viscoelasticity are governing principles of cell rheology, and that the controlling physics is at the level of integrative cytoskeletal lattice properties. Based on these observations, two concepts have emerged as leading models of cytoskeletal mechanics. One is the tensegrity model, which explains the role of the contractile stress in cytoskeletal mechanics, and the other is the soft glass rheology model, which explains the weak power-law viscoelasticity of cells. While these two models are conceptually disparate, the phenomena that they describe are often closely associated in living cells for reasons that are largely unknown. In this review, we discuss current understanding of cell rheology by emphasizing the underlying biophysical mechanism and critically evaluating the existing rheological models.

  10. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, April Z.; Wan, Kai-tak

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface,more » to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.« less

  11. Behavioral deficits induced by third-trimester equivalent alcohol exposure in male C57BL/6J mice are not associated with reduced adult hippocampal neurogenesis but are still rescued with voluntary exercise.

    PubMed

    Hamilton, G F; Bucko, P J; Miller, D S; DeAngelis, R S; Krebs, C P; Rhodes, J S

    2016-11-01

    Prenatal alcohol exposure can produce permanent alterations in brain structure and profound behavioral deficits. Mouse models can help discover mechanisms and identify potentially useful interventions. This study examined long-term influences of either a single or repeated alcohol exposure during the third-trimester equivalent on survival of new neurons in the hippocampus, behavioral performance on the Passive avoidance and Rotarod tasks, and the potential role of exercise as a therapeutic intervention. C57BL/6J male mice received either saline or 5g/kg ethanol split into two s.c. injections, two hours apart, on postnatal day (PD)7 (Experiment 1) or on PD5, 7 and 9 (Experiment 2). All mice were weaned on PD21 and received either a running wheel or remained sedentary from PD35-PD80/81. From PD36-45, mice received i.p. injections of 50mg/kg bromodeoxyuridine (BrdU) to label dividing cells. Behavioral testing occurred between PD72-79. Number of surviving BrdU+ cells and immature neurons (doublecortin; DCX+) was measured at PD80-81. Alcohol did not affect number of BrdU+ or DCX+ cells in either experiment. Running significantly increased number of BrdU+ and DCX+ cells in both treatment groups. Alcohol-induced deficits on Rotarod performance and acquisition of the Passive avoidance task (Day 1) were evident only in Experiment 2 and running rescued these deficits. These data suggest neonatal alcohol exposure does not result in long-term impairments in adult hippocampal neurogenesis in the mouse model. Three doses of ethanol were necessary to induce behavioral deficits. Finally, the mechanisms by which exercise ameliorated the neonatal alcohol induced behavioral deficits remain unknown. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. SIFamide Translates Hunger Signals into Appetitive and Feeding Behavior in Drosophila.

    PubMed

    Martelli, Carlotta; Pech, Ulrike; Kobbenbring, Simon; Pauls, Dennis; Bahl, Britta; Sommer, Mirjam Vanessa; Pooryasin, Atefeh; Barth, Jonas; Arias, Carmina Warth Perez; Vassiliou, Chrystalleni; Luna, Abud Jose Farca; Poppinga, Haiko; Richter, Florian Gerhard; Wegener, Christian; Fiala, André; Riemensperger, Thomas

    2017-07-11

    Animal behavior is, on the one hand, controlled by neuronal circuits that integrate external sensory stimuli and induce appropriate motor responses. On the other hand, stimulus-evoked or internally generated behavior can be influenced by motivational conditions, e.g., the metabolic state. Motivational states are determined by physiological parameters whose homeostatic imbalances are signaled to and processed within the brain, often mediated by modulatory peptides. Here, we investigate the regulation of appetitive and feeding behavior in the fruit fly, Drosophila melanogaster. We report that four neurons in the fly brain that release SIFamide are integral elements of a complex neuropeptide network that regulates feeding. We show that SIFamidergic cells integrate feeding stimulating (orexigenic) and feeding suppressant (anorexigenic) signals to appropriately sensitize sensory circuits, promote appetitive behavior, and enhance food intake. Our study advances the cellular dissection of evolutionarily conserved signaling pathways that convert peripheral metabolic signals into feeding-related behavior. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Hilar Mossy Cell Degeneration Causes Transient Dentate Granule Cell Hyperexcitability and Impaired Pattern Separation

    PubMed Central

    Jinde, Seiichiro; Zsiros, Veronika; Jiang, Zhihong; Nakao, Kazuhito; Pickel, James; Kohno, Kenji; Belforte, Juan E.; Nakazawa, Kazu

    2012-01-01

    Summary Although excitatory mossy cells of the hippocampal hilar region are known to project both to dentate granule cells and to interneurons, it is as yet unclear whether mossy cell activity’s net effect on granule cells is excitatory or inhibitory. To explore their influence on dentate excitability and hippocampal function, we generated a conditional transgenic mouse line, using the Cre/loxP system, in which diphtheria toxin receptor was selectively expressed in mossy cells. One week after injecting toxin into this line, mossy cells throughout the longitudinal axis were degenerated extensively, theta wave power of dentate local field potentials increased during exploration, and deficits occurred in contextual discrimination. By contrast, we detected no epileptiform activity, spontaneous behavioral seizures, or mossy-fiber sprouting 5–6 weeks after mossy cell degeneration. These results indicate that the net effect of mossy cell excitation is to inhibit granule cell activity and enable dentate pattern separation. PMID:23259953

  14. Dimensions of Peer Influences and Their Relationship to Adolescents' Aggression, Other Problem Behaviors and Prosocial Behavior.

    PubMed

    Farrell, Albert D; Thompson, Erin L; Mehari, Krista R

    2017-06-01

    Although peers are a major influence during adolescence, the relative importance of specific mechanisms of peer influence on the development of problem behavior is not well understood. This study investigated five domains of peer influence and their relationships to adolescents' problem and prosocial behaviors. Self-report and teacher ratings were obtained for 1787 (53 % female) urban middle school students. Peer pressure for fighting and friends' delinquent behavior were uniquely associated with aggression, drug use and delinquent behavior. Friends' prosocial behavior was uniquely associated with prosocial behavior. Friends' support for fighting and friends' support for nonviolence were not as clearly related to behavior. Findings were generally consistent across gender. This study highlights the importance of studying multiple aspects of peer influences on adolescents' behavior.

  15. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    NASA Astrophysics Data System (ADS)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with anisotropic nanoscale topography with dimensions that vary from the micron to the nanoscale. We show that integrin binding, syndecan binding, and topographic length scale each independently influence epithelial cell response to nanoscale features, lending a high degree of control over cell morphologic responses.

  16. Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide).

    PubMed

    Wan, Yuqing; Wang, Yong; Liu, Zhimin; Qu, Xue; Han, Buxing; Bei, Jianzhong; Wang, Shenguo

    2005-07-01

    The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and subsequent proliferation. Micro-fabrication technology was used to generate specific topography to investigate the relationship between the cells and surface. In this study the pits-patterned surfaces of polystyrene (PS) film with diameters 2.2 and 0.45 microm were prepared by phase-separation, and the corresponding scale islands-patterned PLLA surface was prepared by a molding technique using the pits-patterned PS as a template. The adhesion and proliferation behavior of OCT-1 osteoblast-like cells morphology on the pits- and islands-patterned surface were characterized by SEM observation, cell attachment efficiency measurement and MTT assay. The results showed that the cell adhesion could be enhanced on PLLA and PS surface with nano-scale and micro-scale roughness compared to the smooth surfaces of the PLLA and PS. The OCT-1 osteoblast-like cells could grow along the surface with two different size islands of PLLA and grow inside the micro-scale pits of the PS. However, the proliferation of cells on the micro- and nano-scale patterned surface has not been enhanced compared with the controlled smooth surface.

  17. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer.

    PubMed

    He, Yeyuan; Liu, Chunyu; Li, Jinfeng; Zhang, Xinyuan; Li, Zhiqi; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2015-07-29

    This Research Article describes a cooperative plasmonic effect on improving the performance of organic solar cells. When Au nanorods(NRs) are incorporated into the active layers, the designed project shows superior enhanced light absorption behavior comparing with control devices, which leads to the realization of organic solar cell with power conversion efficiency of 6.83%, accounting for 18.9% improvement. Further investigations unravel the influence of plasmonic nanostructures on light trapping, exciton generation, dissociation, and charge recombination and transport inside the thin films devices. Moreover, the introduction of high-conductivity Au NRs improves electrical conductivity of the whole device, which contributes to the enhanced fill factor.

  18. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology.

    PubMed

    Nilsen, Kari-Anne; Ihle, Kate E; Frederick, Katy; Fondrk, M Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V

    2011-05-01

    Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain.

  19. Insulin-like peptide genes in honey bee fat body respond differently to manipulation of social behavioral physiology

    PubMed Central

    Nilsen, Kari-Anne; Ihle, Kate E.; Frederick, Katy; Fondrk, M. Kim; Smedal, Bente; Hartfelder, Klaus; Amdam, Gro V.

    2011-01-01

    SUMMARY Nutrient sensitive insulin-like peptides (ILPs) have profound effects on invertebrate metabolism, nutrient storage, fertility and aging. Many insects transcribe ILPs in specialized neurosecretory cells at changing levels correlated with life history. However, the major site of insect metabolism and nutrient storage is not the brain, but rather the fat body, where functions of ILP expression are rarely studied and poorly understood. Fat body is analogous to mammalian liver and adipose tissue, with nutrient stores that often correlate with behavior. We used the honey bee (Apis mellifera), an insect with complex behavior, to test whether ILP genes in fat body respond to experimentally induced changes of behavioral physiology. Honey bee fat body influences endocrine state and behavior by secreting the yolk protein precursor vitellogenin (Vg), which suppresses lipophilic juvenile hormone and social foraging behavior. In a two-factorial experiment, we used RNA interference (RNAi)-mediated vg gene knockdown and amino acid nutrient enrichment of hemolymph (blood) to perturb this regulatory module. We document factor-specific changes in fat body ilp1 and ilp2 mRNA, the bee's ILP-encoding genes, and confirm that our protocol affects social behavior. We show that ilp1 and ilp2 are regulated independently and differently and diverge in their specific expression-localization between fat body oenocyte and trophocyte cells. Insect ilp functions may be better understood by broadening research to account for expression in fat body and not only brain. PMID:21490257

  20. The effect of a national mastitis control program on the attitudes, knowledge, and behavior of farmers in the Netherlands.

    PubMed

    Jansen, J; van Schaik, G; Renes, R J; Lam, T J G M

    2010-12-01

    Over the years, much effort has been put into implementing mastitis control programs in herds. To further improve utilization of such programs, there needs to be an understanding of the attitudes, knowledge, and behavior of farmers regarding udder health, and the way this can be influenced by mastitis control programs. This study aimed to explore the effect of a national mastitis control program on Dutch farmers' attitudes, knowledge, and behavior regarding mastitis. A total of 378 dairy farmers completed a survey on attitudes, knowledge, and behavior regarding mastitis before the start of a national mastitis control program in 2004, and 204 completed a similar survey in the final year of the program (2009). Although the average annual bulk milk somatic cell count (BMSCC) remained the same, the farmers' self-reported attitudes, knowledge, and behavior changed significantly. The problem level of BMSCC decreased from 285,000 cells/mL in 2004 to 271,000 cells/mL in 2009. More farmers perceived that they had sufficient knowledge about the prevention of mastitis (34% in 2004 vs. 53% in 2009) and they more often perceived that they knew the cause of a mastitis problem (25% in 2004 vs. 37% in 2009). The use of gloves for milking increased from 15 to 46%, the use of a standardized mastitis treatment protocol increased from 7 to 34%, and freestalls were cleaned more often (2.28 vs. 2.51 times/d) in 2009 compared with 2004. Most changes in attitudes, knowledge, and behavior did not differ between groups of dairy farmers whose herds had an initially low (≤ 162,000 cells/mL), medium (163,000 to 205,000 cells/mL), or high (>206,000 cells/mL) BMSCC. The high BMSCC group significantly decreased their annual BMSCC level by 15,000 cells/mL. Regression analysis showed that the decrease in BMSCC was associated with a change in farmers' perceptions (e.g., increased perceived knowledge about the effect of the milking machine on mastitis) and with a change in certain management practices (e.g., disinfecting all teats after milking). The results showed that a national mastitis control program affected the attitudes, knowledge, and behavior of farmers regarding mastitis and could contribute to udder health improvement in the long term. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Direct and Indirect Influence of Altruistic Behavior in a Social Network.

    PubMed

    Liu, Pei-Pei; Safin, Vasiliy; Yang, Barry; Luhmann, Christian C

    2015-01-01

    Prior research has suggested that recipients of generosity behave more generously themselves (a direct social influence). In contrast, there is conflicting evidence about the existence of indirect influence (i.e., whether interacting with a recipient of generosity causes one to behave more generously), casting doubt on the possibility that altruistic behavior can cascade through social networks. The current study investigated how far selfish and generous behavior can be transmitted through social networks and the cognitive mechanisms that underlie such transmission. Participants played a sequence of public goods games comprising a chain network. This network is advantageous because it permits only a single, unambiguous path of influence. Furthermore, we experimentally manipulated the behavior of the first link in the chain to be either generous or selfish. Results revealed the presence of direct social influence, but no evidence for indirect influence. Results also showed that selfish behavior exerted a substantially greater influence than generous behavior. Finally, expectations about future partners' behavior strongly mediated the observed social influence, suggesting an adaptive basis for such influence.

  2. Hypoxia preconditioning of mesenchymal stromal cells enhances PC3 cell lymphatic metastasis accompanied by VEGFR-3/CCR7 activation.

    PubMed

    Huang, Xin; Su, Kunkai; Zhou, Limin; Shen, Guofang; Dong, Qi; Lou, Yijia; Zheng, Shu

    2013-12-01

    Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches. © 2013 Wiley Periodicals, Inc.

  3. Single cells from human primary colorectal tumors exhibit polyfunctional heterogeneity in secretions of ELR+ CXC chemokines.

    PubMed

    Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher

    2013-10-01

    Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.

  4. Changes in Sexual Behavior of Orchidectomized Rats Under Influence of Allotransplantation of Testicular Interstitial Cell Suspension.

    PubMed

    Deng, Bo; Bondarenko, Tatyana; Pakhomov, Oleksandr

    2017-05-09

    Transplantation of hormone-producing cells is an experimental endocrine dysfunction treatment. The present study investigated the effects of orchidectomy (OE) and transplantation of interstitial cell suspension (ICS) on rat sexual behavior. Adult experimental animals were divided into two populations. One of these populations had sexual experience before the experiment and the other did not. Each population was divided into three groups: control group and two orchidectomized groups. One of the orchidectomized groups was treated with ICS, and the other was treated with the vehicle. The changes in the sexual behavior were investigated on the following parameters: mount latency (ML), intromission latency (IL), ejaculation latency (EL), mount frequency (MF), intromission frequency (IF), copulatory efficacy (CE), and IF/EL ratio. The investigation of these changes lasted 4 weeks after ICS transplantation. The parameters of sexual behavior reflected a decrease in sexual function after OE at the beginning of the observation, especially for the animals that did not have a sexual experience. However, it was shown that sexual activity increased in the following 4 weeks. We have indicated that the loss of gonads attenuated the capacity to acquire sexual experience; nonetheless, it did not mean that the animals completely lost this capacity. Transplantation of ICS facilitated the maintenance of male sexual behavior after OE, fractionally enlarged the size of regressed seminal vesicles of the animals, and increased the free testosterone (T) level. These findings suggest the ICS can be considered as a temporal source of androgens, which can facilitate a restoration of sexual activity.

  5. Positive and Negative Peer Influence in Residential Care.

    PubMed

    Huefner, Jonathan C; Smith, Gail L; Stevens, Amy L

    2017-10-13

    The potential for negative peer influence has been well established in research, and there is a growing interest in how positive peer influence also impacts youth. No research, however, has concurrently examined positive and negative peer influence in the context of residential care. Clinical records for 886 residential care youth were used in a Hierarchical Linear Model analysis to examine the impact of negative and positive peer influence on naturally occurring patterns of serious problem behavior over time. Negative peer influence, where the majority of youth in a home manifested above the average number of serious behavior problems, occurred 13.7% of the time. Positive peer influence, where the majority of youth manifested no serious problem behaviors for the month, occurred 47.7% of the time. Overall, youth problem behavior improved over time. There were significantly lower rates of serious problem behavior in target youth during positive peer influence months. Conversely, there were significantly higher rates of serious problem behaviors in target youth during negative peer influence months. Negative peer influence had a relatively greater impact on target peers' serious behavior problems than did positive peer influence. Caregiver experience significantly reduced the impact of negative peer influence, but did not significantly augment positive peer influence. Months where negative peer influence was combined with inexperienced caregivers produced the highest rates of serious problem behavior. Our results support the view that residential programs for troubled youth need to create circumstances that promote positive and control for negative peer influence.

  6. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: A too simplistic explanation that does not take into account the nanoparticle protein corona.

    PubMed

    Forest, Valérie; Pourchez, Jérémie

    2017-01-01

    The internalization of nanoparticles by cells (and more broadly the nanoparticle/cell interaction) is a crucial issue both for biomedical applications (for the design of nanocarriers with enhanced cellular uptake to reach their intracellular therapeutic targets) and in a nanosafety context (as the internalized dose is one of the key factors in cytotoxicity). Many parameters can influence the nanoparticle/cell interaction, among them, the nanoparticle physico-chemical features, and especially the surface charge. It is generally admitted that positive nanoparticles are more uptaken by cells than neutral or negative nanoparticles. It is supposedly due to favorable electrostatic interactions with negatively charged cell membrane. However, this theory seems too simplistic as it does not consider a fundamental element: the nanoparticle protein corona. Indeed, once introduced in a biological medium nanoparticles adsorb proteins at their surface, forming a new interface defining the nanoparticle "biological identity". This adds a new level of complexity in the interactions with biological systems that cannot be any more limited to electrostatic binding. These interactions will then influence cell behavior. Based on a literature review and on an example of our own experience the parameters involved in the nanoparticle protein corona formation as well as in the nanoparticle/cell interactions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis.

    PubMed

    Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita

    2014-02-25

    Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.

  8. Cytocompatibility testing of cell culture modules fabricated from specific candidate biomaterials using injection molding.

    PubMed

    Hiebl, Bernhard; Lützow, Karola; Lange, Maik; Jung, Friedrich; Seifert, Barbara; Klein, Frank; Weigel, Thomas; Kratz, Karl; Lendlein, Andreas

    2010-07-01

    Most polymers used in clinical applications today are materials that have been developed originally for application areas other than biomedicine. Testing the cell- and tissue-compatibility of novel materials in vitro and in vivo is of key importance for the approval of medical devices and is regulated according to the Council Directive 93/42/EEC of the European communities concerning medical devices. In the standardized testing methods the testing sample is placed in commercially available cell culture plates, which are often made from polystyrene. Thus not only the testing sample itself influences cell behavior but also the culture vessel material. In order to exclude this influence, a new system for cell testing will be presented allowing a more precise and systematic investigation by preparing tailored inserts which are made of the testing material. Inserts prepared from polystyrene, polycarbonate and poly(ether imide) were tested for their cytotoxity and cell adherence. Furthermore a proof of principle concerning the preparation of inserts with a membrane-like surface structure and its surface modification was established. Physicochemical investigations revealed a similar morphology and showed to be very similar to the findings to analogous preparations and modifications of flat-sheet membranes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Lattice-cell orientation disorder in complex spinel oxides

    DOE PAGES

    Chen, Yan; Cheng, Yongqiang; Li, Juchuan; ...

    2016-11-07

    Transition metal (TM) substitution has been widely applied to change complex oxides crystal structures to create high energy density electrodes materials in high performance rechargeable lithium-ion batteries. The complex local structure in the oxides imparted by the TM arrangement often impacts their electrochemical behaviors by influencing the diffusion and intercalation of lithium. Here, a major discrepancy is demonstrated between the global and local structures of the promising high energy density and high voltage LiNi 0.5Mn 1.5O 4 spinel cathode material that contradicts the existing structural models. A new single-phase lattice-cell orientation disorder model is proposed as the mechanism for themore » local ordering that explains how the inhomogeneous local distortions and the coherent connection give rise to the global structure in the complex oxide. As a result, the single-phase model is consistent with the electrochemical behavior observation of the materials.« less

  10. Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride

    NASA Astrophysics Data System (ADS)

    Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong

    2016-05-01

    Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.

  11. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    PubMed

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve, ∼40kPa for muscle, ∼80kPa for cartilage, and ∼190kPa for bone in our hydrogel system). Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Diffusion of GPI-anchored proteins is influenced by the activity of dynamic cortical actin

    PubMed Central

    Saha, Suvrajit; Lee, Il-Hyung; Polley, Anirban; Groves, Jay T.; Rao, Madan; Mayor, Satyajit

    2015-01-01

    Molecular diffusion at the surface of living cells is believed to be predominantly driven by thermal kicks. However, there is growing evidence that certain cell surface molecules are driven by the fluctuating dynamics of cortical cytoskeleton. Using fluorescence correlation spectroscopy, we measure the diffusion coefficient of a variety of cell surface molecules over a temperature range of 24–37°C. Exogenously incorporated fluorescent lipids with short acyl chains exhibit the expected increase of diffusion coefficient over this temperature range. In contrast, we find that GPI-anchored proteins exhibit temperature-independent diffusion over this range and revert to temperature-dependent diffusion on cell membrane blebs, in cells depleted of cholesterol, and upon acute perturbation of actin dynamics and myosin activity. A model transmembrane protein with a cytosolic actin-binding domain also exhibits the temperature-independent behavior, directly implicating the role of cortical actin. We show that diffusion of GPI-anchored proteins also becomes temperature dependent when the filamentous dynamic actin nucleator formin is inhibited. However, changes in cortical actin mesh size or perturbation of branched actin nucleator Arp2/3 do not affect this behavior. Thus cell surface diffusion of GPI-anchored proteins and transmembrane proteins that associate with actin is driven by active fluctuations of dynamic cortical actin filaments in addition to thermal fluctuations, consistent with expectations from an “active actin-membrane composite” cell surface. PMID:26378258

  13. The Cognitive Impact of Past Behavior: Influences on Beliefs, Attitudes, and Future Behavioral Decisions

    PubMed Central

    Albarracín, Dolores; Wyer, Robert S.

    2016-01-01

    To study the processes by which past behavior influences future behavior, participants were led to believe that without being aware of it, they had expressed either support for or opposition to the institution of comprehensive exams. Judgment and response time data suggested that participants’ perceptions of their past behavior often influenced their decisions to repeat the behavior. This influence was partly the result of cognitive activity that influenced participants’ cognitions about specific behavioral consequences and the attitude they based on these cognitions. More generally, however, feedback about past behavior had a direct effect on participants’ attitudes and ultimate behavioral decisions that was independent of the outcome-specific cognitions. Results are discussed in terms of their implications for biased scanning of memory, dissonance reduction, self-perception, and the use of behavior as a heuristic. PMID:10909874

  14. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy.

    PubMed

    Connell, Jodi L; Kim, Jiyeon; Shear, Jason B; Bard, Allen J; Whiteley, Marvin

    2014-12-23

    Microbes frequently live in nature as small, densely packed aggregates containing ∼10(1)-10(5) cells. These aggregates not only display distinct phenotypes, including resistance to antibiotics, but also, serve as building blocks for larger biofilm communities. Aggregates within these larger communities display nonrandom spatial organization, and recent evidence indicates that this spatial organization is critical for fitness. Studying single aggregates as well as spatially organized aggregates remains challenging because of the technical difficulties associated with manipulating small populations. Micro-3D printing is a lithographic technique capable of creating aggregates in situ by printing protein-based walls around individual cells or small populations. This 3D-printing strategy can organize bacteria in complex arrangements to investigate how spatial and environmental parameters influence social behaviors. Here, we combined micro-3D printing and scanning electrochemical microscopy (SECM) to probe quorum sensing (QS)-mediated communication in the bacterium Pseudomonas aeruginosa. Our results reveal that QS-dependent behaviors are observed within aggregates as small as 500 cells; however, aggregates larger than 2,000 bacteria are required to stimulate QS in neighboring aggregates positioned 8 μm away. These studies provide a powerful system to analyze the impact of spatial organization and aggregate size on microbial behaviors.

  15. Influence of ageing treatment on microstructure, mechanical and bio-corrosion properties of Mg-Dy alloys.

    PubMed

    Yang, Lei; Huang, Yuanding; Feyerabend, Frank; Willumeit, Regine; Kainer, Karl Ulrich; Hort, Norbert

    2012-09-01

    Mg-Dy alloys have shown to be promising for medical applications. In order to investigate the influence of ageing treatment on their mechanical and corrosion properties, three Mg-xDy alloys (x=10, 15, 20 wt%) were prepared. Their microstructure, mechanical and corrosion behavior were investigated. The results indicate that ageing at 250 °C has little influence on the mechanical and corrosion properties. In contrast, ageing at 200 °C significantly increases the yield strength, and reduces the ductility. After ageing at 200 °C, the corrosion rate of Mg-20Dy alloy increases largely in 0.9 wt% NaCl solution, but remains unchanged in cell culture medium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Molecular insights into human daily behavior

    PubMed Central

    Brown, Steven A.; Kunz, Dieter; Dumas, Amelie; Westermark, Pål O.; Vanselow, Katja; Tilmann-Wahnschaffe, Amely; Herzel, Hanspeter; Kramer, Achim

    2008-01-01

    Human beings exhibit wide variation in their timing of daily behavior. We and others have suggested previously that such differences might arise because of alterations in the period length of the endogenous human circadian oscillator. Using dermal fibroblast cells from skin biopsies of 28 subjects of early and late chronotype (11 “larks” and 17 “owls”), we have studied the circadian period lengths of these two groups, as well as their ability to phase-shift and entrain to environmental and chemical signals. We find not only period length differences between the two classes, but also significant changes in the amplitude and phase-shifting properties of the circadian oscillator among individuals with identical “normal” period lengths. Mathematical modeling shows that these alterations could also account for the extreme behavioral phenotypes of these subjects. We conclude that human chronotype may be influenced not only by the period length of the circadian oscillator, but also by cellular components that affect its amplitude and phase. In many instances, these changes can be studied at the molecular level in primary dermal cells. PMID:18227513

  17. Investigation of the Behavior of the Co C Eutectic Fixed Point

    NASA Astrophysics Data System (ADS)

    Girard, F.; Battuello, M.; Florio, M.

    2007-12-01

    The behavior of the Co C eutectic fixed point was investigated at INRIM. Several cells of different design and volume, and filled with cobalt of different purity were constructed and investigated with both Pt/Pd thermocouples and radiation thermometers. The melting behavior was investigated with respect to the melting rate, the pre-freezing rate, and the annealing time. The melting temperatures, as defined, were not significantly affected by the different testing conditions, even if the shape and duration of the plateaux were influenced. Several tens of melt and freeze cycles were performed with the different cells. The spread in the results for all of the different conditions was very limited in extent, giving rise to a standard deviation of less than 0.04 °C; a repeatability of better than 0.02 °C was found with both Pt/Pd thermocouples and radiation thermometers. The results of our measurements are encouraging and confirm the suitability of Co C as a reference point for the high-temperature range in a possible future temperature scale. Investigations of long-term stability remain ongoing.

  18. A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior.

    PubMed

    van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M

    2016-04-01

    The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.

  19. Effect of North Carolina's restriction on teenage driver cell phone use two years after implementation.

    PubMed

    Goodwin, Arthur H; O'Brien, Natalie P; Foss, Robert D

    2012-09-01

    A majority of states now restrict teenagers from using a mobile communication device while driving. The effect of these restrictions is largely unknown. In a previous study, we found North Carolina's teenage driver cell phone restriction had little influence on young driver behavior four months after the law took effect (Foss et al., 2009). The goal of the present study was to examine the longer-term effect of North Carolina's cell phone restriction. It was expected that compliance with the restriction would increase, as awareness of the restriction grew over time. Teenagers were observed at high schools in North Carolina approximately two years after the law was implemented. Observations were also conducted in South Carolina, which did not have a cell phone restriction. In both states, there was a broad decrease in cell phone use. A logistic regression analysis showed the decrease in cell phone use did not significantly differ between the two states. Although hand-held cell phone use decreased, there was an increase in the likelihood that drivers in North Carolina were observed physically manipulating a phone. Finally, a mail survey of teenagers in North Carolina showed awareness for the cell phone restriction now stands at 78% among licensed teens. Overall, the findings suggest North Carolina's cell phone restriction has had no long-term effect on the behavior of teenage drivers. Moreover, it appears many teenage drivers may be shifting from talking on a phone to texting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    2013-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  1. Lab-On-Chip Clinorotation System for Live-Cell Microscopy Under Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Yew, Alvin G.; Atencia, Javier; Chinn, Ben; Hsieh, Adam H.

    1980-01-01

    Cells in microgravity are subject to mechanical unloading and changes to the surrounding chemical environment. How these factors jointly influence cellular function is not well understood. We can investigate their role using ground-based analogues to spaceflight, where mechanical unloading is simulated through the time-averaged nullification of gravity. The prevailing method for cellular microgravity simulation is to use fluid-filled containers called clinostats. However, conventional clinostats are not designed for temporally tracking cell response, nor are they able to establish dynamic fluid environments. To address these needs, we developed a Clinorotation Time-lapse Microscopy (CTM) system that accommodates lab-on- chip cell culture devices for visualizing time-dependent alterations to cellular behavior. For the purpose of demonstrating CTM, we present preliminary results showing time-dependent differences in cell area between human mesenchymal stem cells (hMSCs) under modeled microgravity and normal gravity.

  2. Flow and transport due to natural convection in a galvanic cell. 1: Development of a mathematical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, S.; Evans, J.W.

    1997-08-01

    In many electrochemical cells, the flow of electrolyte has an influence on cell behavior and this investigation concerns a cell (a zinc-air cell) where that flow occurred through natural convection. The zinc was present in the form of a bed of particles, connected at its top and bottom with channels forming reservoirs of electrolyte. Dissolution of the zinc caused density differences between electrolyte in the bed interstices and that in the reservoir. In Part 1 of this two-part paper, a mathematical model for this cell is developed. The model employs the well-known Newman/Tobias description of a porous electrode and treatsmore » flow through the bed using the Blake-Kozeny equation. A fourth-order Lax-Wendroff algorithm, thought to be original, is used to solve the convective diffusion equation within the model. Sample computed results are presented.« less

  3. Beyond the Niche: Tissue-Level Coordination of Stem Cell Dynamics

    PubMed Central

    O’Brien, Lucy Erin; Bilder, David

    2014-01-01

    Adult animals rely on populations of stem cells to ensure organ function throughout their lifetime. Stem cells are governed by signals from stem cell niches, and much is known about how single niches promote stemness and direct stem cell behavior. However, most organs contain a multitude of stem cell–niche units, which are often distributed across the entire expanse of the tissue. Beyond the biology of individual stem cell–niche interactions, the next challenge is to uncover the tissue-level processes that orchestrate spatial control of stem-based renewal, repair, and remodeling throughout a whole organ. Here we examine what is known about higher order mechanisms for interniche coordination in epithelial organs, whose simple geometry offers a promising entry point for understanding the regulation of niche number, distribution, and activity. We also consider the potential existence of stem cell territories and how tissue architecture may influence niche coordination. PMID:23937350

  4. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    NASA Astrophysics Data System (ADS)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  5. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs)

    PubMed Central

    Bartosh, Thomas J.; Ullah, Mujib; Zeitouni, Suzanne; Beaver, Joshua; Prockop, Darwin J.

    2016-01-01

    Patients with breast cancer often develop malignant regrowth of residual drug-resistant dormant tumor cells years after primary treatment, a process defined as cancer relapse. Deciphering the causal basis of tumor dormancy therefore has obvious therapeutic significance. Because cancer cell behavior is strongly influenced by stromal cells, particularly the mesenchymal stem/stromal cells (MSCs) that are actively recruited into tumor-associated stroma, we assessed the impact of MSCs on breast cancer cell (BCC) dormancy. Using 3D cocultures to mimic the cellular interactions of an emerging tumor niche, we observed that MSCs sequentially surrounded the BCCs, promoted formation of cancer spheroids, and then were internalized/degraded through a process resembling the well-documented yet ill-defined clinical phenomenon of cancer cell cannibalism. This suspected feeding behavior was less appreciable in the presence of a rho kinase inhibitor and in 2D monolayer cocultures. Notably, cannibalism of MSCs enhanced survival of BCCs deprived of nutrients but suppressed their tumorigenicity, together suggesting the cancer cells entered dormancy. Transcriptome profiles revealed that the resulting BCCs acquired a unique molecular signature enriched in prosurvival factors and tumor suppressors, as well as inflammatory mediators that demarcate the secretome of senescent cells, also referred to as the senescence-associated secretory phenotype. Overall, our results provide intriguing evidence that cancer cells under duress enter dormancy after cannibalizing MSCs. Importantly, our practical 3D coculture model could provide a valuable tool to understand the antitumor activity of MSCs and cell cannibalism further, and therefore open new therapeutic avenues for the prevention of cancer recurrence. PMID:27698134

  6. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs).

    PubMed

    Bartosh, Thomas J; Ullah, Mujib; Zeitouni, Suzanne; Beaver, Joshua; Prockop, Darwin J

    2016-10-18

    Patients with breast cancer often develop malignant regrowth of residual drug-resistant dormant tumor cells years after primary treatment, a process defined as cancer relapse. Deciphering the causal basis of tumor dormancy therefore has obvious therapeutic significance. Because cancer cell behavior is strongly influenced by stromal cells, particularly the mesenchymal stem/stromal cells (MSCs) that are actively recruited into tumor-associated stroma, we assessed the impact of MSCs on breast cancer cell (BCC) dormancy. Using 3D cocultures to mimic the cellular interactions of an emerging tumor niche, we observed that MSCs sequentially surrounded the BCCs, promoted formation of cancer spheroids, and then were internalized/degraded through a process resembling the well-documented yet ill-defined clinical phenomenon of cancer cell cannibalism. This suspected feeding behavior was less appreciable in the presence of a rho kinase inhibitor and in 2D monolayer cocultures. Notably, cannibalism of MSCs enhanced survival of BCCs deprived of nutrients but suppressed their tumorigenicity, together suggesting the cancer cells entered dormancy. Transcriptome profiles revealed that the resulting BCCs acquired a unique molecular signature enriched in prosurvival factors and tumor suppressors, as well as inflammatory mediators that demarcate the secretome of senescent cells, also referred to as the senescence-associated secretory phenotype. Overall, our results provide intriguing evidence that cancer cells under duress enter dormancy after cannibalizing MSCs. Importantly, our practical 3D coculture model could provide a valuable tool to understand the antitumor activity of MSCs and cell cannibalism further, and therefore open new therapeutic avenues for the prevention of cancer recurrence.

  7. Influence of macromer molecular weight and chemistry on poly(beta-amino ester) network properties and initial cell interactions.

    PubMed

    Brey, Darren M; Erickson, Isaac; Burdick, Jason A

    2008-06-01

    A library of photocrosslinkable poly(beta-amino ester)s (PBAEs) was recently synthesized to expand the number of degradable polymers that can be screened and developed for a variety of biological applications. In this work, the influence of variations in macromer chemistry and macromer molecular weight (MMW) on network reaction behavior, overall bulk properties, and cell interactions were investigated. The MMW was controlled through alterations in the initial diacrylate to amine ratio (> or =1) during synthesis and decreased with an increase in this ratio. Lower MMWs reacted more quickly and to higher double bond conversions than higher MMWs, potentially due to the higher concentration of reactive groups. Additionally, the lower MMWs led to networks with higher compressive and tensile moduli that degraded slower than networks formed from higher MMWs because of an increase in the crosslinking density and decrease in the number of degradable units per crosslink. The adhesion and spreading of osteoblast-like cells on polymer films was found to be dependent on both the macromer chemistry and the MMW. In general, the number of cells was similar on networks formed from a range of MMWs, but the spreading was dramatically influenced by MMW (higher spreading with lower MMWs). These results illustrate further diversity in photocrosslinkable PBAE properties and that the chemistry and macromer structure must be carefully selected for the desired application. Copyright 2007 Wiley Periodicals, Inc.

  8. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  9. The mammary cellular hierarchy and breast cancer.

    PubMed

    Oakes, Samantha R; Gallego-Ortega, David; Ormandy, Christopher J

    2014-11-01

    Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.

  10. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules.

    PubMed

    Hempel, Nadine; Melendez, J Andres

    2014-01-01

    Shifts in intracellular Reactive Oxygen Species (ROS) have been shown to contribute to carcinogenesis and to tumor progression. In addition to DNA and cell damage by surges in ROS, sub-lethal increases in ROS are implicated in regulating cellular signaling that enhances pro-metastatic behavior. We previously showed that subtle increases in endogenous H2O2 regulate migratory and invasive behavior of metastatic bladder cancer cells through phosphatase inhibition and consequential phosphorylation of p130cas, an adapter of the FAK signaling pathway. We further showed that enhanced redox status contributed to enhanced localization of p130cas to the membrane of metastatic cells. Here we show that this signaling complex can similarly be induced in a redox-engineered cell culture model that enables regulation of intracellular steady state H2O2 level by enforced expression of superoxide dismutase 2 (Sod2) and catalase. Expression of Sod2 leads to enhanced p130cas phosphorylation in HT-1080 fibrosarcoma and UM-UC-6 bladder cancer cells. These changes are mediated by H2O2, as co-expression of Catalase abrogates p130cas phosphorylation and its interaction with the adapter protein Crk. Importantly, we establish that the redox environment influence the localization of the tumor suppressor and phosphatase PTEN, in both redox-engineered and metastatic bladder cancer cells that display endogenous increases in H2O2. Importantly, PTEN oxidation leads to its dissociation from the plasma membrane. This indicates that oxidation of PTEN not only influences its activity, but also regulates its cellular localization, effectively removing it from its primary site of lipid phosphatase activity. These data introduce hitherto unappreciated paradigms whereby ROS can reciprocally regulate the cellular localization of pro- and anti-migratory signaling molecules, p130cas and PTEN, respectively. These data further confirm that altering antioxidant status and the intracellular ROS environment can have profound effects on pro-metastatic signaling pathways.

  12. Cellular anomalies underlying retinoid-induced phocomelia.

    PubMed

    Zhou, Jian; Kochhar, Devendra M

    2004-11-01

    The question of how alterations in cell behavior produced by retinoic acid (RA) influenced the development of skeletogenic mesenchyme of the limb bud was examined in this study. Our established model was employed, which involves treatment of pregnant mice with a teratogenic dose of RA (100 mg/kg) on 11 days postcoitum (dpc) resulting in a severe truncation of all long bones of the forelimbs in virtually every exposed fetus. It is shown that RA, administered at a stage to induce phocomelia in virtually all exposed embryos, resulted in immediate appearance of enhanced cell death within the mesenchyme in the central core of the limb bud, an area destined for chondrogenesis. The central core mesenchyme, which in the untreated limb buds experiences a sharp decline in cell proliferation heralding the onset of chondrogenesis, demonstrated a reversal of the process; this mesenchyme maintained a higher rate of cell proliferation upon RA exposure. These events resulted in a truncation and disorganization of the chondrogenic anlage, more pronounced in zeugopodal mesenchyme than in the autopod. We conclude that an inhibition of chondrogenesis was secondary to a disruption in cellular behavior caused by RA, a likely consequence of misregulation in the growth factor signaling cascade.

  13. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lubing; Yin, Sha; Zhang, Chao; Huan, Yong; Xu, Jun

    2018-07-01

    Mechanical properties of electrode materials have significant influence over electrochemical properties as well as mechanical integrity of lithium-ion battery cells. Here, anode and cathode in a commercially available 18650 NCA (Nickel Cobalt Aluminum Oxide)/graphite cell were comprehensively studied by tensile tests considering material anisotropy, SOC (state of charge), strain rate and electrolyte content. Results showed that the mechanical properties of both electrodes were highly dependent on strain rate and electrolyte content; however, anode was SOC dependent while cathode was not. Besides, coupled effects of strain rate and SOC of anodes were also discussed. SEM (scanning electron microscope) images of surfaces and cross-sections of electrodes showed the fracture morphology. In addition, mechanical behavior of Cu foil separated from anode with different SOC values were studied and compared. Finally, constitutive models of electrodes considering both strain rate and anisotropy effects were established. This study reveals the relationship between electrochemical dependent mechanical behavior of the electrodes. The established mechanical models of electrodes can be applied to the numerical computation of battery cells. Results are essential to predict the mechanical responses as well as the deformation of battery cell under various loading conditions, facilitating safer battery design and manufacturing.

  14. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  15. Aggression and Rule-breaking: Heritability and stability of antisocial behavior problems in childhood and adolescence

    PubMed Central

    Niv, Sharon; Tuvblad, Catherine; Raine, Adrian; Baker, Laura A.

    2013-01-01

    Purpose This twin study examined the structure of genetic and environmental influences on aggression and rule-breaking in order to examine change and stability across the span of childhood to mid-adolescence. Methods Behavioral assessments were conducted at two time points: age 9–10 years and 14–15 years. Using behavioral genetics biometric modeling, the longitudinal structure of influences was investigated. Results Aggression and rule-breaking were found to be influenced by a latent common factor of antisocial behavior (ASB) within each wave of data collection. The childhood-age common factor of ASB was influenced by 41% genetics, 40% shared environment and 19% nonshared environment. In adolescence, 41% of influences on the common factor were novel and entirely genetic, while the remainder of influences were stable across time. Additionally, both aggression and rule-breaking within each wave were found to have unique influences not common across subscales or across waves, highlighting specificity of influences on different problem behaviors at both ages. Conclusions This research sheds light on the commonality of influences on etiology of different forms of antisocial behavior, and suggests future directions for research into intervention for antisocial behavior problems in youth, such as investigation of adolescence-specific environmental influences on the development of antisocial behavior problems. PMID:24347737

  16. Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response.

    PubMed

    Stylianou, Andreas; Yova, Dido

    2015-12-01

    Low-level red laser (LLRL)-tissue interactions have a wide range of medical applications and are garnering increased attention. Although the positive effects of low-level laser therapy (LLLT) have frequently been reported and enhanced collagen accumulation has been identified as one of the most important mechanisms involved, little is known about LLRL-collagen interactions. In this study, we aimed to investigate the influence of LLRL irradiation on collagen, in correlation with fibroblast response. Atomic force microscopy (AFM) and fluorescence spectroscopy were used to characterize surfaces and identify conformational changes in collagen before and after LLRL irradiation. Irradiated and non-irradiated collagen thin films were used as culturing substrates to investigate fibroblast response with fluorescence microscopy. The results demonstrated that LLRL induced small alterations in fluorescence emission and had a negligible effect on the topography of collagen thin films. However, fibroblasts cultured on LLRL-irradiated collagen thin films responded to LRLL. The results of this study show for the first time the effect of LLRL irradiation on pure collagen. Although irradiation did not affect the nanotopography of collagen, it influenced cell behavior. The role of collagen appears to be crucial in the LLLT mechanism, and our results demonstrated that LLRL directly affects collagen and indirectly affects cell behavior.

  17. Nanofiber Orientation and Surface Functionalization Modulate Human Mesenchymal Stem Cell Behavior In Vitro

    PubMed Central

    Kolambkar, Yash M.; Bajin, Mehmet; Wojtowicz, Abigail; Hutmacher, Dietmar W.; García, Andrés J.

    2014-01-01

    Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration. PMID:24020454

  18. IK channel activation increases tumor growth and induces differential behavioral responses in two breast epithelial cell lines.

    PubMed

    Thurber, Amy E; Nelson, Michaela; Frost, Crystal L; Levin, Michael; Brackenbury, William J; Kaplan, David L

    2017-06-27

    Many potassium channel families are over-expressed in cancer, but their mechanistic role in disease progression is poorly understood. Potassium channels modulate membrane potential (Vmem) and thereby influence calcium ion dynamics and other voltage-sensitive signaling mechanisms, potentially acting as transcriptional regulators. This study investigated the differential response to over-expression and activation of a cancer-associated potassium channel, the intermediate conductance calcium-activated potassium channel (IK), on aggressive behaviors in mammary epithelial and breast cancer cell lines. IK was over-expressed in the highly metastatic breast cancer cell line MDA-MB-231 and the spontaneously immortalized breast epithelial cell line MCF-10A, and the effect on cancer-associated behaviors was assessed. IK over-expression increased primary tumor growth and metastasis of MDA-MB-231 in orthotopic xenografts, demonstrating for the first time in any cancer type that increased IK is sufficient to promote cancer aggression. The primary tumors had similar vascularization as determined by CD31 staining and similar histological characteristics. Interestingly, despite the increased in vivo growth and metastasis, neither IK over-expression nor activation with agonist had a significant effect on MDA-MB-231 proliferation, invasion, or migration in vitro. In contrast, IK decreased MCF-10A proliferation and invasion through Matrigel but had no effect on migration in a scratch-wound assay. We conclude that IK activity is sufficient to promote cell aggression in vivo. Our data provide novel evidence supporting IK and downstream signaling networks as potential targets for cancer therapies.

  19. The influence of anonymous peers on prosocial behavior

    PubMed Central

    Shin, Jongho

    2017-01-01

    Background Peer influence on students’ maladaptive behaviors has been well documented; however, the influence on positive development is less acknowledged. Purpose The purpose of this study was to examine anonymous peer influence on college students’ prosocial behavior, specifically behavior for the improvement of society (i.e., donating money or participating in social campaigns) via an experimental approach. The effects of indirect peer influence (IP) and direct peer influence (DP) on college students’ prosocial behavior were examined. Methods A total of 125 college students participated in an online survey and laboratory experiment. Self-reported helping behavior, social concern goals, and empathy were measured by the online survey. In the laboratory experiments, reading of a prosocial paragraph (IP) and confederates’ prosocial behavior (DP) were manipulated. Participation in a signature campaign and money donation for illness were observed. Furthermore, 19 participants among those who donated were asked about their reasons for participating in such prosocial behavior. Results Prosocial behavior of anonymous peers (confederates) exerts a profound influence on college students’ participation in a signature campaign and money donation, whereas the reading of a prosocial paragraph has no effect. Furthermore, no participants reported peer influence as a reason for engaging in prosocial behavior. Conclusion This finding supports and extends recent research examining the positive impacts of anonymous peers on prosocial behavior. Prosocial behavior is not only a foundational and consistent aspect of personality, as previous studies report, but is also highly malleable and unstable in response to immediate situations. PMID:29016612

  20. The influence of anonymous peers on prosocial behavior.

    PubMed

    Park, Soowon; Shin, Jongho

    2017-01-01

    Peer influence on students' maladaptive behaviors has been well documented; however, the influence on positive development is less acknowledged. The purpose of this study was to examine anonymous peer influence on college students' prosocial behavior, specifically behavior for the improvement of society (i.e., donating money or participating in social campaigns) via an experimental approach. The effects of indirect peer influence (IP) and direct peer influence (DP) on college students' prosocial behavior were examined. A total of 125 college students participated in an online survey and laboratory experiment. Self-reported helping behavior, social concern goals, and empathy were measured by the online survey. In the laboratory experiments, reading of a prosocial paragraph (IP) and confederates' prosocial behavior (DP) were manipulated. Participation in a signature campaign and money donation for illness were observed. Furthermore, 19 participants among those who donated were asked about their reasons for participating in such prosocial behavior. Prosocial behavior of anonymous peers (confederates) exerts a profound influence on college students' participation in a signature campaign and money donation, whereas the reading of a prosocial paragraph has no effect. Furthermore, no participants reported peer influence as a reason for engaging in prosocial behavior. This finding supports and extends recent research examining the positive impacts of anonymous peers on prosocial behavior. Prosocial behavior is not only a foundational and consistent aspect of personality, as previous studies report, but is also highly malleable and unstable in response to immediate situations.

  1. Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness.

    PubMed

    Cerulus, Bram; New, Aaron M; Pougach, Ksenia; Verstrepen, Kevin J

    2016-05-09

    The fitness effect of biological noise remains unclear. For example, even within clonal microbial populations, individual cells grow at different speeds. Although it is known that the individuals' mean growth speed can affect population-level fitness, it is unclear how or whether growth speed heterogeneity itself is subject to natural selection. Here, we show that noisy single-cell division times can significantly affect population-level growth rate. Using time-lapse microscopy to measure the division times of thousands of individual S. cerevisiae cells across different genetic and environmental backgrounds, we find that the length of individual cells' division times can vary substantially between clonal individuals and that sublineages often show epigenetic inheritance of division times. By combining these experimental measurements with mathematical modeling, we find that, for a given mean division time, increasing heterogeneity and epigenetic inheritance of division times increases the population growth rate. Furthermore, we demonstrate that the heterogeneity and epigenetic inheritance of single-cell division times can be linked with variation in the expression of catabolic genes. Taken together, our results reveal how a change in noisy single-cell behaviors can directly influence fitness through dynamics that operate independently of effects caused by changes to the mean. These results not only allow a better understanding of microbial fitness but also help to more accurately predict fitness in other clonal populations, such as tumors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Understanding the broad influence of sex hormones and sex differences in the brain.

    PubMed

    McEwen, Bruce S; Milner, Teresa A

    2017-01-02

    Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The effects of acute alcohol exposure on the response properties of neurons in visual cortex area 17 of cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Bo; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Science, Beijing 100101; Xia Jing

    Physiological and behavioral studies have demonstrated that a number of visual functions such as visual acuity, contrast sensitivity, and motion perception can be impaired by acute alcohol exposure. The orientation- and direction-selective responses of cells in primary visual cortex are thought to participate in the perception of form and motion. To investigate how orientation selectivity and direction selectivity of neurons are influenced by acute alcohol exposure in vivo, we used the extracellular single-unit recording technique to examine the response properties of neurons in primary visual cortex (A17) of adult cats. We found that alcohol reduces spontaneous activity, visual evoked unitmore » responses, the signal-to-noise ratio, and orientation selectivity of A17 cells. In addition, small but detectable changes in both the preferred orientation/direction and the bandwidth of the orientation tuning curve of strongly orientation-biased A17 cells were observed after acute alcohol administration. Our findings may provide physiological evidence for some alcohol-related deficits in visual function observed in behavioral studies.« less

  4. 5-HT1A Receptors on Mature Dentate Gyrus Granule Cells are Critical for the Antidepressant Response

    PubMed Central

    Samuels, Benjamin Adam; Anacker, Christoph; Hu, Alice; Levinstein, Marjorie R.; Pickenhagen, Anouchka; Tsetsenis, Theodore; Madroñal, Noelia; Donaldson, Zoe R.; Drew, Liam John; Dranovsky, Alex; Gross, Cornelius T.; Tanaka, Kenji F.; Hen, René

    2015-01-01

    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is unknown whether the mature dentate gyrus granule cells (mature DG GCs) also contribute. We deleted Serotonin 1A receptor (5HT1AR; a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the Hypothalamic-Pituitary-Adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult born granule cells (abGCs) showed normal fluoxetine responses. Importantly, 5HT1AR deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response. PMID:26389840

  5. Association of Active Play-Related Parenting Behaviors, Orientations, and Practices with Preschool Sedentary Behavior

    ERIC Educational Resources Information Center

    Loprinzi, Paul D.; Cardinal, Bradley J.; Kane, Christy; Lee, Hyo; Beets, Michael W.

    2014-01-01

    Background: Parents' behaviors, practices, beliefs, and attitudes greatly influence children's active play behavior; however, little research has examined these parental influences on preschool children's sedentary behavior (SB). Purpose: The purpose of this study was to examine the association between parental influences on preschool SB. Methods:…

  6. Optogenetic Dissection of the Basal Forebrain Neuromodulatory Control of Cortical Activation, Plasticity, and Cognition

    PubMed Central

    Brown, Ritchie E.; Hussain Shuler, Marshall G.; Petersen, Carl C.H.; Kepecs, Adam

    2015-01-01

    The basal forebrain (BF) houses major ascending projections to the entire neocortex that have long been implicated in arousal, learning, and attention. The disruption of the BF has been linked with major neurological disorders, such as coma and Alzheimer's disease, as well as in normal cognitive aging. Although it is best known for its cholinergic neurons, the BF is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific BF cell types have led to a renaissance in the study of the BF and are beginning to yield new insights about cell-type-specific circuit mechanisms during behavior. These approaches enable us to determine the behavioral conditions under which cholinergic and noncholinergic BF neurons are activated and how they control cortical processing to influence behavior. Here we discuss recent advances that have expanded our knowledge about this poorly understood brain region and laid the foundation for future cell-type-specific manipulations to modulate arousal, attention, and cortical plasticity in neurological disorders. SIGNIFICANCE STATEMENT Although the basal forebrain is best known for, and often equated with, acetylcholine-containing neurons that provide most of the cholinergic innervation of the neocortex, it is in fact an anatomically and neurochemically complex structure. Recent studies using transgenic mouse lines to target specific cell types in the basal forebrain have led to a renaissance in this field and are beginning to dissect circuit mechanisms in the basal forebrain during behavior. This review discusses recent advances in the roles of basal forebrain cholinergic and noncholinergic neurons in cognition via their dynamic modulation of cortical activity. PMID:26468190

  7. Forced and voluntary exercise differentially affect brain and behavior.

    PubMed

    Leasure, J L; Jones, M

    2008-10-15

    The potential of physical exercise to decrease body weight, alleviate depression, combat aging and enhance cognition has been well-supported by research studies. However, exercise regimens vary widely across experiments, raising the question of whether there is an optimal form, intensity and duration of exertion that would produce maximal benefits. In particular, a comparison of forced and voluntary exercise is needed, since the results of several prior studies suggest that they may differentially affect brain and behavior. In the present study, we employed a novel 8-week exercise paradigm that standardized the distance, pattern, equipment and housing condition of forced and voluntary exercisers. Exercising rats were then compared with sedentary controls on measures previously shown to be influenced by physical activity. Our results indicate that although the distance covered by both exercise groups was the same, voluntary exercisers ran at higher speed and for less total time than forced exercisers. When compared with sedentary controls, forced but not voluntary exercise was found to increase anxiety-like behaviors in the open field. Both forms of exercise increased the number of surviving bromodeoxyuridine (BrdU)+ cells in the dentate gyrus after 8 weeks of exercise, although forced exercisers had significantly more than voluntary exercisers. Phenotypic analysis of BrdU+ cells showed no difference between groups in the percentage of newborn cells that became neurons, however, because forced exercise maximally increased the number of BrdU+ cells, it ultimately produced more neurons than voluntary exercise. Our results indicate that forced and voluntary exercise are inherently different: voluntary wheel running is characterized by rapid pace and short duration, whereas forced exercise involves a slower, more consistent pace for longer periods of time. This basic difference between the two forms of exercise is likely responsible for their differential effects on brain and behavior.

  8. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  9. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma.

    PubMed

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9.

  10. Down-Regulation of Gab1 Inhibits Cell Proliferation and Migration in Hilar Cholangiocarcinoma

    PubMed Central

    Sang, Haiquan; Li, Tingting; Li, Hangyu; Liu, Jingang

    2013-01-01

    Hilar cholangiocarcinoma is a highly aggressive malignancy originating from the hilar biliary duct epithelium. Due to few effective comprehensive treatments, the prognosis of hilar cholangiocarcinoma is poor. In this study, immunohistochemistry was first used to detect and analyze the expression of Gab1, VEGFR-2, and MMP-9 in hilar cholangiocarcinoma solid tumors and the relationships to the clinical pathological features. Furthermore, Gab1 and VEGFR-2 siRNA were used to interfere the hilar cholangiocarcinoma cell line ICBD-1 and then detect the PI3K/Akt signaling pathway, MMP-9 levels and malignant biological behaviors of tumor cells. The data showed that 1. Gab1, VEGFR-2, and MMP-9 were highly expressed and positively correlated with each other in hilar cholangiocarcinoma tissues, which were related to lymph node metastasis and differentiation. 2. After Gab1 or VEGFR-2 siRNA interference, PI3K/Akt pathway activity and MMP-9 levels were decreased in ICBD-1 cells. At the same time, cell proliferation decreased, cell cycle arrested in G1 phase, apoptosis increased and invasion decreased. These results suggest that the expression of Gab1, VEGFR-2, and MMP-9 are significantly related to the malignant biological behavior of hilar cholangiocarcinoma. Gab1 regulates growth, apoptosis and invasion through the VEGFR-2/Gab1/PI3K/Akt signaling pathway in hilar cholangiocarcinoma cells and influences the invasion of tumor cells via MMP-9. PMID:24312291

  11. HA and double-layer HA-P2O5/CaO glass coatings: influence of chemical composition on human bone marrow cells osteoblastic behavior.

    PubMed

    Ferraz, M P; Fernandes, M H; Santos, J D; Monteiro, F J

    2001-07-01

    Human osteoblastic bone marrow derived cells were cultured for 28 days onto the surface of a glass reinforced hydroxyapatite (HA) composite and a commercial type HA plasma sprayed coatings, both in the "as-received" condition and after an immersion treatment with culture medium during 21 days. Cell proliferation and differentiation were analyzed as a function of the chemical composition of the coatings and the immersion treatment. Cell attachment, growth and differentiation of osteoblastic bone marrow cells seeded onto "as-received" plasma sprayed coatings were strongly affected by the time-dependent variation of the surface structure occurring during the first hours of culture. Initial interactions leading to higher amounts of adsorbed protein and zeta potential shifts towards negative charges appeared to result in surface structures with better biological performance. Cultures grown onto the pretreated coatings showed higher rate of cell proliferation and increased functional activity, as compared to those grown onto the corresponding "as-received" materials. However, the cell behavior was similar in the glass composite and HA coatings. The results showed that the glass composites present better characteristics for bone cell growth and function than HA. In addition, this work also provide evidence that the biological performance of the glass composites can be modulated and improved by manipulations in the chemical composition, namely in the content of glass added to HA. Copyright 2001 Kluwer Academic Publishers

  12. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  13. Concise Review: Fabrication, Customization, and Application of Cell Mimicking Microparticles in Stem Cell Science

    PubMed Central

    Labriola, Nicholas R.; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith

    2018-01-01

    Abstract Stem and non‐stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP‐based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232–240 PMID:29316362

  14. Laminin-111 peptide C16 regulates invadopodia activity of malignant cells through β1 integrin, Src and ERK 1/2.

    PubMed

    Siqueira, Adriane S; Pinto, Monique P; Cruz, Mário C; Smuczek, Basilio; Cruz, Karen S P; Barbuto, José Alexandre M; Hoshino, Daisuke; Weaver, Alissa M; Freitas, Vanessa M; Jaeger, Ruy G

    2016-07-26

    Laminin peptides influence tumor behavior. In this study, we addressed whether laminin peptide C16 (KAFDITYVRLKF, γ1 chain) would increase invadopodia activity of cells from squamous cell carcinoma (CAL27) and fibrosarcoma (HT1080). We found that C16 stimulates invadopodia activity over time in both cell lines. Rhodamine-conjugated C16 decorates the edge of cells, suggesting a possible binding to membrane receptors. Flow cytometry showed that C16 increases activated β1 integrin, and β1 integrin miRNA-mediated depletion diminishes C16-induced invadopodia activity in both cell lines. C16 stimulates Src and ERK 1/2 phosphorylation, and ERK 1/2 inhibition decreases peptide-induced invadopodia activity. C16 also increases cortactin phosphorylation in both cells lines. Based on our findings, we propose that C16 regulates invadopodia activity over time of squamous carcinoma and fibrosarcoma cells, probably through β1 integrin, Src and ERK 1/2 signaling pathways.

  15. Amine-Rich Organic Thin Films for Cell Culture: Possible Electrostatic Effects in Cell-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Wertheimer, Michael R.; St-Georges-Robillard, Amélie; Lerouge, Sophie; Mwale, Fackson; Elkin, Bentsian; Oehr, Christian; Wirges, Werner; Gerhard, Reimund

    2012-11-01

    In recent communications from these laboratories, we observed that amine-rich thin organic layers are very efficient surfaces for the adhesion of mammalian cells. We prepare such deposits by plasma polymerization at low pressure, atmospheric pressure, or by vacuum-ultraviolet photo-polymerization. More recently, we have also investigated a commercially available material, Parylene diX AM. In this article we first briefly introduce literature relating to electrostatic interactions between cells, proteins, and charged surfaces. We then present certain selected cell-response results that pertain to applications in orthopedic and cardiovascular medicine: we discuss the influence of surface properties on the observed behaviors of two particular cell lines, human U937 monocytes, and Chinese hamster ovary cells. Particular emphasis is placed on possible electrostatic attractive forces due to positively charged R-NH3+ groups and negatively charged proteins and cells, respectively. Experiments carried out with electrets, polymers with high positive or negative surface potentials are added for comparison.

  16. Acoustic Features Influence Musical Choices Across Multiple Genres.

    PubMed

    Barone, Michael D; Bansal, Jotthi; Woolhouse, Matthew H

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning.

  17. Growth Inhibition of Osteosarcoma Cell Lines in 3D Cultures: Role of Nitrosative and Oxidative Stress.

    PubMed

    Gorska, Magdalena; Krzywiec, Pawel Bieniasz; Kuban-Jankowska, Alicja; Zmijewski, Michal; Wozniak, Michal; Wierzbicka, Justyna; Piotrowska, Anna; Siwicka, Karolina

    2016-01-01

    3D cell cultures have revolutionized the understanding of cell behavior, allowing culture of cells with the possibility of resembling in vivo intercellular signaling and cell-extracellular matrix interaction. The effect of limited oxygen penetration into 3D culture of highly metastatic osteosarcoma 143B cells in terms of expression of nitro-oxidative stress markers was investigated and compared to standard 2D cell culture. Human osteosarcoma (143B cell line) cells were cultured as monolayers, in collagen and Matrigel. Cell viability, gene expression of nitro-oxidative stress markers, and vascular endothelial growth factor were determined using Trypan blue assay, quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Three-dimensional environments modify nitro-oxidative stress and influence gene expression and cell proliferation of OS 143B cells. Commercial cell lines might not constitute a good model of 3D cultures for bone tissue engineering, as they are highly sensitive to hypoxia, and hypoxic conditions can induce oxidation of the cellular environment. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Continuous, but not intermittent, antipsychotic drug delivery intensifies the pursuit of reward cues.

    PubMed

    Bédard, Anne-Marie; Maheux, Jérôme; Lévesque, Daniel; Samaha, Anne-Noël

    2011-05-01

    Chronic exposure to antipsychotic medications can persistently change brain dopamine systems. Most studies on the functional significance of these neural changes have focused on motor behavior and few have addressed how long-term antipsychotic treatment might influence dopamine-mediated reward function. We asked, therefore, whether a clinically relevant antipsychotic treatment regimen would alter the incentive motivational properties of a reward cue. We assessed the ability of a Pavlovian-conditioned stimulus to function as a conditioned reward, as well as to elicit approach behavior in rats treated with haloperidol, either continuously (achieved via subcutaneous osmotic minipump) or intermittently (achieved via daily subcutaneous injections). Continuous, but not intermittent, treatment enhanced the ability of amphetamine to potentiate the conditioned reinforcing effects of a cue associated with water. This effect was not related to differences in the ability to attribute predictive value to a conditioned stimulus (as measured by conditioned approach behavior), but was potentially linked to the development of behavioral supersensitivity to amphetamine and to augmented amphetamine-induced immediate early-gene expression (c-fos and Nur77) in dorsal striatopallidal and striatonigral cells. By enhancing the ability of reward cues to control behavior and by intensifying dopamine-mediated striatopallidal and striatonigral cell activity, standard (ie, continuous) antipsychotic treatment regimens might exacerbate drug-seeking and drug-taking behavior in schizophrenia. Achieving regular but transiently high antipsychotic levels in the brain (as modeled in the intermittent condition) might be a viable option to prevent these changes. This possibility should be explored in the clinic.

  19. Spread of Health Behaviors in Young Couples: How Relationship Power Shapes Relational Influence

    PubMed Central

    Cornelius, Talea; Desrosiers, Alethea; Kershaw, Trace

    2016-01-01

    Introduction Romantic relationships provide a context in which partners can influence each other’s health behaviors (e.g., weight-related behaviors, substance use). Partner influence may be especially pronounced among newly parenting adolescent and young adult couples because of the desire to maintain relationships (and therefore openness to influence), and because parenting-related challenges can pose risk for uptake of unhealthy behaviors. Two understudied factors that might affect partner influence on health behaviors include relative power within the relationship and prior levels of engagement in health behaviors. Methods The current study explored longitudinal partner influence effects in a sample of newly parenting adolescent and young adult females and their male partners (Ncouples = 157) recruited from four obstetrics/gynecology clinics in Connecticut between July 2007 and February 2011. Five health behaviors in two domains were explored: weight-related behaviors (unhealthy eating, exercise) and substance use (cigarette, alcohol, and marijuana use). Relationship power and previous levels of health behaviors were examined as moderators. Variations across gender were also examined. Results Results of dyadic analysis showed partner influences for alcohol use. Partner influence depended on relationship power for eating, alcohol, and marijuana use, and on previous behavior for cigarette use. Results also varied by gender – only female-to-male influence was found for unhealthy eating and cigarette use. Higher relationship power was protective against smoking escalation for females. Discussion These results differ from previous research findings mainly on male-to-female influences. Such asymmetries may reflect traditional female dominance in food preparation, as well as shifts in power balances postpartum. Targeting relational power dynamics may buffer the spread and escalation of unhealthy behaviors in young parents, with implications for the health of both members of a couple as well as their children. PMID:27494239

  20. Spread of health behaviors in young couples: How relationship power shapes relational influence.

    PubMed

    Cornelius, Talea; Desrosiers, Alethea; Kershaw, Trace

    2016-09-01

    Romantic relationships provide a context in which partners can influence each other's health behaviors (e.g., weight-related behaviors, substance use). Partner influence may be especially pronounced among newly parenting adolescent and young adult couples because of the desire to maintain relationships (and therefore openness to influence), and because parenting-related challenges can pose risk for uptake of unhealthy behaviors. Two understudied factors that might affect partner influence on health behaviors include relative power within the relationship and prior levels of engagement in health behaviors. The current study explored longitudinal partner influence effects in a sample of newly parenting adolescent and young adult females and their male partners (Ncouples = 157) recruited from four obstetrics/gynecology clinics in Connecticut between July 2007 and February 2011. Five health behaviors in two domains were explored: weight-related behaviors (unhealthy eating, exercise) and substance use (cigarette, alcohol, and marijuana use). Relationship power and previous levels of health behaviors were examined as moderators. Variations across gender were also examined. Results of dyadic analysis showed partner influences for alcohol use. Partner influence depended on relationship power for eating, alcohol, and marijuana use, and on previous behavior for cigarette use. Results also varied by gender - only female-to-male influence was found for unhealthy eating and cigarette use. Higher relationship power was protective against smoking escalation for females. These results differ from previous research findings mainly on male-to-female influences. Such asymmetries may reflect traditional female dominance in food preparation, as well as shifts in power balances postpartum. Targeting relational power dynamics may buffer the spread and escalation of unhealthy behaviors in young parents, with implications for the health of both members of a couple as well as their children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation of Biophysical Mechanisms in Gold Nanoparticle Mediated Laser Manipulation of Cells Using a Multimodal Holographic and Fluorescence Imaging Setup

    PubMed Central

    Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631

  2. Evidence-based Kernels: Fundamental Units of Behavioral Influence

    PubMed Central

    Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior. PMID:18712600

  3. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study.

    PubMed

    de Andrade, Dennia Perez; de Vasconcellos, Luana Marotta Reis; Carvalho, Isabel Chaves Silva; Forte, Lilibeth Ferraz de Brito Penna; de Souza Santos, Evelyn Luzia; Prado, Renata Falchete do; Santos, Dalcy Roberto Dos; Cairo, Carlos Alberto Alves; Carvalho, Yasmin Rodarte

    2015-11-01

    Research on new titanium alloys and different surface topographies aims to improve osseointegration. The objective of this study is to analyze the behavior of osteogenic cells cultivated on porous and dense samples of titanium-niobium alloys, and to compare them with the behavior of such type of cells on commercial pure titanium. Samples prepared using powder metallurgy were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and metallographic and profilometer analyses. Osteogenic cells from newborn rat calvaria were plated over different groups: dense or porous samples composed of Ti or Ti-35niobium (Nb). Cell adhesion, cell proliferation, MTT assay, cell morphology, protein total content, alkaline phosphatase activity, and mineralization nodules were assessed. Results from XRD and EDS analysis confirmed the presence of Ti and Nb in the test alloy. Metallographic analysis revealed interconnected pores, with pore size ranging from 138 to 150μm. The profilometer analysis detected the greatest rugosity within the dense alloy samples. In vitro tests revealed similar biocompatibility between Ti-35Nb and Ti; furthermore, it was possible to verify that the association of porous surface topography and the Ti-35Nb alloy positively influenced mineralized matrix formation. We propose that the Ti-35Nb alloy with porous topography constitutes a biocompatible material with great potential for use in biomedical implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Dependence of Donor:Acceptor Ratio on the Photovoltaic Performances of Blended poly (3-octylthiophene-2,5-diyl) and (6,6)-phenyl C{sub 71} butyric acid methyl ester Bulk Heterojunction Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzia, Vivi; Institute of Microengineering and Nanoelectronics; Umar, Akrajas Ali

    2010-10-24

    Bulk heterojunction organic solar cells using blended poly (3-octylthiophene-2,5-diyl)(P3OT) and (6,6)-phenyl C{sub 71} butyric acid methyl ester (PC{sub 71}BM) have been fabricated. P3OT and PC{sub 71}BM were used as the electron donor (D) and acceptor (A), respectively. Both materials were mixed and dissolved in dichlorobenzene with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight) while maintained at the concentration of 2 wt%(26 mg/ml). The blended thin films were sandwiched between the indium tin oxide (ITO) coated glass and the aluminum film. This paper reports the influence of donor:acceptor ratio on the performance of solar cell devices measured bymore » current-voltage measurement both in the dark and under 1.5 AM solar illumination. It was found that all devices showed the photovoltaic effect with poor diode behavior and the donor:acceptor ratio significantly influenced on the performance of bulk heterojunction organic solar cells.« less

  5. Combined use of UV-labile calcium chelators and calcium-sensitive dyes in a microscope with two light sources influencing different regions in a group of coordinated contracting cardiac myocytes

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Goetz; Greulich, Karl-Otto

    1997-12-01

    The coordination of excitation in a biological system of cells such as cardiac myocytes in heart tissue has crucial influence on the function of the entire organ. This coordinated behavior can be visualized in a small group of embryonic cardiac myocytes derived from the hearts of unborn chicken. Loaded with a calcium sensitive dye the excitation can be imaged via the occurring transient rise in cytosolic calcium concentration. It can be shown that in regions with physiological or morphological restrictions the transient rise in cytosolic calcium occurs with a temporal delay compared to the ordinary array of coupled myocytes. The height of the transient rise of cytosolic calcium is related to the ability of the individual cell to participate in the coordinated contraction. The free cytosolic calcium concentration is decreased with the UV-labile calcium, chelator diazo-2. Our setup allows to decrease the free cytosolic calcium in a single cell of the contracting array of cells. This allows us to introduce mismatches in selected regions of the coordinated contraction and to visualize the effects simultaneously.

  6. Functionalized Thick Film Impedance Sensors for Use in In Vitro Cell Culture.

    PubMed

    Bartsch, Heike; Baca, Martin; Fernekorn, Uta; Müller, Jens; Schober, Andreas; Witte, Hartmut

    2018-04-05

    Multi-electrode arrays find application in electrophysiological recordings. The quality of the captured signals depends on the interfacial contact between electrogenic cells and the electronic system. Therefore, it requires reliable low-impedance electrodes. Low-temperature cofired ceramic technology offers a suitable platform for rapid prototyping of biological reactors and can provide both stable fluid supply and integrated bio-hardware interfaces for recordings in electrogenic cell cultures. The 3D assembly of thick film gold electrodes in in vitro bio-reactors has been demonstrated for neuronal recordings. However, especially when dimensions become small, their performance varies strongly. This work investigates the influence of different coatings on thick film gold electrodes with regard to their influence on impedance behavior. PSS layer, titanium oxynitride and laminin coatings are deposited on LTCC gold electrodes using different 2D and 3D MEA chip designs. Their impedance characteristics are compared and discussed. Titanium oxynitride layers emerged as suitable functionalization. Small 86-µm-electrodes have a serial resistance R s of 32 kOhm and serial capacitance C s of 4.1 pF at 1 kHz. Thick film gold electrodes with such coatings are thus qualified for signal recording in 3-dimensional in vitro cell cultures.

  7. Connective tissue growth factor (CTGF) and cancer progression.

    PubMed

    Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang

    2008-11-01

    Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.

  8. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  9. Designing injectable beta-hairpin peptide hydrogels for cartilage tissue engineering application

    NASA Astrophysics Data System (ADS)

    Sinthuvanich, Chomdao

    In this work, it was demonstrated that peptide-based gels having different electrostatic network character but similar mechanical properties can be designed by modulating the primary sequence of the peptides used for self-assembly. As a result, HLT2 and HET1 peptides, having formal charge states of +5 per monomer, were designed using MAX8, a peptide with a charge state of +7 per monomer, as a template. Using gels prepared from all three peptides (MAX8, HLT2, and HET1), it was shown that the electropositive character of the network influences chondrocyte behavior. Specifically, the less electropositive gel (HLT2) is able to maintain chondrocyte viability and phenotype. In contrast, chondrocytes encapsulated in the more positively charged gel (MAX8) are more prone to dedifferentiation, resulting in tissue constructs with inferior mechanical properties. Gels prepared from peptides having the same net charge but differing only in their primary sequences (HLT2 and HET1) were also shown to influence cell behavior, but only during the early period of culturing. If constructs derived from these two different peptide gels are allowed to culture for extended times, their mechanical properties become similar. This suggests that the amino acid composition and sequence of the peptides used to make the gels also influences cell behavior, but perhaps not to the extent that network electrostatics plays. Supplementation of bioactive factors in the culturing media, as opposed to being encapsulated directly in the network, was shown to adversely affect the cellular response resulting in tissue constructs where extracellular matrix (ECM) components are non-uniformly distributed. When bioactive factors were encapsulated and co-delivered with cells, positive results were observed, particularly when cells were co-encapsulated with the growth factor, TGF-β1. The effect of TGF-β1 on cellular response and the mechanical properties of the tissue-engineered constructs is largely governed by the ability of the growth factor to be retained within the hydrogels and made available to the cells, which in turn, dictate the quality of the engineered tissue. Rational peptide design was also employed to generate negatively charged peptides capable of folding and self-assembling under physiological conditions to afford electronegative gel. Initial designs resulted in peptides that undergo gelation in response to a change in environmental pH and temperature. Modification of these initially designed peptides led to the design of VE3 and VEQ1, two negatively charged peptides that can be used to directly encapsulate chondrocytes providing gel-cell constructs with homogeneous cellular distribution. Finally, the positively charged peptide gel (HET1) and negatively charged peptide gel (VE3) were compared to investigate the influence of vastly different network electrostatics on the response of encapsulated primary chondrocytes. In these gels, a majority of cells were able to retain their chondrocyte phenotype within the scaffold regardless of which gel was used for encapsulation and delivery. However, the positively charge hydrogel is better at supporting cell proliferation and ECM accumulation. On the other hand, the cells encapsulated in the negatively charged hydrogel were less proliferative and the negatively charged hydrogel had a limited ability to retain ECM produced by the cells. In contrast, when culturing in the presence of TGF-β1, constructs derived from the negatively charged gel showed greater compressive moduli than those derived from the positively charged hydrogel. This difference is largely due to the amount of TGF-β1 made available to the encapsulated cells as a function of time, which was found to be governed by the electrostatic character of the hydrogel network. This work indicates that network electrostatics influence the response of encapsulated chondrocytes, retention of secreted ECM, and the diffusion of bioactive factors necessary for the generation of engineered cartilage. During the course of these studies, I have a serendipitous discovery that a derivative of one of the material forming β-hairpin peptides displays anticancer activity. Chapter 8 describes this peptide, SVS-1, and its mechanism of action. (Abstract shortened by UMI.).

  10. Environmental influences on energy balance-related behaviors: A dual-process view

    PubMed Central

    Kremers, Stef PJ; de Bruijn, Gert-Jan; Visscher, Tommy LS; van Mechelen, Willem; de Vries, Nanne K; Brug, Johannes

    2006-01-01

    Background Studies on the impact of the 'obesogenic' environment have often used non-theoretical approaches. In this journal's debate and in other papers authors have argued the necessity of formulating conceptual models for differentiating the causal role of environmental influences on behavior. Discussion The present paper aims to contribute to the debate by presenting a dual-process view on the environment – behavior relationship. This view is conceptualized in the EnRG framework (Environmental Research framework for weight Gain prevention). In the framework, behavior is postulated to be the result of a simultaneous influence of conscious and unconscious processes. Environmental influences are hypothesized to influence behavior both indirectly and directly. The indirect causal mechanism reflects the mediating role of behavior-specific cognitions in the influence of the environment on behavior. A direct influence reflects the automatic, unconscious, influence of the environment on behavior. Specific personal and behavioral factors are postulated to moderate the causal path (i.e., inducing either the automatic or the cognitively mediated environment – behavior relation). In addition, the EnRG framework applies an energy balance-approach, stimulating the integrated study of determinants of diet and physical activity. Conclusion The application of a dual-process view may guide research towards causal mechanisms linking specific environmental features with energy balance-related behaviors in distinct populations. The present paper is hoped to contribute to the evolution of a paradigm that may help to disentangle the role of 'obesogenic' environmental factors. PMID:16700907

  11. The Effects of Divorced Mothers' Dating Behaviors and Sexual Attitudes on the Sexual Attitudes and Behaviors of Their Adolescent Children.

    ERIC Educational Resources Information Center

    Whitbeck, Les B.; And Others

    1994-01-01

    Describes investigation of effects of mothers' dating behaviors on adolescents' sexuality using reports from a sample of adolescents and their divorced mothers. Suggests mothers' dating behaviors directly influenced sexual behavior of males and indirectly influenced sexuality of females. Mothers' sexual permissiveness influenced daughters' sexual…

  12. In vivo studies of sickle red blood cells.

    PubMed

    Kaul, Dhananjay K; Fabry, Mary E

    2004-03-01

    The defining clinical feature of sickle cell anemia is periodic occurrence of painful vasoocclusive crisis. Factors that promote trapping and sickling of red cells in the microcirculation are likely to trigger vasoocclusion. The marked red cell heterogeneity in sickle blood and abnormal adhesion of sickle red cells to vascular endothelium would be major disruptive influences. Using ex vivo and in vivo models, the authors show how to dissect the relative contribution of heterogeneous sickle red cell classes to adhesive and obstructive events. These studies revealed that (1) both rheological abnormalities and adhesion of sickle red cells contribute to their abnormal hemodynamic behavior, (2) venules are the sites of sickle cell adhesion, and (3) sickle red cell deformability plays an important role in adhesive and obstructive events. Preferential adhesion of deformable sickle red cells in postcapillary venules followed by selective trapping of dense sickle red cells could result in vasoocclusion. An updated version of this 2-step model is presented. The multifactorial nature of sickle red cell adhesion needs to be considered in designing antiadhesive therapy in vivo.

  13. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation.

    PubMed

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.

  14. How do significant others influence our driving? A descriptive study of ego-alter dyads in a college population.

    PubMed

    Beck, Kenneth; Watters, Samantha

    2017-05-19

    The purpose of this investigation was to describe the mutual influences between drivers and their significant others in a sample of college students, using a social network perspective. A web-based survey was made of 65 dyads of drivers and their significant others, in order to examine areas of mutual influence concerning driving. Measures were taken of their frequency of risky driving, including how often they drive, talk on the cell phone, or text with each other while driving. They were also asked whether they have influenced or been influenced by each other to drive safer or in a more risky manner. The dyads were very similar in how frequently they drive as well as talk to each other on the phone while driving. However, they were unlikely to feel that their driving was influenced by each other, with only 17% of the drivers and 19% of the significant others saying that they have been overtly influenced by (or have influenced) each other's driving behavior often or most of the time. Yet, most (67.7% and 72.1%) said they have ever encouraged or been encouraged by each other to drive more safely, mainly by being told to reduce their speed. In both sets of drivers in these dyads, talking to and texting their significant other while driving was related to risky driving. These findings suggest that a similarity exits in the driving patterns of young drivers and their significant others, especially concerning talking to each other on the phone while driving. The largest degree of overt social influence appears to center around avoidance of behaviors perceived to be associated with getting a traffic citation. Implications for safety campaign development and future research are presented.

  15. Thermodynamics of protein destabilization in live cells.

    PubMed

    Danielsson, Jens; Mu, Xin; Lang, Lisa; Wang, Huabing; Binolfi, Andres; Theillet, François-Xavier; Bekei, Beata; Logan, Derek T; Selenko, Philipp; Wennerström, Håkan; Oliveberg, Mikael

    2015-10-06

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a β-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 °C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized "interaction landscape" of the cellular interior.

  16. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    PubMed

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  17. Alcohol, marijuana, and perceptions of influence on social and sexual behavior among African American adolescent female detainees.

    PubMed

    du Plessis, Lindsay Danielle; Holliday, Rhonda Conerly; Robillard, Alyssa G; Braithwaite, Ronald L

    2009-07-01

    Juvenile detainees comprise a population that engages in high-risk behavior. This study examined sexual risk and substance use behavior and the perceptions of African American female adolescent detainees (N = 765) regarding the influence of alcohol and marijuana use on their social and sexual behaviors. Overall, 58% and 64% reported alcohol and marijuana use, respectively. Alcohol's perceived influence on sexual behavior (p < .001) was significantly different between those who drank and those who did not; marijuana's influence on social (p < .01) and sexual (p < .001) behavior was significantly different between those who used marijuana and those who did not. There is a need for further study of the influence of substance use on social and sexual behavior among African American female adolescent detainees.

  18. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  19. Order Matters: The Order of Somatic Mutations Influences Cancer Evolution.

    PubMed

    Kent, David G; Green, Anthony R

    2017-04-03

    Cancers evolve as a consequence of multiple somatic lesions, with competition between subclones and sequential subclonal evolution. Some driver mutations arise either early or late in the evolution of different individual tumors, suggesting that the final malignant properties of a subclone reflect the sum of mutations acquired rather than the order in which they arose. However, very little is known about the cellular consequences of altering the order in which mutations are acquired. Recent studies of human myeloproliferative neoplasms show that the order in which individual mutations are acquired has a dramatic impact on the cell biological and molecular properties of tumor-initiating cells. Differences in clinical presentation, complications, and response to targeted therapy were all observed and implicate mutation order as an important player in cancer biology. These observations represent the first demonstration that the order of mutation acquisition influences stem and progenitor cell behavior and clonal evolution in any cancer. Thus far, the impact of different mutation orders has only been studied in hematological malignancies, and analogous studies of solid cancers are now required. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. Class IIa Histone Deacetylases Are Conserved Regulators of Circadian Function*

    PubMed Central

    Fogg, Paul C. M.; O'Neill, John S.; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C.; McIntosh, Rebecca L. L.; Elliott, Christopher J. H.; Sweeney, Sean T.; Hastings, Michael H.; Chawla, Sangeeta

    2014-01-01

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca2+ and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. PMID:25271152

  1. Class IIa histone deacetylases are conserved regulators of circadian function.

    PubMed

    Fogg, Paul C M; O'Neill, John S; Dobrzycki, Tomasz; Calvert, Shaun; Lord, Emma C; McIntosh, Rebecca L L; Elliott, Christopher J H; Sweeney, Sean T; Hastings, Michael H; Chawla, Sangeeta

    2014-12-05

    Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Epitope topography controls bioactivity in supramolecular nanofibers

    PubMed Central

    Sur, Shantanu; Tantakitti, Faifan; Matson, John B.; Stupp, Samuel I.

    2015-01-01

    Incorporating bioactivity into artificial scaffolds using peptide epitopes present in the extracellular matrix (ECM) is a well-known approach. A common strategy has involved epitopes that provide cells with attachment points and external cues through interaction with integrin receptors. Although a variety of bioactive sequences have been identified so far, less is known about their optimal display in a scaffold. We report here on the use of self-assembled peptide amphiphile (PA) nanofiber matrices to investigate the impact of spatial presentation of the fibronectin derived epitope RGDS on cell response. Using one, three, or five glycine residues, RGDS epitopes were systematically spaced out from the surface of the rigid nanofibers. We found that cell morphology was strongly affected by the separation of the epitope from the nanofiber surface, with the longest distance yielding the most cell-spreading, bundling of actin filaments, and a round-to-polygonal transformation of cell shape. Cell response to this type of epitope display was also accompanied with activated integrin-mediated signaling and formation of stronger adhesions between cells and substrate. Interestingly, unlike length, changing the molecular flexibility of the linker had minimal influence on cell behavior on the substrate for reasons that remain poorly understood. The use in this study of high persistence length nanofibers rather than common flexible polymers allows us to conclude that epitope topography at the nanoscale structure of a scaffold influences its bioactive properties independent of epitope density and mechanical properties. PMID:25745558

  3. Human aortic endothelial cell morphology influenced by topography of porous silicon substrates.

    PubMed

    Formentín, Pilar; Catalán, Úrsula; Fernández-Castillejo, Sara; Alba, Maria; Baranowska, Malgorzata; Solà, Rosa; Pallarès, Josep; Marsal, Lluís F

    2015-10-01

    Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research. © The Author(s) 2015.

  4. Multiscale Cues Drive Collective Cell Migration

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  5. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.

    PubMed

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    2014-05-21

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A functional genomics screen in planarians reveals regulators of whole-brain regeneration.

    PubMed

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-09-09

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea . Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal's ability to regenerate its brain.

  7. Neighborhood walkability and walking behavior: the moderating role of action orientation.

    PubMed

    Friederichs, Stijn A H; Kremers, Stef P J; Lechner, Lilian; de Vries, Nanne K

    2013-05-01

    In promoting physical activity, it is important to gain insight into environmental factors that facilitate or hinder physical activity and factors that may influence this environment-behavior relationship. As the personality factor of action orientation reflects an individual's capacity to regulate behavior it may act as a moderator in the environment-behavior relationship. The current study addressed the relationship between neighborhood walkability and walking behavior and the influence of action orientation on this relationship. Three hundred and forty-seven Dutch inhabitants [mean age 43.1 (SD 17.1)] completed a web based questionnaire assessing demographic variables, neighborhood walkability (Neighborhood Environment Walkability Scale), variables of the Theory of Planned Behavior, action orientation, and walking behavior. The results show that high levels of neighborhood walkability are positively associated with walking behavior and that this influence is largely unmediated by cognitive processes. A positive influence of neighborhood walkability on walking behavior was identified in the action-oriented subpopulation, whereas in the state-oriented part of the population, this influence was absent. The findings suggest that the influence of neighborhood environment on walking behavior has a relatively large unconscious, automatic component. In addition, the results suggest that the walkability-walking relationship is moderated by action orientation.

  8. Assessing characteristics related to the use of seatbelts and cell phones by drivers: application of a bivariate probit model.

    PubMed

    Russo, Brendan J; Kay, Jonathan J; Savolainen, Peter T; Gates, Timothy J

    2014-06-01

    The effects of cell phone use and safety belt use have been an important focus of research related to driver safety. Cell phone use has been shown to be a significant source of driver distraction contributing to substantial degradations in driver performance, while safety belts have been demonstrated to play a vital role in mitigating injuries to crash-involved occupants. This study examines the prevalence of cell phone use and safety belt non-use among the driving population through direct observation surveys. A bivariate probit model is developed to simultaneously examine the factors that affect cell phone and safety belt use among motor vehicle drivers. The results show that several factors may influence drivers' decision to use cell phones and safety belts, and that these decisions are correlated. Understanding the factors that affect both cell phone use and safety belt non-use is essential to targeting policy and programs that reduce such behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caridade, Marta; Graca, Luis; Ribeiro, Ruy M.

    To maintain immunological balance the organism has to be tolerant to self while remaining competent to mount an effective immune response against third-party antigens. An important mechanism of this immune regulation involves the action of regulatory T-cell (Tregs). In this mini-review, we discuss some of the known and proposed mechanisms by which Tregs exert their influence in the context of immune regulation, and the contribution of mathematical modeling for these mechanistic studies. These models explore the mechanisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback loopsmore » between APC, Tregs, and effector cells; or production of specific cytokines that act on effector cells. As the field matures, and competing models are winnowed out, it is likely that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade, affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based tolerance.« less

  10. Evidence-Based Kernels: Fundamental Units of Behavioral Influence

    ERIC Educational Resources Information Center

    Embry, Dennis D.; Biglan, Anthony

    2008-01-01

    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior-influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of…

  11. Short-Term Environmental Effects and Their Influence on Spatial Homogeneity of Organic Solar Cell Functionality.

    PubMed

    Chien, Huei-Ting; Zach, Peter W; Friedel, Bettina

    2017-08-23

    In this study, we focus on the induced degradation and spatial inhomogeneity of organic photovoltaic devices under different environmental conditions, uncoupled from the influence of any auxiliary hole-transport (HT) layer. During testing of the corresponding devices comprising the standard photoactive layer of poly(3-hexylthiophene) as donor, blended with phenyl-C 61 -butyric acid methyl ester as acceptor, a comparison was made between the nonencapsulated devices upon exposure to argon in the dark, dry air in the dark, dry air with illumination, and humid air in the dark. The impact on the active layer's photophysics is discussed, along with the device physics in terms of integral solar cell performance and spatially resolved photocurrent distribution with point-to-point analysis of the diode characteristics to determine the origin of the observed integrated organic photovoltaic device behavior. The results show that even without the widely used hygroscopic HT layer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), humidity is still a major factor in the short-term environmental degradation of organic solar cells with this architecture, and not only oxygen or light, as is often reported. Different from previous reports where water-induced device degradation was spatially homogeneous and formation of Al 2 O 3 islands was only seen for oxygen permeation through pinholes in aluminum, we observed insulating islands merely after humidity exposure in the present study. Further, we demonstrated with laser beam induced current mapping and point-to-point diode analysis that the water-induced performance losses are a result of the exposed device area comprising regions with entirely unaltered high output and intact diode behavior and those with severe degradation showing detrimentally lowered output and voltage-independent charge blocking, which is essentially insulating behavior. It is suggested that this is caused by transport of water through pinholes to the organic/metal interface, where they form insulating oxide or hydroxide islands, while the organic active layer stays unharmed.

  12. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  13. Protective layer formation on magnesium in cell culture medium.

    PubMed

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The existence of proteins in DMEM seems to hinder the formation of a corrosion layer. However, protein adsorption leads to similar results as concerns corrosion protection as the formed calcium phosphate layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    PubMed

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca 2+ concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH 2 ) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6.

    PubMed

    Ma, Zhao; Liu, Juan; Dick, Richard P; Li, Hui; Shen, Di; Gao, Yanzheng; Waigi, Michael Gatheru; Ling, Wanting

    2018-05-08

    Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L -1 ) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L -1 ) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L -1 ) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. An opinion-driven behavioral dynamics model for addictive behaviors

    NASA Astrophysics Data System (ADS)

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; Ambrose, Bridget K.; Brodsky, Nancy S.; Brown, Theresa J.; Husten, Corinne; Glass, Robert J.

    2015-04-01

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual's behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters provide targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. This has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.

  17. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  18. Family influence on volunteering intention and behavior among Chinese adolescents in Hong Kong.

    PubMed

    Law, Ben M F; Shek, Daniel T L

    2009-01-01

    Based on the responses of 5,946 adolescents (mean age = 14.77), the relationships among family influence, adolescents' volunteering intention, and volunteering behavior in a Chinese context were examined. A 9-item Chinese Family Influence on Adolescent Volunteerism Scale (C-FIAV) was used to measure nine kinds of influence of the family (such as family support) which could be subsumed under two underlying domains (positive family influence and extrinsic family influence). Results showed that family support, family belief, and family modeling were positively associated with both intention and behavior. Family reward and coercion were negatively associated with both intention and behavior. Family belief in volunteerism was the most critical factor. Grade and gender differences were found only in the associations between family influence and volunteering intention. Path models showed that positive and extrinsic family influence had an effect on volunteering behavior directly or via the mediation of volunteering intention. Implications and limitations are discussed.

  19. Stress (hypothalamic-pituitary-adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets.

    PubMed

    Lephart, Edwin D; Galindo, Edwardo; Bu, Li Hong

    2003-05-15

    Estrogens exhibit complex but beneficial effects on brain structure, function and behavior. Soy-derived dietary phytoestrogens protect against hormone-dependent and age-related diseases, due to their estrogen-like hormonal actions. However, the effects of phytoestrogens on brain and behavior are relatively unknown. This study examined the influence of exposing male Long-Evans rats (lifelong) to either a phytoestrogen-rich (Phyto-600) or a phytoestrogen-free (Phyto-free) diet on body weights, behavioral pain thresholds, the hypothalamic-pituitary-adrenal (HPA) hormonal stress response, hippocampal glucocorticoid receptor and brain neural cell adhesion molecules (NCAM) and synaptophysin levels using standard behavioral and biochemical techniques. Body weights were significantly decreased in Phyto-600 fed animals compared to Phyto-free values. There were no significant changes in behavioral pain thresholds, circulating corticosterone concentrations (after acute immobilization stress) or NCAM and synaptophysin levels in various brain regions by the diet treatments. However, Phyto-600 fed males displayed significantly higher plasma adrenocorticotrophin (ACTH) (post-stress) and hippocampal glucocorticoid receptor levels vs. Phyto-free values. These data suggest that (1) body weights are significantly reduced by soy-derived phytoestrogens, (2) behavioral pain thresholds (via heat stimuli) are not influenced by dietary phytoestrogens, but (3) these estrogenic molecules in the hippocampus enhance glucocorticoid receptor abundance and alter the negative feedback of stress hormones towards a female-like pattern of higher ACTH release after activation of the HPA stress axis. This study is the first to show that lifelong consumption of dietary phytoestrogens alters the HPA stress response in male rats.

  20. Engineered peptide-based nanobiomaterials for electrochemical cell chip.

    PubMed

    Kafi, Md Abdul; Cho, Hyeon-Yeol; Choi, Jeong-Woo

    2016-01-01

    Biomaterials having cell adhesion ability are considered to be integral part of a cell chip. A number of researches have been carried out to search for a suitable material for effective immobilization of cell on substrate. Engineered ECM materials or their components like collagen, Poly-l-Lysine (PLL), Arg-Gly-Asp (RGD) peptide have been extensively used for mammalian cell adhesion and proliferation with the aim of tissue regeneration or cell based sensing application. This review focuses on the various approaches for two- and three-dimensionally patterned nanostructures of a short peptide i.e. RGD peptide on chip surfaces together with their effects on cell behaviors and electrochemical measurements. Most of the study concluded with positive remarks on the well-oriented engineered RGD peptide over their homogenous thin film. The engineered RGD peptide not only influences cell adhesion, spreading and proliferation but also their periodic nano-arrays directly influence electrochemical measurements of the chips. The electrochemical signals found to be enhanced when RGD peptides were used in well-defined two-dimensional nano-arrays. The topographic alteration of three-dimensional structure of engineered RGD peptide was reported to be suitably contacted with the integrin receptors of cellular membrane which results indicated the enhanced cell-electrode adhesion and efficient electron exchange phenomenon. This enhanced electrochemical signal increases the sensitivity of the chip against the target analytes. Therefore, development of engineered cellular recognizable peptides and its 3D topological design for fabrication of cell chip will provide the synergetic effect on bio-affinity, sensitivity and accuracy for the in situ real-time monitoring of analytes.

  1. Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures.

    PubMed

    Frazier, Michael J; Hussein, Mahmoud I

    2015-11-01

    The dispersive behavior of phononic crystals and locally resonant metamaterials is influenced by the type and degree of damping in the unit cell. Dissipation arising from viscoelastic damping is influenced by the past history of motion because the elastic component of the damping mechanism adds a storage capacity. Following a state-space framework, a Bloch eigenvalue problem incorporating general viscoelastic damping based on the Zener model is constructed. In this approach, the conventional Kelvin-Voigt viscous-damping model is recovered as a special case. In a continuous fashion, the influence of the elastic component of the damping mechanism on the band structure of both a phononic crystal and a metamaterial is examined. While viscous damping generally narrows a band gap, the hereditary nature of the viscoelastic conditions reverses this behavior. In the limit of vanishing heredity, the transition between the two regimes is analyzed. The presented theory also allows increases in modal dissipation enhancement (metadamping) to be quantified as the type of damping transitions from viscoelastic to viscous. In conclusion, it is shown that engineering the dissipation allows one to control the dispersion (large versus small band gaps) and, conversely, engineering the dispersion affects the degree of dissipation (high or low metadamping).

  2. Multiple dimensions of peer influence in adolescent romantic and sexual relationships: a descriptive, qualitative perspective.

    PubMed

    Suleiman, Ahna Ballonoff; Deardorff, Julianna

    2015-04-01

    Adolescents undergo critical developmental transformations that increase the salience of peer influence. Peer interactions (platonic and romantic) have been found to have both a positive and negative influence on adolescent attitudes and behaviors related to romantic relationships and sexual behavior. This study used qualitative methodology to explore how peers influence romantic and sexual behavior. Forty adolescents participated in individual semi-structured interviews. All interviews were audio recorded and transcribed, and analyzed using a modified grounded theory approach. The concept of peer influence on romantic relationships and sexual behavior emerged as a key theme. Youth described that platonic peers (friends) influenced their relationships and sexual behavior including pressuring friends into relationships, establishing relationships as currency for popularity and social status, and creating relationship norm and expectations. Romantic peers also motivated relationship and sexual behavior as youth described engaging in behavior to avoid hurting and successfully pleasing their partners. Future research should explore multiple types of peer influence in order to better inform interventions to improve the quality of adolescents' romantic and sexual relationships.

  3. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Jibuti, Levan; Zimmermann, Walter; Rafaï, Salima; Peyla, Philippe

    2017-11-01

    Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010), 10.1103/PhysRevLett.104.098102].

  4. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    NASA Astrophysics Data System (ADS)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  5. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.

    PubMed

    Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin

    2017-11-01

    Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.

    PubMed

    Germaini, Marie-Michèle; Detsch, Rainer; Grünewald, Alina; Magnaudeix, Amandine; Lalloue, Fabrice; Boccaccini, Aldo R; Champion, Eric

    2017-06-06

    The influence of carbonate substitution (4.4 wt%, mixed A/B type) in hydroxyapatite ceramics for bone remodeling scaffolds was investigated by separately analyzing the response of pre-osteoblasts and osteoclast-like cells. Carbonated hydroxyapatite (CHA) (Ca 9.5 (PO 4 ) 5.5 (CO 3 ) 0.5 (OH)(CO 3 ) 0.25 -CHA), mimicking the chemical composition of natural bone mineral, and pure hydroxyapatite (HA) (Ca 10 (PO 4 ) 6 (OH) 2 -HA) porous ceramics were processed to obtain a similar microstructure and surface physico-chemical properties (grain size, porosity ratio and pore size, surface roughness and zeta potential). The biological behavior was studied using MC3T3-E1 pre-osteoblastic and RAW 264.7 monocyte/macrophage cell lines. Chemical dissolution in the culture media and resorption lacunae produced by osteoclasts occur with both HA and CHA ceramics, but CHA exhibits much higher dissolution and greater bioresorption ability. CHA ceramics promoted a significantly higher level of pre-osteoblast proliferation. Osteoblastic differentiation, assessed by qRT-PCR of RUNX2 and COLIA2, and pre-osteoclastic proliferation and differentiation were not significantly different on CHA or HA ceramics but cell viability and metabolism were significantly greater on CHA ceramics. Thus, the activity of both osteoclast-like and osteoblastic cells was influenced by the carbonate substitution in the apatite structure. Furthermore, CHA showed a particularly interesting balance between biodegradation, by osteoclasts and chemical dissolution, and osteogenesis through osteoblasts' activity, to stimulate bone regeneration. It is hypothesized that this amount of 4.4 wt% carbonate substitution leads to an adapted concentration of calcium in the fluid surrounding the ceramic to stimulate the activity of cells. These results highlight the superior biological behavior of microporous 4.4 wt% A/B CHA ceramics that could beneficially replace the commonly used HA of biphasic calcium phosphates for future applications in bone tissue engineering.

  7. Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior.

    PubMed

    Meier, Madeline H; Slutske, Wendy S; Heath, Andrew C; Martin, Nicholas G

    2011-05-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to 18 years of age) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after 17 years of age) were obtained 8 years later. Results revealed that either the genetic or the shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., there were no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed.

  8. Sex Differences in the Genetic and Environmental Influences on Childhood Conduct Disorder and Adult Antisocial Behavior

    PubMed Central

    Meier, Madeline H.; Slutske, Wendy S.; Heath, Andrew C.; Martin, Nicholas G.

    2011-01-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to age 18) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after age 17) were obtained eight years later. Results revealed that either the genetic or shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed. PMID:21319923

  9. Differences in regulatory T-cell and dendritic cell pattern in decidual tissue of placenta accreta/increta cases.

    PubMed

    Schwede, S; Alfer, J; von Rango, U

    2014-06-01

    Primary infertility, miscarriage, and preeclampsia have been correlated with reduced numbers of regulatory T-cells (Treg) suggesting that decreased extravillous trophoblast (EVT) invasion originates from inadequate EVT tolerance. In contrast increased numbers of Treg-cells may be responsible for over-invasion of EVT. As the maturation status of dendritic cells (DC) influences T-cell behavior (tolerance or immune activation), altered relation between immature and mature DCs may also influence EVT invasion. Paraffin-embedded specimens of placenta accreta/increta (Pc; n = 11) and healthy intrauterine pregnancy (IUG; n = 18) were double-stained for cytokeratin and CD45, CD68, CD56, CD20, CD3, or CD8 as well as FoxP3/CD4 and FoxP3/CD8 and single-stained for CD4, CD25, FoxP3, CD209, Dec205 and CD83. Quantification of the leukocyte subpopulations was performed for decidua parietalis and basalis as characterized by cytokeratin-positive EVT. Statistical analysis was performed by using the Mann-Whitney test. There were significantly fewer CD4(+) cells in Pc than in IUG. Concerning the Treg-markers, FoxP3(+) cells are significantly increased. CD25(+) cells showed a small non-significant increase in Pc in comparison to IUG. Concerning dendritic cells, immature non-activated CD209(+) DCs were significantly decreased in Pc while immature activated CD205(+) DCs were slightly but non-significantly increased. Mature activated CD83(+) DC were non-significantly decreased in IUG vs Pc. The increased number of Treg-cells in Pc suggests significance for these cells in the regulation of trophoblast invasion. Their adequate interaction with other lymphocyte populations (e.g. adequately maturated dendritic cells) may be one mechanism to assure controlled EVT invasion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Concise Review: Fabrication, Customization, and Application of Cell Mimicking Microparticles in Stem Cell Science.

    PubMed

    Labriola, Nicholas R; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith; Darling, Eric M

    2018-02-01

    Stem and non-stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP-based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232-240. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Temperature and pH Conditions That Prevail during Fermentation of Sausages Are Optimal for Production of the Antilisterial Bacteriocin Sakacin K

    PubMed Central

    Leroy, Frédéric; de Vuyst, Luc

    1999-01-01

    Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35°C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K. PMID:10049850

  12. Effect of binary organic solvents together with emulsifier on particle size and in vitro behavior of paclitaxel-encapsulated polymeric lipid nanoparticles.

    PubMed

    Qin, Shuzhi; Sun, Xiangshi; Li, Feng; Yu, Kongtong; Zhou, Yulin; Liu, Na; Zhao, Chengguo; Teng, Lesheng; Li, Youxin

    2017-12-21

    Biodegradable nanoparticles with diameters between 100 nm and 500 nm are of great interest in the contexts of targeted delivery. The present work provides a review concerning the effect of binary organic solvents together with emulsifier on particle size as well as the influence of particle size on the in vitro drug release and uptake behavior. The polymeric lipid nanoparticles (PLNs) with different particle sizes were prepared by using binary solvent dispersion method. Various formulation parameters such as binary organic solvent composition and emulsifier types were evaluated on the basis of their effects on particle size and size distribution. PLNs had a strong dependency on the surface tension, intrinsic viscosity and volatilization rate of binary organic solvents and the hydrophilicity/hydrophobicity of emulsifiers. Acetone-methanol system together with pluronic F68 as emulsifier was proved to obtain the smallest particle size. Then the PLNs with different particle sizes were used to investigate how particle size at nanoscale affects interacted with tumor cells. As particle size got smaller, cellular uptake increased in tumor cells and PLNs with particle size of ~120 nm had the highest cellular uptake and fastest release rate. The paclitaxel (PTX)-loaded PLNs showed a size-dependent inhibition of tumor cell growth, which was commonly influenced by cellular uptake and PTX release. The PLNs would provide a useful means to further elucidate roles of particle size on delivery system of hydrophobic drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.

    PubMed

    Murtada, Sae-Il; Holzapfel, Gerhard A

    2014-10-07

    Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear influence on the deformation and the stress behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Friends: The Role of Peer Influence across Adolescent Risk Behaviors.

    ERIC Educational Resources Information Center

    Maxwell, Kimberly A.

    2002-01-01

    Examined peer influence for 1,969 adolescents across 5 risk behaviors: smoking, alcohol consumption, marijuana use, tobacco chewing, and sexual debut. Results show that a random same-sex peer predicts a teen's risk behavior initiation through influence to initiate cigarette and marijuana use, and influence to initiate and stop alcohol and chewing…

  15. Influences of Mating Group Composition on the Behavioral Time-Budget of Male and Female Alpine Ibex (Capra ibex) during the Rut

    PubMed Central

    Tettamanti, Federico; Viblanc, Vincent A.

    2014-01-01

    During the rut, polygynous ungulates gather in mixed groups of individuals of different sex and age. Group social composition, which may vary on a daily basis, is likely to have strong influences on individual’s time-budget, with emerging properties at the group-level. To date, few studies have considered the influence of group composition on male and female behavioral time budget in mating groups. Focusing on a wild population of Alpine ibex, we investigated the influence of group composition (adult sex ratio, the proportion of dominant to subordinate males, and group size) on three behavioral axes obtained by Principal Components Analysis, describing male and female group time-budget. For both sexes, the first behavioral axis discerned a trade-off between grazing and standing/vigilance behavior. In females, group vigilance behavior increased with increasingly male-biased sex ratio, whereas in males, the effect of adult sex ratio on standing/vigilance behavior depended on the relative proportion of dominant males in the mating group. The second axis characterized courtship and male-male agonistic behavior in males, and moving and male-directed agonistic behavior in females. Mating group composition did not substantially influence this axis in males. However, moving and male-directed agonistic behavior increased at highly biased sex ratios (quadratic effect) in females. Finally, the third axis highlighted a trade-off between moving and lying behavior in males, and distinguished moving and female-female agonistic behavior from lying behavior in females. For males, those behaviors were influenced by a complex interaction between group size and adult sex ratio, whereas in females, moving and female-female agonistic behaviors increased in a quadratic fashion at highly biased sex ratios, and also increased with increasing group size. Our results reveal complex behavioral trade-offs depending on group composition in the Alpine ibex, and emphasize the importance of social factors in influencing behavioral time-budgets of wild ungulates during the rut. PMID:24416453

  16. Slight changes in the mechanical stimulation affects osteoblast- and osteoclast-like cells in co-culture.

    PubMed

    Kadow-Romacker, Anke; Duda, Georg N; Bormann, Nicole; Schmidmaier, Gerhard; Wildemann, Britt

    2013-12-01

    Osteoblast- and osteoclast-like cells are responsible for coordinated bone maintenance, illustrated by a balanced formation and resorption. Both parameters appear to be influenced by mechanical constrains acting on each of these cell types individually. We hypothesized that the interactions between both cell types are also influenced by mechanical stimulation. Co-cultures of osteoblast- and osteoclast-like cells were stimulated with 1,100 µstrain, 0.1 or 0.3 Hz for 1-5 min/day over 5 days. Two different setups depending on the differentiation of the osteoclast-like cells were used: i) differentiation assay for the fusion of pre-osteoclasts to osteoclasts, ii) resorption assay to determine the activity level of osteoclast-like cells. In the differentiation assay (co-culture of osteoblasts with unfused osteoclast precursor cells) the mechanical stimulation resulted in a significant decrease of collagen-1 and osteocalcin produced by osteoblast-like cells. Significantly more TRAP-iso5b was measured after stimulation for 3 min with 0.1 Hz, indicating enhanced osteoclastogenesis. In the resorption assay (co-culture of osteoblasts with fused osteoclasts) the stimulation for 3 min with 0.3 Hz significantly increased the resorption activity of osteoclasts measured by the pit formation and the collagen resorption. The same mechanical stimulation resulted in an increased collagen-1 production by the osteoblast-like cells. The ratio of RANKL/OPG was not different between the groups. These findings demonstrate that already small changes in duration or frequency of mechanical stimulation had significant consequences for the behavior of osteoblast- and osteoclast-like cells in co-culture, which partially depend on the differentiation status of the osteoclast-like cells.

  17. [A Survey of Maternal Dietary Behavior Based on Theory of Reasoned Action].

    PubMed

    Huang, Yan; Luo, Bi-ru

    2015-05-01

    To detect the diet behavior and influencing factors of related behavior at different stages among pregnant women. Based on the Theory of Reasoned Action (TRA), literature review, expert evaluation and preliminary investigation, we designed and finalized three questionnaires. Diet behaviors among women in early term, medium term and late term were investigated by using the questionnaires. 624 early term, 619 medium term and 738 late term valid questionnaires were returned. Participants ranged from 18 to 45 years of age. 74% pregnancy body mass index (BMI) was within the normal range. More than 43% care taking was provided by the mother, followed by the husband. The participants had a good eating behavior on the whole. At 3 stages, carbohydrate intake, protein intake and fat intake were no significant difference when compared with that of recommended value (P> 0. 05). The pregnant women intaked insufficient cereal, beans, dairy and aquatic products, while fruit and nuts were more than needed (P<0. 05). Subjective norms influenced their eating behavior indirectly through influencing their behavior attitude and behavioral intention. The attitude could influence behavior directly without involving the intention. The participants had relatively good diet behavior, but still had problems on food choice and a reasonable combination of a variety of food. Subjective norms influenced their behavior attitude and behavioral intention. The mother had the strongest influence on the pregnant woman's diet attitude and behavioral intention among all those had direct contact with the pregnant woman.

  18. Effect of Stratification on Surface Properties of Corneal Epithelial Cells

    PubMed Central

    Yáñez-Soto, Bernardo; Leonard, Brian C.; Raghunathan, Vijay Krishna; Abbott, Nicholas L.; Murphy, Christopher J.

    2015-01-01

    Purpose The purpose of this study was to determine the influence of mucin expression in an immortalized human corneal epithelial cell line (hTCEpi) on the surface properties of cells, such as wettability, contact angle, and surface heterogeneity. Methods hTCEpi cells were cultured to confluence in serum-free medium. The medium was then replaced by stratification medium to induce mucin biosynthesis. The mucin expression profile was analyzed using quantitative PCR and Western blotting. Contact angles were measured using a two-immiscible liquid method, and contact angle hysteresis was evaluated by tilting the apparatus and recording advancing and receding contact angles. The spatial distribution of mucins was evaluated with fluorescently labeled lectin. Results hTCEpi cells expressed the three main ocular mucins (MUC1, MUC4, and MUC16) with a maximum between days 1 and 3 of the stratification process. Upon stratification, cells caused a very significant increase in contact angle hysteresis, suggesting the development of spatially discrete and heterogeneously distributed surface features, defined by topography and/or chemical functionality. Although atomic force microscopy measurements showed no formation of appreciable topographic features on the surface of the cells, we observed a significant increase in surface chemical heterogeneity. Conclusions The surface chemical heterogeneity of the corneal epithelium may influence the dynamic behavior of tear film by “pinning” the contact line between the cellular surface and aqueous tear film. Engineering the surface properties of corneal epithelium could potentially lead to novel treatments in dry eye disease. PMID:26747762

  19. Sibling influences on prosocial behavior.

    PubMed

    Hughes, Claire; McHarg, Gabrielle; White, Naomi

    2018-04-01

    Sibling relationships are characterized by familiarity and emotional intensity. Alongside frequent shared play, sibling interactions feature complementary interactions (e.g. teaching, caregiving) reflecting age-related asymmetries in socio-cognitive skills. These aspects may underpin sibling influences on prosocial behavior: theoretical accounts of social influences on prosocial behavior highlight emotion sharing, goal alignment, the intrinsically rewarding nature of social interaction, and scaffolding of social norms. Taking a fine-grained approach to prosocial behavior, we examine these processes in relation to sibling influences on children's comforting, sharing, and helping. Emergent themes include: developmental change in the nature of sibling influences on prosocial behavior, the need to consider sibling influences in the wider family context, and the importance of individual differences in the quality of sibling relationships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Neural basis of imprinting behavior in chicks.

    PubMed

    Nakamori, Tomoharu; Maekawa, Fumihiko; Sato, Katsushige; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2013-01-01

    Newly hatched chicks memorize the characteristics of the first moving object they encounter, and subsequently show a preference for it. This "imprinting" behavior is an example of infant learning and is elicited by visual and/or auditory cues. Visual information of imprinting stimuli in chicks is first processed in the visual Wulst (VW), a telencephalic area corresponding to the mammalian visual cortex, congregates in the core region of the hyperpallium densocellulare (HDCo) cells, and transmitted to the intermediate medial mesopallium (IMM), a region similar to the mammalian association cortex. The imprinting memory is stored in the IMM, and activities of IMM neurons are altered by imprinting. Imprinting also induces functional and structural plastic changes of neurons in the circuit that links the VW and the IMM. Of these neurons, the activity of the HDCo cells is strongly influenced by imprinting. Expression and modulation of NR2B subunit-containing N-methyl-D-aspartate (NMDA) receptors in the HDCo cells are crucial for plastic changes in this circuit as well as the process of visual imprinting. Thus, elucidation of cellular and molecular mechanisms underlying the plastic changes that occurred in the HDCo cells may provide useful knowledge about infant learning. © 2012 The Authors Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  1. Bacterial response to different surface chemistries fabricated by plasma polymerization on electrospun nanofibers.

    PubMed

    Abrigo, Martina; Kingshott, Peter; McArthur, Sally L

    2015-12-06

    Control over bacterial attachment and proliferation onto nanofibrous materials constitutes a major challenge for a variety of applications, including filtration membranes, protective clothing, wound dressings, and tissue engineering scaffolds. To develop effective devices, the interactions that occur between bacteria and nanofibers with different morphological and physicochemical properties need to be investigated. This paper explores the influence of fiber surface chemistry on bacterial behavior. Different chemical functionalities were generated on the surface of electrospun polystyrene nanofibers through plasma polymerization of four monomers (acrylic acid, allylamine, 1,7-octadiene, and 1,8-cineole). The interactions of Escherichia coli with the surface modified fibers were investigated through a combination of scanning electron microscopy and confocal laser scanning microscopy. Fiber wettability, surface charge, and chemistry were found to affect the ability of bacterial cells to attach and proliferate throughout the nanofiber meshes. The highest proportion of viable cells attachment occurred on the hydrophilic amine rich coating, followed by the hydrophobic octadiene. The acrylic acid coating rich in carboxyl groups showed a significantly lower attraction of bacterial cells. The 1,8-cineole retained the antibacterial activity of the monomer, resulting with a high proportion of dead isolated cells attached onto the fibers. Results showed that the surface chemistry properties of nanofibrous membranes can be strategically tuned to control bacterial behavior.

  2. A novel surface modification approach for protein and cell microarrays

    NASA Astrophysics Data System (ADS)

    Kurkuri, Mahaveer D.; Driever, Chantelle; Thissen, Helmut W.; Voelcker, Nicholas H.

    2007-01-01

    Tissue engineering and stem cell technologies have led to a rapidly increasing interest in the control of the behavior of mammalian cells growing on tissue culture substrates. Multifunctional polymer coatings can assist research in this area in many ways, for example, by providing low non-specific protein adsorption properties and reactive functional groups at the surface. The latter can be used for immobilization of specific biological factors that influence cell behavior. In this study, glass slides were coated with copolymers of glycidyl methacrylate (GMA) and poly(ethylene glycol) methacrylate (PEGMA). The coatings were prepared by three different methods based on dip and spin coating as well as polymer grafting procedures. Coatings were characterized by X-ray photoelectron spectroscopy, surface sensitive infrared spectroscopy, ellipsometry and contact angle measurements. A fluorescently labelled protein was deposited onto reactive coatings using a contact microarrayer. Printing of a model protein (fluorescein labeled bovine serum albumin) was performed at different protein concentrations, pH, temperature, humidity and using different micropins. The arraying of proteins was studied with a microarray scanner. Arrays printed at a protein concentration above 50 μg/mL prepared in pH 5 phosphate buffer at 10°C and 65% relative humidity gave the most favourable results in terms of the homogeneity of the printed spots and the fluorescence intensity.

  3. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats.

    PubMed

    Liu, Lei; Hoang-Gia, Trinh; Wu, Hui; Lee, Mi-Ra; Gu, Lijuan; Wang, Chunyan; Yun, Beom-Sik; Wang, Qijun; Ye, Shengquan; Sung, Chang-Keun

    2011-03-25

    Ginsenoside Rb1 (Rb1) is known to improve learning and memory in hippocampus-dependent tasks. However, the cellular mechanism remains unknown. Cell genesis in hippocampus is involved in spatial learning and memory. In the present study, Rb1 was orally administrated to adult rats for 30days. The behavioral training tests indicated that Rb1 improved spatial cognitive performance of rats in Morris water maze (MWM). Furthermore, we investigated the effects of Rb1 on cell genesis in adult rats' hippocampus, using thymidine analog bromodeoxyuridine (BrdU) as a marker for dividing cells. It has been shown that hippocampal cell genesis can be influenced by several factors such as learning and exercise. In order to avoid the effects of the interfering factors, only the rats treated with Rb1 without training in MWM were used to investigate cell genesis in hippocampus. When BrdU was given to the rats 30days prior to being killed, it was shown that oral administration of Rb1 significantly increased cell survival in dentate gyrus and hippocampal subregion CA3. However, when BrdU was injected 2h prior to sacrifice, the results indicated that Rb1 had no significant influence on cell proliferation in the hippocampal subregions. Thus, an increase of cell survival in hippocampus stimulated by Rb1 may be one of the mechanisms by which ginseng facilitates spatial learning and memory. Our study also indicates that Rb1 may be developed as a therapeutic agent for patients with memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Lin, Keng-Hui; Chew, Lock Yue

    2017-11-01

    Matrix nanotopography plays an important role in regulating cell behaviors by providing spatial as well as mechanical cues for cells to sense. It has been proposed that nanoscale topography is possible to modulate the tensions which direct the formation of cytoskeleton and the organization of the membrane receptor within the cell, which in turn regulate intracellular mechanical and biochemical signaling. With current studies on this topic being performed mainly in 2D platforms, the question on how nanotopography can influence cell bahaviors in 3D environments has yet to be addressed. In this paper, we explored this question by placing cells in 3D hollow spherical polydimethylsiloxane scaffolds. After culturing rat embryonic fibroblast cells in two kinds of scaffold, one with smooth surface and the other with numerous nano-spikes, we observed that cells in the smooth scaffold have more anchoring sites and more focal adhesions than in the etched scaffold. Moreover, we found the presence of correlation between cortical actin, the important component for supporting cell attachment, and local cell geometry.

  5. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  6. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering

    PubMed Central

    Sommer, Marianne R.; Vetsch, Jolanda R.; Leemann, Jessica; Müller, Ralph

    2016-01-01

    Abstract How scaffold porosity, pore diameter and geometry influence cellular behavior is‐although heavily researched ‐ merely understood, especially in 3D. This is mainly caused by a lack of suitable, reproducible scaffold fabrication methods, with processes such as gas foaming, lyophilization or particulate leaching still being the standard. Here we propose a method to generate highly porous silk fibroin scaffolds with monodisperse spherical pores, namely inverse opals, and study their effect on cell behavior. These silk fibroin inverse opal scaffolds were compared to salt‐leached silk fibroin scaffolds in terms of human mesenchymal stem cell response upon osteogenic differentiation signals. While cell number remained similar on both scaffold types, extracellular matrix mineralization nearly doubled on the newly developed scaffolds, suggesting a positive effect on cell differentiation. By using the very same material with comparable average pore diameters, this increase in mineral content can be attributed to either the differences in pore diameter distribution or the pore geometry. Although the exact mechanisms leading to enhanced mineralization in inverse opals are not yet fully understood, our results indicate that control over pore geometry alone can have a major impact on the bioactivity of a scaffold toward stem cell differentiation into bone tissue. © 2016 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2074–2084, 2017. PMID:27407014

  7. Topographical Control of Ocular Cell Types for Tissue Engineering

    PubMed Central

    McHugh, Kevin J.; Saint-Geniez, Magali; Tao, Sarah L.

    2014-01-01

    Visual impairment affects over 285 million people worldwide and has a major impact on an individual’s quality of life. Tissue engineering has the potential to increase quality of life for many of these patients by preventing vision loss or restoring vision using cell-based therapies. However, these strategies will require an understanding of the microenvironmental factors that influence cell behavior. The eye is a well-organized organ whose structural complexity is essential for proper function. Interactions between ocular cells and their highly ordered extracellular matrix are necessary for maintaining key tissue properties including corneal transparency and retinal lamination. Therefore, it is not surprising that culturing these cells in vitro on traditional flat substrates result in irregular morphology. Instead, topographically patterned biomaterials better mimic native extracellular matrix and have been shown to elicit in vivo-like morphology and gene expression which is essential for tissue engineering. Herein we review multiple methods for producing well-controlled topography and discuss optimal biomaterial scaffold design for cells of the cornea, retina, and lens. PMID:23744715

  8. Brushes, cables, and anchors: recent insights into multiscale assembly and mechanics of cellular structural networks.

    PubMed

    Lele, Tanmay P; Kumar, Sanjay

    2007-01-01

    The remarkable ability of living cells to sense, process, and respond to mechanical stimuli in their environment depends on the rapid and efficient interconversion of mechanical and chemical energy at specific times and places within the cell. For example, application of force to cells leads to conformational changes in specific mechanosensitive molecules which then trigger cellular signaling cascades that may alter cellular structure, mechanics, and migration and profoundly influence gene expression. Similarly, the sensitivity of cells to mechanical stresses is governed by the composition, architecture, and mechanics of the cellular cytoskeleton and extracellular matrix (ECM), which are in turn driven by molecular-scale forces between the constituent biopolymers. Understanding how these mechanochemical systems coordinate over multiple length and time scales to produce orchestrated cell behaviors represents a fundamental challenge in cell biology. Here, we review recent advances in our understanding of these complex processes in three experimental systems: the assembly of axonal neurofilaments, generation of tensile forces by actomyosin stress fiber bundles, and mechanical control of adhesion assembly.

  9. Axonal Control of the Adult Neural Stem Cell Niche

    PubMed Central

    Tong, Cheuk Ka; Chen, Jiadong; Cebrián-Silla, Arantxa; Mirzadeh, Zaman; Obernier, Kirsten; Guinto, Cristina D.; Tecott, Laurence H.; García-Verdugo, Jose Manuel; Kriegstein, Arnold; Alvarez-Buylla, Arturo

    2014-01-01

    SUMMARY The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSC) in the walls of the lateral ventricles of the adult brain. How the adult brain’s neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C. PMID:24561083

  10. Optimization of the silicon subcell for III-V on silicon multijunction solar cells: Key differences with conventional silicon technology

    NASA Astrophysics Data System (ADS)

    García-Tabarés, Elisa; Martín, Diego; García, Iván; Lelièvre, Jean François; Rey-Stolle, Ignacio

    2012-10-01

    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.

  11. In situ SERS spectroelectrochemical analysis of antioxidants deposited on copper substrates: What is the effect of applied potential on sorption behavior?

    NASA Astrophysics Data System (ADS)

    Dendisova-Vyskovska, Marcela; Broncova, Gabriela; Clupek, Martin; Prokopec, Vadym; Matejka, Pavel

    2012-12-01

    The detection of p-coumaric acid and ferulic acid using a combined in situ electrochemical and surface-enhanced Raman scattering spectroscopic technique in specially made electrode cell is described. New in situ spectroelectrochemical cell was designed as the three-electrode arrangement connected via positioning device to fiber-optic probe of Raman spectrometer Dimension P2 (excitation wavelength 785 nm). In situ SERS spectra of p-coumaric acid and ferulic acid were recorded at varying applied negative potentials to copper substrates. The spectral intensities and shapes of bands as well as spatial orientation of molecules on the surface depend significantly on varying values of the applied electrode potential. The change of electrode potential influences analyte adsorption/desorption behavior on the surface of copper substrates, affecting the reversibility of the whole process and overall spectral enhancement level. Principal component analysis is used to distinguish several stages of spectral variations on potential changes.

  12. Reciprocal Relationships Between Parenting Behavior and Disruptive Psychopathology from Childhood Through Adolescence

    PubMed Central

    Pardini, Dustin A.; Loeber, Rolf

    2010-01-01

    Theoretical models suggest that child behaviors influence parenting behaviors, and specifically that unpleasant child behaviors coerce parents to discontinue engaging in appropriate discipline. This study examined reciprocal relationships between parenting behaviors (supervision, communication, involvement, timid discipline and harsh punishment) and child disruptive disorder symptoms (ADHD, ODD and CD) in a clinic-referred sample of 177 boys. Annual measures, including structured clinical interviews, were obtained from the beginning of the study (when boys were between the ages of 7 to 12) to age 17. Specific reciprocal influence was observed; only timid discipline predicted worsening behavior, namely ODD symptoms, and ODD symptoms predicted increases in timid discipline. Greater influence from child behaviors to parenting practices was found: ODD also predicted poorer communication and decreased involvement, and CD predicted poorer supervision. ADHD was neither predictive of, nor predicted by, parenting behaviors. The results are specifically supportive of a coercive process between child behaviors and parenting behaviors, and generally suggestive of greater influence of child behaviors on parenting behaviors than of parenting behaviors on child behaviors PMID:18286366

  13. Reciprocal relationships between parenting behavior and disruptive psychopathology from childhood through adolescence.

    PubMed

    Burke, Jeffrey D; Pardini, Dustin A; Loeber, Rolf

    2008-07-01

    Theoretical models suggest that child behaviors influence parenting behaviors, and specifically that unpleasant child behaviors coerce parents to discontinue engaging in appropriate discipline. This study examined reciprocal relationships between parenting behaviors (supervision, communication, involvement, timid discipline and harsh punishment) and child disruptive disorder symptoms (ADHD, ODD and CD) in a clinic-referred sample of 177 boys. Annual measures, including structured clinical interviews, were obtained from the beginning of the study (when boys were between the ages of 7 to 12) to age 17. Specific reciprocal influence was observed; only timid discipline predicted worsening behavior, namely ODD symptoms, and ODD symptoms predicted increases in timid discipline. Greater influence from child behaviors to parenting practices was found: ODD also predicted poorer communication and decreased involvement, and CD predicted poorer supervision. ADHD was neither predictive of, nor predicted by, parenting behaviors. The results are specifically supportive of a coercive process between child behaviors and parenting behaviors, and generally suggestive of greater influence of child behaviors on parenting behaviors than of parenting behaviors on child behaviors.

  14. The impact of spatial and temporal patterns on multi-cellular behavior

    NASA Astrophysics Data System (ADS)

    Nikolic, Djordje L.

    What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.

  15. Nutritional effects on T-cell immunometabolism

    PubMed Central

    Cohen, Sivan; Danzaki, Keiko; MacIver, Nancie J.

    2017-01-01

    T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism. PMID:28054344

  16. Three Pillars for the Neural Control of Appetite.

    PubMed

    Sternson, Scott M; Eiselt, Anne-Kathrin

    2017-02-10

    The neural control of appetite is important for understanding motivated behavior as well as the present rising prevalence of obesity. Over the past several years, new tools for cell type-specific neuron activity monitoring and perturbation have enabled increasingly detailed analyses of the mechanisms underlying appetite-control systems. Three major neural circuits strongly and acutely influence appetite but with notably different characteristics. Although these circuits interact, they have distinct properties and thus appear to contribute to separate but interlinked processes influencing appetite, thereby forming three pillars of appetite control. Here, we summarize some of the key characteristics of appetite circuits that are emerging from recent work and synthesize the findings into a provisional framework that can guide future studies.

  17. Influence of Chronic Moderate Sleep Restriction and Exercise Training on Anxiety, Spatial Memory, and Associated Neurobiological Measures in Mice

    PubMed Central

    Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.

    2013-01-01

    Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185

  18. Examining driver behavior at the onset of yellow in a traffic simulator environment: Comparisons between random parameters and latent class logit models.

    PubMed

    Savolainen, Peter T

    2016-11-01

    This study involves an examination of driver behavior at the onset of a yellow signal indication. Behavioral data were obtained from a driving simulator study that was conducted through the National Advanced Driving Simulator (NADS) laboratory at the University of Iowa. These data were drawn from a series of events during which study participants drove through a series of intersections where the traffic signals changed from the green to yellow phase. The resulting dataset provides potential insights into how driver behavior is affected by distracted driving through an experimental design that alternated handheld, headset, and hands-free cell phone use with "normal" baseline driving events. The results of the study show that male drivers ages 18-45 were more likely to stop. Participants were also more likely to stop as they became more familiar with the simulator environment. Cell phone use was found to some influence on driver behavior in this setting, though the effects varied significantly across individuals. The study also demonstrates two methodological approaches for dealing with unobserved heterogeneity across drivers. These include random parameters and latent class logit models, each of which analyze the data as a panel. The results show each method to provide significantly better fit than a pooled, fixed parameter model. Differences in terms of the context of these two approaches are discussed, providing important insights as to the differences between these modeling frameworks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The role of PGE2 receptor EP4 in pathologic ocular angiogenesis.

    PubMed

    Yanni, Susan E; Barnett, Joshua M; Clark, Monika L; Penn, John S

    2009-11-01

    PGE(2) binds to PGE(2) receptors (EP(1-4)). The purpose of the present study was to investigate the role of the EP(4) receptor in angiogenic cell behaviors of retinal Müller cells and retinal microvascular endothelial cells (RMECs) and to assess the efficacy of an EP(4) antagonist in rat models of oxygen-induced retinopathy (OIR) and laser-induced choroidal neovascularization (LCNV). Müller cells derived from COX-2-null mice were treated with increasing concentrations of the EP(4) agonist PGE(1)-OH, and wild-type Müller cells were treated with increasing concentrations of the EP(4) antagonist L-161982; VEGF production was assessed. Human RMECs (HRMECs) were treated with increasing concentrations of L-161982, and cell proliferation and tube formation were assessed. Rats subjected to OIR or LCNV were administered L-161982, and the neovascular area was measured. COX-2-null mouse Müller cells treated with increasing concentrations of PGE(1)-OH demonstrated a significant increase in VEGF production (P < or = 0.0165). Wild-type mouse Müller cells treated with increasing concentrations of L-161982 demonstrated a significant decrease in VEGF production (P < or = 0.0291). HRMECs treated with increasing concentrations of L-161982 demonstrated a significant reduction in VEGF-induced cell proliferation (P < or = 0.0033) and tube formation (P < 0.0344). L-161982 treatment significantly reduced pathologic neovascularization in OIR (P < 0.0069) and LCNV (P < or = 0.0329). Preliminary investigation has demonstrated that EP(4) activation or inhibition influences the behaviors of two retinal cell types known to play roles in pathologic ocular angiogenesis. These findings suggest that the EP(4) receptor may be a valuable therapeutic target in neovascular eye disease.

  20. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    PubMed

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. An opinion-driven behavioral dynamics model for addictive behaviors

    DOE PAGES

    Moore, Thomas W.; Finley, Patrick D.; Apelberg, Benjamin J.; ...

    2015-04-08

    We present a model of behavioral dynamics that combines a social network-based opinion dynamics model with behavioral mapping. The behavioral component is discrete and history-dependent to represent situations in which an individual’s behavior is initially driven by opinion and later constrained by physiological or psychological conditions that serve to maintain the behavior. Additionally, individuals are modeled as nodes in a social network connected by directed edges. Parameter sweeps illustrate model behavior and the effects of individual parameters and parameter interactions on model results. Mapping a continuous opinion variable into a discrete behavioral space induces clustering on directed networks. Clusters providemore » targets of opportunity for influencing the network state; however, the smaller the network the greater the stochasticity and potential variability in outcomes. Furthermore, this has implications both for behaviors that are influenced by close relationships verses those influenced by societal norms and for the effectiveness of strategies for influencing those behaviors.« less

  2. Antecedent influences on behavior disorders.

    PubMed Central

    Smith, R G; Iwata, B A

    1997-01-01

    The influence of antecedent events on behavior disorders has been relatively understudied by applied behavior analysts. This lack of research may be due to a focus on consequences as determinants of behavior and a historical disagreement on a conceptual framework for describing and interpreting antecedent variables. We suggest that antecedent influences can be described using terms derived from basic behavioral principles and that their functional properties can be adequately interpreted as discriminative and establishing operations. A set of studies on assessment and treatment of behavior disorders was selected for review based on their relevance to the topic of antecedent events. These studies were categorized as focusing on assessment of antecedent events, antecedent treatments for behavior disorders maintained by either positive or negative reinforcement, and special cases of antecedent events in behavior disorders. Some directions for future research on antecedent influences in the analysis and treatment of behavior disorders are discussed. PMID:9210312

  3. Epigenetics: Behavioral Influences on Gene Function, Part I: Maternal Behavior Permanently Affects Adult Behavior in Offspring

    ERIC Educational Resources Information Center

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    The article highlights the field of epigenetics and its relevance in determining the effects of maternal nurturing on behavioral patterns in offsprings. Results concluded that maternal behavior influences the offspring's behavior to stress in adulthood and the effects are transgenerational through epigenetic mechanisms.

  4. The Model of Motivational Dynamics in Sport: Resistance to Peer Influence, Behavioral Engagement and Disaffection, Dispositional Coping, and Resilience.

    PubMed

    Nicholls, Adam R; Morley, David; Perry, John L

    2015-01-01

    The Model of Motivational Dynamics (MMD; Skinner and Pitzer, 2012) infers that peers influence behavioral engagement levels, which in turn is linked to coping and resilience. Scholars, however, are yet to test the MMD among an athletic population. The purpose of this paper was to assess an a priori model that included key constructs from the MMD, such as resistance to peer influence, behavioral engagement and disaffection, coping, and resilience among athletes. Three hundred and fifty-one athletes (male n = 173, female n = 178; M age = 16.15 years) completed a questionnaire that measured each construct. Our results provide support for the model. In particular, there were positive paths between resistance to peer influence and behavioral engagement, behavioral engagement and task-oriented coping, and task-oriented coping with resilience. There was also a positive path between resilience and resistance to peer influence, but a negative path from resistance to peer influence to behavioral disaffection. Due to the reported benefits of enhancing resistance to peer influence and behavioral engagement, researchers could devise sport specific interventions to maximize athletes' scores in these constructs.

  5. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression

    PubMed Central

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio

    2010-01-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor. Electronic supplementary material The online version of this article (doi:10.1007/s13277-010-0108-7) contains supplementary material, which is available to authorized users. PMID:20820980

  6. Influence of the interaction between nodal fibroblast and breast cancer cells on gene expression.

    PubMed

    Santos, Rosângela Portilho Costa; Benvenuti, Ticiana Thomazine; Honda, Suzana Terumi; Del Valle, Paulo Roberto; Katayama, Maria Lucia Hirata; Brentani, Helena Paula; Carraro, Dirce Maria; Rozenchan, Patrícia Bortman; Brentani, Maria Mitzi; de Lyra, Eduardo Carneiro; Torres, César Henrique; Salzgeber, Marcia Batista; Kaiano, Jane Haruko Lima; Góes, João Carlos Sampaio; Folgueira, Maria Aparecida Azevedo Koike

    2011-02-01

    Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.

  7. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior.

    PubMed

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-24

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an Apc Min/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion.

  8. Cellular context-dependent consequences of Apc mutations on gene regulation and cellular behavior

    PubMed Central

    Hashimoto, Kyoichi; Yamada, Yosuke; Semi, Katsunori; Yagi, Masaki; Tanaka, Akito; Itakura, Fumiaki; Aoki, Hitomi; Kunisada, Takahiro; Woltjen, Knut; Haga, Hironori; Sakai, Yoshiharu; Yamamoto, Takuya; Yamada, Yasuhiro

    2017-01-01

    The spectrum of genetic mutations differs among cancers in different organs, implying a cellular context-dependent effect for genetic aberrations. However, the extent to which the cellular context affects the consequences of oncogenic mutations remains to be fully elucidated. We reprogrammed colon tumor cells in an ApcMin/+ (adenomatous polyposis coli) mouse model, in which the loss of the Apc gene plays a critical role in tumor development and subsequently, established reprogrammed tumor cells (RTCs) that exhibit pluripotent stem cell (PSC)-like signatures of gene expression. We show that the majority of the genes in RTCs that were affected by Apc mutations did not overlap with the genes affected in the intestine. RTCs lacked pluripotency but exhibited an increased expression of Cdx2 and a differentiation propensity that was biased toward the trophectoderm cell lineage. Genetic rescue of the mutated Apc allele conferred pluripotency on RTCs and enabled their differentiation into various cell types in vivo. The redisruption of Apc in RTC-derived differentiated cells resulted in neoplastic growth that was exclusive to the intestine, but the majority of the intestinal lesions remained as pretumoral microadenomas. These results highlight the significant influence of cellular context on gene regulation, cellular plasticity, and cellular behavior in response to the loss of the Apc function. Our results also imply that the transition from microadenomas to macroscopic tumors is reprogrammable, which underscores the importance of epigenetic regulation on tumor promotion. PMID:28057861

  9. The "is" and the "ought": How do perceived social norms influence safety behaviors at work?

    PubMed

    Fugas, Carla S; Meliá, José L; Silva, Silvia A

    2011-01-01

    Despite a widespread view that social norms have an important contextual influence on health attitudes and behaviors, the impact of normative influences on safety behaviors has received very little attention. The current study proposes that supervisors' and coworkers' descriptive and injunctive safety norms influence proactive and compliance safety behaviors. Longitudinal results from 132 workers in a passenger transportation company support the link between coworkers' descriptive safety norms (at Time 1) and proactive safety practices (at Time 2). Crystallization of supervisor' injunctive safety norms (at Time 2) moderated the effect of coworkers' descriptive safety norms (at Time 1) on self-reported proactive safety behavior (at Time 2). These findings emphasize the differences between supervisors' and coworkers' descriptive and injunctive norms as sources of social influence on compliance and proactive safety behavior.

  10. A functional genomics screen in planarians reveals regulators of whole-brain regeneration

    PubMed Central

    Roberts-Galbraith, Rachel H; Brubacher, John L; Newmark, Phillip A

    2016-01-01

    Planarians regenerate all body parts after injury, including the central nervous system (CNS). We capitalized on this distinctive trait and completed a gene expression-guided functional screen to identify factors that regulate diverse aspects of neural regeneration in Schmidtea mediterranea. Our screen revealed molecules that influence neural cell fates, support the formation of a major connective hub, and promote reestablishment of chemosensory behavior. We also identified genes that encode signaling molecules with roles in head regeneration, including some that are produced in a previously uncharacterized parenchymal population of cells. Finally, we explored genes downregulated during planarian regeneration and characterized, for the first time, glial cells in the planarian CNS that respond to injury by repressing several transcripts. Collectively, our studies revealed diverse molecules and cell types that underlie an animal’s ability to regenerate its brain. DOI: http://dx.doi.org/10.7554/eLife.17002.001 PMID:27612384

  11. Mechanisms and use of neural transplants for brain repair.

    PubMed

    Dunnett, Stephen B; Björklund, Anders

    2017-01-01

    Under appropriate conditions, neural tissues transplanted into the adult mammalian brain can survive, integrate, and function so as to influence the behavior of the host, opening the prospect of repairing neuronal damage, and alleviating symptoms associated with neuronal injury or neurodegenerative disease. Alternative mechanisms of action have been postulated: nonspecific effects of surgery; neurotrophic and neuroprotective influences on disease progression and host plasticity; diffuse or locally regulated pharmacological delivery of deficient neurochemicals, neurotransmitters, or neurohormones; restitution of the neuronal and glial environment necessary for proper host neuronal support and processing; promoting local and long-distance host and graft axon growth; formation of reciprocal connections and reconstruction of local circuits within the host brain; and up to full integration and reconstruction of fully functional host neuronal networks. Analysis of neural transplants in a broad range of anatomical systems and disease models, on simple and complex classes of behavioral function and information processing, have indicated that all of these alternative mechanisms are likely to contribute in different circumstances. Thus, there is not a single or typical mode of graft function; rather grafts can and do function in multiple ways, specific to each particular context. Consequently, to develop an effective cell-based therapy, multiple dimensions must be considered: the target disease pathogenesis; the neurodegenerative basis of each type of physiological dysfunction or behavioral symptom; the nature of the repair required to alleviate or remediate the functional impairments of particular clinical relevance; and identification of a suitable cell source or delivery system, along with the site and method of implantation, that can achieve the sought for repair and recovery. © 2017 Elsevier B.V. All rights reserved.

  12. Bacterial navigation in chemical and nonchemical environments

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Tu, Yuhai

    2014-03-01

    Navigation of cells to the optimal environmental niches is critical for their survival and growth. E. coli cells, for example, can detect various chemicals and move up or down those chemical gradients (i.e., chemotaxis). Using the same signaling machinery, they can also sense other external factors such as pH and temperature and navigate from both sides toward some intermediate levels of those stimuli. This mode of precision sensing is more sophisticated than the (unidirectional) chemotaxis strategy and requires distinctive molecular mechanisms. To understand different bacterial taxis behaviors, we develop a theoretical model which incorporates microscopic signaling events in individual cells into macroscopic population dynamics. We find that the equilibrium population distribution is governed by an effective potential, the landscape of which depends on the external environment (chemical stimuli, pH, and temperature). We uncover the key conditions for various taxis behaviors and directly connects the cellular taxis performances with the underlying molecular parameters. This approach is used to examine and predict how background attractants and downstream temperature effects influence the performance and stability of thermotaxis, which can be tested in future experiments. This work is supported by the National Institutes of Health Grant GM081747.

  13. The hedgehog/Gli signaling paradigm in prostate cancer

    PubMed Central

    Chen, Mengqian; Carkner, Richard; Buttyan, Ralph

    2011-01-01

    Hedgehog is a ligand-activated signaling pathway that regulates Gli-mediated transcription. Although most noted for its role as an embryonic morphogen, hyperactive hedgehog also causes human skin and brain malignancies. The hedgehog-related gene anomalies found in these tumors are rarely found in prostate cancer. Yet surveys of human prostate tumors show concordance of high expression of hedgehog ligands and Gli2 that correlate with the potential for metastasis and therapy-resistant behavior. Likewise, prostate cancer cell lines express hedgehog target genes, and their growth and survival is affected by hedgehog/Gli inhibitors. To date, the preponderance of data supports the idea that prostate tumors benefit from a paracrine hedgehog microenvironment similar to the developing prostate. Uncertainty remains as to whether hedgehog’s influence in prostate cancer also includes aspects of tumor cell autocrine-like signaling. The recent findings that Gli proteins interact with the androgen receptor and affect its transcriptional output have helped to identify a novel pathway through which hedgehog/Gli might affect prostate tumor behavior and raises questions as to whether hedgehog signaling in prostate cancer cells is suitably measured by the expression of Gli target genes alone. PMID:21776292

  14. Metabolism as an Integral Cog in the Mammalian Circadian Clockwork

    PubMed Central

    Gamble, Karen L.; Young, Martin E.

    2013-01-01

    Circadian rhythms are an integral part of life. These rhythms are apparent in virtually all biological processes studies to date, ranging from the individual cell (e.g., DNA synthesis) to the whole organism (e.g., behaviors such as physical activity). Oscillations in metabolism have been characterized extensively in various organisms, including mammals. These metabolic rhythms often parallel behaviors such as sleep/wake and fasting/feeding cycles that occur on a daily basis. What has become increasingly clear over the past several decades is that many metabolic oscillations are driven by cell autonomous circadian clocks, which orchestrate metabolic processes in a temporally appropriate manner. During the process of identifying the mechanisms by which clocks influence metabolism, molecular-based studies have revealed that metabolism should be considered an integral circadian clock component. The implications of such an interrelationship include the establishment of a vicious cycle during cardiometabolic disease states, wherein metabolism-induced perturbations in the circadian clock exacerbate metabolic dysfunction. The purpose of this review is therefore to highlight recent insights gained regarding links between cell autonomous circadian clocks and metabolism, and the implications of clock dysfunction in the pathogenesis of cardiometabolic diseases. PMID:23594144

  15. [Extracellular matrix--regulation of cancer invasion and metastasis].

    PubMed

    Watanabe, Hideto

    2010-11-01

    Cancer cell invasion comprises steps in the destruction of the basement membrane and migration of cells into the connective tissue. These cells further migrate into lymph ducts and small vessels to reach metastasis. The extracellular matrix (ECM) provides a microenvironment for cells, and its destruction is associated with cancer cell invasion. Among matrix metalloproteinases (MMPs), both MMP-2 and 9 digest type IV collagen, a major component of the basement membrane, and MMP-14/MT1-MMP, a membrane-type MMP, activates MMP-2. Thus, these MMPs play a central role in cancer cell invasion. MMPs also cleave latent forms of growth factors and signaling molecules, releasing and activating them, which influence neo-vascularization and cancer apoptosis. Like proteins, carbohydrates are known to be involved in cancer invasion. Hyaluronan is known to both stimulate and inhibit cancer invasion, depending on its molecular size. Heparanase, which digests heparan sulfate, is known to facilitate cancer invasion and metastasis. In summary, ECM provides a microenvironment that regulates cell behavior and its structure altered by MMPs affects cancer cell invasion.

  16. Cell patterning by laser-assisted bioprinting.

    PubMed

    Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien

    2014-01-01

    The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Acoustic Features Influence Musical Choices Across Multiple Genres

    PubMed Central

    Barone, Michael D.; Bansal, Jotthi; Woolhouse, Matthew H.

    2017-01-01

    Based on a large behavioral dataset of music downloads, two analyses investigate whether the acoustic features of listeners' preferred musical genres influence their choice of tracks within non-preferred, secondary musical styles. Analysis 1 identifies feature distributions for pairs of genre-defined subgroups that are distinct. Using correlation analysis, these distributions are used to test the degree of similarity between subgroups' main genres and the other music within their download collections. Analysis 2 explores the issue of main-to-secondary genre influence through the production of 10 feature-influence matrices, one per acoustic feature, in which cell values indicate the percentage change in features for genres and subgroups compared to overall population averages. In total, 10 acoustic features and 10 genre-defined subgroups are explored within the two analyses. Results strongly indicate that the acoustic features of people's main genres influence the tracks they download within non-preferred, secondary musical styles. The nature of this influence and its possible actuating mechanisms are discussed with respect to research on musical preference, personality, and statistical learning. PMID:28725200

  18. Environmental and social influences on neuroendocrine puberty and behavior in macaques and other nonhuman primates

    PubMed Central

    Stephens, Shannon B. Z.; Wallen, Kim

    2013-01-01

    Puberty is the developmental period when the hypothalamic-pituitary-gonadal (HPG) axis is activated, following a juvenile quiescent period, and reproductive capacity matures. Although pubertal events occur in a consistent sequence, there is considerable variation between individuals in the onset and timing of pubertal events, with puberty onset occurring earlier in girls than in boys. Evidence in humans demonstrates that social and environmental context influences the timing of puberty onset and may account for some of the observed variation. This review analyzes the nonhuman primate literature, focusing primarily on rhesus macaques (Macaca mulatta), to examine the social and environmental influences on puberty onset, how these factors influence puberty in males and females, and to review the relationship between puberty onset of adult neuroendocrine function and sexual behavior. Social and environmental factors influence the timing of puberty onset and pubertal events in nonhuman primates, as in humans, and the influences of these factors differ for males and females. In nonhuman primates, gonadal hormones are not required for sexual behavior, but modulate the frequency of occurrence of behavior, with social context influencing the relationship between gonadal hormones and sexual behavior. Thus, the onset of sexual behavior is independent of neuroendocrine changes at puberty; however, there are distinct behavioral changes that occur at puberty, which are modulated by social context. Puberty is possibly the developmental period when hormonal modulation of sexual behavior is organized, and thus, when social context interacts with hormonal state to strongly influence the expression of sexual behavior. PMID:23998667

  19. Influence of nicotine on doxorubicin and cyclophosphamide combination treatment-induced spatial cognitive impairment and anxiety-like behavior in rats.

    PubMed

    Kitamura, Yoshihisa; Kanemoto, Erika; Sugimoto, Misaki; Machida, Ayumi; Nakamura, Yuka; Naito, Nanami; Kanzaki, Hirotaka; Miyazaki, Ikuko; Asanuma, Masato; Sendo, Toshiaki

    2017-04-01

    In the present study, we examined the effects of nicotine on cognitive impairment, anxiety-like behavior, and hippocampal cell proliferation in rats treated with a combination of doxorubicin and cyclophosphamide. Combined treatment with doxorubicin and cyclophosphamide produced cognitive impairment and anxiety-like behavior in rats. Nicotine treatment reversed the inhibition of novel location recognition induced by the combination treatment. This effect of nicotine was blocked by methyllycaconitine, a selective α7 nicotinic acetylcholine receptor (nAChR) antagonist, and dihydro-β-erythroidine, a selective α4β2 nAChR antagonist. In addition, nicotine normalized the amount of spontaneous alternation seen during the Y-maze task, which had been reduced by the combination treatment. This effect of nicotine was inhibited by dihydro-β-erythroidine. In comparison, nicotine did not affect the anxiety-like behavior induced by the combination treatment. Furthermore, the combination treatment reduced the number of proliferating cells in the subgranular zone of the hippocampal dentate gyrus, and this was also prevented by nicotine. Finally, the combination of doxorubicin and cyclophosphamide significantly reduced hippocampal α7 nAChR mRNA expression. These results suggest that nicotine inhibits doxorubicin and cyclophosphamide-induced cognitive impairment via α7 nAChR and α4β2 nAChR, and also enhances hippocampal neurogenesis.

  20. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles.

    PubMed

    Sanada, Takahiro; Hirata, Yuichi; Naito, Yutaka; Yamamoto, Naoki; Kikkawa, Yoshiaki; Ishida, Yuji; Yamasaki, Chihiro; Tateno, Chise; Ochiya, Takahiro; Kohara, Michinori

    2017-03-01

    An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection. We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.

  1. Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses.

    PubMed

    Mayorova, Tatiana D; Smith, Carolyn L; Hammar, Katherine; Winters, Christine A; Pivovarova, Natalia B; Aronova, Maria A; Leapman, Richard D; Reese, Thomas S

    2018-01-01

    Trichoplax adhaerens has only six cell types. The function as well as the structure of crystal cells, the least numerous cell type, presented an enigma. Crystal cells are arrayed around the perimeter of the animal and each contains a birefringent crystal. Crystal cells resemble lithocytes in other animals so we looked for evidence they are gravity sensors. Confocal microscopy showed that their cup-shaped nuclei are oriented toward the edge of the animal, and that the crystal shifts downward under the influence of gravity. Some animals spontaneously lack crystal cells and these animals behaved differently upon being tilted vertically than animals with a typical number of crystal cells. EM revealed crystal cell contacts with fiber cells and epithelial cells but these contacts lacked features of synapses. EM spectroscopic analyses showed that crystals consist of the aragonite form of calcium carbonate. We thus provide behavioral evidence that Trichoplax are able to sense gravity, and that crystal cells are likely to be their gravity receptors. Moreover, because placozoans are thought to have evolved during Ediacaran or Cryogenian eras associated with aragonite seas, and their crystals are made of aragonite, they may have acquired gravity sensors during this early era.

  2. Cisplatin-induced mesenchymal stromal cells-mediated mechanism contributing to decreased antitumor effect in breast cancer cells.

    PubMed

    Skolekova, Svetlana; Matuskova, Miroslava; Bohac, Martin; Toro, Lenka; Durinikova, Erika; Tyciakova, Silvia; Demkova, Lucia; Gursky, Jan; Kucerova, Lucia

    2016-01-12

    Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.

  3. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    PubMed Central

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    Introduction In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. Aim and methods In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. Results The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. Conclusion The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells. PMID:22848165

  4. The influence of risk perception on biosafety level-2 laboratory workers' hand-to-face contact behaviors.

    PubMed

    Johnston, James D; Eggett, Dennis; Johnson, Michele J; Reading, James C

    2014-01-01

    Pathogen transmission in the laboratory is thought to occur primarily through inhalation of infectious aerosols or by direct contact with mucous membranes on the face. While significant research has focused on controlling inhalation exposures, little has been written about hand contamination and subsequent hand-to-face contact (HFC) transmission. HFC may present a significant risk to workers in biosafety level-2 (BSL-2) laboratories where there is typically no barrier between the workers' hands and face. The purpose of this study was to measure the frequency and location of HFC among BSL-2 workers, and to identify psychosocial factors that influence the behavior. Research workers (N = 93) from 21 BSL-2 laboratories consented to participate in the study. Two study personnel measured workers' HFC behaviors by direct observation during activities related to cell culture maintenance, cell infection, virus harvesting, reagent and media preparation, and tissue processing. Following observations, a survey measuring 11 psychosocial predictors of HFC was administered to participants. Study personnel recorded 396 touches to the face over the course of the study (mean = 2.6 HFCs/hr). Of the 93 subjects, 67 (72%) touched their face at least once, ranging from 0.2-16.0 HFCs/hr. Among those who touched their face, contact with the nose was most common (44.9%), followed by contact with the forehead (36.9%), cheek/chin (12.5%), mouth (4.0%), and eye (1.7%). HFC rates were significantly different across laboratories F(20, 72) = 1.85, p = 0.03. Perceived severity of infection predicted lower rates of HFC (p = 0.03). For every one-point increase in the severity scale, workers had 0.41 fewer HFCs/hr (r = -.27, P < 0.05). This study suggests HFC is common among BSL-2 laboratory workers, but largely overlooked as a major route of exposure. Workers' risk perceptions had a modest impact on their HFC behaviors, but other factors not considered in this study, including social modeling and work intensity, may play a stronger role in predicting the behavior. Mucous membrane protection should be considered as part of the BSL-2 PPE ensemble to prevent HFC.

  5. Data-driven modeling reveals cell behaviors controlling self-organization during Myxococcus xanthus development

    PubMed Central

    Cotter, Christopher R.; Schüttler, Heinz-Bernd; Igoshin, Oleg A.; Shimkets, Lawrence J.

    2017-01-01

    Collective cell movement is critical to the emergent properties of many multicellular systems, including microbial self-organization in biofilms, embryogenesis, wound healing, and cancer metastasis. However, even the best-studied systems lack a complete picture of how diverse physical and chemical cues act upon individual cells to ensure coordinated multicellular behavior. Known for its social developmental cycle, the bacterium Myxococcus xanthus uses coordinated movement to generate three-dimensional aggregates called fruiting bodies. Despite extensive progress in identifying genes controlling fruiting body development, cell behaviors and cell–cell communication mechanisms that mediate aggregation are largely unknown. We developed an approach to examine emergent behaviors that couples fluorescent cell tracking with data-driven models. A unique feature of this approach is the ability to identify cell behaviors affecting the observed aggregation dynamics without full knowledge of the underlying biological mechanisms. The fluorescent cell tracking revealed large deviations in the behavior of individual cells. Our modeling method indicated that decreased cell motility inside the aggregates, a biased walk toward aggregate centroids, and alignment among neighboring cells in a radial direction to the nearest aggregate are behaviors that enhance aggregation dynamics. Our modeling method also revealed that aggregation is generally robust to perturbations in these behaviors and identified possible compensatory mechanisms. The resulting approach of directly combining behavior quantification with data-driven simulations can be applied to more complex systems of collective cell movement without prior knowledge of the cellular machinery and behavioral cues. PMID:28533367

  6. Impact of environmental conditions and chemicals on the neuronal epigenome.

    PubMed

    Del Blanco, Beatriz; Barco, Angel

    2018-06-15

    During development, chromatin changes contribute to establishing and maintaining the distinct gene-expression profiles of each individual cell type in a multicellular organism. This feat is especially remarkable in the human brain considering the sheer number of distinct cell types that make up this organ. This epigenetic programing is sensitive to environmental influences such as the presence of toxicants, diet, temperature, maternal behavior and many other external factors that can lead to sustained differences in neuronal gene expression. Here, we review a number of studies that demonstrate the existence of these environmental fingerprints in the neuronal epigenome and discuss the current challenges and prospects of environmental neuroepigenetics research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Low-Level Laser Effect on Proliferation, Migration, and Antiapoptosis of Mesenchymal Stem Cells.

    PubMed

    Yin, Kan; Zhu, Rongjia; Wang, Shihua; Zhao, Robert Chunhua

    2017-05-15

    Mesenchymal stem cells (MSCs) have been proved to be an important element in cell-based therapy. Photobiomodulation used extremely low-level lasers (LLLs) to affect the behavior of cells. The effect mechanism of LLLs on MSCs from human remained to be discovered. In this study, cell viability was assessed using MTS assays and cell cycle was evaluated by fluorescence-activated cell sorting (FACS). The influence of LLLs on mitochondrial biogenesis (fission or fusion) and function (ATP, reactive oxygen species [ROS], nitric oxide [NO]) was evaluated by transmission electron microscope, FACS, quantitative real time polymerase chain reaction (q-PCR), and immunocytochemistry. Cell migration and cytoskeleton alteration (actin and tubulin) were evaluated using transwell assay, immunocytochemistry, enzyme-linked immunosorbent assay, and western blotting. Cell apoptosis was evaluated using FACS, immunocytochemistry, and western blotting. We investigated that certain influence of LLLs on MSCs in vitro 6 or 24 h after 1 h of LLL irradiation. The mechanism of the effects included proliferation rate increase mediated by increased S phase proportion; mitochondrial biogenesis and function alteration mediated by fusion (Mfn1, Mfn2, and Opa-1) and fission (Fis1, Drp-1, and MTP18)-related proteins, NRF1, TFAM, PGC-1a, and upregulated intracellular ROS and NO concentration; migration acceleration through the ERK1/2 and FAK pathway and upregulation of growth factors such as HGF and PDGF; and resistance to apoptosis with increased Bcl-2 and decreased Bax, or through tunneling nanotube formation between LLL-treated MSCs and 5-fluorouracil-induced apoptotic MSCs. These observations suggested that LLLs enhanced stem cell survival and therapeutic function, which could appear to be an innovative pretreatment in the application of MSCs.

  9. Mediators of Neighborhood Influences on Externalizing Behavior in Preadolescent Children

    ERIC Educational Resources Information Center

    Mrug, Sylvie; Windle, Michael

    2009-01-01

    This study tested a mediation model of neighborhood influences on children's externalizing behavior. In the proposed model, neighborhood disadvantage, ethnic heterogeneity, and low residential stability affect children's behavior indirectly through their impact on neighborhood social processes, which in turn influence parenting and deviant peer…

  10. Genetic and Environmental Influences on Behavior: Capturing All the Interplay

    ERIC Educational Resources Information Center

    Johnson, Wendy

    2007-01-01

    Basic quantitative genetic models of human behavioral variation have made clear that individual differences in behavior cannot be understood without acknowledging the importance of genetic influences. Yet these basic models estimate average, population-level genetic and environmental influences, obscuring differences that might exist within the…

  11. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.

  12. Identifying the Behavior Patterns That Influence on Students' Achievement in Psychological Foundations of Learning and Development: A Case of Mekelle University, Ethiopia

    ERIC Educational Resources Information Center

    Sekar, J. Master Arul; Eyasu, Mengesha

    2018-01-01

    Generally, the behavior patterns concerns a social significance of values. This paper highlights the various behavior patterns like planner behavior, solution oriented behavior, and prescriptive behavior patterns. The main objective of the present study is to identify the behavior patterns that influence on students' achievement in psychological…

  13. Age-dependent effect of high cholesterol diets on anxiety-like behavior in elevated plus maze test in rats.

    PubMed

    Hu, Xu; Wang, Tao; Luo, Jia; Liang, Shan; Li, Wei; Wu, Xiaoli; Jin, Feng; Wang, Li

    2014-09-01

    Cholesterol is an essential component of brain and nerve cells and is essential for maintaining the function of the nervous system. Epidemiological studies showed that patients suffering from anxiety disorders have higher serum cholesterol levels. In this study, we investigated the influence of high cholesterol diet on anxiety-like behavior in elevated plus maze in animal model and explored the relationship between cholesterol and anxiety-like behavior from the aspect of central neurochemical changes. Young (3 weeks old) and adult (20 weeks old) rats were given a high cholesterol diet for 8 weeks. The anxiety-like behavior in elevated plus maze test and changes of central neurochemical implicated in anxiety were measured. In young rats, high cholesterol diet induced anxiolytic-like behavior, decreased serum corticosterone (CORT), increased hippocampal brain-derived neurotrophic factor (BDNF), increased hippocampal mineralocorticoid receptor (MR) and decreased glucocorticoid receptor (GR). In adult rats, high cholesterol diet induced anxiety-like behavior and increase of serum CORT and decrease of hippocampal BDNF comparing with their respective control group that fed the regular diet. High cholesterol diet induced age-dependent effects on anxiety-like behavior and central neurochemical changes. High cholesterol diet might affect the central nervous system (CNS) function differently, and resulting in different behavior performance of anxiety in different age period.

  14. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate

    PubMed Central

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-01-01

    The central extended amygdala (CEA) has been conceptualized as a ‘macrosystem’ that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the ‘limbic-associative’ striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning. PMID:28220796

  15. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    PubMed

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  16. Beyond the Classic VTA: Extended Amygdala Projections to DA-Striatal Paths in the Primate.

    PubMed

    Fudge, Julie L; Kelly, Emily A; Pal, Ria; Bedont, Joseph L; Park, Lydia; Ho, Brian

    2017-07-01

    The central extended amygdala (CEA) has been conceptualized as a 'macrosystem' that regulates various stress-induced behaviors. Consistent with this, the CEA highly expresses corticotropin-releasing factor (CRF), an important modulator of stress responses. Stress alters goal-directed responses associated with striatal paths, including maladaptive responses such as drug seeking, social withdrawal, and compulsive behavior. CEA inputs to the midbrain dopamine (DA) system are positioned to influence striatal functions through mesolimbic DA-striatal pathways. However, the structure of this amygdala-CEA-DA neuron path to the striatum has been poorly characterized in primates. In primates, we combined neuronal tracer injections into various arms of the circuit through specific DA subpopulations to assess: (1) whether the circuit connecting amygdala, CEA, and DA cells follows CEA intrinsic organization, or a more direct topography involving bed nucleus vs central nucleus divisions; (2) CRF content of the CEA-DA path; and (3) striatal subregions specifically involved in CEA-DA-striatal loops. We found that the amygdala-CEA-DA path follows macrostructural subdivisions, with the majority of input/outputs converging in the medial central nucleus, the sublenticular extended amygdala, and the posterior lateral bed nucleus of the stria terminalis. The proportion of CRF+ outputs is >50%, and mainly targets the A10 parabrachial pigmented nucleus (PBP) and A8 (retrorubal field, RRF) neuronal subpopulations, with additional inputs to the dorsal A9 neurons. CRF-enriched CEA-DA projections are positioned to influence outputs to the 'limbic-associative' striatum, which is distinct from striatal regions targeted by DA cells lacking CEA input. We conclude that the concept of the CEA is supported on connectional grounds, and that CEA termination over the PBP and RRF neuronal populations can influence striatal circuits involved in associative learning.

  17. The immunomodulatory tellurium compound ammonium trichloro (dioxoethylene-O,O') tellurate reduces anxiety-like behavior and corticosterone levels of submissive mice.

    PubMed

    Gross, Moshe; Stanciu, Emanuel; Kenigsbuch-Sredni, Dvora; Sredni, Benjamin; Pinhasov, Albert

    2017-09-01

    Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a synthetic organotellurium compound with potent immunomodulatory and neuroprotective properties shown to inhibit the function of integrin αvβ3, a presynaptic cell-surface-adhesion receptor. As partial deletion of αvβ3 downregulated reuptake of serotonin by the serotonin transporter, we hypothesized that AS101 may influence pathways regulating anxiety. AS101 was tested in the modulation of anxiety-like behavior using the selectively bred Submissive (Sub) mouse strain that develop anxiety-like behavior in response to an i.p. injection. Mice were treated daily with AS101 (i.p., 125 or 200 μg/kg) or vehicle for 3 weeks, after which their anxiety-like behavior was measured in the elevated plus maze. Animals were then culled for the measurement of serum corticosterone levels by ELISA and hippocampal expression of brain-derived neurotrophic factor (BDNF) by RT-PCR. Chronic administration of AS101 significantly reduced anxiety-like behavior of Sub mice in the elevated plus maze, according to both time spent and entries to open arms, relative to vehicle-treated controls. AS101 also markedly reduced serum corticosterone levels of the treated mice and increased their hippocampal BDNF expression. Anxiolytic-like effects of AS101 may be attributed to the modulation of the regulatory influence integrin of αvβ3 upon the serotonin transporter, suggesting a multifaceted mechanism by which AS101 buffers the hypothalamic-pituitary-adrenal axis response to injection stress, enabling recovery of hippocampal BDNF expression and anxiety-like behavior in Sub mice. Further studies should advance the potential of AS101 in the context of anxiety-related disorders.

  18. Physico-chemical properties of hydrophilic and amphiphilic crosslinked systems that influence biological responses

    NASA Astrophysics Data System (ADS)

    Ejiasi, Angel

    The effect of physical, chemical, and biological cues on the behavior of smooth muscle cells (SMCs) and attachment of marine organisms was investigated. Both hydrophilic and amphiphilic crosslinked polymer networks with varying chemical and mechanical properties were used to direct biological responses. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were fabricated with tunable mechanical properties by varying the di-functional monomer concentration in the feed composition. Amphiphilic hydrogels composed of 2-hydroxyethyl methacrylate (HEMA), 1,3-bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxane (MPTSDS), and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) were copolymerized using ultraviolet (UV) light and a photo-initiator. Hydrogels prepared with varying concentration of di-functional monomer, MPTSDS, exhibited an order of magnitude difference in elastic moduli. Not only were the bulk material properties influenced by the crosslinking agent concentration in the feed composition, but the surface properties (i.e., contact angle and hysteresis) were influenced as well. Modulus (E) has been reported to be positively correlated with the settlement of marine organisms. However, this was not the case for the amphiphilic gels tested against biomolecules and marine organisms. Stiffer gels inhibited fouling of proteins and marine organism, Ulva linza, to a greater extent than the softer gels. Furthermore, the network structure, in regards to the molecular weight between crosslinks Mc, was found to have a greater influence on fouling. A strong correlation was observed between protein adsorption and Mc of the amphiphilic crosslinked networks compared to just the modulus and surface energy (Upsilon) alone. A higher correlation was also obtained between Mc and Ulva sporeling biomass than between sporeling biomass and elastic modulus E, exhibiting R² value of 0.98 and 0.38, respectively. The percent removal of sporeling biomass growth was shown to be positively correlated with the (E Upsilon) 1/2, which is a contrast to what has previously been reported. Again, there was a higher correlation between Mc and percent removal of sporeling biomass than between (E Upsilon)1/2 and percent removal of sporelings (R² value of 0.83 and 0.57, respectively). The differences in biofouling ability is most likely due to differences in mesh size between hydrogel compositions. Biomolecule accumulation and absorption was made easier by the larger mesh size in hydrogels with lower crosslinking concentration in the feed composition. The influence of chemical and physical properties on mammalian cells was also investigated. Amphiphilic crosslinked networks were fabricated with tunable mechanical properties and their ability to modulate smooth muscle cell (SMC) phenotype was studied by assessing cell proliferation. Bioactive molecules, Arg-Gly-Asp-Ser (RGDS), were incorporated into the crosslinked matrix to promote adhesion and facilitate cell growth. The elastic modulus of the substrate and the concentration of RGDS were shown to positively correlate with the attachment and proliferation of SMCs; indicating that the physic-chemical network properties play a large role in behavior of unicellular organisms.

  19. Acid base properties of cyanobacterial surfaces I: Influences of growth phase and nitrogen metabolism on cell surface reactivity

    NASA Astrophysics Data System (ADS)

    Lalonde, S. V.; Smith, D. S.; Owttrim, G. W.; Konhauser, K. O.

    2008-03-01

    Significant efforts have been made to elucidate the chemical properties of bacterial surfaces for the purposes of refining surface complexation models that can account for their metal sorptive behavior under diverse conditions. However, the influence of culturing conditions on surface chemical parameters that are modeled from the potentiometric titration of bacterial surfaces has received little regard. While culture age and metabolic pathway have been considered as factors potentially influencing cell surface reactivity, statistical treatments have been incomplete and variability has remained unconfirmed. In this study, we employ potentiometric titrations to evaluate variations in bacterial surface ligand distributions using live cells of the sheathless cyanobacterium Anabaena sp. strain PCC 7120, grown under a variety of batch culture conditions. We evaluate the ability for a single set of modeled parameters, describing acid-base surface properties averaged over all culture conditions tested, to accurately account for the ligand distributions modeled for each individual culture condition. In addition to considering growth phase, we assess the role of the various assimilatory nitrogen metabolisms available to this organism as potential determinants of surface reactivity. We observe statistically significant variability in site distribution between the majority of conditions assessed. By employing post hoc Tukey-Kramer analysis for all possible pair-wise condition comparisons, we conclude that the average parameters are inadequate for the accurate chemical description of this cyanobacterial surface. It was determined that for this Gram-negative bacterium in batch culture, ligand distributions were influenced to a greater extent by nitrogen assimilation pathway than by growth phase.

  20. A Review of Cell Adhesion Studies for Biomedical and Biological Applications.

    PubMed

    Khalili, Amelia Ahmad; Ahmad, Mohd Ridzuan

    2015-08-05

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  1. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    PubMed Central

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  2. Individual and environmental influences on adolescent eating behaviors.

    PubMed

    Story, Mary; Neumark-Sztainer, Dianne; French, Simone

    2002-03-01

    Food choices of adolescents are not consistent with the Dietary Guidelines for Americans. Food intakes tend to be low in fruits, vegetables, and calcium-rich foods and high in fat. Skipping meals is also a concern among adolescents, especially girls. Factors influencing eating behaviors of adolescents need to be better understood to develop effective nutrition interventions to change eating behaviors. This article presents a conceptual model based on social cognitive theory and an ecological perspective for understanding factors that influence adolescent eating behaviors and food choices. In this model, adolescent eating behavior is conceptualized as a function of individual and environmental influences. Four levels of influence are described: individual or intrapersonal influences (eg, psychosocial, biological); social environmental or interpersonal (eg, family and peers); physical environmental or community settings (eg, schools, fast food outlets, convenience stores); and macrosystem or societal (eg, mass media, marketing and advertising, social and cultural norms).

  3. A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas

    PubMed Central

    Lwin, Tint; Zhao, Xiaohong; Cheng, Fengdong; Zhang, Xinwei; Huang, Andy; Shah, Bijal; Zhang, Yizhuo; Moscinski, Lynn C.; Choi, Yong Sung; Kozikowski, Alan P.; Bradner, James E.; Dalton, William S.; Sotomayor, Eduardo; Tao, Jianguo

    2013-01-01

    A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction of histone deacetylase 6 (HDAC6). Furthermore, stroma triggered a c-Myc/miR-548m feed-forward loop, linking sustained c-Myc activation, miR-548m downregulation, and subsequent HDAC6 upregulation and stroma-mediated cell survival and lymphoma progression in lymphoma cell lines, primary MCL and other B cell lymphoma cell lines. Treatment with an HDAC6-selective inhibitor alone or in synergy with a c-Myc inhibitor enhanced cell death, abolished cell adhesion–mediated drug resistance, and suppressed clonogenicity and lymphoma growth ex vivo and in vivo. Together, these data suggest that the lymphoma-stroma interaction in the lymphoma microenvironment directly impacts the biology of lymphoma through genetic and epigenetic regulation, with HDAC6 and c-Myc as potential therapeutic targets. PMID:24216476

  4. No influence of exogenous hyaluronan on the behavior of human cancer cells or endothelial cell capillary formation.

    PubMed

    Seino, Satoshi; Takeshita, Fumitaka; Asari, Akira; Masuda, Yasunobu; Kunou, Masaaki; Ochiya, Takahiro

    2014-07-01

    Hyaluronan (HA), a type of glycosaminoglycan used to construct the extracellular matrix, is involved in the proliferation and motility of cells, including cancer cells. The aim of this study was to determine whether exogenous HA has an influence on cancer in vitro and in vivo. High-molecular-weight HA (900 kDa) and low-molecular-weight HA (10 kDa) were added to several types of cancer cell lines in vitro, and proliferation and invasion were assessed. The effect of HA on capillary formation by human umbilical vein endothelial cells was also analyzed. The results showed that both types of HA had no apparent effect on cellular proliferation, invasion, or capillary formation. In an animal study, the 2 types of HA were orally administered to tumor-bearing mice at a dosage of 200 mg/kg/d for 4 wk. Analysis using an in vivo imaging system revealed that tumor proliferation and metastasis were not greatly altered by HA administration. Furthermore, CD31 immunohistochemical staining revealed no obvious change in tumor microvessels. Taken together, these results demonstrate that exogenously administered HA has little effect on cancer. This study may support the safety of various forms of HA administration, including oral intake. Orally administered hyaluronan was recently found to have beneficial effects. However, the effect of exogenous hyaluronan on cancer remains unclear. Our findings support the safety of orally administered hyaluronan and its use as a functional food ingredient. © 2014 Institute of Food Technologists®

  5. Contextual influence of Taiwanese adolescents' sexual attitudes and behavioral intent.

    PubMed

    Chen, Angela Chia-Chen; Neilands, Torsten B; Chan, Shu-Min; Lightfoot, Marguerita

    2016-09-01

    This study examined parental, peer, and media influences on Taiwanese adolescents' attitudes toward premarital sex and intent to engage in sexual behavior. Participants included a convenience sample of 186 adolescents aged 13-15 recruited from two middle schools in Taiwan. Parental influence was indicated by perceived parental disapproval toward premarital sex and perceived peer sexual behavior was used to measure peer influence. Media influence was measured by the adolescents' perception of whether the media promotes premarital sex. We conducted structural equation modeling to test a hypothesized model. The findings suggested that the perceived sexual behavior of peers had the strongest effect on Taiwanese adolescents' sexual attitudes and behavioral intent, while parental disapproval and media influence also significantly contributed to adolescents' sexual attitudes and intent to engage in sex. School nurses are in an ideal position to coordinate essential resources and implement evidence-based sexually transmitted infection and HIV/AIDS prevention interventions that address issues associated with the influence of parents, peers, and media. © 2016 John Wiley & Sons Australia, Ltd.

  6. Synchronization ability of coupled cell-cycle oscillators in changing environments

    PubMed Central

    2012-01-01

    Background The biochemical oscillator that controls periodic events during the Xenopus embryonic cell cycle is centered on the activity of CDKs, and the cell cycle is driven by a protein circuit that is centered on the cyclin-dependent protein kinase CDK1 and the anaphase-promoting complex (APC). Many studies have been conducted to confirm that the interactions in the cell cycle can produce oscillations and predict behaviors such as synchronization, but much less is known about how the various elaborations and collective behavior of the basic oscillators can affect the robustness of the system. Therefore, in this study, we investigate and model a multi-cell system of the Xenopus embryonic cell cycle oscillators that are coupled through a common complex protein, and then analyze their synchronization ability under four different external stimuli, including a constant input signal, a square-wave periodic signal, a sinusoidal signal and a noise signal. Results Through bifurcation analysis and numerical simulations, we obtain synchronization intervals of the sensitive parameters in the individual oscillator and the coupling parameters in the coupled oscillators. Then, we analyze the effects of these parameters on the synchronization period and amplitude, and find interesting phenomena, e.g., there are two synchronization intervals with activation coefficient in the Hill function of the activated CDK1 that activates the Plk1, and different synchronization intervals have distinct influences on the synchronization period and amplitude. To quantify the speediness and robustness of the synchronization, we use two quantities, the synchronization time and the robustness index, to evaluate the synchronization ability. More interestingly, we find that the coupled system has an optimal signal strength that maximizes the synchronization index under different external stimuli. Simulation results also show that the ability and robustness of the synchronization for the square-wave periodic signal of cyclin synthesis is strongest in comparison to the other three different signals. Conclusions These results suggest that the reaction process in which the activated cyclin-CDK1 activates the Plk1 has a very important influence on the synchronization ability of the coupled system, and the square-wave periodic signal of cyclin synthesis is more conducive to the synchronization and robustness of the coupled cell-cycle oscillators. Our study provides insight into the internal mechanisms of the cell cycle system and helps to generate hypotheses for further research. PMID:23046815

  7. Measurement and associations of pregnancy risk factors with genetic influences, postnatal environmental influences, and toddler behavior

    PubMed Central

    Marceau, Kristine; Hajal, Nastassia; Leve, Leslie D.; Reiss, David; Shaw, Daniel S.; Ganiban, Jody M.; Mayes, Linda C.; Neiderhiser, Jenae M.

    2014-01-01

    This study demonstrates the unique contributions of perinatal risk and genetic and environmental influences on child behavior using data from 561 domestic US adoption triads (birth mothers, adopted child, and adoptive parents). Findings show distinct patterns of associations among genetic (birth mother psychopathology), prenatal (six maternal reported aggregate scores characterizing total obstetric complications, perinatal internalizing symptoms, pregnancy complications, exposure to toxins, substance use, and neonatal complications), and postnatal influences (adoptive parent 18-month internalizing symptoms and over-reactive parenting) and toddler behavior problems (CBCL subscales at 27 months). Findings highlight multiple pathways for toddler’s behavioral development, including genetic, pregnancy, and postnatal main effects. Findings suggest distinct types of pregnancy risk may transmit genetic influences for specific behavior problems rather than broadband problems. PMID:24839336

  8. [Parental practices and pedestrian risk behaviors in Chilean adolescents].

    PubMed

    Herrera, Andrea C; Repetto, Paula B

    2014-08-01

    Traffic accidents are the second leading cause of death among adolescents and young adults in Chile. However, few studies have examined this behavior among this age group. Parental practices have a great influence on risk behaviors in adolescents, such as substance use, sexuality and violence, among others. Specifically, we propose that these practices will influence pedestrian risk behaviors among adolescents. To study the role of parental practices such as mother and father support, and behavioral control (monitoring and presence of rules) in pedestrian risk behaviors of teenagers. A sample of 470 adolescents attending schools in the Metropolitan Region of Santiago, Chile were studied. They answered a self-administered questionnaire in which they were asked about parental practices and pedestrian risk behaviors. Analyses were performed using descriptive and inferential statistics, using multiple regression. Paternal support and the presence of rules were protective factors for pedestrian risky behaviors. However, maternal support or monitoring did not influence these behaviors. Parental practices influence pedestrian behaviors of teenagers. The study provides further evidence for the importance of these practices in the development of behavioral self-regulation.

  9. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila.

    PubMed

    Hergarden, Anne Christina; Tayler, Timothy D; Anderson, David J

    2012-03-06

    How the brain translates changes in internal metabolic state or perceived food quality into alterations in feeding behavior remains poorly understood. Studies in Drosophila larvae have yielded information about neuropeptides and circuits that promote feeding, but a peptidergic neuron subset whose activation inhibits feeding in adult flies, without promoting metabolic changes that mimic the state of satiety, has not been identified. Using genetically based manipulations of neuronal activity, we show that activation of neurons (or neuroendocrine cells) expressing the neuropeptide allatostatin A (AstA) inhibits or limits several starvation-induced changes in feeding behavior in adult Drosophila, including increased food intake and enhanced behavioral responsiveness to sugar. Importantly, these effects on feeding behavior are observed in the absence of any measurable effects on metabolism or energy reserves, suggesting that AstA neuron activation is likely a consequence, not a cause, of metabolic changes that induce the state of satiety. These data suggest that activation of AstA-expressing neurons promotes food aversion and/or exerts an inhibitory influence on the motivation to feed and implicate these neurons and their associated circuitry in the mechanisms that translate the state of satiety into alterations in feeding behavior.

  10. Allatostatin-A neurons inhibit feeding behavior in adult Drosophila

    PubMed Central

    Hergarden, Anne Christina; Tayler, Timothy D.; Anderson, David J.

    2012-01-01

    How the brain translates changes in internal metabolic state or perceived food quality into alterations in feeding behavior remains poorly understood. Studies in Drosophila larvae have yielded information about neuropeptides and circuits that promote feeding, but a peptidergic neuron subset whose activation inhibits feeding in adult flies, without promoting metabolic changes that mimic the state of satiety, has not been identified. Using genetically based manipulations of neuronal activity, we show that activation of neurons (or neuroendocrine cells) expressing the neuropeptide allatostatin A (AstA) inhibits or limits several starvation-induced changes in feeding behavior in adult Drosophila, including increased food intake and enhanced behavioral responsiveness to sugar. Importantly, these effects on feeding behavior are observed in the absence of any measurable effects on metabolism or energy reserves, suggesting that AstA neuron activation is likely a consequence, not a cause, of metabolic changes that induce the state of satiety. These data suggest that activation of AstA-expressing neurons promotes food aversion and/or exerts an inhibitory influence on the motivation to feed and implicate these neurons and their associated circuitry in the mechanisms that translate the state of satiety into alterations in feeding behavior. PMID:22345563

  11. Individual and Social Predictors of Prosocial Behavior among Chinese Adolescents in Hong Kong

    PubMed Central

    Lai, Frank H. Y.; Siu, Andrew M. H.; Shek, Daniel T. L.

    2015-01-01

    Based on the human ecological model, this study hypothesized that individual competence in empathy, prosocial moral reasoning, and social influence from parents, peers, and school are the key determinants of prosocial behavior among Chinese adolescents in Hong Kong. We recruited a sample of high school students who engaged in volunteering activities regularly (N = 580). They completed a self-administrated questionnaire designed to measure prosocial behavior and its hypothesized predictors using a number of standardized instruments. The results of multiple regression show that social influence factors, including peer, school, and parent influence, are strong predictors of helping intention and prosocial behavior, while individual competence factors like empathy and prosocial moral reasoning are not. Male participants had higher empathy scores and helping intention than females, perceived their parents as more helpful, and their schools as more supportive of prosocial behavior. However, the significant predictors of prosocial behavior and helping intention were similar across gender. The findings indicate that social influence is strongly linked to prosocial behavior. This implies that socialization and social support for prosocial norms and behavior can exert a powerful influence on the behavior of young people in a Chinese population. PMID:26029684

  12. Individual and Social Predictors of Prosocial Behavior among Chinese Adolescents in Hong Kong.

    PubMed

    Lai, Frank H Y; Siu, Andrew M H; Shek, Daniel T L

    2015-01-01

    Based on the human ecological model, this study hypothesized that individual competence in empathy, prosocial moral reasoning, and social influence from parents, peers, and school are the key determinants of prosocial behavior among Chinese adolescents in Hong Kong. We recruited a sample of high school students who engaged in volunteering activities regularly (N = 580). They completed a self-administrated questionnaire designed to measure prosocial behavior and its hypothesized predictors using a number of standardized instruments. The results of multiple regression show that social influence factors, including peer, school, and parent influence, are strong predictors of helping intention and prosocial behavior, while individual competence factors like empathy and prosocial moral reasoning are not. Male participants had higher empathy scores and helping intention than females, perceived their parents as more helpful, and their schools as more supportive of prosocial behavior. However, the significant predictors of prosocial behavior and helping intention were similar across gender. The findings indicate that social influence is strongly linked to prosocial behavior. This implies that socialization and social support for prosocial norms and behavior can exert a powerful influence on the behavior of young people in a Chinese population.

  13. Generalized Langevin equation with tempered memory kernel

    NASA Astrophysics Data System (ADS)

    Liemert, André; Sandev, Trifce; Kantz, Holger

    2017-01-01

    We study a generalized Langevin equation for a free particle in presence of a truncated power-law and Mittag-Leffler memory kernel. It is shown that in presence of truncation, the particle from subdiffusive behavior in the short time limit, turns to normal diffusion in the long time limit. The case of harmonic oscillator is considered as well, and the relaxation functions and the normalized displacement correlation function are represented in an exact form. By considering external time-dependent periodic force we obtain resonant behavior even in case of a free particle due to the influence of the environment on the particle movement. Additionally, the double-peak phenomenon in the imaginary part of the complex susceptibility is observed. It is obtained that the truncation parameter has a huge influence on the behavior of these quantities, and it is shown how the truncation parameter changes the critical frequencies. The normalized displacement correlation function for a fractional generalized Langevin equation is investigated as well. All the results are exact and given in terms of the three parameter Mittag-Leffler function and the Prabhakar generalized integral operator, which in the kernel contains a three parameter Mittag-Leffler function. Such kind of truncated Langevin equation motion can be of high relevance for the description of lateral diffusion of lipids and proteins in cell membranes.

  14. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  15. Incubation temperature influences the behavioral traits of a young precocial bird.

    PubMed

    Hope, Sydney F; Kennamer, Robert A; Moore, Ignacio T; Hopkins, William A

    2018-05-27

    The environment in which animals develop can have important consequences for their phenotype. In reptiles, incubation temperature is a critical aspect of the early developmental environment. Incubation temperature influences morphology, physiology, and behavior of non-avian reptiles, however, little is known about how incubation temperature influences offspring phenotype and behaviors important to avian survival. To investigate whether incubation temperature influences avian behaviors, we collected wood duck (Aix sponsa) eggs from the field and incubated them at three naturally occurring incubation temperatures (35.0, 35.8, and 37.0°C). We conducted multiple repeated behavioral trials on individual ducklings between 5 and 15 days post-hatch to assess activity, exploratory, and boldness behaviors, classified along a proactive-reactive continuum. We measured growth rates and circulating levels of baseline and stress-induced corticosterone levels to investigate possible physiological correlates of behavior. Ducklings incubated at the lowest temperature displayed more proactive behaviors than those incubated at the two higher temperatures. We also found that younger ducklings exhibited more proactive behavior than older ducklings and males exhibited more proactive behavior than females. Further, duckling behaviors were repeatable across time and contexts, indicative of a proactive-reactive continuum of behavioral tendencies. However, neither corticosterone levels nor growth rates were related to behavior. This provides some of the first evidence that incubation temperature, a critical parental effect, influences avian offspring behaviors that may be important for survival. Our results identify incubation temperature as a mechanism that contributes to the development of behavioral traits and, in part, explains how multiple behavioral types may be maintained within populations. © 2018 Wiley Periodicals, Inc.

  16. Cadherin Composition and Multicellular Aggregate Invasion In Organotypic Models of Epithelial Ovarian Cancer Intraperitoneal Metastasis

    PubMed Central

    Klymenko, Yuliya; Kim, Oleg; Loughran, Elizabeth; Yang, Jing; Lombard, Rachel; Alber, Mark; Stack, M. Sharon

    2017-01-01

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multi-cellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich sub-mesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior, however the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the sub-mesothelial collagen matrix. Acquisition of Ncad by E-cadherin expressing cells (Ecad+) increased mesothelial clearance activity, but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a “leader-follower” mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad+ in pre-clinical models of EOC metastasis. PMID:28628116

  17. Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis.

    PubMed

    Klymenko, Y; Kim, O; Loughran, E; Yang, J; Lombard, R; Alber, M; Stack, M S

    2017-10-19

    During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.

  18. The Role of Mechanical Variance and Spatial Clustering on the Likelihood of Tumor Incidence and Growth

    NASA Astrophysics Data System (ADS)

    Mirzakhel, Zibah

    When considering factors that contribute to cancer progression, modifications to both the biological and mechanical pathways play significant roles. However, less attention is placed on how the mechanical pathways can specifically contribute to cancerous behavior. Experimental studies have found that malignant cells are significantly softer than healthy, normal cells. In a tissue environment where healthy or malignant cells exist, a distribution of cell stiffness values is observed, with the mean values used to differentiate between these two populations. Rather than focus on the mean values, emphasis will be placed on the distribution, where instances of soft and stiff cells exist in the healthy tissue environment. Since cell deformability is a trait associated with cancer, the question arises as to whether the mechanical variation observed in healthy tissue cell stiffness distributions can influence any instances of tumor growth. To approach this, a 3D discrete model of cells is used, able to monitor and predict the behavior of individual cells while determining any instances of tumor growth in a healthy tissue. In addition to the mechanical variance, the spatial arrangement of cells will also be modeled, as cell interaction could further implicate any incidences of tumor-like malignant populations within the tissue. Results have shown that the likelihood of tumor incidence is driven by both by the increases in the mechanical variation in the distributions as well as larger clustering of cells that are mechanically similar, quantified primarily through higher proliferation rates of tumor-like soft cells. This can be observed though prominent negative shifts in the mean of the distribution, as it begins to transition and show instances of earlystage tumor growth. The model reveals the impact that both the mechanical variation and spatial arrangement of cells has on tumor progression, suggesting the use of these parameters as potential novel biomarkers. With a patient-specific approach in mind, the model may be applied for early-stage cancer detection, useful to establish a timeline on tumor progression.

  19. Quantification of deep traps in nanocrystal solids, their electronic properties, and their influence on device behavior.

    PubMed

    Bozyigit, Deniz; Volk, Sebastian; Yarema, Olesya; Wood, Vanessa

    2013-11-13

    We implement three complementary techniques to quantify the number, energy, and electronic properties of trap states in nanocrystal (NC)-based devices. We demonstrate that, for a given technique, the ability to observe traps depends on the Fermi level position, highlighting the importance of a multitechnique approach that probes trap coupling to both the conduction and the valence bands. We then apply our protocol for characterizing traps to quantitatively explain the measured performances of PbS NC-based solar cells.

  20. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    NASA Astrophysics Data System (ADS)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

Top