Science.gov

Sample records for influence des ions

  1. Les applications des faisceaux d'ions dans la physique des polymères

    NASA Astrophysics Data System (ADS)

    Ratier, B.; Moliton, A.; Lucas, B.; Guille, B.; Clamadieu, M.

    1998-06-01

    Experimental configurations of ions beams are illustrated by diagrams in the case of low energy implantation, Reactive Ion Beam Etching (RIBE), Ion Beam Assisted Deposition (IBAD) of molecular layers (or oligomers). Nous présentons les configurations expérimentales (illustrées par des schémas) de trois applications des faisceaux d'ions au traitement physique des polymères : dopage par implantation (cité pour mémoire), gravure par faisceaux d'ions réactifs (RIBE), dépôt des couches moléculaires (ou oligomères) assistés par faisceau (IBAD).

  2. Etude de la photosensibilite dans la silice implantee avec des ions de haute energie

    NASA Astrophysics Data System (ADS)

    Verhaegen, Marc

    La photosensibilite est la propriete par laquelle une materiau donne voit son indice de refraction changer sous l'effet d'une exposition lumineuse. Malgre le nombre croissant de dispositif base sur ce phenomene, les mecanismes a la base de la photosensibilite sont encore debattus. Nous apportons dans cette these un eclairage original sur ce sujet en etudiant la matrice de silice pure non dopee rendue photosensible par implantation d'ion de haute energie. L'implantation d'ions silicium de S MeV modifie l'indice de refraction principalement en densifiant une couche mince dont l'epaisseur est de l'ordre de quelques microns. Nos mesures montrent qu'un guide plan supportant les modes TEi et TMi (i = 0,1) est forme et que l'indice effectif du mode TE0 suit l'evolution de la densification en fonction de la dose de silicium implantee. Nous montrerons egalement que l'augmentation d'indice et la densification produites par implantation atteignent un palier pour une dose de 3 x 1014Si/cm 2, alors que la production de defauts par implantation atteint son palier pour une dose plus faible d'un ordre de grandeur soit 3 x 1013Si/cm2. Le profil d'indice longitudinal produit par l'implantation ionique est calcule a partir des mesures des indices effectifs des modes guides. Ce profil suggere que l'augmentation d'indice comprend une contribution dues collisions et une contribution dues aux pertes d'energie par ionisation. La contribution des pertes par ionisation influence significativement le profil d'indice pour des valeurs de pertes d'energie par unite de longueur (dE/dx) de l'ordre de 2 keV/nm. Lorsque la silice implantee est soumise a un rayonnement ultraviolet d'un laser a excimeres, il en resulte une diminution d'indice de refraction de l'ordre de 10-3 avec une efficacite plus grande si la longueur d'onde d'exposition est 193nm (ArF) plutot que 248nm (KrF). Deux regimes d'exposition lumineuse de la silice implantee a 193nm sont observes. Le premier regime produit une diminution

  3. Ion Exchange Membrane Influence on Ohmic Resistance

    USDA-ARS?s Scientific Manuscript database

    Selection of the proper ion exchange membrane can have a significant influence on bioelectrochemical system (BES) power densities. Because ions move across the membrane to achieve electroneutrality, the ion transport resistance (ohmic loss) needs to be minimized to increase power densities. Ohmic ...

  4. Influence des interactions du couple ciment/adjuvant dispersant sur les proprietes des betons: Importance du mode d'introduction des adjuvants

    NASA Astrophysics Data System (ADS)

    Baalbaki, Moussa

    1998-12-01

    Les travaux de recherche de cette these de doctorat ont porte sur les phenomenes d'incompatibilite (ou de compatibilite) ciment/adjuvant dispersant en mettant l'accent sur l'influence du mode d'introduction des adjuvants sur les proprietes des betons frais et durcis. Les aspects physiques et chimiques de l'interaction ciment/adjuvant a ete relies aux proprietes des betons en tenant compte du rapport E/C, de la teneur en C3A du ciment ainsi que du type d'adjuvant dispersant. Le programme experimental propose debute par une etude rheologique et mecanique sur pate et sur beton. Le comportement du superplastifiant a base de polynaphtalene (PNS) depend surtout de son interaction avec les premiers produits d'hydratation du ciment. Cette interaction du superplastifiant PNS avec le ciment est remarquablement differente dans le cas ou l'ajout du PNS est differe de quelques minutes. Lorsque le superplastifiant PNS est introduit directement avec l'eau de gachage, on remarque la formation d'un gel blanc compose d'ettringite, de CaCO 3 et de polynaphtalene et ce compose organo-mineral est presque inexistant lorsque le superplastifiant PNS est ajoute en mode differe. Ce gel organo-mineral se forme a partir de la solution entre les aluminates de calcium hydrates, les sulfates et le PNS, et est responsable de la perte d'affaissement du beton. Les analyses au microscope electronique a balayage montrent que l'introduction du superplastifiant PNS en mode S1 (ajout direct) engendre la precipitation d'une plus grande quantite d'ettringite et de produit organo-mineral. Cette ettringite finement cristallisee, abondante et enchevetree aura pour consequence de diminuer les proprietes rheologiques des betons et des pates. Ce phenomene ne s'observe pas lorsque le superplastifiant PNS est introduit en mode differe. Le mode d'introduction du superplastifiant a base de polyacrylate (PAE) n'affecte nullement le comportement rheologique du beton. Par ailleurs, le gel organo-mineral n'apparait pas

  5. Les reseaux de politique publique comme facteur d'influence du choix des instruments de politique energetique canadienne a des fins environnementales de 1993 a nos jours

    NASA Astrophysics Data System (ADS)

    Fathy El Dessouky, Naglaa

    l'agenda politique du pays. Notre projet de recherche, par le truchement de l'approche des reseaux de politique publique, s'attarde a decrire et a expliquer le processus de la formulation d'une politique particuliere, soit la politique energetique a des fins de protection de l'environnement, elaboree en 1993. Il s'agit de mettre en evidence les facteurs affectant le choix des instruments de ces politiques publiques dans leur contexte national. Ainsi, la question generale de cette recherche est: Comment les phases evolutives de la formation d'un reseau de politique, en l'occurrence le Conseil canadien de l'energie (CCE), menent a des caracteristiques particulieres a ce reseau; et comment celles-ci determinent-elles les types des instruments de politique publique choisis, particulierement ceux de la recente orientation des politiques energetiques canadiennes a des fins environnementales elaborees en 1993? Afin d'atteindre l'objectif de notre recherche, deux facteurs primordiaux sont utilises, soit la circulation de l'information et l'exercice du controle sur les ressources des acteurs. L'analyse des caracteristiques du reseau en fonction des liens forts et des liens faibles autant que la presence ou l'absence des trous structuraux nous permettent de bien identifier les positions des differents acteurs, etatiques et non etatiques, sur le plan de l'information et du controle, qui a leur tour, nous semble-t-il, constituent des facteurs affectant les types des instruments des politiques publiques choisis: instruments substantifs, qui indiquent le degre de l'intervention du gouvernement, et instruments proceduraux, qui mettent plutot l'accent sur le degre de l'influence du gouvernement sur les acteurs non etatiques. L'etude soutient que l'approche des reseaux se distingue notamment par son potentiel a expliquer l'interrelation relative entre idees, interets et institutions, ce qui a son tour est susceptible de permettre une meilleure comprehension des processus de l

  6. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  7. Protection des ions organiques contre les dommages induits a l'ADN par les electrons de basse energie

    NASA Astrophysics Data System (ADS)

    Dumont, Ariane

    Il a ete demontre que les electrons de basse energie (EBE) peuvent induire des cassures simple brin (CSB) a l'ADN, via la formation d'anions transitoires qui decroissent par attachement dissociatif, ou dans d'autres etats electroniques dissociatifs menant a la fragmentation. Afin d'effectuer une etude complete des effets des electrons de basse energie sur la matiere biologique, il est necessaire de comprendre leur mecanismes d'interaction non seulement avec l'ADN, mais avec les constituants de son environnement. Les histones sont une composante importante de l'environnement moleculaire de l'ADN. Leur charge positive leur permet de s'associer aux groupements phosphate anionique de l'ADN. Le role principal de ces proteines basiques consiste a organiser l'ADN et l'empaqueter afin de former la chromatine. Les cations sont une autre composante importante de la cellule; ils jouent un role dans la stabilisation de la conformation B de l'ADN in vitro par leurs interactions avec les petits et grands sillons de l'ADN, ainsi qu'avec le groupement phosphate charge negativement. Avec les histones, ils participent egalement a la compaction de l'ADN pour former la chromatine. Cette etude a pour but de comprendre comment la presence d'ions organiques (sous forme de Tris et d'EDTA) a proximite de l'ADN modifie le rendement de cassures simple brin induit par les electrons de basse energie. Le Tris et l'EDTA ont-ete choisis comme objet d'etude, puisqu'en solution, ils forment le tampon standard pour solubiliser l'ADN dans les experiences in vitro (10mM Tris, 1mM EDTA). De plus, la molecule Tris possede un groupement amine alors que l'EDTA possede 4 groupements carboxyliques. Ensembles, ils peuvent se comporter comme un modele simple pour les acides amines. Le ratio molaire de 10 :1 de Tris par rapport a l'EDTA a pour but d'imiter le comportement des histones qui sont riches en arginine et lysine, acides amines possedant un groupement amine charge positivement additionnel. Des films d

  8. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution.

    PubMed

    Chremos, Alexandros; Douglas, Jack F

    2016-04-28

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains using molecular dynamics simulations that include both salt and an explicit solvent. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, lp, in comparison with monovalent counter-ions. On the other hand, polyelectrolyte chains having trivalent counter-ions adopt a much more compact conformation than polyelectrolytes having monovalent and divalent counter-ions. We demonstrate that the tendency of polyelectrolyte chains to become deformed by proximal high valence counter-ions is due to chain "coiling" around the counter-ions. In particular, we find that the number of contacts that the proximal counter-ions have with the polyelectrolyte dictates the extent of chain coiling. This ion-binding induced coiling mechanism influences not only the conformational properties of the polyelectrolyte, but also the counter-ion distribution around the chain. Specifically, we find that higher valent counter-ions lead both to a counter-ion enrichment in close proximity to the polyelectrolyte and to a significant reduction in the spatial extent of the diffuse counter-ion cloud around the polyelectrolyte.

  9. Dépistage des maladies cardiovasculaires chez des étudiants de l'Université de Douala et influence des activités physiques et sportives

    PubMed Central

    Ewane, Marielle Epacka; Mandengue, Samuel Honoré; Priso, Eugene Belle; Tamba, Stéphane Moumbe; Ahmadou; Fouda, André Bita

    2012-01-01

    Introduction Les maladies cardiovasculaires (MCV) constituent l'une des principales causes de mortalité dans les pays en développement. Le dépistage de ces dernières chez des jeunes est un défi dans la lutte contre leur expansion. Le but de cette étude était de dépister ces maladies au sein d'une population jeunes d’étudiants camerounais. Methodes Deux mille six cent cinquante-huit étudiants de l'Université de Douala (23,6 ± 2,9 ans, sex-ratio H/F = 0,9) ont en Avril - Mai 2011 participé à une campagne de dépistage gratuit du diabète, de l'hypertension artérielle (HTA) et de l'obésité. Ils ont également été soumis à une d'enquête évaluant leur niveau en activités physiques et sportives (APS). Resultats 12,7% des participants avaient une pression artérielle (PA) ≥ 140/90 mmHg, 3,6% étaient obèses et 0,9% avaient une glycémie ≥1,26 g/L. Des corrélations ont été trouvées entre certains facteurs de risque (diabète, hypertension et obésité) et le niveau académique d'une part (r =0,366; p < 0,0001) et le temps passé devant la télévision d'autres part (r = 0,411; p < 0,0001). L‘APS était inversement corrélée à l‘âge (r =-0,015; p < 0,0001) et au temps passé devant la télévision (r = -0,059; p = 0,002). Conclusion La présence des MCV et leurs facteurs de risque mis en évidence dans cette étude réalisée en milieu estudiantin camerounais interpelle à une prévention et une éducation dans la lutte contre ces dernières. PMID:22655111

  10. Influence des inclusions sur la rupture d'un acier faiblement allié

    NASA Astrophysics Data System (ADS)

    Hausild, P.; Berdin, C.; Bompard, P.; Prioul, C.

    2003-03-01

    L'étude de la rupture d'un acier faiblement allié dans le domaine de la transition ductile fragile a permis de mettre en évidence la présence croissante, avec la température de sollicitation, d'amas d'inclusions de seconde phase sur les surfaces de rupture. On montre, à l'aide de modélisations par éléments finis, que ces amas jouent néanmoins un rôle mineur dans le déclenchement du clivage. En revanche, leur influence sur la propagation de la rupture ductile est importante. On peut alors expliquer l'anisotropie de la résilience en prenant en compte la géométrie des inclusions et leur répartition spatiale.

  11. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar.

    PubMed

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-04-30

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel's salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO₂(-) in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel's salt. More research is needed to confirm the mechanisms.

  12. Influence of Chloride-Ion Adsorption Agent on Chloride Ions in Concrete and Mortar

    PubMed Central

    Peng, Gai-Fei; Feng, Nai-Qian; Song, Qi-Ming

    2014-01-01

    The influence of a chloride-ion adsorption agent (Cl agent in short), composed of zeolite, calcium aluminate hydrate and calcium nitrite, on the ingress of chloride ions into concrete and mortar has been experimentally studied. The permeability of concrete was measured, and the chloride ion content in mortar was tested. The experimental results reveal that the Cl agent could adsorb chloride ions effectively, which had penetrated into concrete and mortar. When the Cl agent was used at a dosage of 6% by mass of cementitious materials in mortar, the resistance to the penetration of chloride ions could be improved greatly, which was more pronounced when a combination of the Cl agent and fly ash or slag was employed. Such an effect is not the result of the low permeability of the mortar, but might be a result of the interaction between the Cl agent and the chloride ions penetrated into the mortar. There are two possible mechanisms for the interaction between the Cl agent and chloride ion ingress. One is the reaction between calcium aluminate hydrate in the Cl agent and chloride ions to form Friedel’s salt, and the other one is that calcium aluminate hydrate reacts with calcium nitrite to form AFm during the early-age hydration of mortar and later the NO2− in AFm is replaced by chloride ions, which then penetrate into the mortar, also forming Friedel’s salt. More research is needed to confirm the mechanisms. PMID:28788625

  13. Influence of Higher Valence Ions on Flexible Polyelectrolytes Stiffness and Counter-ion Distribution

    NASA Astrophysics Data System (ADS)

    Chremos, Alexandros; Douglas, Jack F.

    We investigate the influence of counter-ion valency on the flexibility of highly charged flexible polymer chains by molecular dynamics simulations that include both salt and an explicit solvent. A theoretical understanding of solutions of these molecules (e.g., DNA, RNA, and sulfonate polyestyrene) has been slow to develop due to the complex coupling between the polyelectrolyte conformation and the ionic species in solution due to their long range Coulomb interactions. As observed experimentally, we find that divalent counter-ions greatly reduce the chain persistence length, in comparison to monovalent counter-ions, an effect correlated with the tendency of the polyelectrolyte chain to become distorted by divalent counter-ions. We rationalize these results by with the substantial increase of counter-ion population at the interface with the polyelectrolyte, which not only leads to a more effective screening of the bare charge, but also leads to charge inversion in the trivalent counter-ion case. These conformational changes with counter-ion valency are also associated with a drastic increase of the number of contacts the counter-ions have at the interface with polyelectrolyte, an effect associated with polyelectrolyte chain ``coiling'' around the counter-ions. NIST Postdoctoral Fellowship.

  14. Influence of nonelectrostatic ion-ion interactions on double-layer capacitance

    NASA Astrophysics Data System (ADS)

    Zhao, Hui

    2012-11-01

    Recently a Poisson-Helmholtz-Boltzmann (PHB) model [Bohinc , Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031130 85, 031130 (2012)] was developed by accounting for solvent-mediated nonelectrostatic ion-ion interactions. Nonelectrostatic interactions are described by a Yukawa-like pair potential. In the present work, we modify the PHB model by adding steric effects (finite ion size) into the free energy to derive governing equations. The modified PHB model is capable of capturing both ion specificity and ion crowding. This modified model is then employed to study the capacitance of the double layer. More specifically, we focus on the influence of nonelectrostatic ion-ion interactions on charging a double layer near a flat surface in the presence of steric effects. We numerically compute the differential capacitance as a function of the voltage under various conditions. At small voltages and low salt concentrations (dilute solution), we find out that the predictions from the modified PHB model are the same as those from the classical Poisson-Boltzmann theory, indicating that nonelectrostatic ion-ion interactions and steric effects are negligible. At moderate voltages, nonelectrostatic ion-ion interactions play an important role in determining the differential capacitance. Generally speaking, nonelectrostatic interactions decrease the capacitance because of additional nonelectrostatic repulsion among excess counterions inside the double layer. However, increasing the voltage gradually favors steric effects, which induce a condensed layer with crowding of counterions near the electrode. Accordingly, the predictions from the modified PHB model collapse onto those computed by the modified Poisson-Boltzmann theory considering steric effects alone. Finally, theoretical predictions are compared and favorably agree with experimental data, in particular, in concentrated solutions, leading one to conclude that the modified PHB model adequately predicts the diffuse

  15. Dynamics of lithium ions in bismuthate glasses: influence of strontium ions.

    PubMed

    Dutta, A; Ghosh, A

    2006-08-07

    The influence of strontium ions on the relaxation dynamics of lithium ions in bismuthate glasses has been investigated in the frequency range of 10 Hz to 2 MHz. We have observed that the conductivity increases and the activation energy decreases with the increase of SrO content in the glass compositions with fixed Li2O content. We have also observed that the conductivity increases and the activation energy decreases when Sr2+ ions are replaced by Li+ ions, keeping the glass former content fixed. We have shown that the estimated mobile ion concentration is almost independent of temperature and SrO content in the compositions. We have further shown that a fraction of total lithium ions are mobile for all glass compositions. The results have been interpreted on the basis of the modification of the bismuthate network by the addition of SrO, which enhances the mobility of Li ions, without altering the mobile Li+ ion concentration. We have also shown that the conductivity relaxation in these glasses is independent of temperature and composition, and the nonexponential parameter is less than that for the lithium bismuthate glasses without SrO.

  16. Dynamics of lithium ions in bismuthate glasses: Influence of strontium ions

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2006-08-01

    The influence of strontium ions on the relaxation dynamics of lithium ions in bismuthate glasses has been investigated in the frequency range of 10Hzto2MHz. We have observed that the conductivity increases and the activation energy decreases with the increase of SrO content in the glass compositions with fixed Li2O content. We have also observed that the conductivity increases and the activation energy decreases when Sr2+ ions are replaced by Li+ ions, keeping the glass former content fixed. We have shown that the estimated mobile ion concentration is almost independent of temperature and SrO content in the compositions. We have further shown that a fraction of total lithium ions are mobile for all glass compositions. The results have been interpreted on the basis of the modification of the bismuthate network by the addition of SrO, which enhances the mobility of Li ions, without altering the mobile Li+ ion concentration. We have also shown that the conductivity relaxation in these glasses is independent of temperature and composition, and the nonexponential parameter is less than that for the lithium bismuthate glasses without SrO.

  17. The influence of stray magnetic fields on ion beam neutralization

    NASA Technical Reports Server (NTRS)

    Feng, Y.-C.; Wilbur, P. J.

    1982-01-01

    An experimental investigation is described of a comparison between the ion beam neutralization characteristics of a local neutralizer (within approximately 5 cm of the beam edge) and those associated with a distant one (approximately 1 meter away from the thruster). The influence of magnetic fields in the vicinity of the neutralizer cathode orifice which are either parallel or normal to the neutralizer axis is assessed. The plasma property profiles which reflect the influence of the magnetic fields are measured. The results suggest that magnetic fields at the region of a neutralizer cathode orifice influence its ability to couple to the ion beam. They reveal that there is a potential jump from the neutralizer cathode orifice to the plasma which exists close to the orifice. This potential drop is found to increase as the axial component of magnetic flux density increases. A magnetic field perpendicular to the neutralizer axis induces a potential rise a few centimeters downstream from the neutralizer cathode.

  18. Influence of solar wind ions on photoemission charging of dust

    NASA Astrophysics Data System (ADS)

    Nouzak, Libor; Richterova, Ivana; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek

    2016-04-01

    The lunar surface covered by a layer of dust grains is exposed to solar wind particles and photons coming from the Sun on the sunlit side. Solar wind ions cause sputtering of dust grains or can be implanted into grains. We suppose that as a consequence of ion implantation, an additional energy is transferred to grains, more valence band electrons are excited, and the photoelectron yield is increased. An increase of the photoelectron current causes the enhanced density of electrons that form a sheet above the illuminated lunar surface. Thus, an influence of solar wind ions on the Debye length and photoelectron sheet formation is expected. We present laboratory estimations of work functions and photoelectron yields of a single micron-sized silica grain before and after ion implantation. The silica grain used as a lunar simulant is caught in the electrodynamic trap. Grain's specific charge is evaluated by an analysis of the grain motion within the trap, while its work function is determined from observations of a time evolution of the charge-to-mass ratio when the grain is irradiated by photons of different emission lines. By comparison of the photoelectron current (from grain) with photon flux (from UV source), we establish the photoelectron yield of the trapped object. The influence of ion implantation is thoroughly analyzed and discussed.

  19. Influence of ion channels on the proliferation of human chondrocytes.

    PubMed

    Wohlrab, David; Lebek, Susanne; Krüger, Thomas; Reichel, Heiko

    2002-01-01

    The goal of the study was to examine connections between ion channel activity and the proliferation of human chondrocytes. Chondrocytes were isolated form human osteoarthritic knee joint cartilage. In this study the concentration-dependent influence of the ion channel modulators tetraethylammonium (TEA), 4-aminopyridine (4-AP), 4',4' diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyano-2,2'-disulfonic acid stilbene (SITS), verapamil (vp) and lidocaine (lido) on the membrane potential and the proliferation of human chondrocytes was investigated using flow cytometry and the measurement of (3)H-thymidine incorporation as measure for the cell proliferation. The results show an effect of the used ion channel modulators causing a change of the membrane potential of human chondrocytes. The maximal measurable effects of the membrane potential were listed with 0.25 mmol/l verapamil (-18%) and 0.1 mmol/l lidocaine (+20%). When measuring DNA distribution, it became apparent that the human chondrocytes are diploid cells with a very low proliferation tendency. After 12 days culture duration, lidocaine and 4-AP cause an increase of the DNA synthesis rate being a limited effect. These results allow the conclusion of an influence of ion channel modulators on chondrocyte proliferation. To gain knowledge of the regulation of chondrocyte proliferation via ion channel modulators could serve the research of new osteoarthritis treatment concepts.

  20. Absorptions UV dans le fonctionnement des sources lasers solides à ions de terres rares

    NASA Astrophysics Data System (ADS)

    Moncorgé, R.; Margerie, J.; Doualan, J. L.; Nagtegaele, P.; Guyot, Y.

    2006-12-01

    L'article donne une description et analyse les phénomènes d'absorption UV à l'origine des mécanismes de solarisation et de variation d'indice de réfraction observés dans certains matériaux dopés terres rares étudiés pour leurs propriétés laser UV ou infrarouge lorsqu'ils sont soumis à de fortes densités d'excitation optique.

  1. Excrétion rénale des ions divalents après homotransplantation rénale

    PubMed Central

    Cartier, F.; Popovtzer, M. M.; Robinette, J.; Pinggera, W. F.; Halgrimson, C. G.; Starzl, T. E.

    2010-01-01

    RÉSUMÉ L’élimination rénale des ions divalents, celle du Na et du K, ont été étudiées de façon comparative dans les suites immédiates de l’homotransplantation rénale chez 6 patients. Durant la période initiale polyurique (> 3ml/mn), le taux d’excrétion du Ca filtré (Cca/Ccr), du Mg, du P, du Na et du K, est élevé et il existe une corrélation étroite et quasi constante entre l’élimination du Ca, du Mg et du Na ; la corrélation n’est pas constante entre l’élimination du Na et du K, du Mg et du K. Pendant les deux jours suivants, le taux d’excrétion diminue, sauf pour le P ; il existe encore une corrélation entre l’excrétion du Ca, du Mg et du Na, non entre celle du Na et du K, du Mg et du K. L’excrétion du Ca l’emporte sur celle du Na au cours de la première période, non au cours de la seconde. A la lumière de ces données, on envisage l’intervention possible de divers facteurs, tels l’inflation hydrosique et l’hyperazotémie préalables, l’ischémie rénale contemporaine de la transplantation, les effets de la dénervation rénale, du traitement cortisonique, de l’hyperparathyroïdie et ceux des modifications circulatoires rénales. PMID:4574592

  2. Influence du comportement des accompagnants sur le vécu des patients admis pour hémorragies digestives hautes au CHU campus de Lomé (Togo)

    PubMed Central

    Bagny, Aklesso; Dusabe, Angelique; Bouglouga, Oumboma; Lawson-ananisoh, Mawuli Late; Kaaga, Yeba Laconi; Djibril, Mohaman Awalou; Soedje, Kokou Mensah; Dassa, Simliwa Kolou; Redah, Datouda

    2014-01-01

    Introduction L'hémorragie digestive haute est une urgence, qui constitue souvent pour les patients un danger mortel suscitant inquiétude et agitation. Dans cet état, le patient dépend de ses accompagnants pour ses soins et pour honorer le traitement; mais souvent, il a été observé une discordance entre l'urgence et les comportements des accompagnants. Le but de cette étude était de décrire les facteurs socioéconomiques et psychologiques pouvant influencer les comportements des accompagnants des patients admis pour HDH, estimer l'indice de relation entre ces comportements et les facteurs associés d'une part et le vécu des patients admis pour HDH d'autre part. Méthodes Il s'agit d'une étude prospective menée de Septembre 2010 à Juin 2011 (soit 10 mois). Nous avions utilisé l'entretien semi-dirigé et l'observation directe pour collecter nos données, ces dernières avaient été traitées par les méthodes statistiques et d'analyse de contenu. Résultats Dans la présente étude, les comportements des accompagnants des patients admis pour HDH sont en majorité marqués par l'abandon (84%) et le manque de sollicitude (80,2%). Ces comportements sont souvent stimulés par les facteurs socioéconomiques tels que les difficultés économiques (83,2%), des conflits intrafamiliaux (85,1%) et des représentations (maladie incurable ou envoûtement) de la maladie par les accompagnants (73,3%) des cas. Quant aux patients, ils vivent ces comportements comme étant des menaces de mort ou des rejets (77,20%) et comme étant une dévalorisation ou une humiliation de la part de leurs accompagnants (70,30%). Les résultats confirment l'existence de lien significatif entre les comportements des accompagnants et les facteurs socio économiques, entre les comportements des accompagnants et des facteurs psychologiques, et entre le vécu des patients admis pour l'HDH et les comportements des accompagnants. Conclusion Des études ultérieures devraient aborder les points

  3. Les effets des interfaces sur les proprietes magnetiques et de transport des multicouches nickel/iron et cobalt/silver

    NASA Astrophysics Data System (ADS)

    Veres, Teodor

    Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques

  4. Influence of ion size and charge on osmosis.

    PubMed

    Cannon, James; Kim, Daejoong; Maruyama, Shigeo; Shiomi, Junichiro

    2012-04-12

    Osmosis is fundamental to many processes, such as in the function of biological cells and in industrial desalination to obtain clean drinking water. The choice of solute in industrial applications of osmosis is highly important in maximizing efficiency and minimizing costs. The macroscale process of osmosis originates from the nanoscale properties of the solvent, and therefore an understanding of the mechanisms of how these properties determine osmotic strength can be highly useful. For this reason, we have undertaken molecular dynamics simulations to systematically study the influence of ion size and charge on the strength of osmosis of water through carbon nanotube membranes. Our results show that strong osmosis occurs under optimum conditions of ion placement near the region of high water density near the membrane wall and of maintenance of a strong water hydration shell around the ions. The results in turn allow greater insight into the origin of the strong osmotic strength of real ions such as NaCl. Finally, in terms of practical simulation, we highlight the importance of avoiding size effects that can occur if the simulation cell is too small.

  5. Etude du mecanisme de predissociation de l'ion moleculaire de protoxyde d'azote par la mesure de l'energie cinetique des fragments de l'oxyde nitrique et de l'oxygene

    NASA Astrophysics Data System (ADS)

    Delisle, Claude

    La reaction N2 + O+ ↔ NO + + N, laquelle joue un role important dans la physique de la haute atmosphere, a ete le sujet de plusieurs etudes. Bien que cette reaction ait ete l'objet d'une quantite importante de travaux, ces derniers ne permettent toutefois pas de comprendre entierement le mecanisme d'un point de vue quantique, particulierement les niveaux d'energie excites des fragments qui permettent cette reaction. Puisque cette reaction n'est pas tres facile a reproduire en laboratoire, nous avons utilise la spectroscopie laser sur faisceaux d'ions rapides afin d'explorer les limites de dissociation de l'ion moleculaire intermediaire de cette reaction, a savoir l'ion N2O+. Le faisceau d'ions N2O+ rapides, apres excitation de l'ion moleculaire vers un niveau predissocie de l'etat A2Sigma+, se dissocie pour produire les fragments ioniques O+ et NO+. Par la mesure de la variation du nombre de fragments ioniques en fonction de l'energie cinetique des ions N2O+, nous avons enregistre les spectres de predissociation de l'ion N2O+. Lorsque c'etait possible, nous avons procede a l'analyse de ces spectres de dissociation afin d'en tirer les constantes moleculaires. Pour certaines des transitions rotationnelles intenses, nous avons mesure l'energie cinetique acquise par les fragments lors de la predissociation de l'ion N 2O+. Afin d'analyser les distributions en energie cinetique, nous avons developpe une simulation de l'experience en considerant, entre autres choses, la position des niveaux de vibration et de rotation des fragments diatomiques de chacune des limites de dissociation de N2O+. Les resultats de l'analyse sont exprimes en termes de population des niveaux de vibration des fragments diatomiques pour une distribution donnee de la population des niveaux de rotation des fragments. Les resultats ainsi obtenus, montrent que les fragments diatomiques sont produits dans des niveaux de vibration fortement excites. De tels niveaux d'excitation ne correspondent pas aux

  6. [The influences of lactose as an inducer on expression of plant des-pGlu1-brazzein in Escherichia coli].

    PubMed

    Li, Chun-Li; Chen, Qi-Xin; He, Guo-Qing

    2006-11-01

    Expression strain of des-pGlu1-brazzein was constructed and the conditions using lactose as inducer was also optimized. The Influences of three factors which were lactose concentration, induction time and inducing temperature on the growth of strain and on the yield of des-pGlul-Brazzein was analyzed in detail. The result indicated that high lactose concentration inhibit the growth of strains (P < 0.01) but made no difference on expression of target protein between 0.5%-5% (P > 0.05), Biomass would be improved as time passed (P < 0.01), but the yield of target protein didn't increase obviously at 30 degrees C compared with at 37 degrees C. Further result showed that the greater expressed level of des-pGlul-Brazzein, as high as about 20% of total cell protein, could be achieved after the strain had been induced with 0.5% lactose under 28 degrees C - 30 degrees C for 4 h.

  7. Influence de l'environnement sur la tenue des ciments alumineux

    NASA Astrophysics Data System (ADS)

    Coatanlem, P.; Jauberthie, R.

    2004-11-01

    Le fondu alumineux est un ciment à prise rapide, bonne tenue à l'eau de mer, aux solutions sulfatées et aux sols alcalins. Actuellement, il est communément utilisé pour des applications à des ouvrages requérant une exécution rapide. Sa très bonne résistance mécanique à très courte échéance décroît ensuite après quelques années de service. Le but de notre étude est de relier ces observations à l'évolution des phases cristallines et ceci dans des conditions extérieures plus ou moins agressives. Le CA (aluminate de calcium CaOAl{2}O{3}) est le constituant principal du ciment fondu anhydre. A 20circC, la phase hydratée est le CAH{10} (CaO Al{2}O{3},10H{2}O). Cette phase métastable disparaît totalement à 60circC. Elle est remplacée par C{3}AH{6 }(3CaO, Al{2}O{3}, 6H{2}O) et Al(OH){3}. La transformation est très rapide. L'objectif de cette étude est d'observer par diffraction X l'évolution des phases hydratées du fondu alumineux soumis à des environnements agressifs : température élevée, atmosphère humide, solutions acides et solutions sulfatiques pour lesquelles ce ciment est couramment préconisé. Les observations au MEB mettent clairement en évidence l'évolution de la microstructure de la pâte cimentaire lors du changement de phase. Nous avons montré que cette transformation de phase observée à 60circC apparaît à des températures beaucoup plus basses (dès 20circC) liées à l'environnement. Ceci explique pourquoi certains pays ont proscrit l'utilisation d'un tel ciment, la durabilité n'étant pas correcte avec ce type de matériau.

  8. Réduction in situ des ions nitrate dans des eaux par les bactéries indigènes

    NASA Astrophysics Data System (ADS)

    Abdelouas, Abdesselam; Deng, Lijun; Nuttall, Eric; Lutze, Werner; Fritz, Bertrand; Crovisier, Jean-Louis

    1999-02-01

    We studied the possibility of cleaning groundwater contaminated with nitrate ions using indigenous bacteria. The groundwater occurs in a site located near a former vegetable farm near Albuquerque, New Mexico (USA) and contains up to 500 mg·L -1 of nitrate ion. Batch and column experiments using groundwater and local sediment showed that indigenous bacteria catalyzed the nitrate ions reduction. Sodium acetate was selected as the best carbon source for the in situ application. As expected, the best conditions for denitrification were encountered in situ. Nitrate ions and their byproducts were reduced to nitrogen gas within 5 days.

  9. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Glover, Matthew S.; Dilger, Jonathan M.; Acton, Matthew D.; Arnold, Randy J.; Radivojac, Predrag; Clemmer, David E.

    2016-05-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/ trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.

  10. Optimization of parameters of a surface-electrode ion trap and experimental study of influences of surface on ion lifetime

    NASA Astrophysics Data System (ADS)

    Ou, BaoQuan; Zhang, Jie; Zhang, XinFang; Xie, Yi; Chen, Ting; Wu, ChunWang; Wu, Wei; Chen, PingXing

    2016-12-01

    In this paper we report the optimal design and fabrication of a gold-on-silica linear segmented surface-electrode ion trap. By optimizing the thickness and width of the electrodes, we improved the trapping ability and trap scalability. By using some practical experimental operation methods, we successfully minimized the trap heating rate. Consequently, we could trap a string of up to 38 ions, and a zigzag structure with 24 ions, and transport two trapped ions to different zones. We also studied the influences of the ion chip surface on the ion lifetime. The excellent trapping ability and flexibility of operation of the planar ion trap shows that it has high feasibility for application in the development a practical quantum information processor or quantum simulator.

  11. The Influence of the Driving Voltage and Ion Concentration on the Lateral Ion Transport in Nematic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Stojmenovik, Goran; Neyts, Kristiaan; Vermael, Stefaan; Verschueren, Alwin R. M.; van Asselt, Rob

    2005-08-01

    Nematic liquid crystal displays (LCDs) contain ions that influence the electrooptical characteristics of the display. A typical super-twisted nematic (STN) display for mobile phone applications becomes darker at a standard driving frequency if it contains many impurity ions. We have discovered that ions can travel in the plane of the glass plates in the absence of a lateral electric field, leading to lateral nonhomogeneity in transmission (dark and bright stripes). In this paper, we present our research on the lateral ion transport dependence on the driving square wave (SQW) amplitude and dc component at a wide range of ion concentrations. The existence of a dc component, a high ion concentration and high SQW amplitudes increase the lateral ion speed.

  12. Etude des mecanismes de transport des ions chlore dans le beton en vue de la mise au point d'un essai de migration

    NASA Astrophysics Data System (ADS)

    Arsenault, Julie

    The main purpose of this research was to propose a reliable migration test to predict the chloride diffusivity of cement based materials. In this research we also studied the interaction phenomena between chloride and hydrated cement paste in order to improve our knowledge of these mechanisms. The first results of this research program showed that both chloride concentration and the composition of solutions used in the migration test may affect the chloride transport, if the equation used to calculate the diffusion coefficient does not describe correctly the transport in the migration experiment. Some tests were also conducted to characterise the microstructure of cement pastes. Results of these tests showed that neither the electrical field for a DC potential of 10 volts, nor the pure diffusion for chloride concentrations below 1,5 mol/L, do affect significantly the microstructure of cement pastes. Various w/c ratios and types of cement were also tested in this research program. Results showed that both characteristics influence the chloride transport in concrete, whether the diffusivity is calculated from the diffusion or the migration test. Results of migration and diffusion experiments showed that all ions present in the system, not only the chloride, can move under the chemical and/or electrical potential, then affecting the chloride transport into concrete. In addition, we studied interactions between chloride and cement paste by means of an immersion test. We thereby observed that some characteristics, such as the type of solution used in the immersion test, the total aluminate content of cement and the age of the material tested, do influence the chloride binding capacity of the cement paste. We also observed an acceleration of the lixiviation phenomena and significant production of ettringite. In concluding, we proposed a new method to measure the chloride binding capacity of cement paste, using samples previously tested by the migration test. Results

  13. Influence of lead ions on the macromorphology of electrodeposited zinc

    SciTech Connect

    Tsuda, T.; Tobias, C.W.

    1981-09-01

    The morphology of zinc as it is electrodeposited from acid solutions demonstrates a remarkable imprint of electrolyte flow conditions. The development of macromorphology of zinc deposits has been investigated under galvanostatic conditions on a rotating plantinum disk electrode by use of photomacrography, scanning electron microscopy, electron probe microanalysis and Auger microprobe analysis. Logarithmic spiral markings, which reflect the hydrodynamic flow on a rotating disk, appear in a certain region of current density well below the limiting current density. Morphological observations revealed the major influence of trace lead ions on the amplifications of surface roughness through coalescence and preferred growth of initial protrusions. Results obtained from ultra-pure electrolyte suggest preferred crystal growth towards well-mixed orientation in the concentration field caused by slight differences in crystallization overpotential. A qualitative model involving a coupling mechanism between the evolving surface roughness and instability phenomena in the boundary layer is advanced to explain the formation of spiral patterns.

  14. Corrosion influencée par les micro-organismes : influence du biofilm sur la corrosion des aciers, techniques et résultats recents

    NASA Astrophysics Data System (ADS)

    Feugeas, F.; Magnin, J. P.; Cornet, A.; Rameau, J. J.

    1997-03-01

    Microbiologically Influenced Corrosion (M.I.C.) studied since the beginning of this century, is responsible for the degradation of many metallic equipments. This study is a review of results dealing with M.I.C. on several types of steels as: carbon steels, stainless steels, welded steels and covered steels. M.I.C. occurs only in presence of a biofilm. The first part of this study describes chemical and physical factors involved in its development, technical methods for studying biofilms, and its contribution in the corrosion process. The second part is devoted to the study of M.I.C. cases linked with metal nature and different aqueous environments and the last part reviews the mainly mecanisms of biocorrosion. La Corrosion Influencée par les Micro-organismes (C.I.M.) ou biocorrosion, phénomène étudié depuis le début du siècle, est responsable de la dégradation d'un grand nombre d'ouvrages métalliques. Cette étude a pour but de faire le point des connaissances sur la corrosion influencée microbiologiquement de divers types d'aciers au carbone, d'aciers inoxydables, d'assemblages soudés et d'aciers revêtus. La C.I.M. n'apparaît qu'en présence d'un biofilm. La première partie de cette étude décrit les facteurs physico-chimiques impliqués dans la formation du biofilm, ces moyens d'études ainsi que son action dans le processus de biocorrosion. La seconde partie est consacrée à la description des cas de biocorrosion classés en fonction de la nature des métaux et des milieux avec lesquels ils sont en contact. La dernière partie de ce document passe en revue les principaux mécanismes de biocorrosion décrits.

  15. Influence of experimental parameters on secondary ion yield for MeV-SIMS

    NASA Astrophysics Data System (ADS)

    Stoytschew, Valentin; Bogdanović Radović, Iva; Siketić, Zdravko; Jakšić, Milko

    2017-08-01

    Megaelectronvolt-Secondary Ion Mass Spectrometry (MeV-SIMS) is an emerging ion beam analysis technique for molecular speciation and submicrometer imaging. Following the construction of different experimental setups a systematic investigation on the dependence of secondary ion yields on experimental parameters is crucial. Without this knowledge, results are hard to interpret as surface roughness, scan size and the position on the sample can influence the secondary ion count and misleading images can be obtained. Additionally, to achieve better reproducibility the optimal experimental conditions need to be well known. In this work, we present the results of investigations into the influence of the main experimental parameters on the secondary ion yield.

  16. Influence of electron-ion collisions on Buneman instability

    NASA Astrophysics Data System (ADS)

    Rostomyan, Eduard

    2016-07-01

    Buneman instability (BI) [1] has been found to play a role in many scenarios in space physics and geophysics. It has also been invoked to explain many phenomena in the earth ionosphere [2] and in the solar chromosphere [3]. In double-layer and collisionless shock physics the same instability has been found responsible in formation of nonlinear structures [4]. In situations where an electron beam enters plasma, like in the fast ignition scenario for inertial fusion [5], Buneman modes are excited and play essential role [6]. BI is caused by motion of plasma electrons against ions. However, up to now investigations on BI did not take into account influence collisions in plasma (for quantum case a paper has recently appeared [7]). Influence of collisions may be very important especially in dense fully ionized plasma with long distance character of interaction. Particularly collisions lead to energy dissipation with an array of ensuing effects e.g. change of the instability physical nature to that of dissipative type [8]. Due to role of BI in various processes in space (and laboratory) plasma necessity of the consideration is long overdue. Absence of investigations on a problem along with its importance may be explained by its complexity only. For given case correct consideration should be based on solution of transport equation with collisional term. In fully ionized plasma correct description of collisions is given by Landau collision integral (LCI) [9]. This is very complex formation. It greatly complicates transport equation and actually makes it intractable. Since its formulation in 1936, there is very little literature on solution of the transport equation with LCI. Almost all successful attempts to accommodate influence of collisions on various processes in plasma are based on BGK model [10]. This model is much simpler. However in fully ionized plasma usage LCI is more appropriate as it is designed for system with long distance character of particle interaction

  17. Influence of the quantum interference on the bosonic and fermionic ion-ion collisions

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-03-01

    The quantum interference effects on the bosonic-bosonic (He-4)-(He-4), fermionic-fermionic (He-3)-(He-3), and bosonic-fermionic (He-4)-(He-3) ion-ion collisions are investigated by using the isotope of the He nucleus in dense semiclassical Coulomb systems with the Faxen-Holtzmark method. It is found that the scattering cross section for the fermionic-fermionic ion-ion collision is greater than the bosonic-bosonic and bosonic-fermionic ion collision cross sections. It is also found that the collisional induced quantum interference effect enhances the ion-ion collision cross section in semiclassical Coulomb systems. The variation of the quantum-mechanical effect on the bosonic and fermionic ion-ion collisions is also discussed. This paper is dedicated to the late Prof. P. K. Shukla in memory of exciting and stimulating collaborations on physical processes in semiclassical Coulomb systems.

  18. Influence of Ion Field Emission on the Dust Charge

    NASA Astrophysics Data System (ADS)

    Pavlu, J.; Richterova, I.; Safrankova, J.; Nemecek, Z.

    2005-12-01

    In the interplanetary space where the dominant process charging the dust immersed in the tenuous ambient plasma is photoelectron current, the grains collect a positive charge. This charge can be further enhanced by impacts of the energetic ions. The attainable charge is limited by the ion field emission. However, the ion field emission is a term generally used for three different processes: Field ionization, field desorption, and field evaporation. First of them can be of interest under laboratory conditions but negligible in the interplanetary space because the surrounding gas is often fully ionized. Field desorption can be important but under particular circumstances, e.g., for dust grains freshly released from larger objects (like comets) because the grains are bombarded by energetic particles that rapidly clean-up their surfaces. On the other hand, the field evaporating dust grains may be important sources of heavy ions in the space. There is an observational evidence of pickup ions in the solar wind and the field emission of dust grain material was suggested to be responsible for the production of these ions. For these reasons, the knowledge of basic characteristics of the ion field emission from the dust grains is significant for understanding of the plasma processes in the space. The present study deals with the ion field emission from highly charged spherical samples form a MF resin (alternatively covered by a thin layer of Ni) and Au. The samples were charged by the ion beam of various energies up to 5 keV. Investigations of spontaneous grain discharging allow us to suggest that the field desorption (together with post-ionization) is the main process responsible for observed gradual discharging of used metallic grain samples. However, the grain charge is accumulated in a thick surface layer of non-conducting samples. The thickness of this layer depends on the mass and energy of primary ions. We can thus conclude that the charging history (mass and energy

  19. Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, Rahul; Vishnoi, Ritu; Lakshmi, G. B. V. S.; Biswas, S. K.

    2017-04-01

    The modifications produced by 55 MeV Si4+ swift heavy ion irradiation on the phenyl C61 butyric acid methyl ester (PCBM) thin films (thickness ∼ 100 nm) has been enlightened. The PCBM thin films were irradiated at 1 × 1010, 1 × 1011 and 1 × 1012 ions/cm2 fluences. After ion irradiation, the decreased optical band gap and FTIR band intensities were observed. The Raman spectroscopy reveals the damage produced by energetic ions. The morphological variation were investigated by atomic force microscopy and contact angle measurements and observed to be influenced by incident ion fluences. After 1011 ions/cm2 fluence, the overlapping of ion tracks starts and produced overlapping effects.

  20. Ion adsorption and its influence on direct current electric field induced deformations of flexoelectric nematic layers

    NASA Astrophysics Data System (ADS)

    Derfel, Grzegorz; Buczkowska, Mariola

    2011-07-01

    The influence of ion adsorption on the behavior of the nematic liquid crystal layers is studied numerically. The homeotropic flexoelectric layer subjected to the dc electric field is considered. Selective adsorption of positive ions is assumed. The analysis is based on the free energy formalism for ion adsorption. The distributions of director orientation angle, electric potential, and ion concentrations are calculated by numerical resolving of suitable torques equations and Poisson equation. The threshold voltages for the deformations are also determined. It was shown that adsorption affects the distributions of both cations and anions. Sufficiently large number of adsorbed ions leads to spontaneous deformation arising without any threshold if the total number of ions creates sufficiently strong electric field with significant field gradients in the neighborhood of electrodes. The spontaneous deformations are favored by strong flexoelectricity, large thickness, large ion concentrations, weak anchoring, and large adsorption energy.

  1. Influence of hard water ions on the growth rate of Salmonella Typhimurium

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella typhimurium was evaluated to address the concerns for food quality and safety. Salmonella typhimurium was exposed to media containing 500 ppm and 1000 ppm of magnesium and calcium ions for 45 minutes followed by...

  2. Influence of hard water ions on the growth of salmonella in poultry processing water

    USDA-ARS?s Scientific Manuscript database

    The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...

  3. The influence of fast ions on the magnetohydrodynamic stability of negative shear profiles

    SciTech Connect

    Helander, P.; Gimblett, C.G.; Hastie, R.J.; McClements, K.G.

    1997-06-01

    The influence of energetic ions on the stability of ideal double kink modes in a tokamak plasma with negative magnetic shear is investigated. It is found that the fast ions play a similar role as for the ordinary m=n=1 internal kink. In particular, phenomena analogous to sawtooth stabilization and fishbone excitation are possible.

  4. Ion radiation albedo effect: influence of surface roughness on ion implantation and sputtering of materials

    NASA Astrophysics Data System (ADS)

    Li, Yonggang; Yang, Yang; Short, Michael P.; Ding, Zejun; Zeng, Zhi; Li, Ju

    2017-01-01

    In fusion devices, ion retention and sputtering of materials are major concerns in the selection of compatible plasma-facing materials (PFMs), especially in the context of their microstructural conditions and surface morphologies. We demonstrate how surface roughness changes ion implantation and sputtering of materials under energetic ion irradiation. Using a new, sophisticated 3D Monte Carlo (MC) code, IM3D, and a random rough surface model, ion implantation and the sputtering yields of tungsten (W) with a surface roughness varying between 0-2 µm have been studied for irradiation by 0.1-1 keV D+, He+ and Ar+ ions. It is found that both ion backscattering and sputtering yields decrease with increasing roughness; this is hereafter called the ion radiation albedo effect. This effect is mainly dominated by the direct, line-of-sight deposition of a fraction of emitted atoms onto neighboring asperities. Backscattering and sputtering increase with more oblique irradiation angles. We propose a simple analytical formula to relate rough-surface and smooth-surface results.

  5. Influence of planar oscillations on scattered ion energy distributions in transmission ion channeling

    NASA Astrophysics Data System (ADS)

    Bailes, A. A.; Seiberling, L. E.

    1999-06-01

    Utilizing the transmission ion channeling technique and a Monte Carlo simulation of the channeling of He ions in Si, we have been able to determine surface structure by comparing experimental to simulated scattered ion energy distributions. In analyzing data for {110} beam incidence, we have found that planar oscillations persist well past 2000 Å in our Monte Carlo simulations. These oscillations yield no benefit to this method of data analysis but can make analysis more difficult by the requirement for more accurate Si thickness determination.

  6. Influence of discharge gap on the discharge stability in a short vacuum arc ion source.

    PubMed

    Chen, L; Zhang, G L; Jin, D Z; Yang, L; Dai, J Y

    2012-02-01

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  7. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    SciTech Connect

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Dai, J. Y.; Yang, L.

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  8. Anhydrobiosis in yeast: influence of calcium and magnesium ions on yeast resistance to dehydration-rehydration.

    PubMed

    Trofimova, Yuliya; Walker, Graeme; Rapoport, Alexander

    2010-07-01

    The influence of calcium and magnesium ions on resistance to dehydration in the yeast, Saccharomyces cerevisiae, was investigated. Magnesium ion availability directly influenced yeast cells' resistance to dehydration and, when additionally supplemented with calcium ions, this provided further significant increase of yeast resistance to dehydration. Gradual rehydration of dry yeast cells in water vapour indicated that both magnesium and calcium may be important for the stabilization of yeast cell membranes. In particular, calcium ions were shown for the first time to increase the resistance of yeast cells to dehydration in stress-sensitive cultures from exponential growth phases. It is concluded that magnesium and calcium ion supplementations in nutrient media may increase the dehydration stress tolerance of S. cerevisiae cells significantly, and this finding is important for the production of active dry yeast preparations for food and fermentation industries.

  9. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  10. The influence of Hofmeister series ions on hyaluronan swelling and viscosity.

    PubMed

    Mrácek, Ales; Varhaníková, Júlia; Lehocký, Marián; Grundelová, Lenka; Pokopcová, Alena; Velebný, Vladimír

    2008-05-01

    The dissolution of hyaluronan in water leads to its degradation, and as a result its molecular weight decreases. The degradation of hyaluronan is mainly influenced by temperature, solution composition, and also its pH. This study describes the influence of Hofmeister series ions on hyaluronan behaviour and hyaluronan film swelling by solutions of these ions. It was found that Hofmeister ions show lyotropic effects influencing the entanglement of hyaluronan coils and their expansion from solid polymer films into swollen gel state. The hydrophobic and hydrophilic interactions in the structure of hyaluronan macromolecules are represented by the mutual diffusion coefficient D(c), the mean mutual diffusion coefficient D(s), the expansion work of coil swelling RA(delta,s), the activation enthalpy of diffusion connected with swelling H(D,s) and kinematic viscosity of hyaluronan-ions solutions nu.

  11. DNA fragmentation induced by fe ions in human cells: shielding influence on spatially correlated damage

    SciTech Connect

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M.A.

    2003-11-19

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used small gamma, Greek-rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by small gamma, Greek-rays in the size range 123 kbp; (3) a non-random DNA DSB induction by Fe ions.

  12. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    DOE PAGES

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; ...

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces andmore » enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.« less

  13. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    SciTech Connect

    Dyatkin, Boris; Zhang, Yu; Mamontov, Eugene; Kolesnikov, Alexander I.; Cheng, Yongqiang; Meyer, III, Harry M.; Cummings, Peter T.; Gogotsi, Yury G.

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  14. DNA fragmentation induced by Fe ions in human cells: shielding influence on spatially correlated damage

    NASA Technical Reports Server (NTRS)

    Antonelli, F.; Belli, M.; Campa, A.; Chatterjee, A.; Dini, V.; Esposito, G.; Rydberg, B.; Simone, G.; Tabocchini, M. A.

    2004-01-01

    Outside the magnetic field of the Earth, high energy heavy ions constitute a relevant part of the biologically significant dose to astronauts during the very long travels through space. The typical pattern of energy deposition in the matter by heavy ions on the microscopic scale is believed to produce spatially correlated damage in the DNA which is critical for radiobiological effects. We have investigated the influence of a lucite shielding on the initial production of very small DNA fragments in human fibroblasts irradiated with 1 GeV/u iron (Fe) ions. We also used gamma rays as reference radiation. Our results show: (1) a lower effect per incident ion when the shielding is used; (2) an higher DNA Double Strand Breaks (DSB) induction by Fe ions than by gamma rays in the size range 1-23 kbp; (3) a non-random DNA DSB induction by Fe ions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. Sputtering at grazing ion incidence: Influence of adatom islands

    SciTech Connect

    Rosandi, Yudi; Redinger, Alex; Michely, Thomas; Urbassek, Herbert M.

    2010-09-15

    When energetic ions impinge at grazing incidence onto an atomically flat terrace, they will not sputter. However, when adatom islands (containing N atoms) are deposited on the surface, they induce sputtering. We investigate this effect for the specific case of 83 deg. -incident 5 keV Ar ions on a Pt (111) surface by means of molecular-dynamics simulation and experiment. We find that - for constant coverage {Theta} - the sputter yield has a maximum at island sizes of N congruent with 10-20. A detailed picture explaining the decline of the sputter yield toward larger and smaller island sizes is worked out. Our simulation results are compared with dedicated sputtering experiments, in which a coverage of {Theta}=0.09 of Pt adatoms are deposited onto the Pt (111) surface and form islands with a broad distribution around a most probable size of N congruent with 20.

  16. Ion-specific effects influencing the dissolution of tricalcium silicate

    SciTech Connect

    Nicoleau, L.; Schreiner, E.; Nonat, A.

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  17. Characteristics of patch-repaired RC under influenced of chloride ions

    NASA Astrophysics Data System (ADS)

    Malek, Rohaya Abdul; Hattori, Atsushi; Kawano, Hirotaka; Risa, Matsumoto

    2017-04-01

    One of the key performances of repaired reinforced concrete is its ability to withstand corrosion due to harmful ions and should be compatible with substrate and repaired concrete structures. This research investigates the prediction of corrosion risk on repaired RC by comparing performance between PMM and conventional OPC as chosen materials for repairing RC structures under influenced of chloride ions. The effect of chloride ions on repaired RC will be analyzed according to microstructural analysis, half-cell potential and chloride content by weight of cement. For analysis, substrate concrete containing 9 kg/m3 chloride ions with W/C ratio 60% acts as the reference specimen. Meanwhile, for comparison purpose; two conditions of repaired RC namely OPC with W/C ratio 40% (R-0.4OPC) and PMM (R-PMM) that contain chloride free ions using similar casting and curing techniques were prepared respectively. Based on the results obtained, porosity and microstructural images using BSE were alternated under influenced of chloride ions since it correlated with surface charge of CSH due to Ca/Si amount in each specimen. The correlation between free and total chloride ions in concrete reveals the phenomena of co-matrix in R-PMM specimen since least chloride ions found in repaired section compared to R-0.4OPC specimen. The most striking result is R-PMM specimen able to resist chloride ions ingress in its repaired section but for HCP results obtained the R-PMM specimen beyond its threshold of passivity even though its porosity value is the lowest. To sum up, penetration of chloride ions throughout the specimens according to the wet chemical analysis giving effects to the porosity and microstructure. The R-PMM specimen was good in resistance of chloride ions to the repaired part but it was not the final predictions on its ability to withstand corrosion resistance.

  18. The influence of carbon ion irradiation on sweet sorghum seeds

    NASA Astrophysics Data System (ADS)

    Dong, X. C.; Li, W. J.; Liu, Q. F.; He, J. Y.; Yu, L. X.; Zhou, L. B.; Qu, Y.; Xie, H. M.

    2008-01-01

    The aim of this study is to investigate the effects of different doses of 100 MeV/u carbon ions on sweet sorghum seeds in order to improve crop yields and their sugar content. After irradiation, seeds were germinated and grown to 30 days, and others were sown in the field. At the end of harvesting season all planted seeds were picked separately and M2 generations obtained. The differences among the treatments were examined using the RAPD procedure. In the study done by using 38 primers; according to the amplification results, the differences among the various doses treatment were shown.

  19. Influence of multiple ion species on low-frequency electromagnetic wave instabilities. [in solar wind

    NASA Technical Reports Server (NTRS)

    Brinca, Armando L.; Tsurutani, Bruce T.

    1989-01-01

    The effect of multiple (singly ionized) coexisting newborn ion species on the stability of low-frequency electromagnetic waves was investigated using a plasma model in which solar wind magnetoplasma is made up of isotropic Maxwellian electron and proton populations with a common number density of 4.95/cu cm and temperatures equal to 17.2 eV and 6.9 eV, respectively. It is shown that the effect of multiple ions on wave growth, for given background magnetoplasma conditions and relative densities, depends not only on their mass but also on the physical nature of the wave modes. If the ion masses are disparate, each one of the coexisting ion beams tends to stimulate instabilities without undue influence from the other species. If the masses of newborn ions are similar, they can strongly catalyze wave growth of fluidlike nonresonant modes, but bring about weak growth enhancements in cyclotron resonant instabilities.

  20. Influence of paeoniflorin on intracellular calcium ion concentration in the sphincter of Oddi of hypercholesterolemic rabbits.

    PubMed

    Wang, F; Wang, C-M; Liu, J-D; Wang, Y-T

    2014-07-04

    This study aimed to investigate the influence of hypercholesterolemia (HC) on intracellular calcium ion concentration in the sphincter of Oddi (SO) of rabbits and the influence of paeoniflorin on intracellular calcium ion concentration in the hypercholesterolemic rabbit SO. Sixteen purebred New Zealand rabbits were randomly divided into two groups: the control group and the HC model group (8 rabbits in each group). The control group was fed standard diet. The HC group was fed standard diet plus cholesterol for a total of 8 weeks to induce and establish the rabbit HC model. The SO segment of HC rabbits was taken and enzyme treated to obtain SO cells. After primary culture, immunohistochemical analysis was performed. Fluo-3/AM was used to load SO cells, and then intracellular calcium ion concentration was determined by confocal microscopy. Intracellular calcium ion in the SO of the HC group was higher than that of the normal group; intracellular calcium ion in the HC rabbit SO of the paeoniflorin group was lower than that of the control group, where the paeoniflorin effect was greater with higher concentrations. High cholesterol caused an increase in intracellular calcium ion concentration in the rabbit SO, and paeoniflorin can reduce intracellular calcium ion concentration in the HC rabbit SO in a concentration-dependent manner.

  1. Influence of electrode geometry on liquid metal ion source performance

    SciTech Connect

    Swanson, L.W.; Li, J.Z.

    1988-07-01

    The surface electric field distribution along the axis of a wetted needle type liquid metal ion source has been determined by numerical methods and is shown to exhibit a secondary maximum at the intersection of the cylindrical and conical sections. It is shown that the volume flow rate of the liquid metal film along the cylindrical portion of the emitter is adequate to resupply the ionized portion at the needle apex. However, a pressure minimum in the liquid film, which decreases with increasing apex cone angle, occurs at the cone/cylinder intersection and the pressure gradient formed on the conical section of the emitter opposes flow to the apex region. It is shown that, by chemically roughening the conical section of the emitter, liquid film flow via microcapillary action occurs in such a way as to provide a low flow impedance to the apex.

  2. UV photoinitiated changes of humic fluorophores, influence of metal ions.

    PubMed

    Klementová, S; Kríz, D; Kopácek, J; Novák, F; Porcal, P

    2009-05-01

    Fluorophore types and their photochemical stability have been tested in two samples of humic acids (HA) and four types of fulvic acids (FA) extracted from upper soil horizons (O and A horizons) in Norway spruce forest mountain ecosystems. Only one type of fluorophore occurred in all samples, with an excitation maximum at 310 nm for both HA and FA samples and emission maxima between 420-435 and 440-450 for HA and FA, respectively. HA weak native fluorescence increased significantly during irradiation in the first 12 h. Fluorophores in FA were uniformly degraded from the beginning of irradiation. Addition of metal (aluminium or ferric) ions did not affect the positions of fluorescence maxima in any of the studied samples; mild effects on fluorescence intensities were observed.

  3. Injectabilite des coulis de ciment dans des milieux fissures

    NASA Astrophysics Data System (ADS)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  4. [The heavy ion irradiation influence on the thermodynamic parameters of liquids in human body].

    PubMed

    Vlasenko, T S; Bulavin, L A; Sysoev, V M

    2014-01-01

    In this manuscript a theoretical model describing the influence of the heavy ion radiotherapy on the liquid matter in the human body is suggested. Based on the fundamental equations of Bogoliubov chain the effective temperatures in the case of constant particles fluent are found in the context of single component model. An existence of such temperatures allows the use of equilibrium thermodynamics formalism to nonequilibrium stationary state. The obtained results provide the possibility of predicting the liquid matter structural changes in the biological systems in the area influenced by the heavy ion beams.

  5. Influence des caracteristiques geomecaniques du reseau de fractures sur les pressions d'injection limites

    NASA Astrophysics Data System (ADS)

    Lim, Sophie

    Grouting jointed rock masses improves their water tightness and strength for civil infrastructure foundations such as hydroelectric dams. In North America, the most common method involves injecting grout in fractures at a pressure given by a rule of thumb of 25 kPa per meter of rock cover. The criterion used to define the limit pressure is conservative because it considers a state of stress due to gravity only and does not take into account the geomechanical characteristics of the rock mass and the properties of the injection grout. The objective of this study is to verify the influence of geomechanical parameters on maximum injection pressures and compare it to the empirical criterion of 25 kPa /m using UDEC, a distinct element code for 2D modelling of fractured rock masses. The hydrojacking mechanism during fracture injection is sensitive not only to the grout pressure but also to its rheological parameters as well as the strength and the opening of the fractures. In this study, grouting in different rock mass models is simulated with conditions (constant-width fractures openings and horizontal stress equivalent to the vertical stress) favorable to hydrojacking. With the numerical model, hydrojacking was observed at injection pressures slightly higher than those prescribed by the industry. The jacking mechanism is mainly related to fractures near the surface. Because the model does not include the possibility of introducing time dependent grout parameters, grout flows at larger distances than what is observed in the field. In addition, the two-dimensional model has certain limitations and requires assumptions restricting the direct transposition of results to the field due to the complexity of fracture geometries and the grout spreading in 3D. A relative comparison of limit grouting pressures is nonetheless possible and it highlights the effects of certain geomechanical parameters on its magnitude.

  6. Vacuolar ion channels in the liverwort Marchantia polymorpha: influence of ion channel inhibitors.

    PubMed

    Koselski, Mateusz; Trebacz, Kazimierz; Dziubinska, Halina

    2017-05-01

    Potassium-permeable slow activating vacuolar channels (SV) and chloride-permeable channels in the vacuole of the liverwort Marchantia polymorpha were characterized in respect to calcium dependence, selectivity, and pharmacology. The patch-clamp method was used in the study of ion channel activity in the vacuoles from the liverwort Marchantia polymorpha. The whole-vacuole recordings allowed simultaneous observation of two types of currents-predominant slow activated currents recorded at positive voltages and fast activated currents recorded at negative voltages. Single-channel recordings carried out in the gradient of KCl indicated that slow activated currents were carried by potassium-permeable slowly activating vacuolar channels (SV) and fast activated currents-by chloride-permeable channels. Both types of the channels were dependent in an opposite way on calcium, since elimination of this ion from the cytoplasmic side caused inhibition of SV channels, but the open probability of chloride-permeable channels even increased. The dependence of the activity of both channels on different types of ion channel inhibitors was studied. SV channels exhibited different sensitivity to potassium channel inhibitors. These channels were insensitive to 3 mM Ba(2+), but were blocked by 3 mM tetraethyl ammonium (TEA). Moreover, the activity of the channels was modified in a different way by calcium channel inhibitors. 200 µM Gd(3+) was an effective blocker, but 50 µM ruthenium red evoked bursts of the channel activity resulting in an increase in the open probability. Different effectiveness of anion channel inhibitors was observed in chloride-permeable channels. After the application of 100 µM Zn(2+), a decrease in the open probability was recorded but the channels were still active. 50 µM DIDS was more effective, as it completely blocked the channels.

  7. Influence of ion irradiation on iron-chalcogenide superconducting films

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Si, Weidong; Zhang, Cheng; Wu, Lijun; Li, Qiang

    2015-03-01

    Iron-chalcogenide superconductors have rather simple crystal structure and no charge reservoir. They also exhibit remarkable properties including small anisotoropy, high upper critical fields, a significant pressure effect on superconductivity. We have grown iron-chalcogenide FeSe0.5Te0.5 (FST) superconducting films on various substrate by pulsed laser deposition. The FST films on CeO2 buffer layer exhibit enhanced Tc (Tconset >20 K, Tczero = 18.0 K), which is about 30% higher than that found in the bulk materials and superior high field performance over the low temperature superconductors.. Recently, we were successful in further enhancement of Jc without Tc degradation by ion irradiation, especially, at high temperature and high magnetic field. The low-energy proton irradiation produces a Jc enhancement of one order of magnitude over the field of 6T//c at 12 K. Extensive TEM studies of the irradiated FST films have been carried out, which revealed an intriguing defect morphology provided by the irradiation. We will discuss the relationship between the superconducting properties and the created defects of the iron-chalcogenide films.

  8. Influence of {kappa}-distributed ions on the two-stream instability

    SciTech Connect

    Langmayr, D.; Biernat, H.K.; Erkaev, N.V.

    2005-10-01

    This paper is the first approach for analyzing the influence of {kappa}-distributed particles on the modified two-stream instability (MTSI). It is assumed that the plasma consists of a magnetized Maxwellian electron contribution and unmagnetized {kappa}-distributed ions drifting across the electrons. Within an electrostatic approximation, the influence of the {kappa} parameter on the maximum growth rate of the MTSI is evaluated for the special case of parallel drift velocity and wave propagation.

  9. On the influence of ion exchange on the local structure of the titanosilicate ETS-10.

    PubMed

    Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang

    2007-07-14

    The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.

  10. Influence of Cu ion implantation on the microstructure and cathodoluminescence of ZnS nanostructures

    NASA Astrophysics Data System (ADS)

    Shang, L. Y.; Zhang, D.; Liu, B. Y.

    2016-07-01

    The microstructure and optical properties of as-synthesized and Cu ion implanted ZnS nanostructures with branched edges are studied by using high-resolution transmission electron microscope (TEM) and spatially-resolved cathodoluminescence measurement. Obvious crystalline deterioration has been observed in Cu-doped ZnS nanostructures due to the invasion of Cu ions into ZnS lattice. It was found that the optical emissions of ZnS nanostructures can be selectively modified through the control of Cu ion dose and subsequent heat treatment. An increase of Cu dopant content will lead to an apparent red-shift of the intrinsic band-gap emission in the UV range and the broadening of defect-related emission in visible range. The influences of Cu ion implantation on the microstructure and related optical properties were discussed.

  11. The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts.

    PubMed

    Song, Jianxun; Wang, Qiuyu; Wu, Jinyu; Jiao, Shuqiang; Zhu, Hongmin

    2016-08-15

    KF is employed as a source of fluoride ions added to the melt to disclose the influence of fluoride on the disproportionation reactions of titanium ions, 3Ti(2+) = 2Ti(3+) + Ti, and 4Ti(3+) = 3Ti(4+) + Ti. The results reveal that the equilibrium transferred to the right direction for the first reaction and the apparent equilibrium constant increased sharply, mainly because of the formation of coordination compounds: TiFi(3-i). The accurate values of the equilibrium constants referring to the formation reactions of Ti(3+) + iF(-) = TiFi(3-i) (i = 1-6) in NaCl-KCl melt at 1023 K were evaluated with a best fit least squares method. It is also revealed that the stable states of the coordination compounds are TiF(2+), TiF2(+), TiF4(-) and TiF6(3-). Moreover, the Gibbs free energies for complex formation were estimated. Ti(2+) was undetectable when the concentration of fluoride ion was high enough. The equilibrium constant for the formation reaction, Ti(4-) + 6F(-) = TiF6(2-), was evaluated. The equilibrium constant, Kc2, for the disproportionation reaction 4Ti(3+) = 3Ti(4+) + Ti, in chloride melt was determined as 0.015.

  12. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  13. Influence of Inorganic Ions on Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, we investigated the influence of inorganic ions on the aggregation and deposition (adsorption) behavior of human adenovirus (HAdV). Experiments were conducted to determine the surface charge and size of HAdV and viral adsorption capacity of sand in different salt c...

  14. Critical influence of chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish embryos.

    PubMed

    Groh, Ksenia J; Dalkvist, Trine; Piccapietra, Flavio; Behra, Renata; Suter, Marc J-F; Schirmer, Kristin

    2015-02-01

    The toxicity of silver nanoparticles (AgNP) to aquatic organisms, including zebrafish (Danio rerio), has been demonstrated, but differing opinions exist on the contribution of the physical properties of the particles themselves and the free dissolved silver ions (Ag(+)) to the observed effects. High concentrations of chloride ions (Cl(-)) in the routinely used exposure media can cause precipitation of Ag(+) as AgCl, as well as complexation of silver in diverse soluble chlorocomplexes, thus masking the contribution of dissolved silver to AgNP toxicity. In the present study, we formulated a zebrafish exposure medium with a low chloride content and exposed zebrafish embryos to AgNO3 or carbonate-coated AgNP. The severity of toxicity caused by both silver forms depended on the time of exposure start, with younger embryos being most sensitive. Toxicity caused by both AgNO3 and AgNP was of the same order of magnitude when compared based on the total dissolved silver concentration and could be prevented by addition of the Ag(+) chelator cysteine. Further, we have analyzed the data from several previous studies to evaluate the influence of interactions between Ag(+) and Cl(-) on silver toxicity to zebrafish embryos. Our analysis demonstrates that the acute toxicity of AgNP to zebrafish embryos is largely mediated by Ag(+). The influence of particle size and coating can at least partially be explained by the differences in Ag(+) dissolution. High Cl(-) levels in the exposure medium indeed have a pivotal influence on the resulting toxicity of AgNP, appearing to significantly attenuate toxicity in several studies. This consideration should influence the choice of exposure medium to be used when evaluating and comparing AgNP toxicity.

  15. The Influence of Iron on Ammonium Ion Generation from Nitrate Ion in Liquid Phase

    NASA Astrophysics Data System (ADS)

    Youhei, Kinoshita; Naoki, Okumura; Kazunori, Takashima; Shinji, Katsura; Akira, Mizuno

    2005-02-01

    Flue gas cleaning in discharge plasma process has been studied intensively and we have tried to remove the NOx and SO2 using the wet-type plasma reactor. In this system, NO is oxidized to NO2 and absorbed as NO3-, and SO2 is absorbed as SO32- and oxidized in the liquid to SO42-. But the concentration of NO3- was saturated and the absorption of NOx and SO2 was inhibited. Then, the reduction of NO3- in the liquid is required. We examined the reductive reaction of NO3- to NH4+ using discharge above the liquid surface then the pH value of the liquid was changed to alkaline slightly. When the Fe plate was used as a ground electrode in the liquid, NH4+ was generated. Then, the relation between the generation of NH4+ and Fe ions (Fe2+ and Fe3+) was studied. When Fe2+ was presented in the liquid, NH4+ was generated and Fe2+ was oxidized to Fe3+. Fe2+ is required to generate NH4+ from NO3-. When NH4+ was generated from NO3-, both the calculated pH value from NH4+ concentration and the measured pH value indicated a similar value. From these results, the discharge above the liquid surface was effective to convert NO3- to NH4+ and the reductive reaction leads to more absorption of NO3-. These results showed that the wet-type plasma reactor is effective for NOx and SO2 removal system.

  16. Chemical and thermodynamic influences in ion beam assisted thin film synthesis

    NASA Astrophysics Data System (ADS)

    Ensinger, W.

    1994-02-01

    The main parameter of ion beam assisted deposition of compound films is the ratio γ of impacting ions to condensing atoms. It determines the energy input into the growing film and influences the composition of the film. When highly reactive elements such as transition metals are involved in the process, the elemental composition of the film may also be influenced by the presence of reactive gas molecules, and their partial pressure in the vacuum system. The corresponding process parameter is the ratio δ of impinging gas molecules to condensing atoms. In this case, the final phase and elemental composition of the film is strongly affected by chemical and thermodynamic influences. This is shown by a comparison of ion beam assisted deposition of TiN, VN and CrN. The according metal was evaporated and the growing film irradiated with energetic nitrogen ions. The physical process parameters such as evaporation rate, ion current density and ion energy were the same for all three elements. X-ray phase analysis shows that, whereas it is easily possible to synthesize TiN over a wide range of γ-values, CrN requires a very high irradiation intensity or high γ-value to be deposited as a monophase. VN is intermediate in its behaviour between TiN and CrN. This result is in accordance with the reactivity of the metals towards nitrogen gas and the thermodynamic stability of the resulting nitride. It shows that besides the physical parameters of the process chemical driving forces also play an important role.

  17. Influence of phosvitin and calcium gluconate concentration on permeation and intestinal absorption of calcium ions.

    PubMed

    Dolińska, Barbara; Łopata, Katarzyna; Mikulska, Agnieszka; Leszczyńska, Lucyna; Ryszka, Florian

    2012-06-01

    The effect of egg yolk phosvitin on the permeation and absorption of calcium was investigated in vitro in relation to calcium gluconate concentration. Obtained results indicate that phosvitin significantly reduces the intestinal calcium absorption from 1 and 10 mM of calcium gluconate solution. It is associated with the formation of the complex of Ca (II) ions with phosvitin. The process of calcium permeation increases under phosvitin influence when calcium gluconate concentrations rise up to 10 mM. At a higher concentration of calcium gluconate (20 mM), no effect of phosvitin was seen on permeation of calcium ions.

  18. Influence of Co-Ion Nature on the Gelation Kinetics of Colloidal Silica Suspensions.

    PubMed

    Trompette, Jean-Luc

    2017-06-08

    The influence of the nature of three representative monovalent co-ions on the gelation kinetics of Ludox suspensions has been investigated. At a given Ludox volume fraction and for the same concentration of potassium salt, the gelation time is longer as the studied anion presents a more pronounced kosmotrope character. As the screening of the silica surface charge is similar since the same cationic counterion is taken, these results highlight the unexpected role played by hydration effects imparted by the co-ions when particles are pushed together as gelation proceeds. This reveals that jamming transitions of nanoparticle fluids may be finely tuned by changing the co-ion nature in spite of the fact that the cationic counterion is the same.

  19. ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy

    SciTech Connect

    Valente, Anne-Marie; Eremeev, Grigory V.; Spradlin, Joshua K.; Phillips, H. Lawrence; Reece, Charles E.; Cao, C.; Proslier, Thomas; Tao, T.

    2014-02-01

    In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favourable template for growing the final surface exposed to SRF fields. The influence of the deposition energy on film growth on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.

  20. Influence of bicarbonate ions on the deterioration of mortar bars in sulfate solutions

    SciTech Connect

    Kunther, W.; Lothenbach, B.; Scrivener, K.

    2013-02-15

    This work investigates the influence of bicarbonate ions on the deterioration of cementitious material exposed to sulfate ions. Mortars based on a CEM I and on a CEM III/B cement were investigated. Experimental investigations were compared to thermodynamic modeling and phase characterization to understand the differences in deterioration. The presence of bicarbonate ions significantly reduced the expansion of the CEM I mortars. Thermodynamic modeling showed that at high concentrations of bicarbonate ettringite and gypsum become unstable. Microstructural characterization combined with information from thermodynamic modeling suggests that conditions of high supersaturation with respect to ettringite are unlikely in the samples exposed in solutions containing bicarbonate. Consequently, expansive forces are not generated by the crystallization pressure of ettringite. There was little expansion of the CEM III/B sample even in the sodium sulfate solution. In the bicarbonate solution this mortar showed a highly leached zone at the surface in which calcite was observed.

  1. Influence of ion size asymmetry on the properties of ionic liquid vapour interfaces

    NASA Astrophysics Data System (ADS)

    Bresme, Fernando; González-Melchor, Minerva; Alejandre, José

    2005-11-01

    The influence of ion size asymmetry on the properties of ionic liquid-vapour interfaces is investigated using molecular dynamics simulations of the soft primitive model. Ion size asymmetry results in charge separation at the liquid-vapour interface and therefore in a local violation of the electroneutrality condition. For moderate size asymmetries the electrostatic potential at the interface can reach values of the order of 0.1 V. Size asymmetry plays a very important role in determining ion adsorption at the liquid-vapour interface of ionic mixtures. The interfacial adsorption of the bigger component results in an increase of the electrostatic potential, and a reduction of the interfacial surface tension. Our results show that ionic mixtures provide a very efficient way to tune the electrostatics and surface properties of ionic liquid-vapour interfaces.

  2. The dielectrophoretic disassociation of chloride ions and the influence on diamagnetic anisotropy in cell membranes.

    PubMed

    Purnell, Marcy C; Skrinjar, Terence J

    2016-11-01

    Chloride channels represent ubiquitously expressed proteins that regulate fundamental cellular processes including membrane potential, maintenance of intracellular pH, and regulation of cell volume. However, mechanisms to modulate this large family of ion channels have remained elusive to date. This large chloride channel family does not appear to operate with selectivity similar to the sodium and potassium channels. These unique channels appear to be bi-directional cotransporters of two or more different molecules or ions across a bilayer phospholipid membrane. Here we show how 3 amperes of direct current from a device that generates an electromagnetic field in a 3 mM hypotonic saline solution leads to a dielectrophoretic disassociation of the chloride ion from its chloro-metabolites transforming it into a polymorphic diamagnetically disassociated bio-chloride (bCl-). This field treated aqueous solution appears to continue to induce a magnetic moment change in solution for some hours when no longer under the influence of the direct current; for when this field influenced solution is used to reconstitute growth media of human breast carcinoma (MDA-MB-231) and human breast epithelial (MCF-10A) cells in vitro, significant changes in chloride ion channel expression, membrane potential, cell volume, and a massive transcriptional reprogramming of 2,468 genes expressions by Human Genome U133 Plus 2.0 Gene Chip Array (Affymetrix) analyses occur. We will highlight how the strong changes in chloride ion channel expression and cell physiology could be intricately linked to enhanced diamagnetic anisotropy in cell membranes that occur under the influence of this disassociated polymorphic bCl-.

  3. Influence des melanges complexes organiques sur le sort des dioxines et furanes: Implications dans le developpement de facteurs de caracterisation en analyse du cycle de vie

    NASA Astrophysics Data System (ADS)

    Taing, Eric

    The environmental fate of dioxins and furans, or polychlorodibenzo-p-dioxins and -furans (PCDD/Fs), leaching from wood poles treated with pentachlorophenol (PCP) oil is modified by the presence of oil. Interactions between co-contaminants, which also exist for other pollutants within the mixtures, were shown in the specific context of risk analysis, but have never been taken into account for the generic context of life cycle assessment (LCA). This decision-making tool relies on characterization factors (CF) to estimate the potential impacts of an emitted amount of a pollutant in different impact categories such as aquatic ecotoxicity and human toxicity. For these two impact categories, CFs are calculated from a cause-effect chain that models the environmental fate, exposure and effects of the pollutant (represented by a matrix of fate FF, exposure XF and effect EF, respectively), meaning that a modification of PCDD/Fs fate induces a change in PCDD/Fs CFs. The research question is therefore as follows: In life cycle impact assessment (LCIA), to what extent would the potential impacts of PCDD/Fs on aquatic ecotoxicity and human toxicity change when taking into account the influence of a complex organic mixture on PCDD/Fs fate?. Thus, the main objective is to develop CFs of PCDD/Fs when their fate is influenced by PCP oil and compare them with the CFs of PCDD/Fs without oil for the aquatic ecotoxicity and human toxicity impact categories. A mathematic approach is established to determine the new environmental distribution of PCDD/Fs in the presence of oil and a new FF' matrix is calculated from this new distribution to obtain new CFs' integrating oil influence. FF' and CF' are then compared to FF and CF of PCDD/Fs without the oil. Finally, potential (eco)toxic impacts of the PCDD/F Canadian emissions are calculated with the new CFs' of PCDD/Fs in presence of oil. By only focusing on the results for an emission into air, freshwater and natural soil on a continental

  4. Influence of pressure on ion energy distribution functions in EUV-induced hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    van de Ven, T. H. M.; Reefman, P.; de Meijere, C. A.; Banine, V. Y.; Beckers, J.

    2016-09-01

    Next-generation lithography tools currently use Extreme Ultraviolet (EUV) radiation to create even smaller features on computer chips. The high energy photons (92 eV) induce a plasma in the low pressure background gas by photoionization. Industries have realized that these plasmas are of significant importance with respect to machine lifetime because impacting ions affect exposed surfaces. The mass resolved ion energy distribution function (IEDF) is therefore one of the main plasma parameters of interest. In this research an ion mass spectrometer is used to investigate IEDFs of ions impacting on surfaces in EUV-induced plasmas. EUV radiation is focused into a vessel with a low pressure hydrogen environment. Here, photoionization creates free electrons with energies up to 76 eV, which further ionize the background gas. The influence of the pressure on plasma composition and IEDFs has been investigated in the range 0.1-10 Pa. In general the ion fluxes towards the surface increase with pressure. However, above 5 Pa the flux of H2+ is not affected by the increase in pressure due to the balance between the creation of H2+ and the conversion of H2+ to H3+. These results will be used to benchmark plasma scaling models and verify numerical simulations.

  5. Gas composition influence on ion energy distribution functions in an industrial ICP reactor with biased cathode

    NASA Astrophysics Data System (ADS)

    Peterson, David; Shannon, Steven; Coumou, David; White, Scott

    2016-09-01

    An industrial ICP reactor consisting of a top planar coil and RF biased lower electrode has been characterized using a hairpin resonator probe and gridded ion energy analyzer to measure electron density in the bulk plasma and ion energy distribution function (IEDF) at the surface of the biased cathode. Argon and oxygen were run at constant total flow with 20mTorr downstream pressure control with varying flow ratios between the two gases ranging from 0% to 100% oxygen content. ICP and bias power were adjusted to maintain constant electron density and sheath bias over this mixing matrix at four different setpoints reflecting high density / high bias, high density / low bias, low density / high bias, and low density / low bias. Although the fundamental parameters governing RF sheath behavior were held constant, several trends in ion energy distribution are observed with respect to gas composition (aside from the obvious influence of ion mass) that show considerable variation in measured IEDF particularly that can be attributed to ion collisions in the sheath as well as gas heating variation due to gas composition.

  6. The influence of mineral ions on the microbial production and molecular weight of hyaluronic acid.

    PubMed

    Pires, Aline Mara B; Eguchi, Silvia Y; Santana, Maria Helena Andrade

    2010-12-01

    This study aimed to evaluate the influence of the culture medium supplementation with mineral ions, focusing on the growth of Streptococcus zooepidemicus as well as on the production and average molecular weight (MW) of hyaluronic acid (HA). The ions were investigated in terms of individual absence from the totally supplemented medium (C+) or individual presence in the non-supplemented medium (C-), where C+ and C- were used as controls. Differences between the effects were analyzed using the Tukey's test at p < 0.05. The adopted criteria considered required the ions, whose individual absence attained at 80% or less of the C+ and their individual presence was 20% or more than the C-. The supplementation was either inhibitory or acted in synergy with other ions, when the individual absence or presence was 20% higher than C+ or 20% lower than C-, respectively. Results showed that the effects of C+ or C- were equal for both the production of HA and its yield from glucose. However, C+ showed to be beneficial to cell growth while the individual absence of Na+ was beneficial to the production of HA. The highest MW of HA (7.4 x 10⁷ Da) was observed in the individual presence of Na+ in spite of the lowest HA concentration (0.65 g x L⁻¹). These results suggest that the quality of HA can be modulated through the mineral ion supplementation.

  7. Influence of Oxygen ions irradiation on Polyaniline/Single Walled Carbon Nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Gaikwad, Sumedh D.; Bodkhe, Gajanan A.; Asokan, K.; Yasuzawa, Mikito; Koinkar, Pankaj; Shirsat, Mahendara D.

    2017-01-01

    Influence of Oxygen ions (100 MeV) irradiation on Polyaniline (PANI)/Single Walled Carbon Nanotubes (SWNTs) nanocomposite was studied in the present investigation. PANI/SWNTs nanocomposite was synthesized by electrochemical Cyclic Voltammetry technique. Nanocomposite was exposed under SHI irradiation of Oxygen (100 MeV) ions for three different fluences such as 1×1010 ions/cm2, 5×1010 ions/cm2 and 1×1011 ions/cm2. The SHI irradiated PANI/SWNTs nanocomposite was investigated by using morphological (AFM), structural (XRD) and spectroscopy (FTIR) characterization. AFM study exhibits effects of SHI irradiation on morphology of the nanocomposite and root mean square roughness of the nanocomposite is observed to be decreased as fluence was increased. The FTIR absorption spectrum exhibits formation of new functional sites with the increase in intensity of absorption peaks, due to SHI irradiation. X-Ray Diffraction studies show a gradual decrease in the crystalline nature of the nanocomposite upon irradiation.

  8. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1995-12-31

    Polycrystalline Al2O3, magnesium aluminate spinel (MgAl2O4), MgO, Si3N4, and SiC were irradiated with various ions at 200-450 K, and microstructures were examined following irradiation using cross-section TEM. Amorphization was not observed in any of the irradiated oxide ceramics, despsite damage energy densities up to {similar_to}7 keV/atom (70 displacements per atom). On the other hand, SiC readily amorphized after damage levels of {similar_to}0.4 dpa at room temperature (RT). Si3N4 exhibited intermediate behavior; irradiation with Fe{sup 2+} ions at RT produced amorphization in the implanted ion region after damage levels of {similar_to}1 dpa. However, irradiated regions outside the implanted ion region did not amorphize even after damage levels > 5 dpa. The amorphous layer in the Fe-implanted region of Si3N4 did not appear if the specimen was simultaneoulsy irradiated with 1-MeV He{sup +} ions at RT. By comparison with published results, it is concluded that the implantation of certain chemical species has a pronounced effect on the amorphization threshold dose of all five materials. Intense ionizing radiation inhibits amorphization in Si3N4, but does not appear to significantly influence the amorphization of SiC.

  9. Influence of natural organic matter on the adsorption of metal ion onto clay particles

    USGS Publications Warehouse

    Schmitt, D.; Taylor, H.E.; Aiken, G.R.; Roth, D.A.; Frimmel, F.H.

    2002-01-01

    The influence of natural organic matter (NOM) on the adsorption of Al, Fe, Zn, and Pb onto clay minerals was investigated. Adsorption experiments were carried out at pH = 5 and pH = 7 in the presence and absence of NOM. In general, the presence of NOM decreased the adsorption of metal ions onto the clay particles. Al and Fe were strongly influenced by NOM, whereas Zn and Pb adsorption was only slightly altered. The interaction of the metal ions with the minerals and the influence of NOM on this interaction was investigated by coupling SdFFF with an inductively coupled plasma mass spectrometer (ICPMS) or an inductively coupled plasma atomic emission spectrometer (ICPAES). Quantitative atomization of the clay particles in the ICP was confirmed by comparing elemental content determined by direct injection of the clay into the ICPMS with values from acid digestion. Particle sizes of the clays were found to be between 0.1 and 1 μm by sedimentation field-flow fractionation (SdFFF) with UV detection. Aggregation of particles due to metal adsorption was observed using SdFFF-ICPMS measurements. This aggregation was dependent on the specific metal ion and decreased in the presence of NOM and at higher pH value.

  10. Etude de l'influence de la temperature et de l'humidite sur les proprietes mecaniques en traction des fibres de chanvre et de coco

    NASA Astrophysics Data System (ADS)

    Ho Thi, Thu Nga

    L'objectif de cette etude fut d'etablir l'effet de l'humidite et de la temperature sur la resistance en traction et le module elastique des fibres de chanvre et de coco. Deux etudes ont ete realisees afin d'atteindre cet objectif. La premiere vise l'absorption de l'humidite dans ces fibres en exposition dans l'air (de 0%RH a 80%RH) ainsi que l'absorption de l'eau dans ces fibres immergees dans l'eau aux differentes temperatures. La deuxieme consiste a mesurer la resistance en traction et le module elastique de ces fibres sous differentes conditions d'humidite et de temperature. En basant sur les resultats experimentaux obtenus, les methodes semi empiriques et de reseaux de neurones ont ete utilisees pour but de predire les proprietes en traction (resistance et module d'elasticite) des fibres de chanvre et de coco sous l'influence de l'humidite et de la temperature.

  11. Structural and dynamical properties of ionic liquids: the influence of ion size disparity.

    PubMed

    Spohr, H V; Patey, G N

    2008-08-14

    The influence of ion size disparity on structural and dynamical properties of ionic liquids is systematically investigated employing molecular dynamics simulations. Ion size ratios are varied over a realistic range (from 1:1 to 5:1) while holding other important molecular and system parameters fixed. In this way we isolate and identify effects that stem from size disparity alone. In strongly size disparate systems the larger species (cations in our model) tend to dominate the structure; the anion-anion distribution is largely determined by anion-cation correlations. The diffusion coefficients of both species increase, and the shear viscosity decreases with increasing size disparity. The influence of size disparity is strongest up to a size ratio of 3:1, then decreases, and by 5:1 both the diffusion coefficients and viscosity appear to be approaching limiting values. The conventional Stokes-Einstein expression for diffusion coefficients holds reasonably well for the cations but fails for the smaller anions as size disparity increases likely due to the neglect of strong anion-cation correlations. The electrical conductivity is not a simple monotonic function of size disparity; it first increases up to size ratios of 2:1, remains nearly constant until 3:1, then decreases such that the conductivities of the 1:1 and 5:1 systems are similar. This behavior is traced to the competing influences of ion diffusion (enhancing) and ion densities (reducing) on conductivities at constant packing fraction. The temperature dependence of the transport properties is examined for the 1:1 and 3:1 systems. In accord with experiment, the temperature dependence of all transport properties is well represented by the Vogel-Fulcher-Tammann equation. The dependence of the diffusion coefficients on the temperature/viscosity ratio is well described by the fractional Stokes-Einstein relation D proportional to (T/eta)(beta) with beta approximately = 0.8, consistent with the exponent observed for

  12. Influence of nuclear interactions in polyethylene range compensators for carbon-ion radiotherapy

    SciTech Connect

    Kanematsu, Nobuyuki Koba, Yusuke; Ogata, Risa; Himukai, Takeshi

    2014-07-15

    Purpose: A recent study revealed that polyethylene (PE) would cause extra carbon-ion attenuation per range shift by 0.45%/cm due to compositional differences in nuclear interactions. The present study aims to assess the influence of PE range compensators on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles, for each of which the dose and the relative biological effectiveness (RBE) were estimated at a tumor depth in the middle of spread-out Bragg peak. Assuming exponential behavior for attenuation and yield of these components with depth, the PE effect on dose was calculated for clinical carbon-ion beams and was partly tested by experiment. The two-component model was integrated into a treatment-planning system and the PE effect was estimated in two clinical cases. Results: The attenuation per range shift by PE was 0.1%–0.3%/cm in dose and 0.2%–0.4%/cm in RBE-weighted dose, depending on energy and range-modulation width. This translates into reduction of RBE-weighted dose by up to 3% in extreme cases. In the treatment-planning study, however, the effect on RBE-weighted dose to tumor was typically within 1% reduction. Conclusions: The extra attenuation of primary carbon ions in PE was partly compensated by increased secondary particles for tumor dose. In practical situations, the PE range compensators would normally cause only marginal errors as compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response.

  13. Approaches for Controlled Ag(+) Ion Release: Influence of Surface Topography, Roughness, and Bactericide Content.

    PubMed

    Sukhorukova, I V; Sheveyko, A N; Shvindina, N V; Denisenko, E A; Ignatov, S G; Shtansky, D V

    2017-02-01

    Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag(+) ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag(+) ion release. We considered two types of biocompatible and bioactive TiCaPCON-Ag films with 1 and 2 at. % of Ag and nine types of Ti surfaces with an average roughness varying in the range from 5.4 × 10(-2) to 12.6 μm and different topographic features obtained through polishing, sandblasting, laser treatment, and pulsed electrospark deposition. It is demonstrated that the Ag(+) ion release rates do not depend on the Ag content in the films as the main parameter, and it is other factors, such as the state of Ag agglomeration, surface topography and roughness, as well as kinetics of surface oxidation, that play a critical role. The obtained results clearly show a synergistic effect of the Ag content in the film and surface topography and roughness on Ag(+) ion release. By changing the surface topographical features at a constant content of bactericidal element, we showed that the Ag(+) ion release can be either accelerated by 2.5 times or almost completely suppressed. Despite low Ag(+) ion concentration in physiological solution (<40 ppb), samples with specially fabricated surface reliefs (flakes or holes) showed a pronounced antibacterial effect already after 3 h of immersion in E. coli bacterial culture. Thus, our results open up new possibilities for the production of cost-effective, scalable, and biologically safe implants with pronounced antibacterial characteristics for future applications in the orthopedic field.

  14. Effet de l'énergie du faisceau d'ions servant à l'assistance du dépôt de matériaux organiques utilisés pour réaliser des diodes électroluminescentes

    NASA Astrophysics Data System (ADS)

    Antony, R.; Moliton, A.; Ratier, B.

    1998-06-01

    Light emitting diode based on the structure ITO/Alq3/Ca-Al lead to enhanced quantum efficiency when the Alq3 active layer is obtained by IBAD (Ion Beam Assisted Deposition): with Iodine ions, the optimization (quantum efficiency multiplied by a factor10) is obtained for an ion energy equal to 100eV. La réalisation de diodes électroluminescentes basées sur la structure ITO/Alq3/Ca-Al conduit à des performances améliorées lorsque le dépôt de la couche active Alq3 est effectué avec l'assistance d'un faisceau d'ions; l'optimisation (rendement quantique interne accru d'un ordre de grandeur) correspond à des ions Iode d'énergie 100eV.

  15. The influence of nitrogen ion implantation on microhardness of the Stellite 6 alloy

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pałka, K.; Droździel, A.; Wiertel, M.

    2016-09-01

    Cobalt alloys known as Stellite used to produce or surfacing machine elements subjected to combustion gases and heat. They are used a currently in the manufacture of valves and valve seats in internal combustion engines. Because of the small thermal conductivity, stellite may not be subjected heat treatment. In order to improve the mechanical properties of cobalt alloys, samples were implanted with nitrogen ions with 65 keV energy and ion dose of 1·1016, 5·1016, 1·1017 N+/cm2. The influence of ion implantation on properties of strength was determined by measuring microhardness using a Vickers hardness test. The measurement results allowed to determine the increase in the microhardness of 20% with dose 5·1016 N+/cm2 compared to the sample not implanted. Implantation of nitrogen ions can increase the strength of the valves and the valve seats having Stellite without changing the external dimensions of the final element, and without interfering with its inner structure by low-temperature of modification the surface layer.

  16. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The effects of nine metal cations Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water:TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion Mg(2+), Ca(2+), Y(3+) or the water:TEOS mole ratio had no appreaciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  17. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    The effects of nine metal cations Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water:TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion Mg(2+), Ca(2+), Y(3+) or the water:TEOS mole ratio had no appreaciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  18. Influence of several metal ions on the gelation activation energy of silicon tetraethoxide

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    The effects of nine metal cations (Li(+), Na(+), Mg(2+), Ca(2+), Sr(2+), Cu(2+), Al(3+), La(3+), and Y(3+) on silica gel formation has been investigated by studying the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) in the presence of metal nitrates. The influence of water: TEOS mole ratio, metal ion concentration, and the reaction temperature has been investigated. The overall activation energy for gel formation has been determined from the temperature dependence of the time of gelation for each system. The activation energy for -Si-O-Si- network formation is found to be 54.5 kJ/mol. The gel formation time as well as the activation energy sharply increase in the presence of Cu(2+), Al(3+), La(3+) and Y(3+). In contrast, the presence of Li(+), Na(+), Mg(2+), Ca(2+), or, Sr(2+) lowers the gelation time, but has no appreciable effect on the activation energy. This difference may be attributed to the participation or nonparticipation of the metal ions in the formation of the three-dimensional polymeric network during the polycondensation step. The concentration of metal ion (Mg(2+), Ca(2+), Y(3+) or the water: TEOS mole ratio had no appreciable effect on the gelation activation energy. A simple test has been proposed to determine whether a metal ion would act as a network intermediate or modifier in silica and other glassy networks.

  19. Influence of saliva medium on freeing heavy metal ion from fixed dentures.

    PubMed

    Kalicanin, Biljana; Ajduković, Zorica

    2008-07-01

    In dental-prosthetic practice, various kinds of fixed dentures, crowns and bridges, have very often been used in order to replace natural teeth and to respond to all health and esthetic needs. This study investigated the effect of saliva medium on migration of ions of heavy metals from fixed dentures that were fixed with various cements. Also, the influence of saliva medium on natural human teeth was observed. Potentiometric stripping analysis was used in order to determine the content of toxic heavy metals in the examined samples. The study confirmed that synthetic saliva had no significant influence on heavy metal ion migration from the natural teeth, whereas slight migration of some observed toxic heavy metal ions from the fixed dentures was present. This, however, indicates that these contents, although very low, must be taken seriously, because the above mentioned metals have cumulative effect which after some period of time may lead to functional disorders of some organs, and even to some very serious diseases.

  20. Influence of different ions doping on the antibacterial properties of MgO nanopowders

    NASA Astrophysics Data System (ADS)

    Rao, Yuanyuan; Wang, Wei; Tan, Fatang; Cai, Yuncheng; Lu, Junwen; Qiao, Xueliang

    2013-11-01

    Compared with other inorganic antibacterial agents, magnesium oxide (MgO) nanopowders exhibit a unique antibacterial mechanism and various advantages in applications, having attracted extensive attention. In this study, MgO nanopowders doped with different ions (Li+, Zn2+ and Ti4+) were synthesized by a sol-gel method, respectively. The structures and morphologies of the as-obtained precursors and nanopowders were characterized and confirmed by X-ray diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The influence of three metal ions doping on the antibacterial properties of MgO nanopowders was also investigated by their bactericidal activity against Escherichia coli (E. coli, ATCC 25922) using the broth microdilution method and the agar method. The results show that Li-doped MgO exhibits better antibacterial activity, Zn-doped and Ti-doped MgO display poorer antibacterial activity than pure MgO. It can be concluded that the influence of different ions doping on the antibacterial properties of MgO mainly lies on oxygen vacancies and basicity of nanopowders.

  1. Étude par diffraction des rayons X de la nitruration plasma d'un acier 304L Influence sur l'oxydation à 1000 ^{circ}C

    NASA Astrophysics Data System (ADS)

    Marot, L.; Buscail, H.; Straboni, A.; Riffard, F.; Caudron, E.; Cueff, R.

    2002-07-01

    This work presents the influence of various nitridation parameters on the 304L steel oxidation at 1000 ^{circ}C, in air under atmospheric pressure. Nitridation temperatures were ranging between 300 ^{circ}C and 430 ^{circ}C with exposure times lasting from 2 to 8 hours. At 300 and 430 ^{circ}C, the nitridation treatment leads to the solid solution surface formation γ-N without any nitride formation. After oxidation at 1000 ^{circ}C of blank specimens, X ray diffraction reveals the FeCr2O4 spinel formation. This oxide does not act as a good diffusion barrier. With nitrogen treated specimens, the higher the nitridation temperature is and the longer the exposure time is, better is the oxidation behaviour at 1000 ^{circ}C. We then observe that the Cr{1,3}Fe{0,7}O3 oxide is more present in the oxide sale from the very beginning of the oxidation test which is correlated to a final lower mass gain. Cette étude porte sur l'influence des paramètres de nitruration plasma sur l'oxydation de l'acier 304L à 1000 ^{circ}C, sous air, à la pression atmosphérique. Les températures employées lors de la nitruration ont été de 300 ^{circ}C et 430 ^{circ}C pour des durées de nitruration variant entre 2 et 8 heures. A 300 et 430 ^{circ}C, la nitruration conduit à la formation d'une solution solide γ-N en surface sans provoquer la formation de nitrures. Après oxydation à 1000 ^{circ}C du 304L non nitruré, la diffraction des rayons X révèle la formation d'une couche de type spinelle FeCr2O4 qui ne semble pas jouer le rôle de barrière de diffusion. Pour les échantillons préalablement nitrurés, plus la température de nitruration est élevée et plus la durée du traitement est longue, meilleur est le comportement en oxydation. Nous observons alors l'oxyde Cr{1,3}Fe{0,7}O3 en proportion importante dès le début de l'oxydation et une prise de masse finale plus faible.

  2. Membrane tension influences the spike propagation between voltage-gated ion channel clusters of excitable membranes

    NASA Astrophysics Data System (ADS)

    Assmann, Marcus-Alexander; Lenz, Peter

    2014-08-01

    Ion channels of excitable membranes are known to be sensitive to various kinds of stimuli, but the case of simultaneous occurrence of different stimuli is poorly understood. Here, we theoretically analyze the influence of membrane tension on the dynamics of voltage-gated ion channels of excitable membranes. To do so, we develop a modification of the well-known Hodgkin-Huxley model to study numerically the spike generation and propagation in a single and two coupled excitable cells. We find that these cells can use membrane tension to trigger sub-threshold spike propagation, to suppress spike propagation and to alter the intensity of the signal transmission. These effects indicate that cells could use membrane tension to regulate cell-to-cell communication.

  3. Influence of Nitric Acid on the Helium Ion Radiolysis of Aqueous Butanal Oxime Solutions.

    PubMed

    Costagliola, A; Venault, L; Deroche, A; Vermeulen, J; Duval, F; Blain, G; Vandenborre, J; Fattahi-Vanani, M; Vigier, N

    2017-07-13

    Samples of butanal oxime in aqueous nitric acid solutions have been irradiated with the helium ion ((4)He(2+)) beam of the CEMHTI (Orléans, France) cyclotron. The consumption yield of butanal oxime has been measured by gas chromatography coupled with mass spectrometry. Gaseous products (mainly H2 and N2O) have also been monitored by micro-gas chromatography. Yields of liquid phase products (hydrogen peroxide and nitrous acid) have been determined by colorimetric methods. The influence of nitric acid on the radiation chemical behavior of butanal oxime depends on the nitric acid concentration. For a low concentration (≤0.5 mol L(-1)) butanal oxime is protected by the nitrate ions, which can efficiently scavenge the water radiolysis radicals. For higher concentrations, nitrous acid can accumulate in the medium, therefore leading to a strong increase of the butanal oxime degradation. The associated mechanism is an autocatalytic oxidation of butanal oxime by HNO2.

  4. Study of the Influence Between Barium Ions and Calcium Ions on Morphology and Size of Coprecipitation in Microemulsion

    NASA Astrophysics Data System (ADS)

    Wang, Nong; Meng, Qing Luo

    2015-03-01

    In this paper, we systematically drew a series of inverse-microemulsion quasi-ternary system phase diagrams of OP-10+C8H17OH+C6H12+brine (CaCl2/BaCl2) by adjusting the ratio of CaCl2 and BaCl2. On this basis, microemulsions have been prepared with seven different molar ratios of Ca2+/Ba2+, and calcium carbonate and barium carbonate coprecipitation products were obtained by reaction with an equimolar amount of sodium carbonate. The influence of barium ion to morphology and composition of nanometer calcium carbonate were studied. These samples were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The SEM photographs indicated that when the content of Ca2+ was higher, some incomplete large cube of coprecipitation particles were formed in solution, but with the content of Ba2+ increased gradually, they formed a large number of small spherical particles, with the further increase of Ba2+ concentration, the particles mainly had structures of irregular polyhedron eventually. The measurement results of FTIR and XRD indicated that CaCO3 coprecipitation products gradually changed from calcite to the vaterite, eventually turned into being aragonite with the further increase of Ba2+ concentration.

  5. The influence of fractionation on cell survival and premature differentiation after carbon ion irradiation.

    PubMed

    Wang, Jufang; Li, Renming; Guo, Chuanling; Fournier, Claudia; K-Weyrather, Wilma

    2008-07-01

    To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated with 250 kV X-rays, or 266 MeV/u, 195 MeV/u and 11 MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The RBE(10) values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is 1 for both single and two fractionated irradiation of NHDF cells. Using 11 MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE(10) for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region, RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions.

  6. [The influence of sodium and potassium ions on the photophosphorylation in Ankistrodesmus braunii].

    PubMed

    Ullrich-Eberius, C I; Simonis, W

    1970-12-01

    During short-time experiments (30 sec to 60 min) sodium ions stimulate the phosphate uptake and especially the (32)P-labelling of the organic TCA-soluble phosphate compounds up to 1,500% (K(+)=100%). The labelling is maximally stimulated in the light and in the dark at concentrations of about 5×10(-3) mol/l Na(+) and at pH 8. Lithium ions stimulate (32)P-labelling in a similar but less effective way. In comparison, in the presence of potassium ions the (32)P-label decreases.It was investigated whether sodium ions specifically stimulate the ATP-synthesis or some reaction of the photosynthetic carbon reduction cycle or whether they only enhance the (32)P-labelling of phosphorylated compounds.Separation by thin-layer chromatography of the MCF-soluble phosphate fraction showed that labelling of all compounds investigated was stimulated by Na(+) to a similar extent.Experiments performed in red and far-red light (683 and 712 nm) under nitrogen and in the presence of various DCMU-concentrations, as well as in the presence of antimycin A and CCCP showed that Na(+) exerts no specific influence either on the cyclic or on the non-cyclic photophosphorylation in vivo.ATP-dependent reactions such as (14)CO2-fixation or glucose uptake are not influenced by Na(+).Since Na(+) does not change the size of phosphate pools in a different way from K(+), there is no evidence for the assumption that the Na(+)-dependent increase in the (32)P-labelling is due to its action on the chloroplast membrane in increasing its permeability to orthophosphate ions. This is supported by the lack of any effect of sodium plus phosphate ions on the CO2-fixation.Therefore the results give no evidence that sodium acts directly on phosphorus metabolism inside the cell. It is suggested that its action is localised at the phosphate-transporting site of the plasmalemma.

  7. DNA fragmentation induced by Fe ions in human cell: shielding influence on spatially correlated damage

    NASA Astrophysics Data System (ADS)

    Antonelli, F.; Belli, M.; Chatterjee, A.; Esposito, G.; Rydberg, B.; Simone, G.

    Outside the magnetic field of the Earth, high energy heavy ions (HZE particles) constitute a relevant part of the biologically significant dose to astronauts during the very long travels through the space. For heavy ions the primary ionization sites occur in a correlated manner along the track of the particles and their typical pattern of energy deposition on the microscopic scale is expected to have an important role in their effects on living cells. It has been pointed out that multiple Double Strand Breaks (DSB) can be produced in local proximity by the same particle track, creating a small region of clustered damage. We have investigated the influence of the shielding on the biological effects of heavy ions, studying the initial production of very small DNA fragments in human fibroblasts irradiated with iron ions. Theoretical studies have shown that materials rich in hydrogen, such as polymethylmethacrylate (PMMA), could be more suitable in reducing the radiation risk. This is due mainly to a lower production of secondary neutrons and target fragments in hydrogen-rich materials compared to aluminium, which is the current shield used to protect astronauts. We have measured the size distribution of DNA fragments induced by high-energy Fe ions over a range from 1 kbp to 23 kpb that are produced by DSB occured over distances comparable with the chromatin fiber dimensions. 1 GeV/u Fe ion beams were obtained from the Alternating Gradient Synchrotron at the Brookhaven National Laboratory and irradiations were performed without and with a 190 mm thick PMMA shielding. Plateau phase AG1522 cells were irradiated in agarose plugs with doses up to 600 Gy and DSB induction was determined by DNA fragmentation analysis after Pulsed/Constant Field Gel Electrophoresis. The results until now obtained show that the number of DSB increases linearly either when plotted versus fluence either versus dose. The fragment distribution indicates the occurrence of a spatially correlated

  8. Influence of coupling on thermal forces and dynamic friction in plasmas with multiple ion species

    NASA Astrophysics Data System (ADS)

    Kagan, Grigory; Baalrud, Scott D.; Daligault, Jérôme

    2017-07-01

    The recently proposed effective potential theory [Phys. Rev. Lett. 110, 235001 (2013)] is used to investigate the influence of coupling on inter-ion-species diffusion and momentum exchange in multi-component plasmas. Thermo-diffusion and the thermal force are found to diminish rapidly as strong coupling onsets. For the same coupling parameters, the dynamic friction coefficient is found to tend to unity. These results provide an impetus for addressing the role of coupling on diffusive processes in inertial confinement fusion experiments.

  9. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  10. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  11. Influence of crystal orientation and ion bombardment on the nitrogen diffusivity in single-crystalline austenitic stainless steel

    SciTech Connect

    Martinavicius, A.; Abrasonis, G.; Moeller, W.

    2011-10-01

    The nitrogen diffusivity in single-crystalline AISI 316L austenitic stainless steel (ASS) during ion nitriding has been investigated at different crystal orientations ((001), (110), (111)) under variations of ion flux (0.3-0.7 mA cm{sup -2}), ion energy (0.5-1.2 keV), and temperature (370-430 deg. C). The nitrogen depth profiles obtained from nuclear reaction analysis are in excellent agreement with fits using the model of diffusion under the influence of traps, from which diffusion coefficients were extracted. At fixed ion energy and flux, the diffusivity varies by a factor up to 2.5 at different crystal orientations. At (100) orientation, it increases linearly with increasing ion flux or energy. The findings are discussed on the basis of atomistic mechanisms of interstitial diffusion, potential lattice distortions, local decomposition, and ion-induced lattice vibrational excitations.

  12. Ion-channel entrances influence permeation. Net charge, size, shape, and binding considerations.

    PubMed Central

    Dani, J A

    1986-01-01

    Many ion channels have wide entrances that serve as transition zones to the more selective narrow region of the pore. Here some physical features of these vestibules are explored. They are considered to have a defined size, funnel shape, and net-negative charge. Ion size, ionic screening of the negatively charged residues, cation binding, and blockage of current are analyzed to determine how the vestibules influence transport. These properties are coupled to an Eyring rate theory model for the narrow length of the pore. The results include the following: Wide vestibules allow the pore to have a short narrow region. Therefore, ions encounter a shorter length of restricted diffusion, and the channel conductance can be greater. The potential produced by the net-negative charge in the vestibules attracts cations into the pore. Since this potential varies with electrolyte concentration, the conductance measured at low electrolyte concentrations is larger than expected from measurements at high concentrations. Net charge inside the vestibules creates a local potential that confers some cation vs. anion, and divalent vs. monovalent selectivity. Large cations are less effective at screening (diminishing) the net-charge potential because they cannot enter the pore as well as small cations. Therefore, at an equivalent bulk concentration the attractive negative potential is larger, which causes large cations to saturate sites in the pore at lower concentrations. Small amounts of large or divalent cations can lead to misinterpretation of the permeation properties of a small monovalent cation. PMID:2421791

  13. Influence of exciting frequency on gas and ion rotational temperatures of nitrogen capacitively coupled plasma

    SciTech Connect

    Huang, X. J.; Xin, Y.; Yuan, Q. H.; Ning, Z. Y.

    2008-07-15

    By using optical emission spectroscopy, the nitrogen gas and ion rotational temperatures in capacitively coupled plasma discharges with different exciting frequencies are investigated. The rotational temperatures are acquired by comparing the measured and calculated spectra of selected transitions with a least-square procedure. It is found that N{sub 2} gas rotational temperature minimum around 13 MHz is the combined effect of ion-dominated heating and electron-dominated heating in the plasma. The influence of exciting frequency on N{sub 2}{sup +} rotational temperature is much more than that of the N{sub 2} molecule, the lower frequency, the higher N{sub 2}{sup +} rotational temperature. Also, N{sub 2}{sup +} rotational temperature is much higher than the corresponding N{sub 2} gas rotational temperature in the plasma driven by low frequencies. These experimental phenomena may be attributed to the effective ion heating and/or possible resonant heating in the bulk plasma under the low-frequency field.

  14. Reactive Ar ion beam sputter deposition of TiO2 films: Influence of process parameters on film properties

    NASA Astrophysics Data System (ADS)

    Bundesmann, C.; Lautenschläger, T.; Thelander, E.; Spemann, D.

    2017-03-01

    Several sets of TiO2 films were grown by Ar ion beam sputter deposition under systematic variation of ion energy and geometrical parameters (ion incidence angle and polar emission angle). The films were characterized concerning thickness, growth rate, structural properties, composition, mass density, and optical properties. The film thicknesses show a cosine-like angular distribution, and the growth rates were found to increase with increasing ion incidence angle and ion energy. All films are amorphous and stoichiometric, but can contain a considerable amount of backscattered primary particles. The atomic fraction of Ar particles decreases systematically with increasing scattering angle, independent from ion energy and ion incidence angle. Mass density and index of refraction show similar systematic variations with ion energy and geometrical parameters. The film properties are mainly influenced by the scattering geometry, and only slightly by ion energy and ion incidence angle. The variations in the film properties are tentatively assigned to changes in the angular and energy distribution of the sputtered target particles and back-scattered primary particles.

  15. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.

    PubMed

    Rahmatpour, Samaneh; Shirvani, Mehran; Mosaddeghi, Mohammad R; Bazarganipour, Mehdi

    2017-05-15

    The rapid production and application of silver nanoparticles (AgNPs) have led to significant release of AgNPs into the terrestrial environments. Once released into the soil, AgNPs could enter into different interactions with soil particles which play key roles in controlling the fate and transport of these nanoparticles. In spite of that, experimental studies on the retention of AgNPs in soils are very scarce. Hence, the key objective of this research was to find out the retention behavior of AgNPs and Ag(I) ions in a range of calcareous soils. A second objective was to determine the extent to which the physico-chemical properties of the soils influence the Ag retention parameters. To this end, isothermal batch experiments were used to determine the retention of Poly(vinylpyrrolidinone)-capped AgNPs (PVP-AgNPs) and Ag(I) ions by nine calcareous soils with a diversity of physico-chemical properties. The results revealed that the retention data for both PVP-AgNPs and Ag(I) ions were well described by the classical Freundlich and Langmuir isothermal equations. The retention of PVP-AgNPs and Ag(I) ions was positively correlated to clay and organic carbon (OC) contents as well as electrical conductivity (EC), pH, and cation exchange capacity (CEC) of the soils. Due to multicolinearity among the soil properties, principal component analysis (PCA) was used to group the soil properties which affect the retention of PVP-AgNPs and Ag(I) ions. Accordingly, we identified two groups of soil properties controlling retention of PVP-AgNPs and Ag(I) ions in the calcareous soils. The first group comprised soil solid phase parameters like clay, OC, and CEC, which generally control hetero-aggregation and adsorption reactions and the second group included soil solution variables such as EC and pH as well as Cl(-) and Ca(2+) concentrations, which are supposed to mainly affect homo-aggregation and precipitation reactions. Copyright © 2017. Published by Elsevier Ltd.

  16. Structural influence of mixed transition metal ions on lithium bismuth borate glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Dahiya, Manjeet S.; Hooda, A.; Chand, Prem; Khasa, S.

    2017-08-01

    Lithium bismuth borate glasses containing mixed transition metals having composition 7CoO·23Li2O·20Bi2O3·50B2O3 (CLBB), 7V2O5·23Li2O·20Bi2O3·50B2O3 (VLBB) and x(2CoO·V2O5)·(30 - x)Li2O·20Bi2O3·50B2O3 (x = 0.0 (LBB) and x = 2.0, 5.0, 7.0, 10.0 mol% (CVLBB1-4)) are synthesized via melt quench route. The synthesized compositions are investigated for their physical properties using density (D) and molar volume (Vm), thermal properties by analyzing DSC/TG thermo-graphs, structural properties using IR absorption spectra in the mid-IR range and optical properties using UV-Vis-NIR spectroscopy. The Electron Paramagnetic Resonance (EPR) spectra of vanadyl and cobalt ion have been analyzed to study compositional effects on spin-Hamiltonian parameters. The non linear variations in physical properties depict a strong structural influence of Co/V- oxides on the glassy matrix. The compositional variations in characteristic temperatures (glass transition temperature Tg, glass crystallization temperature Tp and glass melting temperature Tm) reveals that Tg for glass samples CLBB is relatively less than that of pure lithium bismuth borate (LBB) glass sample wherein Tg for sample VLBB is higher than that of LBB. The increase in Tg (as compared with LBB) with an enhanced substitution of mixed transition metal oxides (2CoO·V2O5) shows a progressive structure modification of bismuth borate matrix. These predictions are very well corroborated by corresponding compositional trends of Tp and Tm. FTIR studies reveal that Co2+& VO2+ ions lead to structural rearrangements through the conversion of three-coordinated boron into four coordinated boron and thereby reducing number of non-bridging oxygen atoms. Bismuth is found to exist in [BiO6] octahedral units only, whereas boroxol rings are not present in the glass network. The theoretical values of optical basicity (Λth) and corresponding oxide ion polarizability (αo2-) have also been calculated to investigate oxygen covalency of

  17. Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase

    NASA Astrophysics Data System (ADS)

    Yang, Yingchang; Yang, Xuming; Zhang, Yan; Hou, Hongshuai; Jing, Mingjun; Zhu, Yirong; Fang, Laibing; Chen, Qiyuan; Ji, Xiaobo

    2015-05-01

    Cathodic corrosion, a green electrochemical method, has been employed to obtain Sb nanomaterials utilized as anode material for lithium-ion batteries and sodium-ion batteries. Interestingly, two different corrosion mechanisms are found, coming from the impact of electrolyte, resulting in the formation of hexagonal and amorphous Sb in aqueous and organic solution, respectively. With the help of water-soluble carboxymethyl cellulose binder and the electrolyte additive fluoroethylene carbonate, both hexagonal and amorphous Sb electrodes exhibit good cycling stability when utilized as anode materials for lithium-ion batteries and sodium-ion batteries. Additionally, both the hexagonal and amorphous Sb electrodes show very good rate capability in lithium-ion batteries. Even at high current density (2000 mA g-1), the hexagonal and amorphous Sb give reversible capacities of 422 and 379 mA h g-1, respectively. Surprisingly, when used as anode materials for sodium-ion batteries, the hexagonal Sb electrode exhibits a good rate performance of 632, 625, 569, 515 and 426 mA h g-1 at a current density of 100, 200, 500, 1000, and 2000 mA g-1, respectively. However, limited rate performance is observed from the amorphous Sb electrode in case of sodium-ion battery due to the large impedance.

  18. Soft Landing of Mass-Selected Gold Clusters: Influence of Ion and Ligand on Charge Retention and Reactivity

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2015-02-01

    Herein, we employ a combination of reduction synthesis in solution, soft landing of mass-selected precursor and product ions, and in situ time-of-flight secondary ion mass spectrometry (TOF-SIMS) to examine the influence of ion and the length of diphosphine ligands on the charge retention and reactivity of ligated gold clusters deposited onto self-assembled monolayer surfaces (SAMs). Product ions (Au10L42+, (10,4)2+, L = 1,3-bis(diphenyl-phosphino)propane, DPPP) were prepared through in-source collision induced dissociation (CID) and precursor ions [(8,4)2+, L = 1,6-bis(diphenylphosphino)hexane, DPPH] were synthesized in solution for comparison to (11,5)3+ precursor ions ligated with DPPP investigated previously (ACS Nano 2012, 6, 573 and J. Phys. Chem. C. 2012, 116, 24977). Similar to (11,5)3+ precursor ions, the (10,4)2+ product ions are shown to retain charge on 1H,1H,2H,2H-perfluorodecanethiol monolayers (FSAMs). Additional abundant peaks at higher m/z indicative of reactivity are observed in the TOF-SIMS spectrum of (10,4)2+ product ions that are not seen for (11,5)3+ precursor ions. The abundance of (10,4)2+ on 16-mercaptohexadecanoic acid (COOH-SAMs) is demonstrated to be lower than on FSAMs, consistent with partial reduction of charge. The (10,4)2+ product ion on 1-dodecanethiol (HSAMs) exhibits peaks similar to those seen on the COOH-SAM. On the HSAM, higher m/z peaks indicative of reactivity are observed similar to those on the FSAM. The (8,4)2+ DPPH precursor ions are shown to retain charge on FSAMs similar to (11,5)3+ precursor ions prepared with DPPP. An additional peak corresponding to attachment of one gold atom to (8,4)2+ is observed at higher m/z for DPPH-ligated clusters. On the COOH-SAM, (8,4)2+ is less abundant than on the FSAM consistent with partial neutralization. The results indicate that although retention of charge by product ions generated by CID is similar to precursor ions their reactivity during analysis with SIMS is different

  19. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries.

    PubMed

    Zhang, Yunfeng; Rohan, Rupesh; Cai, Weiwei; Xu, Guodong; Sun, Yubao; Lin, An; Cheng, Hansong

    2014-10-22

    A novel protocol to generate and control porosity in polymeric structures is presented for fabrication of single ion polymer electrolyte (SIPE) membranes for lithium ion batteries. A series of SIPEs with varying ratios of aliphatic and aromatic segments was successfully synthesized and subsequently blended with PVDF-HFP to fabricate membranes of various sizes of pores. The membranes were characterized using techniques including SEM, solvent uptake capacity measurement and ionic conductivity. We demonstrate that appropriate membrane porosity enhances ionic conductivity, reduces interfacial resistance between electrodes and electrolyte and ultimately boosts performance of Li-ion batteries. The implication of the structure-performance relationship for battery design is discussed.

  20. Influence of the cusp field on the plasma parameters of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Mattei, S.; Lettry, J.; Fantz, U.

    2017-08-01

    When the H- ion source of CERN's Linac4 is operated in volume mode, a maximum of the extracted current is obtained at varying RF power. The power required for this maximum and its absolute value is strongly influenced by the cusp magnets installed at the source for electron confinement: without magnets, 15-20 mA are typically obtained at 20 kW whereas with magnets a factor of two more power is needed and 25-30 mA are achieved. In order to access the reasons behind the peaked performance with varying RF power and for determining the influence of the cusp field on the discharge, optical emission spectroscopy (OES) measurements of the atomic Balmer series and of the molecular Fulcher transition have been carried out. In all investigated cases, the gas temperature of the discharge has been virtually equal to the ambient temperature as the short discharge pulse length of 500 µs is not long enough for considerable heavy particle heating. When no cusp magnets are installed, the plasma parameters evaluated with the collisional radiative models Yacora H and Yacora H2 show a minimum in the electron temperature of 3.25 eV and a maximum in the electron density of 4×1019 m-3 and also in the vibrational excitation of the hydrogen molecule at 20 kW. Assessing the relevant production and destruction processes demonstrates that the H- yield is maximal at this point thereby explaining the optimum ion source performance. When the cusp magnets are applied, the same general trends are observed but the required RF power is a factor of two higher. The OES results indicate an optimum performance around 30 kW whereas the highest H- current is actually achieved around 40 kW. Furthermore, a higher H- yield is indicated without cusp magnets but a better ion source performance is observed with magnets. These differences can most likely be attributed to changing gradients in the plasma parameters which are not accessible by OES. Nevertheless, the obtained plasma parameters can be used as

  1. Influence de la dépendance en température des propriétés optiques des matériaux sur la force de Casimir

    NASA Astrophysics Data System (ADS)

    Joulain, K.; Henkel, C.; Greffet, J.-J.

    2006-10-01

    Nous évaluons la force de Casimir entre deux surfaces planes métalliques constituées d'argent. Nous prenons, pour effectuer cette évaluation, des propriétés optiques de l'argent à différentes températures [1]. Nous montrons que cette dépendance en température modifie la force de Casimir (de 0.2%) y compris à des distances inférieures à la longueur d'onde thermique.

  2. The influence of metal artefacts on the range of ion beams

    NASA Astrophysics Data System (ADS)

    Jäkel, Oliver; Reiss, Petra

    2007-02-01

    The influence of artefacts due to metal implants on the range of ion beams is investigated, using a geometrically well-defined head and pelvic phantom together with inserts from steel, titanium and tungsten. The ranges along various beam paths including artefacts were calculated from the TPS and compared to known calculations for phantoms without any insert. In the head phantom, beams intersecting the streak artefacts lead to errors in the range of around or below 1%, which is mainly due to a cancellation of various effects. Beams through the metal or close to it show an underestimation of 3.5% of the range for tungsten. For the pelvic phantom, a large underestimation of the range is observed for a lateral path through the metal insert. In the case of tungsten and steel, range errors of -5% and -18% are observed, respectively. Such beam paths are typically used for pelvic tumours in radiotherapy with ion beams. For beams in the anterior-posterior direction through the inserts, an overestimation of ion ranges of up to 3% for titanium and 8% for steel is expected, respectively. Beam paths outside the metal insert show a large cancellation for the lateral beams (leading to errors of around 1% only) and somewhat higher errors for anterior-posterior beams (around 3% for titanium and 6% for steel). The analysis of CT data of patients with dental implants of gold as compared to patients with healthy teeth also showed a significant effect of the artefacts on the distribution of HU in the data, namely a redistribution of HU to higher and lower values as compared to patients with healthy teeth. The corresponding mean range variation was a 2.5% reduction in the data with artefacts as compared to the data without artefacts. It is concluded that beam paths through metal implants should generally be avoided in proton and ion therapy. In this case, the underestimation of ion range due to artefacts alone may amount to 3% for dental fillings and up to 5% and 18% for hip prosthesis

  3. Heavy-ion inertial fusion: influence of target gain on accelerator parameters for vacuum-propagation regimes in reaction chambers

    SciTech Connect

    Mark, J.W.K.; Bangerter, R.O.; Barletta, W.A.; Fawley, W.M.; Judd, D.L.

    1982-03-04

    Target physics imposes requirements on the design of inertial fusion drivers. The influence of beam propagation in near vacuum fusion reaction chambers is evaluated for the relation between target gain and the phase-space requirements of heavy-ion accelerators. Initial results suggest that neutralization of the ion beam has a much greater positive effect than the deleterious one of beam stripping provided that the fusion chamber pressure is < 10/sup -3/ torr (of Li vapor or equivalent).

  4. Comprendre l'influence des facteurs contextuels sur la participation communautaire à la santé : une étude de cas dans le district sanitaire de Tenkodogo, au Burkina Faso.

    PubMed

    Sombié, Issa; Ilboudo, David O S; Soubeiga, André Kamba; Samuelsen, Helle

    2015-08-07

    Le Burkina Faso met en œuvre depuis plusieurs années la stratégie de la participation communautaire. Des comités de gestion (CoGes) ont été mis en place dans les centres de santé de la première ligne et doivent participer aux prises de décisions. L'objectif principal de cette stratégie est de favoriser l'utilisation des services de santé et une adhésion massive des communautés aux activités de promotion de la santé. Seulement, on constate que les résultats escomptés par les autorités sanitaires tardent à se réaliser. Le présent article convoque les facteurs liés au contexte socioculturel du district sanitaire, pour analyser le phénomène de la participation communautaire.L'étude s'est déroulée dans le district sanitaire de Tenkodogo, situé dans la région administrative du Centre-est, à environ 190 km de la capitale. Cette étude exclusivement qualitative, a utilisé deux méthodes de collecte : les entretiens individuels et les focus groups. Les participants à l'étude sont les chefs de ménage (n = 48), les membres des CoGes (n = 10), les agents de santé (n = 8) et les agents de santé communautaire (n = 24). La méthode de l'analyse de contenu a été utilisée pour l'analyse des données.Les résultats de l'étude montrent que plusieurs facteurs socioculturels influencent la dynamique de la participation communautaire dans le district. Ce sont les conditions économiques, la perception négative des services de santé, les inégalités sociales de sexe et d'âge, le faible ancrage social des organisations communautaires, les rivalités inter-villages et les conflits coutumiers. L'étude relève également que les communautés ne perçoivent pas leur implication dans le processus décisionnel des services de santé comme une priorité. Leurs principales attentes s'orientent vers la disponibilité de soins de qualité et à coût réduit.

  5. Selective influence of host microbiota on cAMP-mediated ion transport in mouse colon.

    PubMed

    Lomasney, K W; Houston, A; Shanahan, F; Dinan, T G; Cryan, J F; Hyland, N P

    2014-06-01

    More microbes are resident in the distal colon than any other part of the body, and this microbiota has the capacity to influence enteric nerve development, excitability, and gastrointestinal function. Germ-free (GF) mice are a valuable tool in interrogating the communication between microbiota and host. Despite the intimate relationship which exists between the microbiota and the colonic mucosa-submucosa, there is a paucity of studies examining the influence of the microbiota on secretogogue-evoked responses. To this end, we investigated both epithelial and neural-evoked ion transport, and the response elicited by two commensal organisms, in colonic mucosa-submucosa preparations from GF mice in Ussing chambers. Baseline electrical parameters, short-circuit current and transepithelial resistance, were comparable between tissues from GF and conventional animals. Noteworthy, however, was a hyper-responsiveness of GF colon to forskolin stimulation. In contrast, the absence of the microbiota did not influence the tissue response to bethanechol. Moreover, responses to the sodium-channel activator, veratridine, and the TRPV1 receptor agonist, capsaicin were preserved in GF mice relative to conventional tissues. Similarly, the short-circuit current response to two well-characterized commensal organisms occurred independent of an interaction with the host microbiota. This is the first comprehensive characterization of secretomotor responses in GF colon. © 2014 John Wiley & Sons Ltd.

  6. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon.

    PubMed

    Dialameh, M; Lupi, F Ferrarese; Imbraguglio, D; Zanenga, F; Lamperti, A; Martella, D; Seguini, G; Perego, M; Rossi, A M; De Leo, N; Boarino, L

    2017-10-06

    A successful realisation of sub-20 nm features on silicon (Si) is becoming the focus of many technological studies, strongly influencing the future performance of modern integrated circuits. Although reactive ion etching (RIE), at both micrometric and nanometric scale has already been the target of many studies, a better understanding of the different mechanisms involved at sub-20 nm size etching is still required. In this work, we investigated the influence of the feature size on the etch rate of Si, performed by a cryogenic RIE process through cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer (DBC) masks with diameter ranging between 19-13 nm. A sensible decrease of the etch depth and etch rate was observed in the mask with the smallest feature size. For all the DBCs under investigation, we determined the process window useful for the correct transfer of the nanometric cylindrical pattern into a Si substrate. A structural and physicochemical investigation of the resulting nanostructured Si is reported in order to delineate the influence of various RIE pattern effects. Feature-size-dependent etch, or RIE-lag, is proved to significantly affect the obtained results.

  7. Influence of block copolymer feature size on reactive ion etching pattern transfer into silicon

    NASA Astrophysics Data System (ADS)

    Dialameh, M.; Ferrarese Lupi, F.; Imbraguglio, D.; Zanenga, F.; Lamperti, A.; Martella, D.; Seguini, G.; Perego, M.; Rossi, A. M.; De Leo, N.; Boarino, L.

    2017-10-01

    A successful realisation of sub-20 nm features on silicon (Si) is becoming the focus of many technological studies, strongly influencing the future performance of modern integrated circuits. Although reactive ion etching (RIE), at both micrometric and nanometric scale has already been the target of many studies, a better understanding of the different mechanisms involved at sub-20 nm size etching is still required. In this work, we investigated the influence of the feature size on the etch rate of Si, performed by a cryogenic RIE process through cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer (DBC) masks with diameter ranging between 19–13 nm. A sensible decrease of the etch depth and etch rate was observed in the mask with the smallest feature size. For all the DBCs under investigation, we determined the process window useful for the correct transfer of the nanometric cylindrical pattern into a Si substrate. A structural and physicochemical investigation of the resulting nanostructured Si is reported in order to delineate the influence of various RIE pattern effects. Feature-size-dependent etch, or RIE-lag, is proved to significantly affect the obtained results.

  8. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patey, G. N.

    2017-02-01

    Molecular dynamics simulations are employed to investigate pressure-driven water and ion transport through a (9,9) carbon nanotube (CNT). We consider NaCl solutions modeled with both the TIP3P and TIP4P/2005 water models. Concentrations range from 0.25 to 2.8 mol l-1 and temperatures from 260 to 320 K are considered. We discuss the influences on flow rates of continuum hydrodynamic considerations and molecular structural effects. We show that the flow rate of water, sodium, and chloride ions through the CNT is strongly model dependent, consistent with earlier simulations of pure water conduction. To remove the effects of different water flow rates, and clearly expose the influence of other factors on ion flow, we calculate ion transport efficiencies. Ion transport efficiencies are much smaller for TIP4P/2005 solutions than for those using the TIP3P model. Particularly at lower temperatures, the ion transport efficiencies for the TIP4P/2005 model are small, despite the fact that the nanotube conducts water at a significant rate. We trace the origin of small ion transport efficiencies to the presence of ring-like water structures within the CNT. Such structures occur commonly for the TIP4P/2005 model, but less frequently for TIP3P. The water structure acts to reduce ion "solvation" within the CNT, posing an additional barrier to ion entry and transport. Our results demonstrate that increasing the water structure within the CNT by decreasing the temperature strongly inhibits ion conduction, while still permitting significant water transport.

  9. A molecular dynamics investigation of the influence of water structure on ion conduction through a carbon nanotube.

    PubMed

    Liu, L; Patey, G N

    2017-02-21

    Molecular dynamics simulations are employed to investigate pressure-driven water and ion transport through a (9,9) carbon nanotube (CNT). We consider NaCl solutions modeled with both the TIP3P and TIP4P/2005 water models. Concentrations range from 0.25 to 2.8 mol l(-1) and temperatures from 260 to 320 K are considered. We discuss the influences on flow rates of continuum hydrodynamic considerations and molecular structural effects. We show that the flow rate of water, sodium, and chloride ions through the CNT is strongly model dependent, consistent with earlier simulations of pure water conduction. To remove the effects of different water flow rates, and clearly expose the influence of other factors on ion flow, we calculate ion transport efficiencies. Ion transport efficiencies are much smaller for TIP4P/2005 solutions than for those using the TIP3P model. Particularly at lower temperatures, the ion transport efficiencies for the TIP4P/2005 model are small, despite the fact that the nanotube conducts water at a significant rate. We trace the origin of small ion transport efficiencies to the presence of ring-like water structures within the CNT. Such structures occur commonly for the TIP4P/2005 model, but less frequently for TIP3P. The water structure acts to reduce ion "solvation" within the CNT, posing an additional barrier to ion entry and transport. Our results demonstrate that increasing the water structure within the CNT by decreasing the temperature strongly inhibits ion conduction, while still permitting significant water transport.

  10. Influences of Mutations on the Electrostatic Binding Free Energies of Chloride Ions in Escherichia Coli ClC

    PubMed Central

    Yu, Tao; Wang, Xiao-Qing; Sang, Jian-Ping; Pan, Chun-Xu; Zou, Xian-Wu; Chen, Tsung-Yu; Zou, Xiaoqin

    2012-01-01

    Mutations in ClC channel proteins may cause serious functional changes and even diseases. The function of ClC proteins mainly manifests as Cl− transport, which is related to the binding free energies of chloride ions. Therefore, the influence of a mutation on ClC function can be studied by investigating the mutational effect on the binding free energies of chloride ions. The present study provides quantitative and systematic investigations on the influences of residue mutations on the electrostatic binding free energies in Escherichia coli ClC (EcClC) proteins, using all-atom molecular dynamics simulations. It was found that the change of the electrostatic binding free energy decreases linearly with the increase of the residue-chloride ion distance for a mutation. This work reveals how changes in the charge of a mutated residue and in the distance between the mutated residue and the binding site govern the variations in the electrostatic binding free energies, and therefore influence the transport of chloride ions and conduction in EcClC. This work would facilitate our understanding of the mutational effects on transport of chloride ions and functions of ClC proteins, and provide a guideline to estimate which residue mutations will have great influences on ClC functions. PMID:22612693

  11. The magnetic and electronic properties of oxyselenides—influence of transition metal ions and lanthanides

    NASA Astrophysics Data System (ADS)

    Stock, C.; McCabe, E. E.

    2016-11-01

    Magnetic oxyselenides have been a topic of research for several decades, firstly in the context of photoconductivity and thermoelectricity owing to their intrinsic semiconducting properties and ability to tune the energy gap through metal ion substitution. More recently, interest in the oxyselenides has experienced a resurgence owing to the possible relation to strongly correlated phenomena given the fact that many oxyselenides share a similar structure to unconventional superconducting pnictides and chalcogenides. The two dimensional nature of many oxyselenide systems also draws an analogy to cuprate physics where a strong interplay between unconventional electronic phases and localised magnetism has been studied for several decades. It is therefore timely to review the physics of the oxyselenides in the context of the broader field of strongly correlated magnetism and electronic phenomena. Here we review the current status and progress in this area of research with the focus on the influence of lanthanides and transition metal ions on the intertwined magnetic and electronic properties of oxyselenides. The emphasis of the review is on the magnetic properties and comparisons are made with iron based pnictide and chalcogenide systems.

  12. Influence of Water and Ion Diffusion on Generation and Progress of Bow-tie Tree

    NASA Astrophysics Data System (ADS)

    Kumazawa, Takao; Nakagawa, Wataru; Tsurumaru, Hidekazu

    Bow-tie tree(BTT) generated from contaminant, e.g., metal, carbon, amber(over cured resin) or void is a deterioration factor of XLPE cable. In particular, BTT in contact with inner or outer semi-conductive shield could significantly lower residual AC breakdown voltage of HV power cable. To evaluate influence of water and ion diffusion on generation and progress of BTT, we investigated relationship between water content of XLPE and the generation of BTT by various accelerated aging. The number of BTT in XLPE samples with accelerated aging under open condition, involving evaporation of water in which samples were immersed, was very large compared with closed condition. Furthermore, when samples were intermittently immersed in water, the number of BTT in samples was large compared with samples immersed continuously. In these experiments the generation of BTT seemed to have nothing to do with changes in water content before and after accelerated aging. Therefore, it was suggested that diffusion of ions rather than water in XLPE played an important role in the generation of BTT.

  13. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys

    NASA Astrophysics Data System (ADS)

    Soria, S. R.; Tolley, A.; Sánchez, E. A.

    2015-12-01

    The influence of microstructure and composition on the effects of ion irradiation in Al alloys was studied combining Atomic Force Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy. For this purpose, irradiation experiments with 20 keV He+ ions at room temperature were carried out in Al, an Al-4Cu (wt%) supersaturated solid solution, and an Al-5.6Cu-0.5Si-0.5Ge (wt.%) alloy with a very high density of precipitates, and the results were compared. In Al and Al-4Cu, He bubbles were found with an average size in between 1 nm and 2 nm that was independent of fluence. The critical fluence for bubble formation was higher in Al-4Cu than in Al. He bubbles were also observed below the critical fluence after post irradiation annealing in Al-4Cu. The incoherent interfaces between the equilibrium θ phase and the Al matrix were found to be favorable sites for the formation of He bubbles. Instead, no bubbles were observed in the precipitate rich Al-5.6Cu-0.5Si-0.5Ge alloy. In all alloys, blistering was observed, leading to surface erosion by exfoliation. The blistering effects were more severe in the Al-5.6Cu-0.5Si-0.5Ge alloy, and they were enhanced by increasing the fluence rate.

  14. Influence irradiation argon ion SnO2 on optical and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Asainov, O.; Umnov, S.; Temenkov, V.

    2017-01-01

    Tin oxide in the form of films has been deposited by reactive magnetron sputtering on glass substrates a room temperature. Process was carried out in such mode when the deposited films were conductive. The deposited films were irradiated with argon ions. Have been studied happening at that the changes optical and electric properties of films. Have been investigated optical properties of films in the range of 300-1100 nanometers by means of photometry. For research structure of films was used the x-ray diffractometry. Diffractometric researches have shown that the films deposited on a substrate have crystal structure from shares of a quasicrystal phase and after influence of argon ions she completely became quasicrystal. It is established that change transmission of a film correlates with change her electric resistance. Average value transmission in the range of 380-1100 nanometers as well as the electric resistance of a film with growth of irradiation time increases to the values exceeding initial. At the same time at irradiation time ∼ 13,2 sec. are observed their slight decrease. To this value of irradiation time there corresponds the minimum value of electric resistance and transmission films. Change of transmission coefficient correlates with change of surface resistance.

  15. Influence of Electrical and Ionic Conductivities of Organic Electronic Ion Pump on Acetylcholine Exchange Performance

    PubMed Central

    Abdullayeva, Nazrin; Sankir, Mehmet

    2017-01-01

    By using an easy and effective method of depositing conjugated polymers (PEDOT:PSS) on flexible substrates, a new design for organic bioelectronic devices has been developed. The purpose was to build up a system that mimics the motion of neurotransmitters in the synaptic cleft by obtaining an electrical to chemical signal transport. Fourier transform infrared (FTIR) spectroscopy and Raman measurements have demonstrated that electrochemical overoxidation region which separates the pristine PEDOT:PSS electrodes and allows ionic conduction has been achieved successfully. The influence of both electrical and ionic conductivities on organic electronic ion pump (OEIP) performances has been studied. The ultimate goal was to achieve the highest equilibrium current density at the lowest applied voltage via enhancing the electrical conductivity of PEDOT:PSS and ionic conductivity of electrochemically overoxidized region. The highest equilibrium current density, which corresponds to 4.81 × 1017 number of ions of acetylcholine was about 41 μA cm−2 observed for the OEIP with the electrical conductivities of 54 S cm−1. This was a threshold electrical conductivity beyond which the OEIP performances were not changed much. Once Nafion™ has been applied for enhancing the ionic conductivity, the equilibrium current density increased about ten times and reached up to 408 μA cm−2. Therefore, it has been demonstrated that the OEIP performance mainly scales with the ionic conductivity. A straightforward method of producing organic bioelectronics is proposed here may provide a clue for their effortless mass production in the near future. PMID:28772946

  16. The magnetic and electronic properties of oxyselenides-influence of transition metal ions and lanthanides.

    PubMed

    Stock, C; McCabe, E E

    2016-11-16

    Magnetic oxyselenides have been a topic of research for several decades, firstly in the context of photoconductivity and thermoelectricity owing to their intrinsic semiconducting properties and ability to tune the energy gap through metal ion substitution. More recently, interest in the oxyselenides has experienced a resurgence owing to the possible relation to strongly correlated phenomena given the fact that many oxyselenides share a similar structure to unconventional superconducting pnictides and chalcogenides. The two dimensional nature of many oxyselenide systems also draws an analogy to cuprate physics where a strong interplay between unconventional electronic phases and localised magnetism has been studied for several decades. It is therefore timely to review the physics of the oxyselenides in the context of the broader field of strongly correlated magnetism and electronic phenomena. Here we review the current status and progress in this area of research with the focus on the influence of lanthanides and transition metal ions on the intertwined magnetic and electronic properties of oxyselenides. The emphasis of the review is on the magnetic properties and comparisons are made with iron based pnictide and chalcogenide systems.

  17. Band gap and polarizability of boro-tellurite glass: Influence of erbium ions

    NASA Astrophysics Data System (ADS)

    Said Mahraz, Zahra Ashur; Sahar, M. R.; Ghoshal, S. K.

    2014-08-01

    Understanding the influence of rare earth ions in improving the structural and optical properties of inorganic glasses are the key issues. Er3+-doped zinc boro-tellurite glasses with composition 30B2O3-10ZnO-(60-x) TeO2-xEr2O3 are prepared (x = 0, 0.5, 1, 1.5 and 2 mol%) using melt quenching technique. The physical and optical characterizations are measured by density and UV-Vis-IR absorption spectroscopy. The color of the glass changed from light yellow to deep pink due to the introduction of Er3+ ions. The maximum density is found to be ∼4.73 g cm-3 for 1 mol% of Er3+ doping. The variations in the polarizability (6.7-6.8 cm3) and the molar volume (27.987-28.827 cm3 mol-1) with dopant concentration are ascribed to the formation of non-bridging oxygen. This observation is consistent with the alteration of number of bonds per unit volume. The direct and indirect optical band gaps are increased while the phonon cut-off wavelength and Urbach energy decreased with the increase of erbium content. A high density and wide transparency range in VIS-IR area are achieved. Our results on high refractive index (∼2.416) and polarizability suggest that these glasses are potential for photonics, solid state lasers and communications devices.

  18. Influence of multi-element ion beam bombardment on the corrosion behavior of iron and steel

    SciTech Connect

    Wei, Tian; Run, Wu; Weiping, Cai; Rutao, Wang ); Godechot, X.; Brown, I. )

    1991-06-01

    The effect of multi-element ion implantation on the corrosion resistance to acid solution has been studied for stainless steel, medium carbon steel, pure iron, and chromium-deposited iron. The implanted elements were Cu, Mo, Cr, Ni, Yb and Ti at doses of each species of from 5 {times} 10{sup 15} to 1 {times} 10{sup 17} cm{sup {minus}2} and at ion energies of up to 100 keV. The stainless steel used was 18-8 Cr-Ni, and the medium carbon steel was 0.45% C. The implanted samples were soaked in dilute sulfuric acid solution for periods up to 48 hours and the weight loss measured by atomic absorption spectroscopy. The kinetic parameter values describing the weight loss as a function of time were determined for all samples. In this paper we summarize the corrosion resistance behavior for the various different combinations of implanted species, doses, and substrates. The influence of the composition and structure of the modified surface layer is discussed.8 refs., 5 figs., 2 tabs.

  19. Influence of ion chamber response on in-air profile measurements in megavoltage photon beams.

    PubMed

    Tonkopi, E; McEwen, M R; Walters, B R B; Kawrakow, I

    2005-09-01

    This article presents an investigation of the influence of the ion chamber response, including buildup caps, on the measurement of in-air off-axis ratio (OAR) profiles in megavoltage photon beams using Monte Carlo simulations with the EGSnrc system. Two new techniques for the calculation of OAR profiles are presented. Results of the Monte Carlo simulations are compared to measurements performed in 6, 10 and 25 MV photon beams produced by an Elekta Precise linac and shown to agree within the experimental and simulation uncertainties. Comparisons with calculated in-air kerma profiles demonstrate that using a plastic mini phantom gives more accurate air-kerma measurements than using high-Z material buildup caps and that the variation of chamber response with distance from the central axis must be taken into account.

  20. Magnetic field influence on the early-time dynamics of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Greiner, Carsten; Xu, Zhe

    2017-07-01

    In high-energy heavy-ion collisions, the magnetic field is very strong right after the nuclei penetrate each other and a nonequilibrium system of quarks and gluons builds up. Even though quarks might not be very abundant initially, their dynamics must necessarily be influenced by the Lorentz force. Employing the (3+1)-d partonic cascade Boltzmann approach to multiparton scatterings (BAMPS), we show that the circular Larmor movement of the quarks leads to a strong positive anisotropic flow of quarks at very soft transverse momenta. We explore the regions where the effect is visible and explicitly show how collisions damp the effect. As a possible application, we look at photon production from the flowing nonequilibrium medium.

  1. On the influence of the shape of kappa distributions of ions and electrons on the ion-cyclotron instability

    NASA Astrophysics Data System (ADS)

    Ziebell, L. F.; Gaelzer, R.

    2017-10-01

    The dispersion relation for ion-cyclotron waves propagating along the direction of the ambient magnetic field is investigated numerically by considering different forms of kappa functions as velocity distributions of ions and electrons. General forms of kappa distributions, isotropic and anisotropic, are defined and used to obtain the dispersion relations for ion-cyclotron waves. With suitable choice of parameters, the general forms reduce to anisotropic versions of the kappa distributions most frequently employed in the literature. The analysis is focused in cases with a small value of the kappa index, for which the non thermal character of the kappa distributions is enhanced. The results show the effects of the superthermal tails of the velocity distributions of both particle species (ions and electrons) on the growth rate of the ion-cyclotron instability. It is seen that different forms of anisotropic kappa distributions, which are used in the current literature, can have a significantly different effect on the growth rates of the instability.

  2. Influence of N-terminal residue composition on the structure of proline-containing b2+ ions.

    PubMed

    Gucinski, Ashley C; Chamot-Rooke, Julia; Steinmetz, Vincent; Somogyi, Árpád; Wysocki, Vicki H

    2013-02-14

    To probe the structural implications of the proline residue on its characteristic peptide fragmentation patterns, in particular its unusual cleavage at its C-terminus in formation of a b(2) ion in XxxProZzz sequences, the structures of a series of proline-containing b(2)(+) ions were studied by using action infrared multiphoton dissociation (IRMPD) spectroscopy and fragment ion hydrogen-deuterium exchange (HDX). Five different Xxx-Pro b(2)(+) ions were studied, with glycine, alanine, isoleucine, valine, or histidine in the N-terminal position. The residues selected feature different sizes, chain lengths, and gas phase basicities to explore whether the structure of the N-terminal residue influences the Xxx-Pro b(2)(+) ion structure. In proteins, the proline side chain-to-backbone attachment causes its peptide bonds to be in the cis conformation more than any other amino acid, although trans is still favored over cis. However, HP is the only b(2)(+) ion studied here that forms the diketopiperazine exclusively. The GP, AP, IP, and VP b(2)(+) ions formed from protonated tripeptide precursors predominantly featured oxazolone structures with small diketopiperazine contributions. In contrast to the b(2)(+) ions generated from tripeptides, synthetic cyclic dipeptides VP and HP were confirmed to have exclusive diketopiperazine structures.

  3. Influence of the interplanetary magnetic field orientation on polar cap ion trajectories - Energy gain and drift effects

    NASA Technical Reports Server (NTRS)

    Delcourt, D. C.; Horwitz, J. L.; Swinney, K. R.

    1988-01-01

    The influence of the interplanetary magnetic field (IMF) orientation on the transport of low-energy ions injected from the ionosphere is investigated using three-dimensional particle codes. It is shown that, unlike the auroral zone outflow, the ions originating from the polar cap region exhibit drastically different drift paths during southward and northward IMF. During southward IMF orientation, a 'two-cell' convection pattern prevails in the ionosphere, and three-dimensional simulations of ion trajectories indicate a preferential trapping of the light ions H(+) in the central plasma sheet, due to the wide azimuthal dispersion of the heavy ions, O(+). In contrast, for northward IMF orientation, the 'four-cell' potential distribution predicted in the ionosphere imposes a temporary ion drift toward higher L shells in the central polar cap. In this case, while the light ions can escape into the magnetotail, the heavy ions can remain trapped, featuring more intense acceleration (from a few electron volts up to the keV range) followed by precipitation at high invariant latitudes, as a consequence of their further travel into the tail.

  4. Influence des macles sur le courant critique de transport selon c et sur la ligne d'irréversibilité dans les plans ab étudiée dans des échantillons monodomaines texturés d'YBaCuO

    NASA Astrophysics Data System (ADS)

    Sanfilippo, S.; Sulpice, A.; Bourgault, D.; Villard, C.; Gautier-Picard, P.; Chaud, X.; Beaugnon, E.; Tournier, R.

    1998-02-01

    Direct transport measurements at 77 K of the critical current density along the c-axis (J_c) and magnetic measurements are performed on the same bulk textured single domain YBaCuO samples with the longest dimension along the c-axis. A strong influence of the Twin Planes (TP) on J_c and on the ab-plane irreversibility line B(T^*) is reported when the field is rotated in the ab-planes perpendicularly to the c-axis. The different unusual behaviors observed for J_c and the B(T^*), depending on the range of temperature and field are explained by the strong influence of these extended correlated defects on the pinning of the flux lines. La densité de courant critique selon l'axe c (J_c) est mesurée à 77 K en transport et par des mesures magnétiques sur les mêmes échantillons texturés monodomaines d'YBaCuO. L'influence des plans de macles (TP) sur J_c et sur la ligne d'irréversibilité B(T^*) est étudiée en faisant tourner le champ dans les plans ab, perpendiculairement à l'axe c. Les résultats montrent que dans ces composés, J_c et B(T^*) sont fortement influencés par le piégeage par les TP. Divers comportements des lignes de flux résultant de l'influence de ces défauts corrélés sont proposés selon les gammes de température et de champ étudiées.

  5. Influence of ion outflow in coupled geospace simulations: 1. Physics-based ion outflow model development and sensitivity study

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Wiltberger, M.; Zhang, B.; Lotko, W.; Lyon, J.

    2016-10-01

    We describe a coupled geospace model that includes causally regulated ion outflow from a physics-based ionosphere/polar wind model. The model two-way couples the multifluid Lyon-Fedder-Mobarry magnetohydrodynamics (MHD) model to the ionosphere/polar wind model (IPWM). IPWM includes the H+ and O+ polar wind as well as a phenomenological treatment of energetic O+ accelerated by wave-particle interactions (WPI). Alfvénic Poynting flux from the MHD simulation causally regulates the ion acceleration. The wave-particle interactions (WPI) model has been tuned and validated with comparisons to particle-in-cell simulations and empirical relationships derived from Fast Auroral Snapshot satellite data. IPWM captures many aspects of the ion outflow that empirical relationships miss. First, the entire coupled model conserves mass between the ionospheric and magnetospheric portions, meaning the amount of outflow produced is limited by realistic photochemistry in the ionosphere. Second, under intense driving conditions, the outflow becomes flux limited by what the ionosphere is capable of providing. Furthermore, the outflows produced exhibit realistic temporal and spatial delays relative to the magnetospheric energy inputs. The coupled model provides a flexible way to explore the impacts of dynamic heavy ion outflow on the coupled geospace system. Some of the example simulations presented exhibit internally driven sawtooth oscillations associated with the outflow, and the properties of these oscillations are analyzed further in a companion paper.

  6. Mucoadhesion on urinary bladder mucosa: the influence of sodium, calcium, and magnesium ions.

    PubMed

    Kos, M Kerec; Bogataj, M; Mrhar, A

    2010-07-01

    The aim of the present work was to establish if different cations present in the lumen of the urinary bladder at the time of application affect the mucoadhesion strength of cationic chitosan, anionic sodium carboxymethyl cellulose (NaCMC), and nonionic hydroxypropyl cellulose (HPC). The mucoadhesion strength of polymeric films was determined on pig urinary bladder mucosa. Sodium, calcium, and magnesium ions decreased the mucoadhesion strength of all three polymers except NaCMC, whose detachment forces were not influenced by the presence of sodium. Lower mucoadhesion strength in the presence of cations should be considered when drug delivery systems, for example microspheres, containing the tested mucoadhesive polymers are applied intravesically. In the majority of the experiments, cations decreased the mucoadhesion strength of the polymers already in concentrations normally present in urine. For stronger mucoadhesion, application of microspheres into the empty urinary bladder would be recommended. Additionally, the mucoadhesion properties of the tested polymers could be controlled by the selection of a proper medium for the suspension of microspheres. Namely, for all three polymers bivalent calcium and magnesium had stronger influence on mucoadhesion compared to univalent sodium, and with increasing concentrations of cations mucoadhesion strength of the polymers decreased.

  7. Influence of material removal programming on ion beam figuring of high-precision optical surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui

    2014-09-01

    Ion beam figuring (IBF) provides a nanometer/subnanometer precision fabrication technology for optical components, where the surface materials on highlands are gradually removed by the physical sputtering effect. In this deterministic method, the figuring process is usually divided into several iterations and the sum of the removed material in each iteration is expected to approach the ideally removed material as nearly as possible. However, we find that the material removal programming in each iteration would influence the surface error convergence of the figuring process. The influence of material removal programming on the surface error evolution is investigated through the comparative study of the contour removal method (CRM) and the geometric proportion removal method (PRM). The research results indicate that the PRM can maintenance the smoothness of the surface topography during the whole figuring process, which would benefit the stable operation of the machine tool and avoid the production of mid-to-high spatial frequency surface errors. Additionally, the CRM only has the corrective effect on the area above the contour line in each iteration, which would result in the nonuniform convergence of the surface errors in various areas. All these advantages distinguish PRM as an appropriate material removal method for ultraprecision optical surfaces.

  8. A perfluorocyclopentene based diarylethene bearing two terpyridine moieties – synthesis, photochemical properties and influence of transition metal ions

    PubMed Central

    Wehmeier, Falk

    2010-01-01

    Summary The synthesis of a perfluorocyclopentene based diarylethene bearing two terpyridine units is reported. Furthermore studies of the free ligand’s photochromism and investigations regarding the influence of various transition metal ions on the photochromic reaction are presented. The photochromism of the central diarylethene unit is strongly dependent on the transition metal present, vice versa the photochromic reaction seems to influence the MLCT transition of a binuclear Ru(II) complex. PMID:20625529

  9. The influence of CO(2) on ISFETs with polymer membranes and characterization of a carbonate ion sensor.

    PubMed

    Abramova, Natalia; Levichev, Sergey; Bratov, Andrey

    2010-06-15

    The influence of CO(2) and acetic acid on the response of ISFET sensors with PVC and photocured polyurethane polymer membranes with valinomycin as an ionophore was assessed. Experimental results show that the presence of these compounds has no effect on sensors parameters even after prolonged soaking in a water solution. Using a photocured polyurethane polymer as an ion-selective membrane matrix for an ISFET, a carbonate ion sensor was developed with hexyl-p-trifluoroacetylbenzoate (HE) as an ionophore. Effect of cationic and anionic lipophilic additives on the sensors response was studied. Sensors with the optimized membrane composition based on HE (7.9%, w/w) and tridodecylmethylammonium chloride (5.7%, w/w) show sensitivity of 27-30mV per decade of carbonate ion concentration, sufficient selectivity in front of chloride ions, and a lifetime of 3-5 months.

  10. Stress influenced trapping processes in Si based multi-quantum well structures and heavy ions implanted Si

    SciTech Connect

    Ciurea, Magdalena Lidia Lazanu, Sorina

    2014-10-06

    Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.

  11. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells.

    PubMed

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E S; Zhou, Jing; Hu, Lang; Burns, Peter C; Liu, Tianbo

    2015-12-14

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+m K12(OH)m [UO2(O2)(OH)]60-(H2O)n (m ≈ 20 and n ≈ 310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water-ligand-rich surface of U60 are able to block Rb(+) and Cs(+) ions from passing through, while allowing Na(+) and K(+) ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na(+)/K(+) and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    SciTech Connect

    Gao, Yunyi; Haso, Fadi; Szymanowski, Jennifer E. S.; Zhou, Jing; Hu, Lang; Burns, Peter C.; Liu, Tianbo

    2015-11-16

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion-transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm-sized, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60-(H2O)n (m≈20 and n≈310) (U60) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.

  13. Selective Permeability of Uranyl Peroxide Nanocages to Different Alkali Ions: Influences from Surface Pores and Hydration Shells

    NASA Astrophysics Data System (ADS)

    Gao, Yunyi; Szymanowski, Jennifer; Burns, Peter; Liu, Tianbo

    The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of ion transport mechanism through nanosized channels and offer new views for designing nanodevices. Here we reveal that a 2.5-nm-size, fullerene-shaped molecular cluster Li48+mK12(OH)m[UO2(O2) (OH)]60-(H2O)n (m ~20 and n ~310) (U60) shows selective permeability to different alkali ions. The sub-nanometer pores on the water-ligand-rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allow Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60. An interestingly high entropy gain during the binding process between U60 and alkali ions suggest that the hydration shells of Na+i/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of surface nanopores and the dynamics of the hydration shells. This material is based upon work supported as part of the Materials Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001089.

  14. Influence of Atmospheric Solar Radiation Absorption on Photodestruction of Ions at D-Region Altitudes of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Pavlov, A. V.

    2016-07-01

    The influence of atmospheric solar radiation absorption on the photodetachment, dissociative photodetachment, and photodissociation rate coefficients (photodestruction rate coefficients) of O-, Cl-, O2 -, O3 -, OH-, NO2 -, NO3 -, O4 -, OH-(H2O), CO3 -, CO4 -, ONOO-, HCO3 -, CO3 -(H2O), NO3 -(H2O), O2 +(H2O), O4 +, N4 +, NO+(H2O), NO+(H2O)2, H+(H2O) n for n = 2-4, NO+(N2), and NO+(CO2) at D-region altitudes of the ionosphere is studied. A numerical one-dimensional time-dependent neutral atmospheric composition model has been developed to estimate this influence. The model simulations are carried out for the geomagnetically quiet time period of 15 October 1998 at moderate solar activity over the Boulder ozonesonde. If the solar zenith angle is not more than 90° then the strongest influence of atmospheric solar radiation absorption on photodestruction of ions is found for photodissociation of CO4 - ions when CO3 - ions are formed. It follows from the calculations that decreases in the photodestruction rate coefficients of ions under consideration caused by this influence are less than 2 % at 70 km altitude and above this altitude if the solar zenith angle does not exceed 90°.

  15. Multiphoton ionization of acetone clusters: Metastable unimolecular decomposition of acetone cluster ions and the influence of solvation on intracluster ion-molecule reactions

    SciTech Connect

    Tzeng, W.B.; Wei, S.; Castleman, A.W. Jr. )

    1989-08-02

    A comprehensive investigation of the reactions of acetone ions in clusters was made to investigate and compare the similarities and differences in the ion reactions due to solvation effects. Neutral acetone clusters, prepared in a pulsed nozzle supersonic expansion, are ionized using multiphoton ionization and investigated using a time-of-flight reflectron technique. The observed major cluster ions resulting from prompt fragmentation following ionization are ((CH{sub 3}){sub 2}CO){sub m} {times} H{sup +} (m = 1-15), ((CH{sub 3}){sub 2}CO){sub m} {times} C{sub 2}H{sub 3}O{sup +} (m = 1-17), and ((CH{sub 3}){sub 2}CO){sub m} {times} CH{sub 3}{sup +} (m = 1-10). In a time window of a few tens of microseconds, all three classes of cluster ions unimolecularly decompose, losing only one acetone monomer. Interestingly, a reaction corresponding to the dehydration of ((CH{sub 3}){sub 2}CO){sub m} {times} H{sup +} and leading to the production of ((CH{sub 3}){sub 2}CO){sub m-2} {times} C{sub 6}H{sub 11}O{sup +} is observed for m = 2-6. The most striking finding of the present study is that the presence of water molecules in a cluster suppresses the dehydration reaction. This finding clarifies the discrepancy between earlier studies reported in the literature and, most importantly, provides further evidence for the influence of a solvent on ion reactions in clusters, and ion-molecule reactions in general.

  16. Influence of grid control on beam quality in laser ion source generating high-current low-charged copper ions

    SciTech Connect

    Hasegawa, J.; Yoshida, M.; Ogawa, M.; Oguri, Y.; Nakajima, M.; Horioka, K.; Kwan, J.

    2003-08-01

    We examined grid-controlled extraction for a laser ion source using a KrF laser. By using grid-controlled extraction in the over-dense regime, we found that the ion beam current waveforms were stabilized more significantly as the grid bias raised from -90 V to -280 V. The normalized emittance of 0.08 {pi}mm-mrad measured without the grid control was improved to 0.06 {pi}mm-mrad with the grid control. In contrast to this observation, the grid bias disturbed the pattern of the beam extracted in the source-limited regime. Fast extraction was carried out using a high-voltage pulse with a rise time of {approx} 100 ns. The grid control suppressed successfully the beam pedestal originating from the plasma pre-filled in the extraction gap.

  17. Contribution a la comprehension de la durabilite a l'ecaillage des betons contenant de la cendre volante et du laitier

    NASA Astrophysics Data System (ADS)

    Houehanou, Ernesto C.

    similaires apres 4 et 6 annees de service. La microstructure des betons en service a ete analysee au moyen du microscope a balayage electronique (MEB). Les resultats montrent que la qualite du murissement influence grandement la durabilite a l'ecaillage des betons contenant de la cendre volante et de laitier surtout lorsqu'ils sont soumis ' aux essais acceleres en laboratoire. La duree du pretraitement humide est un parametre cle de la durabilite a l'ecaillage des betons testes en laboratoire. Le pretraitement humide correspond a la duree totale du murissement humide (100% HR) et de la periode de presaturation. Pour les deux methodes d'essai, l'allongement du pretraitement humide a 28 jours ameliore la resistance a l'ecaillage de tous les types de betons et en particulier celle des betons avec cendres volantes. Pour les deux methodes d'essai, l'allongement du pretraitement humide a 28 jours ameliore la resistance a l'ecaillage de tous les types de betons et en particulier celle des betons avec cendres volantes. La periode de presaturation de 7 jours de la procedure NQ 2621-900 a un effet similaire a celui d'un murissement humide de meme longueur. Un murissement humide de 28 jours apparait optimal et conduit a une estimation plus realiste de la resistance a l'ecaillage reelle des betons. Pour une meme duree de pretraitement humide, les procedures NQ 2621-900 et ASTM C672 donnent des resultats equivalents. L'utilisation d'un moule a fond drainant n'a pas d'effet sur la resistance a l'ecaillage des betons de cette etude. Bien que le murissement dans l'eau saturee de chaux offre toute l'eau requise pour favoriser le developpement des proprietes du beton et l'amelioration de sa durabilite a l'ecaillage, elle lessive cependant les ions alcalins ce qui diminue defavorablement l'alcalinite et le pH de la solution interstitielle de la pate de ciment pres de la surface exposee. L'utilisation d'un agent de murissement protege mieux les betons contenant de la cendre volante et ameliore

  18. The influence of multi-ion streaming on the variation of dust particle surface potential with Maxwellian/non-Maxwellian dusty plasmas

    NASA Astrophysics Data System (ADS)

    Abid, A. A.; Rehman, M.; Khan, M. Z.; Sarfraz, Z.; Lu, Quanming

    2017-08-01

    Dust grain potential variation influence by positive ion streaming as well as negative ion streaming is presented in a complex (dusty) plasma following the Maxwellian/non-Maxwellian (kappa distribution and Cairns distribution) function. The components of complex plasma are the electrons, ions [positive and negative], and dust grains having negative charge. For this purpose, the mathematical statement (equation) of currents is derived for dust grains having negative charge to fulfill the equilibrium state (viz., qD = constant). It is observed numerically that positive ion streaming speed as well as negative ion streaming speed has a significant influence on the surface potential of dust particles, e.g., by increasing the positive ion and negative ion streaming speed, the magnitude of dust particle surface potential increases. The relevance to low-temperature research center in a non-equilibrium complex (dusty) plasma is precisely discussed by associating oxygen ion (negative and positive) species.

  19. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    SciTech Connect

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-03-15

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model.

  20. Modelisation de la chimie d'une couche limite atmospherique non polluee. influence des hydrocarbures naturels emis par la vegetation

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Prieur, S.; Fontan, J.; Barthomeuf, M. O.

    We present here the development of a physicochemical model of the unpolluted planetary boundary layer in which reactive mechanisms and intensity of vertical exchange of matter are taken into account. This is a box model which allows the study of evolution of concentration of trace constituents in an air mass over a large homogeneous source. Cycles of ozone, nitrogen oxides, methane, carbon monoxide and isoprene, a biogenic hydrocarbon, are considered in the chemical part. The dynamic aspect is constituted by a time variable equivalent mixing height. Experiments on photochemical formation of ozone in the lower layer of the atmosphere are conducted with this model with various initial and boundary conditions. These experiments show the influence of a ground removal and of vertical exchanges on the variations of ozone concentrations at ground level. They put forward a photochemical formation in which intensity varies with the intensity of NO x and isoprene source according to a nonlinear law.

  1. Effets des electrons secondaires sur l'ADN

    NASA Astrophysics Data System (ADS)

    Boudaiffa, Badia

    Les interactions des electrons de basse energie (EBE) representent un element important en sciences des radiations, particulierement, les sequences se produisant immediatement apres l'interaction de la radiation ionisante avec le milieu biologique. Il est bien connu que lorsque ces radiations deposent leur energie dans la cellule, elles produisent un grand nombre d'electrons secondaires (4 x 104/MeV), qui sont crees le long de la trace avec des energies cinetiques initiales bien inferieures a 20 eV. Cependant, il n'y a jamais eu de mesures directes demontrant l'interaction de ces electrons de tres basse energie avec l'ADN, du principalement aux difficultes experimentales imposees par la complexite du milieu biologique. Dans notre laboratoire, les dernieres annees ont ete consacrees a l'etude des phenomenes fondamentaux induits par impact des EBE sur differentes molecules simples (e.g., N2, CO, O2, H2O, NO, C2H 4, C6H6, C2H12) et quelques molecules complexes dans leur phase solide. D'autres travaux effectues recemment sur des bases de l'ADN et des oligonucleotides ont montre que les EBE produisent des bris moleculaires sur les biomolecules. Ces travaux nous ont permis d'elaborer des techniques pour mettre en evidence et comprendre les interactions fondamentales des EBE avec des molecules d'interet biologique, afin d'atteindre notre objectif majeur d'etudier l'effet direct de ces particules sur la molecule d'ADN. Les techniques de sciences des surfaces developpees et utilisees dans les etudes precitees peuvent etre etendues et combinees avec des methodes classiques de biologie pour etudier les dommages de l'ADN induits par l'impact des EBE. Nos experiences ont montre l'efficacite des electrons de 3--20 eV a induire des coupures simple et double brins dans l'ADN. Pour des energies inferieures a 15 eV, ces coupures sont induites par la localisation temporaire d'un electron sur une unite moleculaire de l'ADN, ce qui engendre la formation d'un ion negatif transitoire

  2. Influence of ion energies on the structure, composition, and properties of multilayer Ti-Al-Si-N ion-plasma-deposited coatings

    NASA Astrophysics Data System (ADS)

    Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Sergevnin, V. S.; Chernogor, A. V.

    2016-05-01

    It is established that the energy of deposited particles influences the structure, composition, and properties of multilayer nitride coatings consisting of alternating layers of nanocrystalline TiN and amorphous Si3N4 phases with inclusions of nanocrystalline hexagonal AlN formed at energies of titanium, aluminum, and silicon ions exceeding ~317 × 10-19, 267 × 10-19, and 230 × 10-19 J, respectively. As the energy of titanium ions bombarding the substrate increases above ~512 × 10-19 J, the phase transition from disordered TiN x to Ti3N2 and the appearance of 2- to 3-nm-thick sublayers in 15-nm-thick nanocrystalline TiN x layers take place in the coating. The maximum hardness of such coatings reaches a level of ~54 GPa.

  3. Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar.

    PubMed

    Zhao, Ling; Cao, Xinde; Zheng, Wei; Wang, Qun; Yang, Fan

    2015-10-01

    The feedstocks for biochar production are diverse and many of them contain various minerals in addition to being rich in carbon. Twelve types of biomass classified into 2 categories: plant-based and municipal waste, were employed to produce biochars under 350 °C and 500 °C. Their pH, point of zero net charge (PZNC), zeta potential, cation and anion exchange capacity (CEC and AEC) were analyzed. The municipal waste-based biochars (MW-BC) had higher mineral levels than the plant-based biochars (PB-BC). However, the water soluble mineral levels were lower in the MW-BCs due to the dominant presence of less soluble minerals, such as CaCO3 and (Ca,Mg)3(PO4)2. The higher total minerals in MW-BCs accounted for the higher PZNC (5.47-9.95) than in PB-BCs (1.91-8.18), though the PZNCs of the PB-BCs increased more than that of the MW-BCs as the production temperature rose. The minerals had influence on the zeta potentials via affecting the negative charges of biochars and the ionic strength of solution. The organic functional groups in PB-BCs such as -COOH and -OH had a greater effect on the CEC and AEC, while the minerals had a greater effect on that of MW-BCs. The measured CEC and AEC values had a strong positive correlation with the total amount of soluble cations and anions, respectively. Results indicated that biochar surface charges depend not only on the organic functional groups, but also on the minerals present and to some extent, minerals have more influences on the surface electrochemistry and ion exchange properties of biochar.

  4. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds.

    PubMed

    Guarino, V; Veronesi, F; Marrese, M; Giavaresi, G; Ronca, A; Sandri, M; Tampieri, A; Fini, M; Ambrosio, Luigi

    2016-02-29

    Surface topography and chemistry both play a crucial role on influencing cell response in 3D porous scaffolds in terms of osteogenesis. Inorganic materials with peculiar morphology and chemical functionalities may be proficiently used to improve scaffold properties-in the bulk and along pore surface-promoting in vitro and in vivo osseous tissue in-growth. The present study is aimed at investigating how bone regenerative properties of composite scaffolds made of poly(Ɛ-caprolactone) (PCL) can be augmented by the peculiar properties of Mg(2+) ion doped hydroxyapatite (dHA) crystals, mainly emphasizing the role of crystal shape on cell activities mediated by microstructural properties. At the first stage, the study of mechanical response by crossing experimental compression tests and theoretical simulation via empirical models, allow recognizing a significant contribution of dHA shape factor on scaffold elastic moduli variation as a function of the relative volume fraction. Secondly, the peculiar needle-like shape of dHA crystals also influences microscopic (i.e. crystallinity, adhesion forces) and macroscopic (i.e. roughness) properties with relevant effects on biological response of the composite scaffold: differential scanning calorimetry (DSC) analyses clearly indicate a reduction of crystallization heat-from 66.75 to 43.05 J g(-1)-while atomic force microscopy (AFM) ones show a significant increase of roughness-from (78.15  ±  32.71) to (136.13  ±  63.21) nm-and of pull-off forces-from 33.7% to 48.7%. Accordingly, experimental studies with MG-63 osteoblast-like cells show a more efficient in vitro secretion of alkaline phosphatase (ALP) and collagen I and a more copious in vivo formation of new bone trabeculae, thus suggesting a relevant role of dHA to support the main mechanisms involved in bone regeneration.

  5. Automated potentiometric titrations in KCl/water-saturated octanol: method for quantifying factors influencing ion-pair partitioning.

    PubMed

    Scherrer, Robert A; Donovan, Stephen F

    2009-04-01

    The knowledge base of factors influencing ion pair partitioning is very sparse, primarily because of the difficulty in determining accurate log P(I) values of desirable low molecular weight (MW) reference compounds. We have developed a potentiometric titration procedure in KCl/water-saturated octanol that provides a link to log P(I) through the thermodynamic cycle of ionization and partitioning. These titrations have the advantage of being independent of the magnitude of log P, while maintaining a reproducibility of a few hundredths of a log P in the calculated difference between log P neutral and log P ion pair (diff (log P(N - I))). Simple model compounds can be used. The titration procedure is described in detail, along with a program for calculating pK(a)'' values incorporating the ionization of water in octanol. Hydrogen bonding and steric factors have a greater influence on ion pairs than they do on neutral species, yet these factors are missing from current programs used to calculate log P(I) and log D. In contrast to the common assumption that diff (log P(N - I)) is the same for all amines, they can actually vary more than 3 log units, as in our examples. A major factor affecting log P(I) is the ability of water and the counterion to approach the charge center. Bulky substituents near the charge center have a negative influence on log P(I). On the other hand, hydrogen bonding groups near the charge center have the opposite effect by lowering the free energy of the ion pair. The use of this titration method to determine substituent ion pair stabilization values (IPS) should bring about more accurate log D calculations and encourage species-specific QSAR involving log D(N) and log D(I). This work also brings attention to the fascinating world of nature's highly stabilized ion pairs.

  6. Influences of specific ions in groundwater on concrete degradation in subsurface engineered barrier system.

    PubMed

    Lin, Wen-Sheng; Liu, Chen-Wuing; Li, Ming-Hsu

    2016-01-01

    Many disposal concepts currently show that concrete is an effective confinement material used in engineered barrier systems (EBS) at a number of low-level radioactive waste (LLW) disposal sites. Cement-based materials have properties for the encapsulation, isolation, or retardation of a variety of hazardous contaminants. The reactive chemical transport model of HYDROGEOCHEM 5.0 was applied to simulate the effect of hydrogeochemical processes on concrete barrier degradation in an EBS which has been proposed to use in the LLW disposal site in Taiwan. The simulated results indicated that the main processes that are responsible for concrete degradation are the species induced from hydrogen ion, sulfate, and chloride. The EBS with the side ditch drainage system effectively discharges the infiltrated water and lowers the solute concentrations that may induce concrete degradation. The redox processes markedly influence the formations of the degradation materials. The reductive environment in the EBS reduces the formation of ettringite in concrete degradation processes. Moreover, the chemical conditions in the concrete barriers maintain an alkaline condition after 300 years in the proposed LLW repository. This study provides a detailed picture of the long-term evolution of the hydrogeochemical environment in the proposed LLW disposal site in Taiwan.

  7. Influence on the generation of disinfection byproducts in a tannic acid solution by aluminum ions.

    PubMed

    Shen, Hong; Chen, Xin; Chen, Hongbin

    2016-08-17

    Aluminum (Al) commonly exists in natural waters, and its salts are often used as coagulants in drinking water treatment. Therefore, associated with the security of drinking water, functions of Al ions (Al(3+)) on generation of disinfection byproducts (DBPs) should not be ignored. This study focuses on DBPs and the carcinogenic factor of chlorinated water samples after the addition of Al(3+) with different Al(3+)/initial tannic acid molar ratios. The results imply that Al(3+) acts as a promoter of haloacetic acids (HAAs) and an inhibitor of trihalomethanes (THMs) when tannic acid is selected as model compound of natural organic matter during chlorination. Depending on the results of size exclusion chromatography and ultraviolet spectrophotometer, an equilibrium system can be assumed between hydrolysis and flocculation in tannic acid solution with Al(3+). Furthermore, influences on the equilibrium system for Al(3+) addition may result in various effects on generation and distribution ratios of THMs and HAAs during chlorination. Finally, according to the analyses of a fluorescence spectrophotometer, it is demonstrated that the presence of Al(3+) helps to increase precursors of DBPs (humic acid-like organics) and then improve the generation of DBPs.

  8. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    NASA Astrophysics Data System (ADS)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  9. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  10. Influence of ion-implanted profiles on the performance of GaAs MESFET's and MMIC amplifiers

    SciTech Connect

    Pavlidis, D.; Cazaux, J.L.; Graffeuil, J.

    1988-04-01

    The RF small-signal performance of GaAs MESFET's and MMIC amplifiers as a function of various ion-implanted profiles is theoretically and experimentally investigated. Implantation energy, dose, and recess depth influence are theoretically analyzed with the help of a specially developed device simulator. The performance of MMIC amplifiers processed with various energies, doses, recess depths, and bias conditions is discussed and compared to experimental characteristics. Some criteria are finally proposed for the choice of implantation conditions and process in order to optimize the characteristics of ion-implanted FET's and to realize process-tolerant MMIC amplifiers.

  11. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  12. Ion beam sputtering of Ti: Influence of process parameters on angular and energy distribution of sputtered and backscattered particles

    NASA Astrophysics Data System (ADS)

    Lautenschläger, T.; Feder, R.; Neumann, H.; Rice, C.; Schubert, M.; Bundesmann, C.

    2016-10-01

    In the present study, the influence of ion energy and geometrical parameters onto the angular and energy distribution of secondary particles for sputtering a Ti target with Ar ions is investigated. The angular distribution of the particle flux of the sputtered Ti atoms was determined by the collection method, i.e. by growing Ti films and measuring their thickness. The formal description of the particle flux can be realized by dividing it into an isotropic and an anisotropic part. The experimental data show that increasing the ion energy or decreasing the ion incidence angle lead to an increase of the isotropic part, which is in good agreement with basic sputtering theory. The energy distribution of the secondary ions was measured using an energy-selective mass spectrometer. The energy distribution of the sputtered target ions shows a maximum at an energy between 10 eV and 20 eV followed by a decay proportional to E-n, which is in principle in accordance with Thompson's theory, followed by a high energetic tail. When the sum of incidence angle and emission angle is increased, the high-energetic tail expands to higher energies and an additional peak due to direct sputtering events may occur. In the case of backscattered primary Ar ions, a maximum at an energy between 5 eV and 10 eV appears and, depending on the scattering geometry, an additional broad peak at a higher energy due to direct scattering events is observed. The center energy of the additional structure shifts systematically to higher energies with decreasing scattering angle or increasing ion energy. The experimental results are compared to calculations based on simple elastic two-particle-interaction theory and to simulations done with the Monte Carlo code SDTrimSP. Both confirm in principle the experimental findings.

  13. The influence of ion concentrations on the dynamic behavior of the Hodgkin-Huxley model-based cortical network.

    PubMed

    Tagluk, M Emin; Tekin, Ramazan

    2014-08-01

    Action potentials (APs) in the form of very short pulses arise when the cell is excited by any internal or external stimulus exceeding the critical threshold of the membrane. During AP generation, the membrane potential completes its natural cycle through typical phases that can be formatted by ion channels, gates and ion concentrations, as well as the synaptic excitation rate. On the basis of the Hodgkin-Huxley cell model, a cortical network consistent with the real anatomic structure is realized with randomly interrelated small population of neurons to simulate a cerebral cortex segment. Using this model, we investigated the effects of Na(+) and K(+) ion concentrations on the outcome of this network in terms of regularity, phase locking, and synchronization. The results suggested that Na(+) concentration does slightly affect the amplitude but not considerably affects the other parameters specified by depolarization and repolarization. K(+) concentration significantly influences the form, regularity, and synchrony of the network-generated APs. No previous study dealing directly with the effects of both Na(+) and K(+) ion concentrations on regularity and synchronization of the simulated cortical network-generated APs, allowing for the comparison of results obtained using our methods, was encountered in the literature. The results, however, were consistent with those obtained through studies concerning resonance and synchronization from another perspective and with the information revealed through physiological and pharmacological experiments concerning changing ion concentrations or blocking ion channels. Our results demonstrated that the regularity and reliability of brain functions have a strong relationship with cellular ion concentrations, and suggested the management of the dynamic behavior of the cellular network with ion concentrations.

  14. Etude des defauts microscopiques et des proprietes optiques, electroniques et magnetiques du compose neodyme cerium oxyde de cuivre

    NASA Astrophysics Data System (ADS)

    Richard, Pierre

    La presente these, qui combine des mesures de diffusion Raman, de transmission infrarouge, de conductivite hyperfrequence et d'interferometrie ultrasonore sur les composes Nd 2-xCexCuO 4, traite des defauts d'oxygene, ainsi que des proprietes optiques, electroniques et magnetiques de ces materiaux. Les resultats experimentaux obtenus sont correles avec plusieurs donnees experimentales disponibles dans la litterature. D'abord, la caracterisation des modes Raman et des niveaux d'energie de champ cristallin de l'ion Nd3+ au moyen de techniques optiques, en fonction du dopage en cerium et du contenu en oxygene, permettent de conclure a la presence de defauts lies a une non-stoechiometrie en oxygene dans ces composes. En effet, des excitations de champ cristallin assignees a des ions Nd3+ en sites irreguliers sont observees, en plus des bandes d'absorption associees aux ions Nd3+ en site regulier, dans les spectres correspondant aux multiplets 4I11/2, 4I13/2 et 4I 15/2 de l'ion Nd3+. Les resultats experimentaux indiquent que, contrairement a la croyance largement repandue, les oxygenes apicaux, bien que presents dans les echantillons dopes, ne sont pas enleves lors du processus de reduction des echantillons necessaire pour faire apparaitre la supraconductivite dans cette famille de cuprates. Au contraire, des lacunes d'oxygene, dont le type varie en fonction du dopage, sont creees lors de ce processus. En particulier, il est montre dans ce travail que la reduction des echantillons dopes de maniere optimale conduit a la creation de lacunes d'oxygene dans les plans CuO2. Les consequences de telles lacunes sont largement discutees. En outre, il est suggere que de telles lacunes sont responsables de la perte de l'ordre antiferromagnetique a longue portee des ions Cu2+. Finalement, l'interaction d'echange anisotrope Nd3+-Cu 2+ dans le compose nondope est caracterisee au moyen de la transmission infrarouge sous champ magnetique. L'eclatement des doublets de Kramers mesure

  15. Influence of nuclear interactions in body tissues on tumor dose in carbon-ion radiotherapy

    SciTech Connect

    Inaniwa, T. Kanematsu, N.; Tsuji, H.; Kamada, T.

    2015-12-15

    Purpose: In carbon-ion radiotherapy treatment planning, the planar integrated dose (PID) measured in water is applied to the patient dose calculation with density scaling using the stopping power ratio. Since body tissues are chemically different from water, this dose calculation can be subject to errors, particularly due to differences in inelastic nuclear interactions. In recent studies, the authors proposed and validated a PID correction method for these errors. In the present study, the authors used this correction method to assess the influence of these nuclear interactions in body tissues on tumor dose in various clinical cases. Methods: Using 10–20 cases each of prostate, head and neck (HN), bone and soft tissue (BS), lung, liver, pancreas, and uterine neoplasms, the authors first used treatment plans for carbon-ion radiotherapy without nuclear interaction correction to derive uncorrected dose distributions. The authors then compared these distributions with recalculated distributions using the nuclear interaction correction (corrected dose distributions). Results: Median (25%/75% quartiles) differences between the target mean uncorrected doses and corrected doses were 0.2% (0.1%/0.2%), 0.0% (0.0%/0.0%), −0.3% (−0.4%/−0.2%), −0.1% (−0.2%/−0.1%), −0.1% (−0.2%/0.0%), −0.4% (−0.5%/−0.1%), and −0.3% (−0.4%/0.0%) for the prostate, HN, BS, lung, liver, pancreas, and uterine cases, respectively. The largest difference of −1.6% in target mean and −2.5% at maximum were observed in a uterine case. Conclusions: For most clinical cases, dose calculation errors due to the water nonequivalence of the tissues in nuclear interactions would be marginal compared to intrinsic uncertainties in treatment planning, patient setup, beam delivery, and clinical response. In some extreme cases, however, these errors can be substantial. Accordingly, this correction method should be routinely applied to treatment planning in clinical practice.

  16. [The influence of sodium and potassium ions on the uptake of phosphate by Ankistrodesmus braunii].

    PubMed

    Ullrich-Eberius, C I; Simonis, W

    1970-09-01

    The uptake of phosphate as influenced by sodium and potassium ions was investigated in the light and in the dark. It was found to be a function of the external phosphate concentration. At a low concentration (up to 10(-5) mol/l) in the presence of Na(+) phosphate is quickly absorbed and hence phosphate is the limiting factor for further labelling. In the presence of K(+) phosphate uptake is constant over a long period.The enhancement of phosphate uptake by Na(+) is also found when the external concentration of P is raised up to 10(-4) mol/l. Then the gross uptake proceeds over six hours, with the greatest Na(+)-dependent increase occurring in the label of the TCA-insoluble phosphate fraction (Pu).The phosphate uptake is strongly dependent on the pH of the reaction mixture. In the presence of Na(+) it is highest between pH 5.6 and 7. As the uptake in the presence of K(+) parallels the dissociation curve of the dihydrogen form H2PO 4 (-) , the Na(+)-enhancement is optimal in the alkaline pH range (pH 8).On the basis of a comparison between the pH-dependence of phosphate uptake and the dependence of the uptake on the external phosphate concentration analysed by a method of enzyme kinetics, it is suggested that Ankistrodesmus metabolically transports H2PO 4 (-) but not HPO 4 (=) . Moreover, it is concluded from the absence of light stimulation and the weak inhibition of the uptake by DCMU or CCCP in the presence of K(+) that at low P-concentrations the diffusion is limiting the uptake. Only at higher concentrations is an active phosphate uptake measured.Furthermore it is concluded that the observed Na(+)-stimulation of the (32)P-labelling of the TCA-soluble and insoluble compounds inside the cell is indirect and depends only on the action of Na(+) and K(+) ions at the first transport site in the plasmalemma.

  17. Influence of ion outflow in coupled geospace simulations: 2. Sawtooth oscillations driven by physics-based ion outflow

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Wiltberger, M.; Zhang, B.; Lotko, W.; Lyon, J.

    2016-10-01

    We present the first simulations of magnetospheric sawtooth oscillations under steady solar wind conditions that are driven internally by heavy ion outflow from a physics-based model. The simulations presented use the multifluid Lyon-Fedder-Mobarry magnetohydrodynamics model two-way coupled to the ionosphere/polar wind model (IPWM). Depending on the type of wave-particle interactions utilized within IPWM, the coupled simulations exhibit either sawtooth oscillations or steady magnetospheric convection. Contrasting the simulations that do and do not develop sawtooth oscillations yields insights into the relationship between outflow and sawtooth oscillations. The total outflow rate is not an adequate predictor of the convection mode that will emerge. The simulations that develop sawtooth oscillations are characterized by intense outflow concentrated in the midnight auroral region. This outflow distribution mass loads the tail reconnection region without excessively mass loading the dayside reconnection region and leads to an imbalance between the dayside and nightside reconnection rates.

  18. The quantum mechanics of ion-enhanced field emission and how it influences microscale gas breakdown

    SciTech Connect

    Li, Yingjie; Go, David B.

    2014-09-14

    The presence of a positive gas ion can enhance cold electron field emission by deforming the potential barrier and increasing the tunneling probability of electrons—a process known as ion-enhanced field emission. In microscale gas discharges, ion-enhanced field emission produces additional emission from the cathode and effectively reduces the voltage required to breakdown a gaseous medium at the microscale (<10 μm). In this work, we enhance classic field emission theory by determining the impact of a gaseous ion on electron tunneling and compute the effect of ion-enhanced field emission on the breakdown voltage. We reveal that the current density for ion-enhanced field emission retains the same scaling as vacuum cold field emission and that this leads to deviations from traditional breakdown theory at microscale dimensions.

  19. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  20. Impact de la preparation des anodes crues et des conditions de cuisson sur la fissuration dans des anodes denses

    NASA Astrophysics Data System (ADS)

    Amrani, Salah

    fabriquees industriellement. Cette technique a consiste a determiner le profil des differentes proprietes physiques. En effet, la methode basee sur la mesure de la distribution de la resistivite electrique sur la totalite de l'echantillon est la technique qui a ete utilisee pour localiser la fissuration et les macro-pores. La microscopie optique et l'analyse d'image ont, quant a elles, permis de caracteriser les zones fissurees tout en determinant la structure des echantillons analyses a l'echelle microscopique. D'autres tests ont ete menes, et ils ont consiste a etudier des echantillons cylindriques d'anodes de 50 mm de diametre et de 130 mm de longueur. Ces derniers ont ete cuits dans un four a UQAC a differents taux de chauffage dans le but de pouvoir determiner l'influence des parametres de cuisson sur la formation de la fissuration dans ce genre de carottes. La caracterisation des echantillons d'anodes cuites a ete faite a l'aide de la microscopie electronique a balayage et de l'ultrason. La derniere partie des travaux realises a l'UQAC contient une etude sur la caracterisation des anodes fabriquees au laboratoire sous differentes conditions d'operation. L'evolution de la qualite de ces anodes a ete faite par l'utilisation de plusieurs techniques. L'evolution de la temperature de refroidissement des anodes crues de laboratoire a ete mesuree; et un modele mathematique a ete developpe et valide avec les donnees experimentales. Cela a pour objectif d'estimer la vitesse de refroidissement ainsi que le stress thermique. Toutes les anodes fabriquees ont ete caracterisees avant la cuisson par la determination de certaines proprietes physiques (resistivite electrique, densite apparente, densite optique et pourcentage de defauts). La tomographie et la distribution de la resistivite electrique, qui sont des techniques non destructives, ont ete employees pour evaluer les defauts internes des anodes. Pendant la cuisson des anodes de laboratoire, l'evolution de la resistivite

  1. Observation of the influence of isomeric structures of cluster ions on the dynamics of dissociation: Ammonia-triethylamine system

    SciTech Connect

    Wei, S.; Tzeng, W.B.; Castleman, A.W. Jr. )

    1990-09-06

    The authors report what they believe to be the first experimental proof of the influence of isomeric cluster ions on their dynamics of dissociation, namely, for the cluster ion NH{sub 3}((C{sub 2}H{sub 5}){sub 3}N){sub 3}H{sup +} in the present case. The isomeric structures lead to important consequences in the dynamics of dissociation. No other comparable parallel dissociation processes for cluster ions NH{sub 3}-((C{sub 2}H{sub 5}){sub 3}N){sub m}H{sup +} are observed, establishing that there are no other isomers present for the cluster size range investigated in this work.

  2. Influence of the chemical nature of implanted ions on the structure of a silicon layer damaged by implantation

    SciTech Connect

    Shcherbachev, K. D. Voronova, M. I.; Bublik, V. T.; Mordkovich, V. N. Pazhin, D. M.; Zinenko, V. I.; Agafonov, Yu. A.

    2013-12-15

    The influence of the implantation of silicon single crystals by fluorine, nitrogen, oxygen, and neon ions on the distribution of strain and the static Debye-Waller factor in the crystal lattice over the implanted-layer depth has been investigated by high-resolution X-ray diffraction. The density depth distribution in the surface layer of native oxide has been measured by X-ray reflectometry. Room-temperature implantation conditions have ensured the equality of the suggested ranges of ions of different masses and the energies transferred by them to the target. It is convincingly shown that the change in the structural parameters of the radiation-damaged silicon layer and the native oxide layer depend on the chemical activity of the implanted ions.

  3. Influence of metal ion complexation on the metastable fragmentation of DNA hexamers

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Andreas; Bald, Ilko; Flosadóttir, Helga D.; Ómarsson, Benedikt; Lafosse, Anne; Ingólfsson, Oddur

    2014-06-01

    Here, we study the metastable decay of 5'-d(TTGCTT) in the presence of 0-6 alkaline metal ions (Li+, Na+, K+, Rb+) and 0-3 alkaline earth metal ions (Mg2+ and Ca2 +), which replace the corresponding number of protons in the oligonucleotide. We find that all ions studied here stabilize the oligonucleotide with respect to simple 3'-C-O backbone cleavage, but at the same time these metal ions promote a central oligonucleotide deletion accompanied by a concomitant recombination of the terminal d(TT) groups. We find that the quenching of the 3'-C-O backbone cleavage is not ion specific, since it is due to the removal of the phosphate protons upon replacement with the respective metal ions. The central nucleotide deletion competes with the 3'-C-O backbone cleavage channels and is thus promoted through the replacement of the exchangeable protons against metal ions. However, with increasing positive charge density of the metal ions the yield of the central nucleotide deletion further increases. We attribute this effect to the necessity of sufficient proximity of the terminal d(TT) group to allow for their recombination on this reaction path. Hence, the formation of a reactive conformer is mediated by the metal ions.

  4. Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions

    NASA Astrophysics Data System (ADS)

    Verma, Kuldeep Chand; Kotnala, R. K.

    2017-02-01

    Future spintronics technologies based on diluted magnetic semiconductors (DMS) will rely heavily on a sound understanding of the microscopic origins of ferromagnetism in such materials. It remains unclear, however, whether the ferromagnetism in DMS is intrinsic - a precondition for spintronics - or due to dopant clustering. For this, we include a simultaneous doping from transition metal (Ni, Cu) and rare earth (Ce) ions in ZnO nanoparticles that increase the antiferromagnetic ordering to achieve high-Tc ferromagnetism. Rietveld refinement of XRD patterns indicate that the dopant ions in ZnO had a wurtzite structure and the dopants, Ni2+, Cu2+, Ce3+ ions, are highly influenced the lattice constants to induce lattice defects. The Ni, Cu, Ce ions in ZnO have nanoparticles formation than nanorods was observed in pure sample. FTIR involve some organic groups to induce lattice defects and the metal-oxygen bonding of Zn, Ni, Cu, Ce and O atoms to confirm wurtzite structure. Raman analysis evaluates the crystalline quality, structural disorder and defects in ZnO lattice with doping. Photoluminescence spectra have strong near-band-edge emission and visible emission bands responsible for defects due to oxygen vacancies. The energy band gap is calculated using Tauc relation. Room temperature ferromagnetism has been described due to bound magnetic polarons formation with Ni2+, Cu2+, Ce3+ ions in ZnO via oxygen vacancies. The zero field and field cooling SQUID measurement confirm the strength of antiferromagnetism in ZnO. The field cooling magnetization is studied by Curie-Weiss law that include antiferromagnetic interactions up to low temperature. The XPS spectra have involve +3/+4 oxidation states of Ce ions to influence the observed ferromagnetism.

  5. Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite-water interfaces

    NASA Astrophysics Data System (ADS)

    Miyazawa, K.; Watkins, M.; Shluger, A. L.; Fukuma, T.

    2017-06-01

    Recent advancement in liquid-environment atomic force microscopy (AFM) has enabled us to visualize three-dimensional (3D) hydration structures as well as two-dimensional (2D) surface structures with subnanometer-scale resolution at solid-water interfaces. However, the influence of ions present in solution on the 2D- and 3D-AFM measurements has not been well understood. In this study, we perform atomic-scale 2D- and 3D-AFM measurements at fluorite-water interfaces in pure water and a supersaturated solution of fluorite. The images obtained in these two environments are compared to understand the influence of the ions in solution on these measurements. In the 2D images, we found clear difference in the nanoscale structures but no significant difference in the atomic-scale contrasts. However, the 3D force images show clear difference in the subnanometer-scale contrasts. The force contrasts measured in pure water largely agree with those expected from the molecular dynamics simulation and the solvent tip approximation model. In the supersaturated solution, an additional force peak is observed over the negatively charged fluorine ion site. This location suggests that the observed force peak may originate from cations adsorbed on the fluorite surface. These results demonstrate that the ions can significantly alter the subnanometer-scale force contrasts in the 3D-AFM images.

  6. Spectroscopic study of Mg(II) ion influence on the autoxidation of gallic acid in weakly alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nikolić, G. M.; Veselinović, A. M.; Nikolić, R. S.; Mitić, S. S.

    2011-12-01

    Gallic acid autoxidation in weakly alkaline aqueous solutions was studied by UV-Vis spectrophotometry and ESR spectroscopy under various conditions. Lowering the pH value from 10 to 8.5 probably changes the mechanism of the autoxidation reaction as evidenced by the different time variations of UV-Vis spectra of solutions. The presence of Mg(II) ions greatly influences the autoxidation reaction at pH 8.5. Although the UV-Vis spectral changes with time follow the similar pattern during the gallic acid autoxidation at pH 10 and at pH 8.5 in the presence of Mg(II) ions, some small differences indicate that Mg(II) ions not only affect the electron density of absorbing species but also influence the overall mechanism of the autoxidation reaction. ESR spectra of free radials formed during the initial stage of gallic acid autoxidation at pH 8.5 in the presence of Mg(II) ions were recorded. Computer simulation of ESR spectra allows partial characterization of these free radicals.

  7. Study of coagulation processes of selected humic acids under copper ions influence*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Humic acids have limited sorption capacity and big dose of metal or other mineral component which can be sorbed on humic acids, can cause saturation of negative, surface charge of humic acids leading to destabilization of dissolved humic acids compounds. Destabilisation can be observed as coagulation and floculation proces of humic acids. However there are a lot of mechanisms which causing precipitation of humic acids. Thereby, in order to full description of coagulation process, different methods should be applied. Ordinarily, humic acids coagulation is studied by measurement of absorbance, transmittance or carbon loss in solution. Meanwhile, very significant information is also variation of metal content in soil solution and information whether metal goes to precipitate together with humic acids or stays in dissolved form in solution. So, that, from one side, processes of stronger accumulation of metal can lead to soil degradation and micronutrient deficiency for plants. However, there is also possibility to stay metal in solution in toxic and bioavailable form for plants. Main aim of this paper was to study coagulation process of different humic acids extracted from mucking peats under copper ions influence at adjusted pH to 5. In order to this, four peaty-muck soils were taken from selected places in east part of Poland (meadows and river valleys). These soils differed by humification degree, secondary transformation, density and pH. At next step, humic acids were extracted from soils using sodium hydroxide (NaOH) extractant. After exact purification by washing with HF-HCl mixture and water, humic acids were liofilized. Solutions of humic acids were prepared at concentration 40 mg/dm3 with addition of different amount of copper ions to obtain final concentration of Cu(II) ranged from 0-40mg/dm3. After 24 hours solutions were investigated using measurements of absorbance at 470nm (UV-VIS spectrometer Jasco V-530), measurements of organic carbon in solution

  8. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    PubMed

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  9. The stabilizing influence of divalent ions and Na+ on the di-decameric structure of Yoldia limatula hemocyanin.

    PubMed

    Herskovits, T T; Cousins, C J; Hamilton, M G

    1991-01-08

    The stabilizing influence of Ca2+, Mg2+, Ba2+ and Na+ on the di-decameric structure of the hemocyanin of the bivalve, Yoldia limatula has been investigated by light-scattering molecular weight measurements and by analytical ultracentrifugation. The molecular weight (Mw) data, examined as a function of decreasing divalent ion and sodium ion concentrations at pH 8.0 and at a constant hemocyanin concentration of 0.10 g.l-1, show biphasic transition profiles, with a sharp initial decline in Mw as the concentration of the stabilizing cations is reduced. The analysis of the molecular weight data is best described in terms of the four-species, di-decamer-decamer-dimer-monomer scheme of association-dissociation equilibria. About 25 to 35 bound divalent ions and about 10 bound Na+ ions per half-molecule or decamer are required in order to account for the initial step of the observed transitions. The subsequent transitions representing the decamer to dimer and the dimer to monomer steps of the reaction account for the additional binding of three to four and two to four cations per dimer and per monomer, respectively. The relatively large number of divalent ions per decamer suggests strong ionic stabilization of the decamer to decamer contacts within the parent di-decameric assembly of Yoldia hemocyanin. This is consistent with earlier observations showing relatively few hydrophobic groups at the decamer to decamer contact areas.

  10. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper-ion resistant bacteria

    PubMed Central

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2013-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by influx of copper ions into the cells but the exact mechanism is not fully understood. This study showed that the kinetics of contact-killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper-ion resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper-ion resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electro-chemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper-ion resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells which contributed directly to bacterial killing. PMID:21085951

  11. Influence of Gd3+ concentration on luminescence properties of Eu3+ ions in sol-gel materials

    NASA Astrophysics Data System (ADS)

    Szpikowska-Sroka, Barbara; Pawlik, Natalia; Pisarski, Wojciech A.

    2016-12-01

    The sol-gel powders doubly-doped with Gd3+/Eu3+ ions with different concentration of Gd3+ have been successfully obtained. The spectroscopic characterization of prepared samples was conducted based on excitation and emission spectra as well as luminescence decay analysis. Upon direct excitation of Eu3+ active ions, the characteristic 5D0 → 7F1 (orange) and 5D0 → 7F2 (red) emission bands were observed. The energy transfer from Gd3+ to Eu3+ ions was registered upon λexc = 273 nm excitation. An efficient conversion of ultraviolet radiation (UV) into visible luminescence was successfully observed. The energy transfer process from Gd3+ to Eu3+ led to longer luminescence decay from the 5D0 state in comparison to that obtained under direct excitation of Eu3+ ions (λexc = 393 nm). Generally, obtained results clearly indicated the beneficial influence of increasing concentration of Gd3+ ions on luminescence properties of Eu3+ in studied silica sol-gel phosphors.

  12. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria.

    PubMed

    Elguindi, Jutta; Moffitt, Stuart; Hasman, Henrik; Andrade, Cassandra; Raghavan, Srini; Rensing, Christopher

    2011-03-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electrochemical polarization tests using the Stern-Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper ion-resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing.

  13. Surface Modification Energized by Focused Ion Beam: The Influence of Etch Rates & Aspect Ratio on Ripple Wavelengths.

    SciTech Connect

    MoberlyChan, W J

    2006-11-15

    Ion beams have been used to modify surface topography, producing nanometer-scale modulations (and even subnanometer ripples in this work) that have potential uses ranging from designing self-assembly structures, to controlling stiction of micromachined surfaces, to providing imprint templates for patterned media. Modern computer-controlled Focused Ion Beam tools enable alternating submicron patterned zones of such ion-eroded surfaces, as well as dramatically increasing the rate of ion beam processing. The DualBeam FIB/SEM also expedites process development while minimizing the use of materials that may be precious (Diamond) and/or produce hazardous byproducts (Beryllium). A FIB engineer can prototype a 3-by-3-by-3 matrix of variables in tens of minutes and consume as little as zeptoliters of material; whereas traditional ion beam processing would require tens of days and tens of precious wafers. Saturation wavelengths have been reported for ripples on materials such as single crystal silicon or diamond ({approx}200nm); however this work achieves wavelengths >400nm on natural diamond. Conversely, Be can provide a stable and ordered 2-dimensional array of <40nm periodicity; and ripples <0.4nm are also fabricated on carbon surfaces and quantified by HR-TEM and electron diffraction. Rippling is a function of material, ion beam, and angle; but is also controlled by chemical environment, redeposition, and aspect ratio. Ideally a material exhibits a constant yield (atoms sputtered off per incident ion); however, pragmatic FIB processes, coupled with the direct metrological feedback in a DualBeam tool, reveal etch rates do not remain constant for nanometer-scale processing. Control of rippling requires controlled metrology, and robust software tools are developed to enhance metrology. In situ monitoring of the influence of aspect ratio and redeposition at the micron scale correlates to the rippling fundamentals that occur at the nanometer scale and are controlled by the

  14. Influence of deposition parameters on the microstructure of ion-plated films

    NASA Astrophysics Data System (ADS)

    Broitman, Esteban; Zimmerman, Rosa

    1996-07-01

    Ion plating is essentially vapor deposition onto a substrate which is the cathode of a glow discharge. The most important characteristic of the technique is that the growing film is subjected to a flux of high energy particles (neutrals and ions). In this study we report information about the effect of ion plating parameters on grain diameter and crystallite size distribution. At a constant potential grain size remains constant with the increase of ion density. On the other hand, at a constant ion density the grain size decreases with the substrate potential increment. Ion bombardment also has an effect on the crystallite size distribution. The ion plated films show a higher degree of uniformity in grain size than vacuum evaporated films. In contrast with vacuum evaporated films, where the grain size is proportional to the thickness, no variation of grain size with film thickness has been observed for the ion-plated films. Electron diffraction patterns have shown that the orientation remains near random over the entire J and V range studied.

  15. The influence of projectile ion induced chemistry on surface pattern formation

    NASA Astrophysics Data System (ADS)

    Karmakar, Prasanta; Satpati, Biswarup

    2016-07-01

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  16. Glucose influence on copper ion-dependent oxidation of low density lipoprotein.

    PubMed

    Ghaffari, Mohammad Ali; Mojab, Samad

    2009-01-01

    It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. In this study, LDL was isolated from plasma by ultracentrifugation using a single step discontinuous gradient. Native LDL preparations were glycated by glucose and also were oxidized by copper ions. LDL glycation and oxidation levels were estimated by sodium periodate assay and thiobarbituric acid reactive substances (TBARS), respectively. Then, native LDL was incubated with glucose and copper and LDL oxidation was estimated by TBARS. Finally, oxidation of glycated LDL was studied in presence of copper ions by TBARS and relative electrophoretic mobility on polyacrylamide gel. This study showed that glucose considerably decreased the oxidation of native LDL by copper ions. But oxidation of glycated LDL elevated with presence of copper ions. The results of this investigation show that LDL glycated in vitro is prone to oxidation by copper ions. Thus, promotion of glycated LDL oxidation by glucose is specific for copper ion dependent oxidation and involves increased copper ion reduction. These results provide one mechanism that may enhanced LDL oxidation in diabetes and thus contribute to the pathogenesis of atherosclerosis in diabetic patients.

  17. The influence of projectile ion induced chemistry on surface pattern formation

    SciTech Connect

    Karmakar, Prasanta

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  18. Influence of ion bombardment on the photoluminescence response of embedded CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohanta, Dambarudhar; Singh, Fouran; Avasthi, D.; Choudhury, Amarjyoti

    2006-06-01

    Semiconductor nanoparticles (CdS) were fabricated by an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. Nano-CdS in PVA were subjected to ion irradiation (using oxygen, chlorine and gold) in the medium energy range (80-100 MeV) and under fluence variation of 1011-1013 ions/cm2. The nature of light emission was found to be drastically different in each of the three cases. Photoluminescence spectra of oxygen irradiated samples exhibit band edge emission (2.8 eV) as well as trap related emission (1.76 eV) whereas band edge emission is found to be bleached out for chlorine ion irradiated nano-CdS. The intense broad PL peaks, noticeable in the case of gold ion irradiated samples suggest superposition of the two peaks — namely, band edge emission and trap related emission. Furthermore, in the case of gold ion irradiated nano-CdS, energy shift in the PL spectra reveals variation in size distribution caused by the extra pressure effect of heavy gold ion beams. The mechanism of such a difference as a result of ion irradiation-type and ion-fluence is discussed in detail.

  19. Influence of ion bombardment on the photoluminescence response of embedded CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohanta, Dambarudhar; Singh, Fouran; Avasthi, D. K.; Choudhury, Amarjyoti

    2006-06-01

    Semiconductor nanoparticles (CdS) were fabricated by an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. Nano-CdS in PVA were subjected to ion irradiation (using oxygen, chlorine and gold) in the medium energy range (80 100 MeV) and under fluence variation of 1011 1013 ions/cm2. The nature of light emission was found to be drastically different in each of the three cases. Photoluminescence spectra of oxygen irradiated samples exhibit band edge emission (2.8 eV) as well as trap related emission (1.76 eV) whereas band edge emission is found to be bleached out for chlorine ion irradiated nano-CdS. The intense broad PL peaks, noticeable in the case of gold ion irradiated samples suggest superposition of the two peaks — namely, band edge emission and trap related emission. Furthermore, in the case of gold ion irradiated nano-CdS, energy shift in the PL spectra reveals variation in size distribution caused by the extra pressure effect of heavy gold ion beams. The mechanism of such a difference as a result of ion irradiation-type and ion-fluence is discussed in detail.

  20. The influence of UV laser radiation on the absorption and luminescence of photothermorefractive glasses containing silver ions

    NASA Astrophysics Data System (ADS)

    Ignat'ev, A. I.; Ignat'ev, D. A.; Nikonorov, N. V.; Sidorov, A. I.

    2015-08-01

    It is experimentally shown that irradiation of silver-containing glasses by nanosecond laser pulses with a wavelength of 248 nm leads to the formation of unstable point defects (having absorption bands in the UV and visible spectral ranges) in the irradiated region and causes the transition of ions and charged molecular silver clusters to the neutral state, which is accompanied by an increase in the luminescence intensity in the visible spectral range. The influence of pulsed laser irradiation is compared with the effect of exposure to cw UV light of a mercury lamp. Some models are proposed to explain the influence of the laser effect on the optical properties of glasses.

  1. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-07-16

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems.

  2. Influence of heavy ion flux on single event effect testing in memory devices

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Liu, Jie; Sun, Youmei; Hou, Mingdong; Xi, Kai; Liu, Tianqi; Wang, Bin; Ye, Bing

    2017-09-01

    The natural space presents a particle flux variable environment and choosing a suitable flux value for ground-based single event experiments is an unresolved problem so far. In this work, various types of memory devices have been tested over the ion flux range from 10 to 105 ions/(cm2·s) using different ions covering LET from 10.1 to 99.8 MeV·cm2/mg. It was found that for most devices the error rates of single event upsets are affected by the applied flux value. And the effect involving flux becomes prominent as it is increased above 103 ions/(cm2·s). Different devices behave differently as the flux is increased and the flux effect depends strongly on the LET of the impinging ions. The results concluded in this experiment are discussed in detail and recommendations for choosing appropriate experimental flux are given.

  3. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  4. In vitro release of cupric ion from intrauterine devices: influence of frame, shape, copper surface area and indomethacin.

    PubMed

    Zhang, Shuangshuang; Li, Ying; Yu, Panpan; Chen, Tong; Zhou, Weisai; Zhang, Wenli; Liu, Jianping

    2015-02-01

    The release of cupric ion from copper intrauterine device (Cu-IUD) in human uterus is essential for contraception. However, excessive cupric ion will cause cytotoxic effect. In this paper, we investigated the influence of device characteristics (frame, copper surface area, shape, copper type and indomethacin) on copper release for the efficacy and adverse effects vary with IUD types which may correlate to their different release behaviors. Nine types of Cu-IUDs were selected and incubated in simulated uterine fluid. They were paired for comparison based on the device properties and the release of cupric ion was determined by flame atomic absorption spectrometer for about 160 days. The result showed that there was a burst release during the first month and the release rate tends to slow down and become steady afterwards. In addition, the copper release was mainly influenced by frame, indomethacin and copper type (copper wire and copper sleeve) while the shape variation had little effect on copper release throughout the experiment. Moreover, the influence of copper surface area was only noticeable during the first month. These findings were seldom reported before and may provide some useful information for the design of Cu-IUDs.

  5. Probing the influence of anomeric effects on the lithium ion affinity in 1,3-diaza systems: a computational study.

    PubMed

    Kesharwani, Manoj K; Thiel, Walter; Ganguly, Bishwajit

    2010-10-07

    Lithium ion affinities of methanediamine (MDA), N,N,N',N'-tetramethylmethanediamine (TMMDA), 1,3-diazacyclohexane (DAC), trans-3,5-diazabicyclo[4.4.0]decane (trans-3,5-DBD), trans-1,3-diazabicyclo[4.4.0]decane (trans-1,3-DBD), cis-1,3-diazabicyclo[4.4.0]decane (cis-1,3-DBD), 1,5-diazabicyclo[3.3.1]nonane (DBN), trans-decahydro-8a,9a-diazaanthracene (trans-DDA), cis-decahydro-8a,9a-diazaanthracene (cis-DDA), 1,3-diazetidine (DAT), 1,3-imidazolidine (IMD), and 1,3-diazepane (DAP) have been studied by using density functional theory (DFT) and correlated ab initio methods. Possible conformers of these compounds were optimized at the B3LYP/6-31+G* level, and relative energies were evaluated at the MP2/6-311+G**//B3LYP/6-31+G* level. The experimental lithium ion affinities for reference molecules (i.e., ammonia and trimethylamine) are well-reproduced at these levels of theory. NBO analysis shows the influence of anomeric effects (n(N) → σ*(C-N) hyperconjugative interactions) on the conformational stability of the title compounds; however, the electrostatic and steric contributions included in the NBO Lewis term also affect the stabilities in some cases. The influence of anomeric effect is apparent in cis-DDA, where the nitrogen involved in n(N) → σ*(C-N) hyperconjugative interaction (cis-DDA-Li2) has a lithium ion affinity 1.7 kcal/mol lower than the nitrogen not involved in n(N) → σ*(C-N) hyperconjugative interaction (cis-DDA-Li1). In general, the computed lithium ion affinities were found to be conformationally dependent. The NBO results showed that the lithium ion affinities are also governed by the interplay of n(N) → σ*(C-N) hyperconjugative interactions and the steric strain caused upon lithiation. Further, the ring size also influences the lithium ion affinities in the 1,3-diaza monocyclic systems. In some complexes multiple coordination of the lithium ion is possible by inversion of one of the nitrogen atoms.

  6. Influence of metallic ions on the plasma instabilities in the high-latitude E region

    SciTech Connect

    Schlegel, K.

    1985-08-01

    Metallic ions like Mg(+) and Fe(+) can be quite abundant at E region heights during meteor showers. Since their mass is significantly different from the mass of the normal E region ions like NO(+) and O2(+) the E region plasma will behave quite differently in the presence of these ions. As a consequence, the results of the dispersion relation of the modified two stream and the gradient drift plasma instability, occurring in the high latitude E region, are significantly different from the normal case. Some of these results are presented and the implications for the interpretation of auroral radar results (STARE) are discussed. 17 references.

  7. The influence of silver ion exchange on the luminescence properties of Er-Yb silicate glasses

    NASA Astrophysics Data System (ADS)

    Stanek, S.; Nekvindova, P.; Svecova, B.; Vytykacova, S.; Mika, M.; Oswald, J.; Barkman, O.; Spirkova, J.

    2017-10-01

    A set of zinc-silicate glasses with different ratios of Er-Yb as well amount of Zn was fabricated. The preparation of silver doped glasses was carried out using the Ag-Na ion-exchange method to enhance Er-Yb luminescence properties of the material. The samples were also annealed for 1-5 h to further support the creation of silver nanoparticles. Intensive absorption at 980 nm was observed in absorption spectra after ion exchange and annealing as well. Also luminescence spectra in the near-infrared range were measured and results showed positive effect of ion exchange process on luminescence properties. Luminescence intensity at 1530 nm was increased almost three times. Possible mechanisms responsible for the increase of the luminescence intensity are also discussed in this paper. We suggest that the enhancement of erbium luminescence intensity is caused by the energy transfer from isolated Ag+ ions to Er.

  8. Influence of Si ion implantation on structure and morphology of g-C3N4

    NASA Astrophysics Data System (ADS)

    Varalakshmi, B.; Sreenivasulu, K. V.; Asokan, K.; Srikanth, V. V. S. S.

    2016-07-01

    Effect of Si ion implantation on structural and morphological features of graphite-like carbon nitride (g-C3N4) was investigated. g-C3N4 was prepared by using a simple atmospheric thermal decomposition process. The g-C3N4 pellets were irradiated with a Si ion beam of energy 200 keV with different fluencies. Structural, morphological and elemental, and phase analysis of the implanted samples in comparison with the pristine samples was carried out by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) with energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques, respectively. The observations revealed that Si ion implantation results in a negligible change in the crystallite size and alteration of the network-like to the sheet-like morphology of g-C3N4 and Si ions in the g-C3N4 network.

  9. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  10. Graphene oxides prepared by Hummers', Hofmann's, and Staudenmaier's methods: dramatic influences on heavy-metal-ion adsorption.

    PubMed

    Moo, James Guo Sheng; Khezri, Bahareh; Webster, Richard D; Pumera, Martin

    2014-10-06

    Graphene oxide (GO), an up-and-coming material rich in oxygenated groups, shows much promise in pollution management. GO is synthesised using several synthetic routes, and the adsorption behaviour of GO is investigated to establish its ability to remove the heavy-metal pollutants of lead and cadmium ions. The GO is synthesised by Hummers' (HU), Hofmann's (HO) and Staudenmaier's (ST) methodologies. Characterisation of GO is performed before and after adsorption experiments to investigate the structure-function relationship by using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy coupled with elemental detection spectroscopy is used to investigate morphological changes and heavy-metal content in the adsorbed GO. The filtrate, collected after adsorption, is analysed by inductively coupled plasma mass spectrometry, through which the efficiency and adsorption capacity of each GO for heavy-metal-ion removal is obtained. Spectroscopic analysis and characterisation reveal that the three types of GO have different compositions of oxygenated carbon functionalities. The trend in the affinity towards both Pb(II) and Cd(II) is HU GO>HO GO>ST GO. A direct correlation between the number of carboxyl groups present and the amount of heavy-metal ions adsorbed is established. The highest efficiency and highest adsorption capacity of heavy-metal ions is achieved with HU, in which the relative abundance of carboxyl groups is highest. The embedded systematic study reveals that carboxyl groups are the principal functionality responsible for heavy-metal-ion removal in GO. The choice of synthesis methodology for GO has a profound influence on heavy-metal-ion adsorption. A further enrichment of the carboxyl groups in GO will serve to enhance the role of GO as an adsorbent for environmental clean-up. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Atrazine immobilization on sludge derived biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions.

    PubMed

    Zhang, Weihua; Zheng, Juan; Zheng, Pingping; Qiu, Rongliang

    2015-09-01

    Sludge derived biochars (SDBCs) may have the potential to simultaneously remove heavy metals and organic contaminants in relation to their various active sorption sites for both metal ions and organic compounds. SDBCs have been proven to provide a considerable capacity for immobilizing Pb(II) and Cr(VI) ions in solution, and in this study their ability to sorb atrazine, in addition to their corresponding interactive influences with coexisting metal ions, is extensively investigated. The results indicate that all atrazine adsorption isotherms fit well with the Freundlich equation, and the greatest value of 16.8 mg g(-1) sorption capacity occurred with SDBCs pyrolyzed at 400°C for 2h. The slow sorption kinetics fit well with the Lagergren's 2nd order reaction, and depend upon the initial atrazine concentration, indicating the significance of a site-specific process. The ionic strength-dependence of the atrazine adsorption behavior further consolidates the involvement of the mechanism of the H-bond with hydroxyl groups on SDBC. However, when Pb(II)/Cr(VI) metal ions coexist in solution, they substantially suppress atrazine adsorption, probably because the inner complex between the hydroxyl groups on SDBCs and Pb(II)/Cr(III) ions intrude the weak H-bond with atrazine. As a result, metal adsorption was found to be unaffected by the coexisting atrazine. Therefore, although SDBC is applicable for atrazine removal/immobilization in most of environmentally relevant conditions, a two-step process may be required if heavy metal ions coexist. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Ion deposition in Wasatch Mountain snow: Influence of Great Salt Lake and Salt Lake City

    NASA Astrophysics Data System (ADS)

    Arens, Seth J. T.

    The Wasatch Mountains are a unique place to study deposition of ions in snow because of proximity to Salt Lake City, UT, home to 1.1 million people, and Great Salt Lake, the world' fourth largest closed-basin saline lake. Prior study at low elevations of the Wasatch Mountains and in Salt Lake City indicates very high deposition (>1 mmol L-1) of chloride nitrate, sulfate, sodium and calcium ions in snow and rime during winter temperature inversions. At peak snowpack, concentrations (mueq L-1) and ecosystem loading (meq m-2) of major ion species (Cl-, NO3 -, SO42-, H+, NH4 +, Na+, Mg2+, K+, and Ca2+) were measured at five sites in 2008 and 16 sites in 2009 in the Wasatch Mountains. Concentrations and loading of these ion species in snow were up to an order of magnitude higher than previously observed and were likely derived from salts that precipitated from Great Salt Lake as its elevation decreased. Great Salt Lake has very high salinity dominated by concentrations of chloride, sulfate, sodium and magnesium. Moderately strong correlations existed between concentrations of these ions in snow and distance from Great Salt Lake, suggesting it as a major source of ion deposition in the Wasatch Mountains. Concentrations and ecosystem loading of nitrate in snow were lower than expected, but total winter inorganic nitrogen deposition (NO3- and NH4+) was similar to observations at Niwot Ridge in the Rocky Mountains of Colorado. In general, concentrations of ions in snow decreased with elevation while ecosystem loading of ions increased with elevation due to greater snow accumulation.

  13. Influence of inhalation anesthetics on ion transport across a planar bilayer lipid membrane.

    PubMed

    Hichiri, Kei; Shirai, Osamu; Kano, Kenji

    2012-01-01

    Ion transport from one aqueous phase (W1) to another (W2) across a planar bilayer lipid membrane (BLM) in the presence of inhalation anesthetics was electrochemically investigated. In the absence of inhalation anesthetics in the BLM system, no ion transport current flowed between W1 and W2 across the BLM. When inhalation anesthetics such as halothane, chloroform, diethyl ether and trichloroethylene were added to the two aqueous phases or the BLM, the ion transport current quite clearly appeared. When the ratio of the concentration of KCl or NaCl in W1 to that in W2 was varied, the zero current potential across the BLM was shifted. By considering the magnitude of the potential shift, we concluded that the ion transport current can be predominantly ascribed to the transport of Cl(-) across the BLM. Since the dielectric constants of these anesthetics are larger than that of the inner hydrophobic domain of the BLM, the concentration of hydrophilic electrolyte ions in the BLM increases with the increase in the dielectric constant of the inner hydrophobic domain caused by addition of these anesthetics. These situations lead to an increase in the ion permeability coefficient.

  14. Influence of ion source configuration and its operation parameters on the target sputtering and implantation process.

    PubMed

    Shalnov, K V; Kukhta, V R; Uemura, K; Ito, Y

    2012-06-01

    In the work, investigation of the features and operation regimes of sputter enhanced ion-plasma source are presented. The source is based on the target sputtering with the dense plasma formed in the crossed electric and magnetic fields. It allows operation with noble or reactive gases at low pressure discharge regimes, and, the resulting ion beam is the mixture of ions from the working gas and sputtering target. Any conductive material, such as metals, alloys, or compounds, can be used as the sputtering target. Effectiveness of target sputtering process with the plasma was investigated dependently on the gun geometry, plasma parameters, and the target bias voltage. With the applied accelerating voltage from 0 to 20 kV, the source can be operated in regimes of thin film deposition, ion-beam mixing, and ion implantation. Multi-component ion beam implantation was applied to α-Fe, which leads to the surface hardness increasing from 2 GPa in the initial condition up to 3.5 GPa in case of combined N(2)-C implantation. Projected range of the implanted elements is up to 20 nm with the implantation energy 20 keV that was obtained with XPS depth profiling.

  15. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  16. The influence of dose, dose-rate and particle fragmentation on cataract induction by energetic iron ions

    NASA Technical Reports Server (NTRS)

    Medvedovsky, C.; Worgul, B. V.; Huang, Y.; Brenner, D. J.; Tao, F.; Miller, J.; Zeitlin, C.; Ainsworth, E. J.

    1994-01-01

    Because activities in space necessarily involve chronic exposure to a heterogeneous charged particle radiation field it is important to assess the influence of dose-rate and the possible modulating role of heavy particle fragmentation on biological systems. Using the well-studied cataract model, mice were exposed to plateau 600 MeV/amu Fe-56 ions either as acute or fractionated exposures at total doses of 5-504 cGy. Additional groups of mice received 20, 360 and 504 cGy behind 50 mm of polyethylene, which simulates body shielding. The reference radiation consisted of Co-60 gamma radiation. The animals were examined by slit lamp biomicroscopy over their three year life spans. In accordance with our previous observations with heavy particles, the cataractogenic potential of the 600 MeV/amu Fe-56 ions was greater than for low-Linear Energy Transfer (LET) radiation and increased with decreasing dose relative to gamma rays. Fractionation of a given dose of Fe-56 ions did not reduce the cataractogenicity of the radiation compared to the acute regimen. Fragmentation of the beam in the polyethylene did not alter the cataractotoxicity of the ions, either when administered singly or in fractions.

  17. Influence of ion nitriding regime on mechanical properties and fracture mechanism of austenitic steel subjected to different thermomechanical treatments

    NASA Astrophysics Data System (ADS)

    Moskvina, Valentina; Astafurova, Elena; Ramazanov, Kamil; Melnikov, Eugene; Maier, Galina; Budilov, Vladimir

    2016-11-01

    The effect of thermomechanical treatments and low-temperature ion nitriding on mechanical properties and a fracture mechanism of stable austenitic stainless steel Fe-17Cr-13Ni-1.7Mn-2.7Mo-0.5Si-0.01C (in wt %, 316L-type) was investigated. Irrespective of initial heat treatments of steel and the regime of nitrogen saturation, traditional ion nitriding and nitriding with hollow cathode effect do not influence the stages of plastic flow and strain hardening; instead, they contribute to surface hardening of steel samples and reduce their plastic properties due to formation of a brittle surface layer. Ion nitriding leads to formation of a hardened surface layer with the microhardness of 12 GPa. Formation of a high-defective grain/subgrain structure with high dislocation density contributes to strengthening of steel samples under ion nitriding and formation of a thicker strengthened layer in comparison with fine-crystalline and coarse-crystalline samples.

  18. The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation.

    PubMed

    Horváth, Lorand; Beu, Titus; Manghi, Manoel; Palmeri, John

    2013-04-21

    The interface between the vapor and liquid phase of quadrupolar-dipolar fluids is the seat of an electric interfacial potential whose influence on ion solvation and distribution is not yet fully understood. To obtain further microscopic insight into water specificity we first present extensive classical molecular dynamics simulations of a series of model liquids with variable molecular quadrupole moments that interpolates between SPC/E water and a purely dipolar liquid. We then pinpoint the essential role played by the competing multipolar contributions to the vapor-liquid and the solute-liquid interface potentials in determining an important ion-specific direct electrostatic contribution to the ionic solvation free energy for SPC/E water-dominated by the quadrupolar and dipolar parts-beyond the dominant polarization one. Our results show that the influence of the vapor-liquid interfacial potential on ion solvation is strongly reduced due to the strong partial cancellation brought about by the competing solute-liquid interface potential.

  19. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.

    PubMed Central

    Partenskii, M B; Dorman, V; Jordan, P C

    1994-01-01

    The continuum three-dielectric model for an aqueous ion channel pore-forming peptide-membrane system is extended to account for the finite length of the channel. We focus on the electrostatic influence that a channel-forming peptide may exert on energy barriers to ion permeation. The nonlinear dielectric behavior of channel water caused by dielectric saturation in the presence of an ion is explicitly modeled by assigning channel water a mean dielectric constant much less than that of bulk water. An exact solution of the continuum problem is formulated by approximating the dielectric behavior of bulk water, assigning it a dielectric constant of infinity. The validity of this approximation is verified by comparison with a Poisson-Boltzmann description of the electrolyte. The formal equivalence of high ionic strength and high electrolyte dielectric constant is demonstrated. We estimate limits on the reduction of the electrostatic free energy caused by ionic interaction with the channel-forming peptide. We find that even assigning this region an epsilon of 100, its influence is insufficient to lower permeation free energy barriers to values consistent with observed channel conductances. We provide estimates of the effective dielectric constant of this highly polarizable region, by comparing energy barriers computed using the continuum approach with those found from a semi-microscopic analysis of a simplified model of a gramicidin-like charge distribution. Possible ways of improving both models are discussed. PMID:7529581

  20. Influence of reflected primary ions and nonunity sticking coefficients on film stoichiometry during ion-beam-sputter deposition of multicomponent targets

    NASA Astrophysics Data System (ADS)

    Theirich, D.; Engemann, J.

    1991-07-01

    lon-beam-sputter deposition (IBSD) experiments of WTi thin films with a single multicomponent WTi target have been performed. The Ti content of the deposited films is generally lower than the Ti content of the target. Calculations of Ti concentrations in the deposited films show that cosputter and sticking effects at the substrates can explain the loss of Ti in the films observed experimentally. IBSD offers the possibility to vary the angle of ion beam incidence on the target Θ and the polar emission angle of the sputtered particles J7. Both angles influence the stoichiometry of the deposited films additionally. Therefore IBSD is able to partially compensate the Ti loss in the deposited films caused by cosputtering and sticking effects.

  1. Influence of ion-associated water on the hydrolysis of Si-O bonded interactions.

    PubMed

    Wallace, Adam F; Gibbs, G V; Dove, Patricia M

    2010-02-25

    Previous studies show the demineralization of biogenic, amorphous, and crystalline forms of silica is enhanced in the presence of alkali and alkaline earth cations. The origins of this effect are difficult to explain in light of work suggesting predominantly weak outer-sphere type interactions between these ions and silica. Here we investigate the ability of M(II) aqua ions to promote the hydrolysis of Si-O bonded interactions relative to ion-free water using electronic structure methods. Reaction pathways for Si-O hydrolysis are calculated with the B3LYP and PBE1PBE density functionals at the 6-31G(d) and 6-311+G(d,p) levels in the presence of water, and both inner- and outer-sphere adsorption complexes of Mg(2+)(6H(2)O) and Ca(2+)(6H(2)O). All reaction trajectories involving hydrated ions are characterized by one or more surmountable barriers associated with the rearrangement of ion-associated water molecules, and a single formidable barrier corresponding to hydrolysis of the Si-O bonded interaction. The hydrolysis step for outer-sphere adsorption is slightly less favorable than the water-induced reaction. In contrast, the barrier opposing Si-O hydrolysis in the presence of inner-sphere species is generally reduced relative to the water-induced pathway, indicating that the formation of inner-sphere complexes may be prerequisite to the detachment of Si species from highly coordinated surface sites. The results suggest a two-part physical model for ion-promoted Si-O hydrolysis that is consistent with experimental rate measurements. First, a bond path is formed between the cation and a bridging oxygen site on the silica surface that weakens the surrounding Si-O interactions, making them more susceptible to attack by water. Second, Si-O hydrolysis occurs adjacent to these inner-sphere species in proportion to the frequency of ion-associated solvent reorganization events. Both processes are dependent upon the particular ion hydration environment, which suggests

  2. Investigations into the Influence of Heavy Ions on EMIC Wave Propagation in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Keller, S.; Kim, E. H.; Johnson, J.

    2015-12-01

    Geomagnetic pulsations in the Pc1 frequency range (0.2 to 5.0 Hz), which are known as electromagnetic ion cyclotron (EMIC) waves, are often observed at magnetically conjugate locations by spacecraft in the equatorial magnetosphere and ground-based stations. One difficulty in linking the propagation of detected radiation between these regions is the presence of stop bands near the heavy ion cyclotron resonance locations. Recent full wave calculations (Kim and Johnson, Full wave modeling of EMIC waves in the Earth's magnetosphere, 2015 AGU fall meeting) demonstrate how EMIC waves propagate to higher magnetic latitudes in an electron-proton-He+ plasma. However, while the heavy ion concentration can be large during the solar maximum and geomagnetic storms, they adopted a 5% He+ plasma. In this study, we explore the roles of heavy ion (He+ and O+) concentrations on the levels of EMIC wave energy that reach lower altitudes using a two-dimensional, finite element, full wave model. The Poynting flux and polarization of the emissions are used to monitor the propagation and absorption of wave energy, as well as mode coupling between left- and right-hand circularly polarized modes. Due to the increase in heavy ion populations in the magnetosphere, the consequences that geomagnetic storms have on EMIC wave propagation are also discussed.

  3. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  4. The parameter influence of ion irradiation on the distribution profile of the defect in silicon films

    NASA Astrophysics Data System (ADS)

    Shemukhin, A. A.; Balaskshin, Yu. V.; Evseev, A. P.; Chernysh, V. S.

    2017-09-01

    As silicon is an important element in semiconductor devices, the process of defect formation under ion irradiation in it is studied well enough. Modern electronic components are made on silicon lattices (films) that are 100-300 nm thick (Chernysh et al., 1980; Shemukhin et al., 2012; Ieshkin et al., 2015). However, there are still features to be observed in the process of defect formation in silicon. In our work we investigate the effect of fluence and target temperature on the defect formation in films and bulk silicon samples. To investigate defect formation in the silicon films and bulk silicon samples we present experimental data on Si+ implantation with an energy of 200 keV, fluences range from 5 * 1014 to 5 * 1015 ion/cm2 for a fixed flux 1 μA/cm2 and the substrate temperatures from 150 to 350 K The sample crystallinity was investigated by using the Rutherford backscattering technique (RBS) in channeling and random modes. It is shown that in contrast to bulk silicon for which amorphization is observed at 5 × 1016 ion/cm2, the silicon films on sapphire amorphize at lower critical fluences (1015 ion/cm2). So the amorphization critical fluences depend on the target temperature. In addition it is shown that under similar implantation parameters, the disordering of silicon films under the action of the ion beam is stronger than the bulk silicon.

  5. Influence of electronic energy deposition on the structural modification of swift heavy-ion-irradiated amorphous germanium layers

    SciTech Connect

    Steinbach, T.; Schnohr, C. S.; Wesch, W.; Kluth, P.; Giulian, R.; Araujo, L. L.; Sprouster, D. J.; Ridgway, M. C.

    2011-02-01

    Swift heavy-ion (SHI) irradiation of amorphous germanium (a-Ge) layers leads to a strong volume expansion accompanied by a nonsaturating irreversible plastic deformation (ion hammering), which are consequences of the high local electronic energy deposition within the region of the a-Ge layer. We present a detailed study of the influence of SHI irradiation parameters on the effect of plastic deformation and structural modification. Specially prepared a-Ge layers were irradiated using two SHI energies and different angles of incidence, thus resulting in a variation of the electronic energy deposition per depth {epsilon}{sub e} between 14.0 and 38.6 keV nm{sup -1}. For all irradiation parameters used a strong swelling of the irradiated material was observed, which is caused by the formation and growth of randomly distributed voids, leading to a gradual transformation of the amorphous layer into a sponge-like porous structure as established by cross-section scanning electron microscopy investigations. The swelling depends linearly on the ion fluence and on the value of {epsilon}{sub e}, thus clearly demonstrating that the structural changes are determined solely by the electronic energy deposited within the amorphous layer. Plastic deformation shows a superlinear dependence on the ion fluence due to the simultaneous volume expansion. This influence of structural modification on plastic deformation is described by a simple approach, thus allowing estimation of the deformation yield. With these results the threshold values of the electronic energy deposition for the onset of both structural modification and plastic deformation due to SHI irradiation are determined. Furthermore, based on these results, the longstanding question concerning the reason for the structural modification observed in SHI-irradiated crystalline Ge is answered.

  6. Influence of air ions on brain activity induced by electrical stimulation in the rat

    NASA Astrophysics Data System (ADS)

    Olivereau, J. M.; Lambert, J. F.; Truong-Ngoc, A.

    1981-03-01

    The brain induced activity was studied in 18 rats wearing chronically skull implanted electrodes. The stimulating factor was various electrical stimulations of the mesencephalic reticular activating formation, given during the slow wave state of sleep. The results of 300 stimulations were measured by amplitude and frequency changes in the EEG simultaneously recorded. Animals previously exposed to positive air ions (3 weeks 80,000 ions/ml) exhibited lowered excitability of the reticulocortical system. Significantly higher stimulations were necessary to induce arousal. Negative air ions induced more intricate effects: brain excitability was lowered when tested with weak stimulations, but normal when evaluated with medium high level stimilations. Sleep seems first more stable but as stimulation increases, arousal is soon as effective as in controls. These results are in agreement with others findings in behavioral fields and partly explains them.

  7. Influence of argon and oxygen on charge-state-resolved ion energydistributions of filtered aluminum arcs

    SciTech Connect

    Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

    2006-03-23

    The charge-state-resolved ion energy distributions (IEDs) in filtered aluminum vacuum arc plasmas were measured and analyzed at different oxygen and argon pressures in the range 0.5 8.0 mTorr. A significant reduction of the ion energy was detected as the pressure was increased, most pronounced in an argon environment and for the higher charge states. The corresponding average charge state decreased from 1.87 to 1.0 with increasing pressure. The IEDs of all metal ions in oxygen were fitted with shifted Maxwellian distributions. The results show that it is possible to obtain a plasma composition with a narrow charge-state distribution as well as a narrow IED. These data may enable tailoring thin-film properties through selecting growth conditions that are characterized by predefined charge state and energy distributions.

  8. Influence of the isotopic composition of water on the hydration of ions

    SciTech Connect

    Korolev, V.P.; Krestov, G.A.

    1988-01-10

    The differences in the hydration of ions in H/sub 2/O and D/sub 2/O were examined as revealed in the enthalpies of the transfer of ions from H/sub 2/O into D/sub 2/O. Two methods of calculation were examined which reflected extreme points of view on the hydration of cations and anions in H/sub 2/O and D/sub 2/O; the method of resolving the enthalpies of transfer on the basis of the cesium-iodine scale was most effective. The differentiating action of the replacement of protium by deuterium in water on the hydration of ions consisted in the weakening of the positive hydration of cations and the intensification of the positive hydration of anions in D/sub 2/O in comparison with H/sub 2/O.

  9. Influence of lanthanide ion energy levels on luminescence of corresponding metalloporphyrins.

    PubMed

    Zhao, Huimin; Zang, Lixin; Guo, Chengshan

    2017-03-15

    Lanthanide (Ln) porphyrins exhibit diverse luminescence properties that have not been fully explained yet. A series of Ln ions (Ln ions = La(3+), Ce(3+), Pr(3+), Nd(3+), Sm(3+), Eu(3+), Gd(3+), Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), Yb(3+), and Lu(3+)) were coordinated with hematoporphyrin monomethyl ether (HMME), and their luminescence properties and related differences were studied. Spectral analysis indicated that all Ln-HMMEs exhibit fluorescence emission. Gd- and Lu-HMMEs were the only lanthanide-HMMEs displaying strong molecular π-π room-temperature phosphorescence (RTP) with quantum yield ΦP > 10(-3). Tb(3+) can also induce RTP from HMME but ΦP of Tb-HMME is much smaller (ΦP ∼ 10(-4)). The observed luminescence property differences were analyzed in detail, focusing on the 4f energy levels of Ln ions. These levels mostly lie below the lowest singlet (S1) and triplet (T1) excited states of HMME, resulting in energy transfer from the T1 state in HMME to Ln ions and, therefore, in the absence of RTP from the corresponding metalloporphyrins. Gd(3+) and Lu(3+) are the only lanthanide ions not possessing such 4f energy levels, avoiding T1 quenching in Gd- and Lu-HMMEs. Although Tb(3+) has low-lying 4f energy levels, the corresponding transition from the ground state is partly forbidden, resulting in weak energy transfer from HMME to Tb(3+) that accounts for the low RTP quantum yield of the corresponding complex. Thus, our results indicate that the luminescence property differences of lanthanide porphyrins are due to the disparate energy levels of the Ln ions.

  10. Renouvellement des eaux du fjord du Saguenay

    NASA Astrophysics Data System (ADS)

    Belzile, Melany

    variabilite saisonniere dans les profondeurs des evenements de renouvellement peuvent etre expliques par le cycle saisonnier de salinite des eaux presentes au seuil, qui est lui-meme influence par la saisonnalite de la circulation estuarienne du Saint-Laurent. Nous avons estime un temps typique de renouvellement du bassin interne de 2 mois, mais pouvant aller jusqu' a 6 mois maximum.

  11. The influence of different metal ions on light scattering properties of pattern microbial fuel cells' bacteria Desulfuromonas acetoxidans

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Olexsandr I.; Getman, Vasyl'B.; Ferensovyich, Yaroslav P.; Yaremyk, Roman Y.; Hnatush, Svitlana O.

    2011-09-01

    Microbial fuel cell (MFC) technologies represent the newest approach for generating electricity - bioelectricity generation from biomass using bacteria. Desulfuromonas acetoxidans are aquatic obligatory anaerobic sulfur-reducing bacteria that possess an ability to produce electric current in the processes of organic matter oxidation and Fe3+- or Mn4+- reduction. These are pattern objects for MFC systems. They could be applied as a highly effective and self-sustaining model of wastewater treatment which contains energy in the form of biodegradable organic matter. But wastewaters contain high concentrations of xenobiotics, such as different heavy metals that have a detrimental effect towards all living organisms. The influence of different concentrations of MnCl2×4H2O, FeSO4 CuSO4, CdSO4, ZnSO4 and PbNO3 on light scattering properties of aquatic D. acetoxidans bacteria on the base of their cells' size distribution and relative content has been investigated by the new method of measurement. The cell distribution curve was in the range of 0.4 - 1.4 μm. The most crucial changes of cell concentration dependences, compared with other investigated metal ions, have been observed under the influence of copper ions. The ability of D. acetoxidans bacteria to produce electric current upon the specific cultivation conditions and the influence of Fe2+ and Mn2+ has been verified.

  12. Influence of shear viscosity of quark-gluon plasma on elliptic flow in ultrarelativistic heavy-ion collisions.

    PubMed

    Niemi, H; Denicol, G S; Huovinen, P; Molnár, E; Rischke, D H

    2011-05-27

    We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio η/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in √S(NN)=200  GeV Au+Au collisions at RHIC is dominated by the viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP viscosity and insensitive to the hadronic viscosity.

  13. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    NASA Astrophysics Data System (ADS)

    Butenko, A.; Zion, E.; Kaganovskii, Yu.; Wolfson, L.; Richter, V.; Sharoni, A.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-01

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C+ and Xe+ ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the "activated" area around structural defects.

  14. Influence of ageing on Raman spectra and the conductivity of monolayer graphene samples irradiated by heavy and light ions

    SciTech Connect

    Butenko, A.; Zion, E.; Richter, V.; Sharoni, A.; Kaganovskii, Yu.; Wolfson, L.; Kogan, E.; Kaveh, M.; Shlimak, I.

    2016-07-28

    The influence of long-term ageing (about one year) on the Raman scattering (RS) spectra and the temperature dependence of conductivity has been studied in two series of monolayer graphene samples irradiated by different doses of C{sup +} and Xe{sup +} ions. It is shown that the main result of ageing consists of changes in the intensity and position of D- and G- and 2D-lines in RS spectra and in an increase of the conductivity. The observed effects are explained in terms of an increase of the radius of the “activated” area around structural defects.

  15. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation

    PubMed Central

    Fredholm, Yann C.; Karpukhina, Natalia; Brauer, Delia S.; Jones, Julian R.; Law, Robert V.; Hill, Robert G.

    2012-01-01

    Bioactive glasses are able to bond to bone through the formation of hydroxy-carbonate apatite in body fluids while strontium (Sr)-releasing bioactive glasses are of interest for patients suffering from osteoporosis, as Sr was shown to increase bone formation both in vitro and in vivo. A melt-derived glass series (SiO2–P2O5–CaO–Na2O) with 0–100% of calcium (Ca) replaced by Sr on a molar base was prepared. pH change, ion release and apatite formation during immersion of glass powder in simulated body fluid and Tris buffer at 37°C over up to 8 h were investigated and showed that substituting Sr for Ca increased glass dissolution and ion release, an effect owing to an expansion of the glass network caused by the larger ionic radius of Sr ions compared with Ca. Sr release increased linearly with Sr substitution, and apatite formation was enhanced significantly in the fully Sr-substituted glass, which allowed for enhanced osteoblast attachment as well as proliferation and control of osteoblast and osteoclast activity as shown previously. Studying the composition–structure–property relationship in bioactive glasses enables us to successfully design next-generation biomaterials that combine the bone regenerative properties of bioactive glasses with the release of therapeutically active Sr ions. PMID:21993007

  16. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila

    PubMed Central

    Berger, Sandra D.; Crook, Sharon M.

    2015-01-01

    Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current. PMID:26635592

  17. Activity of synthetic ion channels is influenced by cation-pi interactions with phospholipid headgroups.

    PubMed

    Weber, Michelle E; Elliott, Elizabeth K; Gokel, George W

    2006-01-07

    A suite of synthetic hydraphile ion channels has been used to probe the possibility of cation-pi interactions between the channel and the phospholipid bilayer. The hydraphiles selected for this study contained either no sidearm, aliphatic sidearms or aromatic sidearms that varied in electron-richness. An ion selective electrode (ISE) method was used to evaluate the ion transport ability of these hydraphiles across synthetic bilayers. Transport was dependent on sidearm identity. Ion transport activity for the aromatic sidechained compounds was greatest when the sidearms were electron rich and vesicles were prepared from 100% DOPC (trimethylammonium cation headgroup, overall neutral). When the lipid headgroups were made more negative by changing the composition from DOPC to 70 : 30 (w/w) DOPC : DOPA, transport by the aromatic-sidechained channels was reduced. Fluorescence studies showed that when the lipid composition changed, the headgroups experienced a different polarity, suggesting reorientation. The data are in accord with a stabilizing cation-pi interaction between the aromatic sidearm of the hydraphile channel and the ammonium phospholipid headgroup.

  18. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry

    EPA Science Inventory

    The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed ge...

  19. Single discharge of the matrix source of negative hydrogen ions: Influence of the neutral particle dynamics

    SciTech Connect

    Paunska, Ts.; Todorov, D. Shivarova, A.; Tarnev, Kh.

    2015-04-08

    The study presents two-dimensional (2D) fluid-plasma-model description of a planar-coil inductively-driven discharge, considered as a single element of a matrix source of volume-produced negative hydrogen ions. Whereas the models developed up to now have been directed towards description of the charged particle behavior in the discharge, including that of the negative ions, this model stresses on the role of the neutral particle dynamics and of the surface processes in the formation of the discharge structure. The latter is discussed based on comparison of results obtained for discharges in a flowing gas and at a constant gas pressure as well as for different values of the coefficient of atom recombination on the walls. The conclusions are that the main plasma parameters – electron density and temperature and plasma potential – determining the gas discharge regime stay stable, regardless of changes in the redistribution of the densities of the neutral particles and of the positive ions. With regards to the volume production of the ions, which requires high density of (vibrationally excited) molecules, the impact on the degree of dissociation of the coefficient of atom recombination on the wall is discussed.

  20. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila.

    PubMed

    Berger, Sandra D; Crook, Sharon M

    2015-01-01

    Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current.

  1. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry

    EPA Science Inventory

    The ions Na+, K+, Ca2+, Mg2+, Cl-, SO42-, and HCO3-/CO32- (referred to as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can be increased to harmful levels by a variety of anthropogenic activities that speed ge...

  2. Influence of defects and displacements in sapphire doped with Ag+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Zheng, Li-rong

    2015-12-01

    The Ag:Al2O3 composites are prepared by Ag+ ions implantation with the acceleration voltage of 35 kV. The formation of silver nanoparticle and the surface plasma resonance (SPR) effect are studied. The appearance of absorption bands demonstrates the formation of silver nanoparticles in Al2O3. Long-time sputtering due to the high fluency removes the surface layer, and the embedded Ag NPs appear on the surface though the majorities are in the deeper area. The fluorescence spectrum of Ag:Al2O3 evaluated by Gaussian fitting consists of three peaks: 365 nm, 403 nm and 471 nm. These bands should be attributed to defects produced by the matrix and embedded Ag+ ions. In addition, a strong peak at 693 nm is supposed to be R line for Al2O3 in the emission spectrum (VUV spectrum). The crystal structure and optical properties of ion implanted sapphire have been changed after ion implantation and it is analyzed by defects and displacements. Eventually, the SRIM program is used to simulate the growth of nanoparticles with four stages.

  3. Influence of ion sterics on diffusiophoresis and electrophoresis in concentrated electrolytes

    NASA Astrophysics Data System (ADS)

    Stout, Robert F.; Khair, Aditya S.

    2017-01-01

    We quantify the diffusiophoresis and electrophoresis of a uniformly charged, spherical colloid in a binary electrolyte using modified Poisson-Nernst-Planck equations that account for steric repulsion between finite sized ions. Specifically, we utilize the Bikerman (Bik) lattice gas model and the Carnahan-Starling (CS) and Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equations of state for monodisperse and polydisperse, respectively, hard spheres. We compute the phoretic mobility for weak applied fields using an asymptotic approach for thin diffuse layers, where ion steric effects are expected to be most prevalent. The thin diffuse layer limit requires λD/R →0 , where λD is the Debye screening length and R is the particle radius; this limit is readily attained for micron-sized colloids in concentrated electrolytic solutions. It is well known that the classic Poisson-Boltzmann (PB) model for pointlike, noninteracting ions leads to a prediction of a maximum in both the diffusiophoretic and electrophoretic mobilities with increasing particle zeta potential (at fixed λD/R ). In contrast, we find that ion sterics essentially eliminate this maximum (for reasonably attainable zeta potentials) and increase the mobility relative to PB. Next, we consider the more experimentally relevant case of a particle with a constant surface charge density and vary the electrolyte concentration, neglecting charge regulation on surface active sites. Rather surprisingly, there is little difference between the predictions of the four models (PB, Bik, CS, and BMCSL) for electrophoretic mobility in concentrated solutions, at reasonable surface charge densities (˜1 -10 μ C /cm2 ). This is because as the concentration increases, the zeta potential is reduced (to below the thermal voltage for concentrations above about 1 M) and therefore the diffuse layer structure is largely unaffected by ion sterics. For gradients of symmetric electrolytes (equal diffusivities, charge, and size

  4. Influence d'une substitution partielle du ciment par du laitier de hauts fourneaux sur la résistance des mortiers en milieu acide

    NASA Astrophysics Data System (ADS)

    Achoura, D.; Lanos, Ch.; Jauberthie, R.; Redjel, B.

    2004-11-01

    Le stockage de produits chimiques dans du béton présente souvent des problèmes de durabilité dus aux attaques chimiques. Inévitablement les concentrations élevées sont les plus dangereuses. Le but de notre étude est de déterminer les changements de phases qui apparaissent dans le béton lorsqu'on substitue une partie du ciment par du laitier de haut fourneaux. Les échantillons sont conservés dans des solutions acides différents anions (HCl, H{2}SO{4}, H{3}PO{4} et CH{3}COOH) et différentes concentrations (0,1; 0,25 et 0,5M). Les formations qui apparaissent sont déterminées par diffraction X et observées au MEB. Les solutions sulfatiques conduisent à une formation de gypse en surface et d'ettringite au contact de la matrice cimentaire. Avec l'acide acétique, il y a formation de calcium acétate hydrate sous forme spongieuse tandis que, avec l'acide phosphatique, la formation de calcium hydrogeno phosphate hydrate est très superficielle. Enfin, avec l'acide chlorhydrique, la surface du mortier est recouverte de chlorure de calcium dihydrate et d'hydroxyde de fer. Les résistances mécaniques sont plus ou moins affectées par la concentration mais aussi et surtout par la nature des acides avec dans l'ordre le plus agressif H{2}SO{4} puis HCl et CH{3}COOH enfin peu de modification pour H{3}PO{4}.

  5. Influence of Deposition Conditions on Fatigue Properties of Martensitic Stainless Steel with Tin Film Coated by Arc Ion Plating Method

    NASA Astrophysics Data System (ADS)

    Fukui, Satoshi; Yonekura, Daisuke; Murakami, Ri-Ichi

    The surface properties like roughness etc. strongly influence the fatigue strength of high-tensile steel. To investigate the effect of surface condition and TiN coating on the fatigue strength of high-strength steel, four-point bending fatigue tests were carried out for martensitic stainless steel with TiN film coated using arc ion plating (AIP) method. This study, using samples that had been polished under several size of grind particle, examines the influence of pre-coating treatment on fatigue properties. A 2-µm-thick TiN film was deposited onto the substrate under three kinds of polishing condition. The difference of the hardness originated in the residual stress or thin deformation layer where the difference of the size of grinding particle of the surface polishing. And it leads the transformation of the interface of the substrate and the TiN film and improves fatigue limit.

  6. The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells

    PubMed Central

    Helm, Alexander; Lee, Ryonfa; Durante, Marco; Ritter, Sylvia

    2016-01-01

    Damage to the endothelium of blood vessels, which may occur during radiotherapy, is discussed as a potential precursor to the development of cardiovascular disease. We thus chose human umbilical vein endothelial cells as a model system to examine the effect of low- and high-linear energy transfer (LET) radiation. Cells were exposed to 250 kV X-rays or carbon ions (C-ions) with the energies of either 9.8 MeV/u (LET = 170 keV/μm) or 91 MeV/u (LET = 28 keV/μm). Subculture of cells was performed regularly up to 46 days (~22 population doublings) post-irradiation. Immediately after exposure, cells were seeded for the colony forming assay. Additionally, at regular intervals, mitochondrial membrane potential (MMP) (JC-1 staining) and cellular senescence (senescence-associated β-galactosidase staining) were assessed. Cytogenetic damage was investigated by the micronucleus assay and the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. Analysis of radiation-induced damage shortly after exposure showed that C-ions are more effective than X-rays with respect to cell inactivation or the induction of cytogenetic damage (micronucleus assay) as observed in other cell systems. For 9.8 and 91 MeV/u C-ions, relative biological effectiveness values of 2.4 and 1.5 were obtained for cell inactivation. At the subsequent time points, the number of micronucleated cells decreased to the control level. Analysis of chromosomal damage by mFISH technique revealed aberrations frequently involving chromosome 13 irrespective of dose or radiation quality. Disruption of the MMP was seen only a few days after exposure to X-rays or C-ions. Cellular senescence was not altered by radiation at any time point investigated. Altogether, our data indicate that shortly after exposure C-ions were more effective in damaging endothelial cells than X-rays. However, late damage to endothelial cells was not found for the applied conditions and endpoints. PMID

  7. The Influence of C-Ions and X-rays on Human Umbilical Vein Endothelial Cells.

    PubMed

    Helm, Alexander; Lee, Ryonfa; Durante, Marco; Ritter, Sylvia

    2016-01-01

    Damage to the endothelium of blood vessels, which may occur during radiotherapy, is discussed as a potential precursor to the development of cardiovascular disease. We thus chose human umbilical vein endothelial cells as a model system to examine the effect of low- and high-linear energy transfer (LET) radiation. Cells were exposed to 250 kV X-rays or carbon ions (C-ions) with the energies of either 9.8 MeV/u (LET = 170 keV/μm) or 91 MeV/u (LET = 28 keV/μm). Subculture of cells was performed regularly up to 46 days (~22 population doublings) post-irradiation. Immediately after exposure, cells were seeded for the colony forming assay. Additionally, at regular intervals, mitochondrial membrane potential (MMP) (JC-1 staining) and cellular senescence (senescence-associated β-galactosidase staining) were assessed. Cytogenetic damage was investigated by the micronucleus assay and the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. Analysis of radiation-induced damage shortly after exposure showed that C-ions are more effective than X-rays with respect to cell inactivation or the induction of cytogenetic damage (micronucleus assay) as observed in other cell systems. For 9.8 and 91 MeV/u C-ions, relative biological effectiveness values of 2.4 and 1.5 were obtained for cell inactivation. At the subsequent time points, the number of micronucleated cells decreased to the control level. Analysis of chromosomal damage by mFISH technique revealed aberrations frequently involving chromosome 13 irrespective of dose or radiation quality. Disruption of the MMP was seen only a few days after exposure to X-rays or C-ions. Cellular senescence was not altered by radiation at any time point investigated. Altogether, our data indicate that shortly after exposure C-ions were more effective in damaging endothelial cells than X-rays. However, late damage to endothelial cells was not found for the applied conditions and endpoints.

  8. Influences of nitrification inhibitor 3,4-dimethyl pyrazole phosphate on nitrogen and soil salt-ion leaching.

    PubMed

    Yu, Qiaogang; Ye, Xuezhu; Chen, Yingxu; Zhang, Zhijian; Tian, Guangming

    2008-01-01

    An undisturbed heavy clay soil column experiment was conducted to examine the influence of the new nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), on nitrogen and soil salt-ion leaching. Regular urea was selected as the nitrogen source in the soil. The results showed that the cumulative leaching losses of soil nitrate-N under the treatment of urea with DMPP were from 57.5% to 63.3% lower than those of the treatment of urea without DMPP. The use of nitrification inhibitors as nitrate leaching retardants may be a proposal in regulations to prevent groundwater contaminant. However, there were no great difference between urea and urea with DMPP treatments on ammonium-N leaching. Moreover, the soil salt-ion leaching losses of Ca2+, Mg2+, K+, and Na+ were reduced from 26.6% to 28.8%, 21.3% to 27.8%, 33.3% to 35.5%, and 21.7% to 32.1%, respectively. So, the leaching losses of soil salt-ion were declined for nitrification inhibitor DMPP addition, being beneficial to shallow groundwater protection and growth of crop. These results indicated the possibility of ammonium or ammonium producing compounds using nitrification inhibitor DMPP to control the nitrate and nutrient cation leaching losses, minimizing the risk of nitrate pollution in shallow groundwater.

  9. Influence of swift heavy ion irradiation on the photoluminescence of Si-nanoparticles and defects in SiO2.

    PubMed

    Chulapakorn, Thawatchart; Sychugov, Ilya; Saveda Suvanam, Sethu; Linnros, Jan; Primetzhofer, Daniel; Hallén, Anders

    2017-09-15

    The influence of swift heavy ion (SHI) irradiation on the photoluminescence (PL) of silicon nanoparticles (SiNPs) and defects in SiO2-film is investigated. SiNPs were formed by implantation of 70 keV Si(+) and subsequent thermal annealing to produce optically active SiNPs and to remove implantation-induced defects. Seven different ion species with energy between 3-36 MeV and fluence from 10(11)-10(14) cm(-2) were employed for irradiation of the implanted samples prior to the thermal annealing. Induced changes in defect and SiNP PL were characterized and correlated with the specific energy loss of the employed SHIs. We find that SHI irradiation, performed before the thermal annealing process, affects both defect and SiNP PL. The change of defect and SiNP PL due to SHI irradiation is found to show a threshold-like behaviour with respect to the electronic stopping power, where a decrease in defect PL and an anticorrelated increase in SiNP PL after the subsequent thermal annealing are observed for electronic stopping exceeding 3-5 keV nm(-1). PL intensities are also compared as a function of total energy deposition and nuclear energy loss. The observed effects can be explained by ion track formation as well as a different type of annealing mechanisms active for SHI irradiation compared to the thermal annealing.

  10. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  11. Influence of swift heavy ion irradiation on the photoluminescence of Si-nanoparticles and defects in SiO2

    NASA Astrophysics Data System (ADS)

    Chulapakorn, Thawatchart; Sychugov, Ilya; Saveda Suvanam, Sethu; Linnros, Jan; Primetzhofer, Daniel; Hallén, Anders

    2017-09-01

    The influence of swift heavy ion (SHI) irradiation on the photoluminescence (PL) of silicon nanoparticles (SiNPs) and defects in SiO2-film is investigated. SiNPs were formed by implantation of 70 keV Si+ and subsequent thermal annealing to produce optically active SiNPs and to remove implantation-induced defects. Seven different ion species with energy between 3-36 MeV and fluence from 1011-1014 cm-2 were employed for irradiation of the implanted samples prior to the thermal annealing. Induced changes in defect and SiNP PL were characterized and correlated with the specific energy loss of the employed SHIs. We find that SHI irradiation, performed before the thermal annealing process, affects both defect and SiNP PL. The change of defect and SiNP PL due to SHI irradiation is found to show a threshold-like behaviour with respect to the electronic stopping power, where a decrease in defect PL and an anticorrelated increase in SiNP PL after the subsequent thermal annealing are observed for electronic stopping exceeding 3-5 keV nm-1. PL intensities are also compared as a function of total energy deposition and nuclear energy loss. The observed effects can be explained by ion track formation as well as a different type of annealing mechanisms active for SHI irradiation compared to the thermal annealing.

  12. Influence of ion attachment on the vertical distribution of the electric field and charge density below a thunderstorm

    NASA Astrophysics Data System (ADS)

    Qie, X.; Soula, S.; Chauzy, S.

    1994-12-01

    A numerical model called PICASSO [Production d'Ions Corona Au Sol Sous Orage (French) and Production of Corona Ions at the Ground Beneath Thundercloud (English)], previously designed, is used to describe the evolution of the principal electrical parameters below a thunderstorm, taking into account the major part played by corona ions. In order to improve the model restitution of a real situation, various improvements are performed: an initial vertical distribution of aerosol particles is introduced instead of the previously used uniform concentration; time and space calculation steps are adjusted according to the electric field variation rate; the upper boundary condition is improved; and the coefficients of ion attachment are reconsidered with an exhaustive bibliographic study. The influence of the ion attachment on aerosol particles, on the electric field and charge density aloft, is studied by using three different initial aerosol particle concentrations at ground level and two types of initial vertical distributions: uniform and non-uniform. The comparison between field data and model results leads to adjust the initial aerosol particle concentration over the experimental site at the value of 5000 cm-3 which appears to be highly realistic. The evolutions of the electric field and of the charge density at altitude are greatly influenced by the aerosol concentration. On the contrary, the surface intrinsic field, defined as the electric field that would exist underneath a thundercloud if there were no local charges, is weakly affected when the model is forced by the surface field. A good correlation appears between the success in the triggered lightning attempts and this intrinsic field evaluation. Therefore, when only the surface field is available, the model can be used in a triggered lightning experiment. Acknowledgements. The authors would like to thank Mr. V. G. Mikhalkovsky for his assistance in preparing the English version of the manuscript. Support for

  13. The influence of the conditions of ion exchange in CuSO4:Na2SO4 melt on the optical properties of surface layers of silicate glass

    NASA Astrophysics Data System (ADS)

    Demichev, I. A.; Sidorov, A. I.; Nikonorov, N. V.

    2015-08-01

    The influence of the temperature and duration of ion exchange in BK7 silicate glass in CuSO4:Na2SO4 melt on the optical properties of the glass surface layers has been investigated. It is shown that ion exchange occurs from the melt according to the Cu2+ ↔ 2Na+ scheme. Cu2+ ions penetrate the sample to a depth of about 1 µm. Reduction of Cu2+ ions near the glass surface gives rise to the Cu+ ↔ Na+ ion exchange in the glass. Measurements of refractive index profiles in the glass sample subjected to ion exchange have revealed the formation of two waveguides in the sample: near the surface and at a depth of more than 3 µm; the second waveguide is formed by Cu+ ions. It is shown that relatively low temperatures and short durations of ion exchange lead to the formation of copper molecular clusters Cu n in glass. An increase of ion exchange temperature and duration leads to decomposition of molecular clusters with formation of Cu2+ ions.

  14. Influence of energetic ions on tearing modes in a reversed field pinch

    NASA Astrophysics Data System (ADS)

    Cai, Huishan; Lin, Liang; Ding, Weixing; Anderson, J. K.; Brower, D. L.

    2015-02-01

    Tearing mode stability analysis in the presence of circulating energetic ions (CEI) is studied in the reversed field pinch (RFP) magnetic configuration. In contrast to the minimal effect of precessional drift of CEI on tearing modes in tokamaks, the effect of precessional drift of CEI on tearing modes is important in the RFP. It is found that the effects of CEI on tearing modes in RFP depend on their toroidal circulating direction, and have a strong relation to the pressure gradient of CEI. For co-CEI, tearing modes can be stabilized if the pressure gradient of energetic ions is sufficiently large, which is qualitatively consistent with experimental results in the Madison Symmetric Torus.

  15. Influence of Conducting Plate Boundary Conditions on the Transverse Envelope Equations Describing Intense Ion Beam Transport

    SciTech Connect

    Lund, S M; Bukh, B

    2003-07-23

    In typical diagnostic applications, intense ion beams are intercepted by a conducting plate associated with devices used to measure beam phase-space projections. This results in the transverse space-charge field near the plate being shorted out, rendering simple envelope models with constant space-charge strength inaccurate. Here we develop corrected envelope models based on analytical calculations to account for this effect on the space-charge term of the envelope equations, thereby removing a systematic source of error in the equations and enabling more accurate comparisons with experiment. For common intense beam parameters, we find that the correction occurs primarily in the envelope angles and that the effect can be large enough to degrade precision beam matching. Results are verified with 3D self-consistent PIC simulations based on intense beam experiments associated with driver developments for Heavy-Ion Fusion.

  16. Influence of ions on genome packaging and ejection: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Ali, I.; Marenduzzo, D.

    2011-09-01

    We, theoretically, investigate the effect of ions on the packing and ejection dynamics of flexible and semiflexible polymers from spherical viral capsids. We find that when the polymer charge is less screened, or the Debye length increases (corresponding to a buffer with low concentration of a monovalent salt, such as Na+), the packing becomes more difficult and it may stop midway. Ejection, instead, proceeds more easily if the electrostatic screening is small. On the other hand, more screening (corresponding, for example, to the addition of divalent ions such as Mg2 +) results in easier packing and slower ejection. We interpret this as resulting from electrostatic forces among the various polymer sections, which can be tuned with the type of salt present in the solution. We also discuss how the DNA structure inside the capsid changes due to screened electrostatic interactions.

  17. Influence of Magnet Multipole Field Components on Beam Dynamics in the JLEIC Ion Collider Ring

    SciTech Connect

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei; Zhang, Yuhong; Pilat, Fulvia C.; Wang, Min-Huey

    2016-05-01

    To get a luminosity level of a few 1033 cm-2ses₋1 at all design points of the Jefferson Lab Electron Ion Collider (JLEIC) project, small β* values in both horizontal and vertical planes are necessary at the Interaction Point (IP) in the ion collider ring. This also means large β in the final focus area, chromaticity correction sections, etc. which sets a constraint on the field quality of magnets in large beta areas, in order to ensure a large enough dynamic aperture (DA). In this context, limiting multipole field components of magnets are surveyed to find a possible compromise between the requirements and what can be realistically achieved by a magnet manufacturer. This paper describes that work. Moreover, non-linear field dedicated correctors are also studied to provide semi-local corrections of specific multipole field components.

  18. The Influence of Varied Amide Bond Positions on Hydraphile Ion Channel Activity

    PubMed Central

    Weber, Michelle E.; Wang, Wei; Steinhardt, Sarah E.; Gokel, Michael R.; Leevy, W. Matthew; Gokel, George W.

    2008-01-01

    Hydraphile compounds have been prepared in which certain of the amine nitrogens have been replaced by amide residues. The amide bonds are present either in the sidearm, the side chain, or the central relay. Sodium cation transport through phospholipid vesicles mediated by each hydraphile was assessed. All of the amide-containing hydraphiles showed increased levels of Na+ transport compared to the parent compound, but the most dramatic rate increase was observed for sidearm amine to amide replacement. We attribute this enhancement to stabilization of the sidearm in the bilayer to achieve a better conformation for ion conduction. Biological studies of the amide hydraphiles with E. coli and B. subtilis showed significant toxicity only with the latter. Further, the consistency between the efficacies of ion transport and toxicity previously observed for non-amidic hydraphiles was not in evidence. PMID:19169369

  19. The Influence of Trapped Ions and Non-equilibrium EDF on Dust Particle Charging

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    Dust particles charging in a low-pressure glow discharge was investigated theoretically with the help of model for trapped and free ions coupled with the self-consistent solution of Poisson equation for electric potential. Non-equilibrium (non-Maxwellian) character of electron energy distribution function depending on gas pressure and electric field was also taken into account on the basis of the solution of kinetic Boltzmann equation. The results were compared with the experimental measurements of dust particle charge depending on gas pressure. It was shown that the calculated effective charge, i.e. the difference of the dust particle charge and trapped ion charge, is in a fairly good agreement with the experimental data.

  20. Influence of magnetic fields on electron-Ion recombination at very low energies

    PubMed

    Gwinner; Hoffknecht; Bartsch; Beutelspacher; Eklow; Glans; Grieser; Krohn; Lindroth; Muller; Saghiri; Schippers; Schramm; Schwalm; Tokman; Wissler; Wolf

    2000-05-22

    Radiative recombination (inverse photoionization) is believed to be well understood since the beginning of quantum mechanics. Still, modern experiments consistently reveal excess recombination rates at very low electron-ion center-of-mass energies. In a detailed study on recombination of F6+ and C6+ ions with magnetically guided electrons we explored the yet unexplained rate enhancement, its dependence on the magnetic field B, the electron density n(e), and the beam temperatures T( perpendicular) and T( ||). The excess scales as T(-1/2)( perpendicular) and, surprisingly, as T(-1/2)( ||), increases strongly with B, and is insensitive to n(e). This puts strong constraints on explanations of the enhancement.

  1. Influence of IMF draping direction and crustal magnetic field location on Martian ion beams

    NASA Astrophysics Data System (ADS)

    Carlsson, E.; Brain, D.; Luhmann, J.; Barabash, S.; Grigoriev, A.; Nilsson, H.; Lundin, R.

    2008-05-01

    Data from the Ion Mass Analyzer (IMA) sensor of the ASPERA-3 instrument suite onboard Mars Express and data from the Magnetometer/Electron Reflectometer (MAG/ER) on Mars Global Surveyor have been analyzed to determine whether ion beam events (IBEs) are correlated with the direction of the draped interplanetary magnetic field (IMF) or the proximity of strong crustal magnetic fields to the subsolar point. We examined 150 IBEs and found that they are organized by IMF draping direction. However, no clear dependence on the subsolar longitude of the strongest magnetic anomaly is evident, making it uncertain whether crustal magnetic fields have an effect on the formation of the beams. We also examined data from the IMA sensor of the ASPERA-4 instrument suite on Venus Express and found that IBEs are observed at Venus as well, which indicates the morphology of the Martian and Venusian magnetotails are similar.

  2. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat.

    PubMed

    Vokurková, M; Rauchová, H; Dobešová, Z; Loukotová, J; Nováková, O; Kuneš, J; Zicha, J

    2016-01-01

    Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.

  3. Influence of impurity ions and magnetic field on the properties of freshly precipitated calcium carbonate.

    PubMed

    Hołysz, Lucyna; Chibowski, Emil; Szcześ, Aleksandra

    2003-08-01

    Static magnetic field (MF) effects on the properties of freshly precipitated calcium carbonate have been investigated in the presence of impurity ion Mg(2+), Fe(2+), or SO4(2-). One or both solutions, CaCl2 and Na2CO3, were exposure to MF (0.5T) for 20min at 20 degrees C. Then calcium carbonate was precipitated and zeta potential, pH and light absorbance (lambda=543.3 nm) were measured. The same parameters were also determined for the reference systems in which the solutions were not MF-treated. It was found that in all the systems tested MF effects as determined by the above mentioned parameters had appeared. They depended on the kind of the impurity ion present, as well as on which solution, CaCl2, Na2CO3 or both, MF interacted. For example, if Mg(2+) ion was present in CaCl2 solution, the largest shift in the zeta potential toward higher positive values was observed if Na2CO3 was MF-treated (e.g. from 2 to 12mV) and the same was true as for the maximum in the light absorbance and the pH increase. Interestingly, if (CaCl2 + Mg(2+)) was MF-treated pH of the slurry had decreased. Moreover, a correlation between above mentioned MF effects and the entropy of hydration of the ions has also been found. This points to the changes in the hydrating water structure caused by magnetic field.

  4. Influence of yttrium content on the location of rare earth ions in LYSO:Ce crystals

    NASA Astrophysics Data System (ADS)

    Ding, Dongzhou; Weng, Linhong; Yang, Jianhua; Ren, Guohao; Wu, Yuntao

    2014-01-01

    Single-crystal X-ray diffraction (SCD), X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray excited luminescence (XEL) measurements were performed to investigate structure details and segregation coefficients of (Lu1-xYx)2SiO5:Ce (x=0 at%, 8.7 at%, 25.7 at%, 44.7 at%, 65.7 at%, 87.9 at% and 100 at%). Y3+ cations were found to have a preferential occupation for RE1 site (7-oxygen-coordinated) over RE2 site (6-oxygen-coordinated), which results in a greater increase of cell parameter c than that of a with increase in Y content due to LYSO's microstructure characteristics. Results presented here revealed that the less the difference in electronegativity and effective ionic radius between the two ions, the easier substitution of one ion by the other, and hence the higher segregation coefficients. Besides, the contribution of luminescence of Ce1 and Ce2 in the whole XEL was evaluated, and the location of Ce3+ ion was discussed.

  5. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  6. Influence of soil type and extraction conditions on perchlorate analysis by ion chromatography.

    PubMed

    MacMillan, Denise K; Dalton, Shana R; Bednar, Anthony J; Waisner, Scott A; Arora, Prem N

    2007-02-01

    Perchlorate is a stable anion that has been introduced into the environment through activities related to its production and use as a solid rocket propellant. Perchlorate is thought to transport through soils without being adsorbed; thus, for determination of perchlorate in soil, samples are typically extracted with water prior to analysis. The completeness of extraction depends on perchlorate existing as a free ion within the soil matrix. In this study, perchlorate extraction efficiency was evaluated with five soil types under two different oxygen states. For each soil, 30% (w/w) slurries were prepared and equilibrated under either oxic or anoxic conditions prior to spiking with a stock solution of sodium perchlorate, and the slurries were then maintained for 1-week or 1-month. At the end of the exposure, slurries were centrifuged and separated into aqueous and soil phases. After phase separation, the soil was washed first with deionized water and then with 50mM NaOH, producing second and third aqueous phases, respectively. Perchlorate concentrations in the three aqueous phases were determined using ion chromatography. The results obtained from this study suggest that matrix interference and signal suppression due to high conductivity have greater effects upon observed perchlorate concentrations by ion chromatography than does perchlorate interaction with soil. Thus, a single water extraction is sufficient for quantitative determination of perchlorate in soil.

  7. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  8. Influence of iodine ions in drinking water on their excretion with urine.

    PubMed

    Borzecki, Andrzej; Borzecka, Halina; Zajaczkowska, Małgorzata; Smarkala, Beata; Sieklucka-Dziuba, Maria

    2002-01-01

    The purpose of the work was to appraise the correlation between magnitude of iodine excretion with urine and concentration of iodine ions in drinking water in the population living in the Lublin province. The tests were also performed among the citizens of the Zamość voivodship. Mean concentration of iodine in urine of the tested citizens was 132.0 micrograms/g creatinine. Mean value of I ions in drinking water was 27.5 micrograms/l. The obtained results of concentration of iodine both in urine and drinking water did not differ as shown in references. Statistically significant correlation between the measure of I excretion in urine and I ions concentration in drinking water was confirmed. There is no ascertained deficiency of iodine in Zamość region inhabitants. The concentration of iodine in drinking water from adjacent wells was fluctuating in wide limits, but did not differ from recommended norms. There is a positive correlation between concentration of iodine in drinking water and its level in excreted urine.

  9. Influence of yttrium content on the location of rare earth ions in LYSO:Ce crystals

    SciTech Connect

    Ding, Dongzhou; Weng, Linhong; Yang, Jianhua; Ren, Guohao; Wu, Yuntao

    2014-01-15

    Single-crystal X-ray diffraction (SCD), X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray excited luminescence (XEL) measurements were performed to investigate structure details and segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Ce (x=0 at%, 8.7 at%, 25.7 at%, 44.7 at%, 65.7 at%, 87.9 at% and 100 at%). Y{sup 3+} cations were found to have a preferential occupation for RE1 site (7-oxygen-coordinated) over RE2 site (6-oxygen-coordinated), which results in a greater increase of cell parameter c than that of a with increase in Y content due to LYSO's microstructure characteristics. Results presented here revealed that the less the difference in electronegativity and effective ionic radius between the two ions, the easier substitution of one ion by the other, and hence the higher segregation coefficients. Besides, the contribution of luminescence of Ce1 and Ce2 in the whole XEL was evaluated, and the location of Ce{sup 3+} ion was discussed. - Graphical abstract: Segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Cce:italic> at RT/ce:italic>. Display Omitted.

  10. Use of major ions to evaluate the hydrogeochemistry of groundwater influenced by reclamation and seawater intrusion, West Nile Delta, Egypt.

    PubMed

    Salem, Zenhom El-Said; Osman, Osman M

    2017-02-01

    The aim of this research is to evaluate the groundwater geochemistry in western Nile Delta area as an example of an aquifer influenced by reclamation and seawater intrusion. To conduct this study, 63 groundwater samples and one surface water sample from El Nubaria Canal were collected. To estimate the origin of dissolved ions and the geochemical processes influencing this groundwater, integration between land use change, pedological, hydrogeological, hydrogeochemical, and statistical approaches was considered. Results suggest that the groundwater flow regime changed from northeast and southwest directions around El Nubaria canal before 1966 to northern and northeastern directions due to newly constructed channel network. Soil salinity and mineral contents, seepage from irrigation canal, and seawater intrusion are the main factors controlling the groundwater chemistry. Statistically, the groundwater samples were classified into eight groups, one to four for the deep groundwater and five to eight for the shallow groundwater. The deep groundwater is characterized by two groups of chemicals (SO4-HCO3-Mg-Ca-K and Cl-Na), while the shallow groundwater groups of chemicals are Na-Cl-SO4 and K-HCO3-Ca-Mg. Both shallow groundwater and deep groundwater are mostly saturated with respect to carbonate minerals and undersaturated with respect to chloride minerals. Sulfate minerals are above the saturation limit in the shallow groundwater, but in the deep samples, these minerals are under the saturation limit. Ion exchange, carbonate production, mineral precipitation, and seawater intrusion are the geochemical processes governing the groundwater chemistry in the study area.

  11. Quantum chemical study of the photolysis mechanisms of sulfachloropyridazine and the influence of selected divalent metal ions.

    PubMed

    Shah, Shaheen; Zhang, Heming; Song, Xuedan; Hao, Ce

    2015-11-01

    Sulfonamides have been found in aquatic environments. Degradation of sulfachloropyridazine (SCP) mainly proceeds through direct and indirect photolysis in the aquatic environment. However, the mechanisms underlying the triplet photolysis of SCP and the influence of metal ions on the photolysis mechanism have not yet been fully explained. In this study, we elucidated the triplet photolysis mechanisms of SCP and the effects of three selected metal ions (Zn(2+), Ca(2+), and Cu(2+)) on the SCP photolysis mechanisms using quantum chemical calculation. Optimization of molecular structures and reaction pathways analysis of SCP were carried out at the B3LYP/6-31+G(d,p) level of theory. Two minimum energy pathways were investigated in the triplet photolysis of SCP. In Step 2 of Path-I, the photolysis product of SCP is a sulfur dioxide extrusion product, (4-(3-chloro-6-iminopyridazine-1(6H)-yl)aniline). The estimated activation energies of Step 2 and Step 3 of Path-I were much higher than in Path-II. Therefore, Path-II was found as the lowest energy pathway to obtain the SCP photoproducts, and Step 2 of Path-II was confirmed as the rate-determining step (RDS) in the photolysis mechanism of SCP. For the RDS of Path-II, computations with the three metal ions complexes (IM1-Cu(2+), IM1-Ca(2+), and IM1-Zn(2+)) show that the metal ions Cu(2+) and Ca(2+) promote triplet-sensitized photolysis of SCP by reducing the activation energy of RDS of Path-II, whereas Zn(2+) showed an inhibitory effect in photolysis of SCP by increasing the activation energy. Copyright © 2015. Published by Elsevier Ltd.

  12. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    NASA Astrophysics Data System (ADS)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  13. The temperature and carbonate ion influence on Pleistocene high latitude planktonic foraminiferal carbon isotopic records

    NASA Astrophysics Data System (ADS)

    Charles, C.; Foreman, A. D.; Munson, J.; Slowey, N. C.; Hodell, D. A.

    2014-12-01

    Establishing a credible record of the carbon isotopic composition of high latitude surface ocean DIC over ice ages has been an enormous challenge, because the possible archives of this important variable in deep sea sediments all incorporate complex effects of the biomineralization process. For example, culture experiments (by Spero and colleagues) demonstrate a strong temperature and carbonate ion effect on the carbon isotopic composition of G. bulloides--the taxon of planktonic foraminifera that is most abundant in the majority of subpolar sediment sequences. Here we capitalize on the fortuitous observation of exceptionally strong covariation between the oxygen and carbon isotopic composition of G. bulloides in multiple sediment sequences from the Benguela upwelling region. The covariation is most clear during Marine Isotopic Stage 3 (an interval when the isotopic composition of the seawater was least variable) and undoubtedly results from the precipitation of tests under variable conditions of temperature and carbonate ion. The unusually clear isotopic relationship in planktonic foraminifera observed off Namibia constitutes a field calibration of the biomineralization effects observed in culture, and we apply it to previously published high latitude carbon isotopic records throughout the Southern Ocean. We find that many of the excursions toward lower planktonic foraminiferal δ13C that have been interpreted previously as the upwelling of nutrient rich water during deglaciations are better explained as increases in upper ocean temperature and carbonate ion. Conversely, the excursions toward high δ13C during ice age intervals that have been interpreted previously as increased export production (purportedly stimulated by dust) are also better explained by temperature and carbonate ion variability. After removal of the inferred temperature and carbonate ion signal from the planktonic foraminiferal time series, the residual is essentially (but not exactly) the same

  14. Etude microdosimetrique de l'influence des materiaux sur l'efficacite biologique d'une source d'iode-125

    NASA Astrophysics Data System (ADS)

    Taschereau, Richard

    Cette these concerne les implants permanents pour la prostate. Les isotopes employes, le 103Pd et l'125I, semblent produire les memes resultats cliniques: le premier a cause d'une radiation plus efficace et le second a cause de sa demi-vie plus longue. La recherche utilise le cadre theorique de la microdosimetrie et des simulations Monte Carlo. Elle propose d'employer le spectre d'ejection dans le calcul de l'efficacite; ce changement fait passer l'efficacite relative du 103Pd de 10% a 5%. Elle montre ensuite qu'il est possible d'ameliorer l'efficacite de la radiation de 125I par l'exploitation des rayons X caracteristiques de la capsule. Une source amelioree faite de molybdene et d'yttrium est donnee en exemple. Elle procure une radiation de 5--7% plus efficace, ce qui surclasse les deux sources existantes. Les applications ne se limitent pas au traitement de la prostate; le traitement du melanome oculaire et la curietherapie endovasculaire pourraient en beneficier.

  15. Influence of surfactants on the microstructure and electrochemical performance of the tin oxide anode in lithium ion batteries

    SciTech Connect

    Sun, Yan-Hui; Dong, Pei-Pei; Liu, Shan; Nan, Jun-Min

    2016-02-15

    Highlights: • CTAB and SDS alter the formation of SnO{sub 2} from nanosheets to nanocubes during oxalate precipitation. • The CTAB concentration affects the SnO{sub 2} crystal growth direction, morphology and size. • The SnO{sub 2} anode synthesized using CTAB exhibited superior electrochemical performance. • Proposed a mechanism of influence of surfactant on SnO{sub 2} in the precipitation and annealing process. - Abstract: Different SnO{sub 2} micro–nano structures are prepared by precipitation using a surfactant-assisted process. The surfactants, such as cetyltriethylammonium bromide (CTAB) or sodium dodecyl benzene sulfonate (SDBS), can change the crystal growth direction and microstructure of SnO{sub 2} primary and secondary particles. Larger SnO{sub 2} nanosheets were synthesized without surfactant, and micro-fragments composed of small nanospheres or nanocubes were synthesized using CTAB and SDBS. The CTAB-assisted process resulted in smaller primary particles and larger specific surface area and larger pore volume, as a lithium-ion-battery anode that exhibits superior electrochemical performance compared to the other two anodes. Further investigation showed that the concentration of CTAB had a substantial influence on the growth of the crystal face, morphology and size of the SnO{sub 2} secondary particles, which influenced the electrochemical performance of the anode. A simple mechanism for the influence of surfactants on SnO{sub 2} morphology and size in the precipitation and annealing process is proposed.

  16. The influence of calcium ions on the development of acidity in corrosion product deposits on SIMFUEL, UO 2

    NASA Astrophysics Data System (ADS)

    Santos, B. G.; Noël, J. J.; Shoesmith, D. W.

    2006-05-01

    In order to clarify the influence of groundwater constituents on the formation of corrosion products and secondary phase deposits on corroding/dissolving nuclear fuel surfaces under waste disposal conditions we have investigated the influence of Ca 2+, present as CaCl 2. The influence of calcium ions on the anodic dissolution of SIMFUEL (doped uranium dioxide) has been characterized over the potential range 0-500 mV (vs. SCE). Through the use of X-ray photoelectron spectroscopy (XPS) the surface composition over this potential range has been determined. Ca 2+ was found not to influence the conversion of U IVO 2 to U1-2xIVU2xVO, but to suppress the subsequent formation of a U VI surface species which lead to the formation of a hydrated deposit, UO 3 · yH 2O. The adsorption of Ca 2+ on the UO 2 surface is believed to inhibit fuel dissolution either via inhibiting the stabilization of the cation precursor (UO 2(OH) 2) ads or by blocking the O 2- anion transfer reaction from the fuel surface.

  17. Factors influencing charge capacity of vanadium pentoxide thin films during lithium ion intercalation/deintercalation cycles

    SciTech Connect

    Alamarguy, D.; Castle, J. E.; Ibris, N.; Salvi, A. M.

    2007-11-15

    The intercalation of vanadium pentoxide by lithium ions leads to a change in optical properties, a process that is of value in thin-film electrochromic devices. In this study, films of V{sub 2}O{sub 5}, deposited on indium tin oxide (ITO) glass coupons by a sol-gel process, were challenged by increasing numbers of charge-discharge cycles ranging from 72 to 589 full cycles. The samples were characterized by x-ray photoelectron spectroscopy (XPS) and then examined in the deintercalated state by time-of-flight secondary ion mass spectroscopy (SIMS). XPS enabled measurement of the thickness and composition of the solid-electrolyte interface and provided evidence of the residual V{sup 4+} concentration within the top few nanometers of the surface. The SIMS profile gave direct information on the thickness of the films and on the thickness loss caused by rinsing the samples after the electrochemical exposure. Determination, by SIMS, of the concentration of lithium ions has enabled a correction to be made for the amount of inactive material within the electrochemically active region of the film. The SIMS depth profiles for lithium in the four samples are similar, with a marked buildup of Li at the interface with the ITO. This interphase zone had a thickness of {approx}27 nm and was electrochemically inactive, enabling a further correction to be made. Thus, by means of the XPS and the SIMS results the chemistry and thickness of the films could be fully characterized. The remaining inconsistency between capacity (between 35% and 100% of the anticipated charge) and number of cycles is ascribed to edge effects arising from the method used for production of the coupons.

  18. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport.

    PubMed

    Li, S Kevin; Zhang, Yanhui; Zhu, Honggang; Higuchi, William I; White, Henry S

    2005-04-01

    Recent in vitro and in vivo studies have suggested transscleral iontophoresis as a means for non-invasive drug delivery to the eye. However, there remains a lack of information of the iontophoretic transport behavior of the sclera. The objective of the present study was to investigate the effects of permeant concentration upon transscleral iontophoretic transport. Constant current direct current (DC) iontophoresis was conducted with rabbit sclera in vitro at permeant concentration ranging from 0.015 to 1.0 M in the donor chamber without background electrolyte at 0.4-4 mA (current density: 2-20 mA/cm2). PBS (0.15 M) was the receiver solution. Salicylate (SA) and tetraethylammonium (TEA) were the model ionic permeants, and mannitol was the neutral probe permeant. Conductivity experiments of SA and TEA solutions were performed to determine the effects of ion concentration upon SA and TEA electromobilities. Model simulations were carried out and compared with the experimental data. It was found that the fluxes of the ionic permeants increased linearly with the electric current but were relatively independent of their donor concentrations. Electric field-induced convective solvent flow (electroosmosis) in the sclera was observed to be from the anode to cathode, suggesting that the sclera is net negatively charge at neutral pH. For the studied permeants, electrophoresis was the main transport enhancing mechanism with electroosmosis as a secondary effect. No significant interaction between the permeants and sclera was observed that significantly altered electroosmosis in the membrane. Under the asymmetric donor and receiver conditions, the transference of the permeants could not be predicted by the concentrations of the ions in the donor and receiver chambers with the assumption of constant electric field in the membrane. The membrane ion concentrations were different from those in the chambers due to the requirement of charge neutrality in the membrane. Copyright (c

  19. Influence of calcium ions on the structural and magnetic properties of Cd-Mg ferrites nanoparticles.

    PubMed

    Zaki, H M; Al-Heniti, S

    2012-09-01

    Cadmium magnesium ferrites doped with calcium having the chemical formula Cd0.5Mg0.5-x Ca(x)Fe2O4 (0.0 < or = x < or = 0.3) were prepared by the Co-precipitation method. X-ray diffraction analysis confirmed the formation of a single phase with spinel crystal structure for the samples. The lattice parameter is determined for each composition and has been found to increase from 8.505 angstroms to 8.626 angstroms with increasing calcium concentration. Cation distribution for the studied ferrite system is proposed in terms of the structural and magnetic properties by means of X-ray diffraction (XRD), infrared spectroscopy (IR), vibrating sample magnetometer (VSM) and is found to be reliable. The experimental and theoretical lattice constants show the same trend with increasing calcium concentration indicating the validity of the proposed cation distribution. The analysis of infrared spectra indicates the presence of splitting in the absorption band which may be attributed to the presence of small amounts of Fe2+ ions in the ferrite system. The appearance of a shoulder around 700 cm(-1) suggests the presence of calcium ions in the tetrahedral site. The addition of non magnetic calcium ions in the ferrites suppressed the A-interaction and developed a B-B interaction, which is reflected in reducing the saturation magnetization in the present samples. The coercive field (H(c)) is also found to increase by increasing of Ca2+ concentration and has been explained on the bases of direct relationship with anisotropy constant.

  20. Influence of Multiple Genetic Polymorphisms on Genitourinary Morbidity After Carbon Ion Radiotherapy for Prostate Cancer

    SciTech Connect

    Suga, Tomo; Iwakawa, Mayumi; Tsuji, Hiroshi; Ishikawa, Hitoshi; Oda, Eisei; Noda, Shuhei; Otsuka, Yoshimi; Ishikawa, Atsuko; Ishikawa, Ken-Ichi; Shimazaki, Jun; Mizoe, Jun-Etsu; Tsujii, Hirohiko; Imai, Takashi

    2008-11-01

    Purpose: To investigate the genetic risk of late urinary morbidity after carbon ion radiotherapy in prostate cancer patients. Methods and Materials: A total of 197 prostate cancer patients who had undergone carbon ion radiotherapy were evaluated for urinary morbidity. The distribution of patients with dysuria was as follows: Grade 0, 165; Grade 1, 28; and Grade 2, 4 patients. The patients were divided (2:1) consecutively into the training and test sets and then categorized into control (Grade 0) and case (Grade 1 or greater) groups. First, 450 single nucleotide polymorphisms (SNPs) in 118 candidate genes were genotyped in the training set. The associations between the SNP genotypes and urinary morbidity were assessed using Fisher's exact test. Then, various combinations of the markers were tested for their ability to maximize the area under the receiver operating characteristics (AUC-ROC) curve analysis results. Finally, the test set was validated for the selected markers. Results: When the SNP markers in the SART1, ID3, EPDR1, PAH, and XRCC6 genes in the training set were subjected to AUC-ROC curve analysis, the AUC-ROC curve reached a maximum of 0.86. The AUC-ROC curve of these markers in the test set was 0.77. The SNPs in these five genes were defined as 'risk genotypes.' Approximately 90% of patients in the case group (Grade 1 or greater) had three or more risk genotypes. Conclusions: Our results have shown that patients with late urinary morbidity after carbon ion radiotherapy can be stratified according to the total number of risk genotypes they harbor.

  1. Influence of ion bombardment on structure and properties of TiZrN thin film

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Wei; Huang, Jia-Hong; Yu, Ge-Ping; Hsiao, Chien-Nan; Chen, Fong-Zhi

    2015-11-01

    The study is focused on the characterization of TiZrN thin film by controlling the behavior of ion bombardment. Thin films are grown using radio frequency magnetron sputtering process on Si wafer. The negative bias voltage ranging from -20 V to -130 V was applied to the substrate. The ion current density increases rapidly as substrate bias is lower than -60 V, then slightly increases as the critical value about -60 V is exceeded. At the substrate bias of -60 V, the ion current density is close to 0.56 mA/cm2. The resistivity measured by four-point probe decreases from conditions -20 V to -60 V and then increases for substrate bias increases from -60 V to -130 V. The resistivity of TiZrN films is contributed from the packing factor. The N/TiZr ratios about 1 were measured by Rutherford backscattering spectrometer, and the packing factors of TiZrN films can also be obtained by the results of RBS. Field Emission scanning electron microscope (FEG-SEM) is used to characterize the thickness and structure of the deposited TiZrN film. X-ray diffraction (XRD) is used to determine the preferred orientation and lattice parameter. The precursor results of XRD show that all the coating samples exhibited (1 1 1) preferred orientation, and the hardness values of TiZrN films were ranging from 20 to 40 GPa. To sum up the precursor studies, the TiZrN films which can improve the properties from TiN and ZrN is a new ceramic material with higher potential. Following the advance process and analysis research, the structure and properties can be correlated and as a reference for industry application.

  2. Influence of temperature on luminescence of terbium ions in LiNbO{sub 3}

    SciTech Connect

    Ryba-Romanowski, W.; Golab, S.; Dominiak-Dzik, G.; Palatnikov, M. N.; Sidorov, N. V.

    2001-06-04

    Single crystals of LiNbO{sub 3} doped with terbium were grown by the Czochralski method and their optical properties were examined. It has been found that, in contrast to isostructural LiTaO{sub 3}:Tb, the terbium ions in LiNbO{sub 3} exhibit intense luminescence at low temperatures only, up to about 150 K. At this temperature, a luminescence quenching mechanism with activation energy of 0.22 eV is switched on. As a consequence, the luminescence of LiNbO{sub 3}:Tb is reduced to a negligible level at room temperature. {copyright} 2001 American Institute of Physics.

  3. Influence of Magnetic Shear on the Collisional Current Driven Ion Cyclotron Instability.

    DTIC Science & Technology

    1984-07-05

    I DRIVEN ION CYCLOTRON INSTA9ILITY(U) NAVAL RESEARCH LAB MASHINOTON DC P SATYRNARAYRNA ET AL. S5 JUL 64 UNCLASSIFIED NRLD-NR-5345 FIG 2/9 L II 13J6...These results are verified by directly solving Eq. (14) using a numerical shooting code. We present the former results in the following. In Fig . 1 we...some light on the magnetic shear required to significantly reduce the growth rate, we plot in Fig . 2, the normalized growth rate versus the normalized

  4. Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals.

    PubMed

    Di Lieto, Alberto; Sottile, Alberto; Volpi, Azzurra; Zhang, Zhonghan; Seletskiy, Denis V; Tonelli, Mauro

    2014-11-17

    We investigated the effect of rare earth impurities on the cooling efficiency of Yb³⁺:LiYF₄ (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance.

  5. Factors that Influence Helical Preferences for Singly-Charged Gas-Phase Peptide Ions: The Effects of Multiple Potential Charge-Carrying Sites

    PubMed Central

    McLean, Janel R.; McLean, John A.; Wu, Zhaoxiang; Becker, Christopher; Pérez, Lisa M; Pace, C. Nick; Scholtz, J. Martin; Russell, David H.

    2009-01-01

    Ion mobility-mass spectrometry is used to investigate the structure(s) of a series of model peptide [M + H]+ ions to better understand how intrinsic properties affect structure in low dielectric environments. The influence of peptide length, amino acid sequence and composition on gas-phase structure is examined for a series of model peptides that have been previously studied in solution. Collision cross-sections for the [M + H]+ ions of Ac-(AAKAA)nY-NH2 (n = 3 – 6) and Ac-Y(AEAAKA)nF-NH2 (n = 2 – 5) are reported and correlated with candidate structures generated obtained using molecular modeling techniques. The [M + H]+ ions of the AAKAA peptide series each exhibit a single, dominant ion mobility arrival time distribution (ATD) which correlates to partial helical structures, whereas the [M + H]+ ions of the AEAAKA ion series are composed of ATDs which correlate to charge-solvated globules (i.e. the charge is coordinated or solvated by polar peptide functional groups). These data raise numerous questions concerning intrinsic properties (amino acid sequence and composition as well as charge location) that dictate gas-phase peptide ion structure, which may reflect trends for peptide ion structure in low dielectric environments, such as transmembrane segments. PMID:20000372

  6. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  7. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions.

    PubMed Central

    Nonnengässer, C; Holland, E M; Harz, H; Hegemann, P

    1996-01-01

    Chlamydomonas exhibits a sequence of a photoreceptor current and two flagellar currents upon stimulation with bright green flashes. The currents are thought to be a prerequisite for the well-known photophobic responses. In the preceding paper, we analyzed the kinetics of these currents and their dependence on extracellular divalent ions. Here, we show that the photoreceptor current can be carried by monovalent ions (K+ > NH4+ > Na+), provided that the driving force is high enough. The small residual photoreceptor current observed in the absence of Ca2+ is able to evoke flagellar currents at low extracellular pH. This demonstrates that signal transduction from the rhodopsin to the flagella is not inevitably dependent on extracellular Ca2+. Double-flash experiments exclude a contribution of intra-rhodopsin charge movements to the photoreceptor current signal. Evidence will be provided for the existence of nonlocalized K+ outward currents, which counterbalance the localized Ca2+ influx and repolarize the cell after a light flash. A model is presented that explains the different pathways for direction changes and phobic responses. PMID:8789110

  8. The nature of rhodopsin-triggered photocurrents in Chlamydomonas. II. Influence of monovalent ions.

    PubMed

    Nonnengässer, C; Holland, E M; Harz, H; Hegemann, P

    1996-02-01

    Chlamydomonas exhibits a sequence of a photoreceptor current and two flagellar currents upon stimulation with bright green flashes. The currents are thought to be a prerequisite for the well-known photophobic responses. In the preceding paper, we analyzed the kinetics of these currents and their dependence on extracellular divalent ions. Here, we show that the photoreceptor current can be carried by monovalent ions (K+ > NH4+ > Na+), provided that the driving force is high enough. The small residual photoreceptor current observed in the absence of Ca2+ is able to evoke flagellar currents at low extracellular pH. This demonstrates that signal transduction from the rhodopsin to the flagella is not inevitably dependent on extracellular Ca2+. Double-flash experiments exclude a contribution of intra-rhodopsin charge movements to the photoreceptor current signal. Evidence will be provided for the existence of nonlocalized K+ outward currents, which counterbalance the localized Ca2+ influx and repolarize the cell after a light flash. A model is presented that explains the different pathways for direction changes and phobic responses.

  9. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE PAGES

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  10. Influence of oxide particle network morphology on ion solvation and transport in "soggy sand" electrolytes.

    PubMed

    Das, Shyamal K; Bhattacharyya, Aninda J

    2010-05-27

    The role of oxide surface chemical composition and solvent on ion solvation and ion transport of "soggy sand" electrolytes are discussed here. A "soggy sand" electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate-methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the "expulsion" of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.

  11. Influence of Bi3+ ions on the excitation wavelength of the YVO4:Eu3+ matrix

    NASA Astrophysics Data System (ADS)

    Matos, Marcela G.; Rocha, Lucas A.; Nassar, Eduardo J.; Verelst, Marc

    2016-12-01

    This work used the non-hydrolytic sol-gel process to prepare co-activated Eu3+/Bi3+ in YVO4 phosphors. We employed X-ray diffraction, which confirmed a tetragonal structure, and photoluminescence to characterize the structure and investigate the photoluminescence properties of the YVO4:Eu3+,Bi3+ matrixes. The large band between 250 and 380 nm in the excitation spectrum of YVO4:Eu3+,Bi3+ corresponded to a ligand-metal charge transfer band (VO43- → Eu3+). Addition of Bi3+ ions increased the charge transfer band and intensified the emission of Eu3+ ions. The x and y color coordinates of the phosphors ranged from 0.60 to 0.68 and from 0.32 to 0.39, respectively. The emission spectrum displayed an intense red emission centered at 618.5 nm, due to the 5D0 → 7F2 transition of Eu3+. The optimal Bi3+ concentration in the phosphor was 1% in mol, which provided more intense emission and longer lifetime. The results indicated that YVO4:Eu3+,Bi3+ is a potential red phosphor with application as biological marker.

  12. Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy

    NASA Astrophysics Data System (ADS)

    Matsufuji, Naruhiro; Fukumura, Akifumi; Komori, Masataka; Kanai, Tatsuaki; Kohno, Toshiyuki

    2003-06-01

    The production of projectile fragments is one of the most important, but not yet perfectly understood, problems to be considered when planning for the utilization of high-energy heavy charged particles for radiotherapy. This paper reports our investigation of the fragments' fluence and linear energy transfer (LET) spectra produced from various incident ions using an experimental approach to reveal these physical qualities of the beams. Polymethyl methacrylate, as a substitute for the human body, was used as a target. A ΔE-E counter telescope with a plastic scintillator and a BGO scintillator made it possible to identify the species of fragments based on differences of various elements. By combining a gas-flow proportional counter with a counter telescope system, LET spectra as well as fluence spectra of the fragments were derived for each element down from the primary particles to hydrogen. Among them, the information on hydrogen and helium fragments was derived for the first time. The result revealed that the number of light fragments, such as hydrogen and helium, became larger than the number of primaries in the vicinity of the range end. However, the greater part of the dose delivered to a cell was still governed by the primaries. The calculated result of a simulation used for heavy-ion radiotherapy indicated room for improving the reaction model.

  13. Influence of the plasma environment on atomic structure using an ion-sphere model

    SciTech Connect

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.

  14. Opposite effects of electroporation of red blood cell membranes under the influence of zinc ions.

    PubMed

    Kozlova, Elena; Chernysh, Alexander; Moroz, Victor; Sergunova, Victoria; Gudkova, Olga; Fedorova, Mayya; Kuzovlev, Artem

    2012-01-01

    The goal of the study was to investigate the effects of zinc ions of various concentrations on the nanostructure of membrane of red blood cells in in vitro experiment. The suspension of red blood cells extracted from whole human blood was used. The calibrated electroporation and the atomic force microscopy (AFM) were used to analyse damage to membrane nanostructure. We studied the haemolysis after the electroporation at different zinc concentrations. A low concentration of zinc (0.15-0.5 mM) increased significantly the rate of haemolysis and reduced the residual level of non-haemolyzed cells. At high concentrations of zinc ions (0.5-10 mM), the rate constant was sharply reduced, at the same time the residual level increased. The relationship between haemoglobin coagulants and the zinc concentration was examined. High concentration of zinc caused haemoglobin aggregation. It was shown by AFM that the membrane nanostructure was essentially changed. It was experimentally established that there existed a special point of zinc concentration C = 0.5±0.1 mM at which the course of the conjugate processes on the membranes of red blood cells was changed.

  15. Influence of the plasma environment on atomic structure using an ion-sphere model

    NASA Astrophysics Data System (ADS)

    Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel

    2015-09-01

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.

  16. Contribution aux Methodes Analytiques des Substances a L'aide de Faisceaux de Particules Chargees

    NASA Astrophysics Data System (ADS)

    Saidi, Abdelmajid

    Nous avons vu les possibilites d'analyse par particules chargees des aerosols recueillis sur des filtres de type MILLIPORE. La meme technique a ete utilisee pour des filtres ayant servi a la filtration de l'eau du fleuve Saint-laurent. Deux techniques ont ete utilisees: (1) FAST (Forward Alpha Scattering Technique): pour analyser l'hydrogene, le carbone, l'oxygene et puis l'azote. Des alpha de 12 MeV ont ete utilises. (2) PIXE (Particle Induced X-ray Emission): pour analyser les elements moyens et lourds, dans ce cas des protons de 3 MeV ainsi que des ions d'argon de 1 et 1.6 MeV ont ete utilises. Les etudes ont montre que sous vide, la majorite des problemes proviennent des dommages causes par l'echauffement du a l'impact du faisceau sur le filtre. L'analyse quantitative par l'intermediaire du faisceau extrait peut presenter des difficultes en ce qui concerne les elements legers pour lesquels l'absorption des rayonnements caracteristiques dans l'atmosphere externe est importante. Les ions lourds se pretent mal aux analyses des aerosols du fait de leur limite de sensibilite. L'analyse directe de liquides par des protons est particulierement interessante puisqu'elle ne necessite aucune preparation prealable des echantillons. A cet effet, un programme de calcul de concentration des elements dans la solution a analyser a ete mis au point. Nous avons determine la limite de sensibilite de la methode PIXE pour les cibles minces (filtre) et pour le cas ou la matrice est de l'eau. Enfin, la technique FAST peut etre un complement de la technique PIXE.

  17. Diffusion des Metaux et Evolution Stellaire

    NASA Astrophysics Data System (ADS)

    Turcotte, Sylvain

    Nous presentons dans cette these des modeles d'evolution stellaire incorporant la diffusion microscopique de maniere consistante. Pour la premiere fois, on a calcule l'evolution d'etoiles en tenant compte en detail de l'impact des variations d'abondances sur leur structure. Nous utilisons des spectres monochromatiques pour chacun des elements les plus abondants dans un melange solaire pour recalculer l'opacite pour les abondances et les conditions locales dans l'interieur d'une etoile au cours de son evolution. Nos modeles montrent que la diffusion atomique des metaux a un effet important sur les opacites dan les etoiles de plus de 1.3Msolar ou l'abondance du fer et des autres elements du pic du fer varient substantiellement. Ces etoiles, sans rotation ou champ magnetique, sont proches des etoiles de type Fm-Am dans lesquelles on observe une legere surabondance d'elements du pic du fer en plus d'une sous-abondance de calcium, sous-abondance que l'on obtient egalement. Nous obtenons cependant des surabondances depassant un facteur 10 pour les etoiles de plus de 1.4Msolar ce qui suggere qu'il existe un ou plusieurs mecanismes limitant la diffusion microscopique. La surabondance du fer en surface cause une augmentation, qui peut atteindre un facteur sept, de l'opacite a la limite de la zone convective. Ceci cause un accroissement de la temperature effective et de la masse de la zone convective comparativement aux modeles n'incluant que la diffusion de l'helium. Il s'agit la du principal effet de la diffusion sur la structure interne de ces etoiles. La diffusions n'a pas d'influence sur l'evolution de coeur stellaire dans les etoiles significativement plus massives quie le Soleil. Nous avons verife que l'utilisation de modeles consistants avec diffusion n'apporte pas d'amelioration sensible aux modeles solaires. Les forces radiatives calculees a partir des spectres d'OPAL pour les elements du pic du fer representent une fraction importante de la gravite. On obtient des

  18. The changes of spectroscopic characteristics of sulfurreducing bacteria Desulfuromonas acetoxidans under the influence of different metal ions

    NASA Astrophysics Data System (ADS)

    Vasyliv, Oresta M.; Bilyy, Olexandr I.; Getman, Vasyl B.; Kushkevych, Ivan V.; Hnatush, Svitlana O.

    2011-10-01

    Desulfuromonas acetoxidans, which is regarded to the oldest microorganisms that exist in the Earth, are uncoloured gram-negative obligatory anaerobic bacteria that have an ability to reduce S0 to H2S. This process supports bacteria with sufficient amount of energy which they need for growth. At the same time high concentrations of hydrogen sulfide are very toxic towards all living organisms. Different metal ions that exist in surrounding environment in small concentrations are essential for microorganisms because they support normal functionality of them. But in high concentrations they have a detrimental influence on cell structure and it functions. Srains of D. acetoxidans bacteria that have high toxic metals resistance can neutralize the toxicity of hydrogen sulfide, which is the final product of dissimilative sulfurreduction, and these metals as the result of their particular binding and forming the insoluble precipitations. Light scattering changes and metals accumulation ability of D. acetoxidans bacterial cells under the influence of CuSO4, PbNO3, ZnSO4 and CdSO4 have been investigated. The changes of light scattering characteristics of bacterial D. acetoxidans cells on the base of their size distribution and relative content under the influence of investigated metal salts have been observed by the new method of measurement.

  19. Influence of residual pressure and ion implantation on the structure, elemental composition, and properties of (TiZrAlYNb)N nitrides

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Yakushchenko, I. V.; Sobol', O. V.; Beresnev, V. M.; Kupchishin, A. I.; Bondar, O. V.; Lisovenko, M. A.; Amekura, H.; Kono, K.; Oyoshi, K.; Takeda, Y.

    2015-08-01

    The nitrides of high-entropy alloys, (TiZrAlYNb)N, fabricated by cathodic vacuum arc evaporation are studied with electron microscopy, atomic force microscopy, laser scanning microscopy; energy-dispersive X-ray analysis, X-ray phase analysis, time-of-flight secondary-ion mass spectrometry; and hardness measurements. It is found that the deposition parameters influence the structure, surface morphology, element distribution, and mechanical properties. The structural—phase state of the coatings before and after the ion implantation of heavy negative gold ions Au- are compared.

  20. Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides.

    PubMed

    Tabb, David L; Huang, Yingying; Wysocki, Vicki H; Yates, John R

    2004-03-01

    The primary utility of trypsin digestion in proteomics is that it cleaves proteins at predictable locations, but it is also notable for yielding peptides that terminate in basic arginine and lysine residues. Tryptic peptides fragment in ion trap tandem mass spectrometry to produce prominent C-terminal y series ions. Alternative proteolytic digests may produce peptides that do not follow these rules. In this study, we examine 2568 peptides generated through proteinase K digestion, a technique that produces a greater diversity of basic residue content in peptides. We show that the position of basic residues within peptides influences the peak intensities of b and y series ions; a basic residue near the N-terminus of a peptide can lead to prominent b series peaks rather than the intense y series peaks associated with tryptic peptides. The effects of presence and position for arginine, lysine, and histidine are explored separately and in combination. Arg shows the most dominant effects followed by His and then by Lys. Fragment ions containing basic residues produce more intense peaks than those without basic residues. Doubly charged precursor ions have generally been modeled as producing only singly charged fragment ions, but fragment ions that contain two basic residues may accept both protons during fragmentation. By characterizing the influence of basic residues on gas-phase fragmentation of peptides, this research makes possible more accurate fragmentation models for peptide identification algorithms.

  1. Influence of Inorganic Ions and Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, influence of solution chemistries to the transport properties (aggregation and attachment behavior) of human adenovirus (HAdV) was investigated. Results showed isoelectric point (IEP) of HAdV in different salt conditions varied minimally, and it ranged from pH 3.5 ...

  2. Influence of Inorganic Ions and Aggregation and Adsorption Behaviors of Human Adenovirus

    EPA Science Inventory

    In this study, influence of solution chemistries to the transport properties (aggregation and attachment behavior) of human adenovirus (HAdV) was investigated. Results showed isoelectric point (IEP) of HAdV in different salt conditions varied minimally, and it ranged from pH 3.5 ...

  3. Birefringence measurement of glass ion-exchanged waveguides: burying depth or cover layer influence

    NASA Astrophysics Data System (ADS)

    Jamon, D.; Garayt, J. P.; Jordan, E.; Parsy, F.; Ghibaudo, E.; Neveu, S.; Broquin, J.-E.; Royer, F.

    2016-02-01

    This paper deals with an experimental non-destructive technique for the measurement of polarization behavior of integrated optical waveguides. It is based on a high resolution polarimeter associated to an ellipsometric-type calibration which allows determining the full state of polarization of the output light. A magneto-optic perturbation is also added to generate TE/TM mode beating, whose spatial period is directly linked to the modal TE/TM birefringence. This equipment is first qualified by the measurement of modal birefringence in totally or partially buried ion exchanged waveguides. The results show that the value of the birefringence varies as a function of the diffusion aperture width or with the burying depth. By adding a magneto-optical cover layer, consisting in magnetic nanoparticles doped silica matrix obtained by a sol gel process 1, we evidence a huge increase of the beating magnitude and a decrease of the modal birefringence.

  4. Influence of rare earth ions on microstructural and optical properties of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Riyajuddin, Sk.; Naseem, Swaleha; Khan, Wasi; Ahmad, Shabbir; Faizan, M.; Naqvi, A. H.

    2016-05-01

    Pure and 3% rare earth ions (Nd3+ & Gd3+) doped ZnO samples were synthesized by sol-gel method, followed by annealing at temperature 450°C for 2hr. The samples were characterized by XRD, FTIR and UV-visible spectroscopy. XRD result confirmed single phase nature of all samples with crystalline structure. The average crystallite size of the doped samples found to be decreases as caculated using Debye-Scherrer's formula. FTIR spectra indicate absorption band centered at 464 cm-1 which is attributed to Zn-O lattice vibration. It confirms the formaton of compounds. UV-visible spectroscopy was used to study the optical properties and band gap of the synthesised materials using Tauc's relation.

  5. In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction

    PubMed Central

    Fluri, Aline; Pergolesi, Daniele; Roddatis, Vladimir; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Many properties of materials can be changed by varying the interatomic distances in the crystal lattice by applying stress. Ideal model systems for investigations are heteroepitaxial thin films where lattice distortions can be induced by the crystallographic mismatch with the substrate. Here we describe an in situ simultaneous diagnostic of growth mode and stress during pulsed laser deposition of oxide thin films. The stress state and evolution up to the relaxation onset are monitored during the growth of oxygen ion conducting Ce0.85Sm0.15O2-δ thin films via optical wafer curvature measurements. Increasing tensile stress lowers the activation energy for charge transport and a thorough characterization of stress and morphology allows quantifying this effect using samples with the conductive properties of single crystals. The combined in situ application of optical deflectometry and electron diffraction provides an invaluable tool for strain engineering in Materials Science to fabricate novel devices with intriguing functionalities. PMID:26912416

  6. The influence of precursor films on CIGS films prepared by ion beam sputtering deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Fan, Ping; Liang, Guangxing; Zheng, Zhuanghao; Zhang, Dongping; Chen, Chaoming

    2013-12-01

    The CuInGa(CIG) precursor films were grown by ion beam sputtering continuously CuGa/CuIn and CuIn/CuGa, and then selenized CIG to fabricate CIGS absorber films on molybdenum substrates . They were annealed in the same vacuum chamber and under the same temperature (500°C). The CIGS thin films were characterized with X-ray diffraction (XRD), Energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) in order to study the microstructures, composition, surface morphology, electrical properties, respectively. The results showed that the CIGS thin films appeared smooth and compact with a sequence of Mo/CuGa/CuIn/Se, which were mainly of chalcopyrite structure. The CIGS thin films got the strongest diffraction peak intensity and were with good crystalline quality.

  7. Influence of He-ion irradiation on thin NiMn/FeNi exchange bias films

    NASA Astrophysics Data System (ADS)

    Cantelli, V.; von Borany, J.; Grenzer, J.; Fassbender, J.; Kaltofen, R.; Schumann, J.

    2006-04-01

    Using synchrotron x-ray diffraction and reflectivity, we studied the transition from the paramagnetic NiMn phase to the chemically ordered, antiferromagnetic L10 phase of NiMn/Fe19Ni81 thin films deposited on a Si/SiO2 substrate as a function of the annealing temperature. The transformation to a dominating L10-ordered NiMn film takes place between 300 and 400 °C irrespective of the irradiation. This is also consistent with magnetization reversal measurements of the corresponding permalloy layers. The benefit of the ion irradiation is a reduction of the mosaicity for both the NiMn and the permalloy film, and a smoothening of internal interfaces.

  8. Influence of He-ion irradiation on thin NiMn/FeNi exchange bias films

    SciTech Connect

    Cantelli, V.; Borany, J. von; Grenzer, J.; Fassbender, J.; Kaltofen, R.; Schumann, J.

    2006-04-15

    Using synchrotron x-ray diffraction and reflectivity, we studied the transition from the paramagnetic NiMn phase to the chemically ordered, antiferromagnetic L1{sub 0} phase of NiMn/Fe{sub 19}Ni{sub 81} thin films deposited on a Si/SiO{sub 2} substrate as a function of the annealing temperature. The transformation to a dominating L1{sub 0}-ordered NiMn film takes place between 300 and 400 deg. C irrespective of the irradiation. This is also consistent with magnetization reversal measurements of the corresponding permalloy layers. The benefit of the ion irradiation is a reduction of the mosaicity for both the NiMn and the permalloy film, and a smoothening of internal interfaces.

  9. Heating of a trapped ion by random fields: The influence of the micromotion

    NASA Astrophysics Data System (ADS)

    Brouard, S.; Plata, J.

    2001-04-01

    For an ion in a Paul trap, the effect of the micromotion on the heating by stray electric fields is studied analytically. A sequence of unitary transformations, set up from the solutions to the classical dynamics, leads to the exact quantum time propagator for each realization of the random classical field; subsequently, a statistical average is performed to obtain the fidelity of the motional ground state. In this nonperturbative approach, the role of the micromotion in the depopulation is understood as an effective change in the time dependence of the external field and an intrinsic modulation of the heating rate; it is shown that the consequent enhanced complexity of the dynamics can result in a reduction of the heating time.

  10. Influence of rare earth ions on microstructural and optical properties of ZnO nanostructures

    SciTech Connect

    Riyajuddin, Sk. Ahmad, Shabbir; Faizan, M.; Naseem, Swaleha; Khan, Wasi; Naqvi, A. H.

    2016-05-23

    Pure and 3% rare earth ions (Nd{sup 3+} & Gd{sup 3+}) doped ZnO samples were synthesized by sol-gel method, followed by annealing at temperature 450°C for 2hr. The samples were characterized by XRD, FTIR and UV-visible spectroscopy. XRD result confirmed single phase nature of all samples with crystalline structure. The average crystallite size of the doped samples found to be decreases as caculated using Debye-Scherrer’s formula. FTIR spectra indicate absorption band centered at 464 cm{sup −1} which is attributed to Zn-O lattice vibration. It confirms the formaton of compounds. UV-visible spectroscopy was used to study the optical properties and band gap of the synthesised materials using Tauc’s relation.

  11. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons.

    PubMed

    Zheng, Yi; Sanche, Léon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (∼4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  12. The influence of fluoride ions upon selected enzymes of protein metabolism in blood plasma of rabbits with hypercholesterolemia.

    PubMed

    Birkner, Ewa; Grucka-Mamczar, Ewa; Kasperczyk, Sławomir; Kasperczyk, Aleksandra; Stawiarska-Pieta, Barbara; Zalejska-Fiolka, Jolanta; Birkner, Beata

    2008-08-01

    Three-month studies were performed on 18 adult rabbits of New Zealand breed divided into three groups, with six animals in each: a control group on standard diet, a cholesterol group receiving 500 mg of cholesterol/100 g of feed per rabbit per 24 h (CH group), and a cholesterol + fluorine group (CH + F group) receiving 500 mg of cholesterol/100 g of feed per rabbit per 24 h and 3 mg of F(-)/kg of body weight per 24 h. The conducted studies proved that cholesterol in the applied dosage (500 mg cholesterol per rabbit per 24 h) has an atherogenic action. Fluoride ions administered together with a 500-mg cholesterol atherogenic diet inhibit the atheromatosic changes in the aorta. The concentration of plasma cholesterol was elevated in both study groups when compared to the control group but decreased in the CH + F group when compare to the CH group. The influence of fluoride ions has been examined upon the activity of alanine aminotransferase, aspartate aminotransferase, and glutamate dehydrogenase (GLDH) in the plasma in the liver of rabbits in the course of experimental hypercholesterolemia. Increase in the activity of study enzymes has been observed in the blood plasma, which may be due to damage occurring to hepatocytes of the animals examined (a statistically significant increase in the activity of GLDH in the plasma). In the liver, the inhibition of activity for all examined enzymes has been observed in the group of rabbits with hypercholesterolemia, which testifies the disturbances in protein metabolism in examined animals. The addition of sodium fluoride to the diet rich in cholesterol results in "removing the block" on those activities, which increase. We suppose that the permeability of the hepatocyte membrane was elevated, so the activities of examined enzymes increased in the plasma ("escape" to plasma). On the one hand, fluoride ions result in probable lesion of hepatocytes membranes; on the other hand, they inhibit the atheromatosic changes in the aorta.

  13. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    PubMed

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    SciTech Connect

    Zheng Yi; Sanche, Leon

    2010-10-21

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV ({approx}4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  15. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2010-10-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (˜4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.

  16. Influence of organic ions on DNA damage induced by 1 eV to 60 keV electrons

    PubMed Central

    Zheng, Yi; Sanche, Léon

    2011-01-01

    We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60 000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons. PMID:20969428

  17. Influence of pH, temperature and common ion on magnesium hydrogenurate octahydrate solubility.

    PubMed

    Babić-Ivancić, Vesna; Jendrić, Martina; Sostarić, Nives; Opacak-Bernardi, Teuta; Zorić, Sandra Tucak; Dutour Sikirić, Maja

    2010-03-01

    Physico-chemical investigation of urolithiasis today is mostly focused on applying physico-chemical description of precipitation processes to the stone formation with the aim to distinguish between stone formers and nonstone formers. This is done by calculating supersaturation for different solid phases which can be formed in urine using data obtained by urine analysis and existing solubility product, dissociation and complexation constants. In order for this approach to succeed it is of utmost importance that system is described as detailed as possible, i.e., that all species that can be formed are taken into account. Magnesium hydrogenurate octahydrate, Mg(C5H3N4O3)28H2O (Mg(HU)2.8H2O), is among species which can precipitate in the urine and for which solubility data doesn't exist. In order to fill this void crystals of Mg(C5H3N4O)2.8H2O phase I and phase II have been prepared and characterized. Solubility product constant of Mg(C5H3N4O3)2.8H2O phase I in water at 37 degrees C and phase II at different temperatures, pH and in different solvents have been determined by measuring total concentration of uric acid and magnesium ions in solutions at different time periods. Results show that in water at 37 degrees C thermodynamically less stable phase I is more soluble (Ksp = (5.64 +/- 0.20).10(-9) mol3 dm(-9)) than phase II (Ksp = (1.66 +/- 0.13).10(-9) mol3 dm(-9)). Solubility of Mg(HU)2.8H2O phase II increases with temperature. At equilibrium the solubility of phase II is the lowest in the presence of excess of magnesium ions, while solubility in the presence of uric acid is comparable with the one obtained in water.

  18. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels.

    PubMed

    Carswell, Casey L; Sun, Jiayin; Baenziger, John E

    2015-01-23

    Although the Torpedo nicotinic acetylcholine receptor (nAChR) reconstituted into phosphatidylcholine (PC) membranes lacking cholesterol and anionic lipids adopts a conformation where agonist binding is uncoupled from channel gating, the underlying mechanism remains to be defined. Here, we examine the mechanism behind lipid-dependent uncoupling by comparing the propensities of two prokaryotic homologs, Gloebacter and Erwinia ligand-gated ion channel (GLIC and ELIC, respectively), to adopt a similar uncoupled conformation. Membrane-reconstituted GLIC and ELIC both exhibit folded structures in the minimal PC membranes that stabilize an uncoupled nAChR. GLIC, with a large number of aromatic interactions at the interface between the outermost transmembrane α-helix, M4, and the adjacent transmembrane α-helices, M1 and M3, retains the ability to flux cations in this uncoupling PC membrane environment. In contrast, ELIC, with a level of aromatic interactions intermediate between that of the nAChR and GLIC, does not undergo agonist-induced channel gating, although it does not exhibit the expected biophysical characteristics of the uncoupled state. Engineering new aromatic interactions at the M4-M1/M3 interface to promote effective M4 interactions with M1/M3, however, increases the stability of the transmembrane domain to restore channel function. Our data provide direct evidence that M4 interactions with M1/M3 are modulated during lipid sensing. Aromatic residues strengthen M4 interactions with M1/M3 to reduce the sensitivities of pentameric ligand-gated ion channels to their surrounding membrane environment.

  19. The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth

    NASA Astrophysics Data System (ADS)

    Brezoczki, V. M.; Filip, G. M.

    2017-05-01

    The presence of the heavy metals toxic compounds (CuSO4 · 5H2O, ZnSO4 · 7H2O and 3CdSO4·8H2O) in water and soil can be observed by their negative effects on the germination and growth process for different vegetable (barley, oat, maize) who are used for human and animal consumption. This paper it aims the determination of germination and growth inhibition negative effects for triticale plants in the heavy metals ions presence by ecotoxicological laboratory tests. The triticale plants was chosen for their different characteristics to the other grasses respectively: a very good resistance for a wide range of diseases, an accelerated growth and a very good tolerance for aluminum ions presents in acid soils. The determinations were conducted step by step, first, we put the triticale grains in contact with the heavy metal solutions with different concentration then for 3 days we noticed the triticale germination inhibition effects and finally we noticed the growth inhibition process for triticale plants respectively in 7th and 9th day from the start of the experiment. At the end of the tests we can conclude that the triticale roots have a very great sensibility to a CuSO4 solutions compared to the effects for their stalks. A positive effect for triticale stalks we can see for low CuSO4 solution concentrations thus for 5 mg Cu/l the growth is 19,44%. A positive effect for triticale roots it can see for low ZnSO4 solution concentrations so for 5 - 15 mg Zn/l the growth is 24,4%. In the presence of the CdSO4 solution all the processes are inhibited (germination and growth for triticale plants) even for a low concentrations for this toxic.

  20. Diffusion incohérente des neutrons : modèles analytiques pour la dynamique interne des protéines

    NASA Astrophysics Data System (ADS)

    Bicout, D. J.

    2005-11-01

    La dynamique interne des protéines joue un rôle central dans la stabilité, la fonction et l'activité biologique de ces biomolécules. Il est maintenant établi que les fluctuations d'états conformationnels des protéines influencent fortement la plupart des réactions biochimiques et s'accompagnent d'une augmentation brutale des déplacements carrés moyens des atomes au dessus de la température de la transition dynamique. Dans cette contribution, nous présentons une revue critique de quelques modèles théoriques couramment utilisés dans la littérature pour l'analyse des mouvements internes des protéines et la description de la transition dynamique.

  1. Influence of structural ordering on ion transport in BiO0.5F2.0 bismuth oxyfluoride

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.

    2010-09-01

    The influence of structural defect ordering on ionic conductivity (σ) in the cubic (fluorite) modification of BiO0.5F2.0 oxyfluoride has been investigated. Upon cooling, the disordered fluorite BiO0.5F2.0 phase undergoes a reversible transition to an ordered form. This transition manifests itself as a jump in the temperature dependence σ( T) near 583 ± 6 K. The ordering of structural defects deteriorates the characteristics of ion transport in BiO0.5F2.0. At 500 K, the σ value for the ordered phase is 1 × 10-4 S/cm, whereas an extrapolation to this temperature for the disordered phase gives σ = 4 × 10-4 S/cm.

  2. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code.

    PubMed

    Dos Santos, M; Clairand, I; Gruel, G; Barquinero, J F; Incerti, S; Villagrasa, C

    2014-10-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or decondensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with decondensed chromatin.

  3. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that the quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.

  4. The influence of silver ion exchange on the formation and luminescent properties of lead sulfide molecular clusters and quantum dots

    NASA Astrophysics Data System (ADS)

    Abdrshin, A. N.; Lipatova, Zh. O.; Kolobkova, E. V.; Sgibnev, E. M.; Nikonorov, N. V.

    2016-12-01

    PbS molecular clusters and quantum dots are formed by heat treatment in fluorophosphate glasses of the Na2O3-P2O5-Ga2O3-AlF3-ZnO(S)-PbF2 system with different lead concentrations. PbS molecular clusters are characterized by optical absorption in the range of 300-800 nm and low quantum yields, which decrease from 8.9 to 2.7% with a semiconductor component concentration. It is shown that the parameters of formation of quantum dots luminescing in the wavelength range of 1000-1500 nm are considerably different at different semiconductor component concentrations. The influence of silver ion exchange on the formation of PbS nanoparticles is studied. Introduction of silver stimulates the growth of molecular clusters, which is seen in the absorption spectra. A possible mechanism of interaction of silver nanoparticles with PbS quantum dots is presented.

  5. Influence of silver nanoparticles and liberated silver ions on nitrifying sludge: ammonia oxidation inhibitory kinetics and mechanism.

    PubMed

    Giao, Nguyen Thanh; Limpiyakorn, Tawan; Kunapongkiti, Pattaraporn; Thuptimdang, Pumis; Siripattanakul-Ratpukdi, Sumana

    2017-04-01

    Silver nanoparticles (AgNPs) are widely used in commercial products because of their excellent antimicrobial activity. Entrance of AgNPs and its released Ag ions (Ag(+)) into wastewater treatment plants could harm ammonia oxidation (AO) process resulting in environmental problems. This study investigated inhibitory kinetics and mechanism of AO from nitrifying sludge influenced by AgNPs and Ag(+). The findings demonstrated that AgNPs and Ag(+) adversely influenced on AO. Silver ions were more toxic to AO than AgNPs, which was indicated by the lower inhibitory constant (K i ) of 0.29 mg/L compared to that of AgNPs (K i of 73.5 mg/L). Over the experimental period of 60 h, AgNPs at 1, 10, and 100 mg/L released Ag(+) in the average concentrations of 0.059, 0.171, and 0.503 mg/L, respectively. Silver nanoparticles of 1-100 mg/L inhibited AO by 45-74%, whereas Ag(+) of 0.05-0.50 mg/L inhibited AO by 53-94%. This suggested that the AgNP toxicity mainly derived from the liberated Ag(+). Scanning electron microscopy results revealed that AgNPs attached on microbial cell surfaces, and both AgNPs and Ag(+) induced cell morphological change from rod shape to shorter rod shape. Transmission electron microscopy showed that AgNPs and Ag(+) diminished the thickness of the outer layer and reduced the density of internal parts of the exposed microbial cells, which could be the reasons for the morphology change. Live/dead results also confirmed that AgNPs and Ag(+) damaged membrane integrity of cells in the nitrifying sludge. This study suggested that the primary mechanism for toxicity of AgNPs was the liberation of Ag(+) and then both of silver species caused cell death.

  6. A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep.

    PubMed

    Wakamura, Tomoko; Sato, Maki; Sato, Akihiro; Dohi, Takahiro; Ozaki, Kazuto; Asou, Norio; Hagata, Shigeru; Tokura, Hiromi

    2004-01-01

    This study was conducted to examine whether negative air ions generated from pajamas would influence the rectal temperature and the immune system during night sleep. Nine females (aged 18-23 years) served as participants. They slept during the night in their homes, wearing the pajamas with generation of negative air ions (1260 ions/cm3) and with normal standard (520 ions/cm3). The sequence of wearing the pajamas was: first, standard pajamas; second, pajamas with negative air ions; and third, standard pajamas again, each being worn for three consecutive days. Rectal temperature in the pajamas with negative air ions tended to fall more significantly during the night-time (p = 0.068). Salivary IgA tended to be higher on waking when wearing pajamas with negative air ions (p = 0.094) and its effect continued even after standard pajamas were worn again during last three days. These results suggest that the rectal temperature could possibly be more reduced and the elevation of salivary IgA more marked if the pajamas with negative air ions are worn during nocturnal sleep.

  7. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  8. Influence du débit et de la répartition de dose sur l'incidence des cancers pulmonaires après inhalation d'émetteurs

    NASA Astrophysics Data System (ADS)

    Fritsch, P.; Dudoignon, N.; Morlier, J. P.; Monchaux, G.; Morin, M.

    1998-04-01

    We have discussed experimental results reported on the influence of dose rate and dose distribution on the incidence of lung tumors after inhalation exposure to α emitters. New experiments have been carried out to characterize the range of tumor risk which could vary over more than a factor 20 depending on the α activity of the inhaled particles. Long term effects induced in rats after inhalation of poorly soluble 237NpO2 and industrial PuO2 with a similar granulometry will be compared, the specific activities of which varying within a factor 500. Nous avons rapporté les différentes données expérimentales de cancérogenèse pulmonaire qui montrent une variation du risque d'induction des tumeurs après inhalation de radionucléides émetteurs α selon le débit et la répartition de dose. De nouvelles expérimentations ont été initiées afin de préciser ces variations qui s'étalent sur plus d'un facteur 20. Elles consistent à comparer les effets induits chez le rat après exposition à des aérosols de 237NpO2 et de PuO2 d'origine industrielle peu solubles et de granulométrie analogue dont les activités spécifiques diffèrent d'un facteur 500.

  9. The Influence of Hydrogen Ion Concentration on Calcium Binding and Release by Skeletal Muscle Sarcoplasmic Reticulum

    PubMed Central

    Nakamaru, Yoshiaki; Schwartz, Arnold

    1972-01-01

    Calcium release and binding produced by alterations in pH were investigated in isolated sarcoplasmic reticulum (SR) from skeletal muscle. When the pH was abruptly increased from 6.46 to 7.82, after calcium loading for 30 sec, 80–90 nanomoles (nmole) of calcium/mg protein were released. When the pH was abruptly decreased from 7.56 to 6.46, after calcium loading for 30 sec, 25–30 nmole of calcium/mg protein were rebound. The calcium release process was shown to be a function of pH change: 57 nmole of calcium were released per 1 pH unit change per mg protein. The amount of adenosine triphosphate (ATP) bound to the SR was not altered by the pH changes. The release phenomenon was not due to alteration of ATP concentration by the increased pH. Native actomyosin was combined with SR in order to study the effectiveness of calcium release from the SR by pH change in inducing super-precipitation of actomyosin. It was found that SR, in an amount high enough to inhibit superprecipitation at pH 6.5, did not prevent the process when the pH was suddenly increased to 7.3, indicating that the affinity of SR for calcium depends specifically on pH. These data suggest the possible participation of hydrogen ion concentration in excitation-contraction coupling. PMID:5007263

  10. Influence of constraints on axial growth reduction of cylindrical Li-ion battery electrode particles

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jeevanjyoti; Please, Colin P.; Goriely, Alain; Chapman, S. Jonathan

    2015-04-01

    Volumetric expansion of silicon anode particles in a lithium-ion battery during charging may lead to the generation of undesirable internal stresses. For a cylindrical particle such growth may also lead to failure by buckling if the expansion is constrained in the axial direction due to other particles or supporting structures. To mitigate this problem, the possibility of reducing axial growth is investigated theoretically by studying simple modifications of the solid cylinder geometry. First, an annular cylinder is considered with lithiation either from the inside or from the outside. In both cases, the reduction of axial growth is not found to be significant. Next, explicit physical constraints are studied by addition of a non-growing elasto-plastic material: first, an outer annular constraint on a solid silicon cylinder, and second a rod-like inner constraint for an annular silicon cylinder. In both cases, it is found that axial growth can be reduced if the yield stress of the constraining material is significantly higher than that of silicon and/or the thickness of the constraint is relatively high. Phase diagrams are presented for both the outer and the inner constraint cases to identify desirable operating zones. Finally, to interpret the phase diagrams and isolate the key physical principles two different simplified models are presented and are shown to recover important qualitative trends of the numerical simulation results.

  11. Influence of dopant ion on localized relaxation of an oxygen vacancy in stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ohta, M.; Wigmore, J. K.; Nobugai, K.; Miyasato, T.

    2002-05-01

    It is well known that stabilized zirconia exhibits long-range transport of oxygen ions which gives rise to diffusion relaxation of oxygen vacancies. The internal friction and the change in sound velocity in single-crystal calcia-stabilized zirconia (CSZ) doped with 12 mol % CaO were measured for longitudinal sound waves in the frequency range from 20 Hz to 700 Hz using a vibrating reed technique. In the temperature range from 300 K to 700 K, the relaxation strength exhibits strong anisotropy with respect to the directions of the k vectors. As the frequency increases the internal friction peak and the change in sound velocity shift toward high temperature, and the relaxation strength remains constant. The results show that a smaller number of oxygen vacancies contribute to diffusion relaxation than to localized relaxation, which is attributed to hopping of bound oxygen vacancies within the local structure. Comparison of the results with those reported previously for yttria-stabilized zirconia (YSZ) doped with 9.5 mol % Y2O3, suggests that oxygen vacancies are more strongly bound by the local structure in CSZ than in YSZ.

  12. [Influence of erbium ion concentration on Judd-Ofelt parameters of Er3+ -doped tellurite glass].

    PubMed

    Zhou, Gang; Dai, Shi-xun; Yu, Chun-lei; Zhang, Jun-jie; Hu, Li-li; Jiang, Zhong-hong

    2006-03-01

    Er3+ -doped tellurite glasses with four different concentrations were fabricated, and the oscillator strength of Er3+ in the tellurite glasses were calculated through the absorption spectra of the glasses. The Judd-Ofelt intensity parameter omega i, spontaneous transition probability A, fluorescence branching ratio beta, and radiative lifetime tau rad of Er3+ were calculated on the basis of Judd-Ofelt theory, and the effect of the erbium ion concentration on the above optical parameters was also discussed. The fluorescence spectra of Er3+: (4)I(13/2)--> (4)I(15/2) transition and the lifetime of Er3+: (4)I(13/2) level of the samples were measured. The stimulated emission cross-section of (4)I(13/2)--> (4)I(15/2) transition of the samples was finally calculated by using McCumber theory. The results show that with the increase in the Er3+ concentration, the oscillator strength and spontaneous transition probability A of Er3+ increase, while the fluorescence branching ratio beta of Er3+ shows little difference. The stimulated emission cross-section of Er3+: (4)I(13/2)--> (4)I(15/2) transition of the samples changes slightly with the increase in the Er3+ concentration. All the fluorescence effective line widths for the four different Er3+ concentration samples are nearly 50 nm.

  13. Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2013-04-01

    Plasma immersion ion implantation (PIII) treatment is a novel method for immobilizing yeast on polymer surfaces by covalent linkage. This study of the immobilization of Saccharomyces cerevisiae in both rehydrated and cultured forms showed that the density of cell attachment on PIII treated polystyrene (PS) was strongly dependent on the pH of the incubation medium and was higher for rehydrated yeast. A study of the surface charge was undertaken to explain this result. A high density of cell attachment occurs in acidic conditions (pH 3-5) and a significantly reduced cell density occurs in neutral and alkaline buffers (pH 6-10) for both types of yeast. Force measurements using atomic force microscopy show that a negative charge is present on polystyrene after PIII treatment. The charge is close to zero at pH 3 to pH 5 and increasingly negative from pH 6 to pH 10. Both rehydrated yeast and cultured yeast have negative electrophoretic mobility in the pH range studied. The repulsive forces are weak in acidic buffers and stronger in neutral and alkaline buffers, in good agreement with the cell densities observed. Rehydrated yeast cells are found to be more hydrophobic than cultured yeasts in the same buffer. The higher hydrophobicity explains the higher attachment of rehydrated yeast compared to cultured yeast.

  14. Thermal stability of porcine pepsin influenced by Al(III) ion: DSC study

    NASA Astrophysics Data System (ADS)

    Pavelkić, V. M.; Beljanski, M. V.; Antić, K. M.; Babić, M. M.; Brdarić, T. P.; Gopčević, K. R.

    2011-12-01

    Differential scanning calorimetry (DCS) has been used to determine thermodynamic profile of pepsin and the in vitro effect of Al(III) ions. Thermograms of pepsin unfolding in the presence and absence of aluminum were used to determine the binding constant, K L, in the pepsin-aluminium model system. The thermodynamic parameters were derived from DSC profiles at different ligand concentrations (1, 5 and 10 mM). The temperatures of thermal transitions ( T m), calorimetric (Δ H cal) and van't Hoff enthalpy (Δ H VH), Gibbs free energy, Δ(Δ G), of Al(III) binding to pepsin, as well as an average number of ligands bound to the native protein, were obtained from DSC profiles too. Temperature-dependent changes in the protein structure were also monitored by native PAGE electrophoresis. Increasing the temperature causes the decrease in electrophoretic mobility. Increase in concentration of Al(III) decelerate the migration of pepsin samples on concentration dependent manner. Analysis showed that ligand binding increases thermal stability of protein.

  15. Influence of sulphate ion on the electrical conductivity of lithium -boro-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Narayana Reddy, C.; Chakradhar, R. P. S.

    2009-07-01

    The effect of Li2SO4 on the electrical conductivity of Li2O- B2O3- P2O5 glass system prepared by melt quenching technique has been studied. Frequency and temperature dependent conductivity measurements have been carried out in the frequency range of 10 Hz to 10 MHz and a temperature range of 523 K-603 K respectively. Conductivity in these glasses is governed by the incorporation of lithium salt in the macromolecular structure. It exhibits Arrhenius behavior over the entire temperature range. Addition of Li2SO4 expands the glass network. Consequently the conductivity increases while activation energy decreases. Impedance spectra of these glasses show a single semicircle indicating one type of conduction. The nature of conductivity behavior observed can be explained using Almond-West type power law with a single exponent σ (ω) = σ (0) + A ωs. The power law exponent (s) decreases with temperature. Scaling behavior has also been carried out using the reduced plots of conductivity with frequency, which suggests the ion transport mechanism remains unaffected by temperature and composition.

  16. Influence of rare-earth ions on SiO₂-Na₂O-RE₂O₃ glass structure.

    PubMed

    Johnson, J A; Benmore, C J; Holland, D; Du, J; Beuneu, B; Mekki, A

    2011-02-16

    Praseodymium and europium sodium silicate glasses of nominal composition (SiO(2))(0.70 - x)(Na(2)O)(0.30)(RE(2)O(3))(x), where RE is the rare earth and 0 ≤ x ≤ 0.10, were studied by neutron and high-energy x-ray scattering and classical molecular dynamics simulations. The observation of a significant x-ray intensity in doped as compared to un-doped glasses is indicative of RE-RE correlations at a distance of ∼ 3.7-3.9 Å, much shorter than would be expected for a homogeneous distribution, suggesting that clustering of the rare-earth cations occurs in both these glass systems at low concentrations. Above x = 0.075 (nominal), minimal changes in this region indicate that the RE atoms are incorporated much more randomly into the glass structure. The molecular dynamics simulations suggest that the rare-earth ions enter the sodium-rich regions in the sodium silicate glasses and act as modifiers. A cluster analysis performed on the model systems indicates that the tendency for clustering is higher in praseodymium-containing glasses than in the europium glasses.

  17. Transport quantique dans des nanostructures

    NASA Astrophysics Data System (ADS)

    Naud, C.

    2002-09-01

    structure des oscillations de conductance en fonction du flux du champ magnétique de période h/e dont l'amplitude est beaucoup plus importante que celle mesurée sur un réseau carré de même dimension. Cette différence constitue une signature d'un effet de localisation induit par le champ magnétique sur la topologie mathcal{T}3. Pour des valeurs spécifiques du champ magnétique, du fait des interférences destructives Aharonov-Bohm, la propagation des fonctions d'ondes est limitée à un ensemble fini de cellule du réseau appelé cage. De la dépendance en température des oscillations de période h/e mesurées sur le réseau mathcal{T}3 nous avons tiré une longueur caractéristique qui peut être rattachée au périmètre des cages. Un phénomène inattendu fut l'observation, pour des champs magnétiques plus importants, d'un doublement de fréquence des oscillations. Ces oscillations de période h/2e pouvant avoir une amplitude supérieure aux oscillations de période h/e, une interprétation en terme d'harmonique n'est pas possible. Enfin, l'influence de la largeur électrique des fils constituant le réseau et donc celle du nombre de canaux par brin a été étudiée en réalisant des grilles électrostatique. Les variations de l'amplitude des signaux en h/e et h/2e en fonction de la tension de grille ont été mesurés.

  18. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  19. Influence of inorganic ions and selected emerging contaminants on the degradation of Methylparaben: A sonochemical approach.

    PubMed

    Sasi, Subha; Rayaroth, Manoj P; Devadasan, Dineep; Aravind, Usha K; Aravindakumar, Charuvila T

    2015-12-30

    The study on the possible pathway of hydroxyl radicals mediated sonolytic degradation of paraben in water is reported. Methylparaben (MPB) which is the most utilized of paraben family is selected as a model emerging pollutant. The influence of common anions and some selected emerging contaminants that may coexist in typical water matrix on the degradation pattern is analyzed alongside. Among the anions, carbonate presents a negative influence which is attributed to the competition for OH radical. Some emerging contaminants also showed negative impact on degradation as was clear from HPLC data. The intermediates, analyzed by LC-Q-TOF-MS include hydroxylated and hydrolytic products. Three major steps (aromatic hydroxylation, hydroxylation at the ester chain and hydrolysis) are proposed to involve in the reaction of OH radical with MPB which ultimately leads to mineralization. The intensity of formation and decay of mono and dihydroxy products of MPB in the presence of additives have also been evaluated. COD analysis indicates a percentage reduction of 98% at 90 min of sonolysis and further increase in the degradation time resulted complete mineralization, which became evident from the mass spectrometric data. MTT assay revealed considerable decrease in the potential cytotoxicity.

  20. Influence of temperature and upper cut-off voltage on the formation of lithium-ion cells

    NASA Astrophysics Data System (ADS)

    German, Florian; Hintennach, Andreas; LaCroix, Annette; Thiemig, Denny; Oswald, Steffen; Scheiba, Frieder; Hoffmann, Michael J.; Ehrenberg, Helmut

    2014-10-01

    The influences of temperature on the formation losses and subsequent electrical performance of Lix(Ni1/3Co1/3Mn1/3)yO2 (NCM)/graphite lithium-ion cells were investigated. It was shown that the total capacity loss during formation of a full cell at 25 °C consists of losses on the positive and negative electrode to about one half each. The losses of the negative electrode (ca. 10%) are due to solid electrolyte interphase (SEI) formation on graphite but are masked by the losses of the positive side (ca. 20%) which are mainly caused by a kinetic inhibition of NCM and are theoretically reversible when the cell is discharged to very low potentials. The total loss of a full cell fits with the loss of the positive electrode. With increased temperature the ratio of losses on positive and negative electrode decreases as the diffusion coefficient of lithium in NCM increases. In total, an elevated formation temperature leads to increased irreversible losses on both electrodes and significantly lower cell performance of graphite. The upper cut-off voltage has an influence on the positive electrode formation losses in a reversible manner. The constituents of the SEI identified via the combination of XPS and FTIR are mainly RCH2OCO2Li, RCOOLi and LiF for the outer SEI and mainly Li2CO3, Li2O and LiF for the inner SEI.

  1. Influence of halogenation on the properties of uracil and its noncovalent interactions with alkali metal ions. Threshold collision-induced dissociation and theoretical studies.

    PubMed

    Yang, Zhibo; Rodgers, M T

    2004-12-15

    The influence of halogenation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both experimentally and theoretically. Bond dissociation energies of alkali metal ion-halouracil complexes, M+(XU), are determined using threshold collision-induced dissociation techniques in a guided ion beam mass spectrometer, where M+ = Li+, Na+, and K+ and XU = 5-fluorouracil, 5-chlorouracil, 6-chlorouracil, 5-bromouracil, and 5-iodouracil. The structures and theoretical bond dissociation energies of these complexes are determined from ab initio calculations. Theoretical calculations are also performed to examine the influence of halogenation on the acidities, proton affinities, and Watson-Crick base pairing energies. Halogenation of uracil is found to produce a decrease in the proton affinity, an increase in the alkali metal ion binding affinities, an increase in the acidity, and stabilization of the A::U base pair. In addition, alkali metal ion binding is expected to lead to an increase in the stability of nucleic acids by reducing the charge on the nucleic acid in a zwitterion effect as well as through additional noncovalent interactions between the alkali metal ion and the nucleobases.

  2. Influence of metal co-deposition on silicon nanodot patterning dynamics during ion-beam sputtering

    NASA Astrophysics Data System (ADS)

    Gago, R.; Redondo-Cubero, A.; Palomares, F. J.; Vázquez, L.

    2014-10-01

    We address the impact of metal co-deposition in the nanodot patterning dynamics of Si(100) surfaces under normal-incidence 1 keV Ar+ ion-beam sputtering (IBS). In particular, the effect of both the metal nature (Fe or Mo) and flux has been studied. Morphological and compositional evolution were followed by atomic force microscopy (AFM) and Rutherford backscattering spectrometry, respectively. For the same type of impurity, the dynamics is faster for a higher co-deposition flux, which also drives to larger asymptotic roughness and wavelength. Mo co-deposition yields rougher surfaces for a lower metal coverage than Fe and, remarkably, higher ordered patterns. X-ray photoelectron spectroscopy reveals the formation of silicide bonds even before pattern onset, stressing the relevant role of the affinity of the co-deposited metals for silicon. Further, current-sensing AFM performed at the initial and asymptotic stages indicates that the nanodot structures are metal-rich, resulting in coupled compositional and morphological patterns. These results are discussed in terms of phase segregation, morphology-driven local flux variations of impurities and silicide formation. This analysis reveals that the underlying (concurrent) mechanisms of pattern formation are complex since many processes can come into play with a different relative weight depending on the specific patterning conditions. From a practical point of view, it is shown that, by proper selection of the process parameters, IBS with metal co-deposition can be used to tune the dynamics and pattern properties and, interestingly, to produce highly ordered arrays.

  3. Influence of mixed alkalies on absorption and emission properties of Sm 3+ ions in borate glasses

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Thirupathi Naidu, D.; Vijaya Kumar, A.; Gopal, N. O.

    2005-04-01

    The present work aims to study the variation of Judd-Ofelt intensity parameters, radiative transition probabilities, absorption and emission cross sections with alkali content in three different Sm 3+-doped mixed alkali borate glasses. Mixed alkali borate glasses in the composition 67H 3BO 3· xLi 2CO 3(32- x)Na 2CO 3·1Sm 2O 3, 67H 3BO 3· xLi 2CO 3(32- x)K 2CO 3·1Sm 2O 3 and 67H 3BO 3· xNa 2CO 3(32- x)K 2CO 3·1Sm 2O 3 with x=8, 12, 16, 20 and 24 mol% were prepared by quenching melts consisting of the above chemicals (850-950 °C, 1-2 h) between two brass plates. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities and branching ratios. The predicted radiative transition probabilities ( Aed), branching ratios ( β) and integrated absorption cross-sections ( Σ) for certain transitions are reported. From the emission spectra, emission cross-sections ( σ) are obtained for the four transitions, 4G 5/2→ 6H 5/2, 4G 5/2→ 6H 7/2, 4G 5/2→ 6H 9/2 and 4G 5/2→ 6H 11/2 of Sm 3+ ion in these mixed alkali borate glasses. Optical band gaps ( Eopt) and absorption edges are reported for the three Sm 3+-doped mixed alkali borate glasses.

  4. The Influence of Gender, Age, Matriline and Hierarchical Rank on Individual Social Position, Role and Interactional Patterns in Macaca sylvanus at ‘La Forêt des Singes’: A Multilevel Social Network Approach

    PubMed Central

    Sosa, Sebastian

    2016-01-01

    A society is a complex system composed of individuals that can be characterized by their own attributes that influence their behaviors. In this study, a specific analytical protocol based on social network analysis was adopted to investigate the influence of four attributes (gender, age, matriline, and hierarchical rank) on affiliative (allogrooming) and agonistic networks in a non-human primate species, Macaca sylvanus, at the park La Forêt des Singes in France. The results show significant differences with respect to the position (i.e., centric, peripheral) and role (i.e., implication in the network cohesiveness) of an individual within a social network and hence interactional patterns. Females are more central, more active, and have a denser ego network in the affiliative social network tan males; thus, they contribute in a greater way to the cohesive structure of the network. High-ranking individuals are likely to receive fewer agonistic behaviors than low-ranking individuals, and high-ranking females receive more allogrooming. I also observe homophily for affiliative interactions regarding all attributes and homophily for agonistic interactions regarding gender and age. Revealing the positions, the roles, and the interactional behavioral patterns of individuals can help understand the mechanisms that shape the overall structure of a social network. PMID:27148137

  5. Tailoring Ion Charge State Distribution in Tetramethyltin Clusters under Influence of Moderate Intensity Picosecond Laser Pulse: Role of Laser Wavelength and Rate of Energy Deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.

    2017-07-01

    Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.

  6. Developpement des betons semi autoplacants a rheologie adaptee pour des infrastructures

    NASA Astrophysics Data System (ADS)

    Sotomayor Cruz, Cristian Daniel

    BSAP-I optimisés à travers une caractérisation complète des propriétés mécaniques et de la durabilité a été réalisée. A la suite de cette étude, les résultats obtenus nous permettent de conclure que : (1) L'utilisation d'un BSAP-I avec un gros granulat de 5 - 14 mm, des rapports E/L = 0,37 et S/G = 0,52 et une teneur en air de 6 à 9% a été possible en conférant un équilibre optimal fluidité / stabilité à l'état frais, ainsi qu'un niveau de thixotropie adéquate au chantier permettant d'optimiser la conception du coffrage des piliers de pont et de conférer des qualités de surfaces très acceptables de ces infrastructures. (2) La méthode adaptée pour l'essai L-Box contenant 2 barres et une vibration de 5 secondes a permis de bien caractériser la capacité de remplissage d'un BSAP-I. (3) L'utilisation d'un plan factoriel 23 a permis d'obtenir des modèles statistiques fiables, capables de prédire les propriétés rhéologiques à l'état frais et les résistances en compression des BSAP-I avec des dosages en liant entre 370 et 420 kg/m3, des rapports E/L entre 0,34 et 0,40 et S/G entre 0,47 et 0,53. (4) Des mesures de vitesse d'écoulement T40 d'un BSAP-I sont très semblables à celles d'un BAP. En plus, des valeurs T40 montrent une bonne corrélation linéaire avec celles de T400 mesurés dans la boîte L-Box. (5) À la frontière du BAP et du BCV, une bande rhéologique possédant un τ0 entre 30 et 320 Pa et un η entre 10 et 140 Pa.s a été trouvée pour la conception optimale des BSAP-I. (6) Les BSAP-I optimisés ont également conféré une très bonne performance à l'état frais, en permettant maintenir un bon équilibre entre la rhéologie et la stabilité dans le temps, lorsqu'on utilise une énergie de vibration minimale pour amorcer son écoulement. (7) À l'état durci Les BSAP-I ont conféré une bonne performance présentant des résistances mécaniques élevées et des niveaux négligeables de pénétration aux ions chlores

  7. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling.

    PubMed

    Schuricht, Falk; Borovinskaya, Ekaterina S; Reschetilowski, Wladimir

    2017-04-01

    Perfluorooctane sulfonate (PFOS) has attracted increasing concern in recent years due to its world-wide distribution, persistence, bioaccumulation and potential toxicity. The influence of sorbent properties on the adsorptive elimination of PFOS from wastewater by activated carbons, polymer adsorbents and anion exchange resins was investigated with regard to their isotherms and kinetics. The batch and column tests were combined with physicochemical characterization methods, e.g., N2 physisorption, mercury porosimetry, infrared spectroscopy, differential scanning calorimetry, titrations, as well as modeling. Sorption kinetics was successfully modelled applying the linear driving force (LDF) approach for surface diffusion after introducing a load dependency of the mass transfer coefficient βs. The big difference in the initial mass transfer coefficient βs,0, when non-functionalized adsorbents and ion-exchange resins are compared, suggests that the presence of functional groups impedes the intraparticle mass transport. The more functional groups a resin possesses and the longer the alkyl moieties are the bigger is the decrease in sorption rate. But the selectivity for PFOS sorption is increasing when the character of the functional groups becomes more hydrophobic. Accordingly, ion exchange and hydrophobic interaction were found to be involved in the sorption processes on resins, while PFOS is only physisorptively bound to activated carbons and polymer adsorbents. In agreement with the different adsorption mechanisms, resins possess higher total sorption capacities than adsorbents. Hence, the latter ones are rendered more effective in PFOS elimination at concentrations in the low μg/L range, due to a less pronounced convex curvature of the sorption isotherm in this concentration range. Copyright © 2016. Published by Elsevier B.V.

  8. How is (68)Ga labeling of macrocyclic chelators influenced by metal ion contaminants in (68)Ge/(68)Ga generator eluates?

    PubMed

    Šimeček, Jakub; Hermann, Petr; Wester, Hans-Jürgen; Notni, Johannes

    2013-01-01

    To assess the influence of Zn(2+) , Cu(2+) , Fe(3+) , Al(3+) , Ti(IV) , and Sn(IV) on incorporation of (68) Ga(3+) into pendant-arm macrocyclic chelators, the (68) Ga labeling of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-1,4,7-tris[methyl(2-carboxyethyl)phosphinic acid]) (TRAP), and 1,4,7-triazacyclononane-1-[methyl(2-carboxyethyl)phosphinic acid]-4,7-bis[methyl(2-hydroxymethyl)phosphinic acid] (NOPO), as well as their peptide conjugates, was investigated in the presence of varying concentrations of these metal ions. The (68) Ga labeling yield for carboxylate-type chelators NOTA and DOTA is decreased at lower metal ion contaminant concentrations compared with phosphinate-type chelators TRAP and NOPO. The latter are able to rapidly exchange coordinated Zn(II) with (68) Ga(3+) , as confirmed by mass spectrometry and (31) P NMR spectroscopy. (68) Ga labeling of Zn(II) complexes of TRAP and NOPO proceeds as efficient as labeling of neat NOTA; this applies also to the corresponding peptide conjugates of these chelators. This behavior results in substantially improved selectivity for Ga(3+) and, therefore, in more robust and reliable (68) Ga labeling procedures. In addition, none of the investigated chelators binds (68) Ge, rendering post-labeling purification protocols, for example, solid-phase extraction, a reliable means of removal of (68) Ge contamination from (68) Ga radiopharmaceuticals. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Maladie des vibrations

    PubMed Central

    Shen, Shixin (Cindy); House, Ronald A.

    2017-01-01

    Résumé Objectif Permettre aux médecins de famille de comprendre l’épidémiologie, la pathogenèse, les symptômes, le diagnostic et la prise en charge de la maladie des vibrations, une maladie professionnelle importante et courante au Canada. Sources d’information Une recherche a été effectuée sur MEDLINE afin de relever les recherches et comptes rendus portant sur la maladie des vibrations. Une recherche a été effectuée sur Google dans le but d’obtenir la littérature grise qui convient au contexte canadien. D’autres références ont été tirées des articles relevés. Message principal La maladie des vibrations est une maladie professionnelle répandue touchant les travailleurs de diverses industries qui utilisent des outils vibrants. La maladie est cependant sous-diagnostiquée au Canada. Elle compte 3 éléments : vasculaire, sous la forme d’un phénomène de Raynaud secondaire; neurosensoriel; et musculosquelettique. Aux stades les plus avancés, la maladie des vibrations entraîne une invalidité importante et une piètre qualité de vie. Son diagnostic exige une anamnèse minutieuse, en particulier des antécédents professionnels, un examen physique, des analyses de laboratoire afin d’éliminer les autres diagnostics, et la recommandation en médecine du travail aux fins d’investigations plus poussées. La prise en charge consiste à réduire l’exposition aux vibrations, éviter les températures froides, abandonner le tabac et administrer des médicaments. Conclusion Pour assurer un diagnostic rapide de la maladie des vibrations et améliorer le pronostic et la qualité de vie, les médecins de famille devraient connaître cette maladie professionnelle courante, et pouvoir obtenir les détails pertinents durant l’anamnèse, recommander les patients aux cliniques de médecine du travail et débuter les demandes d’indemnisation de manière appropriée. PMID:28292812

  10. Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements.

    PubMed

    De Barra, E; Hill, R G

    1998-03-01

    The influence of substituting sodium for calcium on the properties of glass polyalkenoate cements was investigated. Two series of glass compositions based on PSiO2 x QAl2O3 x 0.75P2O5 x (1 - Z)CaO x XCaF2ZNa2O were studied. The fluorine content was fixed at X = 0.50 and 0.75 and the sodium content varied by altering Z. The glass polyalkenoate cements formed from these glasses were characterized using a linear elastic fracture mechanics (LEFM) approach. In addition, compressive strengths of the cements were determined. The properties of the cements based on the high fluorine content glasses (X = 0.75) were relatively insensitive to sodium content. The Young's modulus, un-notched fracture strength and fracture toughness of the cements produced with the lower fluorine content glasses (X = 0.5) reduced with sodium content, which was consistent with sodium acting to disrupt ionic cross-linking in the polyacrylate matrix. The compressive strength was not as dependent on sodium content as the LEFM parameters.

  11. Technical Note: Influence of Compton currents on profile measurements in small-volume ion chambers

    SciTech Connect

    Tanny, Sean; Sperling, Nicholas; Parsai, E. Ishmael; Holmes, Shannon

    2015-10-15

    Purpose: This work is to evaluate the effects of Compton current generation in three small-volume ionization chambers on measured beam characteristics for electron fields. Methods: Beam scans were performed using Exradin A16, A26, and PTW 31014 microchambers. Scans with varying chamber components shielded were performed. Static point measurements, output factors, and cable only irradiations were performed to determine the contribution of Compton currents to various components of the chamber. Monte Carlo simulations were performed to evaluate why one microchamber showed a significant reduction in Compton current generation. Results: Beam profiles demonstrated significant distortion for two of the three chambers when scanned parallel to the chamber axis, produced by electron deposition within the wire. Measurements of ionization produced within the cable identified Compton current generation as the cause of these distortions. The size of the central collecting wire was found to have the greatest influence on the magnitude of Compton current generation. Conclusions: Microchambers can demonstrate significant (>5%) deviations from properties as measured with larger volume chambers (0.125 cm{sup 3} and above). These deviations can be substantially reduced by averaging measurements conducted at opposite polarities.

  12. Probing influence of mesophasic transformation on performance of self-emulsifying system: effect of ion.

    PubMed

    Patil, Sharvil S; Venugopal, Edakkal; Bhat, Suresh; Mahadik, Kakasaheb R; Paradkar, Anant R

    2012-02-06

    Self-emulsifying systems are mixtures of oils and surfactants, ideally isotropic, sometimes including cosolvents, which emulsify under conditions of gentle agitation, similar to those which would be encountered in the gastrointestinal tract. The process of self-emulsification has remained the center of attraction for most researchers. Controlled hydration of self-emulsifying systems shows formation of an intermediate gel phase which upon rupture forms an emulsion. Current work was undertaken to understand and explore the microstructural properties of intermediate gel phase which are believed to influence the performance (droplet size) of the final formulation. The effect of additives on microstructural properties of intermediate gel phase has also been investigated. Microstructural elucidation of hydrated samples of intermediate regimes was done by using techniques such as small angle X-ray scattering, differential scanning calorimetry and rheology. Samples from intermediate regimes showed formation of local lamellar structure which swelled with hydration. In the present work, the effect of addition of salt form of naproxen (sodium and potassium) and naproxen (base) on microstructural properties of intermediate regimes was investigated. Systems containing naproxen salts formed larger droplets whereas naproxen base formed smaller ones. Microstructural properties of intermediate lamellar structures were well correlated with performance of the final formulation. The current studies indicate that by controlling the properties of intermediate regimes optimized formulations with desired performance can be tailor-made.

  13. Influence of the hadronic phase on observables in ultrarelativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Aichelin, J.; Bleicher, M.; Stöcker, H.

    2017-06-01

    The hadronic phase in ultrarelativistic nuclear collisions has a large influence on final state observables like multiplicity, flow, and pt spectra, as studied in the UrQMD approach. In this model one assumes that a nonequilibrium decoupling phase follows a fluid dynamical description of the high density phase. Hadrons are produced assuming local thermal equilibrium and dynamically decouple during the hadronic rescattering until the particles are registered in the detectors. This rescattering of hadrons modifies every hadronic bulk observable. The apparent multiplicity of resonances is suppressed as compared to a chemical equilibrium freeze-out model, because the decay products rescatter. Therefore the resonances, which decay in the early hadronic phase, cannot be identified anymore by the invariant mass method. Stable and unstable particles change their momentum distribution by more than 30 % through rescattering and their multiplicity is modified by resonance production and annihilation on a similar magnitude. These findings show that it is all but trivial to conclude from the final state observables on the properties of the system at an earlier time where it may have been in local equilibrium.

  14. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    NASA Astrophysics Data System (ADS)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  15. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    PubMed Central

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-01-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment. PMID:26593782

  16. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.

    PubMed

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-23

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  17. Influence of the dynamical image potential on the rainbows in ion channeling through short carbon nanotubes

    SciTech Connect

    Borka, D.; Petrovic, S.; Neskovic, N.; Mowbray, D. J.; Miskovic, Z. L.

    2006-06-15

    We investigate the influence of the dynamic polarization of the carbon valence electrons on the angular distributions of protons channeled through short (11,9) single-wall carbon nanotubes at speeds of 3 and 5 a.u. (corresponding to the proton energies of 0.223 and 0.621 MeV), with the nanotube length varied from 0.1 to 0.3 {mu}m. The dynamic image force on protons is calculated by means of a two-dimensional hydrodynamic model for the nanotube's dielectric response, whereas the repulsive interaction with the nanotube's cylindrical wall is modeled by a continuum potential based on the Doyle-Turner interatomic potential. The angular distributions of channeled protons are generated by a computer simulation method using the numerical solution of the proton equations of motion in the transverse plane. Our analysis shows that the inclusion of the image interaction causes qualitative changes in the proton deflection function, giving rise to a number of rainbow maxima in the corresponding angular distribution. We propose that observations of those rainbow maxima could be used to deduce detailed information on the relevant interaction potentials, and consequently to probe the electron distribution inside carbon nanotubes.

  18. Influence of Water Hardness on Silver Ion and Silver Nanoparticle Fate and Toxicity Toward Nitrosomonas europaea.

    PubMed

    Anderson, Joseph W; Semprini, Lewis; Radniecki, Tyler S

    2014-07-01

    This study investigated the influence of water hardness (Mg(2+) and Ca(2+)) on the fate and toxicity of 20 nm citrate silver nanoparticles (AgNPs) and Ag(+) toward Nitrosomonas europaea, a model ammonia-oxidizing bacterium. Nitrification inhibition of N. europaea by 1 ppm AgNPs and 0.5 ppm Ag(+) was reduced from 80% and 83%, respectively, in the absence of Mg(2+) to 2% and 33%, respectively, in the presence of 730 μM Mg(2+). Introduction of Mg(2+) resulted in the rapid aggregation of the AgNP suspensions and reduced the 3 h Ag(+) dissolution rates from 30%, in the absence of Mg(2+), to 9%, in the presence of 730 μM Mg(2+). Reduced AgNP dissolution rates resulted in decreased concentrations of silver that were found adsorbed to N. europaea cells. Increasing AgNP concentrations in the presence of Mg(2+) increased the observed inhibition of nitrification, but was always less than what was observed in the absence of Mg(2+). The presence of Mg(2+) also reduced the adsorption of Ag(+) to cells, possibly due to multiple mechanisms, including a reduction in the negative surface charge of the N. europaea membrane and a competition between Mg(2+) and Ag(+) for membrane binding sites and transport into the cells. Ca(2+) demonstrated similar protection mechanisms, as Ag(+) toxicity was reduced and AgNP suspensions aggregated and decreased their dissolution rates. These results indicate that the toxicity of Ag(+) and AgNPs to nitrifying bacteria in wastewater treatment would be less pronounced in systems with hard water.

  19. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  20. Influence of carboxylic ion-pairing reagents on retention of peptides in thin-layer chromatography systems with C18 silica-based adsorbents.

    PubMed

    Gwarda, Radosław Ł; Aletańska-Kozak, Monika; Klimek-Turek, Anna; Ziajko-Jankowska, Agnieszka; Matosiuk, Dariusz; Dzido, Tadeusz H

    2016-04-01

    One of the main problems related to chromatography of peptides concerns adverse interactions of their strong basic groups with free silanol groups of the silica based stationary phase. Influence of type and concentration of ion-pairing regents on peptide retention in reversed-phase high-performance liquid chromatography (RP-HPLC) systems has been discussed before. Here we present influence of these mobile phase additives on retention of some peptide standards in high-performance thin-layer chromatography (HPTLC) systems with C18 silica-based adsorbents. We prove, that due to different characteristic of adsorbents used in both techniques (RP HPLC and HPTLC), influence of ion-pairing reagents on retention of basic and/or amphoteric compounds also may be quite different. C18 silica-based HPTLC adsorbents provide more complex mechanism of retention and should be rather considered as mixed-mode adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Competitive formation of b(2) and c(2)-H2O ions from b(3) ions containing Asp residue during tandem mass spectrometry: the influence of neighboring Arg.

    PubMed

    Guo, Mengzhe; Guo, Cheng; Pan, Yuanjiang

    2014-08-01

    The fragmentation of b3 ions derived from protonated Arg-Xxx-Asp-Ala-Ala (Xxx = Ala, Asp, Glu, Cys) and Arg-Xxx-Glu-Ala-Ala was investigated by electrospray ionization tandem mass spectrometry (MS (n) ) with collision-induced dissociation. A particular ion, which is 1 Da less than b2 ion, is shown to be the c2-H2O ion. The mechanism for its formation involved the aspartic acid in the third position easily losing anhydride to form a c2 ion, which then lost water to form an eight-membered ring of azacyclooctane derivative under the participation of the guanidine of the N-terminal arginine. However, this phenomenon was not observed when the aspartic acid was replaced by glutamic acid. The Amber program was used to determine the conformation of the original c2 residue from the dynamic energy perspective, and then density functional theory-based calculations and changing N-terminal amino acid from arginine to phenylalanine supported this mechanism.

  2. Influence of the crystal field stabilization energy of metal(II) ions on the structural distortion of matrix-isolated SO 42- guest ions in selenate matrices

    NASA Astrophysics Data System (ADS)

    Stoilova, Donka

    2004-08-01

    Infrared spectra of metal(II) selenate hydrates (MeSeO 4· nH 2O and Na 2Me(SeO 4) 2·2H 2O; n=6, 5, 4, 1; Me=Mg, Mn, Co, Ni, Cu, Zn, Cd) containing matrix-isolated SO 42- guest ions are reported and discussed with respect to the SO stretching modes ν3 and ν1. An adequate measure for the SO 42- guest ion distortion is the site group splitting Δ νas (Δ νab and Δ νac in the case of a doublet and a triplet for ν3, respectively; a, being the highest wavenumbered component of ν3) and Δ νmax (the difference between the highest and the lowest wavenumbered SO stretching modes). It has been shown that the SO 42- guest ion distortion depends on both the number of the sulfate oxygen atoms involved in coordinative bonds with the metal(II) ions and the electronic configuration of the metal(II) ions, i.e. their crystal field stabilization energy (CFSE) additionally to the site symmetry and the local potential at the lattice site of the host lattice. The SO 42- guest ions matrix-isolated in MeSeO 4·H 2O (Me=Mn, Co, Zn) and in Na 2Me(SeO 4) 2·2H 2O (Me=Mn, Cu, Cd) exhibit three bands corresponding to the ν3 modes as deduced from the site group analysis and Δ νab≅Δ νbc. When SO 42- guest ions are incorporated in the triclinic Na 2Me(SeO 4) 2·2H 2O host lattices (Me=Co, Ni, Zn) the ν3 stretching region resembles a higher local symmetry of the SO 42- guest ions (an approximate (A 1⊕E) splitting) than the crystallographic one (i.e. Δ νab>Δ νbc instead of Δ νab≅Δ νbc) and, hence, the ratio Δ νab/Δ νbc has to be taken into account (the higher value of the ratio Δ νab/Δ νbc, the weaker is the distortion of the SO 42- guest ions). The SO 42- guest ions incorporated in MeSeO 4· nH 2O ( n=6, 5, 4) exhibit a higher local symmetry of the guest ions than that deduced from the site group analysis (D 2d for the SO 42- guest ions in MeSeO 4·5H 2O, MeSeO 4·4H 2O and in the monoclinic MeSeO 4·6H 2O host lattices and close to T d in the tetragonal

  3. The influence of metal-ion binding on the structure and surface composition of Sonic Hedgehog: a combined classical and hybrid QM/MM MD study.

    PubMed

    Hitzenberger, Manuel; Hofer, Thomas S

    2016-08-10

    In this work, the influence of the metal ions present in vertebrate Sonic Hedgehog was assessed by a series of molecular mechanics molecular dynamics simulations with differing ionic compositions. The obtained data suggest that Ca(ii) binding has a very distinct influence on the composition of the protein surface surrounding the binding site by shaping several ionic interactions with negatively charged sidechains that otherwise would be pointing towards the solvent, repelling potential ligands. Furthermore, the Ca(ii) ions play an important role in the stability of the loop regions where they are coordinated. In contrast, the removal of the Zn(ii) ion results in no noticeable destabilization of its chemical surrounding, however, it is shown that the destabilizing effect of removed Ca(ii) ions is amplified if Zn(ii) is absent as well. Furthermore, a quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulation of Sonic Hedgehog with special focus on the Zn(ii) binding site has been conducted. The results indicate that QM/MM in contrast to pure MM accurately reproduces structural features also found by experimental studies and therefore is able to provide credible predictions not only of the dynamical properties of the studied system but also of protein-ligand interactions at the metal ion binding site.

  4. In situ chemical ionization in ion trap mass spectrometry--the beneficial influence of isobutane as a reagent gas.

    PubMed

    Bouchonnet, Stéphane; Kinani, Saïd; Sablier, Michel; Pirnay, Stéphane

    2007-01-01

    We report a comparison of the ionization yields provided by the most common reagents (methane, ammonia, methanol, acetonitrile, isobutane) performing in situ chemical ionization with an ion trap mass spectrometer. Four molecules were chosen in the medical field to illustrate experimental results: alprazolam, diazepam, flunitrazepam and acetaminophen. Under usual operational conditions, relative abundances of protonated ions appreciably depend on the reagents. The greatest abundance of MH+ ions was obtained with isobutane while observed intensities for MH+ ions varied from 73% for methanol and ammonia to about 23% for acetonitrile and methane. Results were temptatively rationalized comparing energies of formation of the reagent ions and storage efficiency in the trapping field.

  5. La microscopie ionique analytique des tissus biologiques

    NASA Astrophysics Data System (ADS)

    Galle, P.

    Proposed in 1960 by R. Castaing and G. Slodzian, secondary ion emission microanalysis is a microanalytical method which is now largely used for the study of inert material. The instrument called the analytical ion microscope can also be used for the study of biological spécimens ; images representing the distribution of a given stable or radioactive isotope in a tissue section are obtained with a resolution of 0.5 μm. Among the characteristics of this method, two are of particular interest in biological research : its capacity for isotopic analysis and its very high sensitivity which makes possible for the first time a chemical analysis of element at a very low or even at a trace concentration in a microvolume. Proposé en 1960 par R. Castaing et G. Slodzian, la microanalyse par émission ionique secondaire est une méthode qui permet, entre autre, d'obtenir des images représentant la distribution des isotopes présents à la surface d'un échantillon solide avec une résolution de 0,5 μm. D'intérêt très général, cette méthode a été d'abord largement utilisée pour l'étude des matériaux inertes. Elle offre en outre des possibilités entièrement nouvelles dans le domaine de la recherche biomédicale. L'instrument réalisé, le microscope ionique analytique présente deux caractéristiques particulièrement intéressantes pour la biologie : la possibilité d'analyse isotopique, et l'extrême sensibilité permettant de détecter et de localiser dans une coupe histologique des éléments à des concentrations très faibles voire à l'état de trace.

  6. Experimental design approach for identification of the factors influencing the γ-radiolysis of ion exchange resins

    NASA Astrophysics Data System (ADS)

    Rébufa, C.; Traboulsi, A.; Labed, V.; Dupuy, N.; Sergent, M.

    2015-01-01

    Gamma radiolysis was investigated on a nuclear grade mixed bed ion exchange resin and its pure components under different irradiation conditions. Screening designs were performed to identify the factors influencing gas production after their γ-radiolysis and to compare their γ-degradation stability. Only hydrogen and trimethylamine quantities were considered as the response in the experimental designs. The other detected gases and water-soluble products were used to improve the resins degradation. Aerobic irradiation atmosphere decreased the H2g production of AmbOH, MB400, and amines. The water presence increased the H2g quantities for AmbH and decreased those for MB400 resin. Liquid water had no effect on H2g production from AmbOH but was favorable to increased amine production. The H2g production of AmbH increased with the absorbed dose that had little effect on the AmbOH resin. No impact of dose on the H2g production was detected for MB400 that appeared to be less degraded.

  7. The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: a MD simulation study.

    PubMed

    Lesch, Volker; Li, Zhe; Bedrov, Dmitry; Borodin, Oleg; Heuer, Andreas

    2016-01-07

    The dynamical and structural properties in two ionic liquid electrolytes (ILEs) based on 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)-imide ([emim][TFSI]) and N-methyl-N-propylpyrrolidinium bis-(trifluoromethanesulfonyl)imide([pyr13][TFSI]) were compared as a function of lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salt concentrations using atomistic molecular dynamics (MD) simulations. The many-body polarizable APPLE&P force field has been utilized. The influence of anion polarization on the structure of the first coordination shell of Li(+) was examined. In particular, the reduction of the oxygen of the TFSI anion (OTFSI) polarizability from 1.36 Å(3) to 1.00 Å(3) resulted in an increased fraction of the TFSI anion bidentate coordination to the Li(+). While the overall dynamics in [pyr13][TFSI]-based ILEs was slower than in [emim][TFSI]-based ILEs, the exchange of TFSI anions in and out of the first coordination shell of Li(+) was found to be faster in pyr13-based systems. The Li(+) ion transference number is higher for these systems as well. These trends can be related to the difference in interaction of TFSI with the IL cation which is stronger for pyr13 than for emim.

  8. The influence of magnetic fields on the wake field and stopping power of an ion-beam pulse in plasmas

    SciTech Connect

    Zhao, Xiao-ying; Zhang, Ya-ling; Duan, Wen-shan; Qi, Xin E-mail: lyang@impcas.ac.cn; Shi, Jian; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2015-09-15

    We performed two-dimensional particle-in-cell simulations to investigate how a magnetic field affects the wake field and stopping power of an ion-beam pulse moving in plasmas. The corresponding density of plasma electrons is investigated. At a weak magnetic field, the wakes exhibit typical V-shaped cone structures. As the magnetic field strengthens, the wakes spread and lose their typical V-shaped structures. At a sufficiently strong magnetic field, the wakes exhibit conversed V-shaped structures. Additionally, strengthening the magnetic field reduces the stopping power in regions of low and high beam density. However, the influence of the magnetic field becomes complicated in regions of moderate beam density. The stopping power increases in a weak magnetic field, but it decreases in a strong magnetic field. At high beam density and moderate magnetic field, two low-density channels of plasma electrons appear on both sides of the incident beam pulse trajectory. This is because electrons near the beam pulses will be attracted and move along with the beam pulses, while other electrons nearby are restricted by the magnetic field and cannot fill the gap.

  9. [Influence of ion pump-inhibiting drugs on the accumulation of ofloxacin and grepafloxacin in human polymorphonuclear leukocytes].

    PubMed

    Orero, A; Cantón, E; Pemán, J; Velert, M M; Bermejo, M V

    2002-12-01

    In this study we tested the influence of three ion pump-inhibiting drugs (digoxin, omeprazole and verapamil) on the accumulation of ofloxacin and grepafloxacin in human polymorphonuclear leukocytes. Two assay conditions were established: cell preincubation with the drug for 30 or 60 minutes before addition of quinolone, or addition of both drugs simultaneously. The maximum I/E for ofloxacin is different depending on the assay conditions: 7.69+/-0.88; 5.64+/-1.91 and 3.56+/-1.04 for the assay without preincubation and with preincubation for 30 or 60 minutes at 37 masculine C, respectively. Similarly, grepafloxacin reached the following maximums: 61.27+/-3.04; 32.18+/-3.25 and 22.52+/-3.86. Digoxin did not significantly modify the accumulation of the quinolones, but it increased the I/E compared with the control. In general, omeprazole reduced the accumulation of both quinolones. When omeprazole and ofloxacin were added together, ofloxacin's I/E was significantly lower; however, for grepafloxacin, 60 minutes of preincubation were necessary. Verapamil induced a significant increase in the I/E for both quinolones when the cells were preincubated at 10 times the plasma concentration.

  10. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  11. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  12. Influence of instrumental parameters on the kinetic energy of ions and plasma temperature for a hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometer.

    PubMed

    Favre, Georges; Brennetot, René; Chartier, Frédéric; Tortajada, Jeanine

    2009-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is widely used in inorganic analytical chemistry for element and/or isotope ratio measurements. The presence of interferences, which is one of the main limitations of this method, has been addressed in recent years with the introduction of collision/reaction cell devices on ICP-MS apparatus. The study of ion-molecule reactions in the gas phase then became of great importance for the development of new analytical strategies. Knowing the kinetic energy and the electronic states of the ions prior to their entrance into the cell, i.e., just before they react, thereby constitutes crucial information for the interpretation of the observed reactivities. Such studies on an ICP-MS commonly used for routine analyses require the determination of the influence of different instrumental parameters on the energy of the ions and on the plasma temperature from where ions are sampled. The kinetic energy of ions prior to their entrance into the cell has been connected to the voltage applied to the hexapole according to a linear relationship determined from measurements of ion energy losses due to collisions with neutral gas molecules. The effects of the plasma forward power, sampling depth, and the addition of a torch shield to the ICP source were then examined. A decrease of the plasma potential due to the torch shielding, already mentioned in the literature, has been quantified in this study at about 3 V.

  13. Influence of the shear flow on electron cyclotron resonance plasma confinement in an axisymmetric magnetic mirror trap of the electron cyclotron resonance ion source.

    PubMed

    Izotov, I V; Razin, S V; Sidorov, A V; Skalyga, V A; Zorin, V G; Bagryansky, P A; Beklemishev, A D; Prikhodko, V V

    2012-02-01

    Influence of shear flows of the dense plasma created under conditions of the electron cyclotron resonance (ECR) gas breakdown on the plasma confinement in the axisymmetric mirror trap ("vortex" confinement) was studied experimentally and theoretically. A limiter with bias potential was set inside the mirror trap for plasma rotation. The limiter construction and the optimal value of the potential were chosen according to the results of the preliminary theoretical analysis. This method of "vortex" confinement realization in an axisymmetric mirror trap for non-equilibrium heavy-ion plasmas seems to be promising for creation of ECR multicharged ion sources with high magnetic fields, more than 1 T.

  14. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution.

    PubMed

    Taltavull, C; Shi, Z; Torres, B; Rams, J; Atrens, A

    2014-02-01

    This research studied the influence of the chloride ion concentration on the corrosion behaviour of high-purity magnesium (Mg) and two Mg alloys in Hank's solution, using hydrogen evolution and weight loss. A buffer based on CO2 and NaHCO3 was used to maintain the pH constant. The corrosion behaviour was governed by a partially protective surface film, and film breakdown by the chloride ions. The carbonated calcium phosphate layer that formed in Hank's solution was important in determining the protective properties of the surface film.

  15. The influence of metal ions on the substrate binding pocket of human alcohol dehydrogenase β 2β 2 by molecular modeling

    NASA Astrophysics Data System (ADS)

    Liu, Hsuan-Liang; Ho, Yih; Hsu, Chia-Ming

    2003-04-01

    Based on theoretical molecular modeling performed in this study, both structural and catalytic zinc ions, Zn s and Zn a, respectively, were shown to influence the structural integrity of the substrate binding pocket of human alcohol dehydrogenase β 2β 2 in the middle and outer regions. The replacement of both Zn s and Zn a with different metal ions restricts the access of bulky substrates to the bottom of the active site by narrowing the bottleneck formed between L116 and V294, whereas it does not affect substrate binding affinity since the accessible surface area of the substrate binding pocket remains more than 80% of the wild-type.

  16. Etude du processus de changement vecu par des familles ayant decide d'adopter volontairement des comportements d'attenuation des changements climatiques

    NASA Astrophysics Data System (ADS)

    Leger, Michel T.

    recension des ecrits sur le changement de comportement en environnement. Nous explorons egalement la famille comme systeme fonctionnel de sorte a mieux comprendre ce contexte d'action environnementale qui est, a notre connaissance, peu etudie. Dans le deuxieme article, nous presentons nos resultats de recherche concernant les facteurs d'influence observes ainsi que les competences manifestees au cours du processus d'adoption de nouveaux comportements environnementaux dans trois familles. Enfin, le troisieme article presente les resultats du cas d'une quatrieme famille ou les membres vivent depuis longtemps des modes de vie ecologique. Dans le cadre d'une demarche d'analyse par theorisation ancree, l'etude de ce cas modele nous a permis d'approfondir les categories conceptuelles identifiees dans le deuxieme article de sorte a produire une modelisation de l'integration de comportements environnementaux dans le contexte de la famille. Les conclusions degagees grace a la recension des ecrits nous ont permis d'identifier les elements qui pourraient influencer l'adoption de comportements environnementaux dans des familles. La recension a aussi permis une meilleure comprehension des divers facteurs qui peuvent affecter l'adoption de comportements environnementaux et, enfin, elle a permis de mieux cerner le phenomene de changement de comportement dans le contexte de la famille consideree comme un systeme. En appliquant un processus d'analyse inductif, a partir de nos donnees qualitatives, les resultats de notre etude multi-cas nous ont indique que deux construits conceptuels semblent influencer l'adoption de comportements environnementaux en famille : 1) les valeurs biospheriques communes au sein de la famille et 2) les competences collectivement mises a profit collectivement durant l'essai de nouveaux comportements environnementaux. Notre modelisation du processus de changement dans des familles indique aussi qu'une dynamique familiale collaborative et la presence d'un groupe de

  17. [Influence of metal ions on stability of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside contained in Polygoni Multiflori Radix].

    PubMed

    Li, Rui-yu; Feng, Wu-wen; Li, Xiao-fei; Zhang, Ding-kun; Li, Chun-yu; Meng, Ya-kun; Bai, Zhao-fang; Song, Hai-bo; Du, Xiao-xi; Xia, Hou-lin; Wang, Jia-bo; Xiao, Xiao-he

    2016-01-01

    Decoction is one of the most commonly used dosage forms of traditional Chinese medicine. The stability of chemical constituents in decoction is closely related to the clinical efficacy and safety. There were few reports about the influence of metal ions in the stability of chemical constituents in traditional Chinese medicine. However, there is no evidence that metal ions in decoction water need to be controlled. In this study, 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), one of the main constituents in Polygoni Multiflori Radix was studied. Ordinary tap water, deionized water, and water containing different metal ions were used to investigate and compare the influence on THSG. The results showed that after storage in a dark place at the room temperature for 10 days, the degradation of THSG was 7% in deionized water, while undetectable in tap water. The content of THSG could be decreased by different kinds of metal ions, and the effect was concentration-dependent. Moreover, Fe3+ and Fe2+ showed the greatest influence at the same concentration; and our study has shown that THSG decreased more than 98% in Fe and Fe2+ solutions at 500 ppm concentration. In the same time we found out p-hydroxybenzaldehyde (molecular weight: 122.036 7) and 2,3,5-trihydroxybenzaldehyde-2-O-glycoside (molecular weight: 316.079 4) were the main degradation products of THSG in tap water and water containing Cu2+, Ca2+, Zn2+, Mg2+ and Al3+. The product of THSG dimer with a water molecule was found in water containing Fe3+ and Fe2+. The above results showed that the metal ions in water could significantly influence the stability of THSG in water, indicating that the clinical efficacy and safety of decoction would be affected if the metal ions in water were not under control. It's suggested that deionized water should be used in the preparation of decoction containing Polygoni Multiflori Radix in the clinic to avoid degradation of THSG. Meanwhile, decoction prepared by tap water

  18. Influence of N{sup +} ions on bandgap and electrical resistivity of TiN thin films

    SciTech Connect

    Singh, Omveer; Dahiya, Raj P.; Malik, Hitendra K.

    2016-05-06

    In the present work, nitrogen ions are embedded into Ti thin films (200 nm) using low energy ion beam implantation (70 keV) by varying ions fluence from 4×10{sup 15} ions/cm{sup 2} to 2×10{sup 16} ions/cm{sup 2}. For this, Ti films were grown using DC magnetron sputtering in Ar environment (power 200 W). TiN films were then characterized using versatile techniques for estimating the band gap and electrical resistivity. X-ray diffraction pattern shows shift in peaks towards higher angle with increase in nitrogen fluence that confirms the introduction of strain in Ti films. UV-Vis spectra show that band gap is reduced from 3.75 eV to 1.7 eV with increase in fluence from 4×10{sup 15} ions/cm{sup 2} to 2×10{sup 16} ions/cm{sup 2}. Furthermore, electrical resistivity also decreases from 2.67×10{sup −4} Ω.cm to 2.31×10{sup −4} Ωcm with nitrogen ion fluence. Based on these results, it can be inferred that ion implantation is an effective approach for uniform distribution of N ions in host matrix and tuning of optical and electrical properties.

  19. Influence of the electron cross-field diffusion in negative ion sources with the transverse magnetic field and the plasma-electrode bias

    SciTech Connect

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2010-02-15

    The physical mechanisms involved in the extraction of H{sup -} ions from the negative ion source are studied with a PIC 2D3V code. The effect of a weak magnetic field transverse to the extraction direction is taken into account, along with a variable bias voltage applied on the plasma electrode (PE). In addition to previous modeling works, the electron diffusion across the magnetic field is taken into account as a simple one-dimensional random-walk process. The results show that without PE bias, the value of the diffusion coefficient has a significant influence upon the value of the extracted H{sup -} current. However, the value of this coefficient does not affect qualitatively the mechanism leading to the peak of extracted H{sup -} ion current observed for an optimum value of the PE bias.

  20. Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

    SciTech Connect

    Guo, Daxi; He, Chaohui E-mail: hechaohui@mail.xjtu.edu.cn; Zang, Hang; Zhang, Peng; Martin-Bragado, Ignacio E-mail: hechaohui@mail.xjtu.edu.cn

    2014-11-28

    Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

  1. Influence of ion bombardment of a substrate on the quality of vacuum-plasma Ti-TiN coatings

    NASA Astrophysics Data System (ADS)

    Shekhtman, S. R.; Migranov, M. Sh

    2017-07-01

    The characteristics of the quality of multi-layer vacuum ion-plasma coatings Ti-TiN such as roughness and adhesion strength are investigated. It is shown that additional ion bombardment promotes the production of high-quality coatings. Ion bombardment has a significant effect on the state of the surface layer of the metal. In the process of ion bombardment, conditions are created for the formation of active adsorption centers and the formation of a fine-grained structure, nanoscale grains and layers.

  2. Hydropathic influences on the quantification of equine heart cytochrome c using relative ion abundance measurements by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Gordon, E F; Mansoori, B A; Carroll, C F; Muddiman, D C

    1999-10-01

    The number of publications documenting the utility of electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) for the analysis of biological molecules has increased in geometric proportion spanning diverse areas of research. Currently, we are investigating the capabilities of ESI-FTICR to quantify relative molecular ion abundances of biopolymers, an area which has not been explored rigorously. We present here the results of an investigation of a two-component system utilizing equine heart cytochrome c (EH) as the analyte and bovine heart cytochrome c (BH) as a constant concentration internal standard. As these compounds are relatively large ( approximately 12 kDa), they will become multiply charged during the electrospray process. Using appropriate solution and instrument conditions, the 7(+) and 8(+) charge states were enhanced for both cytochrome c species. We report that using the average of the ion abundances for the two charge states observed for each species, the linear curve (intensity ratio vs concentration ratio) had a dynamic range of 0.045-2.348 microM (1.7 orders of magnitude). Linear least-squares regression analysis (LLSRA) of these averaged ion abundances (i.e. [(EH + 7H(+))(7+)/(BH + 7H(+))(7+) + (EH + 8H(+))(8+)/(BH + 8H(+))(8+)]/2) yielded the equation y = 1.005x + 0.027. The slope of the line with its calculated precision, reported as one standard deviation, is 1.005 +/- 0.0150, which is statistically ideal (i.e. equal to unity). However, LLSRA of the ion abundances of the two individual charge states were significantly different (i.e. the slope of the (EH + 7H(+))(7+)/(BH + 7H(+))(7+) peak intensity ratio vs molar ratio data was 0.885 +/- 0.0183 and the slope of the (EH + 8H(+))(8+)/(BH + 8H(+))(8+) data was 1.125 +/- 0.0308). We attribute this difference to the variation in primary amino acid sequence for the two cytochrome c species. Both have 104 amino acids, but there are three residue

  3. Does bearing size influence metal ion levels in large-head metal-on-metal total hip arthroplasty? A comparison of three total hip systems

    PubMed Central

    2014-01-01

    Background The purpose of the study was twofold: first, to determine whether there is a statistically significant difference in the metal ion levels among three different large-head metal-on-metal (MOM) total hip systems. The second objective was to assess whether position of the implanted prostheses, patient demographics or factors such as activity levels influence overall blood metal ion levels and whether there is a difference in the functional outcomes between the systems. Methods In a cross-sectional cohort study, three different metal-on-metal total hip systems were assessed: two monoblock heads, the Durom socket (Zimmer, Warsaw, IN, USA) and the Birmingham socket (Smith and Nephew, Memphis, TN, USA), and one modular metal-on-metal total hip system (Pinnacle, Depuy Orthopedics, Warsaw, IN, USA). Fifty-four patients were recruited, with a mean age of 59.7 years and a mean follow-up time of 41 months (12 to 60). Patients were evaluated clinically, radiologically and biochemically. Statistical analysis was performed on all collected data to assess any differences between the three groups in terms of overall blood metal ion levels and also to identify whether there was any other factor within the group demographics and outcomes that could influence the mean levels of Co and Cr. Results Although the functional outcome scores were similar in all three groups, the blood metal ion levels in the larger monoblock large heads (Durom, Birmingham sockets) were significantly raised compared with those of the Pinnacle group. In addition, the metal ion levels were not found to have a statistically significant relationship to the anteversion or abduction angles as measured on the radiographs. Conclusions When considering a MOM THR, the use of a monoblock large-head system leads to higher elevations in whole blood metal ions and offers no advantage over a smaller head modular system. PMID:24472283

  4. Influence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions: Threshold collision-induced dissociation and theoretical studies

    NASA Astrophysics Data System (ADS)

    Yang, Zhibo; Rodgers, M. T.

    2005-03-01

    The influence of methylation on the properties of uracil and its noncovalent interactions with alkali metal ions is investigated both experimentally and theoretically. Threshold collision-induced dissociation (CID) of M+(xMeU) with Xe is studied in a guided ion beam mass spectrometer. M+ include the following alkali metal ions: Li+, Na+, and K+. Five methylated uracils are examined, xMeU = 1-methyluracil, 3-methyluracil, 6-methyluracil, 1,3-dimethyluracil, and 5,6-dimethyluracil. In all cases endothermic loss of the intact nucleobase is the dominant reaction pathway, while ligand exchange to produce MXe+ is observed as a minor reaction pathway. The threshold regions of the cross sections are interpreted to extract 0 and 298 K bond dissociation energies (BDEs) for M+xMeU after accounting for the effects of multiple ion-neutral collisions, kinetic and internal energies of the reactants, and dissociation lifetimes. Ab initio calculations at the MP2(full)/6-31G* level of theory are used to determine the structures of these complexes and provide molecular constants required for the thermochemical analysis of the experimental data. Theoretical bond dissociation energies are determined from single point energy calculations at the MP2(full)/6-311+G(2d,2p) level using the MP2(full)/6-31G* geometries. Excellent agreement between theory and experiment is found for the Na+ and K+ systems, while theory systematically underestimates the strength of binding in the Li+ systems. Theoretical calculations are also performed to examine the influence of methylation on the acidities, proton affinities, and Watson-Crick base pairing energies. The present results are compared to earlier studies of uracil and 5-methyluracil to more fully elucidate the influence of methylation on the properties of uracil, its noncovalent interactions with alkali metal ions, and nucleic acid stability.

  5. Effects of non-steroidal estrogen diethylstilbestrol on pH and ion transport in the mantle epithelium of a bivalve Anodonta cygnea.

    PubMed

    Alves, Marco G; Oliveira, Pedro F

    2013-11-01

    Freshwater bivalves are used as sentinel organisms to detect pollutants effects in the aquatic environment due to their sedentary nature, filter-feeding behaviour. We aimed to determine the in vivo, ex vivo and in vitro influence of Diethylstilbestrol (DES), a widely used synthetic non-steroidal estrogen and endocrine disruptor, in Anodonta cygnea shell growth mechanisms. For that, in vivo exposure to DES (0.75μM) during 15 days, in vitro and ex vivo exposure of outer mantle epithelium (OME) cells to DES (0.75μM), were performed followed by study of short-circuit current (Isc), transepithelial potential (Vt) and transepithelial conductance (Gt) as well as identification of membrane transport systems and intracellular pH (pHi). Our results show that in vivo exposure to DES decreases in 30% the OME Isc and ex vivo addition of DES to the basolateral side of OME also induced Isc decrease. Several membrane transporters such as V-type ATPases, Na(+)/H(+) exchangers, Na(+)-K(+) pump, Na(+)-driven and Na(+)-independent HCO3(-)/Cl(-) transporters and Na(+)/HCO3(-) co-transporter were identified as responsible for pHi maintenance in OME and noteworthy, DES caused a pHi decrease in OME cells similar to the effect observed when OME cells were exposed to 4,4'-diisothiocyanostilbene disulfonic acid (DIDS), an inhibitor of several bicarbonate membrane transporters. The addition of DIDS after OME cells exposure to DES did not cause any alteration. We concluded that DES is able to modulate membrane ion transport and pHi in the OME of A. cygnea and that this effect seems to be due to inhibition of HCO3(-)/Cl(-) co-transporters present on the basolateral membrane. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding.

    PubMed

    Shaikh, S M T; Seetharamappa, J; Kandagal, P B; Manjunatha, D H

    2007-06-01

    The mechanism of binding of vitamin K(3) (VK(3)) with bovine serum albumin (BSA) was investigated by fluorescence, absorption and circular dichroism (CD) techniques under physiological conditions. The analysis of fluorescence data indicated the presence of static quenching mechanism in the binding. Various binding parameters have been evaluated. Thermodynamic parameters, the standard enthalpy change, DeltaH(0) and the standard entropy change, DeltaS(0) were observed to be -164.09 kJ mol(-1) and -465.08 J mol(-1)K, respectively. The quantitative analysis of CD spectra confirmed the change in secondary structure of the protein upon interaction with VK(3). The binding average distance, r between the donor (BSA) and acceptor (VK(3)) was determined based on the Förster's theory and it was found to be 3.3 nm. The effects of toxic ions and common ions on VK(3)-BSA system were also investigated.

  7. Momentum transfer theory of ion transport under the influence of resonant charge transfer collisions: the case of argon and neon ions in parent gases

    NASA Astrophysics Data System (ADS)

    Jovanović, J. V.; Vrhovac, S. B.; Petrović, Z. Lj.

    2002-12-01

    Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). It was shown that, not surprisingly, RCT collisions may be represented as a special case of elastic scattering. Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar+Ar^+ collisions by making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne+Ne^+ integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models.

  8. Metal-on-metal bearings in total hip arthroplasties: Influence of cobalt and chromium ions on bacterial growth and biofilm formation.

    PubMed

    Hosman, Anton H; van der Mei, Henny C; Bulstra, Sjoerd K; Busscher, Henk J; Neut, Daniëlle

    2009-03-01

    Metal-on-metal (MOM) bearings involving cobalt-chromium (Co-Cr) alloys in total hip arthroplasties are becoming more and more popular due to their low wear. Consequences of corrosion products of Co-Cr alloys are for the most part unclear, and the influence of cobalt and chromium ions on biofilm formation has never been studied. Therefore, the aim of this study was to evaluate how Co-Cr ions affect bacterial growth, biofilm formation, and architecture. A collection of clinically isolated and commercially available bacterial strains were exposed to Co-Cr concentrations as found in serum and above as found in adjacent tissue. Planktonic growth of bacteria was inhibited by concentrations of 200,000/93,000 microg/L Co-Cr. Co-Cr concentrations up to 20/9.3 microg/L as reported to occur in serum revealed no consistent influence on biofilm formation, but higher concentrations of 200,000/93,000 microg/L significantly reduced Staphylococcus aureus and CNS biofilm formation. As indicated by confocal laser scanning microscopy, no dead bacteria were encountered in the biofilms, and the metal ion concentrations used must be classified as growth-inhibiting and not bactericidal. Long-term clinical data on infection rates for Co-Cr MOM-bearings are not yet available, but the current results suggest that Co-Cr ions may yield these prostheses less prone to biofilm formation and subsequent infection. (c) 2008 Wiley Periodicals, Inc.

  9. The Influence of Supporting Ions on the Electrochemical Detection of Individual Silver Nanoparticles: Understanding the Shape and Frequency of Current Transients in Nano-impacts.

    PubMed

    Krause, Kay J; Brings, Fabian; Schnitker, Jan; Kätelhön, Enno; Rinklin, Philipp; Mayer, Dirk; Compton, Richard G; Lemay, Serge G; Offenhäusser, Andreas; Wolfrum, Bernhard

    2017-04-03

    We report the influence of electrolyte composition and concentration on the stochastic amperometric detection of individual silver nanoparticles at microelectrode arrays and show that the sensor response at certain electrode potentials is dependent on both the conductivity of the electrolyte and the concentration of chloride ions. We further demonstrate that the chloride concentration in solution heavily influences the characteristic current spike shape of recorded nanoparticle impacts: While typically too short to be resolved in the measured current, the spike widths are significantly broadened at low chloride concentrations below 10 mm and range into the millisecond regime. The analysis of more than 25 000 spikes reveals that this effect can be explained by the diffusive mass transport of chloride ions to the nanoparticle, which limits the oxidation rate of individual silver nanoparticles to silver chloride at the chosen electrode potential.

  10. Cartographie des disques

    NASA Astrophysics Data System (ADS)

    Hameury, Jean-Marie

    2001-01-01

    Two techniques are frequently used to produce images of the accretion disc in an eclipsing binary: eclipse mapping and Doppler tomography. From the light curve, one can deduce the radial distribution of the effective temperature, assuming axial symmetry. On the other hand, from the variation of the line profile one can reconstruct an image in the velocity space, which can be converted into a real image if one knows the kinematics of the system. Deux techniques sont couramment utilisées pour obtenir des images des disques dans les systèmes binaires à éclipses. En utilisant la courbe de lumière, on peut remonter à la distribution radiale de la brillance de surface, en supposant que celle-ci a une symètrie axiale. D'autre part, les profils de raies renseignent sur la distribution de vitesse des régions émissives leur variation temporelle permet de réaliser une image dans l'espace des vitesses, que l'on peut ensuite transformer en carte dans l'espace (x,y) si on connaît la cinématique du système.

  11. Influence of ion-to-atom ratio on the microstructure of evaporated molybdenum thin films grown using low energy argon ions

    SciTech Connect

    Yadav, Praveen Kumar Nayak, Maheswar; Rai, Sanjay Kumar; Lodha, Gyanendra Singh; Sant, Tushar; Sharma, Surinder Mohan; Mukherjee, Chandrachur

    2014-03-15

    The authors report the effect of argon ion to molybdenum atom ratio (r) on the microstructure of low energy (70 eV) argon ion assisted electron beam evaporated Mo thin films. Surface roughness, morphology, and crystallinity of Mo films are found to strongly depend on “r.” Increase of “r” from 0 to 100 induces gradual loss in crystallinity, reduction in surface roughness and systematic increase in density of the film. For “r” ∼ 100, average atomic density of the film approaches the bulk value (97%) with lowest surface roughness. Further, increasing “r” up to 170 reduces the atomic density, increases roughness, and increase in crystallinity induced by low energy Ar ion beam. The observed surface roughness and grain size determined by x-ray reflectivity and glancing incidence x-ray diffraction correlate well with atomic force microscopy measurements. This study demonstrates that for r = 100 one gets lowest roughness Mo film with highest density and nearly amorphous microstructure. The growth model is discussed by structural zone model.

  12. Osmotic tolerance of avian spermatozoa: Influence of time, temperature, cryoprotectant and membrane ion pump function on sperm viability

    USGS Publications Warehouse

    Blanco, J.M.; Long, J.A.; Gee, G.; Donoghue, A.M.; Wildt, D.E.

    2008-01-01

    Potential factors influencing sperm survival under hypertonic conditions were evaluated in the Sandhill crane (Grus canadensis) and turkey (Meleagridis gallopavo). Sperm osmotolerance (300-3000 mOsm/kg) was evaluated after: (1) equilibration times of 2, 10, 45 and 60 min at 4 ?C versus 21 ?C; (2) pre-equilibrating with dimethylacetamide (DMA) or dimethylsulfoxide (Me2SO) at either 4 ?C or 21 ?C; and (3) inhibition of the Na+/K+ and the Na+/H+ antiporter membrane ionic pumps. Sperm viability was assessed using the eosin-nigrosin live/dead stain. Species-specific differences occurred in response to hypertonic conditions with crane sperm remaining viable under extreme hypertonicity (3000 mOsm/kg), whereas turkey sperm viability was compromised with only slightly hypertonic (500 mOsm/kg) conditions. The timing of spermolysis under hypertonic conditions was also species-specific, with a shorter interval for turkey (2 min) than crane (10 min) sperm. Turkey sperm osmotolerance was slightly improved by lowering the incubation temperature from 21 to 4 ?C. Pre-equilibrating sperm with DMA reduced the incidence of hypertonic spermolysis only in the crane, at both room and refrigeration temperature. Inhibiting the Na+/K+ and the Na+/H+ antiporter membrane ion pumps did not impair resistance of crane and turkey spermatozoa to hypertonic stress; pump inhibition actually increased turkey sperm survival compared to control sperm. Results demonstrate marked species specificity in osmotolerance between crane and turkey sperm, as well as in the way temperature and time of exposure affect sperm survival under hypertonic conditions. Differences are independent of the role of osmotic pumps in these species.

  13. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  14. [Influence of electromagnetic radiation of different ranges on the transmembrane transport of Na+, K+, and Ca2+ ions in normal and tumor cells].

    PubMed

    Nadareĭshvili, G G

    2006-05-01

    The problem of planetary pollution is one of the most pressing ones. In the present work it was determined to assess functional state of a cell according to criterion of transport of Na(+), K(+), and Ca(2+) ions subjected to irradiation with electromagnetic fields (EMF) of different frequency ranges. Recording of the ions' concentration was made with the ion-selective electrodes immersed into the Ringer solution. The ion transport was studied in the fibroblasts of the mice. Influences of the EMF in the range of 20 to 100 Hz and different inductances were assessed. It was found that the frequencies below 45 Hz and above 60 Hz, at inductance of 2,0 mT induced stimulation of transmembrane transport of Na(+), K(+), and Ca(2+) ions. According to some electrophysiologists, this effect must be due to the fact that the frequency below 45 Hz generates potentials too slowly. Therefore an adaptation to this process does occur, while at the higher frequencies velocity of stimulation is so high that the cellular membrane cannot react and, as a result, the effect similar to the first variant is observed.

  15. Influence of 120 MeV Au+9 ions irradiation on resistive switching properties of Cr:SrZrO3/SRO junctions

    NASA Astrophysics Data System (ADS)

    Bhavsar, Komal H.; Joshi, Utpal S.

    2016-07-01

    Swift heavy ion (SHI) irradiation has been successfully used to modify structural and electrical properties of heterostructured Cr doped SrZrO3 thin films grown on 200 nm thick SrRuO3/SiO2 by chemical solution deposition method. Samples were irradiated by 120 MeV Au+9 ions with fluence value 1 × 1012 ions/cm2 in order to investigate the influence of SHI irradiation on the resistive switching (RS) phenomenon. Structural characterization with grazing angle X-ray diffraction exhibited an enhancement of crystallinity as well as crystallographic strain. Typical energy dispersive analysis of X-rays (EDAX) spectrum was carried out to study the interface mixing, if any, after the ion irradiation. The pristine sample exhibits a narrow hysteresis loop in the current voltage (I-V) curves with maximum RS ratio of 98. Highly reproducible resistive switching characteristics with pronounced loops in the I-V curves have been observed for the irradiated Ag/Cr:SZO/SRO structure with maximum RS ratio of 985. I-V curves in low resistive state (LRS) demonstrate linear Ohmic conduction mechanism for both positive as well as negative bias region. The high resistive state (HRS) is consistent with space charge limited (SCLC) mechanism. The observed electrical behavior can be attributed to the high energy density of electronic excitations resulting from the impact of swift heavy ions induced defects and strain.

  16. Influence of Equilibration Time in Solution on the Inclusion/Exclusion Topology Ratio of Host-Guest Complexes Probed by Ion Mobility and Collision-Induced Dissociation.

    PubMed

    Carroy, Glenn; Daxhelet, Charlotte; Lemaur, Vincent; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2016-03-18

    Host-guest complexes are formed by the creation of multiple noncovalent bonds between a large molecule (the host) and smaller molecule(s) or ion(s) (the guest(s)). Ion-mobility separation coupled with mass spectrometry nowadays represents an ideal tool to assess whether the host-guest complexes, when transferred to the gas phase upon electrospray ionization, possess an exclusion or inclusion nature. Nevertheless, the influence of the solution conditions on the nature of the observed gas-phase ions is often not considered. In the specific case of inclusion complexes, kinetic considerations must be taken into account beside thermodynamics; the guest ingression within the host cavity can be characterized by slow kinetics, which makes the complexation reaction kinetically driven on the timescale of the experiment. This is particularly the case for the cucurbituril family of macrocyclic host molecules. Herein, we selected para-phenylenediamine and cucurbit[6]uril as a model system to demonstrate, by means of ion mobility and collision-induced dissociation measurements, that the inclusion/exclusion topology ratio varies as a function of the equilibration time in solution prior to the electrospray process.

  17. Coupled chemical reactions in dynamic nanometric confinement: V. The influence of Li+ and F- ions on etching of nuclear tracks in polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Muñoz Hernandez, G.; Ruiz, N. L.; Vacik, J.; Hnatowicz, V.; García-Arellano, H.; Alfonta, L.; Kiv, A.

    2014-05-01

    Etching of continuous nuclear tracks in thin polymer foils from both sides is known to lead to the formation of double-conical nanopores. In this work and related ones we try to find out how this etching kinetics is modified when materials are added which react with each other upon their contact towards some new product that influences the etching. For that purpose we have chosen here Li+ and F- ions as the additions, which react with each other to form LiF precipitations. The coupled etching and precipitation kinetics is recorded by measuring the electrical current that is transmitted through the foils upon application of a low-frequency alternating sinusoidal voltage. Depending on the etchant concentrations, the etching temperature and the time of Li+ and F- addition, different effects are found that range from (a) no alteration of the transmitted current at all, via (b) the emergence of an alternating current with a temperature-dependent amplitude, and (c) the complete vanishing of any transmitted current at all, towards (d) chaotic transmitted current histories with phases with strong current spike emission and (e) rather quiet phases, alternating with each other in a rather unsystematic way. The observed effects are ascribed to (a) the enhanced penetration efficiency of both the Li+ and F- ions through the polymeric bulk and/or latent ion tracks after the removal of the polymer's protective surface layer by the etchant, (b) the high mobility of preferentially the F- ions within the polymer, (c) the LiF precipitation within the polymer or on its surface upon encounter of Li+ and F- ions, (d) the nanofluidic properties of narrow etched tracks covered with Li+ ions on the wall surfaces and F- ions beyond, and/or (e) the formation of LiF membranes within the etched tracks.

  18. Influence of divalent copper, manganese and zinc ions on fibril nucleation and elongation of the amyloid-like yeast prion determinant Sup35p-NM.

    PubMed

    Suhre, Michael H; Hess, Simone; Golser, Adrian V; Scheibel, Thomas

    2009-12-01

    There is a large body of evidence that divalent metal ions, particularly copper, might play a role in several protein folding pathologies like Alzheimer's disease, Parkinson's disease or the prion diseases. However, contribution of metal ions on pathogenesis and their molecular influence on the formation of amyloid structures is not clear. Therefore, the general influence of metals on the formation of amyloids is still controversially discussed. We have utilized the well established system of yeast Sup35p-NM to investigate the role of three different metal ions, Cu(2+), Mn(2+) and Zn(2+), on amyloidogenesis. Recently, it has been shown that the prion determining region NM of the Saccharomyces cerevisiae prion protein Sup35p, which is responsible for the yeast prion phenotype [PSI(+)], specifically binds Cu(2+) ions. We further characterized the affinity of NM for Cu(2+), which were found to be comparable to that of other amyloidogenic proteins like the mammalian prion protein PrP. The specific binding sites could be located in the aminoterminal N-region which is known to initiate formation of amyloidogenic nuclei. In the presence of Cu(2+), fibril nucleation was significantly delayed, probably due to influences of copper on the oligomeric ensemble of soluble Sup35p-NM, since Cu(2+) altered the tertiary structure of soluble Sup35p-NM, while no influences on fibril elongation could be detected. The secondary structure of soluble or fibrous protein and the morphology of the fibrils were apparently not altered when assembled in presence of Cu(2+). In contrast, Mn(2+) and Zn(2+) did not bind to Sup35p-NM and did not exhibit significant effects on the formation of NM amyloid fibrils.

  19. Mutual influence of trivalent rare-earth metal ions at their extraction from nitrate solutions by mixtures of tributyl phosphate and diisooctyl methylphosphonate

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.; Kopyrin, A.A.

    1995-01-01

    Extraction of yttrium-group lanthanide(III) and yttrium nitrates from multicomponent solutions by mixtures of tri-n-butyl phosphate and diisooctyl methylphosphonate has been examined at 298.15 K and pH 2. A physiocochemical and mathematical model has been developed to describe distribution and mutual influence of rare-earth metal ions in multicomponent solutions as influenced by the total concentration of rare-earth metals in aqueous phase and compositions of the concentrate and of organic phase.

  20. Marked influence of the nature of the chemical bond on CP-violating signature in molecular ions HBr(+) and HI(+).

    PubMed

    Ravaine, Boris; Porsev, Sergey G; Derevianko, Andrei

    2005-01-14

    Heavy polar molecules offer a great sensitivity to the electron electric dipole moment (EDM). To guide emerging searches for EDMs with molecular ions, we estimate the EDM-induced energy corrections for hydrogen halide ions HBr(+) and HI(+) in their respective ground X (2)Pi(3/2) states. We find that the energy corrections due to EDM for the two ions differ by an unexpectedly large factor of 15. We demonstrate that a major part of this enhancement is due to a dissimilarity in the nature of the chemical bond for the two ions: the bond that is nearly of ionic character in HBr(+) exhibits predominantly a covalent nature in HI(+). We conclude that because of this enhancement the HI(+) ion may be a potentially competitive candidate for the EDM search.

  1. Ion-Ion Neutralization.

    DTIC Science & Technology

    1982-05-31

    Accession No. 3. Recipient’s Catalog Number FGL -TR-82 -0202 b- /- 4. Title (and Subtitle) 5. Type of Report & Period Covered ION-ION NEUTRALIZATION Final...few years under the terms of the grant has been the detailed study of binary ion-ion neutralization reactions involving ions of atmospheric...2TT, England. 1. INTRODUCTION Binary positive-ion negative-ion mutual neutralization viz: A+ + B->C + D (1) can be an important loss process for

  2. Shear-flow trapped-ion-mode interaction revisited. I. Influence of low-frequency zonal flow on ion-temperature-gradient driven turbulence

    SciTech Connect

    Ghizzo, A.; Palermo, F.

    2015-08-15

    Collisionless trapped ion modes (CTIMs) turbulence exhibits a rich variety of zonal flow physics. The coupling of CTIMs with shear flow driven by the Kelvin-Helmholtz (KH) instability has been investigated. The work explores the parametric excitation of zonal flow modified by wave-particle interactions leading to a new type of resonant low-frequency zonal flow. The KH-CTIM interaction on zonal flow growth and its feedback on turbulence is investigated using semi-Lagrangian gyrokinetic Vlasov simulations based on a Hamiltonian reduction technique, where both fast scales (cyclotron plus bounce motions) are gyro-averaged.

  3. Elimination of carbon vacancies in 4H-SiC epi-layers by near-surface ion implantation: Influence of the ion species

    SciTech Connect

    Ayedh, H. M.; Svensson, B. G.

    2015-11-07

    The carbon vacancy (V{sub C}) is a prevailing point defect in high-purity 4H-SiC epitaxial layers, and it plays a decisive role in controlling the charge carrier lifetime. One concept of reducing the V{sub C}-concentration is based on carbon self-ion implantation in a near surface layer followed by thermal annealing. This leads to injection of carbon interstitials (C{sub i}'s) and annihilation of V{sub C}'s in the epi-layer “bulk”. Here, we show that the excess of C atoms introduced by the self-ion implantation plays a negligible role in the V{sub C} annihilation. Actually, employing normalized implantation conditions with respect to displaced C atoms, other heavier ions like Al and Si are found to be more efficient in annihilating V{sub C}'s. Concentrations of V{sub C} below ∼2 × 10{sup 11} cm{sup −3} can be reached already after annealing at 1400 °C, as monitored by deep-level transient spectroscopy. This corresponds to a reduction in the V{sub C}-concentration by about a factor of 40 relative to the as-grown state of the epi-layers studied. The negligible role of the implanted species itself can be understood from simulation results showing that the concentration of displaced C atoms exceeds the concentration of implanted species by two to three orders of magnitude. The higher efficiency for Al and Si ions is attributed to the generation of collision cascades with a sufficiently high energy density to promote C{sub i}-clustering and reduce dynamic defect annealing. These C{sub i}-related clusters will subsequently dissolve during the post-implant annealing giving rise to enhanced C{sub i} injection. However, at annealing temperatures above 1500 °C, thermodynamic equilibrium conditions start to apply for the V{sub C}-concentration, which limit the net effect of the C{sub i} injection, and a competition between the two processes occurs.

  4. Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

    SciTech Connect

    Albella, J.M.; Banks, J.C.; Climent-Font, A.; Doyle, B.L.; Gago, R.; Jimenez, I.; Terminello, L.J.

    1998-11-12

    Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

  5. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    PubMed

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Influence of 400 keV carbon ion implantation on structural, optical and electrical properties of PMMA

    NASA Astrophysics Data System (ADS)

    Arif, Shafaq; Rafique, M. Shahid; Saleemi, Farhat; Sagheer, Riffat; Naab, Fabian; Toader, Ovidiu; Mahmood, Arshad; Rashid, Rashad; Mahmood, Mazhar

    2015-09-01

    Ion implantation is a useful technique to modify surface properties of polymers without altering their bulk properties. The objective of this work is to explore the 400 keV C+ ion implantation effects on PMMA at different fluences ranging from 5 × 1013 to 5 × 1015 ions/cm2. The surface topographical examination of irradiated samples has been performed using Atomic Force Microscope (AFM). The structural and chemical modifications in implanted PMMA are examined by Raman and Fourier Infrared Spectroscopy (FTIR) respectively. The effects of carbon ion implantation on optical properties of PMMA are investigated by UV-Visible spectroscopy. The modifications in electrical conductivity have been measured using a four point probe technique. AFM images reveal a decrease in surface roughness of PMMA with an increase in ion fluence from 5 × 1014 to 5 × 1015 ions/cm2. The existence of amorphization and sp2-carbon clusterization has been confirmed by Raman and FTIR spectroscopic analysis. The UV-Visible data shows a prominent red shift in absorption edge as a function of ion fluence. This shift displays a continuous reduction in optical band gap (from 3.13 to 0.66 eV) due to formation of carbon clusters. Moreover, size of carbon clusters and photoconductivity are found to increase with increasing ion fluence. The ion-induced carbonaceous clusters are believed to be responsible for an increase in electrical conductivity of PMMA from (2.14 ± 0.06) × 10-10 (Ω-cm)-1 (pristine) to (0.32 ± 0.01) × 10-5 (Ω-cm)-1 (irradiated sample).

  7. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  8. Analyseur de spectre RF présentant une bande passante de 10 GHz ainsi qu'une résolution sub-MHz basé sur le creusement spectral dans des cristaux Tm3+:YAG

    NASA Astrophysics Data System (ADS)

    Gorju, G.; Chauve, A.; Crozatier, V.; Lorgeré, I.; Le Gouët, J.-L.; Bretenaker, F.

    2006-10-01

    Nos travaux s'inscrivent dans le cadre des expériences de traitement optique des signaux hyperfréquence utilisant des ions de terres rares en matrice cristalline excités par des sources lasers agiles en fréquence. Nous présentons la réalisation d'un analyseur de spectre avec une bande passante de 10 GHz et une résolution ultime en dessous du MHz.

  9. Influence of the normalized ion flux on the constitution of alumina films deposited by plasma-assisted chemical vapor deposition

    SciTech Connect

    Kurapov, Denis; Reiss, Jennifer; Trinh, David H.; Hultman, Lars; Schneider, Jochen M.

    2007-07-15

    Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. These changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.

  10. Influence of process parameters on rolling-contact-fatigue life of ion plated nickel-copper-silver lubrication

    SciTech Connect

    Danyluk, Mike; Dhingra, Anoop

    2012-05-15

    In this paper, we present a connection between argon ion flux, element-mixing, and rolling contact fatigue (RCF) life of a thin film nickel-copper-silver lubricant on ball bearings. The film is deposited on the balls using an ion plating process and tested for RCF in high vacuum. The ion flux is measured using a Langmuir probe and the plane stress within the film during deposition is calculated using a thin film model. Experiments reveal that there is an inverse relationship between ion flux and RCF life for most deposition voltage and pressure combinations tested, specifically, 15.5-18.5 mTorr and 1.5-3.5 kV. For voltages up to 2.5 kV, RCF life decreases as ion flux increases due to increased compressive stress within the film, reaching as high as 2.6 GPa. For voltages between 2.5 and 3.5 kV, interlayer mixing of nickel and copper with the silver layer reduces RCF life due to contamination, even as ion flux and corresponding film compressive stress are reduced. A Monte Carlo-based simulation tool, SRIM is used to track collision cascades of the argon ions and metal atoms within the coating layers. At process voltages above 2.5 kV we observe elemental mixing of copper and nickel with the silver layer using Auger electron spectroscopy of coated steel and Si{sub 3}N{sub 4} balls. The authors conclude that an ion flux greater than 5.0 x 10{sup 14} cm{sup -2} s{sup -1} leads to reduced RCF life due to high film stress. In addition, process voltages greater than 2.5 kV also reduce RCF life due to contamination and interlayer mixing of nickel and copper within the silver layer.

  11. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in silica

    NASA Astrophysics Data System (ADS)

    Bornacelli, Jhovani; Torres-Torres, Carlos; Silva-Pereyra, Héctor Gabriel; Rodríguez-Fernández, Luis; Avalos-Borja, Miguel; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2017-06-01

    A systematic study has been carried out to investigate photoluminescence and third order nonlinear ultraviolet properties exhibited by platinum nanoparticles nucleated in a high-purity silica matrix. The modification in the characteristic photoluminescence spectra of the nanocomposites, ranging between 400 and 600 nm, was obtained with the assistance of a thermal annealing process that changed the average size of the platinum nanoparticles. The influence of temperature, between 200 °C-1100 °C, during the thermal treatment of the nanostructures was analyzed. UV-vis spectroscopy studies corroborated changes in the optical absorption resonances of the ion-implanted samples after annealing, which could then be correlated with the average size of the nanoparticles. The estimated average size was also corroborated by transmision electron microscopy. For temperatures below 600 °C the system is mainly composed of ultra-small photoluminescent platinum nanoparticles. Larger platinum nanoparticles were formed at higher annealing temperatures but photoluminescence quenching was observed as the typical plasmonics response of larger metal nanoparticles started to emerge. The photoluminescence emission for samples with a particle size of less than 2 nm is enhanced approximately 12 fold with respect to the samples with a particle size in the range of 3-7 nm. Differences in the resulting photoluminescence spectra were revealed by substituting the participation of argon, hydrogen or nitrogen, as environmental gases for thermal annealing. A weak PL emission, featuring 1.5 nW at a laser excitation power of 800 μW, related to larger platinum nanoparticles was observed. New emission peaks emerging from the larger platinum nanoparticles were associated with possible hydrogen adsorption on the nanoparticles’ surface. Third order nonlinear ultraviolet measurements were conducted using a time-resolved two-wave mixing method with self-diffraction at 355 nm wavelength. The observed self

  12. Nanoscale influence on photoluminescence and third order nonlinear susceptibility exhibited by ion-implanted Pt nanoparticles in silica.

    PubMed

    Bornacelli, Jhovani; Torres-Torres, Carlos; Silva-Pereyra, Héctor Gabriel; Rodríguez-Fernández, Luis; Avalos-Borja, Miguel; Cheang-Wong, Juan Carlos; Oliver, Alicia

    2017-05-09

    A systematic study has been carried out to investigate photoluminescence and third order nonlinear ultraviolet properties exhibited by platinum nanoparticles nucleated in a high-purity silica matrix. The modification in the characteristic photoluminescence spectra of the nanocomposites, ranging between 400 and 600 nm, was obtained with the assistance of a thermal annealing process that changed the average size of the platinum nanoparticles. The influence of temperature, between 200 °C-1100 °C, during the thermal treatment of the nanostructures was analyzed. UV-vis spectroscopy studies corroborated changes in the optical absorption resonances of the ion-implanted samples after annealing, which could then be correlated with the average size of the nanoparticles. The estimated average size was also corroborated by transmision electron microscopy. For temperatures below 600 °C the system is mainly composed of ultra-small photoluminescent platinum nanoparticles. Larger platinum nanoparticles were formed at higher annealing temperatures but photoluminescence quenching was observed as the typical plasmonics response of larger metal nanoparticles started to emerge. The photoluminescence emission for samples with a particle size of less than 2 nm is enhanced approximately 12 fold with respect to the samples with a particle size in the range of 3-7 nm. Differences in the resulting photoluminescence spectra were revealed by substituting the participation of argon, hydrogen or nitrogen, as environmental gases for thermal annealing. A weak PL emission, featuring 1.5 nW at a laser excitation power of 800 μW, related to larger platinum nanoparticles was observed. New emission peaks emerging from the larger platinum nanoparticles were associated with possible hydrogen adsorption on the nanoparticles' surface. Third order nonlinear ultraviolet measurements were conducted using a time-resolved two-wave mixing method with self-diffraction at 355 nm wavelength. The observed self

  13. The Influence of Doping with Transition Metal Ions on the Structure and Magnetic Properties of Zinc Oxide Thin Films

    PubMed Central

    2014-01-01

    Zn1−xNixO (x = 0.03 ÷ 0.10) and Zn1−xFexO (x = 0.03 ÷ 0.15) thin films were synthesized by sol-gel method. The structure and the surface morphology of zinc oxide thin films doped with transition metal (TM) ions have been investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The magnetic studies were done using vibrating sample magnetometer (VSM) at room temperature. Experimental results revealed that the substitution of Ni ions in ZnO wurtzite lattice for the contents x = 0.03 ÷ 0.10 (Ni2+) leads to weak ferromagnetism of thin films. For Zn1−xFexO with x = 0.03 ÷ 0.05, the Fe3+ ions are magnetic coupling by superexchange interaction via oxygen ions in wurtzite structure. For x = 0.10 ÷ 0.15 (Fe3+) one can observe the increasing of secondary phase of ZnFe2O4 spinel. The Zn0.9Fe0.1O film shows a superparamagnetic behavior due to small crystallite sizes and the net spin magnetic moments arisen from the interaction between the iron ions through an oxygen ion in the spinel structure. PMID:24683324

  14. Determination of E/N Influence on K0 Values within the Low Field Region of Ion Mobility Spectrometry.

    PubMed

    Hauck, Brian C; Siems, William F; Harden, Charles S; McHugh, Vincent M; Hill, Herbert H

    2017-03-23

    The established theory of ion motion within weak electric fields predicts that reduced ion mobility (K0) remains constant as a function of the ratio of electric field strength to drift gas number density (E/N). However, upon increasing the accuracy and precision of K0 value measurements during a previous study, a new relationship was seen in which the K0 values of ions decreased as a function of increasing E/N at field strengths below 4 Td. Here the effect of E/N on the K0 value of an ion has been investigated in order to validate the reality of the phenomenon and determine its cause. The pertinent measurements of voltage and drift time were verified in order to ensure the authenticity of the trend and that it was not a result of a systematic error in parametric measurements. The trend was also replicated on a separate ion mobility spectrometer drift tube in order to further validate its authenticity. As a result, the theory of ion motion within weak electric fields should be revised to reflect the behavior seen here.

  15. Influence des erreurs de modele et de mesure sur les resultats d'interpretation d'un essai de reponse thermique

    NASA Astrophysics Data System (ADS)

    Jacques, Louis

    Prior to the design of a geothermal system for heating and cooling purposes, the thermal parameters in the vicinity of the borehole are established through the completion of a thermal response test. Various sources of error are causing uncertainties on the interpretation outcome. Among the sources of error, the impact of the interpretation model and the measurement errors had never been thoroughly demonstrated. To evaluate the accuracy of an interpretation, the real borehole thermal parameters need to be exactly known, which hinder use of real thermal response test data. Noiseless synthetic interpretation data is then produced through a geostatistical study and a numerical simulation of a three dimensional finite element model. Several stochastic inversions were performed in order to obtain statistic distribution for each unknown thermal parameters. The inversions are carried out with the finite line-source model (FLSM) and the thermal resistance and capacity model (TRCM), included in the interpretation tool TRT-SInterp. For each experiment, 100 inversions were realized with the same initial seed. The bias and precision of thermal parameters are obtained by comparing the average and the standard deviation of the posterior distributions with the reference thermal parameters. To analyze the model error, a stopping criteria is utilized to keep only the results allowing an error of adjustment under the model error. An additional experiment shows the influence of the recovery phase during the test. To consider the temperature probe error, the bias of the probe is included within the stopping criteria. For the watt-transducer, systematic errors and random noises are added to the signal at each inversion. The use of a stopping criteria for the model's error demonstrated a reduction of the uncertainty of the parameters for the TRCM and the identification error for the FLSM. Results indicated that the use of a recovery phase helps narrowing the interpretation results bias

  16. Grundlagen des Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mayer, Jörg; Blum, Janaki; Wintermantel, Erich

    Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheitsoder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse apparative, personelle und logistische Aufwand und die Risiken der Transplantationschirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teilfunktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutreinigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebensverkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alternativen gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzustellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoffwechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

  17. Influence of electron-electron collisions on the propagation of ion-acoustic space-charge waves in a warm plasma waveguide

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-04-01

    The influence of electron–electron collisions on the propagation of the ion-acoustic space-charge wave is investigated in a cylindrical waveguide filled with warm collisional plasma by employing the normal mode analysis and the method of separation of variables. It is shown that the frequency of the ion-acoustic space-charge wave with higher-harmonic modes is always smaller than that with lower-harmonic modes, especially in intermediate wave number domains. It is also shown that the collisional damping rate of the ion-acoustic space-charge wave due to the electron–electron collision effect with higher-harmonic modes is smaller than that with lower-harmonic modes. In addition, it is found that the maximum position of the collisional damping rate shifts to large wave numbers with an increase of the harmonic mode. The variation of the wave frequency and the collisional damping rate of the ion-acoustic space-charge wave is also discussed.

  18. Influence of Pb 2+ ions in the H 2 oxidation on Pt catalyzed hydrogen diffusion anodes in sulfuric acid: presence of oscillatory phenomena

    NASA Astrophysics Data System (ADS)

    Expósito, E.; Sánchez-Sánchez, C. M.; Solla-Gullón, J.; Montiel, V.

    The influence of Pb 2+ ions in sulfuric acid medium on the behavior of a platinum catalyzed hydrogen diffusion electrode (HDE) in a filter press reactor has been studied. A voltammetric study of the H 2 oxidation reaction on a polyoriented platinum electrode and a platinum rotating disk electrode (RDE) in presence of lead ions in solution has also been carried out. Potential oscillations were found in galvanostatic experiments of H 2 oxidation using a HDE catalyzed with platinum when Pb 2+ ions are present in solution. This oscillatory phenomenon was also observed when hydrogen oxidation was carried out in presence of Pb 2+ ions using a platinum RDE. The oscillatory behavior observed has been attributed to an adsorption-oxidation-desorption process of lead on the platinum surface. Due to the low solubility of Pb 2+ in sulfuric acid, at high values of coverage, lead is oxidised to insoluble lead sulfate that blocks the Pt surface. The coupling of the dissolution of lead sulfate and the Pb electrochemical adsorption-oxidation processes cause the oscillatory phenomenon.

  19. Negative-ion production on carbon materials in hydrogen plasma: influence of the carbon hybridization state and the hydrogen content on H- yield

    NASA Astrophysics Data System (ADS)

    Ahmad, Ahmad; Pardanaud, Cédric; Carrère, Marcel; Layet, Jean-Marc; Gicquel, Alix; Kumar, Pravin; Eon, David; Jaoul, Cédric; Engeln, Richard; Cartry, Gilles

    2014-02-01

    Highly oriented polycrystalline graphite (HOPG), boron-doped diamond (BDD), nanocrystalline diamond, ultra-nanocrystalline diamond and diamond-like carbon surfaces are exposed to low-pressure hydrogen plasma in a 13.56 MHz plasma reactor. Relative yields of surface-produced H- ions due to bombardment of positive ions from the plasma are measured by an energy analyser cum quadrupole mass spectrometer. Irrespective of plasma conditions (0.2 and 2 Pa), HOPG surfaces show the highest yield at room temperature (RT), while at high temperature (HT), the highest yield (˜3-5 times compared to HOPG surface at RT) is observed on BDD surfaces. The shapes of ion distribution functions are compared at RT and HT to demonstrate the mechanism of ion generation at the surface. Raman spectroscopy analyses of the plasma-exposed samples reveal surface modifications influencing H- production yields, while further analyses strongly suggest that the hydrogen content of the material and the sp3/sp2 ratio are the key parameters in driving the surface ionization efficiency of carbon materials under the chosen plasma conditions.

  20. Influence of carbonate ion in the crystallization medium on the formation and chemical composition of CaHA-SrHA solid solutions

    NASA Astrophysics Data System (ADS)

    Nikolaev, Anton; Kuz'mina, Maria; Frank-Kamenetskaya, Olga; Zorina, Maina

    2015-06-01

    The study of the influence of carbonate ions in a solution to Sr-distribution in system «solution-crystal» and to ion substitutions and the non-stoichiometry of formed CaHA-SrHA solid solutions was carried out. The CaHA-SrHA solid solutions were synthesized by precipitation from aqueous solutions with the atomic C/P ratio equal to 0, 0.05 and 0.1 at T = 90 °C. Resulting precipitates were studied using various methods including X-ray powder diffraction, infrared spectroscopy and different chemical analyses. The results of the study have shown that in the range of values of (Ca + Sr)/P in the water solution from 40% to 85%, the presence of carbonate ions (C/P = 0.05-0.1) promotes the incorporation of strontium in the apatite. Crystalline apatite solid solutions formed from water solutions of such composition are more defective compared to apatites that are mainly calcium or strontium. They are characterized by a smaller size coherence scattering domain length along [0 0 1] direction and a greater number of carbonate ions, water molecules and vacancies at the Ca-sites.

  1. Ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural clinoptilolite: selectivity determination and influence of acidity on metal uptake.

    PubMed

    Inglezakis, Vassilis J; Loizidou, Maria D; Grigoropoulou, Helen P

    2003-05-01

    In the present study ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural Greek clinoptilolite was examined in terms of selectivity toward the above heavy metals in single- and multicomponent solutions in batch systems. Also examined are the influence of clinoptilolite on solution acidity and the effect of acidity on the ion exchange process. Clinoptilolite increases solution acidity due to the exchange of H(+) cations with the cations initially present in its structure. H(+) cations should be considered as competitive ones in ion exchange processes, and consequently ion exchange of metals is favored at high acidity values. Cu(2+) and Cr(3+) are the most sensitive cations with respect to acidity. Selectivity determination demonstrates that the selectivity at total concentration 0.01 N and acidity 2 in both single- and multicomponent solutions is following the order Pb(2+)>Fe(3+)>Cr(3+) > or =Cu(2+). This order is set since the first days of equilibration. However, Cu(2+) shows remarkable changes in selectivity and generally its uptake and selectivity are increasing with time. On the other hand selectivity in single metal solutions where acidity is not adjusted is following the order Pb(2+)>Cr(3+)>Fe(3+) congruent with Cu(2+).

  2. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO{sub 2} thin films during growth at low temperatures

    SciTech Connect

    Macias-Montero, M.; Garcia-Garcia, F. J.; Alvarez, R.; Gil-Rostra, J.; Gonzalez, J. C.; Gonzalez-Elipe, A. R.; Palmero, A.; Cotrino, J.

    2012-03-01

    Growth of amorphous SiO{sub 2} thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O{sup -} ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO{sub 2} thin films by magnetron sputtering at low temperatures, controlled by the amount of O{sub 2} in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  3. An extended polarization model to study the influence of current collector geometry of large-format lithium-ion pouch cells

    NASA Astrophysics Data System (ADS)

    Kosch, Stephan; Rheinfeld, Alexander; Erhard, Simon V.; Jossen, Andreas

    2017-02-01

    In this work, depth-of-discharge and temperature distribution of a large-format lithium-ion pouch cell are examined by means of a two-dimensional electro-thermal polarization model. A method of improving the dynamic behavior of the model while maintaining its accuracy under constant current loads by applying intermittent charge and discharge data is given. The model is validated with the aid of experimental data gained from dynamic and constant current discharge profiles applied to a commercial 40 Ah Li-ion pouch cell. Two major design studies are carried out focusing on a variation of geometrical parameters, namely the size and the positioning of the cell tabs. For each design, the influence of current collector thickness on the uniformity of the temperature and depth-of-discharge distribution is investigated during a 4C constant current discharge operation. Simulation results show that reducing the current collector thickness results in a moderate increase of 3 °C in maximum temperature and 1.5% in depth-of-discharge imbalance if the tab size is increased. In consequence, lowering the share of inactive components within a lithium-ion cell by optimizing the thickness of the current collector foils should be further considered to enhance the performance of typical lithium-ion cell designs.

  4. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    NASA Astrophysics Data System (ADS)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  5. Influence of modifier oxide on emission features of Dy3+ ion in Pb3O4 ‒ZnO‒P2O5 glasses

    NASA Astrophysics Data System (ADS)

    Ravi kumar, Valluri; Giridhar, G.; Veeraiah, N.

    2016-10-01

    Glasses of the composition Pb2O3‒ZnO‒P2O5: Dy3+ mixed with three different modifier oxides viz., MgO, CaO and SrO are prepared. The influence of modifier oxide on the luminescence characteristics of Dy3+ ions has been investigated. Using the intensities of various absorption bands of Dy3+ ions, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. Together with the J‒O parameters and the luminescence spectra, various radiative properties like transition probability A, branching ratio βr, the radiative life time τr, and the emission cross-section σE for various emission levels of Dy3+ ions have been evaluated and reported. The values of these parameters were found to be influenced by modifier oxides. Among the three modifier oxides mixed glasses, the glasses mixed with CaO mixed glasses exhibited the highest luminescence efficiency. The results have been analyzed in the light of structural modifications taking place in the glass network with the help of IR spectral studies.

  6. Expression, receptor binding, and biophysical characterization of guinea pig insulin desB30: a monomeric insulin variant.

    PubMed

    Engholm, Ebbe; Hansen, Thomas H; Johansson, Eva; Strauss, Holger M; Vinther, Tine N; Jensen, Knud J; Hubálek, Frantisek; Kjeldsen, Thomas B

    2015-04-13

    Here we report, for the first time, the heterologous expression of desB30 guinea pig insulin (GI desB30) in the yeast Saccharomyces cerevisiae. The affinities of GI desB30 for the insulin receptor A and the IGF-I receptor were also quantified for the first time. Small-angle X-ray scattering and analytical ultracentrifugation studies confirmed that GI desB30 did not form dimers or hexamers, in contrast to human insulin. Size-exclusion chromatography connected to inductively coupled plasma mass spectrometry revealed that GI desB30 has affinity towards several divalent metal ions. These studies did not indicate the formation of any larger structures of GI desB30 in the presence of various divalent metal ions, but did indicate that GI desB30 has an affinity towards Mn, Co, and Cu ions. Finally, the low affinity for the insulin receptor and the very low affinity for the IGF-I receptor by GI desB30 were quantified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Influence of C-Trap Ion Accumulation Time on the Detectability of Analytes in IR-MALDESI MSI.

    PubMed

    Rosen, Elias P; Bokhart, Mark T; Nazari, Milad; Muddiman, David C

    2015-10-20

    Laser desorption followed by post electrospray ionization requires synchronized timing of the key events (sample desorption/ionization, mass spectrometry analysis, and sample translation) necessary to conduct mass spectrometry imaging (MSI) with adequate analyte sensitivity. In infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) MSI analyses, two laser pulses are used for analysis at each volumetric element, or voxel, of a biological sample and ion accumulation in the C-trap exceeding 100 ms is necessary to capture all sample-associated ions using an infrared laser with a 20 Hz repetition rate. When coupled to an Orbitrap-based mass spectrometer like the Q Exactive Plus, this time window for ion accumulation exceeds dynamically controlled trapping of samples with comparable ion flux by Automatic Gain Control (AGC), which cannot be used during MSI analysis. In this work, a next-generation IR-MALDESI source has been designed and constructed that incorporates a mid-infrared OPO laser capable of operating at 100 Hz and allows requisite C-trap inject time during MSI to be reduced to 30 ms. Analyte detectability of the next-generation IR-MALDESI integrated source has been evaluated as a function of laser repetition rate (100-20 Hz) with corresponding C-trap ion accumulation times (30-110 ms) in both untargeted and targeted analysis of biological samples. Reducing the C-trap ion accumulation time resulted in increased ion abundance by up to 3 orders of magnitude for analytes ranging from xenobiotics to endogenous lipids, and facilitated the reduction of voxel-to-voxel variability by more than 3-fold.

  8. Influence of heavy ion irradiation on DC and gate-lag performance of AlGaN/GaN HEMTs

    NASA Astrophysics Data System (ADS)

    Lei, Zhi-Feng; Guo, Hong-Xia; Zeng, Chang; Chen, Hui; Wang, Yuan-Sheng; Zhang, Zhan-Gang

    2015-05-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1×1010 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current Id and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance. Project supported by the National Natural Science Foundation of China (Grant No. 61204112).

  9. Influence of the process parameters on the growth of YSZ-layers prepared by Ion Beam Assisted Deposition (IBAD)

    NASA Astrophysics Data System (ADS)

    Knierim, A.; Auer, R.; Geerk, J.; Lierk, Fuli. Y.; Linker, G.; Meyer, O.; Schweiss, P.; Smithey, R.; Reiner, J.

    1997-05-01

    Cubic yttria stabilized zirconia (YSZ) thin films were grown on amorphous quartz, r-plane sapphire and stainless steel substrates by ion beam sputtering from a planar target under simultaneous ion bombardment (IBAD) during film growth and sputtering employing the inverted cylindrical magnetron (ICM) gun. The formation and modification of preferred orientations was studied by X-ray diffraction and TEM investigations as a function of different deposition parameters like substrate temperature, total pressure, deposition rate, ion beam energy and current. A preferred (100)-orientation could be achieved on untextured substrates by ICM-deposition at substrate temperatures above 800°C and by IBAD without external heating of the substrates. In-plane orientation of YSZ films on untextured substrates was only achieved with IBAD for an ion impact angle αs between 30° and 70°. For αs = 55° the best mosaic spread was observed. The observation of significantly smaller texture distribution widths for epitaxially post-deposited material than measured at the basic YSZ buffer layer was found to be due to a gradual improvement of YSZ growth under ion bombardment with increasing layer thickness.

  10. Influence of Fluoride Ion on the Performance of Pb-Ag Anode During Long-Term Galvanostatic Electrolysis

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaocong; Yu, Xiaoying; Jiang, Liangxing; Lv, Xiaojun; Liu, Fangyang; Lai, Yanqing; Li, Jie

    2015-09-01

    Anodic potential, morphology and phase composition of the anodic layer, corrosion morphology of the metallic substrate, and oxygen evolution behavior of Pb-Ag anode in H2SO4 solution without/with fluoride ion were investigated and compared. The results showed that the presence of fluoride ions contributed to a smoother anodic layer with lower PbO2 concentration, which resulted in lower double layer capacity and higher charge transfer resistance for the oxygen evolution reaction. Consequently, the Pb-Ag anode showed a higher anodic potential (about 35 mV) in the fluoride-containing electrolyte. In addition, the fluoride ions accelerated the detachment of loose flakes on the anodic layer. It was demonstrated that the anodic layer formed in the fluoride-containing H2SO4 solution was thinner. Furthermore, fluoride ions aggravated the corrosion of the metallic substrate at interdendritic boundary regions. Hence, the presence of fluoride ions is detrimental to oxygen evolution reactivity and increases the corrosion of the Pb-Ag anode, which may further increase the energy consumption and capital cost of zinc plants.

  11. Influence of nitrogen admixture to argon on the ion energy distribution in reactive high power pulsed magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Breilmann, W.; Maszl, C.; Hecimovic, A.; von Keudell, A.

    2017-04-01

    Reactive high power impulse magnetron sputtering (HiPIMS) of metals is of paramount importance for the deposition of various oxides, nitrides and carbides. The addition of a reactive gas such as nitrogen to an argon HiPIMS plasma with a metal target allows the formation of the corresponding metal nitride on the substrate. The addition of a reactive gas introduces new dynamics into the plasma process, such as hysteresis, target poisoning and the rarefaction of two different plasma gases. We investigate the dynamics for the deposition of chromium nitride by a reactive HiPIMS plasma using energy- and time-resolved ion mass spectrometry, fast camera measurements and temporal and spatially resolved optical emission spectroscopy. It is shown that the addition of nitrogen to the argon plasma gas significantly changes the appearance of the localized ionization zones, the so-called spokes, in HiPIMS plasmas. In addition, a very strong modulation of the metal ion flux within each HiPIMS pulse is observed, with the metal ion flux being strongly suppressed and the nitrogen molecular ion flux being strongly enhanced in the high current phase of the pulse. This behavior is explained by a stronger return effect of the sputtered metal ions in the dense plasma above the racetrack. This is best observed in a pure nitrogen plasma, because the ionization zones are mostly confined, implying a very high local plasma density and consequently also an efficient scattering process.

  12. La diffraction des neutrons et des rayons X pour l'étude structurale des liquides et des verres

    NASA Astrophysics Data System (ADS)

    Fischer, H. E.; Salmon, P. S.; Barnes, A. C.

    2003-02-01

    La compréhension de mainte propriété physique d'un verre ou d'un liquide nécessite la connaissance des facteurs de structure partiels (PSFs) qui décrivent chacun la distribution d'une espèce atomique autour d'une autre. La technique de diffraction des neutrons avec substitution isotopique (NDIS) [1,2,3], ayant bien réussi a déterminer les PSFs de certains composés [4,5], est pourtant restreinte aux isotopes présentant un contraste suffisant en longueur de diffusion. D'un autre cote, la technique de diffusion anomale des rayons X (AXS ou AXD) [6] permet de faire varier la longueur de diffusion d'une espèce atomique pourvu que son énergie d'absorption soit à la fois accessible et suffisamment élevée pour donner un assez grand transfert du moment. La combinaison des techniques de diffraction des neutrons (avec ou sans substitution isotopique) et de diffraction des rayons X (avec ou sans diffusion anomale) peut donc permettre d'obtenir un meilleur contraste en longueurs de diffusion pour un système donné, mais exige une analyse de données plus soignée pour pouvoir bien tenir compte des erreurs systématiques qui sont différentes pour les 2 techniques [7]. Pour les atomes ayant des distributions électroniques quasi-sphériques, e.g. dans le cas d'un alliage liquide, la combinaison des techniques de NDIS et de diffraction des rayons X s'est déjà montrée très avantageuse pour la détermination des PSFs [8,9]. Dans le cas des verres ayant d'importantes liaisons covalentes, l'effective combinaison des 2 techniques peut être moins directe mais facilitée lorsqu'il s'agit des atomes de grand Z [10,11]. Nous présentons ici un sommaire du méthode et quelques exemples des résultats.

  13. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Roscher, Michael A.; Vetter, Jens; Sauer, Dirk Uwe

    Lithium-ion cells (Li-ion) comprising lithium iron phosphate (LiFePO 4) based cathode active material are a promising battery technology for future automotive applications and consumer electronics in terms of safety, cycle and calendar lifetime and cost. Those cells comprise flat open circuit voltage (OCV) characteristics and long-term load history dependent cell impedance. In this work the special electric characteristics of LiFePO 4 based cells are elucidated, quantified and compared to Li-ion cells containing a competing cathode technology. Through pulse tests and partial cycle tests, performed with various olivine based cells, the cycling history dependency of the internal resistance and therefore on the power capability is shown. Hence, methods are illustrated to quantify this load history impact on the cells performance. Subsequently, methods to achieve a safe battery operation are elucidated. Furthermore strategies are given to obtain reliable information about the cells power capability, taking the mentioned properties into consideration.

  14. Influence of excited configurations on the intensities of electric-dipole transitions of rare-earth ions

    NASA Astrophysics Data System (ADS)

    Dunina, E. B.; Kornienko, A. A.

    2014-05-01

    The theory of induced electric-dipole transitions of rare-earth ions in crystals and glasses is improved by taking into account the third-order effects of perturbation theory with respect to the energies of virtual excitations of 4 f electrons to the 5 d states. Since the energy regions of excited 4 f N - 15 d states are usually superimposed with the charge-transfer bands, the effects caused by a virtual transfer of an electron from the outer shells of ions of the surroundings (ligands) to the unfilled 4 f N shells are also considered. The Pr3+, Sm3+, and Eu3+ ions are considered as examples. It is found that some difficulties inherent in the Judd-Ofelt calculation scheme are successfully overcome. The agreement of the calculated results with the experimental data improves.

  15. Influence of zinc ions on protein secretion in a heavy metal tolerant strain of the ericoid mycorrhizal fungus Oidiodendron maius.

    PubMed

    Martino, Elena; Franco, Barbara; Piccoli, Giovanni; Stocchi, Vilberto; Perotto, Silvia

    2002-02-01

    A heavy metal tolerant strain of the ericoid mycorrhizal species Oidiodendron maius, isolated from soil heavily contaminated with zinc, was previously shown to tolerate high concentrations of zinc and cadmium ions in the growth medium. We have investigated some of the specific molecular responses of this fungal strain to the presence of increasing concentrations of zinc ions in the growth medium. In particular, we show that zinc ions induce a general change in the array of secreted proteins, with a shift towards the production of more basic, low molecular weight polypeptides. Some of these proteins were microsequenced and identified through homology search in databases. Among them are hydrolytic enzymes (nuclease, proteinase, lysozyme) and two superoxide dismutase isoforms. The latter are antioxidant enzymes known to play a role in heavy metal response in plants, animals and microorganisms.

  16. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.

    PubMed

    Kuo, Yi-Ming

    2014-07-01

    This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 degrees C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag's structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts. Implications: Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.

  17. Influence of ion beam assisted deposition parameters on the growth of MgO and CoFeB

    SciTech Connect

    Ferreira, Ricardo; Freitas, Paulo P.; Petrova, Rumyana; McVitie, Stephen

    2012-04-01

    The effect of the kinetic parameters of an assistance ion beam on the crystallization of ion beam deposited MgO was investigated. It is shown that the crystallization of MgO in the as-deposited state is strongly dependent on the assistance beam parameters. Furthermore, two deposition regimes corresponding to different ranges of the assistance beam energy are found. XRD and TEM studies of CoFeB/MgO/CoFeB with MgO deposited in the two regimes show that CoFeB crystallization is favored when low energy assist beams are used, despite no differences being found in the MgO.

  18. Shifting the phase of a coherent beam with a ^{174}Yb^+ ion: influence of the scattering cross section

    NASA Astrophysics Data System (ADS)

    Fischer, Martin; Srivathsan, Bharath; Alber, Lucas; Weber, Markus; Sondermann, Markus; Leuchs, Gerd

    2017-01-01

    We discuss and measure the phase shift imposed onto a radially polarized light beam when focusing it onto an ^{174} {Yb}+ ion. In the derivation of the expected phase shifts, we include the properties of the involved atomic levels. Furthermore, we emphasize the importance of the scattering cross section and its relation to the efficiency for coupling the focused light to an atom. The phase shifts found in the experiment are compatible with the expected ones when accounting for known deficiencies of the focusing optics and the motion of the trapped ion at the Doppler limit of laser cooling (Hänsch and Schawlow in Opt Commun 13:68-69, 1975).

  19. Influence of shieldings or antioxidants on DNA damage and early and delyed cell death induced in human fibroblasts by accelerated 595 MeV/u Fe ions

    NASA Astrophysics Data System (ADS)

    Antonelli, Francesca; Esposito, Giuseppe; Dini, Valentina; Belli, Mauro; Campa, Alessandro; Sorrentino, Eugenio; Antonella Tabocchini, Maria; Lobascio, Cesare; Berra, Bruno

    HZE particles from space radiation raise an important protection concern during long-term astronauts' travels. As high charge, high energy particles interact with a shield, both projec-tile and target fragmentation may occurs, so that the biological properties of the emerging radiation field depend on the nature and energy of the incident particles, and on the nature and thickness of the shield. We have studied the influence of PMMA and Kevlar shielding as well as the antioxidant compounds Rosmarinic acid or Resveratrol on DNA damage induction and processing (as evaluated by the g-H2AX phosphorylation assay) and on early and delayed cell death in AG01522 human fibroblasts irradiated with Fe ions of 595 MeV/u at the NASA Space Radiation Laboratory (NSRL), Brookhaven National Laboratory (BNL, Upton, USA). Insertion of PMMA or Kevlar shields (10 g/cm2 thick) gave no substantial change in the bio-logical effect per unit dose on the sample for all the end points studied. When irradiation was performed in the presence of 300 mM Rosmarinic acid or Resveratrol no difference were found for both early and delayed cell death, while a slight protective effect was observed for the initial and residual DNA damage. For both early and delayed cell death, Fe-ions are more effective than g-rays. The number of Fe-ion induced g-H2AX foci is instead lower than that induced by g-rays, due to the presence of multiple DSB within a single focus induced by Fe-ions. From a comparison of the g-H2AX data with the results on DNA fragmentation obtained with 414 MeV/u Fe ions at the Heavy Ions Medical Accelerator (HIMAC, Chiba, Japan) and with 1 GeV/u Fe ions at BNL, in the absence or in the presence of PMMA shields (Esposito et al, Advance in Space Research 2004) we speculate that the overall effect of the shield is a balance between the contributions due to the slowing down of the primary particles and that due to the nuclear fragmentation. Acknowledgment: Financial support from ASI project

  20. Influence of electron-neutral elastic collisions on the instability of an ion-contaminated cylindrical electron cloud: 2D3V PIC-with-MCC simulations

    NASA Astrophysics Data System (ADS)

    Sengupta, M.; Ganesh, R.

    2016-10-01

    This paper is a simulation based investigation of the effect of elastic collisions and effectively elastic-like excitation collisions between electrons and background neutrals on the dynamics of a cylindrically trapped electron cloud that also has an ion contaminant mixed in it. A cross section of the trapped non neutral cloud composed of electrons mixed uniformly with a fractional population of ions is loaded on a 2D PIC grid with the plasma in a state of unstable equilibrium due to differential rotation between the electron and the ion component. The electrons are also loaded with an axial velocity component, vz, that mimics their bouncing motion between the electrostatic end plugs of a Penning-Malmberg trap. This vz loading facilitates 3D elastic and excitation collisions of the electrons with background neutrals under a MCC scheme. In the present set of numerical experiments, the electrons do not ionize the neutrals. This helps in separating out only the effect of non-ionizing collisions of electrons on the dynamics of the cloud. Simulations reveal that these non-ionizing collisions indirectly influence the ensuing collisionless ion resonance instability of the contaminated electron cloud by a feedback process. The collisional relaxation reduces the average density of the electron cloud and thereby increases the fractional density of the ions mixed in it. The dynamically changing electron density and fractional density of ions feed back on the ongoing ion-resonance (two-stream) instability between the two components of the nonneutral cloud and produce deviations in the paths of progression of the instability that are uncorrelated at different background gas pressures. Effects of the collisions on the instability are evident from alteration in the growth rate and energetics of the instability caused by the presence of background neutrals as compared to a vacuum background. Further in order to understand if the non-ionizing collisions can independently be a cause

  1. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Chatterjee, Angshuman; Dasgupta, Swagata

    2013-02-01

    The interaction of genistein with bovine serum albumin (BSA) has been characterized via UV-vis, fluorescence spectroscopy and Circular Dichroism (CD) measurements under physiological conditions. In this study, we have investigated the effect of some common metal ions on the binding of genistein with BSA using fluorescence studies. The fluorescence data reveal that the binding affinity of genistein to BSA increases in presence of certain metal ions. The possibility of non-radiative energy transition from the donor tryptophan to the acceptor genistein has been observed in absence and presence of metal ions. The observed similarities in the values of efficiency of energy transfer (E) and the separation between the donor and acceptor (r) in both the cases may be correlated with the complexation between the genistein and metal ions, which is also observed from the UV-vis studies. The changes in enthalpy (ΔH°) and entropy (ΔS°) of the interaction were found to be -14.64 kJ mol-1 and +42.75 J mol-1 K-1 respectively. These values indicate the involvement of electrostatic interactions along with a hydrophobic association that results in a positive entropy change. CD analysis shows that there is a slight increase in the% α-helical content of BSA on binding with genistein at lower molar ratios. Warfarin and ibuprofen displacement studies in accordance with the molecular docking show that genistein binds to site I (subdomain IIA) of BSA.

  2. The influence of ions and the induced secondary emission on the nanosecond high-gradient microwave breakdown at metal surface

    SciTech Connect

    Chang, C.; Liu, C. L.; Chen, C. H.; Sun, J.; Liu, Y. S.; Guo, L. T.; Cao, Y. B.; Wang, Y.; Song, Z. M.

    2015-06-15

    The mechanism of ultrafast breakdown at metal/vacuum interface in the high-power microwave waveguides is studied. In order to realize the nanosecond discharge, the required ambient gas pressure above the metal surface is approximately calculated as high as several Torr due to the low ionization-rate for high-energy electrons and short pulse. The local high pressure may come from the evaporated microscopic protrusions due to Joule heating and gas desorption. Besides, ions accelerated by the ambient space charge field could obtain sufficient high energy to collide and sputter the metal atoms to increase the ambient pressure. The positive feedbacks during the rapid discharge are studied by particle-in-cell simulation. The relatively high-energy ions could generate secondary electrons. It is shown that, as the positive feedback, the secondary electrons induce the gas desorption and stronger ionization, resulting in ion and electron density increasing as well as sheath field further increasing. As a result, more higher-energy ions bombard metal surface, leading to higher secondary electron yield and higher density plasma generated to cut off the microwave transmission finally. These nonlinear courses realize the ultrafast discharge in waveguides.

  3. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  4. The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin.

    PubMed

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Chatterjee, Angshuman; Dasgupta, Swagata

    2013-02-01

    The interaction of genistein with bovine serum albumin (BSA) has been characterized via UV-vis, fluorescence spectroscopy and Circular Dichroism (CD) measurements under physiological conditions. In this study, we have investigated the effect of some common metal ions on the binding of genistein with BSA using fluorescence studies. The fluorescence data reveal that the binding affinity of genistein to BSA increases in presence of certain metal ions. The possibility of non-radiative energy transition from the donor tryptophan to the acceptor genistein has been observed in absence and presence of metal ions. The observed similarities in the values of efficiency of energy transfer (E) and the separation between the donor and acceptor (r) in both the cases may be correlated with the complexation between the genistein and metal ions, which is also observed from the UV-vis studies. The changes in enthalpy (ΔH°) and entropy (ΔS°) of the interaction were found to be -14.64 kJ mol(-1) and +42.75 J mol(-1)K(-1) respectively. These values indicate the involvement of electrostatic interactions along with a hydrophobic association that results in a positive entropy change. CD analysis shows that there is a slight increase in the% α-helical content of BSA on binding with genistein at lower molar ratios. Warfarin and ibuprofen displacement studies in accordance with the molecular docking show that genistein binds to site I (subdomain IIA) of BSA. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport.

    PubMed Central

    Benz, R; Conti, F

    1986-01-01

    Measurements of membrane capacitance, Cm, were performed on lipid bilayers of different lipidic composition (diphytanoyl phosphatidylcholine PPhPC, dioleoyl phosphatidylcholine DOPE, glycerylmonooleate GMO) and containing n-decane as solvent. In the same membranes, the absorption of the lipophilic ions dipicrylamine (DPA-) and tetraphenylborate (TPhB-), and the kinetics of their translocation between the two membrane faces have been studied. The data were obtained from charge pulse relaxation measurements. Upon increasing pressure the specific capacity Cm increased in a fully reversible and reproducible way reflecting a thinning of the membrane that is attributed to extrusion of n-decane from the black membrane area. High pressure decreased the rate constant, ki, for lipophilic ion translocation. After correcting for changes in the height of the energy barrier for translocation due to membrane thinning the pressure dependence of ki yields an apparent activation volume for translocation of approximately 14 cm3/mol both for DPA- and TPhB-. Changes in lipophilic ion absorption following a step of pressure developed with a rather slow time course due to diffusion limitations in solution. The stationary concentration of membrane absorbed lipophilic ions increased with pressure according to an apparent volume of absorption of about -10 cm3/mol. The relevance of the results for the interpretation of the effects of pressure on nerve membrane physiology is discussed. Images FIGURE 1 PMID:3730509

  6. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.

    PubMed

    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J

    2013-08-23

    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  7. Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane

    NASA Astrophysics Data System (ADS)

    Gomez, Luis Fernando

    Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.

  8. Influence of a Counterion on the Ion Atmosphere of an Anion: A Molecular Dynamics Study of LiX and CsX (X = F(-), Cl(-), I(-)) in Methanol.

    PubMed

    Kumar, Parveen; Kulkarni, Anant D; Yashonath, S

    2015-08-27

    We report molecular dynamics (MD) simulations to explore the influence of a counterion on the structure and dynamics of cationic and anionic solvation shells for various ions in methanol at 298 K. We show that the variation in ionic size of either the cation or the anion in an ion pair influences the solvation structure of the other ion as well as the diffusivity in an electrolyte solution of methanol. The extent of ionic association between the cation and its counteranion of different ionic sizes has been investigated by analyzing the radial distribution functions (RDFs) and the orientation of methanol molecules in the first solvation shell (FSS) of ions. It is shown that the methanol in the FSS of the anion as well the cation exhibit quite different radial and orientational structures as compared to methanol which lie in the FSS of either the anion or the cation but not both. We find that the coordination number (CN) of F(-), Cl(-), and I(-) ions decreases with increasing size of the anion which is contrary to the trend reported for the anions in H2O. The mean residence time (MRT) of methanol molecules in the FSS of ions has been calculated using the stable states picture (SSP) approach. It is seen that the ion-counterion interaction has a considerable influence on the MRT of methanol molecules in the FSS of ions. We also discuss the stability order of the ion-counterion using the potentials of mean force (PMFs) for ion pairs with ions of different sizes. The PMF plots reveal that the Li(+)-F(-) pair (small-small) is highly stable and the Li(+)-I(-) pair is least stable (small-large) in electrolyte solutions.

  9. La participation des enfants et des adolescents à la boxe

    PubMed Central

    Purcell, Laura K; LeBlanc, Claire MA

    2012-01-01

    RÉSUMÉ Des milliers de garçons et de filles de moins de 19 ans font de la boxe en Amérique du Nord. Même si la boxe comporte des avantages pour ceux qui y participent, y compris l’exercice, l’autodiscipline et la confiance en soi, le sport lui-même favorise et récompense des coups délibérés à la tête et au visage. Les personnes qui font de la boxe risquent de subir des blessures à la tête, au visage et au cou, y compris des traumatismes neurologiques chroniques et même fatals. Les commotions cérébrales sont l’une des principales blessures causées par la boxe. En raison du risque de blessures crâniennes et faciales, la Société canadienne de pédiatrie et l’American Academy of Pediatrics s’opposent vigoureusement à la boxe comme activité sportive pour les enfants et les adolescents. Ces organismes recommandent que les médecins s’élèvent contre la boxe auprès des jeunes et les encouragent à participer à d’autres activités dans lesquelles les coups intentionnels à la tête ne constituent pas un élément essentiel du sport.

  10. Current-polarized ion-selective membranes: The influence of plasticizer and lipophilic background electrolyte on concentration profiles, resistance, and voltage transients.

    PubMed

    Zook, Justin M; Langmaier, Jan; Lindner, Ernő

    2009-03-02

    Lipophilic background electrolytes consisting of a lipophilic cation and a lipophilic anion, such as tetradodecylammonium tetrakis(4-chlorophenyl) borate (ETH 500), or bis(triphenylphosphoranylidene) ammonium tetrakis[3,5bis(trifluoromethyl) phenyl] borate (BTPPATFPB) are incorporated into the membranes of ion-selective electrodes (ISEs) to improve the detection limit and selectivity of the electrodes and decrease the resistance of the sensing membrane. In this work, spectroelectrochemical microscopy (SpECM) is used in conjunction with chronopotentiometry to quantify the effects of a lipophilic background electrolyte on the concentration profiles induced inside current-polarized membranes and on the measured voltage transients in chronopotentiometric experiments. In agreement with the theoretical model, the lipophilic background electrolyte incorporated into o-NPOE or DOS plasticized membranes decreases the membrane resistance and thus the contribution of migration in the overall transport across ion-selective membranes. Consequently, it has a significant influence on the changing concentration profiles of the ion-ionophore complex during chronopotentiometric experiments.

  11. Reactive magnetron sputtering of highly (001)-textured WS2-x films: Influence of Ne+, Ar+ and Xe+ ion bombardment on the film growth

    NASA Astrophysics Data System (ADS)

    Ellmer, K.; Seeger, S.; Sieber, I.; Bohne, W.; Röhrich, J.; Strub, E.; Mientus, R.

    2006-02-01

    Tungsten disulfide WS2 is a layer-type semi-conductor with an energy band gap and an absorption coefficient making it suitable as an absorber for thin film solar cells. In the article [1] WS2-x films were pre-pared by reactive magnetron sputtering from a metallic tungsten target in Ar-H2S atmospheres.The cover figure shows in situ energy-dispersive X-ray diffraction patterns for films deposited at different substrate potentials, i.e. for deposition conditions with ion assistance at different ion energies. These spectra and the corresponding SEM photographs of the film morphology show the strong influence of the ion energy on the film growth. The crystallographic struc-ture of WS2-x is shown between the two SEM pictures.The first author, Klaus Ellmer, is working at the Hahn-Meitner-Institut Berlin, Dept. of Solar Energy Research. His research fields are thin film deposition by reactive magnetron sputtering for solar cells, plasma characterization, in situ energy-dispersive X-ray diffraction and electronic transport in transpar-ent conductive oxides.

  12. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  13. Influence of monovalent ions on density fluctuations in hydrothermal aqueous solutions by small angle X-ray scattering.

    PubMed

    Da Silva-Cadoux, Cécile; Hazemann, Jean-Louis; Testemale, Denis; Proux, Olivier; Rochas, Cyrille

    2012-01-28

    Synchrotron small angle X-ray scattering measurements on water and alkaline bromine aqueous solutions (XBr, with X = Li, Rb, or Cs) were carried out from ambient to supercritical conditions. The temperature was increased from 300 to 750 K along several isobars between 24 and 35 MPa. The correlation length and the structure factor were extracted from the data following the Ornstein-Zernike formalism. We obtained experimental evidence of the shift of the critical point and isochore and their dependence on the ions concentration (0.33 mol/kg and 1.0 mol/kg). We also observed that the size of the density fluctuations and the structure factor increase with the presence of the ions and that this effect is positively correlated with the atomic number of the cation. These behaviors were compared with ZnBr(2) and NaCl systems from the literature.

  14. The influence of repetitively pulsed plasma immersion low energy ion implantation on TiN coating formation and properties

    NASA Astrophysics Data System (ADS)

    Sivin, D. O.; Ananin, P. S.; Dektyarev, S. V.; Ryabchikov, A. I.; Shevelev, A. E.

    2017-05-01

    Application of high frequency short pulse plasma immersion low energy ion implantation for titanium nitride coating deposition using vacuum arc metal plasma and hot-cathode gas-discharge plasma on R6M5 alloy was investigated. Implementation of negative repetitively pulsed bias with bias amplitude 2 kV, pulse duration 5 μs and pulse frequency 105 Hz leads to 6.2-fold decrease of vacuum arc macroparticle surface density for macroparticles with diameter less than 0.5 μm. Ion sputtering due coating deposition reduces the production rate approximately by 30%. It was found that with bias amplitude range from 1.1 to 1.4 kV and pulse duration 5 μs yields to formation of coatings with local hardness up to 40 GPa. This paper presents the results of experimental studies of adhesion strength, tribological properties and surface morphology of deposited TiN coatings.

  15. The influences of plasma ion bombarded on crystallization, electrical and mechanical properties of Zn-In-Sn-O films

    NASA Astrophysics Data System (ADS)

    Chen, K. J.; Hung, F. Y.; Chang, S. J.; Liao, J. D.; Weng, C. C.; Hu, Z. S.

    2011-11-01

    The quality of co-sputtering derived Zn-In-Sn-O (ZITO) film was adjusted by different gas (oxygen and argon) induced plasma ions bombarding (PIB) treatment. The result showed that the film conductivity could be improved after plasma bombardment. The increment of oxygen vacancies and plasma bombard-induced thermal energy were main reasons. Notably, the efficiency of Ar plasma bombarded for improved conductivity not only was better but also had a smoother surface morphology. Due to Ar ions will not react with metal atoms to form oxide and possessed a higher momentum. In addition, the O-rich layer on the ultra-surface not only was removed but also enhanced film reliability by plasma bombarded that could enhance the performance of optoelectronic devices.

  16. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  17. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D. Daughton, W.

    2015-02-15

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  18. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    DOE PAGES

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less

  19. TRANSPLANTATION EN MASSE DES ORGANES ABDOMINAUX

    PubMed Central

    STARZL, T.

    2010-01-01

    Les transplantations multi-organes, comprenant les blocs foie-duodénum-pancréas, foie-estomac-duodénum-pancréas, et foie-intestin sont réalisées avec un succés croissant Ces techniques et leurs combinaisons variées de transplantation monobloc ne sont pas de pratique courante. Les techniques de prélévement, de conservation et de soins post-opératoires sont décrites pour la transplantation multi-organes compléte ainsi que pour les variantes incomplétes. Le probléme particulier à ce type de transplantation est celui de la transplantation intestinale, c’est-à-dire la transplantation d’un organe à composante lymphoréticulaire complexe ce qui peut provoquer un syndrome greffon contre hôte. Par erreur de conception, et un peu par esprit de systéme, les efforts par le passé étaient dirigés sur la modification et la destruction des systémes lymphoréticulaires grâce au traitement préalable du donneur ou des organes transplantés, par médicaments, radiation ou autres moyens. Actuellement, I’idée directrice est de garder intacte les systémes lymphoréticulaires qui deviennent alors le site d’une circulation à double sens aprés transplantation. Avec la puissante immunodépression que fournit le FK 506, les cellules lymphoréticulaires du donneur peuvent circuler chez le receveur sans créer de syndrome du greffon contre hôte clinique et les cellules de la greffe s’assimilent à celles du receveur (chimérisme local) sans provoquer de rejet. Même si I’on évite le rejet ou le syndrome greffon contre hôte, il existe, à côté de ces entités, des relations métaboliques entre les organes greffés ainsi qu’entre les organes greffés et les viscéres du receveur laissés en place, qui peuvent influencer I’avenir soit des organes greffés, soit des organes laissés en place. Parmi les échanges métaboliques les mieux connus actuellement, il y a les facteurs splanchniques hépatotrophes endogénes, dont I’insuline est la mieux

  20. Influence of the ion energy on the structure of Bi and Fe2O3 thin films

    NASA Astrophysics Data System (ADS)

    Cardona, Dagoberto; Camps, Enrique; Escobar-Alarcón, L.; Rodil, Sandra E.

    2013-03-01

    Compounds containing bismuth, iron and oxygen (BFO) can result in materials with important magnetic and electrical properties for high-technology applications. We plan to prepare such compounds using the simultaneous ablation of bismuth and iron oxide targets. For that reason in the first part of this work we study the plasmas and the materials produced by ablation of bismuth or Fe2O3 targets, and then the two plasmas are combined in order to deposit the BFO compounds. The individual plasmas were characterized using a Langmuir probe, in order to measure the mean kinetic ion energy ( E p) and plasma density ( N p). Bismuth and magnetite-Fe3O4 thin films were obtained in high vacuum (2.7×10-4 Pa). Meanwhile for the deposition of α-Fe2O3 (hematite) or amorphous bismuth oxide thin films a reactive atmosphere (Ar/O2=80/20) was used. All depositions were made at room temperature. The bismuth thin films crystallized in the rhombohedral metallic system with preferential orientations that depended on the Bi-ion energy used. Bismuth oxide phases were only obtained after annealing of the Bi thin films at different temperatures. Iron oxide thin films reproducing the target stoichiometry were obtained at a certain value of iron-ion energy. Preliminary structural results of the BFO thin films obtained by the combination of the individual plasmas are presented.

  1. Influence of variable chemical conditions on EDTA-enhanced transport of metal ions in mildly acidic groundwater

    USGS Publications Warehouse

    Kent, D.B.; Davis, J.A.; Joye, J.L.; Curtis, G.P.

    2008-01-01

    Adsorption of Ni and Pb on aquifer sediments from Cape Cod, Massachusetts, USA increased with increasing pH and metal-ion concentration. Adsorption could be described quantitatively using a semi-mechanistic surface complexation model (SCM), in which adsorption is described using chemical reactions between metal ions and adsorption sites. Equilibrium reactive transport simulations incorporating the SCMs, formation of metal-ion-EDTA complexes, and either Fe(III)-oxyhydroxide solubility or Zn desorption from sediments identified important factors responsible for trends observed during transport experiments conducted with EDTA complexes of Ni, Zn, and Pb in the Cape Cod aquifer. Dissociation of Pb-EDTA by Fe(III) is more favorable than Ni-EDTA because of differences in Ni- and Pb-adsorption to the sediments. Dissociation of Ni-EDTA becomes more favorable with decreasing Ni-EDTA concentration and decreasing pH. In contrast to Ni, Pb-EDTA can be dissociated by Zn desorbed from the aquifer sediments. Variability in adsorbed Zn concentrations has a large impact on Pb-EDTA dissociation.

  2. Influence of pressurized anode chamber on ion transports and power generation of UF membrane microbial fuel cells (UF-MFCs)

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Yeol; Chae, Kyu-Jung; Yang, Euntae; Lee, Mi-Young; Kim, In S.

    2015-04-01

    Ultrafiltration membrane integrated microbial fuel cell (UF-MFC) has developed to produce high-quality effluents by integrating the membrane filtration process into the MFC system. During UF-MFC operation, however, unexpected power reductions were observed under different pressures that were applied in the anode chamber (22.0% and 25.5% at 0.7 bar and 2.1 bar, respectively). It was hypothesized that those of power reductions might occur due to the limitation of ion transport across the UF membrane- which could be caused by the pressurized anode chamber to filter the anode solution through the UF membrane. A test with a NaCl concentrated cathode solution showed few dissolved ions being transported from the cathode to anode chamber while the pressure was being applied in the anode chamber. This result clearly indicates that the limitation of ion transport from the cathode to the pressurized anode chamber is a significant factor affecting the power density of UF-MFCs, even more so than water permeation through the UF membrane.

  3. Ion release from copper phosphate cement and influence on Streptococcus mutans growth in vitro: a comparative study.

    PubMed

    Foley, Jennifer; Blackwell, Alison

    2003-01-01

    The aim of this study was to compare the effects of a black copper cement (BCC), an established restorative material (a conventional glass ionomer cement) and two temporary restorative materials (a zinc phosphate and a zinc polycarboxylate cement) on the growth of Streptococcus mutans in vitro, and to correlate bacterial growth with ion release from each material. Test specimens were eluted in either 0.1 M lactic acid, pH 4, or 0.1 M sodium chloride, pH 7. At 2 days, 7 days, 28 days and 6 months, eluates were inoculated with S. mutans and bacterial growth was recorded. Metal ion (Cu(2+), Zn(2+ )and Mg(2+)) and fluoride release were measured. At most immersion times, the different materials had a statistically significant inhibitory effect on bacterial growth compared to the respective control, at both pH levels. The inhibitory effect decreased with time and in most cases was associated with high levels of ion release at the beginning of the experimental period, followed by significantly lower levels. For BCC, there were statistically significant relationships between the median rates of growth of S. mutans in the presence of BCC eluates and the median values for release of copper and zinc, although not magnesium. Of the different materials, BCC demonstrated greatest antibacterial activity.

  4. Three-dimensional Simulations and Spacecraft Observations of Sub-ion Scale Turbulence in the Solar Wind: Influence of Landau Damping

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Sahraoui, F.; Passot, T.; Laveder, D.; Sulem, P. L.; Huang, S. Y.; Henri, P.; Smets, R.

    2017-04-01

    Three-dimensional nonlinear finite Larmor radius (FLR)-Landau fluid simulations, which include some small-scale ({k}\\perp {ρ }i≳ 1) kinetic effects, are performed to explore the nature of the sub-ion scale turbulence in the solar wind and to investigate the role of Landau damping and FLR corrections. The resulting steady-state magnetic power spectrum in the dispersive range display exponents that vary within a range of values compatible with statistical results reported from in situ spacecraft measurements of solar wind turbulence as well as from gyrokinetic simulations. The spectral slopes are shown to depend on the strength of the nonlinear effects and on the scale at which turbulent fluctuations are driven in the simulations. The influence of Landau damping is addressed by comparison with simulations where the double-adiabatic closure is imposed. The role of FLR corrections is also analyzed. Comparison with in situ observations in the solar wind are performed to enlighten the influence of the fluctuations power at different scales on the spectral slopes in the sub-ion range. Using diagnosis of both magnetic compressibility and frequency-wavenumber spectra, it is shown that in spite of the evidence of the presence of fast-magnetosonic modes, the magnetic energy is mostly distributed around the kinetic Alfvén waves and the slow modes, in agreement with solar wind measurements. The observed large broadening about the linear dispersion relations may reflect the presence of coherent structures.

  5. Influence of ion effects on a space charge limited field emission flow: from non-relativistic to ultra-relativistic regimes

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.

    2011-10-01

    Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.

  6. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner.

    PubMed

    Dąbrowska-Bronk, Joanna; Komar, Dorota Natalia; Rusaczonek, Anna; Kozłowska-Makulska, Anna; Szechyńska-Hebda, Magdalena; Karpiński, Stanisław

    2016-09-20

    Carbonic anhydrases (CAs) catalyse reversible interconversion of CO2 and water into bicarbonate and protons and regulate concentration of CO2 around photosynthetic enzymes. In higher plants the CAs are divided into three distinct classes α, β and γ, with members off each of them being involved in CO2 uptake, fixation or recycling. The most abundant group is βCAs. In C4 plants they are localized in the cytosol of mesophyll cells and catalyse first step of carbon concentration pathway. C3 plants contain orthologues genes encoding βCAs's, however their functions are unknown. Given the importance of βCAs in the present study we analysed the effect of carbonic ions, selected orthologues βCAs's gene expression and βCAs enzymatic activity on Arabidopsis photosynthesis, growth and cell death in different light conditions. Plants fertilised with 0.5-3mM sodium bicarbonate had a significantly increased number of leaves, improved fresh and dry weight and reduced cell death (cellular ion leakage). This effect was dependent on provided photon flux density and photoperiod. Higher content of carbonic ions also stimulated photoprotective mechanisms such as non-photochemical quenching and foliar content of photoprotective pigments (neoxanthin, violaxanthin and carotenes). Function of various βCAs genes examined in null βcas mutants showed to be complementary and additive, and confirm results of fertilizing experiments. Taken together, regulation of βCAs gene expression and enzymatic activities are important for optimal plant growth and probably can be one of the factor influencing a switch between C3 and C4 photosynthesis mode in variable light conditions. Therefore, biotechnological amelioration of βCAs activity in economically important plants and their fertilisation with carbonic ions may lead to improved photosynthetic efficiency and further crop productivity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. [Influence of ionizing radiation, application of iron ions and their chelate complexes on the oxidative status of blood serum of rats].

    PubMed

    Riabchenko, N I; Ivannik, B P; Riabchenko, V I; Dzikovskaia, L A

    2011-01-01

    Influence of ionizing radiation, ions of iron and their chelate complexes on the oxidative status of blood serum of rats has been investigated. Animals were irradiated by gamma-rays 60Co at a dose of 4 Gy. Ions of iron and iron chelates with nitrilotriacetic acid and citric acid were introduced into animals intra-abdominally at a doze of 10 mg of iron on 1 kg of body weight. The oxidative status of blood serum was determined according to the estimated content of oxidizing peroxide equivalents which oxidize ferrous iron in ferric iron with the subsequent estimation of ferric iron by means of xylenol orange. We also estimated the total content of iron in blood serum using ferrozine as an indicator. The oxidative status was defined 24 and 96 hours after irradiation and 2 hours after introduction of iron ions and their chelates. The research conducted has shown that the concentration of oxidizing peroxide equivalents in serum and the total iron concentration increase 1.47 times and 1.63 times correspondingly 24 hours after irradiation. The increase in the content of oxidizing peroxide equivalents and iron owing to Fenton's reaction can lead to the appearance of OH* radical and raise the level of damage of nuclear and membrane structures in irradiated cells. 2 hours after introduction of iron ions and their chelates, the content of oxidizing peroxide equivalents increased in the blood serum of irradiated and non-irradiated rats, and the maximum effect was observed when introducing ferrous iron and its chelate with citric acid.

  8. Influences of thicknesses and structures of barrier cap layers on As ion profiles and implant damages in HgCdTe epilayers

    NASA Astrophysics Data System (ADS)

    Shi, Changzhi; Lin, Chun; Wei, Yanfeng; Chen, Lu; Ye, Zhenhua

    2016-05-01

    The barrier cap layer (BCL) is considered to be able to absorb partially implant induced damages during ion implantation, thus its structure and property could impact the result of ion implantation. In this paper, for As ion implantation in HgCdTe, the different BCLs were deposited on the CdZnTe-based (LPE) and GaAs-based (MBE) HgCdTe epilayers, respectively. Then, the influences of thicknesses and structures of these BCLs on dopant profiles and implant damages were investigated. The as-grown BCLs include thermally evaporated (TE) ZnS, TE CdTe, electron beam evaporated (EBE) CdTe and in-situ CdTe/ZnTe grown by MBE. The SIMS profiles and TEM characterization indicate: For TE ZnS BCLs, there exists an optimized thickness to obtain the deepest As indiffusion after high temperature annealing, and the end-of-range (EOR) depth is linearly proportional to the thickness ratio of a-MCT layer/damage layer. For TE CdTe BCLs, the barrier layer induced channeling effect (BLICE) occurs to the thin BCL samples, while this effect is suppressed in the thick BCL samples. The phenomenon might be due to that the blocking effect of the layered structure inside each crystal column becomes dominate in the thick BCL samples. Additionally, the EBE CdTe BCL with layered structure can suppress effectively the BLICE effect; in the in-situ CdTe/ZnTe BCL, the short defect layer generated in the CdTe buffer layer and the amorphization of the ZnTe layer during ion implantation also play a significant role in suppressing the BLICE effect.

  9. Les Applications Therapeutiques Des Lasers

    NASA Astrophysics Data System (ADS)

    Brunetaud, J. M.; Mordon, S.; Bourez, J.; Mosquet, L.; Moschetto, Y.

    1984-03-01

    C'est de tres loin le mecanisme predominant dans les applications therapeutiques du laser. En concentrant le flux lumineux sur une surface redui-te, le laser chauffe localement les tissus qui se retractent (coagulation) pour etre elimines ensuite (detersion) ; si on chauffe plus intensement, les tissus peuvent etre volatilises. La coagulation est utilisee soit pour detruire de petits phenomenes tumoraux qui seront elimines lors du processus de detersion, soit pour arreter une hemorragie (hemo-stase) ; dans ce cas la retraction thermique des tissus va provoquer la fermeture de la lumiere des vaisseaux qui seront secondairement obliteres par des caillots formes sur place (thrombose). Par volatilisation it est possible de detruire des phenomenes tumoraux plus importants que ceux at-teints lors d'une simple coagulation. Si la zone volatilisee est tres etroite (de 0,1 a 1 mm) on obtient un effet de coupe avec une excellente hemostase au niveau des berges. Certes ces deux processus - coagulation et volatilisation - peuvent etre obtenus par d'autres procedes : echauffement par contact (sonde thermique) ou effet Joule (courant electrique haute frequence). Le laser a l'avantage de ne necessiter aucun contact mecanique entre le vecteur d'energie et les tissus ; on peut alors predire correctement la repartition d'energie au niveau des tissus et les effets sont tres repro-ductibles. Par ailleurs, l'absorption tissulaire variant considerablement avec la longueur d'onde on peut choisir la source laser en fonction des effets desires.

  10. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  11. Impact non-pénétrant sur le thorax : influence de la courbure sur la propagation des ondesNonpenetrating impact on the thorax: influence of curvature on wave propagation

    NASA Astrophysics Data System (ADS)

    Grimal, Quentin; Naili, Salah; Watzky, Alexandre

    Theoretical studies of the propagation of impact waves through the thorax are needed to improve the design of bulletproof jackets and blast protections (Fung in 'Biomechanics Motions, Flow, Stress, and Growth', Springer-Verlag, 1990; Cooper et al., J. Trauma 40 (1996) S38-S41). The influence of the weak acoustic coupling at the interface between the thoracic wall and the lung were described in (Grimal et al., C. R. Acad. Sci. IIB 329 (2001) 655-662); in this work, we study, within the frame of elastodynamics and with an approximate analytical method, the effects of the curvature of this interface. Results are given in terms of strain energy for the pressure wave, transmitted or converted. Focalisation of energy in the medium representing the lung is important for curvatures measured in humans. To cite this article: Q. Grimal et al., C. R. Mecanique 330 (2002) 569-574.

  12. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  13. Modelisation des emissions de particules microniques et nanometriques en usinage

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  14. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  15. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    SciTech Connect

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Kokubo, Toshiaki; Doi, Kazutaka; Iizuka, Daisuke; Nishimura, Yukiko; Okutani, Tomomi; Takabatake, Masaru; Kakinuma, Shizuko; Shimada, Yoshiya

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  16. Trace amounts of Cu²⁺ ions influence ROS production and cytotoxicity of ZnO quantum dots.

    PubMed

    Moussa, Hatem; Merlin, Christophe; Dezanet, Clément; Balan, Lavinia; Medjahdi, Ghouti; Ben-Attia, Mossadok; Schneider, Raphaël

    2016-03-05

    3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu(2+)-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu(2+) ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu(2+) location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (OH, O2(-), H2O2 and (1)O2) and that ZnO@APTMS/Cu QDs generate more OH and O2(-) radicals and H2O2 than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presenc